WorldWideScience

Sample records for dna polymerase molecules

  1. Real-time DNA sequencing from single polymerase molecules.

    Science.gov (United States)

    Eid, John; Fehr, Adrian; Gray, Jeremy; Luong, Khai; Lyle, John; Otto, Geoff; Peluso, Paul; Rank, David; Baybayan, Primo; Bettman, Brad; Bibillo, Arkadiusz; Bjornson, Keith; Chaudhuri, Bidhan; Christians, Frederick; Cicero, Ronald; Clark, Sonya; Dalal, Ravindra; Dewinter, Alex; Dixon, John; Foquet, Mathieu; Gaertner, Alfred; Hardenbol, Paul; Heiner, Cheryl; Hester, Kevin; Holden, David; Kearns, Gregory; Kong, Xiangxu; Kuse, Ronald; Lacroix, Yves; Lin, Steven; Lundquist, Paul; Ma, Congcong; Marks, Patrick; Maxham, Mark; Murphy, Devon; Park, Insil; Pham, Thang; Phillips, Michael; Roy, Joy; Sebra, Robert; Shen, Gene; Sorenson, Jon; Tomaney, Austin; Travers, Kevin; Trulson, Mark; Vieceli, John; Wegener, Jeffrey; Wu, Dawn; Yang, Alicia; Zaccarin, Denis; Zhao, Peter; Zhong, Frank; Korlach, Jonas; Turner, Stephen

    2009-01-02

    We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.

  2. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET

    NARCIS (Netherlands)

    Hohlbein, J.; Kapanidis, A.N.

    2016-01-01

    Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open

  3. Single-molecule measurements of synthesis by DNA polymerase with base-pair resolution.

    Science.gov (United States)

    Christian, Thomas D; Romano, Louis J; Rueda, David

    2009-12-15

    The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3'-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution. As each nucleotide is incorporated, the single-molecule Förster resonance energy transfer intensity drops in discrete steps to values consistent with single-nucleotide incorporations. Purines and pyrimidines are incorporated with comparable rates. A mismatched primer/template junction exhibits dynamics consistent with the primer moving into the exonuclease domain, which was used to determine the fraction of primer-termini bound to the exonuclease and polymerase sites. Most interestingly, we observe a structural change after the incorporation of a correctly paired nucleotide, consistent with transient movement of the polymerase past the preinsertion site or a conformational change in the polymerase. This may represent a previously unobserved step in the mechanism of DNA synthesis that could be part of the proofreading process.

  4. Real-time single-molecule studies of the motions of DNA polymerase fingers illuminate DNA synthesis mechanisms.

    Science.gov (United States)

    Evans, Geraint W; Hohlbein, Johannes; Craggs, Timothy; Aigrain, Louise; Kapanidis, Achillefs N

    2015-07-13

    DNA polymerases maintain genomic integrity by copying DNA with high fidelity. A conformational change important for fidelity is the motion of the polymerase fingers subdomain from an open to a closed conformation upon binding of a complementary nucleotide. We previously employed intra-protein single-molecule FRET on diffusing molecules to observe fingers conformations in polymerase-DNA complexes. Here, we used the same FRET ruler on surface-immobilized complexes to observe fingers-opening and closing of individual polymerase molecules in real time. Our results revealed the presence of intrinsic dynamics in the binary complex, characterized by slow fingers-closing and fast fingers-opening. When binary complexes were incubated with increasing concentrations of complementary nucleotide, the fingers-closing rate increased, strongly supporting an induced-fit model for nucleotide recognition. Meanwhile, the opening rate in ternary complexes with complementary nucleotide was 6 s(-1), much slower than either fingers closing or the rate-limiting step in the forward direction; this rate balance ensures that, after nucleotide binding and fingers-closing, nucleotide incorporation is overwhelmingly likely to occur. Our results for ternary complexes with a non-complementary dNTP confirmed the presence of a state corresponding to partially closed fingers and suggested a radically different rate balance regarding fingers transitions, which allows polymerase to achieve high fidelity.

  5. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase.

    Science.gov (United States)

    Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V

    2006-10-15

    The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.

  6. DNA Polymerase e - More Than a Polymerase

    Directory of Open Access Journals (Sweden)

    Helmut Pospiech

    2003-01-01

    Full Text Available This paper presents a comprehensive review of the structure and function of DNA polymerase e. Together with DNA polymerases a and d, this enzyme replicates the nuclear DNA in the eukaryotic cell. During this process, DNA polymerase a lays down RNA-DNA primers that are utilized by DNA polymerases d and e for the bulk DNA synthesis. Attempts have been made to assign these two enzymes specifically to the synthesis of the leading and the lagging strand. Alternatively, the two DNA polymerases may be needed to replicate distinct regions depending on chromatin structure. Surprisingly, the essential function of DNA polymerase e does not depend on its catalytic activity, but resides in the nonenzymatic carboxy-terminal domain. This domain not only mediates the interaction of the catalytic subunit with the three smaller regulatory subunits, but also links the replication machinery to the S phase checkpoint. In addition to its role in DNA replication, DNA polymerase e fulfils roles in the DNA synthesis step of nucleotide excision and base excision repair, and has been implicated in recombinational processes in the cell.

  7. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies.

    Science.gov (United States)

    Sharma, Amit; Leach, Robert N; Gell, Christopher; Zhang, Nan; Burrows, Patricia C; Shepherd, Dale A; Wigneshweraraj, Sivaramesh; Smith, David Alastair; Zhang, Xiaodong; Buck, Martin; Stockley, Peter G; Tuma, Roman

    2014-04-01

    Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ(70) or σ(54), that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ(54) version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ(70) and σ(54), the domain movements of the latter have evolved to require an activator ATPase.

  8. DNA polymerase activity of tomato fruit chromoplasts.

    Science.gov (United States)

    Serra, E C; Carrillo, N

    1990-11-26

    DNA polymerase activity was measured in chromoplasts of ripening tomato fruits. Plastids isolated from young leaves or mature red fruits showed similar DNA polymerase activities. The same enzyme species was present in either chloroplasts or chromoplasts as judged by pH and temperature profiles, sensitivities towards different inhibitors and relative molecular mass (Mr 88 kDa). The activities analyzed showed the typical behaviour of plastid-type polymerases. The results presented here suggest that chromoplast maintain their DNA synthesis potential in fruit tissue at chloroplast levels. Consequently, the sharp decrease of the plastid chromosome transcription observed at the onset of fruit ripening could not be due to limitations in the availability of template molecules. Other mechanisms must be involved in the inhibition of chromoplast RNA synthesis.

  9. DNA polymerase beta can substitute for DNA polymerase I in the initiation of plasmid DNA replication.

    OpenAIRE

    1995-01-01

    We previously demonstrated that mammalian DNA polymerase beta can substitute for DNA polymerase I of Escherichia coli in DNA replication and in base excision repair. We have now obtained genetic evidence suggesting that DNA polymerase beta can substitute for E. coli DNA polymerase I in the initiation of replication of a plasmid containing a pMB1 origin of DNA replication. Specifically, we demonstrate that a plasmid with a pMB1 origin of replication can be maintained in an E. coli polA mutant ...

  10. Unfaithful DNA polymerase caught in the act

    OpenAIRE

    2004-01-01

    The 3D structures of all 12 mispairs formed in the active site of a DNA polymerase help explain their differential effects on polymerase stalling and on translocation of the primer terminus to the enzyme's proofreading site.

  11. Bacteriophage T7 DNA polymerase — Sequenase

    Directory of Open Access Journals (Sweden)

    Bin eZhu

    2014-04-01

    Full Text Available An ideal DNA polymerase for chain-terminating DNA sequencing should possess the following features: 1 incorporate dideoxy- and other modified nucleotides at an efficiency similar to that of the cognate deoxynucleotides; 2 high processivity; 3 high fidelity in the absence of proofreading/exonuclease activity; and 4 production of clear and uniform signals for detection. The DNA polymerase encoded by bacteriophage T7 is naturally endowed with or can be engineered to have all these characteristics. The chemically or genetically modified enzyme (Sequenase expedited significantly the development of DNA sequencing technology. This article reviews the history of studies on T7 DNA polymerase with emphasis on the serial key steps leading to its use in DNA sequencing. Lessons from the study and development of T7 DNA polymerase have and will continue to enlighten the characterization of novel DNA polymerases from newly discovered microbes and their modification for use in biotechnology.

  12. Disentangling DNA molecules.

    Science.gov (United States)

    Vologodskii, Alexander

    2016-09-01

    The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.

  13. Disentangling DNA molecules

    Science.gov (United States)

    Vologodskii, Alexander

    2016-09-01

    The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.

  14. DNA polymerase preference determines PCR priming efficiency

    Science.gov (United States)

    2014-01-01

    Background Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3’ hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Results Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3’ end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. Conclusions DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification

  15. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  16. Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase

    OpenAIRE

    2003-01-01

    Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq...

  17. Replicative DNA polymerase mutations in cancer.

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-02-01

    Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions.

  18. Engineered DNA Polymerase Improves PCR Results for Plastid DNA

    Directory of Open Access Journals (Sweden)

    Melanie Schori

    2013-02-01

    Full Text Available Premise of the study: Secondary metabolites often inhibit PCR and sequencing reactions in extractions from plant material, especially from silica-dried and herbarium material. A DNA polymerase that is tolerant to inhibitors improves PCR results. Methods and Results: A novel DNA amplification system, including a DNA polymerase engineered via directed evolution for improved tolerance to common plant-derived PCR inhibitors, was evaluated and PCR parameters optimized for three species. An additional 31 species were then tested with the engineered enzyme and optimized protocol, as well as with regular Taq polymerase. Conclusions: PCR products and high-quality sequence data were obtained for 96% of samples for rbcL and 79% for matK, compared to 29% and 21% with regular Taq polymerase.

  19. Molecular Mechanisms of DNA Polymerase Clamp Loaders

    Science.gov (United States)

    Kelch, Brian; Makino, Debora; Simonetta, Kyle; O'Donnell, Mike; Kuriyan, John

    Clamp loaders are ATP-driven multiprotein machines that couple ATP hydrolysis to the opening and closing of a circular protein ring around DNA. This ring-shaped clamp slides along DNA, and interacts with numerous proteins involved in DNA replication, DNA repair and cell cycle control. Recently determined structures of clamp loader complexes from prokaryotic and eukaryotic DNA polymerases have revealed exciting new details of how these complex AAA+ machines perform this essential clamp loading function. This review serves as background to John Kuriyan's lecture at the 2010 Erice School, and is not meant as a comprehensive review of the contributions of the many scientists who have advanced this field. These lecture notes are derived from recent reviews and research papers from our groups.

  20. Accuracy of replication in the polymerase chain reaction. Comparison between Thermotoga maritima DNA polymerase and Thermus aquaticus DNA polymerase

    Directory of Open Access Journals (Sweden)

    R.S. Diaz

    1998-10-01

    Full Text Available For certain applications of the polymerase chain reaction (PCR, it may be necessary to consider the accuracy of replication. The breakthrough that made PCR user friendly was the commercialization of Thermus aquaticus (Taq DNA polymerase, an enzyme that would survive the high temperatures needed for DNA denaturation. The development of enzymes with an inherent 3' to 5' exonuclease proofreading activity, lacking in Taq polymerase, would be an improvement when higher fidelity is needed. We used the forward mutation assay to compare the fidelity of Taq polymerase and Thermotoga maritima (ULTMA™ DNA polymerase, an enzyme that does have proofreading activity. We did not find significant differences in the fidelity of either enzyme, even when using optimal buffer conditions, thermal cycling parameters, and number of cycles (0.2% and 0.13% error rates for ULTMA™ and Taq, respectively, after reading about 3,000 bases each. We conclude that for sequencing purposes there is no difference in using a DNA polymerase that contains an inherent 3' to 5' exonuclease activity for DNA amplification. Perhaps the specificity and fidelity of PCR are complex issues influenced by the nature of the target sequence, as well as by each PCR component.

  1. Molecular architecture and function of adenovirus DNA polymerase

    NARCIS (Netherlands)

    Brenkman, A.B. (Arjan Bernard)

    2003-01-01

    Central to this thesis is the role of adenovirus DNA polymerase (Ad pol) in adenovirus DNA replication. Ad pol is a member of the family B DNA polymerases but belongs to a distinct subclass of polymerases that use a protein as primer. As Ad pol catalyses both the initiation and elongation phases and

  2. Replicative DNA polymerase mutations in cancer☆

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  3. New Insights into DNA Polymerase Function Revealed by Phosphonoacetic Acid-Sensitive T4 DNA Polymerases.

    Science.gov (United States)

    Zhang, Likui

    2017-09-15

    The bacteriophage T4 DNA polymerase (pol) and the closely related RB69 DNA pol have been developed into model enzymes to study family B DNA pols. While all family B DNA pols have similar structures and share conserved protein motifs, the molecular mechanism underlying natural drug resistance of nonherpes family B DNA pols and drug sensitivity of herpes DNA pols remains unknown. In the present study, we constructed T4 phages containing G466S, Y460F, G466S/Y460F, P469S, and V475W mutations in DNA pol. These amino acid substitutions replace the residues in drug-resistant T4 DNA pol with residues found in drug-sensitive herpes family DNA pols. We investigated whether the T4 phages expressing the engineered mutant DNA pols were sensitive to the antiviral drug phosphonoacetic acid (PAA) and characterized the in vivo replication fidelity of the phage DNA pols. We found that G466S substitution marginally increased PAA sensitivity, whereas Y460F substitution conferred resistance. The phage expressing a double mutant G466S/Y460F DNA pol was more PAA-sensitive. V475W T4 DNA pol was highly sensitive to PAA, as was the case with V478W RB69 DNA pol. However, DNA replication was severely compromised, which resulted in the selection of phages expressing more robust DNA pols that have strong ability to replicate DNA and contain additional amino acid substitutions that suppress PAA sensitivity. Reduced replication fidelity was observed in all mutant phages expressing PAA-sensitive DNA pols. These observations indicate that PAA sensitivity and fidelity are balanced in DNA pols that can replicate DNA in different environments.

  4. Recoiling DNA Molecule Simulation & Experiment

    CERN Document Server

    Neto, J C; Mesquita, O N; Neto, Jose Coelho; Dickman, Ronald

    2002-01-01

    Many recent experiments with single DNA molecules are based on force versus extension measurements and involve tethering a microsphere to one of its extremities and the other to a microscope coverglass. In this work we show that similar results can also be obtained by studying the recoil dynamics of the tethered microspheres. Computer simulations of the corresponding Langevin equation indicate which assumptions are required for a reliable analysis of the experimental recoil curves. We have measured the persistence length A of single naked DNA molecules and DNA-Ethidium Bromide complexes using this approach.

  5. Role for DNA polymerase beta in response to ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Cramers, P.; Begg, A.C.; Vens, C.

    2007-01-01

    Evidence for a role of DNA polymerase beta in determining radiosensitivity is conflicting. In vitro assays show an involvement of DNA polymerase beta in single strand break repair and base excision repair of oxidative damages, both products of ionizing radiation. Nevertheless the lack of DNA polymer

  6. Thioredoxin suppresses microscopic hopping of T7 DNA polymerase on duplex DNA

    NARCIS (Netherlands)

    Etson, Candice M.; Hamdan, Samir M.; Richardson, Charles C.; Oijen, Antoine M. van; Richardson, Charles C.

    2010-01-01

    The DNA polymerases involved in DNA replication achieve high processivity of nucleotide incorporation by forming a complex with processivity factors. A model system for replicative DNA polymerases, the bacteriophage T7 DNA polymerase (gp5), encoded by gene 5, forms a tight, 1:1 complex with

  7. Role of DNA Polymerases in Repeat-Mediated Genome Instability

    Directory of Open Access Journals (Sweden)

    Kartik A. Shah

    2012-11-01

    Full Text Available Expansions of simple DNA repeats cause numerous hereditary diseases in humans. We analyzed the role of DNA polymerases in the instability of Friedreich’s ataxia (GAAn repeats in a yeast experimental system. The elementary step of expansion corresponded to ∼160 bp in the wild-type strain, matching the size of Okazaki fragments in yeast. This step increased when DNA polymerase α was mutated, suggesting a link between the scale of expansions and Okazaki fragment size. Expandable repeats strongly elevated the rate of mutations at substantial distances around them, a phenomenon we call repeat-induced mutagenesis (RIM. Notably, defects in the replicative DNA polymerases δ and ∊ strongly increased rates for both repeat expansions and RIM. The increases in repeat-mediated instability observed in DNA polymerase δ mutants depended on translesion DNA polymerases. We conclude that repeat expansions and RIM are two sides of the same replicative mechanism.

  8. Single molecule studies of RNA polymerase II transcription in vitro.

    Science.gov (United States)

    Horn, Abigail E; Goodrich, James A; Kugel, Jennifer F

    2014-01-01

    Eukaryotic mRNA transcription by RNA polymerase II (RNAP II) is the first step in gene expression and a key determinant of cellular regulation. Elucidating the mechanism by which RNAP II synthesizes RNA is therefore vital to determining how genes are controlled under diverse biological conditions. Significant advances in understanding RNAP II transcription have been achieved using classical biochemical and structural techniques; however, aspects of the transcription mechanism cannot be assessed using these approaches. The application of single-molecule techniques to study RNAP II transcription has provided new insight only obtainable by studying molecules in this complex system one at a time.

  9. Hepatitis B virus DNA polymerase gene polymorphism based ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... HBV is distributed into various genotypes based on nucleic acid sequence variation. ... compared to genotype B and higher incidence of HCC in genotype D ... DNA sequencing technology to sequence HBV DNA polymerase ...

  10. DNA Polymerases and Aminoacyl-tRNA Synthetases: Shared Mechanisms for Ensuring the Fidelity of Gene Expression

    OpenAIRE

    Francklyn, Christopher S.

    2008-01-01

    DNA polymerases and aminoacyl-tRNA synthetases (ARSs) represent large enzyme families with critical roles in the transformation of genetic information from DNA to RNA to protein. DNA polymerases carry out replication and collaborate in the repair of the genome, while ARSs provide aminoacylated tRNA precursors for protein synthesis. Enzymes of both families face the common challenge of selecting their cognate small molecule substrates from a pool of chemically related molecules, achieving high...

  11. DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response.

    Science.gov (United States)

    Colis, Laureen; Peltonen, Karita; Sirajuddin, Paul; Liu, Hester; Sanders, Sara; Ernst, Glen; Barrow, James C; Laiho, Marikki

    2014-06-30

    DNA intercalation is a major therapeutic modality for cancer therapeutic drugs. The therapeutic activity comes at a cost of normal tissue toxicity and genotoxicity. We have recently described a planar heterocyclic small molecule DNA intercalator, BMH-21, that binds ribosomal DNA and inhibits RNA polymerase I (Pol I) transcription. Despite DNA intercalation, BMH-21 does not cause phosphorylation of H2AX, a key biomarker activated in DNA damage stress. Here we assessed whether BMH-21 activity towards expression and localization of Pol I marker proteins depends on DNA damage signaling and repair pathways. We show that BMH-21 effects on the nucleolar stress response were independent of major DNA damage associated PI3-kinase pathways, ATM, ATR and DNA-PKcs. However, testing a series of BMH-21 derivatives with alterations in its N,N-dimethylaminocarboxamide arm showed that several derivatives had acquired the property to activate ATM- and DNA-PKcs -dependent damage sensing and repair pathways while their ability to cause nucleolar stress and affect cell viability was greatly reduced. The data show that BMH-21 is a chemically unique DNA intercalator that has high bioactivity towards Pol I inhibition without activation or dependence of DNA damage stress. The findings also show that interference with DNA and DNA metabolic processes can be exploited therapeutically without causing DNA damage.

  12. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  13. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    Science.gov (United States)

    Gardner, Shea N.; Mariella, Jr., Raymond P.; Christian, Allen T.; Young, Jennifer A.; Clague, David S.

    2011-01-18

    A method of fabricating a DNA molecule of user-defined sequence. The method comprises the steps of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an even or odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths. In one embodiment starting sequence fragments are of different lengths, n, n+1, n+2, etc.

  14. Comparative Analysis of Eubacterial DNA Polymerase Ⅲ Alpha Subunits

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qian Zhao; Jian-Fei Hu; Jun Yu

    2006-01-01

    DNA polymerase Ⅲ is one of the five eubacterial DNA polymerases that is responsible for the replication of DNA duplex. Among the ten subunits of the DNA polymerase Ⅲ core enzyme, the alpha subunit catalyzes the reaction for polymerizing both DNA strands. In this study, we extracted genomic sequences of the alpha subunit from 159 sequenced eubacterial genomes, and carried out sequencebased phylogenetic and structural analyses. We found that all eubacterial genomes have one or more alpha subunits, which form either homodimers or heterodimers.Phylogenetic and domain structural analyses as well as copy number variations of the alpha subunit in each bacterium indicate the classification of alpha subunit into four basic groups: polC, dnaE1, dnaE2, and dnaE3. This classification is of essence in genome composition analysis. We also consolidated the naming convention to avoid further confusion in gene annotations.

  15. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    Science.gov (United States)

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  16. Hybrid Methods Reveal Multiple Flexibly Linked DNA Polymerases within the Bacteriophage T7 Replisome.

    Science.gov (United States)

    Wallen, Jamie R; Zhang, Hao; Weis, Caroline; Cui, Weidong; Foster, Brittni M; Ho, Chris M W; Hammel, Michal; Tainer, John A; Gross, Michael L; Ellenberger, Tom

    2017-01-03

    The physical organization of DNA enzymes at a replication fork enables efficient copying of two antiparallel DNA strands, yet dynamic protein interactions within the replication complex complicate replisome structural studies. We employed a combination of crystallographic, native mass spectrometry and small-angle X-ray scattering experiments to capture alternative structures of a model replication system encoded by bacteriophage T7. Two molecules of DNA polymerase bind the ring-shaped primase-helicase in a conserved orientation and provide structural insight into how the acidic C-terminal tail of the primase-helicase contacts the DNA polymerase to facilitate loading of the polymerase onto DNA. A third DNA polymerase binds the ring in an offset manner that may enable polymerase exchange during replication. Alternative polymerase binding modes are also detected by small-angle X-ray scattering with DNA substrates present. Our collective results unveil complex motions within T7 replisome higher-order structures that are underpinned by multivalent protein-protein interactions with functional implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Visualization of large elongated DNA molecules.

    Science.gov (United States)

    Lee, Jinyong; Kim, Yongkyun; Lee, Seonghyun; Jo, Kyubong

    2015-09-01

    Long and linear DNA molecules are the mainstream single-molecule analytes for a variety of biochemical analysis within microfluidic devices, including functionalized surfaces and nanostructures. However, for biochemical analysis, large DNA molecules have to be unraveled, elongated, and visualized to obtain biochemical and genomic information. To date, elongated DNA molecules have been exploited in the development of a number of genome analysis systems as well as for the study of polymer physics due to the advantage of direct visualization of single DNA molecule. Moreover, each single DNA molecule provides individual information, which makes it useful for stochastic event analysis. Therefore, numerous studies of enzymatic random motions have been performed on a large elongated DNA molecule. In this review, we introduce mechanisms to elongate DNA molecules using microfluidics and nanostructures in the beginning. Secondly, we discuss how elongated DNA molecules have been utilized to obtain biochemical and genomic information by direct visualization of DNA molecules. Finally, we reviewed the approaches used to study the interaction of proteins and large DNA molecules. Although DNA-protein interactions have been investigated for many decades, it is noticeable that there have been significant achievements for the last five years. Therefore, we focus mainly on recent developments for monitoring enzymatic activity on large elongated DNA molecules.

  18. Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading

    Science.gov (United States)

    Gaspard, Pierre

    2016-04-01

    Kinetic theory and thermodynamics are applied to DNA polymerases with exonuclease activity, taking into account the dependence of the rates on the previously incorporated nucleotide. The replication fidelity is shown to increase significantly thanks to this dependence at the basis of the mechanism of exonuclease proofreading. In particular, this dependence can provide up to a 100-fold lowering of the error probability under physiological conditions. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  19. Kinetics and thermodynamics of exonuclease-deficient DNA polymerases

    Science.gov (United States)

    Gaspard, Pierre

    2016-04-01

    A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  20. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ

    DEFF Research Database (Denmark)

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz

    2017-01-01

    DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site...... of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable...

  1. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Directory of Open Access Journals (Sweden)

    Tom eKillelea

    2014-05-01

    Full Text Available DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR, cDNA cloning, genome sequencing and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3’ primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  2. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  3. PCR performance of a thermostable heterodimeric archaeal DNA polymerase.

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  4. Single molecule study of a processivity clamp sliding on DNA

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  5. DIFFERENT RESULTS BY DIFFERENT COMMERCIAL TAQ DNA POLYMERASE IN RAPD

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ RAPD (Random Amplified Polymorphic DNA) technique has been widely used in animal, plant, human and microorganism research since it was first established by Williams in 1990[1-3]. But, because of low annealed temperature and short 10-nt primers, the resolution and repetition is low in RAPD. The stability of RAPD is influenced by many factors such as the concentration of template, primers, dNTP, Mg++,and Taq DNA polymerase[4-6]. The influence on amplified products of different commercial Taq DNA polymerase in RAPD was studied in this paper.

  6. A novel kinetic analysis to calculate nucleotide affinity of proofreading DNA polymerases. Application to phi 29 DNA polymerase fidelity mutants.

    Science.gov (United States)

    Saturno, J; Blanco, L; Salas, M; Esteban, J A

    1995-12-29

    Amino acids Tyr254 and Tyr390 of phi 29 DNA polymerase belong to one of the most conserved regions in eukaryotic-type DNA polymerases. In this paper we report a mutational study of these two residues to address their role in nucleotide selection. This study was carried out by means of a new kinetic analysis that takes advantage of the competition between DNA polymerization and 3'-->5' exonuclease activity to measure the Km values for correct and incorrect nucleotides in steady-state conditions. This method is valid for any 3'-->5' exonuclease-containing DNA polymerase, without any restriction concerning catalytic rates of nucleotide incorporation. The results showed that the discrimination factor achieved by phi 29 DNA polymerase in the nucleotide binding step of DNA polymerization is 2.4 x 10(3), that is, a wrong nucleotide is bound with a 2.4 x 10(3)-fold lower affinity than the correct one. Mutants Y254F, Y390F, and Y390S showed discrimination values of 7.0 x 10(2), > 1.9 x 10(3), and 2.9 x 10(2), respectively. The reduced accuracy of nucleotide binding produced by mutations Y254F and Y390S lead us to propose that phi 29 DNA polymerase residues Tyr254 and Tyr390, highly conserved in eukaryotic-type DNA polymerases, are involved in nucleotide binding selection, thus playing a crucial role in the fidelity of DNA replication. Comparison of the discrimination factors of mutants Y390S and Y390F strongly suggests that the phenyl ring of Tyr390 is directly involved in checking base-pairing correctness of the incoming nucleotide.

  7. Proofreading genotyping assays mediated by high fidelity exo+ DNA polymerases.

    Science.gov (United States)

    Zhang, Jia; Li, Kai; Pardinas, Jose R; Sommer, Steve S; Yao, Kai-Tai

    2005-02-01

    DNA polymerases with 3'-5' proofreading function mediate high fidelity DNA replication but their application for mutation detection was almost completely neglected before 1998. The obstacle facing the use of exo(+) polymerases for mutation detection could be overcome by primer-3'-termini modification, which has been tested using allele-specific primers with 3' labeling, 3' exonuclease-resistance and 3' dehydroxylation modifications. Accordingly, three new types of single nucleotide polymorphism (SNP) assays have been developed to carry out genome-wide genotyping making use of the fidelity advantage of exo(+) polymerases. Such SNP assays might also provide a novel approach for re-sequencing and de novo sequencing. These new mutation detection assays are widely adaptable to a variety of platforms, including real-time PCR, multi-well plate and microarray technologies. Application of exo(+) polymerases to genetic analysis could accelerate the pace of personalized medicine.

  8. Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, S.B.; Harrison, B.

    1987-05-01

    Macromolecular crowding extends the range of ionic conditions supporting high DNA polymerase reaction rates. Reactions tested were nick translation and gap-filling by DNA polymerase I of E. coli, nuclease and polymerase activities of the large fragment of that polymerase, and polymerization by the T4 DNA polymerase. For all of these reactions, high concentrations of nonspecific polymers increased enzymatic activity under otherwise inhibitory conditions resulting from relatively high ionic strength. The primary mechanism of the polymer effect seems to be to increase the binding of polymerase to DNA. They suggest that this effect of protein-DNA complexes is only one example of a general metabolic buffering action of crowded solutions on a variety of macromolecular interactions.

  9. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ

    OpenAIRE

    Hirota, Kouji; Yoshikiyo, Kazunori; Guilbaud, Guillaume; Tsurimoto, Toshiki; Murai, Junko; Tsuda, Masataka; Phillips, Lara G.; Narita, Takeo; Nishihara, Kana; Kobayashi, Kaori; Yamada, Kouich; Nakamura, Jun; Pommier, Yves; Lehmann, Alan; Sale, Julian E.

    2015-01-01

    The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with ...

  10. Overexpression of DNA polymerase zeta reduces the mitochondrial mutability caused by pathological mutations in DNA polymerase gamma in yeast.

    Directory of Open Access Journals (Sweden)

    Enrico Baruffini

    Full Text Available In yeast, DNA polymerase zeta (Rev3 and Rev7 and Rev1, involved in the error-prone translesion synthesis during replication of nuclear DNA, localize also in mitochondria. We show that overexpression of Rev3 reduced the mtDNA extended mutability caused by a subclass of pathological mutations in Mip1, the yeast mitochondrial DNA polymerase orthologous to human Pol gamma. This beneficial effect was synergistic with the effect achieved by increasing the dNTPs pools. Since overexpression of Rev3 is detrimental for nuclear DNA mutability, we constructed a mutant Rev3 isoform unable to migrate into the nucleus: its overexpression reduced mtDNA mutability without increasing the nuclear one.

  11. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η.

    Science.gov (United States)

    Su, Yan; Egli, Martin; Guengerich, F Peter

    2016-02-19

    Ribonucleotides and 2'-deoxyribonucleotides are the basic units for RNA and DNA, respectively, and the only difference is the extra 2'-OH group on the ribonucleotide sugar. Cellular rNTP concentrations are much higher than those of dNTP. When copying DNA, DNA polymerases not only select the base of the incoming dNTP to form a Watson-Crick pair with the template base but also distinguish the sugar moiety. Some DNA polymerases use a steric gate residue to prevent rNTP incorporation by creating a clash with the 2'-OH group. Y-family human DNA polymerase η (hpol η) is of interest because of its spacious active site (especially in the major groove) and tolerance of DNA lesions. Here, we show that hpol η maintains base selectivity when incorporating rNTPs opposite undamaged DNA and the DNA lesions 7,8-dihydro-8-oxo-2'-deoxyguanosine and cyclobutane pyrimidine dimer but with rates that are 10(3)-fold lower than for inserting the corresponding dNTPs. X-ray crystal structures show that the hpol η scaffolds the incoming rNTP to pair with the template base (dG) or 7,8-dihydro-8-oxo-2'-deoxyguanosine with a significant propeller twist. As a result, the 2'-OH group avoids a clash with the steric gate, Phe-18, but the distance between primer end and Pα of the incoming rNTP increases by 1 Å, elevating the energy barrier and slowing polymerization compared with dNTP. In addition, Tyr-92 was identified as a second line of defense to maintain the position of Phe-18. This is the first crystal structure of a DNA polymerase with an incoming rNTP opposite a DNA lesion.

  12. Modified "DMC" technique for stretching DNA molecules

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A modified "dynamic molecular combing"(DMC)technique used for stretching double-strandedDNA is reported. DNA molecules were stretched on the silanized mica surface by thistechnique, its speed being precisely controlled with a computer. This approachcombinedthe precise DNA stretching method with high resolution AFM imaging at nanometer scale,thusmaking it useful for DNA alignment manipulation and subsequent gene research.

  13. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  14. Trapping and manipulating single molecules of DNA

    Science.gov (United States)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  15. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    Science.gov (United States)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  16. Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA

    Science.gov (United States)

    Fujita, Keisuke; Iwaki, Mitsuhiro; Yanagida, Toshio

    2016-12-01

    Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether transcriptional bursting is intertwined with many transcriptional regulatory factors or is an intrinsic characteristic of RNA polymerase on DNA. Here we design an in vitro single-molecule measurement system to analyse the kinetics of transcriptional bursting. The results indicate that transcriptional bursting is caused by interplay between RNA polymerases on DNA. The kinetics of in vitro transcriptional bursting is quantitatively consistent with the gene-nonspecific kinetics previously observed in noisy gene expression in vivo. Our kinetic analysis based on a cellular automaton model confirms that arrest and rescue by trailing RNA polymerase intrinsically causes transcriptional bursting.

  17. Template-primer analogs as substrates for DNA polymerase.

    OpenAIRE

    1987-01-01

    In order to gain more understanding about the mode of action of DNA polymerase, eight related partially self-complementary "hairpin" shaped oligodeoxynucleotides were prepared. Four of the oligomers contained either 1-beta-D-arabinofuranosyluracil (ara-U) or 1-beta-D-2'deoxyxylofuranosylthymine (dxT) nucleoside analogs at their 3' termini. We investigated the ability of the oligomers to prime DNA synthesis in relationship to the stability of the hybridized region, the nature of the sugar term...

  18. DNA Polymerase δ Is Required for Early Mammalian Embryogenesis

    OpenAIRE

    Arikuni Uchimura; Yuko Hidaka; Takahiro Hirabayashi; Masumi Hirabayashi; Takeshi Yagi

    2009-01-01

    BACKGROUND: In eukaryotic cells, DNA polymerase delta (Poldelta), whose catalytic subunit p125 is encoded in the Pold1 gene, plays a central role in chromosomal DNA replication, repair, and recombination. However, the physiological role of the Poldelta in mammalian development has not been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS: To examine this role, we used a gene targeting strategy to generate two kinds of Pold1 mutant mice: Poldelta-null (Pold1(-/-)) mice and D400A exchang...

  19. DNA dependent RNA polymerases from the fungus Aspergillus nidulans

    NARCIS (Netherlands)

    Stunnenberg, H.G.

    1981-01-01

    The aim of the work presented here was the isolation and characterization of the DNA-dependent RNA polymerases from the fungus Aspergillus nidulans, which was a part of a project concerning the regulation of gene expression in this lower eukaryote.The transcription of a genome and the regulation mec

  20. DNA-dependent RNA polymerases from the fungus Aspergillus nidulans

    NARCIS (Netherlands)

    Stunnenberg, H.G.

    1981-01-01

    The aim of the work presented here was the isolation and characterization of the DNA-dependent RNA polymerases from the fungus Aspergillus nidulans, which was a part of a project concerning the regulation of gene expression in this lower eukaryote.

    The transcription of

  1. DNA polymerase delta is required for early mammalian embryogenesis.

    Directory of Open Access Journals (Sweden)

    Arikuni Uchimura

    Full Text Available BACKGROUND: In eukaryotic cells, DNA polymerase delta (Poldelta, whose catalytic subunit p125 is encoded in the Pold1 gene, plays a central role in chromosomal DNA replication, repair, and recombination. However, the physiological role of the Poldelta in mammalian development has not been thoroughly investigated. METHODOLOGY/PRINCIPAL FINDINGS: To examine this role, we used a gene targeting strategy to generate two kinds of Pold1 mutant mice: Poldelta-null (Pold1(-/- mice and D400A exchanged Poldelta (Pold1(exo/exo mice. The D400A exchange caused deficient 3'-5' exonuclease activity in the Poldelta protein. In Poldelta-null mice, heterozygous mice developed normally despite a reduction in Pold1 protein quantity. In contrast, homozygous Pold1(-/- mice suffered from peri-implantation lethality. Although Pold1(-/- blastocysts appeared normal, their in vitro culture showed defects in outgrowth proliferation and DNA synthesis and frequent spontaneous apoptosis, indicating Poldelta participates in DNA replication during mouse embryogenesis. In Pold1(exo/exo mice, although heterozygous Pold1(exo/+ mice were normal and healthy, Pold1(exo/exo and Pold1(exo/- mice suffered from tumorigenesis. CONCLUSIONS: These results clearly demonstrate that DNA polymerase delta is essential for mammalian early embryogenesis and that the 3'-5' exonuclease activity of DNA polymerase delta is dispensable for normal development but necessary to suppress tumorigenesis.

  2. DNA polymerase [gamma] and disease: what we have learned from yeast

    Directory of Open Access Journals (Sweden)

    Tiziana eLodi

    2015-03-01

    Full Text Available Mip1 is the Saccharomyces cerevisiae DNA polymerase [gamma] (Pol [gamma], which is responsible for the replication of mitochondrial DNA (mtDNA. It belongs to the family A of the DNA polymerases and it is orthologous to human POLGA. In humans, mutations in POLG(1 cause many mitochondrial pathologies, such as PEO, Alpers’ syndrome and ataxia-neuropathy syndrome, all of which present instability of mtDNA, which results in impaired mitochondrial function in several tissues with variable degrees of severity. In this review, we summarize the genetic and biochemical knowledge published on yeast mitochondrial DNA polymerase from 1989, when the MIP1 gene was first cloned, up until now. The role of yeast is particularly emphasized in i validating the pathological mutations found in human POLG and modeled in MIP1, ii determining the molecular defects caused by these mutations and iii finding the correlation between mutations/polymorphisms in POLGA and mtDNA toxicity induced by specific drugs. We also describe recent findings regarding the discovery of molecules able to rescue the phenotypic defects caused by pathological mutations in Mip1, and the construction of a model system in which the human Pol [gamma] holoenzyme is expressed in yeast and complements the loss of Mip1.

  3. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors.

    Science.gov (United States)

    Tahirov, Tahir H; Makarova, Kira S; Rogozin, Igor B; Pavlov, Youri I; Koonin, Eugene V

    2009-03-18

    Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved. We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase epsilon consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol epsilon evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol epsilon parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol epsilon, and the other one to the common ancestor of Pol alpha, Pol delta, and Pol zeta. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polepsilon shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases. Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal

  4. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases

    Directory of Open Access Journals (Sweden)

    Linlin Zhao

    2017-01-01

    Full Text Available DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1 template switching and recombination-dependent DNA synthesis; and (2 translesion synthesis (TLS using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.

  5. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS

    Science.gov (United States)

    Nagy, Julia; Grohmann, Dina; Cheung, Alan C. M.; Schulz, Sarah; Smollett, Katherine; Werner, Finn; Michaelis, Jens

    2015-01-01

    The molecular architecture of RNAP II-like transcription initiation complexes remains opaque due to its conformational flexibility and size. Here we report the three-dimensional architecture of the complete open complex (OC) composed of the promoter DNA, TATA box-binding protein (TBP), transcription factor B (TFB), transcription factor E (TFE) and the 12-subunit RNA polymerase (RNAP) from Methanocaldococcus jannaschii. By combining single-molecule Förster resonance energy transfer and the Bayesian parameter estimation-based Nano-Positioning System analysis, we model the entire archaeal OC, which elucidates the path of the non-template DNA (ntDNA) strand and interaction sites of the transcription factors with the RNAP. Compared with models of the eukaryotic OC, the TATA DNA region with TBP and TFB is positioned closer to the surface of the RNAP, likely providing the mechanism by which DNA melting can occur in a minimal factor configuration, without the dedicated translocase/helicase encoding factor TFIIH.

  6. A design proposal of the reverse DNA polymerase (3'-5' direction)

    OpenAIRE

    2013-01-01

    DNA Polymerase is an enzyme that participates in the process of DNA replication. In general, forward DNA polymerase moves along the template strand in a 3'-5' direction, and the daughter strand is formed in a 5'-3' direction. This paper theoretically analyzes the mechanism of forward DNA polymerase, and gives the design proposal of a new reverse DNA polymerase (3'-5' direction).

  7. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase.

    OpenAIRE

    1991-01-01

    The 5'----3' exonuclease activity of the thermostable enzyme Thermus aquaticus DNA polymerase may be employed in a polymerase chain reaction product detection system to generate a specific detectable signal concomitantly with amplification. An oligonucleotide probe, nonextendable at the 3' end, labeled at the 5' end, and designed to hybridize within the target sequence, is introduced into the polymerase chain reaction assay. Annealing of probe to one of the polymerase chain reaction product s...

  8. Specific incorporation of an artificial nucleotide opposite a mutagenic DNA adduct by a DNA polymerase.

    Science.gov (United States)

    Wyss, Laura A; Nilforoushan, Arman; Eichenseher, Fritz; Suter, Ursina; Blatter, Nina; Marx, Andreas; Sturla, Shana J

    2015-01-14

    The ability to detect DNA modification sites at single base resolution could significantly advance studies regarding DNA adduct levels, which are extremely difficult to determine. Artificial nucleotides that are specifically incorporated opposite a modified DNA site offer a potential strategy for detection of such sites by DNA polymerase-based systems. Here we investigate the action of newly synthesized base-modified benzimidazole-derived 2'-deoxynucleoside-5'-O-triphosphates on DNA polymerases when performing translesion DNA synthesis past the pro-mutagenic DNA adduct O(6)-benzylguanine (O(6)-BnG). We found that a mutated form of KlenTaq DNA polymerase, i.e., KTqM747K, catalyzed O(6)-BnG adduct-specific processing of the artificial BenziTP in favor of the natural dNTPs. Steady-state kinetic parameters revealed that KTqM747K catalysis of BenziTP is 25-fold more efficient for template O(6)-BnG than G, and 5-fold more efficient than natural dTMP misincorporation in adduct bypass. Furthermore, the nucleotide analogue BenziTP is required for full-length product formation in O(6)-BnG bypass, as without BenziTP the polymerase stalls at the adduct site. By combining the KTqM747K polymerase and BenziTP, a first round of DNA synthesis enabled subsequent amplification of Benzi-containing DNA. These results advance the development of technologies for detecting DNA adducts.

  9. RNA Primer Extension Hinders DNA Synthesis by Escherichia coli Mutagenic DNA Polymerase IV

    Science.gov (United States)

    Tashjian, Tommy F.; Lin, Ida; Belt, Verena; Cafarelli, Tiziana M.; Godoy, Veronica G.

    2017-01-01

    In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB’s fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability.

  10. Micro-RNA quantification using DNA polymerase and pyrophosphate quantification.

    Science.gov (United States)

    Yu, Hsiang-Ping; Hsiao, Yi-Ling; Pan, Hung-Yin; Huang, Chih-Hung; Hou, Shao-Yi

    2011-12-15

    A rapid quantification method for micro-RNA based on DNA polymerase activity and pyrophosphate quantification has been developed. The tested micro-RNA serves as the primer, unlike the DNA primer in all DNA sequencing methods, and the DNA probe serves as the template for DNA replication. After the DNA synthesis, the pyrophosphate detection and quantification indicate the existence and quantity of the tested miRNA. Five femtomoles of the synthetic RNA could be detected. In 20-100 μg RNA samples purified from SiHa cells, the measurement was done using the proposed assay in which hsa-miR-16 and hsa-miR-21 are 0.34 fmol/μg RNA and 0.71 fmol/μg RNA, respectively. This simple and inexpensive assay takes less than 5 min after total RNA purification and preparation. The quantification is not affected by the pre-miRNA which cannot serve as the primer for the DNA synthesis in this assay. This assay is general for the detection of the target RNA or DNA with a known matched DNA template probe, which could be widely used for detection of small RNA, messenger RNA, RNA viruses, and DNA. Therefore, the method could be widely used in RNA and DNA assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. COMPARISON OF SIX COMMERCIALLY-AVAILABLE DNA POLYMERASES FOR DIRECT PCR

    Directory of Open Access Journals (Sweden)

    Masashi Miura

    2013-12-01

    Full Text Available SUMMARY The use of a “direct PCR” DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA polymerase. PCR performance was evaluated by a nested PCR technique for detecting Plasmodium falciparum genomic DNA in the presence of the blood components. Although all six DNA polymerases showed resistance to blood components compared to the standard Taq polymerase, the KOD FX and BIOTAQ DNA polymerases were resistant to inhibitory blood components at concentrations of 40%, and their PCR performance was superior to that of other DNA polymerases. When the reaction mixture contained a mild detergent, only KOD FX DNA polymerase retained the original amount of amplified product. These results indicate that KOD FX DNA polymerase is the most resistant to inhibitory blood components and/or detergents. Thus, KOD FX DNA polymerase could be useful in serological studies to simultaneously detect antibodies and DNA in eluents for antibodies. KOD FX DNA polymerase is thus not limited to use in detecting malaria parasites, but could also be employed to detect other blood-borne pathogens.

  12. Priming DNA Replication from Triple Helix Oligonucleotides: Possible Threestranded DNA in DNA Polymerases

    Directory of Open Access Journals (Sweden)

    Patrick P. Lestienne

    2011-01-01

    Full Text Available Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G-rich Triple Helix Primers (THP bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre.

  13. Fidelity and processivity of Saccharomyces cerevisiae DNA polymerase eta.

    Science.gov (United States)

    Washington, M T; Johnson, R E; Prakash, S; Prakash, L

    1999-12-24

    The yeast RAD30 gene functions in error-free replication of UV-damaged DNA, and RAD30 encodes a DNA polymerase, pol eta, that has the ability to efficiently and correctly replicate past a cis-syn-thymine-thymine dimer in template DNA. To better understand the role of pol eta in damage bypass, we examined its fidelity and processivity on nondamaged DNA templates. Steady-state kinetic analyses of deoxynucleotide incorporation indicate that pol eta has a low fidelity, misincorporating deoxynucleotides with a frequency of about 10(-2) to 10(-3). Also pol eta has a low processivity, incorporating only a few nucleotides before dissociating. We suggest that pol eta's low fidelity reflects a flexibility in its active site rendering it more tolerant of DNA damage, while its low processivity limits its activity to reduce errors.

  14. Crystal structure of yeast DNA polymerase ε catalytic domain.

    Directory of Open Access Journals (Sweden)

    Rinku Jain

    Full Text Available DNA polymerase ε (Polε is a multi-subunit polymerase that contributes to genomic stability via its roles in leading strand replication and the repair of damaged DNA. Here we report the ternary structure of the Polε catalytic subunit (Pol2 bound to a nascent G:C base pair (Pol2G:C. Pol2G:C has a typical B-family polymerase fold and embraces the template-primer duplex with the palm, fingers, thumb and exonuclease domains. The overall arrangement of domains is similar to the structure of Pol2T:A reported recently, but there are notable differences in their polymerase and exonuclease active sites. In particular, we observe Ca2+ ions at both positions A and B in the polymerase active site and also observe a Ca2+ at position B of the exonuclease site. We find that the contacts to the nascent G:C base pair in the Pol2G:C structure are maintained in the Pol2T:A structure and reflect the comparable fidelity of Pol2 for nascent purine-pyrimidine and pyrimidine-purine base pairs. We note that unlike that of Pol3, the shape of the nascent base pair binding pocket in Pol2 is modulated from the major grove side by the presence of Tyr431. Together with Pol2T:A, our results provide a framework for understanding the structural basis of high fidelity DNA synthesis by Pol2.

  15. Binding Affinities among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7.

    Science.gov (United States)

    Zhang, Huidong; Tang, Yong; Lee, Seung-Joo; Wei, Zeliang; Cao, Jia; Richardson, Charles C

    2016-01-15

    The formation of a replication loop on the lagging strand facilitates coordinated synthesis of the leading- and lagging-DNA strands and provides a mechanism for recycling of the lagging-strand DNA polymerase. As an Okazaki fragment is completed, the loop is released, and a new loop is formed as the synthesis of a new Okazaki fragment is initiated. Loop release requires the dissociation of the complex formed by the interactions among helicase, DNA polymerase, and DNA. The completion of the Okazaki fragment may result in either a nick or a single-stranded DNA region. In the replication system of bacteriophage T7, the dissociation of the polymerase from either DNA region is faster than that observed for the dissociation of the helicase from DNA polymerase, implying that the replication loop is released more likely through the dissociation of the lagging-strand DNA from polymerase, retaining the polymerase at replication fork. Both dissociation of DNA polymerase from DNA and that of helicase from a DNA polymerase · DNA complex are much faster at a nick DNA region than the release from a ssDNA region. These results suggest that the replication loop is released as a result of the nick formed when the lagging-strand DNA polymerase encounters the previously synthesized Okazaki fragment, releasing lagging-strand DNA and retaining DNA polymerase at the replication fork for the synthesis of next Okazaki fragment.

  16. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    Science.gov (United States)

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  17. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

    Directory of Open Access Journals (Sweden)

    Elisa Mentegari

    2016-08-01

    Full Text Available DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell’s genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  18. Mutant Taq DNA polymerases with improved elongation ability as a useful reagent for genetic engineering

    Directory of Open Access Journals (Sweden)

    Takeshi eYamagami

    2014-09-01

    Full Text Available DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, DNA labeling, mutagenesis, and other experiments. Thermostable DNA polymerases are especially useful and became quite valuable after the development of PCR technology. A DNA polymerase from Thermus aquaticus (Taq polymerase is the most famous DNA polymerase as a PCR enzyme, and has been widely used all over the world. In this study, the gene fragments of the family A DNA polymerases were amplified by PCR from the DNAs from microorganisms within environmental soil samples, using a primer set for the two conserved regions. The corresponding region of the pol gene for Taq polymerase was substituted with the amplified gene fragments, and various chimeric DNA polymerases were prepared. Based on the properties of these chimeric enzymes and their sequences, two residues, E742 and A743, in Taq polymerase were found to be critical for its elongation ability. Taq polymerases with mutations at 742 and 743 actually showed higher DNA affinity and faster primer extension ability. These factors also affected the PCR performance of the DNA polymerase, and improved PCR results were observed with the mutant Taq polymerase.

  19. Nano-manipulation of single DNA molecules

    Institute of Scientific and Technical Information of China (English)

    HU Jun; L(U) Jun-Hong; LI Hai-Kuo; AN Hong-Jie; WANG Guo-Hua; WANG Ying; LI Min-Qian; ZHANG Yi; LI Bin

    2004-01-01

    Nano-manipulation of single atoms and molecules is a critical technique in nanoscience and nanotechnology. This review paper will focus on the recent development of the manipulation of single DNA molecules based on atomic force microscopy (AFM). Precise manipulation has been realized including varied manipulating modes such as "cutting", "pushing", "folding", "kneading", "picking up", "dipping", etc. The cutting accuracy is dominated by the size of the AFM tip, which is usually 10nm or less. Single DNA fragments can be cut and picked up and then amplified by single molecule PCR. Thus positioning isolation and sequencing can be performed.

  20. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I.

    Science.gov (United States)

    Elias, Angela A; Cisneros, G Andrés

    2014-01-01

    A fidelity-checking site for DNA polymerase I has been proposed based on recent single-molecule Förster resonance energy transfer studies. The checking site is believed to ensure proper base pairing of the newly inserted nucleotide. Computational studies have been utilized to predict residues involved in this putative checking site on the Klenow and Bacillus fragments. Here, we employ energy decomposition analysis, electrostatic free energy response, and noncovalent interaction plots to identify the residues involved in the hypothesized checking site in the homologous Klenow fragment from Thermus aquaticus (Klentaq). Our results indicate multiple protein residues that show altered interactions for three mispairs compared to the correctly paired DNA dimer. Many of these residues are also conserved along A family polymerases.

  1. A novel interaction between DNA ligase III and DNA polymerase gamma plays an essential role in mitochondrial DNA stability.

    Science.gov (United States)

    De, Ananya; Campbell, Colin

    2007-02-15

    The data in the present study show that DNA polymerase gamma and DNA ligase III interact in mitochondrial protein extracts from cultured HT1080 cells. An interaction was also observed between the two recombinant proteins in vitro. Expression of catalytically inert versions of DNA ligase III that bind DNA polymerase gamma was associated with reduced mitochondrial DNA copy number and integrity. In contrast, overexpression of wild-type DNA ligase III had no effect on mitochondrial DNA copy number or integrity. Experiments revealed that wild-type DNA ligase III facilitates the interaction of DNA polymerase gamma with a nicked DNA substrate in vitro, and that the zinc finger domain of DNA ligase III is required for this activity. Mitochondrial protein extracts prepared from cells overexpressing a DNA ligase III protein that lacked the zinc finger domain had reduced base excision repair activity compared with extracts from cells overexpressing the wild-type protein. These data support the interpretation that the interaction of DNA ligase III and DNA polymerase gamma is required for proper maintenance of the mammalian mitochondrial genome.

  2. Solution structures of 2 : 1 and 1 : 1 DNA polymerase-DNA complexes probed by ultracentrifugation and small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kuo-Hsiang; Niebuhr, Marc; Aulabaugh, Ann; Tsai, Ming-Daw [OSU; (Wyeth); (SSRL)

    2008-03-25

    We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase β (Pol β) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol β-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol β-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDa 5'-dRP lyase domain of the second Pol β molecule with the active site of the 1 : 1 Pol β-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5'-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5'-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol β-DNA complex enhances the function of Pol β.

  3. Solution Structures of 2 : 1 And 1 : 1 DNA Polymerase - DNA Complexes Probed By Ultracentrifugation And Small-Angle X-Ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K.H.; /Ohio State U.; Niebuhr, M.; /SLAC, SSRL; Aulabaugh, A.; /Wyeth Res. Biophys., Pearl River; Tsai, M.D.; /Ohio State U. /SLAC, SSRL

    2009-04-30

    We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase {beta} (Pol {beta}) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol {beta}-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol {beta}-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDa 5{prime}-dRP lyase domain of the second Pol {beta} molecule with the active site of the 1 : 1 Pol {beta}-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5{prime}-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5{prime}-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol {beta}-DNA complex enhances the function of Pol {beta}.

  4. Bending the Rules of Transcriptional Repression: Tightly Looped DNA Directly Represses T7 RNA Polymerase

    OpenAIRE

    Lionberger, Troy A.; Meyhöfer, Edgar

    2010-01-01

    From supercoiled DNA to the tight loops of DNA formed by some gene repressors, DNA in cells is often highly bent. Despite evidence that transcription by RNA polymerase (RNAP) is affected in systems where DNA is deformed significantly, the mechanistic details underlying the relationship between polymerase function and mechanically stressed DNA remain unclear. Seeking to gain additional insight into the regulatory consequences of highly bent DNA, we hypothesize that tightly looping DNA is alone...

  5. Mapping Transcription Factors on Extended DNA: A Single Molecule Approach

    Science.gov (United States)

    Ebenstein, Yuval; Gassman, Natalie; Weiss, Shimon

    The ability to determine the precise loci and distribution of nucleic acid binding proteins is instrumental to our detailed understanding of cellular processes such as transcription, replication, and chromatin reorganization. Traditional molecular biology approaches and above all Chromatin immunoprecipitation (ChIP) based methods have provided a wealth of information regarding protein-DNA interactions. Nevertheless, existing techniques can only provide average properties of these interactions, since they are based on the accumulation of data from numerous protein-DNA complexes analyzed at the ensemble level. We propose a single molecule approach for direct visualization of DNA binding proteins bound specifically to their recognition sites along a long stretch of DNA such as genomic DNA. Fluorescent Quantum dots are used to tag proteins bound to DNA, and the complex is deposited on a glass substrate by extending the DNA to a linear form. The sample is then imaged optically to determine the precise location of the protein binding site. The method is demonstrated by detecting individual, Quantum dot tagged T7-RNA polymerase enzymes on the bacteriophage T7 genomic DNA and assessing the relative occupancy of the different promoters.

  6. Contiguous 2,2,4-triamino-5(2H)-oxazolone obstructs DNA synthesis by DNA polymerases α, β, η, ι, κ, REV1 and Klenow Fragment exo-, but not by DNA polymerase ζ.

    Science.gov (United States)

    Suzuki, Masayo; Kino, Katsuhito; Kawada, Taishu; Oyoshi, Takanori; Morikawa, Masayuki; Kobayashi, Takanobu; Miyazawa, Hiroshi

    2016-03-01

    Guanine is the most easily oxidized of the four DNA bases, and contiguous guanines (GG) in a sequence are more readily oxidized than a single guanine in a sequence. Continued oxidation of GGs results in a contiguous oxidized guanine lesion. Two contiguous 2,5-diamino-4H-imidazol-4-ones, an oxidized form of guanine that hydrolyses to 2,2,4-triamino-5(2H)-oxazolone (Oz), are detected following the oxidation of GG. In this study, we analysed translesion synthesis (TLS) across two contiguous Oz molecules (OzOz) using Klenow Fragment exo(-) (KF exo(-)) and DNA polymerases (Pols) α, β, ζ, η, ι, κ and REV1. We found that KF exo(-) and Pols α, β, ι and REV1 inserted one nucleotide opposite the 3' Oz of OzOz and stalled at the subsequent extension, and that Pol κ incorporated no nucleotide. Pol η only inefficiently elongated the primer up to full-length across OzOz; the synthesis of most DNA strands stalled at the 3' or 5' Oz of OzOz. Surprisingly, however, Pol ζ efficiently extended the primer up to full-length across OzOz, unlike the other DNA polymerases, but catalysed error-prone nucleotide incorporation. We therefore believe that Pol ζ is required for efficient TLS of OzOz. These results show that OzOz obstructs DNA synthesis by DNA polymerases except Pol ζ.

  7. Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Bradley Michael Zamft

    Full Text Available High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases--Dpo4 and Klenow exo(---obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn(2+ with a misincorporation rate gain of ∼2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn(2+ and Mg(2+ change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device.

  8. Characterization of Family D DNA polymerase from Thermococcus sp. 9°N

    OpenAIRE

    Greenough, Lucia; Menin, Julie F.; Desai, Nirav S.; Kelman, Zvi; Gardner, Andrew F.

    2014-01-01

    Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we repor...

  9. Characterization of Family D DNA polymerase from Thermococcus sp. 9°N

    OpenAIRE

    Greenough, Lucia; Menin, Julie F.; Desai, Nirav S.; Kelman, Zvi; Gardner, Andrew F.

    2014-01-01

    Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we repor...

  10. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ.

    Science.gov (United States)

    Kasiviswanathan, Rajesh; Minko, Irina G; Lloyd, R Stephen; Copeland, William C

    2013-05-17

    Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.

  11. Processing of DNA lesions by archaeal DNA polymerases from Sulfolobus solfataricus

    Science.gov (United States)

    Grúz, Petr; Shimizu, Masatomi; Pisani, Francesca M.; Felice, Mariarita De; Kanke, Yusuke; Nohmi, Takehiko

    2003-01-01

    Spontaneous damage to DNA as a result of deamination, oxidation and depurination is greatly accelerated at high temperatures. Hyperthermophilic microorganisms constantly exposed to temperatures exceeding 80°C are endowed with powerful DNA repair mechanisms to maintain genome stability. Of particular interest is the processing of DNA lesions during replication, which can result in fixed mutations. The hyperthermophilic crenarchaeon Sulfolobus solfataricus has two functional DNA polymerases, PolB1 and PolY1. We have found that the replicative DNA polymerase PolB1 specifically recognizes the presence of the deaminated bases hypoxanthine and uracil in the template by stalling DNA polymerization 3–4 bases upstream of these lesions and strongly associates with oligonucleotides containing them. PolB1 also stops at 8-oxoguanine and is unable to bypass an abasic site in the template. PolY1 belongs to the family of lesion bypass DNA polymerases and readily bypasses hypoxanthine, uracil and 8-oxoguanine, but not an abasic site, in the template. The specific recognition of deaminated bases by PolB1 may represent an initial step in their repair while PolY1 may be involved in damage tolerance at the replication fork. Additionally, we reveal that the deaminated bases can be introduced into DNA enzymatically, since both PolB1 and PolY1 are able to incorporate the aberrant DNA precursors dUTP and dITP. PMID:12853619

  12. DNA polymerase zeta (polζ) in higher eukaryotes

    Institute of Scientific and Technical Information of China (English)

    Gregory N Gan; John P Wittschieben; Birgitte φ Wittschieben; Richard D Wood

    2008-01-01

    Most current knowledge about DNA polymerase zeta (pol ζ) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where polζ consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Rev1. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already appar-ent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genuine instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair ofinterstrand DNA erosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent devel-opments in these areas.

  13. The discovery of error-prone DNA polymerase V and its unique regulation by RecA and ATP.

    Science.gov (United States)

    Goodman, Myron F

    2014-09-26

    My career pathway has taken a circuitous route, beginning with a Ph.D. degree in electrical engineering from The Johns Hopkins University, followed by five postdoctoral years in biology at Hopkins and culminating in a faculty position in biological sciences at the University of Southern California. My startup package in 1973 consisted of $2,500, not to be spent all at once, plus an ancient Packard scintillation counter that had a series of rapidly flashing light bulbs to indicate a radioactive readout in counts/minute. My research pathway has been similarly circuitous. The discovery of Escherichia coli DNA polymerase V (pol V) began with an attempt to identify the mutagenic DNA polymerase responsible for copying damaged DNA as part of the well known SOS regulon. Although we succeeded in identifying a DNA polymerase, one that was induced as part of the SOS response, we actually rediscovered DNA polymerase II, albeit in a new role. A decade later, we discovered a new polymerase, pol V, whose activity turned out to be regulated by bound molecules of RecA protein and ATP. This Reflections article describes our research trajectory, includes a review of key features of DNA damage-induced SOS mutagenesis leading us to pol V, and reflects on some of the principal researchers who have made indispensable contributions to our efforts.

  14. DNA, the central molecule of aging.

    Science.gov (United States)

    Lenart, Peter; Krejci, Lumir

    2016-04-01

    Understanding the molecular mechanism of aging could have enormous medical implications. Despite a century of research, however, there is no universally accepted theory regarding the molecular basis of aging. On the other hand, there is plentiful evidence suggesting that DNA constitutes the central molecule in this process. Here, we review the roles of chromatin structure, DNA damage, and shortening of telomeres in aging and propose a hypothesis for how their interplay leads to aging phenotypes.

  15. Large Fragment of DNA Polymerase I from Geobacillus sp. 777: Cloning and Comparison with DNA Polymerases I in Practical Applications.

    Science.gov (United States)

    Oscorbin, Igor P; Boyarskikh, Ulyana A; Filipenko, Maksim L

    2015-10-01

    A truncated gene of DNA polymerase I from the thermophilic bacteria Geobacillus sp. 777 encoding a large fragment of enzyme (LF Gss pol) was cloned and sequenced. The resulting sequence is 1776-bp long and encodes a 592 aa protein with a predicted molecular mass of 69.8 kDa. Enzyme was overexpressed in E. coli, purified by metal-chelate chromatography, and biochemically characterized. The specific activity of LF Gss pol is 104,000 U/mg (one unit of enzyme was defined as the amount of enzyme that incorporated 10 nmol of dNTP into acid insoluble material in 30 min at 65 °C). The properties of LF Gss pol were compared to commercially available large fragments of DNA polymerase I from G. stearothermophilus (LF Bst pol) and Bacillus smithii (LF Bsm pol). Studied enzymes showed maximum activity at similar pH and concentrations of monovalent/divalent ions, whereas LF Gss pol and LF Bst pol were more thermostable than LF Bsm pol. LF Gss pol is more resistant to enzyme inhibitors (SYBR Green I, heparin, ethanol, urea, blood plasma) in comparison with LF Bst pol and LF Bsm pol. LF Gss pol is also suitable for loop-mediated isothermal amplification and whole genome amplification of human genomic DNA.

  16. Human DNA ligase and DNA polymerase as molecular targets for heavy metals and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.

    1992-01-01

    DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase [alpha] are the molecular targets for two metal ions, Zn[sup 2+] and Cd[sup 2+], and an anticancer drug, F-ara-ATP. The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP. A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex. F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3[prime]-terminus of DNA nick by DNA polymerase [alpha]. All steps of the DNA ligation reaction were inhibited by Zn[sup 2+] and Cd[sup 2+] in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn[sup 2+] and Cd[sup 2+] showed their contradictory effects on the fidelity of the reaction by human DNA polymerase [alpha]. Zn[sup 2+] decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd[sup 2+] increased the frequencies of both misinsertion and mispair extension at very low concentration. The data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported.

  17. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors

    Directory of Open Access Journals (Sweden)

    Pavlov Youri I

    2009-03-01

    Full Text Available Abstract Background Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved. Results We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase ε consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol ε evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol ε parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol ε, and the other one to the common ancestor of Pol α, Pol δ, and Pol ζ. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polε shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases. Conclusion Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We

  18. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors

    Science.gov (United States)

    Tahirov, Tahir H; Makarova, Kira S; Rogozin, Igor B; Pavlov, Youri I; Koonin, Eugene V

    2009-01-01

    Background Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved. Results We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase ε consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol ε evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol ε parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol ε, and the other one to the common ancestor of Pol α, Pol δ, and Pol ζ. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polε shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases. Conclusion Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal

  19. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    the high-bendability regions position nucleosomes at the downstream end of the transcriptional start point, and consider the possibility of interaction between histone-like TAFs and this area. We also propose the use of this structural signature in computational promoter-finding algorithms.......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...... with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...

  20. Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans.

    Directory of Open Access Journals (Sweden)

    Carrie L Flood

    2015-03-01

    Full Text Available It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3'-terminal 8 oxoG, unlike a 3'-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants.

  1. Humidity Effects on Conductivity of DNA Molecules

    Institute of Scientific and Technical Information of China (English)

    YAN Xun-Ling; DONG Rui-Xin; LIN Qing-De

    2006-01-01

    We present a model related to the humidity to describe the conductivity of homogeneous DNA molecule,where the hydration of phosphate group and bases are taken into account. The calculated results show the oscillation feature of dⅠ/dⅤ-Ⅴ curves and the semiconductor behavior of DNA. With the relative humidity increasing, the voltage gap becomes narrow and the maximum of conductance increases nonlinearly. The conductivity of DNA approaches to stabilization when the relative humidity reaches a certain value. These results are in agreement with experimental measurements.

  2. DNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting differential functions in DNA replication and repair.

    OpenAIRE

    Mossi, R; Ferrari, E; Hübscher, U

    1998-01-01

    The joining of single-stranded breaks in double-stranded DNA is an essential step in many important processes such as DNA replication, DNA repair, and genetic recombination. Several data implicate a role for DNA ligase I in DNA replication, probably coordinated by the action of other enzymes and proteins. Since both DNA polymerases delta and epsilon show multiple functions in different DNA transactions, we investigated the effect of DNA ligase I on various DNA synthesis events catalyzed by th...

  3. Dual-Colored DNA Comb Polymers for Single Molecule Rheology

    Science.gov (United States)

    Mai, Danielle; Marciel, Amanda; Schroeder, Charles

    2014-03-01

    We report the synthesis and characterization of branched biopolymers for single molecule rheology. In our work, we utilize a hybrid enzymatic-synthetic approach to graft ``short'' DNA branches to ``long'' DNA backbones, thereby producing macromolecular DNA comb polymers. The branches and backbones are synthesized via polymerase chain reaction with chemically modified deoxyribonucleotides (dNTPs): ``short'' branches consist of Cy5-labeled dNTPs and a terminal azide group, and ``long'' backbones contain dibenzylcyclooctyne-modified (DBCO) dNTPs. In this way, we utilize strain-promoted, copper-free cycloaddition ``click'' reactions for facile grafting of azide-terminated branches at DBCO sites along backbones. Copper-free click reactions are bio-orthogonal and nearly quantitative when carried out under mild conditions. Moreover, comb polymers can be labeled with an intercalating dye (e.g., YOYO) for dual-color fluorescence imaging. We characterized these materials using gel electrophoresis, HPLC, and optical microscopy, with atomic force microscopy in progress. Overall, DNA combs are suitable for single molecule dynamics, and in this way, our work holds the potential to improve our understanding of topologically complex polymer melts and solutions.

  4. Single molecule DNA compaction by purified histones

    Institute of Scientific and Technical Information of China (English)

    RAN ShiYong; WANG XiaoLing; FU WenBo; WANG WeiChi; LI Ming

    2008-01-01

    The compaction of single DNA molecules by purified histones is studied using magnetic tweezers, The compaction rate increases rapidly when the histone concentration is increased from 0.002 to 0.2 mmol/L, and saturates when the concentration is beyond 0.2 mmol/L, The time course of compaction is exponential at low histone concentrations. It becomes sigmoidal at high concentrations. Cooperativity between the histones bound to DNA is proposed to be responsible for the transition. The histones are loaded onto DNA randomly at low concentrations. They tend to bind DNA cooperatively at high con-centrations because the structural torsions of DNA induced by the bound histones become overlapping so that the binding of one histone facilitates the binding of others. Under very large forces, the com-pacted histone-DNA complex can be disrupted in a discrete manner with a step size of ~60 nm. But the histones cannot be completely stripped off DNA, as is revealed by the lowered B-S transition plateau of the histone-bound DNA.

  5. Single-molecule visualization of ROS-induced DNA damage in large DNA molecules.

    Science.gov (United States)

    Lee, Jinyong; Kim, Yongkyun; Lim, Sangyong; Jo, Kyubong

    2016-02-07

    We present a single molecule visualization approach for the quantitative analysis of reactive oxygen species (ROS) induced DNA damage, such as base oxidation and single stranded breaks in large DNA molecules. We utilized the Fenton reaction to generate DNA damage with subsequent enzymatic treatment using a mixture of three types of glycosylases to remove oxidized bases, and then fluorescent labeling on damaged lesions via nick translation. This single molecule analytical platform provided the capability to count one or two damaged sites per λ DNA molecule (48.5 kb), which were reliably dependent on the concentrations of hydrogen peroxide and ferrous ion at the micromolar level. More importantly, the labeled damaged sites that were visualized under a microscope provided positional information, which offered the capability of comparing DNA damaged sites with the in silico genomic map to reveal sequence specificity that GTGR is more sensitive to oxidative damage. Consequently, single DNA molecule analysis provides a sensitive analytical platform for ROS-induced DNA damage and suggests an interesting biochemical insight that the genome primarily active during the lysogenic cycle may have less probability for oxidative DNA damage.

  6. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Dunn, J.; Gao, S.; Bruno, J. F.; Luft, B. J.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.

  7. [Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing]: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This project focuses on the DNA polymerase and accessory proteins of phage T7 for use in DNA sequence analysis. T7 DNA polymerase (gene 5 protein) interacts with accessory proteins for the acquisition of properties such as processivity that are necessary for DNA replication. One goal is to understand these interactions in order to modify the proteins to increase their usefulness with DNA sequence analysis. Using a genetically modified gene 5 protein lacking 3' to 5' exonuclease activity we have found that in the presence of manganese there is no discrimination against dideoxynucleotides, a property that enables novel approaches to DNA sequencing using automated technology. Pyrophosphorolysis can create problems in DNA sequence determination, a problem that can be eliminated by the addition of pyrophosphatase. Crystals of the gene 5 protein/thioredoxin complex have now been obtained and X-ray diffraction analysis will be undertaken once their quality has been improved. Amino acid changes in gene 5 protein have been identified that alter its interaction with thioredoxin. Characterization of these proteins should help determine how thioredoxin confers processivity on polymerization. We have characterized the 17 DNA binding protein, the gene 2.5 protein, and shown that it interacts with gene 5 protein and gene 4 protein. The gene 2.5 protein mediates homologous base pairing and strand uptake. Gene 5.5 protein interacts with E. coli Hl protein and affects gene expression. Biochemical and genetic studies on the T7 56-kDa gene 4 protein, the helicase, are focused on its physical interaction with T7 DNA polymerase and the mechanism by which the hydrolysis of nucleoside triphosphates fuels its unidirectional translocation on DNA.

  8. [Characterization and modification of phage T7 DNA polymerase for use in DNA sequencing]: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This project focuses on the DNA polymerase and accessory proteins of phage T7 for use in DNA sequence analysis. T7 DNA polymerase (gene 5 protein) interacts with accessory proteins for the acquisition of properties such as processivity that are necessary for DNA replication. One goal is to understand these interactions in order to modify the proteins to increase their usefulness with DNA sequence analysis. Using a genetically modified gene 5 protein lacking 3` to 5` exonuclease activity we have found that in the presence of manganese there is no discrimination against dideoxynucleotides, a property that enables novel approaches to DNA sequencing using automated technology. Pyrophosphorolysis can create problems in DNA sequence determination, a problem that can be eliminated by the addition of pyrophosphatase. Crystals of the gene 5 protein/thioredoxin complex have now been obtained and X-ray diffraction analysis will be undertaken once their quality has been improved. Amino acid changes in gene 5 protein have been identified that alter its interaction with thioredoxin. Characterization of these proteins should help determine how thioredoxin confers processivity on polymerization. We have characterized the 17 DNA binding protein, the gene 2.5 protein, and shown that it interacts with gene 5 protein and gene 4 protein. The gene 2.5 protein mediates homologous base pairing and strand uptake. Gene 5.5 protein interacts with E. coli Hl protein and affects gene expression. Biochemical and genetic studies on the T7 56-kDa gene 4 protein, the helicase, are focused on its physical interaction with T7 DNA polymerase and the mechanism by which the hydrolysis of nucleoside triphosphates fuels its unidirectional translocation on DNA.

  9. Quantitative detection of single DNA molecules on DNA tetrahedron decorated substrates.

    Science.gov (United States)

    Wang, Zhenguang; Xue, Qingwang; Tian, Wenzhi; Wang, Lei; Jiang, Wei

    2012-10-01

    A single DNA molecule detection method on DNA tetrahedron decorated substrates has been developed. DNA tetrahedra were introduced onto substrates for both preventing nonspecific adsorption and sensitive recognition of single DNA molecules.

  10. Sulfate- and sialic acid-containing glycolipids inhibit DNA polymerase alpha activity.

    Science.gov (United States)

    Simbulan, C M; Taki, T; Tamiya-Koizumi, K; Suzuki, M; Savoysky, E; Shoji, M; Yoshida, S

    1994-03-16

    The effects of various glycolipids on the activity of immunoaffinity-purified calf thymus DNA polymerase alpha were studied in vitro. Preincubation with sialic acid-containing glycolipids, such as sialosylparagloboside (SPG), GM3, GM1, and GD1a, and sulfatide (cerebroside sulfate ester, CSE) dose-dependently inhibited the activity of DNA polymerase alpha, while other glycolipids, as well as free sphingosine and ceramide did not. About 50% inhibition was achieved by preincubating the enzyme with 2.5 microM of CSE, 50 microM of SPG or GM3, and 80 microM of GM1. Inhibition was noncompetitive with both the DNA template and the substrate dTTP, as well as with the other dNTPs. Since the inhibition was largely reversed by the addition of 0.05% Nonidet P40, these glycolipids may interact with the hydrophobic region of the enzyme protein. Apparently, the sulfate moiety in CSE and the sialic acid moiety in gangliosides were essential for the inhibition since neither neutral glycolipids (i.e., glucosylceramide, galactosylceramide, lactosylceramide) nor asialo-gangliosides (GA1 and GA2) showed any inhibitory effect. Furthermore, the ceramide backbone was also found to be necessary for maximal inhibition since the inhibition was largely abolished by substituting the lipid backbone with cholesterol. Increasing the number of sialic acid moieties per molecule further enhanced the inhibition, while elongating the sugar chain diminished it. It was clearly shown that the N-acetyl residue of the sialic acid moiety is particularly essential for inhibition by both SPG and GM3 because the loss of this residue or substitution with a glycolyl residue completely negated their inhibitory effect on DNA polymerase alpha activity.

  11. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ.

    Science.gov (United States)

    Copeland, William C; Kasiviswanathan, Rajesh; Longley, Matthew J

    2016-01-01

    Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.

  12. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase γ

    Science.gov (United States)

    Copeland, William C.; Kasiviswanathan, Rajesh; Longley, Matthew J.

    2016-01-01

    Summary Mitochondrial DNA is replicated by the nuclear encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand crosslinks from chemotherapy agents. Although many of these lesions block DNA replication, Pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by Pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis. PMID:26530671

  13. T-DNA integration in plants results from polymerase-θ-mediated DNA repair.

    Science.gov (United States)

    van Kregten, Maartje; de Pater, Sylvia; Romeijn, Ron; van Schendel, Robin; Hooykaas, Paul J J; Tijsterman, Marcel

    2016-10-31

    Agrobacterium tumefaciens is a pathogenic bacterium, which transforms plants by transferring a discrete segment of its DNA, the T-DNA, to plant cells. The T-DNA then integrates into the plant genome. T-DNA biotechnology is widely exploited in the genetic engineering of model plants and crops. However, the molecular mechanism underlying T-DNA integration remains unknown(1). Here we demonstrate that in Arabidopsis thaliana T-DNA integration critically depends on polymerase theta (Pol θ). We find that TEBICHI/POLQ mutant plants (which have mutated Pol θ), although susceptible to Agrobacterium infection, are resistant to T-DNA integration. Characterization of >10,000 T-DNA-plant genome junctions reveals a distinct signature of Pol θ action and also indicates that 3' end capture at genomic breaks is the prevalent mechanism of T-DNA integration. The primer-template switching ability of Pol θ can explain the molecular patchwork known as filler DNA that is frequently observed at sites of integration. T-DNA integration signatures in other plant species closely resemble those of Arabidopsis, suggesting that Pol-θ-mediated integration is evolutionarily conserved. Thus, Pol θ provides the mechanism for T-DNA random integration into the plant genome, demonstrating a potential to disrupt random integration so as to improve the quality and biosafety of plant transgenesis.

  14. Developmental activity variations of DNA polymerase α,δ,ε in mouse forebrains and spleens

    Institute of Scientific and Technical Information of China (English)

    杨荣武; 陆长德

    1995-01-01

    The levels of DNA polymerase α,δ,ε were examined in the neonatal mouse forebrains andspleens.The levels of DNA polymerase α were determined by the difference of polymerase activity in theabsence and the presence of α specific inhibitor,BuPdGTP,or its monoclonal antibody.The levels of DNApolymerase δ were determined in H · A fractions after separating it from the other two enzymes.The levelsof DNA polymerase ε were identified in H · A fractions by the use of α-monoclonal antibody or BuPdGTP.Results showed that in the mouse forebrain DNA polymerase α,δ,ε activities are the highest before birth,decline sharply following birth and are very low on the 8th day and hardly detectable on the 17th day;as forthe mouse spleen,however,DNA polymerase α,δ,ε activities are the lowest at birth,increase rapidly afterbirth and reach their maxima on the 8th day and then decline gradually but remain in higher levels.Theseresults not only prove that DNA polymerase α and δ take part in cell DNA replication but also suggest thatDNA polymerase ε is involved in DNA replication.

  15. Sulfolobus Replication Factor C stimulates the activity of DNA Polymerase B1

    DEFF Research Database (Denmark)

    Xing, Xuanxuan; Zhang, Likui; Guo, Li;

    2014-01-01

    Replication factor C (RFC) is known to function in loading proliferating cell nuclear antigen (PCNA) onto primed DNA, allowing PCNA to tether DNA polymerase for highly processive DNA synthesis in eukaryotic and archaeal replication. In this report, we show that an RFC complex from...... with the ability of RFC to facilitate DNA binding by PolB1 through protein-protein interaction. These results suggest that Sulfolobus RFC may play a role in recruiting DNA polymerase for efficient primer extension, in addition to clamp loading, during DNA replication....... the hyperthermophilic archaea of the genus Sulfolobus physically interacts with DNA polymerase B1 (PolB1) and enhances both the polymerase and 3'-5' exonuclease activities of PolB1 in an ATP-independent manner. Stimulation of the PolB1 activity by RFC is independent of the ability of RFC to bind DNA but is consistent...

  16. A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase.

    Science.gov (United States)

    Dasari, Anvesh; Deodhar, Tejal; Berdis, Anthony J

    2017-07-21

    Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species. Results of kinetic studies monitoring the incorporation of modified nucleotide analogs demonstrate that the binding affinity of the incoming dNTP is controlled by the overall hydrophobicity of the nucleobase. However, the rate constant for the polymerization step is regulated by hydrogen-bonding interactions made between the incoming nucleotide with 8-oxo-G. Results generated here for replicating the miscoding 8-oxo-G are compared to those published for the replication of the non-instructional abasic site. During the replication of both lesions, binding of the nucleotide substrate is controlled by energetics associated with nucleobase desolvation, whereas the rate constant for the polymerization step is influenced by the physical nature of the DNA lesion, that is, miscoding versus non-instructional. Collectively, these studies highlight the importance of nucleobase desolvation as a key physical feature that enhances the misreplication of structurally diverse DNA lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Olivier Martínez

    Full Text Available (S(C5', R(P α,β-D- Constrained Nucleic Acids (CNA are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.

  18. α,β-D-Constrained Nucleic Acids Are Strong Terminators of Thermostable DNA Polymerases in Polymerase Chain Reaction

    Science.gov (United States)

    Mahéo, Sabrina; Gross, Grégori; Bodin, Pierre; Teissié, Justin; Escudier, Jean-Marc; Paquereau, Laurent

    2011-01-01

    (SC5′, RP) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5′C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases. PMID:21991314

  19. Cell cycle phase dependent role of DNA polymerase beta in DNA repair and survival after ionizing radiation.

    NARCIS (Netherlands)

    Vermeulen, C.; Verwijs-Janssen, M.; Begg, A.C.; Vens, C.

    2008-01-01

    PURPOSE: The purpose of the present study was to determine the role of DNA polymerase beta in repair and response after ionizing radiation in different phases of the cell cycle. METHODS AND MATERIALS: Synchronized cells deficient and proficient in DNA polymerase beta were irradiated in different pha

  20. Polymerase chain reaction and conventional DNA tests in detection of HPV DNA in cytologically normal and abnormal cervical scrapes

    DEFF Research Database (Denmark)

    Kalia, A.; Jalava, T.; Nieminen, P.

    1992-01-01

    Med.mikrobiologi, polymerase chain reaction, DNA tests, human papillomavirus (HPV), cervical smear, hybridisation, cytologi, affiProbe HPV test, ViraType test......Med.mikrobiologi, polymerase chain reaction, DNA tests, human papillomavirus (HPV), cervical smear, hybridisation, cytologi, affiProbe HPV test, ViraType test...

  1. Inhibition of DNA restrictive endonucleases and Taq DNA polymerase by trimalonic acid C60

    Institute of Scientific and Technical Information of China (English)

    YANG XinLin; CHEN Zhe; MENG XianMei; LI Bo; TAN Xin

    2007-01-01

    Activities of trimalonic acid fullerene (TMA C60) on DNA restrictive enzymatic reaction were investigated by using two restrictive endonucleases Hind III and EcoR I and plasmid pEGFP-N1 with single restrictive site for both enzymes. Meanwhile,TMA C60 was also tested to clarify its effects on polymerase chain reaction (PCR) with the catalyst of Taq DNA polymerase and the template of plasmid pEGFP-N1. The products from restrictive reactions or PCR were detected by agarose gel electrophoresis. It was found that the product amounts from restrictive reactions or PCR decreased significantly with addition of TMA C60. The inhibition by TMA C60 was dose-dependent and IC50 values for reactions of Hind III,EcoR I and PCR were 16.3,6.0 and 6.0 μmol/L,respectively. Addition of two scavengers of reactive oxygen species (ROS),L-ascorbic acid-2-phosphate ester magnesium and sodium azide at the concentrations of 2―10 mmol/L did not antagonize the activities of TMA C60 against PCR and two restrictive reactions. However,increase of Taq DNA polymerase amounts in PCR system antagonized the activities of TMA C60. These data implied that TMA C60 was able to inhibit the activities of the three above-mentioned enzymes involved in DNA metabolism,and that this inhibition probably did not correlate to ROS.

  2. ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding.

    Science.gov (United States)

    Saturno, J; Lázaro, J M; Esteban, F J; Blanco, L; Salas, M

    1997-06-13

    Bacteriophage ø29 DNA polymerase shares with other DNA-dependent DNA polymerases several regions of amino acid homology along the primary structure. Among them, motif B, characterized by the consensus +x3Kx(6-7)YG (+ being a positively charged amino acid), appears to be specifically conserved in those polymerases that use DNA but not RNA as template. In particular, the lysine residue of this motif is invariant in all members of DNA-dependent polymerases. In this paper we report a mutational analysis of this invariant residue of motif B with the construction and characterization of two mutant proteins in the corresponding residue (Lys383) of ø29 DNA polymerase. Mutant proteins (K383R and K383P) were overexpressed, purified and analyzed under steady-state conditions. In agreement with the modular organization proposed for ø29 DNA polymerase, the exonuclease activity was not affected in either mutant protein. Conversely, mutant K383P showed no detectable capacity to incorporate dNTP substrates using either DNA or TP as primer, although its affinity for DNA was not affected. The conservative substitution of Lys383 by arginine (K383R) resulted in a considerable impairment to use dNTPs, in both processive and non-processive DNA synthesis; the Km for dNTPs being 200-fold higher than that of the wild-type enzyme. Mutant K383R recovered the wild-type polymerase/exonuclease ratio when Mn2+ was used instead of Mg2+ as metal activator, indicating a distorted binding of the [dNTP-metal] chelate at the mutant enzyme active site. The positive charge at residue Lys383 was also critical in the catalysis of deoxynucleotidylation of the terminal protein by ø29 DNA polymerase. The results obtained suggest a direct role for the lysine residue in motif B in forming an evolutionarily conserved DNA templated dNTP binding pocket. Additionally, K383R mutant protein was also affected in the progression from protein-primed initiation to DNA elongation, a switch between two modes of

  3. Analysis of unassisted translesion replication by the DNA polymerase III holoenzyme.

    Science.gov (United States)

    Tomer, G; Livneh, Z

    1999-05-01

    DNA damage-induced mutations are formed when damaged nucleotides present in single-stranded DNA are replicated. We have developed a new method for the preparation of gapped plasmids containing site-specific damaged nucleotides, as model DNA substrates for translesion replication. Using these substrates, we show that the DNA polymerase III holoenzyme from Escherichia coli can bypass a synthetic abasic site analogue with high efficiency (30% bypass in 16 min), unassisted by other proteins. The theta and tau subunits of the polymerase were not essential for bypass. No bypass was observed when the enzyme was assayed on a synthetic 60-mer oligonucleotide carrying the same lesion, and bypass on a linear gapped plasmid was 3-4-fold slower than on a circular gapped plasmid. There was no difference in the bypass when standing-start and running-start replication were compared. A comparison of translesion replication by DNA polymerase I, DNA polymerase II, the DNA polymerase III core, and the DNA polymerase III holoenzyme clearly showed that the DNA polymerase III holoenzyme was by far the most effective in performing translesion replication. This was not only due to the high processivity of the pol III holoenzyme, because increasing the processivity of pol II by adding the gamma complex and beta subunit, did not increase bypass. These results support the model that SOS regulation was imposed on a fundamentally constitutive translesion replication reaction to achieve tight control of mutagenesis.

  4. Crystal Structure of a Replicative DNA Polymerase Bound to the Oxidized Guanine Lesion Guanidinohydantoin

    Energy Technology Data Exchange (ETDEWEB)

    Aller, Pierre; Ye, Yu; Wallace, Susan S.; Burrows, Cynthia J.; Doubli, Sylvie (Vermont); (Utah)

    2010-04-12

    The oxidation of guanine generates one of the most common DNA lesions, 8-oxo-7,8-dihydroguanine (8-oxoG). The further oxidation of 8-oxoG can produce either guanidinohydantoin (Gh) in duplex DNA or spiroiminodihydantoin (Sp) in nucleosides and ssDNA. Although Gh can be a strong block for replicative DNA polymerases such as RB69 DNA polymerase, this lesion is also mutagenic: DNA polymerases bypass Gh by preferentially incorporating a purine with a slight preference for adenine, which results in G {center_dot} C {yields} T {center_dot} A or G {center_dot} C {yields} C {center_dot} G transversions. The 2.15 {angstrom} crystal structure of the replicative RB69 DNA polymerase in complex with DNA containing Gh reveals that Gh is extrahelical and rotated toward the major groove. In this conformation Gh is no longer in position to serve as a templating base for the incorporation of an incoming nucleotide. This work also constitutes the first crystallographic structure of Gh, which is stabilized in the R configuration in the two polymerase/DNA complexes present in the crystal asymmetric unit. In contrast to 8-oxoG, Gh is found in a high syn conformation in the DNA duplex and therefore presents the same hydrogen bond donor and acceptor pattern as thymine, which explains the propensity of DNA polymerases to incorporate a purine opposite Gh when bypass occurs.

  5. A euryarchaeal histone modulates strand displacement synthesis by replicative DNA polymerases.

    Science.gov (United States)

    Sun, Fei; Huang, Li

    2016-07-01

    Euryarchaeota and Crenarchaeota, the two main lineages of the domain Archaea, encode different chromatin proteins and differ in the use of replicative DNA polymerases. Crenarchaea possess a single family B DNA polymerase (PolB), which is capable of strand displacement modulated by the chromatin proteins Cren7 and Sul7d. Euryarchaea have two distinct replicative DNA polymerases, PolB and PolD, a family D DNA polymerase. Here we characterized the strand displacement activities of PolB and PolD from the hyperthermophilic euryarchaeon Pyrococcus furiosus and investigated the influence of HPfA1, a homolog of eukaryotic histones from P. furiosus, on these activities. We showed that both PolB and PolD were efficient in strand displacement. HPfA1 inhibited DNA strand displacement by both DNA polymerases but exhibited little effect on the displacement of a RNA strand annealed to single-stranded template DNA. This is consistent with the finding that HPfA1 bound more tightly to double-stranded DNA than to a RNA:DNA hybrid. Our results suggest that, although crenarchaea and euryarchaea differ in chromosomal packaging, they share similar mechanisms in modulating strand displacement by DNA polymerases during lagging strand DNA synthesis.

  6. A comprehensive strategy to discover inhibitors of the translesion synthesis DNA polymerase κ.

    Directory of Open Access Journals (Sweden)

    Kinrin Yamanaka

    Full Text Available Human DNA polymerase kappa (pol κ is a translesion synthesis (TLS polymerase that catalyzes TLS past various minor groove lesions including N(2-dG linked acrolein- and polycyclic aromatic hydrocarbon-derived adducts, as well as N(2-dG DNA-DNA interstrand cross-links introduced by the chemotherapeutic agent mitomycin C. It also processes ultraviolet light-induced DNA lesions. Since pol κ TLS activity can reduce the cellular toxicity of chemotherapeutic agents and since gliomas overexpress pol κ, small molecule library screens targeting pol κ were conducted to initiate the first step in the development of new adjunct cancer therapeutics. A high-throughput, fluorescence-based DNA strand displacement assay was utilized to screen ∼16,000 bioactive compounds, and the 60 top hits were validated by primer extension assays using non-damaged DNAs. Candesartan cilexetil, manoalide, and MK-886 were selected as proof-of-principle compounds and further characterized for their specificity toward pol κ by primer extension assays using DNAs containing a site-specific acrolein-derived, ring-opened reduced form of γ-HOPdG. Furthermore, candesartan cilexetil could enhance ultraviolet light-induced cytotoxicity in xeroderma pigmentosum variant cells, suggesting its inhibitory effect against intracellular pol κ. In summary, this investigation represents the first high-throughput screening designed to identify inhibitors of pol κ, with the characterization of biochemical and biologically relevant endpoints as a consequence of pol κ inhibition. These approaches lay the foundation for the future discovery of compounds that can be applied to combination chemotherapy.

  7. Gastrointestinal hyperplasia with altered expression of DNA polymerase beta.

    Directory of Open Access Journals (Sweden)

    Katsuhiko Yoshizawa

    Full Text Available BACKGROUND: Altered expression of DNA polymerase beta (Pol beta has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol beta over-expression has not yet been evaluated in a mouse model. METHODOLOGY/PRINCIPAL FINDINGS: We have recently developed a novel transgenic mouse model that over-expresses Pol beta. These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol beta over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol beta expression. We observed elevated expression of Pol beta in stomach adenomas and thyroid follicular carcinomas, but reduced Pol beta expression in esophageal adenocarcinomas and squamous carcinomas. CONCLUSIONS/SIGNIFICANCE: These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation.

  8. Effect of DNA polymerase inhibitors on DNA repair in intact and permeable human fibroblasts: Evidence that DNA polymerases. delta. and. beta. are involved in DNA repair synthesis induced by N-methyl-N prime -nitro-N-nitrosoguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.A.; Miller, M.R. (West Virginia Univ. Health Sciences Center, Morgantown (USA)); McClung, J.K. (Samuel Roberts Noble Foundation, Inc., East Ardmore, OK (USA))

    1990-01-09

    The involvement of DNA polymerases {alpha}, {beta}, and {delta} in DNA repair synthesis induced by N-methyl-N{prime}-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase {alpha}) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors of MNNG-induced DNA repair synthesis in intact cells by measuring the amount of ({sup 3}H)thymidine incorporated into repair DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 {mu}g of aphidicolin/mL, 6% by 10 {mu}M BuPdGTP, 13% by anti-(DNA polymerse {alpha}) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 {mu}g of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase {alpha}) antibodies into HF nuclei. These results indicate that both DNA polymerase {delta} and {beta} are involved in repairing DNA damage caused by MNNG.

  9. The beta subunit sliding DNA clamp is responsible for unassisted mutagenic translesion replication by DNA polymerase III holoenzyme.

    Science.gov (United States)

    Tomer, G; Reuven, N B; Livneh, Z

    1998-11-24

    The replication of damaged nucleotides that have escaped DNA repair leads to the formation of mutations caused by misincorporation opposite the lesion. In Escherichia coli, this process is under tight regulation of the SOS stress response and is carried out by DNA polymerase III in a process that involves also the RecA, UmuD' and UmuC proteins. We have shown that DNA polymerase III holoenzyme is able to replicate, unassisted, through a synthetic abasic site in a gapped duplex plasmid. Here, we show that DNA polymerase III*, a subassembly of DNA polymerase III holoenzyme lacking the beta subunit, is blocked very effectively by the synthetic abasic site in the same DNA substrate. Addition of the beta subunit caused a dramatic increase of at least 28-fold in the ability of the polymerase to perform translesion replication, reaching 52% bypass in 5 min. When the ssDNA region in the gapped plasmid was extended from 22 nucleotides to 350 nucleotides, translesion replication still depended on the beta subunit, but it was reduced by 80%. DNA sequence analysis of translesion replication products revealed mostly -1 frameshifts. This mutation type is changed to base substitution by the addition of UmuD', UmuC, and RecA, as demonstrated in a reconstituted SOS translesion replication reaction. These results indicate that the beta subunit sliding DNA clamp is the major determinant in the ability of DNA polymerase III holoenzyme to perform unassisted translesion replication and that this unassisted bypass produces primarily frameshifts.

  10. Conformational Selection and Induced Fit for RNA Polymerase and RNA/DNA Hybrid Backtracked Recognition

    Directory of Open Access Journals (Sweden)

    Haifeng eChen

    2015-11-01

    Full Text Available RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15 and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS P test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein.

  11. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    Science.gov (United States)

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  12. Bacillus subtilis DNA polymerases, PolC and DnaE, are required for both leading and lagging strand synthesis in SPP1 origin-dependent DNA replication.

    Science.gov (United States)

    Seco, Elena M; Ayora, Silvia

    2017-08-21

    Firmicutes have two distinct replicative DNA polymerases, the PolC leading strand polymerase, and PolC and DnaE synthesizing the lagging strand. We have reconstituted in vitro Bacillus subtilis bacteriophage SPP1 θ-type DNA replication, which initiates unidirectionally at oriL. With this system we show that DnaE is not only restricted to lagging strand synthesis as previously suggested. DnaG primase and DnaE polymerase are required for initiation of DNA replication on both strands. DnaE and DnaG synthesize in concert a hybrid RNA/DNA 'initiation primer' on both leading and lagging strands at the SPP1 oriL region, as it does the eukaryotic Pol α complex. DnaE, as a RNA-primed DNA polymerase, extends this initial primer in a reaction modulated by DnaG and one single-strand binding protein (SSB, SsbA or G36P), and hands off the initiation primer to PolC, a DNA-primed DNA polymerase. Then, PolC, stimulated by DnaG and the SSBs, performs the bulk of DNA chain elongation at both leading and lagging strands. Overall, these modulations by the SSBs and DnaG may contribute to the mechanism of polymerase switch at Firmicutes replisomes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Steady-State Kinetic Analysis of DNA Polymerase Single-Nucleotide Incorporation Products

    Science.gov (United States)

    O'Flaherty, Derek K.

    2014-01-01

    This unit describes the experimental procedures for the steady-state kinetic analysis of DNA synthesis across DNA nucleotides (native or modified) by DNA polymerases. In vitro primer extension experiments with a single nucleoside triphosphate species followed by denaturing polyacrylamide gel electrophoresis of the extended products is described. Data analysis procedures and fitting to steady-state kinetic models is presented to highlight the kinetic differences involved in the bypass of damaged versus undamaged DNA. Moreover, explanations concerning problems encountered in these experiments are addressed. This approach provides useful quantitative parameters for the processing of damaged DNA by DNA polymerases. PMID:25501593

  14. White Spot Syndrome Virus Orf514 Encodes a Bona Fide DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Rogerio R. Sotelo-Mundo

    2011-01-01

    Full Text Available White spot syndrome virus (WSSV is the causative agent of white spot syndrome, one of the most devastating diseases in shrimp aquaculture. The genome of WSSV includes a gene that encodes a putative family B DNA polymerase (ORF514, which is 16% identical in amino acid sequence to the Herpes virus 1 DNA polymerase. The aim of this work was to demonstrate the activity of the WSSV ORF514-encoded protein as a DNA polymerase and hence a putative antiviral target. A 3.5 kbp fragment encoding the conserved polymerase and exonuclease domains of ORF514 was overexpressed in bacteria. The recombinant protein showed polymerase activity but with very low level of processivity. Molecular modeling of the catalytic protein core encoded in ORF514 revealed a canonical polymerase fold. Amino acid sequence alignments of ORF514 indicate the presence of a putative PIP box, suggesting that the encoded putative DNA polymerase may use a host processivity factor for optimal activity. We postulate that WSSV ORF514 encodes a bona fide DNA polymerase that requires accessory proteins for activity and maybe target for drugs or compounds that inhibit viral DNA replication.

  15. Purification of DNA polymerase II stimulatory factor I, a yeast single-stranded DNA-binding protein.

    OpenAIRE

    1990-01-01

    Incidental to the purification of yeast DNA polymerase II was the observation that various chromatographic fractions contained activities that stimulated synthesis by this polymerase. In this paper we report the purification and initial characterization of one such factor, stimulatory factor I (SFI). SFI, which is associated with an apparent complex of three polypeptides of 66, 37, and 13.5 kDa, binds preferentially to single-stranded DNA, possibly explaining its ability to stimulate DNA poly...

  16. The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication

    Science.gov (United States)

    Macao, Bertil; Uhler, Jay P.; Siibak, Triinu; Zhu, Xuefeng; Shi, Yonghong; Sheng, Wenwen; Olsson, Monica; Stewart, James B.; Gustafsson, Claes M.; Falkenberg, Maria

    2015-01-01

    Mitochondrial DNA (mtDNA) polymerase γ (POLγ) harbours a 3′–5′ exonuclease proofreading activity. Here we demonstrate that this activity is required for the creation of ligatable ends during mtDNA replication. Exonuclease-deficient POLγ fails to pause on reaching a downstream 5′-end. Instead, the enzyme continues to polymerize into double-stranded DNA, creating an unligatable 5′-flap. Disease-associated mutations can both increase and decrease exonuclease activity and consequently impair DNA ligation. In mice, inactivation of the exonuclease activity causes an increase in mtDNA mutations and premature ageing phenotypes. These mutator mice also contain high levels of truncated, linear fragments of mtDNA. We demonstrate that the formation of these fragments is due to impaired ligation, causing nicks near the origin of heavy-strand DNA replication. In the subsequent round of replication, the nicks lead to double-strand breaks and linear fragment formation. PMID:26095671

  17. A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity

    Science.gov (United States)

    Lipps, Georg; Röther, Susanne; Hart, Christina; Krauss, Gerhard

    2003-01-01

    Although DNA replication is a process common in all domains of life, primase and replicative DNA polymerase appear to have evolved independently in the bacterial domain versus the archaeal/eukaryal branch of life. Here, we report on a new type of replication protein that constitutes the first member of the DNA polymerase family E. The protein ORF904, encoded by the plasmid pRN1 from the thermoacidophile archaeon Sulfolobus islandicus, is a highly compact multifunctional enzyme with ATPase, primase and DNA polymerase activity. Recombinant purified ORF904 hydrolyses ATP in a DNA-dependent manner. Deoxynucleotides are preferentially used for the synthesis of primers ∼8 nucleotides long. The DNA polymerase activity of ORF904 synthesizes replication products of up to several thousand nucleotides in length. The primase and DNA polymerase activity are located in the N-terminal half of the protein, which does not show homology to any known DNA polymerase or primase. ORF904 constitutes a new type of replication enzyme, which could have evolved indepen dently from the eubacterial and archaeal/eukaryal proteins of DNA replication. PMID:12743045

  18. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases

    OpenAIRE

    Barnes, Ryan; Eckert, Kristin

    2017-01-01

    Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome ...

  19. [Features of interaction of Escherichia coli DNA polymerase I and its Klenow fragment with dTTP gamma-p-azidoanilide].

    Science.gov (United States)

    Kudriashova, N V; Shamanina, M Iu; Godovikova, T S; Anan'ko, E A; Akhmadieva, F F; Romashchenko, A G

    1993-02-01

    gamma-p-Azidoanilidate of dTTP was used to study the photoaffinity modification of DNA polymerase I and Klenow fragment. The analog was found to be a mixed-type inhibitor with respect to dTTP of the polymerization reaction catalyzed by DNA polymerase I and Klenow fragment. In the absence of the reagent both UV-irradiated enzymes were rapidly inactivated. Substrates (dNTP and template-primer) protected the enzymes from inactivation by UV-light with different efficiency. In the presence of the template-primer UV-irradiation induced activation of DNA polymerase I. The effect of the analog on both enzyme forms under irradiation is different. At concentration of 10(-5)M gamma-p-anilidate of dTTP accelerated the activation of DNA polymerase I initiated by UV-irradiation and at 10(-4)M concentration it inactivated the enzyme by 20-25%. Under such conditions one enzyme molecule covalently bound two molecules of the analog. While the template-complementary substrate (dTTP) protected DNA polymerase I both from inactivation and modification, the non-complementary one (dCTP) worked only against modification. In contrast to DNA polymerase I Klenow fragment was not inactivated when exposed to UV-irradiation and gamma-p-anilidate of dTTP neither modified the protein nor exerted any significant effect on its polymerization activity. The data accumulated suggest the presence on the DNA polymerase I molecule of a regulatory region providing additional dNTP binding sites.

  20. Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease.

    Science.gov (United States)

    Luoma, P T; Eerola, J; Ahola, S; Hakonen, A H; Hellström, O; Kivistö, K T; Tienari, P J; Suomalainen, A

    2007-09-11

    Dysfunction of mitochondrial DNA polymerase gamma (POLG) has been recently recognized as an important cause of inherited neurodegenerative diseases. We have reported dominant and recessive inheritance of parkinsonism, mitochondrial myopathy, and premature amenorrhea in five ethnically distinct families with POLG1 mutations. This prompted us to carry out a detailed analysis of the coding region and intron-exon boundaries of POLG1 in Finnish patients with idiopathic sporadic Parkinson disease (PD) and in nonparkinsonian controls. The coding region of POLG1 was analyzed in 140 Finnish patients with PD and their 127 spouses as age- and ethnically matched controls. Further, we analyzed the intragenic CAG-repeat region of POLG1 in 126 additional patients with nonparkinsonian neurologic disorders and in 516 Finnish population controls. We found clustering of rare variants of the POLG1 CAG-repeat, encoding a polyglutamine tract, in Finnish patients with idiopathic PD as compared to their spouses (p = 0.003; OR 3.01, 95% CI 1.35 to 6.71), population controls (p = 0.001; OR 2.45, 95% CI 1.45 to 4.14), and patients with nonparkinsonian neurologic disorders (p = 0.05, OR 1.98, 95% CI 0.97 to 4.05). We found several amino acid substitutions, none of them associating with PD. These included a previously parkinsonism-associated POLG variant Y831C, found in one patient with PD, but also in five controls, suggesting that it is a neutral amino acid polymorphism. Our results suggest that POLG polyglutamine tract variants should be considered as a predisposing genetic factor in idiopathic sporadic Parkinson disease.

  1. Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR.

    OpenAIRE

    1997-01-01

    The DNA polymerase gene from the archaeon Pyrococcus sp. strain KOD1 (KOD DNA polymerase) contains a long open reading frame of 5,013 bases that encodes 1,671 amino acid residues (GenBank accession no. D29671). Similarity analysis revealed that the DNA polymerase contained a putative 3'-5' exonuclease activity and two in-frame intervening sequences of 1,080 bp (360 amino acids; KOD pol intein-1) and 1,611 bp (537 amino acids; KOD pol intein-2), which are located in the middle of regions conse...

  2. Possible Role of DNA Polymerase beta in Protecting Human Bronchial Epithelial Cells Against Cytotoxicity of Hydroquinone

    Institute of Scientific and Technical Information of China (English)

    DA-LIN HU; JIAN-PING YANG; DAO-KUI FANG; YAN SHA; XIAO-ZHI TU; ZHI-XIONG ZHUANG; HUAN-WEN TANG; HAI-RONG LIANG; DONG-SHENG TANG; YI-MING LIU; WEI-DONG JI; JIAN-HUI YUAN; YUN HE; ZHENG-YU ZHU

    2007-01-01

    Objective To explore the toxicological mechanism of hydroquinone in human bronchial epithelial cells and to investigate whether DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone. Methods DNA polymerase beta knock-down cell line was established via RNA interference as an experimental group. Normal human bronchial epithelial cells and cells transfected with the empty vector of pEGFP-Cl were used as controls. Cells were treated with different concentrations of hydroquinone (ranged from 10 μmol/L to 120 μmol/L) for 4 hours. MTT assay and Comet assay [single-cell gel electrophoresis (SCGE)] were performed respectively to detect the toxicity of hydroquinone. Results MTT assay showed that DNA polymerase beta knock-down cells treated with different concentrations of hydroquinone had a lower absorbance value at 490 nm than the control cells in a dose-dependant manner. Comet assay revealed that different concentrations of hydroquinone caused more severe DNA damage in DNA polymerase beta knock-down cell line than in control cells and there was no significant difference in the two control groups. Conclusions Hydroquinone has significant toxicity to human bronchial epithelial cells and causes DNA damage. DNA polymerase beta knock-down cell line appears more sensitive to hydroquinone than the control cells. The results suggest that DNA polymerase beta is involved in protecting cells from damage caused by hydroquinone.

  3. DNA Polymerase θ: Duct Tape and Zip Ties for a Fragile Genome.

    Science.gov (United States)

    Willis, Nicholas A; Scully, Ralph

    2016-08-18

    Using a combination of genetics and cellular DNA rejoining assays, in this issue of Molecular Cell, Wyatt et al. (2016) demonstrate a critical role for mammalian DNA polymerase θ in the rejoining of DNA ends that are poor substrates for classical non-homologous end joining.

  4. Polymerase chain reaction-mediated DNA fingerprinting for epidemiological studies on Campylobacter spp

    NARCIS (Netherlands)

    Giesendorf, B A; Goossens, H; Niesters, H G; Van Belkum, A; Koeken, A; Endtz, H P; Stegeman, H; Quint, W G

    1994-01-01

    The applicability of polymerase chain reaction (PCR)-mediated DNA typing, with primers complementary to dispersed repetitive DNA sequences and arbitrarily chosen DNA motifs, to study the epidemiology of campylobacter infection was evaluated. With a single PCR reaction and simple gel electrophoresis,

  5. Polymerase chain reaction-mediated DNA fingerprinting for epidemiological studies on Campylobacter spp

    NARCIS (Netherlands)

    Giesendorf, B A; Goossens, H; Niesters, H G; Van Belkum, A; Koeken, A; Endtz, H P; Stegeman, H; Quint, W G

    The applicability of polymerase chain reaction (PCR)-mediated DNA typing, with primers complementary to dispersed repetitive DNA sequences and arbitrarily chosen DNA motifs, to study the epidemiology of campylobacter infection was evaluated. With a single PCR reaction and simple gel electrophoresis,

  6. Polymerase study: Improved detection of Salmonella and Campylobacter through the optimized use of DNA polymerases in diagnostic real-time PCR

    DEFF Research Database (Denmark)

    Søndergaard, Mette Sofie Rousing; Löfström, Charlotta; Al-Habib, Zahra Fares Sayer;

    commercially available polymerases and four master mixes in two validated PCR assays, for Campylobacter and Salmonella, respectively, to develop more sensitive, robust and cost effective assays. The polymerases were screened on purified DNA and the five best performing, for each PCR assay, were then applied...... and robustness of a PCR assay, as some polymerases are more resistant to inhibitors, and thus be a simple strategy for assay optimization. Identifying an optimal polymerase can even render costly and time-consuming sample preparation unnecessary. The aim of this study was to evaluate the performance of 16...... different DNA extraction methods for Campylobacter. Results show that VeriQuest qPCR master mix have the best general performance, while the AmpliTaq Gold and HotMasterTaq DNA polymerases performed well with meat samples and poorly with fecal samples. Tth DNA polymerase performed well only with the purest...

  7. Structural Basis for Error-free Replication of Oxidatively Damaged DNA by Yeast DNA Polymerase eta

    Energy Technology Data Exchange (ETDEWEB)

    T Silverstein; R Jain; R Johnson; L Prakash; S Prakash; A Aggarwal

    2011-12-31

    7,8-dihydro-8-oxoguanine (8-oxoG) adducts are formed frequently by the attack of oxygen-free radicals on DNA. They are among the most mutagenic lesions in cells because of their dual coding potential, where, in addition to normal base-pairing of 8-oxoG(anti) with dCTP, 8-oxoG in the syn conformation can base pair with dATP, causing G to T transversions. We provide here for the first time a structural basis for the error-free replication of 8-oxoG lesions by yeast DNA polymerase {eta} (Pol{eta}). We show that the open active site cleft of Pol{eta} can accommodate an 8-oxoG lesion in the anti conformation with only minimal changes to the polymerase and the bound DNA: at both the insertion and post-insertion steps of lesion bypass. Importantly, the active site geometry remains the same as in the undamaged complex and provides a basis for the ability of Pol to prevent the mutagenic replication of 8-oxoG lesions in cells.

  8. Organization of 'nanocrystal molecules' using DNA

    Science.gov (United States)

    Alivisatos, A. Paul; Johnsson, Kai P.; Peng, Xiaogang; Wilson, Troy E.; Loweth, Colin J.; Bruchez, Marcel P.; Schultz, Peter G.

    1996-08-01

    PATTERNING matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively1. In nanoscale crystals, quantum size effects and the large number of surface atoms influence the, chemical, electronic, magnetic and optical behaviour2-4. 'Top-down' (for example, lithographic) methods for nanoscale manipulation reach only to the upper end of the nanometre regime5; but whereas 'bottom-up' wet chemical techniques allow for the preparation of mono-disperse, defect-free crystallites just 1-10 nm in size6-10, ways to control the structure of nanocrystal assemblies are scarce. Here we describe a strategy for the synthesis of'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions. We attach single-stranded DNA oligonucleotides of defined length and sequence to individual nanocrystals, and these assemble into dimers and trimers on addition of a complementary single-stranded DNA template. We anticipate that this approach should allow the construction of more complex two-and three-dimensional assemblies.

  9. Effect of novel benzoylphenylurea derivatives on DNA polymerase alpha activity using the synthesome-based in vitro model system.

    Science.gov (United States)

    Abdel-Aziz, Waleed; Hickey, Robert; Edelman, Martin; Malkas, Linda

    2003-11-01

    Six benzoylphenylurea (BPU) derivatives have been synthesized in Japan and extensively evaluated by the U.S. National Cancer Institute. They demonstrated potent antitumor activity in vitro against several cancer cell lines as well as in vivo against several tumor models. One of these agents, NSC639829, has now entered clinical trials. Studies have shown that these compounds are effective inhibitors of in vitro tubulin polymerization. The parent compound, NSC624548 (HO-221), has been shown to inhibit calf thymus DNA polymerase alpha activity. In this study we examined the effects of four BPU derivatives (NSC624548, NSC639828, NSC639829, and NSC654259) on the activity of the synthesome-associated DNA polymerase alpha, Escherichia coli DNA polymerase I, and calf thymus DNA polymerase alpha. Among the compounds tested, only NSC624548 and NSC639828 inhibited the activities of E. coli DNA polymerase I and calf thymus DNA polymerase alpha. Excess DNA polymerase I or DNA polymerase alpha dramatically reduced the inhibition produced by these compounds. NSC624548 and NSC639828 also showed inhibitory effects of the synthesome-associated DNA polymerase alpha similar to that produced upon using the purified E. coli and calf thymus enzymes. All of the four compounds did not show inhibitory effect on DNA polymerase delta. The similar pattern of inhibition these compounds exert on both the purified calf thymus and the synthesome-associated DNA polymerase alpha offers further support for the validity of the DNA synthesome as a novel in vitro model system for studying anticancer drug action.

  10. A model for transition of 5'-nuclease domain of DNA polymerase I from inert to active modes.

    Directory of Open Access Journals (Sweden)

    Ping Xie

    Full Text Available Bacteria contain DNA polymerase I (PolI, a single polypeptide chain consisting of ∼930 residues, possessing DNA-dependent DNA polymerase, 3'-5' proofreading and 5'-3' exonuclease (also known as flap endonuclease activities. PolI is particularly important in the processing of Okazaki fragments generated during lagging strand replication and must ultimately produce a double-stranded substrate with a nick suitable for DNA ligase to seal. PolI's activities must be highly coordinated both temporally and spatially otherwise uncontrolled 5'-nuclease activity could attack a nick and produce extended gaps leading to potentially lethal double-strand breaks. To investigate the mechanism of how PolI efficiently produces these nicks, we present theoretical studies on the dynamics of two possible scenarios or models. In one the flap DNA substrate can transit from the polymerase active site to the 5'-nuclease active site, with the relative position of the two active sites being kept fixed; while the other is that the 5'-nuclease domain can transit from the inactive mode, with the 5'-nuclease active site distant from the cleavage site on the DNA substrate, to the active mode, where the active site and substrate cleavage site are juxtaposed. The theoretical results based on the former scenario are inconsistent with the available experimental data that indicated that the majority of 5'-nucleolytic processing events are carried out by the same PolI molecule that has just extended the upstream primer terminus. By contrast, the theoretical results on the latter model, which is constructed based on available structural studies, are consistent with the experimental data. We thus conclude that the latter model rather than the former one is reasonable to describe the cooperation of the PolI's polymerase and 5'-3' exonuclease activities. Moreover, predicted results for the latter model are presented.

  11. Functional expression and characterization of the Epstein-Barr virus DNA polymerase catalytic subunit.

    OpenAIRE

    1993-01-01

    A recombinant baculovirus containing the complete sequence for the Epstein-Barr virus (EBV) DNA polymerase catalytic subunit, BALF5 gene product, under the control of the baculovirus polyhedrin promoter was constructed. Insect cells infected with the recombinant virus produced a protein of 110 kDa, recognized by anti-BALF5 protein-specific polyclonal antibody. The expressed EBV DNA polymerase catalytic polypeptide was purified from the cytosolic fraction of the recombinant virus-infected inse...

  12. Extraction of ultrashort DNA molecules from herbarium specimens.

    Science.gov (United States)

    Gutaker, Rafal M; Reiter, Ella; Furtwängler, Anja; Schuenemann, Verena J; Burbano, Hernán A

    2017-02-01

    DNA extracted from herbarium specimens is highly fragmented; therefore, it is crucial to use extraction protocols that retrieve short DNA molecules. Improvements in extraction and DNA library preparation protocols for animal remains have allowed efficient retrieval of molecules shorter than 50 bp. Here, we applied these improvements to DNA extraction protocols for herbarium specimens and evaluated extraction performance by shotgun sequencing, which allows an accurate estimation of the distribution of DNA fragment lengths. Extraction with N-phenacylthiazolium bromide (PTB) buffer decreased median fragment length by 35% when compared with cetyl-trimethyl ammonium bromide (CTAB); modifying the binding conditions of DNA to silica allowed for an additional decrease of 10%. We did not observe a further decrease in length for single-stranded DNA (ssDNA) versus double-stranded DNA (dsDNA) library preparation methods. Our protocol enables the retrieval of ultrashort molecules from herbarium specimens, which will help to unlock the genetic information stored in herbaria.

  13. DNA's Liaison with RNA Polymerase Physical Consequences of a Twisted Relationship

    Science.gov (United States)

    Kulic, Igor; Nelson, Phil

    2006-03-01

    RNA polymerase is the molecular motor that performs the fundamental process of transcription. Besides being the key- protagonist of gene regulation it is one of the most powerful nano-mechanical force generators known inside the cell. The fact that polymerase strictly tracks only one of DNA's strands together with DNA's helical geometry induces a force-to-torque transmission, with several important biological consequences like the ``twin supercoil domain'' effect and remote torsional interaction of genes. In the first part of the talk we theoretically explore the mechanisms of non-equilibrium transport of twist generated by a moving polymerase. We show that these equations are intrinsically non-linear in the crowded cellular environment and lead to peculiar effects like self-confinement of torsional strain by generation of alternative DNA structures like cruciforms. We demonstrate how the asymmetric conformational properties of DNA lead to a ``torsional diode'' effect, i.e. a rectification of polymerase-generated twist currents of different signs. In the second part we explore the possibility of exploiting the polymerase as a powerful workhorse for nanomechanical devices. We propose simple and easy to assemble arrangements of DNA templates interconnected by strand-hybridization that when transcribed by the polymerase linearly contract by tenfold. We show that the typical forces generated by such ``DNA stress fibers'' are in the piconewton range. We discuss their kinetics of contraction and relaxation and draw parallels to natural muscle fiber design.

  14. Label-free molecular beacon for real-time monitoring of DNA polymerase activity.

    Science.gov (United States)

    Ma, Changbei; Liu, Haisheng; Wang, Jun; Jin, Shunxin; Wang, Kemin

    2016-05-01

    Traditional methods for assaying DNA polymerase activity are discontinuous, time consuming, and laborious. Here, we report a new approach for label-free and real-time monitoring of DNA polymerase activity using a Thioflavin T (ThT) probe. In the presence of DNA polymerase, the DNA primer could be elongated through polymerase reaction to open MB1, leading to the release of the G-quartets. These then bind to ThT to form ThT/G-quadruplexes with an obvious fluorescence generation. It exhibits a satisfying detection result for the activity of DNA polymerase with a low detection limit of 0.05 unit/ml. In addition, no labeling with a fluorophore or a fluorophore-quencher pair is required; this method is fairly simple, fast, and low cost. Furthermore, the proposed method was also applied to assay the inhibition of DNA polymerase activity. This approach may offer potential applications in drug screening, clinical diagnostics, and some other related biomedical research.

  15. Study of the activity of DNA polymerases β and λ using 5-formyluridine containing DNA substrates

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Aim. To investigate the TLS-activity of human DNA polymerases β and λ (pols β and λ using 5-formyluridine (5-foU containing DNA duplexes which are imitating the intermediates during replication of the leading DNA strand, and to study the influence of replication factors hRPA and hPCNA on this activity. Methods. The EMSA and the methods of enzyme’s kinetics were used. Results. The capability of pols β and λ to catalyze DNA synthesis across 5-foU was investigated and the kinetic characteristics of this process in the presence and in the absence of protein factors hRPA and hPCNA were evaluated. Conclusions. It was shown that: (i both proteins are able to catalyze TLS on used DNA substrates regardless of the reaction conditions, however, pol λ was more accurate enzyme; (ii hRPA can stimulate the efficacy of the nonmutagenic TLS catalyzed by pol at the nucleotide incorporation directly opposite of 5-foU, at the same time it doesn’t influence the incorporation efficacy if the damage displaced into the duplex; (iii hPCNA doesn’t influence the efficacy of TLS catalyzed by both enzymes.

  16. Archaeoglobus Fulgidus DNA Polymerase D: A Zinc-Binding Protein Inhibited by Hypoxanthine and Uracil

    OpenAIRE

    Abellón-Ruiz, Javier; Waldron, Kevin J.; Connolly, Bernard A.

    2016-01-01

    Archaeal family-D DNA polymerases (Pol-D) comprise a small (DP1) proofreading subunit and a large (DP2) polymerase subunit. Pol-D is one of the least studied polymerase families, and this publication investigates the enzyme from Archaeoglobus fulgidus (Afu Pol-D). The C-terminal region of DP2 contains two conserved cysteine clusters, and their roles are investigated using site-directed mutagenesis. The cluster nearest the C terminus is essential for polymerase activity, and the cysteines are ...

  17. Single Molecule Scanning of DNA Radiation Oxidative Damage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  18. Studying DNA translocation in nanocapillaries using single molecule fluorescence

    CERN Document Server

    Thacker, Vivek V; Hernández-Ainsa, Silvia; Bell, Nicholas A W; Keyser, Ulrich F; 10.1063/1.4768929

    2013-01-01

    We demonstrate simultaneous measurements of DNA translocation into glass nanopores using ionic current detection and fluorescent imaging. We verify the correspondence between the passage of a single DNA molecule through the nanopore and the accompanying characteristic ionic current blockage. By tracking the motion of individual DNA molecules in the nanocapillary perpendicular to the optical axis and using a model, we can extract an effective mobility constant for DNA in our geometry under high electric fields.

  19. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    Science.gov (United States)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  20. Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene

    Energy Technology Data Exchange (ETDEWEB)

    Kouzarides, T.; Bankier, A.T.; Satchwell, S.C.; Weston, K.; Tomlinson, P.; Barrell, B.G.

    1987-01-01

    DNA sequence analysis has revealed that the gene coding for the human cytomegalovirus (HCMV) DNA polymerase is present within the long unique region of the virus genome. Identification is based on extensive amino acid homology between the predicted HCMV open reading frame HFLF2 and the DNA polymerase of herpes simplex virus type 1. The authors present here a 5280 base-pair DNA sequence containing the HCMV pol gene, along with the analysis of transcripts encoded within this region. Since HCMV pol also shows homology to the predicted Epstein-Barr virus pol, they were able to analyze the extent of homology between the DNA polymerases of three distantly related herpes viruses, HCMV, Epstein-Barr virus, and herpes simplex virus. The comparison shows that these DNA polymerases exhibit considerable amino acid homology and highlights a number of highly conserved regions; two such regions show homology to sequences within the adenovirus type 2 DNA polymerase. The HCMV pol gene is flanked by open reading frames with homology to those of other herpes viruses; upstream, there is a reading frame homologous to the glycoprotein B gene of herpes simplex virus type I and Epstein-Barr virus, and downstream there is a reading frame homologous to BFLF2 of Epstein-Barr virus.

  1. Inhibition of RNA polymerase by captan at both DNA and substrate binding sites.

    Science.gov (United States)

    Luo, G; Lewis, R A

    1992-12-01

    RNA synthesis carried out in vitro by Escherichia coli RNA polymerase was inhibited irreversibly by captan when T7 DNA was used as template. An earlier report and this one show that captan blocks the DNA binding site on the enzyme. Herein, it is also revealed that captan acts at the nucleoside triphosphate (NTP) binding site, and kinetic relationships of the action of captan at the two sites are detailed. The inhibition by captan via the DNA binding site of the enzyme was confirmed by kinetic studies and it was further shown that [14C]captan bound to the beta' subunit of RNA polymerase. This subunit contains the DNA binding site. Competitive-like inhibition by captan versus UTP led to the conclusion that captan also blocked the NTP binding site. In support of this conclusion, [14C]captan was observed to bind to the beta subunit which contains the NTP binding site. Whereas, preincubation of RNA polymerase with both DNA and NTPs prevented captan inhibition, preincubation with either DNA or NTPs alone was insufficient to protect the enzyme from the action of captan. Furthermore, the interaction of [14C]captan with the beta and beta' subunits was not prevented by a similar preincubation. Captan also bound, to a lesser extent, to the alpha and sigma subunits. Therefore, captan binding appears to involve interaction with RNA polymerase at sites in addition to those for DNA and NTP; however, this action does not inhibit the polymerase activity.

  2. Characterization of family D DNA polymerase from Thermococcus sp. 9°N.

    Science.gov (United States)

    Greenough, Lucia; Menin, Julie F; Desai, Nirav S; Kelman, Zvi; Gardner, Andrew F

    2014-07-01

    Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3'-5' exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3'-5' exonuclease proofreading activity, polD has a relatively high error rate (95 × 10(-5)) compared to polB (19 × 10(-5)) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.

  3. Replication pauses of the wild-type and mutant mitochondrial DNA polymerase gamma: a simulation study.

    Directory of Open Access Journals (Sweden)

    Zhuo Song

    2011-11-01

    Full Text Available The activity of polymerase γ is complicated, involving both correct and incorrect DNA polymerization events, exonuclease activity, and the disassociation of the polymerase:DNA complex. Pausing of pol-γ might increase the chance of deletion and depletion of mitochondrial DNA. We have developed a stochastic simulation of pol-γ that models its activities on the level of individual nucleotides for the replication of mtDNA. This method gives us insights into the pausing of two pol-γ variants: the A467T substitution that causes PEO and Alpers syndrome, and the exonuclease deficient pol-γ (exo(- in premature aging mouse models. To measure the pausing, we analyzed simulation results for the longest time for the polymerase to move forward one nucleotide along the DNA strand. Our model of the exo(- polymerase had extremely long pauses, with a 30 to 300-fold increase in the time required for the longest single forward step compared to the wild-type, while the naturally occurring A467T variant showed at most a doubling in the length of the pauses compared to the wild-type. We identified the cause of these differences in the polymerase pausing time to be the number of disassociations occurring in each forward step of the polymerase.

  4. Replication pauses of the wild-type and mutant mitochondrial DNA polymerase gamma: a simulation study.

    Science.gov (United States)

    Song, Zhuo; Cao, Yang; Samuels, David C

    2011-11-01

    The activity of polymerase γ is complicated, involving both correct and incorrect DNA polymerization events, exonuclease activity, and the disassociation of the polymerase:DNA complex. Pausing of pol-γ might increase the chance of deletion and depletion of mitochondrial DNA. We have developed a stochastic simulation of pol-γ that models its activities on the level of individual nucleotides for the replication of mtDNA. This method gives us insights into the pausing of two pol-γ variants: the A467T substitution that causes PEO and Alpers syndrome, and the exonuclease deficient pol-γ (exo(-)) in premature aging mouse models. To measure the pausing, we analyzed simulation results for the longest time for the polymerase to move forward one nucleotide along the DNA strand. Our model of the exo(-) polymerase had extremely long pauses, with a 30 to 300-fold increase in the time required for the longest single forward step compared to the wild-type, while the naturally occurring A467T variant showed at most a doubling in the length of the pauses compared to the wild-type. We identified the cause of these differences in the polymerase pausing time to be the number of disassociations occurring in each forward step of the polymerase.

  5. Structural changes of linear DNA molecules induced by cisplatin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiguo, E-mail: cn.zguoliu@yahoo.com [State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu, Ruisi; Zhou, Zhen; Zu, Yuangang; Xu, Fengjie [State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2015-02-20

    Interaction between long DNA molecules and activated cisplatin is believed to be crucial to anticancer activity. However, the exact structural changes of long DNA molecules induced by cisplatin are still not very clear. In this study, structural changes of long linear double-stranded DNA (dsDNA) and short single-stranded DNA (ssDNA) induced by activated cisplatin have been investigated by atomic force microscopy (AFM). The results indicated that long DNA molecules gradually formed network structures, beads-on-string structures and their large aggregates. Electrostatic and coordination interactions were considered as the main driving forces producing these novel structures. An interesting finding in this study is the beads-on-string structures. Moreover, it is worth noting that the beads-on-string structures were linked into the networks, which can be ascribed to the strong DNA–DNA interactions. This study expands our knowledge of the interactions between DNA molecules and cisplatin. - Highlights: • We investigate structural changes of dsDNA and ssDNA induced by cisplatin. • AFM results indicated long dsDNA formed network, beads-on-string and aggregates. • ssDNA can form very similar structures as those of long linear dsDNA. • A possible formation process of theses novel structure is proposed.

  6. Freezing shortens the lifetime of DNA molecules under tension.

    Science.gov (United States)

    Chung, Wei-Ju; Cui, Yujia; Chen, Chi-Shuo; Wei, Wesley H; Chang, Rong-Shing; Shu, Wun-Yi; Hsu, Ian C

    2017-09-08

    DNA samples are commonly frozen for storage. However, freezing can compromise the integrity of DNA molecules. Considering the wide applications of DNA molecules in nanotechnology, changes to DNA integrity at the molecular level may cause undesirable outcomes. However, the effects of freezing on DNA integrity have not been fully explored. To investigate the impact of freezing on DNA integrity, samples of frozen and non-frozen bacteriophage lambda DNA were studied using optical tweezers. Tension (5-35 pN) was applied to DNA molecules to mimic mechanical interactions between DNA and other biomolecules. The integrity of the DNA molecules was evaluated by measuring the time taken for single DNA molecules to break under tension. Mean lifetimes were determined by maximum likelihood estimates and variances were obtained through bootstrapping simulations. Under 5 pN of force, the mean lifetime of frozen samples is 44.3 min with 95% confidence interval (CI) between 36.7 min and 53.6 min while the mean lifetime of non-frozen samples is 133.2 min (95% CI: 97.8-190.1 min). Under 15 pN of force, the mean lifetimes are 10.8 min (95% CI: 7.6-12.6 min) and 78.5 min (95% CI: 58.1-108.9 min). The lifetimes of frozen DNA molecules are significantly reduced, implying that freezing compromises DNA integrity. Moreover, we found that the reduced DNA structural integrity cannot be restored using regular ligation process. These results indicate that freezing can alter the structural integrity of the DNA molecules.

  7. Effects of 8-halo-7-deaza-2'-deoxyguanosine triphosphate on DNA synthesis by DNA polymerases and cell proliferation.

    Science.gov (United States)

    Yin, Yizhen; Sasaki, Shigeki; Taniguchi, Yosuke

    2016-08-15

    8-OxodG (8-oxo-2'-deoxyguanosine) is representative of nucleoside damage and shows a genotoxicity. To significantly reveal the contributions of 7-NH and C8-oxygen to the mutagenic effect of 8-oxodG by DNA polymerases, we evaluated the effects of the 8-halo-7-deaza-dG (8-halogenated 7-deaza-2'-deoxyguanosine) derivatives by DNA polymerases. 8-Halo-7-deaza-dGTPs were poorly incorporated by both KF(exo(-)) and human DNA polymerase β opposite dC or dA into the template DNA. Furthermore, it was found that KF(exo(-)) was very sensitive to the introduction of the C8-halogen, while polymerase β can accommodate the C8-halogen resulting in an efficient dCTP insertion opposite the 8-halo-7-deaza-dG in the template DNA. These results indicate that strong hydrogen bonding between 7-NH in the 8-oxo-G nucleobase and 1-N in the adenine at the active site of the DNA polymerase is required for the mutagenic effects. Whereas, I-deaza-dGTP shows an antiproliferative effect for the HeLa cells, suggesting that it could become a candidate as a new antitumor agent.

  8. Single-Molecule FRET Study of DNA G-Quadruplex

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The DNA G-quadruplex formed by the human telomeric sequence is a potential target for novel anticancer drugs. We have investigated an intramolecular DNA G-quadruplex using single-molecule fluorescence resonance energy transfer and shown that individual folded quadruplexes can be identified. The mean proximity ratio measured at the single-molecule level was consistent with ensemble measurement.

  9. Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells

    Science.gov (United States)

    Bostian, April C.L.; Maddukuri, Leena; Reed, Megan R.; Savenka, Tatsiana; Hartman, Jessica H.; Davis, Lauren; Pouncey, Dakota L.; Miller, Grover P.; Eoff, Robert L.

    2015-01-01

    Over-expression of the translesion synthesis polymerase (TLS pol) hpol κ in glioblastomas has been linked to a poor patient prognosis; however, the mechanism promoting higher expression in these tumors remains unknown. We determined that activation of the aryl hydrocarbon receptor (AhR) pathway in glioblastoma cells leads to increased hpol κ mRNA and protein levels. We blocked nuclear translocation and DNA binding by the AhR in glioblastoma cells using a small-molecule and observed decreased hpol κ expression. Pharmacological inhibition of tryptophan-2,3-dioxygenase (TDO), the enzyme largely responsible for activating the AhR in glioblastomas, led to a decrease in the endogenous AhR agonist kynurenine (Kyn) and a corresponding decrease in hpol κ protein levels. Importantly, we discovered that inhibiting TDO activity, AhR signaling, or suppressing hpol κ expression with RNA interference led to decreased chromosomal damage in glioblastoma cells. Epistasis assays further supported the idea that TDO activity, activation of AhR signaling and the resulting over-expression of hpol κ function primarily in the same pathway to increase endogenous DNA damage. These findings indicate that up-regulation of hpol κ through glioblastoma-specific TDO activity and activation of AhR signaling likely contributes to the high levels of replication stress and genomic instability observed in these tumors. PMID:26651356

  10. DNA polymerase β as a novel target for chemotherapeutic intervention of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Aruna S Jaiswal

    Full Text Available Chemoprevention presents a major strategy for the medical management of colorectal cancer. Most drugs used for colorectal cancer therapy induce DNA-alkylation damage, which is primarily repaired by the base excision repair (BER pathway. Thus, blockade of BER pathway is an attractive option to inhibit the spread of colorectal cancer. Using an in silico approach, we performed a structure-based screen by docking small-molecules onto DNA polymerase β (Pol-β and identified a potent anti-Pol-β compound, NSC-124854. Our goal was to examine whether NSC-124854 could enhance the therapeutic efficacy of DNA-alkylating agent, Temozolomide (TMZ, by blocking BER. First, we determined the specificity of NSC-124854 for Pol-β by examining in vitro activities of APE1, Fen1, DNA ligase I, and Pol-β-directed single nucleotide (SN- and long-patch (LP-BER. Second, we investigated the effect of NSC-124854 on the efficacy of TMZ to inhibit the growth of mismatch repair (MMR-deficient and MMR-proficient colon cancer cell lines using in vitro clonogenic assays. Third, we explored the effect of NSC-124854 on TMZ-induced in vivo tumor growth inhibition of MMR-deficient and MMR-proficient colonic xenografts implanted in female homozygous SCID mice. Our data showed that NSC-124854 has high specificity to Pol-β and blocked Pol-β-directed SN- and LP-BER activities in in vitro reconstituted system. Furthermore, NSC-124854 effectively induced the sensitivity of TMZ to MMR-deficient and MMR-proficient colon cancer cells both in vitro cell culture and in vivo xenograft models. Our findings suggest a potential novel strategy for the development of highly specific structure-based inhibitor for the prevention of colonic tumor progression.

  11. Variations of Human DNA Polymerase Genes as Biomarkers of Prostate Cancer Progression

    Science.gov (United States)

    2013-07-01

    obtain the percentage of product formed. Time courses were linear for the chosen enzyme concentration and time interval. 2.8. Data analysis The...1] E.C. Friedberg DNA damage and repair, Nature 421 (2003) 436-440. [2] W.A. Beard, S.H. Wilson Structure and mechanism of DNA polymerase β, Chem

  12. A Model of Sequence Dependent Rna-Polymerase Diffusion Along Dna

    CERN Document Server

    Barbi, M; Popkov, V; Salerno, M; Barbi, Maria; Place, Christophe; Popkov, Vladislav; Salerno, Mario

    2001-01-01

    We introduce a probabilistic model for the RNA-polymerase sliding motion along DNA during the promoter search. The model accounts for possible effects due to sequence-dependent interactions between the nonspecific DNA and the enzyme. We focus on T7 RNA-polymerase and exploit the available information about its interaction at the promoter site in order to investigate the influence of bacteriophage T7 DNA sequence on the dynamics of the sliding process. Hydrogen bonds in the major groove are used as the main sequence-dependent interaction between the RNA-polymerase and the DNA. The resulting dynamical properties and the possibility of an experimental validation are discussed in details. We show that, while at large times the process reaches a pure diffusive regime, it initially displays a sub-diffusive behavior. The crossover from anomalous to normal diffusion may occur at times large enough to be of biological interest.

  13. Characterization of the mammalian DNA polymerase gene and protein. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, N.C.

    1992-01-01

    We have purified and characterized at least three DNA polymerases from Chinese hamster ovary (CHO) cell line Kl in order to evaluate the roles of different polymerases in eukaryotic DNA replication. Pol {alpha} was the most abundant among different polymerase activities and it was neutralized by a monoclonal antibody raised against human pol {alpha}. Pol {var_epsilon} was separated from pol {alpha} and pol {delta} activities using DEAE Sephacell, phosphocellulose and hydroxylapatite columns. The enzyme proved to be sensitive to aphidicolin and carbonyldiphosphonate and was not stimulated by PCNA- Pol {delta} was the least abundant among the three enzymes. It was sensitive to aphidicolin and carbonyidiphosphonate and was stimulated by PCNA. it had a preference for template/primer poly (dA-dT). Based on DNA sequence data of different eukaryotic polymerases PCR primers complementary to two neighboring synthesized. In PCR experiments several products were obtained which are assumed to be specific for the CHO polymerases. We have also analyzed a large number of aphidicolin resistant mutants of CHO to identify mutants with altered DNA polymerases.

  14. Direct squencing from the minimal number of DNA molecules needed to fill a 454 picotiterplate.

    Directory of Open Access Journals (Sweden)

    Mária Džunková

    Full Text Available The large amount of DNA needed to prepare a library in next generation sequencing protocols hinders direct sequencing of small DNA samples. This limitation is usually overcome by the enrichment of such samples with whole genome amplification (WGA, mostly by multiple displacement amplification (MDA based on φ29 polymerase. However, this technique can be biased by the GC content of the sample and is prone to the development of chimeras as well as contamination during enrichment, which contributes to undesired noise during sequence data analysis, and also hampers the proper functional and/or taxonomic assignments. An alternative to MDA is direct DNA sequencing (DS, which represents the theoretical gold standard in genome sequencing. In this work, we explore the possibility of sequencing the genome of Escherichia coli fs 24 from the minimum number of DNA molecules required for pyrosequencing, according to the notion of one-bead-one-molecule. Using an optimized protocol for DS, we constructed a shotgun library containing the minimum number of DNA molecules needed to fill a selected region of a picotiterplate. We gathered most of the reference genome extension with uniform coverage. We compared the DS method with MDA applied to the same amount of starting DNA. As expected, MDA yielded a sparse and biased read distribution, with a very high amount of unassigned and unspecific DNA amplifications. The optimized DS protocol allows unbiased sequencing to be performed from samples with a very small amount of DNA.

  15. Effects of Sequence on Transmission Properties of DNA Molecules

    Institute of Scientific and Technical Information of China (English)

    DONG Rui-Xin; YAN Xun-Ling; YANG Bing

    2008-01-01

    A double helix model of charge transport in DNA molecule is given and the transmission spectra of four DNA sequences are obtained. The calculated results show that the transmission characteristics of DNA are not only related to the longitudinal transport but also to the transverse transport of molecule. The periodic sequence with the same composition has stronger conduction ability. With the increasing of bases composition, the conductive ability reduces, but the weight of θ direction rises in charge transfer.

  16. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response.

    Science.gov (United States)

    Yoshimura, Akari; Kobayashi, Yume; Tada, Shusuke; Seki, Masayuki; Enomoto, Takemi

    2014-09-12

    WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH(-/-)) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  17. Preparation of Phi29 DNA polymerase free of amplifiable DNA using ethidium monoazide, an ultraviolet-free light-emitting diode lamp and trehalose.

    Directory of Open Access Journals (Sweden)

    Hirokazu Takahashi

    Full Text Available We previously reported that multiply-primed rolling circle amplification (MRPCA using modified random RNA primers can amplify tiny amounts of circular DNA without producing any byproducts. However, contaminating DNA in recombinant Phi29 DNA polymerase adversely affects the outcome of MPRCA, especially for negative controls such as non-template controls. The amplified DNA in negative control casts doubt on the result of DNA amplification. Since Phi29 DNA polymerase has high affinity for both single-strand and double-stranded DNA, some amount of host DNA will always remain in the recombinant polymerase. Here we describe a procedure for preparing Phi29 DNA polymerase which is essentially free of amplifiable DNA. This procedure is realized by a combination of host DNA removal using appropriate salt concentrations, inactivation of amplifiable DNA using ethidium monoazide, and irradiation with visible light from a light-emitting diode lamp. Any remaining DNA, which likely exists as oligonucleotides captured by the Phi29 DNA polymerase, is degraded by the 3'-5' exonuclease activity of the polymerase itself in the presence of trehalose, used as an anti-aggregation reagent. Phi29 DNA polymerase purified by this procedure has little amplifiable DNA, resulting in reproducible amplification of at least ten copies of plasmid DNA without any byproducts and reducing reaction volume. This procedure could aid the amplification of tiny amounts DNA, thereby providing clear evidence of contamination from laboratory environments, tools and reagents.

  18. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation

    Science.gov (United States)

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.

    2015-01-01

    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  19. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota.

    Science.gov (United States)

    Faili, Ahmad; Aoufouchi, Said; Flatter, Eric; Guéranger, Quentin; Reynaud, Claude-Agnès; Weill, Jean-Claude

    2002-10-31

    Somatic hypermutation of immunoglobulin genes is a unique, targeted, adaptive process. While B cells are engaged in germinal centres in T-dependent responses, single base substitutions are introduced in the expressed Vh/Vl genes to allow the selection of mutants with a higher affinity for the immunizing antigen. Almost every possible DNA transaction has been proposed to explain this process, but each of these models includes an error-prone DNA synthesis step that introduces the mutations. The Y family of DNA polymerases--pol eta, pol iota, pol kappa and rev1--are specialized for copying DNA lesions and have high rates of error when copying a normal DNA template. By performing gene inactivation in a Burkitt's lymphoma cell line inducible for hypermutation, we show here that somatic hypermutation is dependent on DNA polymerase iota.

  20. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.

    Science.gov (United States)

    Su, Yan; Peter Guengerich, F

    2016-06-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc.

  1. Single-molecule studies of DNA by molecular combing

    Institute of Scientific and Technical Information of China (English)

    Liu Yuying; Wang Pengye; Dou Shuoxing

    2007-01-01

    Molecular combing is a powerful method for aligning a large array of DNA molecules onto a surface. It is a process whereby DNA molecules are stretched and aligned on a glass surface by the force via fluid flow. The ability to comb up to several hundred DNAs on a single cover slip allows for a statistically significant number of measurements to be made. These features make molecular combing an attractive tool for genomic studies, such as DNA replication, DNA transcription, DNA-protein interaction and so on. In this review article, we discuss the molecular combing principle, method and its applications.

  2. SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness

    Science.gov (United States)

    Yeiser, Bethany; Pepper, Evan D.; Goodman, Myron F.; Finkel, Steven E.

    2002-01-01

    Escherichia coli encodes three SOS-induced DNA polymerases: pol II, pol IV, and pol V. We show here that each of these polymerases confers a competitive fitness advantage during the stationary phase of the bacterial life cycle, in the absence of external DNA-damaging agents known to induce the SOS response. When grown individually, wild-type and SOS pol mutants exhibit indistinguishable temporal growth and death patterns. In contrast, when grown in competition with wild-type E. coli, mutants lacking one or more SOS polymerase suffer a severe reduction in fitness. These mutants also fail to express the “growth advantage in stationary phase” phenotype as do wild-type strains, instead expressing two additional new types of “growth advantage in stationary phase” phenotype. These polymerases contribute to survival by providing essential functions to ensure replication of the chromosome and by generating genetic diversity. PMID:12060704

  3. Dynamic protein assemblies in homologous recombination with single DNA molecules

    NARCIS (Netherlands)

    van der Heijden, A.H.

    2007-01-01

    What happens when your DNA breaks? This thesis describes experimental work on the single-molecule level focusing on the interaction between DNA and DNA-repair proteins, in particular bacterial RecA and human Rad51, involved in homologous recombination. Homologous recombination and its central event

  4. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    Sidorenko, Julia; Jatsenko, Tatjana; Saumaa, Signe; Teras, Riho; Tark-Dame, Mariliis; Horak, Rita [Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu (Estonia); Kivisaar, Maia, E-mail: maiak@ebc.ee [Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu (Estonia)

    2011-09-01

    The majority of bacteria possess a different set of specialized DNA polymerases than those identified in the most common model organism Escherichia coli. Here, we have studied the ability of specialized DNA polymerases to substitute Pol I in DNA replication in Pseudomonas putida. Our results revealed that P. putida Pol I-deficient cells have severe growth defects in LB medium, which is accompanied by filamentous cell morphology. However, growth of Pol I-deficient bacteria on solid rich medium can be restored by reduction of reactive oxygen species in cells. Also, mutants with improved growth emerge rapidly. Similarly to the initial Pol I-deficient P. putida, its adapted derivatives express a moderate mutator phenotype, which indicates that DNA replication carried out in the absence of Pol I is erroneous both in the original Pol I-deficient bacteria and the adapted derivatives. Analysis of the spectra of spontaneous Rif{sup r} mutations in P. putida strains lacking different DNA polymerases revealed that the presence of specialized DNA polymerases Pol II and Pol IV influences the frequency of certain base substitutions in Pol I-proficient and Pol I-deficient backgrounds in opposite ways. Involvement of another specialized DNA polymerase DnaE2 in DNA replication in Pol I-deficient bacteria is stimulated by UV irradiation of bacteria, implying that DnaE2-provided translesion synthesis partially substitutes the absence of Pol I in cells containing heavily damaged DNA.

  5. Cloning, expression, and functional characterization of the equine herpesvirus 1 DNA polymerase and its accessory subunit.

    Science.gov (United States)

    Loregian, Arianna; Case, Alessandro; Cancellotti, Enrico; Valente, Carlo; Marsden, Howard S; Palù, Giorgio

    2006-07-01

    We report the expression and characterization of the putative catalytic subunit (pORF30) and accessory protein (pORF18) of equine herpesvirus 1 DNA polymerase, which are encoded by open reading frames 30 and 18 and are homologous to herpes simplex virus type 1 UL30 and UL42, respectively. In vitro transcription-translation of open reading frames 30 and 18 generated proteins of 136 and 45 kDa, respectively. In vitro-expressed pORF30 possessed basal DNA polymerase activity that was stimulated by pORF18, as measured by DNA polymerase assays in vitro. Purified baculovirus-expressed pORF30 exhibited DNA polymerase activity similar to that of the in vitro-expressed protein, and baculovirus-expressed pORF18 could stimulate both nucleotide incorporation and long-chain DNA synthesis by pORF30 in a dose- and time-dependent manner. The salt optima for activity of both pORF30 and the holoenzyme were substantially different from those for other herpesvirus DNA polymerases. As demonstrated by yeast two-hybrid assays, pORF30 and pORF18 could physically interact, most likely with a 1:1 stoichiometry. Finally, by mutational analysis of the 1,220-residue pORF30, we demonstrated that the extreme C terminus of pORF30 is important for physical and functional interaction with the accessory protein, as reported for UL30 and other herpesvirus DNA polymerases. In addition, a C-proximal region of pORF30, corresponding to residues 1114 to 1172, is involved in binding to, and stimulation by, pORF18. Taken together, the results indicate that pORF30 and pORF18 are the equine herpesvirus 1 counterparts of herpes simplex virus type 1 UL30 and UL42 and share many, but not all, of their characteristics.

  6. Cooperative RNA polymerase molecules behavior on a stochastic sequence-dependent model for transcription elongation.

    Directory of Open Access Journals (Sweden)

    Pedro Rafael Costa

    Full Text Available The transcription process is crucial to life and the enzyme RNA polymerase (RNAP is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites.

  7. XRCC1 and DNA polymerase β in cellular protection against cytotoxic DNA single-strand breaks

    Institute of Scientific and Technical Information of China (English)

    Julie K Horton; Mary Watson; Donna F Stefanick; Daniel T Shaughnessy; Jack A Taylor; Samuel H Wilson

    2008-01-01

    Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision re-pair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1-/- mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase β (polβ) is specific to this pathway, whereas pol β is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS-treated XRCC1-/-, and to a lesser extent in polβ-/- cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type andpolβ-/- cells to an inhibitor of PARP activity dramatically potentiates MMS-induccd cytotoxicity. XRCC1-/- cellsare also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role inmodulation of cytotoxicity beyond recruitment of XRCC1 to sites of DNA damage.

  8. Comparison of proteases in DNA extraction via quantitative polymerase chain reaction.

    Science.gov (United States)

    Eychner, Alison M; Lebo, Roberta J; Elkins, Kelly M

    2015-06-01

    We compared four proteases in the QIAamp DNA Investigator Kit (Qiagen) to extract DNA for use in multiplex polymerase chain reaction (PCR) assays. The aim was to evaluate alternate proteases for improved DNA recovery as compared with proteinase K for forensic, biochemical research, genetic paternity and immigration, and molecular diagnostic purposes. The Quantifiler Kit TaqMan quantitative PCR assay was used to measure the recovery of DNA from human blood, semen, buccal cells, breastmilk, and earwax in addition to low-template samples, including diluted samples, computer keyboard swabs, chewing gum, and cigarette butts. All methods yielded amplifiable DNA from all samples.

  9. Extrachromosomal recombination in vaccinia-infected cells requires a functional DNA polymerase participating at a level other than DNA replication.

    Science.gov (United States)

    Colinas, R J; Condit, R C; Paoletti, E

    1990-12-01

    Homologous recombination was measured in vaccinia-infected cells cotransfected with two plasmid recombination substrates. One plasmid contains a vaccinia protein lacZ coding region bearing a 1.1 kb 3' terminal deletion while the other plasmid contains a non-promoted lacZ coding region bearing a 1.1 kb 5' terminal deletion. Homologous recombination occurring between the 825 bp of lacZ common to both plasmids regenerates a functional lacZ gene from which B-galactosidase expression was measured. The entire 3 kb lacZ gene was used as a positive control. A panel of thermosensitive mutants was screened in cells either transfected with the positive control plasmid or cotransfected with the recombination substrates. A DNA - mutant, ts42, known to map to the viral DNA polymerase gene was found to be defective in recombination. Significantly, other DNA - mutants, ts17 or ts25, or other DNA polymerase mutants did not exhibit a defect in recombination similar to ts42. Inhibitors of viral DNA synthesis did not uniformly affect recombination. Cytosine arabinoside and aphidicolin inhibited B-galactosidase expression from the recombination substrates but not from the positive control plasmid, whereas hydroxyurea enhanced expression from both. Marker rescue with the cloned wildtype DNA polymerase gene repaired the defect in ts42. Southern and western analyses demonstrated that B-galactosidase activity was consistent with a recombined lacZ gene and unit size 116 kDa protein. Measurement of plasmid and viral DNA replication in cells infected with the different DNA - mutants indicated that recombination was independent of plasmid and viral DNA replication. Together these results suggest that the vaccinia DNA polymerase participates in homologous recombination at a level other than that of DNA replication.

  10. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    Science.gov (United States)

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  11. Rapid quantification of semen hepatitis B virus DNA by real-time polymerase chain reaction

    Institute of Scientific and Technical Information of China (English)

    Wei-Ping Qian; Li-Ka Shing; Yue-Qiu Tan; Ying Chen; Ying Peng; Zhi Li; Guang-Xiu Lu; Marie C. Lin; Hsiang-Fu Kung; Ming-Ling He

    2005-01-01

    AIM: To examine the sensitivity and accuracy of real-time polymerase chain reaction (PCR) for the quantification of hepatitis B virus (HBV) DNA in semen.METHODS: Hepatitis B viral DNA was isolated from HBV carriers' semen and sera using phenol extraction method and QTAamp DNA blood mini kit (Qiagen, Germany). HBV DNA was detected by conventional PCR and quantified by TaqMan technology-based real-time PCR (quantitative polymerase chain reaction (qPCR)). The detection threshold was 200 copies of HBV DNA for conventional PCR and 10 copies of HBV DNA for real time PCR per reaction.RESULTS: Both methods of phenol extraction and QIAamp DNA blood mini kit were suitable for isolating HBV DNA from semen. The value of the detection thresholds was 500 copies of HBV DNA per mL in the semen. The viral loads were 7.5×107 and 1.67×107 copies of HBV DNA per mL in two HBV infected patients' sera, while 2.L4×105 and 3.02×105 copies of HBV DNA per mL in the semen.CONCLUSION: Real-time PCR is a more sensitive and accurate method to detect and quantify HBV DNA in the semen.

  12. Proficient Replication of the Yeast Genome by a Viral DNA Polymerase.

    Science.gov (United States)

    Stodola, Joseph L; Stith, Carrie M; Burgers, Peter M

    2016-05-27

    DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication.

  13. Structural Insight into Processive Human Mitochondrial DNA Synthesis and Disease-Related Polymerase Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Sam; Kennedy, W. Dexter; Yin, Y. Whitney; (Texas)

    2010-09-07

    Human mitochondrial DNA polymerase (Pol {gamma}) is the sole replicase in mitochondria. Pol {gamma} is vulnerable to nonselective antiretroviral drugs and is increasingly associated with mutations found in patients with mitochondriopathies. We determined crystal structures of the human heterotrimeric Pol {gamma} holoenzyme and, separately, a variant of its processivity factor, Pol {gamma}B. The holoenzyme structure reveals an unexpected assembly of the mitochondrial DNA replicase where the catalytic subunit Pol {gamma}A interacts with its processivity factor primarily via a domain that is absent in all other DNA polymerases. This domain provides a structural module for supporting both the intrinsic processivity of the catalytic subunit alone and the enhanced processivity of holoenzyme. The Pol {gamma} structure also provides a context for interpreting the phenotypes of disease-related mutations in the polymerase and establishes a foundation for understanding the molecular basis of toxicity of anti-retroviral drugs targeting HIV reverse transcriptase.

  14. Visualization of DNA molecules in time during electrophoresis

    Science.gov (United States)

    Lubega, Seth

    1991-01-01

    For several years individual DNA molecules have been observed and photographed during agarose gel electrophoresis. The DNA molecule is clearly the largest molecule known. Nevertheless, the largest molecule is still too small to be seen using a microscope. A technique developed by Morikawa and Yanagida has made it possible to visualize individual DNA molecules. When these long molecules are labeled with appropriate fluorescence dyes and observed under a fluorescence microscope, although it is not possible to directly visualize the local ultrastructure of the molecules, yet because they are long light emitting chains, their microscopic dynamical behavior can be observed. This visualization works in the same principle that enables one to observe a star through a telescope because it emits light against a dark background. The dynamics of individual DNA molecules migrating through agarose matrix during electrophoresis have been described by Smith et al. (1989), Schwartz and Koval (1989), and Bustamante et al. (1990). DNA molecules during agarose gel electrophoresis advance lengthwise thorough the gel in an extended configuration. They display an extension-contraction motion and tend to bunch up in their leading ends as the 'heads' find new pores through the gel. From time to time they get hooked on obstacles in the gel to form U-shaped configurations before they resume their linear configuration.

  15. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...... as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...

  16. Evidence that in xeroderma pigmentosum variant cells, which lack DNA polymerase eta, DNA polymerase iota causes the very high frequency and unique spectrum of UV-induced mutations.

    Science.gov (United States)

    Wang, Yun; Woodgate, Roger; McManus, Terrence P; Mead, Samantha; McCormick, J Justin; Maher, Veronica M

    2007-04-01

    Xeroderma pigmentosum variant (XPV) patients have normal DNA excision repair, yet are predisposed to develop sunlight-induced cancer. They exhibit a 25-fold higher than normal frequency of UV-induced mutations and very unusual kinds (spectrum), mainly transversions. The primary defect in XPV cells is the lack of functional DNA polymerase (Pol) eta, the translesion synthesis DNA polymerase that readily inserts adenine nucleotides opposite photoproducts involving thymine. The high frequency and striking difference in kinds of UV-induced mutations in XPV cells strongly suggest that, in the absence of Pol eta, an abnormally error-prone polymerase substitutes. In vitro replication studies of Pol iota show that it replicates past 5'T-T3' and 5'T-U3' cyclobutane pyrimidine dimers, incorporating G or T nucleotides opposite the 3' nucleotide. To test the hypothesis that Pol iota causes the high frequency and abnormal spectrum of UV-induced mutations in XPV cells, we identified an unlimited lifespan XPV cell line expressing two forms of Pol iota, whose frequency of UV-induced mutations is twice that of XPV cells expressing one form. We eliminated expression of one form and compared the parental cells and derivatives for the frequency and kinds of UV-induced mutations. All exhibited similar sensitivity to the cytotoxicity of UV((254 nm)), and the kinds of mutations induced were identical, but the frequency of mutations induced in the derivatives was reduced to UV-induced mutations, and ultimately their malignant transformation.

  17. Archaeal DNA Polymerase-B as a DNA Template Guardian: Links between Polymerases and Base/Alternative Excision Repair Enzymes in Handling the Deaminated Bases Uracil and Hypoxanthine

    Directory of Open Access Journals (Sweden)

    Javier Abellón-Ruiz

    2016-01-01

    Full Text Available In Archaea repair of uracil and hypoxanthine, which arise by deamination of cytosine and adenine, respectively, is initiated by three enzymes: Uracil-DNA-glycosylase (UDG, which recognises uracil; Endonuclease V (EndoV, which recognises hypoxanthine; and Endonuclease Q (EndoQ, (which recognises both uracil and hypoxanthine. Two archaeal DNA polymerases, Pol-B and Pol-D, are inhibited by deaminated bases in template strands, a feature unique to this domain. Thus the three repair enzymes and the two polymerases show overlapping specificity for uracil and hypoxanthine. Here it is demonstrated that binding of Pol-D to primer-templates containing deaminated bases inhibits the activity of UDG, EndoV, and EndoQ. Similarly Pol-B almost completely turns off EndoQ, extending earlier work that demonstrated that Pol-B reduces catalysis by UDG and EndoV. Pol-B was observed to be a more potent inhibitor of the enzymes compared to Pol-D. Although Pol-D is directly inhibited by template strand uracil, the presence of Pol-B further suppresses any residual activity of Pol-D, to near-zero levels. The results are compatible with Pol-D acting as the replicative polymerase and Pol-B functioning primarily as a guardian preventing deaminated base-induced DNA mutations.

  18. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths.

    Science.gov (United States)

    Gül, O Tolga; Pugliese, Kaitlin M; Choi, Yongki; Sims, Patrick C; Pan, Deng; Rajapakse, Arith J; Weiss, Gregory A; Collins, Philip G

    2016-06-24

    As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein's activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF) of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF's base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.

  19. Single Molecule Bioelectronics and Their Application to Amplification-Free Measurement of DNA Lengths

    Directory of Open Access Journals (Sweden)

    O. Tolga Gül

    2016-06-01

    Full Text Available As biosensing devices shrink smaller and smaller, they approach a scale in which single molecule electronic sensing becomes possible. Here, we review the operation of single-enzyme transistors made using single-walled carbon nanotubes. These novel hybrid devices transduce the motions and catalytic activity of a single protein into an electronic signal for real-time monitoring of the protein’s activity. Analysis of these electronic signals reveals new insights into enzyme function and proves the electronic technique to be complementary to other single-molecule methods based on fluorescence. As one example of the nanocircuit technique, we have studied the Klenow Fragment (KF of DNA polymerase I as it catalytically processes single-stranded DNA templates. The fidelity of DNA polymerases makes them a key component in many DNA sequencing techniques, and here we demonstrate that KF nanocircuits readily resolve DNA polymerization with single-base sensitivity. Consequently, template lengths can be directly counted from electronic recordings of KF’s base-by-base activity. After measuring as few as 20 copies, the template length can be determined with <1 base pair resolution, and different template lengths can be identified and enumerated in solutions containing template mixtures.

  20. WRNIP1 functions upstream of DNA polymerase η in the UV-induced DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Akari, E-mail: akari_yo@stu.musashino-u.ac.jp [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Kobayashi, Yume [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan); Tada, Shusuke [Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba 274-8510 (Japan); Seki, Masayuki [Department of Biochemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai-shi, Miyagi 981-8558 (Japan); Enomoto, Takemi [Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585 (Japan)

    2014-09-12

    Highlights: • The UV sensitivity of POLH{sup −/−} cells was suppressed by disruption of WRNIP1. • In WRNIP1{sup −/−/−}/POLH{sup −/−} cells, mutation frequencies and SCE after irradiation reduced. • WRNIP1 defect recovered rate of fork progression after irradiation in POLH{sup −/−} cells. • WRNIP1 functions upstream of Polη in the translesion DNA synthesis pathway. - Abstract: WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH{sup −/−}) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.

  1. Are there three polynucleotide strands in the catalytic centre of DNA polymerases?

    Science.gov (United States)

    Lestienne, Patrick P

    2009-01-01

    Mitochondrial DNA may undergo large-scale rearrangements, thus leading to diseases. The mechanisms of these rearrangements are still the matter of debates. Several lines of evidence indicate that breakpoints are characterized by direct repeats (DR), one of them being eliminated from the normal genome. Analysis of DR showed their skewed nucleotide content compatible with the formation of known triple helices. Here, I propose a novel mechanism involving the formation of triplex structures that result from the dissociation of the [synthesized repeat-DNA polymerase] complex. Upon binding to the homologous sequence, replication is initiated from the primer bound in a triple helix manner. This feature implies the initiation of replication on the double-stranded DNA from the triple helix primer. Hereby, I review evidences supporting this model. Indeed, all short d(G)-rich primers 10 nucleotides long can be elongated on double-stranded DNA by phage, bacterial, reverse transcriptases and eukaryotic DNA polymerases. Mismatches may be tolerated between the primer and its double-stranded binding site. In contrast to previous studies, evidences for the parallel binding of the triple helix to its homologous strand are provided. This suggest the displacement of the non-template strand by the triple helix primer upon binding within the DNA polymerase catalytic centre. Computer modelling indicates that the triple helix primer lies within the major groove of the double helix, with its 3' hydroxyl end nearby the catalytic amino acids. Taken together, I bring new concepts on DNA rearrangements, and novel features of triple helices and DNA polymerases that can bind three polynucleotide strands similar to RNA polymerases.

  2. RNA Polymerase Collision versus DNA Structural Distortion: Twists and Turns Can Cause Break Failure.

    Science.gov (United States)

    Pannunzio, Nicholas R; Lieber, Michael R

    2016-05-05

    The twisting of DNA due to the movement of RNA polymerases is the basis of numerous classic experiments in molecular biology. Recent mouse genetic models indicate that chromosomal breakage is common at sites of transcriptional turbulence. Two key studies on this point mapped breakpoints to sites of either convergent or divergent transcription but arrived at different conclusions as to which is more detrimental and why. The issue hinges on whether DNA strand separation is the basis for the chromosomal instability or collision of RNA polymerases.

  3. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases

    Directory of Open Access Journals (Sweden)

    Aravind L

    2003-01-01

    Full Text Available Abstract Background The eukaryotic RNA-dependent RNA polymerase (RDRP is involved in the amplification of regulatory microRNAs during post-transcriptional gene silencing. This enzyme is highly conserved in most eukaryotes but is missing in archaea and bacteria. No evolutionary relationship between RDRP and other polymerases has been reported so far, hence the origin of this eukaryote-specific polymerase remains a mystery. Results Using extensive sequence profile searches, we identified bacteriophage homologs of the eukaryotic RDRP. The comparison of the eukaryotic RDRP and their homologs from bacteriophages led to the delineation of the conserved portion of these enzymes, which is predicted to harbor the catalytic site. Further, detailed sequence comparison, aided by examination of the crystal structure of the DNA-dependent RNA polymerase (DDRP, showed that the RDRP and the β' subunit of DDRP (and its orthologs in archaea and eukaryotes contain a conserved double-psi β-barrel (DPBB domain. This DPBB domain contains the signature motif DbDGD (b is a bulky residue, which is conserved in all RDRPs and DDRPs and contributes to catalysis via a coordinated divalent cation. Apart from the DPBB domain, no similarity was detected between RDRP and DDRP, which leaves open two scenarios for the origin of RDRP: i RDRP evolved at the onset of the evolution of eukaryotes via a duplication of the DDRP β' subunit followed by dramatic divergence that obliterated the sequence similarity outside the core catalytic domain and ii the primordial RDRP, which consisted primarily of the DPBB domain, evolved from a common ancestor with the DDRP at a very early stage of evolution, during the RNA world era. The latter hypothesis implies that RDRP had been subsequently eliminated from cellular life forms and might have been reintroduced into the eukaryotic genomes through a bacteriophage. Sequence and structure analysis of the DDRP led to further insights into the

  4. Real time observation of the photocleavage of single DNA molecules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A method for real time observation of photo-cleavage of stretched λDNA at single molecular level by afluorescent microscope coupled with CCD is developed. DNAmolecules stained with YOYO-1 are stretched by the mo-lecular combing technique and fixed on a modified slide.Then the process of photocleavage and relaxation of DNAunder radiation of blue light is observed. We speculate thatthe conformation change of stretched DNA and the effect ofwater are likely to facilitate the effect of YOYO photocleav-age DNA molecules. The photocleavage effect of YOYO forstretched DNA may be useful to study DNA elasticity, cancerresearch as well as the interaction between DNA and dyes.

  5. Structural Transitions of a Twisted and Stretched DNA Molecule

    Science.gov (United States)

    Léger, J. F.; Romano, G.; Sarkar, A.; Robert, J.; Bourdieu, L.; Chatenay, D.; Marko, J. F.

    1999-08-01

    We report results of a micromanipulation study of single double-helical DNA molecules at forces up to 150 pN. Depending on whether the DNA winding is allowed to relax, or held fixed, qualitatively different structural transitions are observed. By studying the transitions as a function of winding the different DNA structures underlying them are characterized; this allows us to report the first estimate of S-DNA helicity. A model is introduced to describe these transitions; in addition to B-DNA, we find that four DNA states are needed to describe the experiments.

  6. Nanofluidic channel fabrication and manipulation of DNA molecules.

    Science.gov (United States)

    Wang, Kai-Ge; Niu, Hanben

    2009-01-01

    Confining DNA molecules in a nanofluidic channel, particularly in channels with cross sections comparable to the persistence length of the DNA molecule (about 50 nm), allows the discovery of new biophysical phenomena. This sub-100 nm nanofluidic channel can be used as a novel platform to study and analyze the static as well as the dynamic properties of single DNA molecules, and can be integrated into a biochip to investigate the interactions between protein and DNA molecules. For instance, nanofluidic channel arrays that have widths of approximately 40 nm, depths of 60 nm, and lengths of 50 mum are created rapidly and exactly by a focused-ion beam milling instrument on a silicon nitride film; and the open channels are sealed with anodic bonding technology. Subsequently, lambda phage DNA (lambda-DNA; stained with the fluorescent dye, YOYO-1) molecules are introduced into these nanoconduits by capillary force. The movements of the DNA molecules, e.g. stretching, recoiling, and transporting along channels, are studied with fluorescence microscopy.

  7. Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction.

    Science.gov (United States)

    Jackson, D P; Lewis, F A; Taylor, G R; Boylston, A W; Quirke, P

    1990-06-01

    Several DNA extraction techniques were quantitatively and qualitatively compared using both fresh and paraffin wax embedded tissue and their suitability investigated for providing DNA and RNA for the polymerase chain reaction (PCR). A one hour incubation with proteinase K was the most efficient DNA extraction procedure for fresh tissue. For paraffin wax embedded tissue a five day incubation with proteinase K was required to produce good yields of DNA. Incubation with sodium dodecyl sulphate produced very poor yields, while boiling produced 20% as much DNA as long enzyme digestion. DNA extracted by these methods was suitable for the PCR amplification of a single copy gene. Proteinase K digestion also produced considerable amounts of RNA which has previously been shown to be suitable for PCR analysis. A delay before fixation had no effect on the amount of DNA obtained while fixation in Carnoy's reagent results in a much better preservation of DNA than formalin fixation, allowing greater yields to be extracted.

  8. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme.

    Science.gov (United States)

    Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-01-01

    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354-370 and that K(354), R(355), and K(367) are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression

  9. An unusual polyanion from Physarum polycephalum that inhibits homologous DNA polymerase. alpha. in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H.; Erdmann, S.; Holler, E. (Universitaet Regensburg (West Germany))

    1989-06-13

    From extracts of microplasmodia of Physarum polycephalum and their culture medium, an unusual substance was isolated which inhibited homologous DNA polymerase {alpha} of this slime mold but not {beta}-like DNA polymerase and not heterologous DNA polymerases. Analysis, especially NMR spectroscopy, revealed the major component to be an anionic polyester of L-malic acid and the inhibition to be due to poly(L-malate) in binding reversibly to DNA polymerase {alpha}. The mode of inhibition is competitive with substrate DNA and follows an inhibition constant K{sub i} = 10 ng/mL. Inhibition is reversed in the presence of spermine, spermidine, poly(ethylene imine), and calf thymus histone H1. According to its ester nature, the inhibitor is slightly labile at neutral and instable at acid and alkaline conditions. Its largest size corresponds to a molecular mass of 40-50 kDa, but the bulk of the material after purification has lower molecular masses. The inhibitory activity depends on the polymer size and has a minimal size requirement.

  10. Small-molecule discovery from DNA-encoded chemical libraries.

    Science.gov (United States)

    Kleiner, Ralph E; Dumelin, Christoph E; Liu, David R

    2011-12-01

    Researchers seeking to improve the efficiency and cost effectiveness of the bioactive small-molecule discovery process have recently embraced selection-based approaches, which in principle offer much higher throughput and simpler infrastructure requirements compared with traditional small-molecule screening methods. Since selection methods benefit greatly from an information-encoding molecule that can be readily amplified and decoded, several academic and industrial groups have turned to DNA as the basis for library encoding and, in some cases, library synthesis. The resulting DNA-encoded synthetic small-molecule libraries, integrated with the high sensitivity of PCR and the recent development of ultra high-throughput DNA sequencing technology, can be evaluated very rapidly for binding or bond formation with a target of interest while consuming minimal quantities of material and requiring only modest investments of time and equipment. In this tutorial review we describe the development of two classes of approaches for encoding chemical structures and reactivity with DNA: DNA-recorded library synthesis, in which encoding and library synthesis take place separately, and DNA-directed library synthesis, in which DNA both encodes and templates library synthesis. We also describe in vitro selection methods used to evaluate DNA-encoded libraries and summarize successful applications of these approaches to the discovery of bioactive small molecules and novel chemical reactivity.

  11. Aligned deposition and electrical measurements on single DNA molecules

    DEFF Research Database (Denmark)

    Eidelshtein, Gennady; Kotlyar, Alexander; Hashemi, Mohtadin

    2015-01-01

    bound to the surface, while the DNA counterpart interacts with the substrates much more weakly and can be lifted from the surface and realigned in any direction. Using this technique, avidin–DNA complexes were deposited across platinum electrodes on a silicon substrate. Electrical measurements......A reliable method of deposition of aligned individual dsDNA molecules on mica, silicon, and micro/nanofabricated circuits is presented. Complexes of biotinylated double stranded poly(dG)–poly(dC) DNA with avidin were prepared and deposited on mica and silicon surfaces in the absence of Mg2+ ions....... Due to its positive charge, the avidin attached to one end of the DNA anchors the complex to negatively charged substrates. Subsequent drying with a directional gas flow yields DNA molecules perfectly aligned on the surface. In the avidin–DNA complex only the avidin moiety is strongly and irreversibly...

  12. Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues

    Directory of Open Access Journals (Sweden)

    Watson Spencer K

    2006-12-01

    Full Text Available Abstract Background Formalin-fixed paraffin-embedded (FFPE tissues represent the largest source of archival biological material available for genomic studies of human cancer. Therefore, it is desirable to develop methods that enable whole genome amplification (WGA using DNA extracted from FFPE tissues. Multiple-strand Displacement Amplification (MDA is an isothermal method for WGA that uses the large fragment of Bst DNA polymerase. To date, MDA has been feasible only for genomic DNA isolated from fresh or snap-frozen tissue, and yields a representational distortion of less than threefold. Results We amplified genomic DNA of five FFPE samples of normal human lung tissue with the large fragment of Bst DNA polymerase. Using quantitative PCR, the copy number of 7 genes was evaluated in both amplified and original DNA samples. Four neuroblastoma xenograft samples derived from cell lines with known N-myc gene copy number were also evaluated, as were 7 samples of non-small cell lung cancer (NSCLC tumors with known Skp2 gene amplification. In addition, we compared the array comparative genomic hybridization (CGH-based genome profiles of two NSCLC samples before and after Bst MDA. A median 990-fold amplification of DNA was achieved. The DNA amplification products had a very high molecular weight (> 23 Kb. When the gene content of the amplified samples was compared to that of the original samples, the representational distortion was limited to threefold. Array CGH genome profiles of amplified and non-amplified FFPE DNA were similar. Conclusion Large fragment Bst DNA polymerase is suitable for WGA of DNA extracted from FFPE tissues, with an expected maximal representational distortion of threefold. Amplified DNA may be used for the detection of gene copy number changes by quantitative realtime PCR and genome profiling by array CGH.

  13. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.

    Science.gov (United States)

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue

    2016-05-10

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.

  14. DNA聚合酶Polι的研究进展%Progress in DNA polymerase iota

    Institute of Scientific and Technical Information of China (English)

    周虎传; 杨劲

    2011-01-01

    Y-family DNA polymerases are one kind of polymerases which replicating damaged template.Y-family DNA polymerases are widely distributed among the three kingdoms of life.Human cells contain at least four:i.e, Revl Polκ Pol(ι) and Polη , and Pol(ι) is different from the other three DNA polymerases of bypassing damaged template for the rate of mismatching when it replicates DNA is very high.DNA polymerase iota has the lowest fidelity in all of DNA polymerases so far.The high rate of mismatching result in high rate of mutation, Even mismatching was reported to be related to the occurrence of cancer Therefore the DNA polymerase iota were researched worldwide, for its polymerase from different properties, and gain a series of outcomes.In addition, the prospect of future research is addressed.%Y家族DNA聚合酶是一种跨损伤复制酶,即能以损伤的DNA为模板进行复制.Y家族DNA聚合酶广泛分布生物界,人类细胞中Y家族DNA聚合酶至少包括Revl、Polκ、Polι、Polη四种,Polι在以DNA为模板进行复制时错配率很高而不同于其他跨损伤DNA聚合酶,Polι是目前发现的所有DNA聚合酶中保真性最低的DNA聚合酶.很高的错配率导致很高的突变率,最后基因的突变导致癌症的发生,因此Polι在各个国家被广泛的研究,并且对Polι的各个不同的特性进行了研究,取得了一系列成果,现对Polι的研究进展予以综述,并展望了未来的研究趋势.

  15. Reevaluation of the role of DNA polymerase theta in somatic hypermutation of immunoglobulin genes.

    Science.gov (United States)

    Martomo, Stella A; Saribasak, Huseyin; Yokoi, Masayuki; Hanaoka, Fumio; Gearhart, Patricia J

    2008-09-01

    DNA polymerase theta has been implicated in the process of somatic hypermutation in immunoglobulin variable genes based on several reports of alterations in the frequency and spectra of mutations from Polq(-/-) mice. However, these studies have contrasting results on mutation frequencies and the types of nucleotide substitutions, which question the role of polymerase theta in hypermutation. DNA polymerase eta has a dominant effect on mutation and may substitute in the absence of polymerase theta to affect the pattern. Therefore, we have examined mutation in mice deficient for both polymerases theta and eta. The mutation frequencies in rearranged variable genes from Peyer's patches were similar in wild type, Polq(-/-), Polh(-/-), and Polq(-/-)Polh(-/-) mice. The types of substitutions were also similar between wild type and Polq(-/-) clones, and between Polh(-/-) and Polq(-/-)Polh(-/-) clones. Furthermore, there was no difference in heavy chain class switching in splenic B cells from the four groups of mice. These results indicate that polymerase theta does not play a significant role in the generation of somatic mutation in immunoglobulin genes.

  16. Single-molecule mechanochemical sensing using DNA origami nanostructures.

    Science.gov (United States)

    Koirala, Deepak; Shrestha, Prakash; Emura, Tomoko; Hidaka, Kumi; Mandal, Shankar; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin

    2014-07-28

    While single-molecule sensing offers the ultimate detection limit, its throughput is often restricted as sensing events are carried out one at a time in most cases. 2D and 3D DNA origami nanostructures are used as expanded single-molecule platforms in a new mechanochemical sensing strategy. As a proof of concept, six sensing probes are incorporated in a 7-tile DNA origami nanoassembly, wherein binding of a target molecule to any of these probes leads to mechanochemical rearrangement of the origami nanostructure, which is monitored in real time by optical tweezers. Using these platforms, 10 pM platelet-derived growth factor (PDGF) are detected within 10 minutes, while demonstrating multiplex sensing of the PDGF and a target DNA in the same solution. By tapping into the rapid development of versatile DNA origami nanostructures, this mechanochemical platform is anticipated to offer a long sought solution for single-molecule sensing with improved throughput.

  17. Single molecule DNA detection with an atomic vapor notch filter

    National Research Council Canada - National Science Library

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01

    .... Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules...

  18. Interaction between Escherichia coli DNA polymerase IV and single-stranded DNA-binding protein is required for DNA synthesis on SSB-coated DNA.

    Science.gov (United States)

    Furukohri, Asako; Nishikawa, Yoshito; Akiyama, Masahiro Tatsumi; Maki, Hisaji

    2012-07-01

    DNA polymerase IV (Pol IV) is one of three translesion polymerases in Escherichia coli. A mass spectrometry study revealed that single-stranded DNA-binding protein (SSB) in lysates prepared from exponentially-growing cells has a strong affinity for column-immobilized Pol IV. We found that purified SSB binds directly to Pol IV in a pull-down assay, whereas SSBΔC8, a mutant protein lacking the C-terminal tail, failed to interact with Pol IV. These results show that the interaction between Pol IV and SSB is mediated by the C-terminal tail of SSB. When polymerase activity was tested on an SSBΔC8-coated template, we observed a strong inhibition of Pol IV activity. Competition experiments using a synthetic peptide containing the amino acid sequence of SSB tail revealed that the chain-elongating capacity of Pol IV was greatly impaired when the interaction between Pol IV and SSB tail was inhibited. These results demonstrate that Pol IV requires the interaction with the C-terminal tail of SSB to replicate DNA efficiently when the template ssDNA is covered with SSB. We speculate that at the primer/template junction, Pol IV interacts with the tail of the nearest SSB tetramer on the template, and that this interaction allows the polymerase to travel along the template while disassembling SSB.

  19. Bending the rules of transcriptional repression: tightly looped DNA directly represses T7 RNA polymerase.

    Science.gov (United States)

    Lionberger, Troy A; Meyhöfer, Edgar

    2010-08-09

    From supercoiled DNA to the tight loops of DNA formed by some gene repressors, DNA in cells is often highly bent. Despite evidence that transcription by RNA polymerase (RNAP) is affected in systems where DNA is deformed significantly, the mechanistic details underlying the relationship between polymerase function and mechanically stressed DNA remain unclear. Seeking to gain additional insight into the regulatory consequences of highly bent DNA, we hypothesize that tightly looping DNA is alone sufficient to repress transcription. To test this hypothesis, we have developed an assay to quantify transcription elongation by bacteriophage T7 RNAP on small, circular DNA templates approximately 100 bp in size. From these highly bent transcription templates, we observe that the elongation velocity and processivity can be repressed by at least two orders of magnitude. Further, we show that minicircle templates sustaining variable levels of twist yield only moderate differences in repression efficiency. We therefore conclude that the bending mechanics within the minicircle templates dominate the observed repression. Our results support a model in which RNAP function is highly dependent on the bending mechanics of DNA and are suggestive of a direct, regulatory role played by the template itself in regulatory systems where DNA is known to be highly bent. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Molecular Basis for DNA Double-Strand Break Annealing and Primer Extension by an NHEJ DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Nigel C. Brissett

    2013-11-01

    Full Text Available Nonhomologous end-joining (NHEJ is one of the major DNA double-strand break (DSB repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5′-3′ direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3′ overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3′ overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3′ ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks.

  1. Liquid Chromatography-Mass Spectrometry Analysis of DNA Polymerase Reaction Products

    Science.gov (United States)

    Chowdhury, Goutam; Guengerich, F. Peter

    2013-01-01

    This unit describes experimental and analytical procedures for characterizing the efficiency and fidelity of translesion DNA synthesis across various DNA damages by DNA polymerases in vitro. This procedure utilizes primer extension assays followed by LC-MS and LC-MS/MS analysis of the extension products. Detailed explanations for the analysis of the LC-MS/MS data for deciphering the nucleotide sequences of the DNA fragments are also presented. This approach provides a significant improvement over conventional methods, as it allows detection of misincorporation, as well as frameshift products. PMID:22147421

  2. Structure of the 2-Aminopurine-Cytosine Base Pair Formed in the Polymerase Active Site of the RB69 Y567A-DNA Polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Reha-Krantz, Linda J.; Hariharan, Chithra; Subuddhi, Usharani; Xia, Shuangluo; Zhao, Chao; Beckman, Jeff; Christian, Thomas; Konigsberg, William (Yale); (Alberta)

    2011-11-21

    The adenine base analogue 2-aminopurine (2AP) is a potent base substitution mutagen in prokaryotes because of its enhanceed ability to form a mutagenic base pair with an incoming dCTP. Despite more than 50 years of research, the structure of the 2AP-C base pair remains unclear. We report the structure of the 2AP-dCTP base pair formed within the polymerase active site of the RB69 Y567A-DNA polymerase. A modified wobble 2AP-C base pair was detected with one H-bond between N1 of 2AP and a proton from the C4 amino group of cytosine and an apparent bifurcated H-bond between a proton on the 2-amino group of 2-aminopurine and the ring N3 and O2 atoms of cytosine. Interestingly, a primer-terminal region rich in AT base pairs, compared to GC base pairs, facilitated dCTP binding opposite template 2AP. We propose that the increased flexibility of the nucleotide binding pocket formed in the Y567A-DNA polymerase and increased 'breathing' at the primer-terminal junction of A+T-rich DNA facilitate dCTP binding opposite template 2AP. Thus, interactions between DNA polymerase residues with a dynamic primer-terminal junction play a role in determining base selectivity within the polymerase active site of RB69 DNA polymerase.

  3. Development of an on-site rapid real-time polymerase chain reaction system and the characterization of suitable DNA polymerases for TaqMan probe technology.

    Science.gov (United States)

    Furutani, Shunsuke; Naruishi, Nahoko; Hagihara, Yoshihisa; Nagai, Hidenori

    2016-08-01

    On-site quantitative analyses of microorganisms (including viruses) by the polymerase chain reaction (PCR) system are significantly influencing medical and biological research. We have developed a remarkably rapid and portable real-time PCR system that is based on microfluidic approaches. Real-time PCR using TaqMan probes consists of a complex reaction. Therefore, in a rapid real-time PCR, the optimum DNA polymerase must be estimated by using actual real-time PCR conditions. In this study, we compared the performance of three DNA polymerases in actual PCR conditions using our rapid real-time PCR system. Although KAPA2G Fast HS DNA Polymerase has the highest enzymatic activity among them, SpeedSTAR HS DNA Polymerase exhibited better performance to rapidly increase the fluorescence signal in an actual real-time PCR using TaqMan probes. Furthermore, we achieved rapid detection of Escherichia coli in 7 min by using SpeedSTAR HS DNA Polymerase with the same sensitivity as that of a conventional thermal cycler.

  4. Exploring the mechanism of DNA polymerases by analyzing the effect of mutations of active site acidic groups in Polymerase β.

    Science.gov (United States)

    Matute, Ricardo A; Yoon, Hanwool; Warshel, Arieh

    2016-11-01

    Elucidating the catalytic mechanism of DNA polymerase is crucial for a progress in the understanding of the control of replication fidelity. This work tries to advance the mechanistic understanding by analyzing the observed effect of mutations of the acidic groups in the active site of Polymerase β as well as the pH effect on the rate constant. The analysis involves both empirical valence bond (EVB) free energy calculations and considerations of the observed pH dependence of the reaction. The combined analysis indicates that the proton transfer (PT) from the nucleophilic O3' has two possible pathways, one to D256 and the second to the bulk. We concluded based on calculations and the experimental pH profile that the most likely path for the wild-type (WT) and the D256E and D256A mutants is a PT to the bulk, although the WT may also use a PT to Asp 256. Our analysis highlights the need for very extensive sampling in the calculations of the activation barrier and also clearly shows that ab initio QM/MM calculations that do not involve extensive sampling are unlikely to give a clear quantitative picture of the reaction mechanism. Proteins 2016; 84:1644-1657. © 2016 Wiley Periodicals, Inc.

  5. Towards observing the encounter of the T7 DNA replication fork with a lesion site at the Single molecule level

    KAUST Repository

    Shirbini, Afnan

    2017-05-01

    Single-molecule DNA flow-stretching assays have been a powerful approach to study various aspects on the mechanism of DNA replication for more than a decade. This technique depends on flow-induced force on a bead attached to a surface-tethered DNA. The difference in the elastic property between double-strand DNA (long) and single-strand DNA (short) at low regime force allows the observation of the beads motion when the dsDNA is converted to ssDNA by the replisome machinery during DNA replication. Here, I aim to develop an assay to track in real-time the encounter of the bacteriophage T7 replisome with abasic lesion site inserted on the leading strand template. I optimized methods to construct the DNA substrate that contains the abasic site and established the T7 leading strand synthesis at the single molecule level. I also optimized various control experiments to remove any interference from the nonspecific interactions of the DNA with the surface. My work established the foundation to image the encounter of the T7 replisome with abasic site and to characterize how the interactions between the helicase and the polymerase could influence the polymerase proofreading ability and its direct bypass of this highly common DNA damage type.

  6. Cloning of Thermostable DNA Polymerase Gene from a Thermophilic Brevibacillus sp. Isolated from Sikidang Crater, Dieng Plateu, Central Java

    Directory of Open Access Journals (Sweden)

    Lucia Dhiantika Witasari

    2015-11-01

    Full Text Available Thermostable DNA polymerase has an important role for amplifying small amount of DNA through polymerase chain reaction (PCR. Thermophillic bacteria Brevibacillus sp. was isolated from Sikidang Crater, Dieng Plateu, Central Java. Previous study showed that crude protein of the isolate could be used in PCR. Unfortunately, like most native thermostable enzymes, the thermostable DNA polymerase of the isolate is synthesized in a very low level and therefore is cumbersome to purify. The purpose of this research is to clone thermostable DNA polymerase gene of the isolate. The DNA polymerase gene was amplified by means of PCR using spesific primers. The amplified fragment was then isolated, purified, and ligated into the pGEM-T cloning vector. The recombinant plasmid was then transformed to competent E. coli JM109 cells using heat shock method. The cloned thermostable DNA polymerase gene from the thermophilic isolate was then characterized for its nucleotide base sequence. The result showed that the DNA Pol I gene was successfully be amplified from the isolate DNA genom, resulting in ± 2,7 kb DNA fragment in length. Sequence analysis of segment of targeted gene showed high similarity to that of thermostable DNA polymerase genes from other Bacillus.Key words : Thermostable DNA Pol I, Brevibacillus sp., PCR, cloning

  7. Mitochondrial DNA variation in chinook salmon and chum salmon detected by restriction enzyme analysis of polymerase chain reaction products

    Science.gov (United States)

    Cronin, M.; Spearman, R.; Wilmot, R.; Patton, J.; Bickman, J.

    1993-01-01

    We analyze intraspecific mitochondrial DNA variation in chinook salmon from drainages in the Yukon River, the Kenai River, and Oregon and California rivers; and chum salmon from the Yukon River and vancouver Island, and Washington rivers. For each species, three different portions of the mtDNA molecule were amplified seperately using the polymerase chain reaction and then digested with at least 19 restrictions enzymes. Intraspecific sequence divergences between haplotypes were less than 0.01 base subsitution per nucleotide. Nine chum salmon haplotypes were identified. Yukon River chum salmon stocks displayed more haplotypes (8) occurred in all areas. Seven chinook salmon haplotypes were identified. Four haplotypes occurred in the Yukon and Kenai rviers and four occured in the Oregon/California, with only one haplotype shared between the regions. Sample sizes were too small to quantify the degree of stock seperation among drainages, but the patterns of variation that we observed suggest utility of the technique in genetic stock identification.

  8. Role of swi7H4 mutant allele of DNA polymerase α in the DNA damage checkpoint response.

    Science.gov (United States)

    Khan, Saman; Ahmed, Shakil

    2015-01-01

    Besides being a mediator of initiation of DNA replication, DNA polymerase α plays a key role in chromosome maintenance. Swi7H4, a novel temperature sensitive mutant of DNA polymerase α was shown to be defective in transcriptional silencing at the mating type centromere and telomere loci. It is also required for the establishment of chromatin state that can recruit the components of the heterochromatin machinery at these regions. Recently the role of DNA polymerase α in the S-phase alkylation damage response in S. pombe has also been studied. Here we investigate whether defects generated by swi7H4, a mutant allele of DNA polymerase α can activate a checkpoint response. We show that swi7H4 exhibit conditional synthetic lethality with chk1 null mutant and the double mutant of swi7H4 with chk1 deletion aggravate the chromosome segregation defects. More importantly swi7H4 mutant cells delay the mitotic progression at non permissive temperature that is mediated by checkpoint protein kinase Chk1. In addition we show that, in the swi7H4 mutant background, cells accumulate DNA damage at non permissive temperature activating the checkpoint kinase protein Chk1. Further, we observed synthetic lethality between swi7H4 and a number of genes involved in DNA repair pathway at semi permissive temperature. We summarize that defects in swi7H4 mutant results in DNA damage that delay mitosis in a Chk1 dependent manner that also require the damage repair pathway for proper recovery.

  9. Role of swi7H4 mutant allele of DNA polymerase α in the DNA damage checkpoint response.

    Directory of Open Access Journals (Sweden)

    Saman Khan

    Full Text Available Besides being a mediator of initiation of DNA replication, DNA polymerase α plays a key role in chromosome maintenance. Swi7H4, a novel temperature sensitive mutant of DNA polymerase α was shown to be defective in transcriptional silencing at the mating type centromere and telomere loci. It is also required for the establishment of chromatin state that can recruit the components of the heterochromatin machinery at these regions. Recently the role of DNA polymerase α in the S-phase alkylation damage response in S. pombe has also been studied. Here we investigate whether defects generated by swi7H4, a mutant allele of DNA polymerase α can activate a checkpoint response. We show that swi7H4 exhibit conditional synthetic lethality with chk1 null mutant and the double mutant of swi7H4 with chk1 deletion aggravate the chromosome segregation defects. More importantly swi7H4 mutant cells delay the mitotic progression at non permissive temperature that is mediated by checkpoint protein kinase Chk1. In addition we show that, in the swi7H4 mutant background, cells accumulate DNA damage at non permissive temperature activating the checkpoint kinase protein Chk1. Further, we observed synthetic lethality between swi7H4 and a number of genes involved in DNA repair pathway at semi permissive temperature. We summarize that defects in swi7H4 mutant results in DNA damage that delay mitosis in a Chk1 dependent manner that also require the damage repair pathway for proper recovery.

  10. Sensitivitas dan Spesifisitas Nested Polymerase Chain Reaction untuk Mendeteksi DNA Coxiella burnetii (SENSITIVITY AND SPECIFICITY OF NESTED POLYMERASE CHAIN REACTION FOR DETECTION OF COXIELLA BURNETII DNA

    Directory of Open Access Journals (Sweden)

    Trioso Purnawarman

    2014-04-01

    Full Text Available Sensitivity and specificity of nested polymerase chain reaction (nested PCR to detect Coxiella burnetii(C. burnetii DNA were studied. The primer system which consists of external primers (OMP1 and OMP2and internal primers (OMP3 and OMP4, was designed from the nucleotide sequence of the com I geneencoding for 27 kDa outer membrane protein and used to specifically amplify a 501 bp and 438 bp fragment.This nested PCR assay was 50 fold more sensitive than that of using PCR external primer only. TheNested PCR has a detection limit as low as 300 pg/?l. Specificity studies showed that nested PCR onlydetected C. burnetii DNA and did not happened Brucella abortus, Escherichia coli, Pseudomonas aeruginosaand Campylobacter Jejuni DNA. Nested PCR has high senstively and specificaly diagnostic method of C.burnetii as agent of Q fever disease.

  11. Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome.

    Science.gov (United States)

    Singh, Bhupendra; Li, Xiurong; Owens, Kjerstin M; Vanniarajan, Ayyasamy; Liang, Ping; Singh, Keshav K

    2015-01-01

    To date, mitochondrial DNA polymerase γ (POLG) is the only polymerase known to be present in mammalian mitochondria. A dogma in the mitochondria field is that there is no other polymerase present in the mitochondria of mammalian cells. Here we demonstrate localization of REV3 DNA polymerase in the mammalian mitochondria. We demonstrate localization of REV3 in the mitochondria of mammalian tissue as well as cell lines. REV3 associates with POLG and mitochondrial DNA and protects the mitochondrial genome from DNA damage. Inactivation of Rev3 leads to reduced mitochondrial membrane potential, reduced OXPHOS activity, and increased glucose consumption. Conversely, inhibition of the OXPHOS increases expression of Rev3. Rev3 expression is increased in human primary breast tumors and breast cancer cell lines. Inactivation of Rev3 decreases cell migration and invasion, and localization of Rev3 in mitochondria increases survival and the invasive potential of cancer cells. Taken together, we demonstrate that REV3 functions in mammalian mitochondria and that mitochondrial REV3 is associated with the tumorigenic potential of cells.

  12. On-Chip integration of sample pretreatment and Multiplex polymerase chain reaction (PCR) for DNA analysis

    DEFF Research Database (Denmark)

    Brivio, Monica; Snakenborg, Detlef; Søgaard, E.;

    2008-01-01

    In this paper we present a modular lab-on-a-chip system for integrated sample pre-treatment (PT) by magnetophoresis and DNA amplification by polymerase chain reaction (PCR). It consists of a polymer-based microfluidic chip mounted on a custom-made thermocycler (Figure 1) and includes a simple...

  13. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    Science.gov (United States)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  14. Localized Cerebral Energy Failure in DNA Polymerase Gamma-Associated Encephalopathy Syndromes

    Science.gov (United States)

    Tzoulis, Charalampos; Neckelmann, Gesche; Mork, Sverre J.; Engelsen, Bernt E.; Viscomi, Carlo; Moen, Gunnar; Ersland, Lars; Zeviani, Massimo; Bindoff, Laurence A.

    2010-01-01

    Mutations in the catalytic subunit of the mitochondrial DNA-polymerase gamma cause a wide spectrum of clinical disease ranging from infantile hepato-encephalopathy to juvenile/adult-onset spinocerebellar ataxia and late onset progressive external ophthalmoplegia. Several of these syndromes are associated with an encephalopathy that…

  15. Cloning and expression of cDNA for human poly(ADP-ribose)polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Alkhatib, H.M.; Chen, D.; Cherney, B.; Bhatia, K.; Notario, V.; Giri, C.; Stein, G.; Slattery, E.; Roeder, R.G.; Smulson, M.E.

    1987-03-01

    cDNAs encoding poly(ADP-ribose) polymerase from a human hepatoma lambdagt11 cDNA library were isolated by immunological screening. One insert of 1.3 kilobases (kb) consistently hybridized on RNA gel blots to an mRNA species of 3.6-3.7 kb, which is consistent with the size of RNA necessary to code for the polymerase protein (116 kDa). This insert was subsequently used in both in vitro hybrid selection and hybrid-arrested translation studies. An mRNA species from HeLa cells of 3.6-3.7 kb was selected that was translated into a 116-kDa protein, which was selectively immunoprecipitated with anti-poly(ADP-ribose) polymerase. To confirm that the 1.3-kb insert from lambdagt11 encodes for poly(ADP-ribose) polymerase, the insert was used to screen a 3- to 4-kb subset of a transformed human fibroblast cDNA library in the Okayama-Berg vector. One of these vectors was tested in transient transfection experiments in COS cells. This cDNA insert contained the complete coding sequence for polymerase. Using pcD-p(ADPR)P as probe, it was observed that the level of poly(ADP-ribose) polymerase mRNA was elevated at 5 and 7 hr of S phase of the HeLa cell cycle, but was unaltered when artificial DNA strand breaks are introduced in HeLa cells by alkylating agents.

  16. A transposon-derived DNA polymerase from Entamoeba histolytica displays intrinsic strand displacement, processivity and lesion bypass.

    Directory of Open Access Journals (Sweden)

    Guillermo Pastor-Palacios

    Full Text Available Entamoeba histolytica encodes four family B2 DNA polymerases that vary in amino acid length from 813 to 1279. These DNA polymerases contain a N-terminal domain with no homology to other proteins and a C-terminal domain with high amino acid identity to archetypical family B2 DNA polymerases. A phylogenetic analysis indicates that these family B2 DNA polymerases are grouped with DNA polymerases from transposable elements dubbed Polintons or Mavericks. In this work, we report the cloning and biochemical characterization of the smallest family B2 DNA polymerase from E. histolytica. To facilitate its characterization we subcloned its 660 amino acids C-terminal region that comprises the complete exonuclease and DNA polymerization domains, dubbed throughout this work as EhDNApolB2. We found that EhDNApolB2 displays remarkable strand displacement, processivity and efficiently bypasses the DNA lesions: 8-oxo guanosine and abasic site.Family B2 DNA polymerases from T. vaginalis, G. lambia and E. histolytica contain a Terminal Region Protein 2 (TPR2 motif twice the length of the TPR2 from φ29 DNA polymerase. Deletion studies demonstrate that as in φ29 DNA polymerase, the TPR2 motif of EhDNApolB2 is solely responsible of strand displacement and processivity. Interestingly the TPR2 of EhDNApolB2 is also responsible for efficient abasic site bypass. These data suggests that the 21 extra amino acids of the TPR2 motif may shape the active site of EhDNApolB2 to efficiently incorporate and extended opposite an abasic site. Herein we demonstrate that an open reading frame derived from Politons-Mavericks in parasitic protozoa encode a functional enzyme and our findings support the notion that the introduction of novel motifs in DNA polymerases can confer specialized properties to a conserved scaffold.

  17. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The

  18. Automation of a single-DNA molecule stretching device

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl; Lopacinska, Joanna M.; Tommerup, Niels

    2015-01-01

    We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free...

  19. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The g

  20. DNA analysis by single molecule stretching in nanofluidic biochips

    DEFF Research Database (Denmark)

    Abad, E.; Juarros, A.; Retolaza, A.

    2011-01-01

    Stretching single DNA molecules by confinement in nanofluidic channels has attracted a great interest during the last few years as a DNA analysis tool. We have designed and fabricated a sealed micro/nanofluidic device for DNA stretching applications, based on the use of the high throughput Nano......-DNA stained with the fluorescent dye YOYO-1 were stretched in the nanochannel array and the experimental results were analysed to determine the extension factor of the DNA in the chip and the geometrical average of the nanochannel inner diameter. The determination of the extension ratio of the chip provides...

  1. DNA polymerases beta and lambda mediate overlapping and independent roles in base excision repair in mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Elena K Braithwaite

    Full Text Available Base excision repair (BER is a DNA repair pathway designed to correct small base lesions in genomic DNA. While DNA polymerase beta (pol beta is known to be the main polymerase in the BER pathway, various studies have implicated other DNA polymerases in back-up roles. One such polymerase, DNA polymerase lambda (pol lambda, was shown to be important in BER of oxidative DNA damage. To further explore roles of the X-family DNA polymerases lambda and beta in BER, we prepared a mouse embryonic fibroblast cell line with deletions in the genes for both pol beta and pol lambda. Neutral red viability assays demonstrated that pol lambda and pol beta double null cells were hypersensitive to alkylating and oxidizing DNA damaging agents. In vitro BER assays revealed a modest contribution of pol lambda to single-nucleotide BER of base lesions. Additionally, using co-immunoprecipitation experiments with purified enzymes and whole cell extracts, we found that both pol lambda and pol beta interact with the upstream DNA glycosylases for repair of alkylated and oxidized DNA bases. Such interactions could be important in coordinating roles of these polymerases during BER.

  2. Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2006-12-01

    Full Text Available Abstract Background The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. In particular, and counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes are unrelated or extremely distantly related. Viruses and plasmids, in addition, possess at least two unique DNA replication systems, namely, the protein-primed and rolling circle modalities of replication. This unexpected diversity makes the origin and evolution of DNA replication systems a particularly challenging and intriguing problem in evolutionary biology. Results I propose a specific succession for the emergence of different DNA replication systems, drawing argument from the differences in their representation among viruses and other selfish replicating elements. In a striking pattern, the DNA replication systems of viruses infecting bacteria and eukaryotes are dominated by the archaeal-type B-family DNA polymerase (PolB whereas the bacterial replicative DNA polymerase (PolC is present only in a handful of bacteriophage genomes. There is no apparent mechanistic impediment to the involvement of the bacterial-type replication machinery in viral DNA replication. Therefore, I hypothesize that the observed, markedly unequal distribution of the replicative DNA polymerases among the known cellular and viral replication systems has a historical explanation. I propose that, among the two types of DNA replication machineries that are found in extant life forms, the archaeal-type, PolB-based system evolved first and had already given rise to a variety of diverse viruses and other selfish elements before the advent of the bacterial, PolC-based machinery. Conceivably, at that stage of evolution, the niches for DNA-viral reproduction have been already filled with viruses replicating with the

  3. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases

    Directory of Open Access Journals (Sweden)

    Ryan Barnes

    2017-01-01

    Full Text Available Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize “difficult to replicate” genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.

  4. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases.

    Science.gov (United States)

    Barnes, Ryan; Eckert, Kristin

    2017-01-06

    Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize "difficult to replicate" genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.

  5. Arrays of Individual DNA Molecules on Nanopatterned Substrates

    Science.gov (United States)

    Hager, Roland; Halilovic, Alma; Burns, Jonathan R.; Schäffler, Friedrich; Howorka, Stefan

    2017-02-01

    Arrays of individual molecules can combine the advantages of microarrays and single-molecule studies. They miniaturize assays to reduce sample and reagent consumption and increase throughput, and additionally uncover static and dynamic heterogeneity usually masked in molecular ensembles. However, realizing single-DNA arrays must tackle the challenge of capturing structurally highly dynamic strands onto defined substrate positions. Here, we create single-molecule arrays by electrostatically adhering single-stranded DNA of gene-like length onto positively charged carbon nanoislands. The nanosites are so small that only one molecule can bind per island. Undesired adsorption of DNA to the surrounding non-target areas is prevented via a surface-passivating film. Of further relevance, the DNA arrays are of tunable dimensions, and fabricated on optically transparent substrates that enable singe-molecule detection with fluorescence microscopy. The arrays are hence compatible with a wide range of bioanalytical, biophysical, and cell biological studies where individual DNA strands are either examined in isolation, or interact with other molecules or cells.

  6. Oriented and vectorial immobilization of linear M13 dsDNA between interdigitated electrodes--towards single molecule DNA nanostructures.

    Science.gov (United States)

    Hölzel, Ralph; Gajovic-Eichelmann, Nenad; Bier, Frank F

    2003-05-01

    The ability to control molecules at a resolution well below that offered by photolithography has gained much interest recently. DNA is a promising candidate for this task since it offers excellent specificity in base-pairing combined with addressability at the nanometer scale. New applications in biosensing, e.g. interaction analysis at the single molecule level, or nanobiotechnology, e.g. ultradense DNA microarrays, have been devised that rely on stretched DNA bridges. The basic technology required is the ability to deposit spatially defined, stretched DNA-bridges between anchoring structures on surfaces. In this paper we present two techniques for spanning 2 microm long dsDNA bridges between neighboring interdigitated electrodes (IDEs). The extended DNA used was linearized M13 dsDNA (M13mp18 7231 bp, ca. 2.5 microm length), either unmodified, or with chemical modifications at both ends. The first approach is based on the dielectrophoretic (DEP) concentration and alignment of linearized wild-type dsDNA. IDEs with 1.7 microm spacing are driven with an AC voltage around 1 MHz leading to field strengths in the order of 1 MV m(-1). The dsDNA is polarized and linearized by the force field and accumulates in the gap between two neighboring electrodes. This process is reversible and was visualized by fluorescence staining of M13 DNA using PicoGreen, as intercalating dye. The resulting dsDNA bridges and their orientation are discernible under the fluorescence microscope using fluorescent particles of different color. The particles are tagged with sequence specific peptide nucleic acid (PNA) probes that bind to the DNA double strand at specific sites. The second approach is based on asymmetric electrochemical modification of a gold IDE with 2.0 microm spacings followed by spontaneous or stimulated deposition of a chemically modified M13-DNA. One side of the IDE was selectively coated with streptavidin by electropolymerization of a novel hydrophilic conductive polymer in

  7. Recursive construction of perfect DNA molecules from imperfect oligonucleotides.

    Science.gov (United States)

    Linshiz, Gregory; Yehezkel, Tuval Ben; Kaplan, Shai; Gronau, Ilan; Ravid, Sivan; Adar, Rivka; Shapiro, Ehud

    2008-01-01

    Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error-free DNA molecules and their libraries from error-prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error-prone oligonucleotides are recursively combined in vitro, forming error-prone DNA molecules; error-free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error-free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms.

  8. Stretching and imaging studies of single DNA molecules

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    DNA molecules were stretched on silanized mica surface with the molecular combing technique, and detected with fluorescence microscopy and atomic force microscopy. Meantime, DNA molecules were stretched with a modified dynamic molecular combing technique and studied with atomic force microscopy. The results indicate that, compared with the dynamic molecular combing technique, the modified dynamic molecular combing technique has advantages of less-sample demand and less contamination to sample; as compared with the molecular combing technique, it has better aligning effect and reproducibility. Combination of this kind of DNA molecular manipulating technique with the single DNA molecule detecting technique by atomic force microscopy and fluorescence microscopy will play an important role in the basic research of molecular dynamics and the application of gene research.

  9. Sequence-Specific Biosensing of DNA Target through Relay PCR with Small-Molecule Fluorophore.

    Science.gov (United States)

    Yasmeen, Afshan; Du, Feng; Zhao, Yongyun; Dong, Juan; Chen, Haodong; Huang, Xin; Cui, Xin; Tang, Zhuo

    2016-07-15

    Polymerase chain reaction coupled with signal generation offers sensitive recognition of target DNA sequence; however, these procedures require fluorophore-labeled oligonucleotide probes and high-tech equipment to achieve high specificity. Therefore, intensive research has been conducted to develop reliable, convenient, and economical DNA detection methods. The relay PCR described here is the first sequence-specific detection method using a small-molecule fluorophore as a sensor and combines the classic 5'-3' exonuclease activity of Taq polymerase with an RNA mimic of GFP to build a label-free DNA detection platform. Primarily, Taq polymerase cleaves the 5' noncomplementary overhang of the target specific probe during extension of the leading primer to release a relay oligo to initiate tandem PCR of the reporting template, which encodes the sequence of RNA aptamer. Afterward, the PCR product is transcribed to mRNA, which could generate a fluorescent signal in the presence of corresponding fluorophore. In addition to high sensitivity and specificity, the flexibility of choosing different fluorescent reporting signals makes this method versatile in either single or multiple target detection.

  10. A structural role for the PHP domain in E. coli DNA polymerase III.

    Science.gov (United States)

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  11. Role of Human DNA Polymerase kappa in Extension Opposite from a cis-syn Thymine Dimer

    Energy Technology Data Exchange (ETDEWEB)

    R Vasquez-Del Carpio; T Silverstein; S Lone; R Johnson; L Prakash; S Prakash; A Aggarwal

    2011-12-31

    Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase {Kappa} (Pol{Kappa}), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Pol{Kappa} in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure reveals a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Pol{Kappa} in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo.

  12. Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi.

    Science.gov (United States)

    Castillo-Lizardo, Melissa; Henneke, Ghislaine; Viguera, Enrique

    2014-01-01

    Replication slippage or slipped-strand mispairing involves the misalignment of DNA strands during the replication of repeated DNA sequences, and can lead to genetic rearrangements such as microsatellite instability. Here, we show that PolB and PolD replicative DNA polymerases from the archaeal model Pyrococcus abyssi (Pab) slip in vitro during replication of a single-stranded DNA template carrying a hairpin structure and short direct repeats. We find that this occurs in both their wild-type (exo+) and exonuclease deficient (exo-) forms. The slippage behavior of PabPolB and PabPolD, probably due to limited strand displacement activity, resembles that observed for the high fidelity P. furiosus (Pfu) DNA polymerase. The presence of PabPCNA inhibited PabPolB and PabPolD slippage. We propose a model whereby PabPCNA stimulates strand displacement activity and polymerase progression through the hairpin, thus permitting the error-free replication of repetitive sequences.

  13. Replication slippage of the thermophilic DNA polymerases B and D from the Euryarchaeota Pyrococcus abyssi

    Directory of Open Access Journals (Sweden)

    Melissa G. eCastillo-Lizardo

    2014-08-01

    Full Text Available Replication slippage or slipped-strand mispairing involves the misalignment of DNA strands during the replication of repeated DNA sequences, and can lead to genetic rearrangements such as microsatellite instability. Here, we show that PolB and PolD replicative DNA polymerases from the archaeal model Pyrococcus abyssi (Pab slip in vitro during replication of a single-stranded DNA template carrying a hairpin structure and short direct repeats. We find that this occurs in both their wild-type (exo+ and exonuclease deficient (exo- forms. The slippage behavior of PabPolB and PabPolD, probably due to limited strand displacement activity, resembles that observed for the high fidelity Pyrococcus furiosus (Pfu DNA polymerase. The presence of PabPCNA inhibited PabPolB and PabPolD slippage. We propose a model whereby PabPCNA stimulates strand displacement activity and polymerase progression through the hairpin, thus permitting the error-free replication of repetitive sequences.

  14. Increased learning and brain long-term potentiation in aged mice lacking DNA polymerase μ.

    Directory of Open Access Journals (Sweden)

    Daniel Lucas

    Full Text Available A definitive consequence of the aging process is the progressive deterioration of higher cognitive functions. Defects in DNA repair mechanisms mostly result in accelerated aging and reduced brain function. DNA polymerase µ is a novel accessory partner for the non-homologous end-joining DNA repair pathway for double-strand breaks, and its deficiency causes reduced DNA repair. Using associative learning and long-term potentiation experiments, we demonstrate that Polµ(-/- mice, however, maintain the ability to learn at ages when wild-type mice do not. Expression and biochemical analyses suggest that brain aging is delayed in Polµ(-/- mice, being associated with a reduced error-prone DNA oxidative repair activity and a more efficient mitochondrial function. This is the first example in which the genetic ablation of a DNA-repair function results in a substantially better maintenance of learning abilities, together with fewer signs of brain aging, in old mice.

  15. Highly parallel translation of DNA sequences into small molecules.

    Directory of Open Access Journals (Sweden)

    Rebecca M Weisinger

    Full Text Available A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 10(10 to 10(15 distinct molecules for the discovery of nanomolar-affinity ligands to proteins. Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands. Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons. Creating a collection of 10(10 to 10(15 small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments.

  16. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    Science.gov (United States)

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  17. DNA from oral bacteria by sodium hydroxide-paper method suitable for polymerase chain reaction.

    Science.gov (United States)

    Lefimil, Claudia; Lozano, Carla; Morales-Bozo, Irene; Plaza, Anita; Maturana, Cristian; Urzúa, Blanca

    2013-02-15

    In the oral cavity, we can find a complex mixture of microorganisms, commensals, and pathogens. The studies of normal oral microbiota, as well as the studies of much oral pathology (e.g., caries, periodontitis), involve the isolation and cultivation of these microorganisms and their molecular analysis. The aim of this study was to validate a quick, easy, efficient, and inexpensive DNA extraction method for the recovery of genomic DNA from gram-positive and gram-negative oral bacteria to be used in polymerase chain reaction amplification. This method worked great with all samples analyzed, providing an approach to extract DNA for different microorganisms. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Toxicity of nucleoside analogues used to treat AIDS and the selectivity of the mitochondrial DNA polymerase.

    Science.gov (United States)

    Lee, Harold; Hanes, Jeremiah; Johnson, Kenneth A

    2003-12-23

    Incorporation of nucleoside analogues by the mitochondrial DNA polymerase has been implicated as the primary cause underlying many of the toxic side effects of these drugs in HIV therapy. Recent success in reconstituting recombinant human enzyme has afforded a detailed mechanistic analysis of the reactions governing nucleotide selectivity of the polymerase and the proofreading exonuclease. The toxic side effects of nucleoside analogues are correlated with the kinetics of incorporation by the mitochondrial DNA polymerase, varying over 6 orders of magnitude in the sequence zalcitabine (ddC) > didanosine (ddI metabolized to ddA) > stavudine (d4T) > lamivudine (3TC) > tenofovir (PMPA) > zidovudine (AZT) > abacavir (metabolized to carbovir, CBV). In this review, we summarize our current efforts to examine the mechanistic basis for nucleotide selectivity by the mitochondrial DNA polymerase and its role in mitochondrial toxicity of nucleoside analogues used to treat AIDS and other viral infections. We will also discuss the promise and underlying challenges for the development of new analogues with lower toxicity.

  19. Streching of (DNA/functional molecules) complex between electrodes towards DNA molecular wire

    Science.gov (United States)

    Kobayashi, Norihisa; Nishizawa, Makoto; Inoue, Shintarou; Nakamura, Kazuki

    2009-08-01

    DNA/functional molecules such as (Ru(bpy)32+ complex, conducting polymer etc.) complex was prepared to study molecular structure and I-V characteristics towards DNA molecular wire. For example, Ru(bpy)32+ was associated with duplex of DNA by not only electrostatic interaction but also intercalation in the aqueous solution. Singlemolecular structure of DNA/Ru(bpy)32+ complex was analyzed with AFM. We found a network structure of DNA/Ru(bpy)32+ complex on the mica substrate, which is similar to native DNA. The height of DNA/Ru(bpy)32+ complex on the mica substrate was ranging from 0.8 to 1.6 nm, which was higher than the naked DNA (0.5-1.0 nm). This indicates that single-molecular DNA/Ru(bpy)32+ complex also connects to each other to form network structure on a mica substrate. In order to stretch DNA complex between electrodes, we employed high frequency and high electric field stretching method proposed by Washizu et al. We stretched and immobilized DNA single molecules between a pair of electrodes and its structures were analyzed with AFM technique. The I-V characteristics of DNA single molecules between electrodes were improved by the association of functional molecules with DNA. The molecular structure and I-V characteristics of DNA complex were discussed.

  20. Study on the Interaction of Colloidal Gold with Taq DNA Polymerase

    Institute of Scientific and Technical Information of China (English)

    ZHU,Hong-Ping; MI,Li-Juan; CHEN,Shi-Mou; WANG,Wen-Feng; YAO,Si-De

    2007-01-01

    The interaction of colloidal gold with Taq DNA polymerase (Taq) was investigated in this study. Taq-gold conjugate was formed by adding the enzyme to the colloidal gold solution, as evidenced by UV-Vis spectroscopy,X-ray photoelectron spectroscopy, and photon cross correlation spectroscopy measurements. The conjugate was further characterized by transmission electron microscopy. It was found that the Taq-gold conjugate particles were still spherical and well-dispersed. The influence of gold nanoparticles on the bioactivity of Taq was studied by analyzing the yield of the polymerase chain reaction amplification. Results indicated that the enzymatic activity of Taq decreased after interaction with the colloidal gold.

  1. Aligned deposition and electrical measurements on single DNA molecules

    Science.gov (United States)

    Eidelshtein, Gennady; Kotlyar, Alexander; Hashemi, Mohtadin; Gurevich, Leonid

    2015-11-01

    A reliable method of deposition of aligned individual dsDNA molecules on mica, silicon, and micro/nanofabricated circuits is presented. Complexes of biotinylated double stranded poly(dG)-poly(dC) DNA with avidin were prepared and deposited on mica and silicon surfaces in the absence of Mg2+ ions. Due to its positive charge, the avidin attached to one end of the DNA anchors the complex to negatively charged substrates. Subsequent drying with a directional gas flow yields DNA molecules perfectly aligned on the surface. In the avidin-DNA complex only the avidin moiety is strongly and irreversibly bound to the surface, while the DNA counterpart interacts with the substrates much more weakly and can be lifted from the surface and realigned in any direction. Using this technique, avidin-DNA complexes were deposited across platinum electrodes on a silicon substrate. Electrical measurements on the deposited DNA molecules revealed linear IV-characteristics and exponential dependence on relative humidity.

  2. Developing DNA nanotechnology using single-molecule fluorescence.

    Science.gov (United States)

    Tsukanov, Roman; Tomov, Toma E; Liber, Miran; Berger, Yaron; Nir, Eyal

    2014-06-17

    CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and

  3. Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC

    Directory of Open Access Journals (Sweden)

    Engelen Stefan

    2012-02-01

    Full Text Available Abstract Background Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.

  4. Mitochondrial polymerase gamma dysfunction and aging cause cardiac nuclear DNA methylation changes.

    Science.gov (United States)

    Koczor, Christopher A; Ludlow, Ivan; Fields, Earl; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Lewis, William

    2016-04-01

    Cardiomyopathy (CM) is an intrinsic weakening of myocardium with contractile dysfunction and congestive heart failure (CHF). CHF has been postulated to result from decreased mitochondrial energy production and oxidative stress. Effects of decreased mitochondrial oxygen consumption also can accelerate with aging. We previously showed DNA methylation changes in human hearts with CM. This was associated with mitochondrial DNA depletion, being another molecular marker of CM. We examined the relationship between mitochondrial dysfunction and cardiac epigenetic DNA methylation changes in both young and old mice. We used genetically engineered C57Bl/6 mice transgenic for a cardiac-specific mutant of the mitochondrial polymerase-γ (termed Y955C). Y955C mice undergo left ventricular hypertrophy (LVH) at a young age (∼ 94 days old), and LVH decompensated to CHF at old age (∼ 255 days old). Results found 95 genes differentially expressed as a result of Y955C expression, while 4,452 genes were differentially expressed as a result of aging hearts. Moreover, cardiac DNA methylation patterns differed between Y955C (4,506 peaks with 68.5% hypomethylation) and aged hearts (73,286 peaks with 80.2% hypomethylated). Correlatively, of the 95 Y955C-dependent differentially expressed genes, 30 genes (31.6%) also displayed differential DNA methylation; in the 4,452 age-dependent differentially expressed genes, 342 genes (7.7%) displayed associated DNA methylation changes. Both Y955C and aging demonstrated significant enrichment of CACGTG-associated E-box motifs in differentially methylated regions. Cardiac mitochondrial polymerase dysfunction alters nuclear DNA methylation. Furthermore, aging causes a robust change in cardiac DNA methylation that is partially associated with mitochondrial polymerase dysfunction. Copyright © 2016 the American Physiological Society.

  5. DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer.

    Science.gov (United States)

    Church, David N; Briggs, Sarah E W; Palles, Claire; Domingo, Enric; Kearsey, Stephen J; Grimes, Jonathon M; Gorman, Maggie; Martin, Lynn; Howarth, Kimberley M; Hodgson, Shirley V; Kaur, Kulvinder; Taylor, Jenny; Tomlinson, Ian P M

    2013-07-15

    Accurate duplication of DNA prior to cell division is essential to suppress mutagenesis and tumour development. The high fidelity of eukaryotic DNA replication is due to a combination of accurate incorporation of nucleotides into the nascent DNA strand by DNA polymerases, the recognition and removal of mispaired nucleotides (proofreading) by the exonuclease activity of DNA polymerases δ and ε, and post-replication surveillance and repair of newly synthesized DNA by the mismatch repair (MMR) apparatus. While the contribution of defective MMR to neoplasia is well recognized, evidence that faulty DNA polymerase activity is important in cancer development has been limited. We have recently shown that germline POLE and POLD1 exonuclease domain mutations (EDMs) predispose to colorectal cancer (CRC) and, in the latter case, to endometrial cancer (EC). Somatic POLE mutations also occur in 5-10% of sporadic CRCs and underlie a hypermutator, microsatellite-stable molecular phenotype. We hypothesized that sporadic ECs might also acquire somatic POLE and/or POLD1 mutations. Here, we have found that missense POLE EDMs with good evidence of pathogenic effects are present in 7% of a set of 173 endometrial cancers, although POLD1 EDMs are uncommon. The POLE mutations localized to highly conserved residues and were strongly predicted to affect proofreading. Consistent with this, POLE-mutant tumours were hypermutated, with a high frequency of base substitutions, and an especially large relative excess of G:C>T:A transversions. All POLE EDM tumours were microsatellite stable, suggesting that defects in either DNA proofreading or MMR provide alternative mechanisms to achieve genomic instability and tumourigenesis.

  6. DNA polymerase ɛ and δ exonuclease domain mutations in endometrial cancer

    Science.gov (United States)

    Church, David N.; Briggs, Sarah E.W.; Palles, Claire; Domingo, Enric; Kearsey, Stephen J.; Grimes, Jonathon M.; Gorman, Maggie; Martin, Lynn; Howarth, Kimberley M.; Hodgson, Shirley V.; Kaur, Kulvinder; Taylor, Jenny; Tomlinson, Ian P.M.

    2013-01-01

    Accurate duplication of DNA prior to cell division is essential to suppress mutagenesis and tumour development. The high fidelity of eukaryotic DNA replication is due to a combination of accurate incorporation of nucleotides into the nascent DNA strand by DNA polymerases, the recognition and removal of mispaired nucleotides (proofreading) by the exonuclease activity of DNA polymerases δ and ɛ, and post-replication surveillance and repair of newly synthesized DNA by the mismatch repair (MMR) apparatus. While the contribution of defective MMR to neoplasia is well recognized, evidence that faulty DNA polymerase activity is important in cancer development has been limited. We have recently shown that germline POLE and POLD1 exonuclease domain mutations (EDMs) predispose to colorectal cancer (CRC) and, in the latter case, to endometrial cancer (EC). Somatic POLE mutations also occur in 5–10% of sporadic CRCs and underlie a hypermutator, microsatellite-stable molecular phenotype. We hypothesized that sporadic ECs might also acquire somatic POLE and/or POLD1 mutations. Here, we have found that missense POLE EDMs with good evidence of pathogenic effects are present in 7% of a set of 173 endometrial cancers, although POLD1 EDMs are uncommon. The POLE mutations localized to highly conserved residues and were strongly predicted to affect proofreading. Consistent with this, POLE-mutant tumours were hypermutated, with a high frequency of base substitutions, and an especially large relative excess of G:C>T:A transversions. All POLE EDM tumours were microsatellite stable, suggesting that defects in either DNA proofreading or MMR provide alternative mechanisms to achieve genomic instability and tumourigenesis. PMID:23528559

  7. Pyrovanadolysis, a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate, Mn2+, and DNA Polymerase of Bacteriophage T7

    NARCIS (Netherlands)

    Akabayov, Barak; Kulczyk, Arkadiusz W.; Akabayov, Sabine R.; Theile, Christopher; McLaughlin, Larry W.; Beauchamp, Benjamin; van Oijen, Antoine M.; Richardson, Charles C.

    2011-01-01

    DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PPi). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry

  8. DNA entropic elasticity for short molecules attached to beads

    CERN Document Server

    Li, J; Nelson, P C; Li, Jinyu; Nelson, Philip C.

    2006-01-01

    Single-molecule experiments in which force is applied to DNA or RNA molecules have enabled important discoveries of nucleic acid properties and nucleic acid-enzyme interactions. These experiments rely on a model of the polymer force-extension behavior to calibrate the experiments; typically the experiments use the worm-like chain (WLC) theory for double-stranded DNA and RNA. This theory agrees well with experiments for long molecules. Recent single-molecule experiments have used shorter molecules, with contour lengths in the range of 1-10 persistence lengths. Most WLC theory calculations to date have assumed infinite molecule lengths, and do not agree well with experiments on shorter chains. Key physical effects that become important when shorter molecules are used include (i) boundary conditions which constrain the allowed fluctuations at the ends of the molecule and (ii) rotational fluctuations of the bead to which the polymer is attached, which change the apparent extension of the molecule. We describe the...

  9. Molecular dynamics simulation of peeling a DNA molecule on substrate

    Institute of Scientific and Technical Information of China (English)

    Xinghua Shi; Yong Kong; Yapu Zhao; Huajian Gao

    2005-01-01

    Molecular dynamics (MD) simulations are performed to study adhesion and peeling of a short fragment of single strand DNA (ssDNA) molecule from a graphite surface. The critical peel-off force is found to depend on both the peeling angle and the elasticity of ssDNA. For the short ssDNA strand under investigation, we show that the simulation results can be explained by a continuum model of an adhesive elastic band on substrate. The analysis suggests that it is often the peak value, rather than the mean value, of adhesion energy which determines the peeling of a nanoscale material.

  10. Hydrogen-Bonding Capability of a Templating Difluorotoluene Nucleotide Residue in an RB69 DNA Polymerase Ternary Complex

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shuangluo; Konigsberg, William H.; Wang, Jimin (Yale)

    2011-08-29

    Results obtained using 2,4-difluorotoluene nucleobase (dF) as a nonpolar thymine isostere by Kool and colleagues challenged the Watson-Crick dogma that hydrogen bonds between complementary bases are an absolute requirement for accurate DNA replication. Here, we report crystal structure of an RB69 DNA polymerase L561A/S565G/Y567A triple mutant ternary complex with a templating dF opposite dTTP at 1.8 {angstrom}-resolution. In this structure, direct hydrogen bonds were observed between: (i) dF and the incoming dTTP, (ii) dF and residue G568 of the polymerase, and (iii) dF and ordered water molecules surrounding the nascent base pair. Therefore, this structure provides evidence that a templating dF can form novel hydrogen bonds with the incoming dTTP and with the enzyme that differ from those formed with a templating dT.

  11. Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex

    Science.gov (United States)

    Murakami, Katsuhiko S.; Masuda, Shoko; Campbell, Elizabeth A.; Muzzin, Oriana; Darst, Seth A.

    2002-05-01

    The crystal structure of Thermus aquaticus RNA polymerase holoenzyme (α2ββ'ωσA) complexed with a fork-junction promoter DNA fragment has been determined by fitting high-resolution x-ray structures of individual components into a 6.5-angstrom resolution map. The DNA lies across one face of the holoenzyme, completely outside the RNA polymerase active site channel. All sequence-specific contacts with core promoter elements are mediated by the σ subunit. A universally conserved tryptophan is ideally positioned to stack on the exposed face of the base pair at the upstream edge of the transcription bubble. Universally conserved basic residues of the σ subunit provide critical contacts with the DNA phosphate backbone and play a role in directing the melted DNA template strand into the RNA polymerase active site. The structure explains how holoenzyme recognizes promoters containing variably spaced -10 and -35 elements and provides the basis for models of the closed and open promoter complexes.

  12. Data of self-made Taq DNA polymerase prepared for screening purposes

    Directory of Open Access Journals (Sweden)

    E.V. Konovalova

    2017-04-01

    Full Text Available DNA analysis is a key procedure in genetic engineering. Nowadays the analysis is often done by PCR with Taq DNA polymerase. Although the last enzyme price is quite low, demand for numerous analyses results in much money expenditure which are not affordable for many laboratories. In a meanwhile, many screening tasks do not require the highly purified enzyme. Taking into account the enzyme unique properties it makes possible to marginally simplify its production without resorting to costly or lengthy techniques such as column chromatography and/or dialysis. Here the data of routine usage of Taq DNA polymerase prepared according to the protocol developed in our laboratory is presented. The protocol takes only several hours to realize and does not need qualified personnel or expensive equipment. Yet it gives the enzyme preparation suitable for most screening purposes. The isolated Taq DNA polymerase stock can be stored as ammonium sulfate suspension in a refrigerator for prolonged period, not less than 6 months. The working enzyme solution is prepared from the stock suspension on demand, not more than once in a month and can be stored also in a refrigerator.

  13. DNAPKcs-dependent arrest of RNA polymerase II transcription in the presence of DNA breaks.

    Science.gov (United States)

    Pankotai, Tibor; Bonhomme, Céline; Chen, David; Soutoglou, Evi

    2012-02-12

    DNA double-strand break (DSB) repair interferes with ongoing cellular processes, including replication and transcription. Although the process of replication stalling upon collision of replication forks with damaged DNA has been extensively studied, the fate of elongating RNA polymerase II (RNAPII) that encounters a DSB is not well understood. We show that the occurrence of a single DSB at a human RNAPII-transcribed gene leads to inhibition of transcription elongation and reinitiation. Upon inhibition of DNA protein kinase (DNAPK), RNAPII bypasses the break and continues transcription elongation, suggesting that it is not the break per se that inhibits the processivity of RNAPII, but the activity of DNAPK. We also show that the mechanism of DNAPK-mediated transcription inhibition involves the proteasome-dependent pathway. The results point to the pivotal role of DNAPK activity in the eviction of RNAPII from DNA upon encountering a DNA lesion.

  14. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    Science.gov (United States)

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations.

  15. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    Science.gov (United States)

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye

    2015-01-01

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  16. Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli.

    Science.gov (United States)

    Zheng, Wenjun; Wang, Qingsong; Bi, Qun

    2016-04-01

    Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni(2+) chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future.

  17. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III.

    Science.gov (United States)

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.

  18. Single-molecule studies of DNA transcription using atomic force microscopy

    Science.gov (United States)

    Billingsley, Daniel J.; Bonass, William A.; Crampton, Neal; Kirkham, Jennifer; Thomson, Neil H.

    2012-04-01

    Atomic force microscopy (AFM) can detect single biomacromolecules with a high signal-to-noise ratio on atomically flat biocompatible support surfaces, such as mica. Contrast arises from the innate forces and therefore AFM does not require imaging contrast agents, leading to sample preparation that is relatively straightforward. The ability of AFM to operate in hydrated environments, including humid air and aqueous buffers, allows structure and function of biological and biomolecular systems to be retained. These traits of the AFM are ensuring that it is being increasingly used to study deoxyribonucleic acid (DNA) structure and DNA-protein interactions down to the secondary structure level. This report focuses in particular on reviewing the applications of AFM to the study of DNA transcription in reductionist single-molecule bottom-up approaches. The technique has allowed new insights into the interactions between ribonucleic acid (RNA) polymerase to be gained and enabled quantification of some aspects of the transcription process, such as promoter location, DNA wrapping and elongation. More recently, the trend is towards studying the interactions of more than one enzyme operating on a single DNA template. These methods begin to reveal the mechanics of gene expression at the single-molecule level and will enable us to gain greater understanding of how the genome is transcribed and translated into the proteome.

  19. Potentiation of temozolomide cytotoxicity by inhibition of DNA polymerase beta is accentuated by BRCA2 mutation.

    Science.gov (United States)

    Stachelek, Gregory C; Dalal, Shibani; Donigan, Katherine A; Campisi Hegan, Denise; Sweasy, Joann B; Glazer, Peter M

    2010-01-01

    Base excision repair (BER) plays a critical role in the repair of bases damaged by oxidative metabolism or alkylating agents, such as those commonly used in cancer therapy. Incomplete BER generates intermediates that require activation of homology-dependent DNA repair to resolve. We investigated the effects of lithocholic acid (LCA), an inhibitor of the key BER enzyme DNA polymerase beta (pol beta), in cells deficient in expression of the homology-dependent repair factor BRCA2. In vitro studies show that LCA suppresses the DNA polymerase and 5'-deoxyribose phosphate lyase activities of DNA pol beta by preventing the formation of a stable pol beta-DNA complex, reducing BER effectiveness. Cytotoxicity assays based on colony formation revealed that LCA exhibits synergism with the alkylating agent temozolomide, which engages BER through DNA methylation, and that the degree of synergism is increased in cells lacking functional BRCA2. BRCA2-deficient cells also showed heightened susceptibility to both LCA and temozolomide individually. The potentiation of temozolomide cytotoxicity by LCA owes to the conversion of single-stranded DNA breaks generated through incomplete BER of methylated nucleotides into double-stranded breaks during DNA replication, as indicated by gammaH2AX immunofluorescence. Death seems to be induced in cotreated cells through an accumulation of persistent double-stranded DNA breaks. Mutations of the BRCA2 gene have been extensively characterized and are present in various cancers, implying that inhibition of BER may offer a means to augment tumor selectivity in the use of conventional cancer therapies.

  20. Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active site.

    Science.gov (United States)

    Vaidyanathan, Vaidyanathan G; Liang, Fengting; Beard, William A; Shock, David D; Wilson, Samuel H; Cho, Bongsup P

    2013-08-09

    The active site conformation of the mutagenic fluoroaminofluorene-deoxyguanine adduct (dG-FAF, N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene) has been investigated in the presence of Klenow fragment of Escherichia coli DNA polymerase I (Kfexo(-)) and DNA polymerase β (pol β) using (19)F NMR, insertion assay, and surface plasmon resonance. In a single nucleotide gap, the dG-FAF adduct adopts both a major-groove- oriented and base-displaced stacked conformation, and this heterogeneity is retained upon binding pol β. The addition of a non-hydrolysable 2'-deoxycytosine-5'-[(α,β)-methyleno]triphosphate (dCMPcPP) nucleotide analog to the binary complex results in an increase of the major groove conformation of the adduct at the expense of the stacked conformation. Similar results were obtained with the addition of an incorrect dAMPcPP analog but with formation of the minor groove binding conformer. In contrast, dG-FAF adduct at the replication fork for the Kfexo(-) complex adopts a mix of the major and minor groove conformers with minimal effect upon the addition of non-hydrolysable nucleotides. For pol β, the insertion of dCTP was preferred opposite the dG-FAF adduct in a single nucleotide gap assay consistent with (19)F NMR data. Surface plasmon resonance binding kinetics revealed that pol β binds tightly with DNA in the presence of correct dCTP, but the adduct weakens binding with no nucleotide specificity. These results provide molecular insights into the DNA binding characteristics of FAF in the active site of DNA polymerases and the role of DNA structure and sequence on its coding potential.

  1. Cloning, expression and characterization of human tissue-specific DNA polymerase λ2

    Institute of Scientific and Technical Information of China (English)

    GU Fu; LI YuYang; L(U) Hong; YOU Chun; LIU JianPing; CHEN Ao; YU Yao; WANG Xiang; WAN DaFang; GU JianRen; YUAN HanYing

    2007-01-01

    DNA polymerase (POL) λ plays an important role during DNA repair and DNA nonhomologous recombination processes. A novel POL λ variant was cloned from a human liver cDNA library and named POL λ2 (GenBank Accession No. AY302442). POL λ2 has 2206 base pairs in length with an open reading frame of 1452 base pairs encoding a 482-amino-acids protein. Bioinformatics analysis reveals that POL λ2 spans 7.9 kb on human chromosome 10q24 and is composed of 8 exons and 7 introns. It has the specific domain of DNA polymerase X family-POL Xc at the C-terminus and BRCT domain at the N-terminus. POL λ2 was localized predominantly in nucleus in transfected L0-2 cells. It was expressed abundantly in liver and testis, weakly in ovary, and undetectably in other tested human tissues. In comparison with the expression ratio between POL λ and POL λ2 in normal liver tissues and hepatocellular carcinoma (HCC) adjacent tissues, the ratio was aberrant in 80% of those 15 HCC specimens examined due to the up-regulated expression of POL λ. This abnormality might be involved in hepatocarcinogenesis. The recombinant POL λ2 with His-tag was expressed as a soluble active protein in E.coli BL21 (DE3)CONDON Plus and purified by Ni-NTA resin and then desalted by Superdex-75 chromatography in an FPLC system. The analysis using isotope α-32p-dCTP incorporation in vitro showed that the purified recombinant POL λ2 exhibited DNA polymerase activity.

  2. Cloning, expression and characterization of human tissue-specific DNA polymerase λ2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    DNA polymerase (POL) λ plays an important role during DNA repair and DNA nonhomologous recom-bination processes. A novel POL λ variant was cloned from a human liver cDNA library and named POL λ2 (GenBank Accession No. AY302442). POL λ2 has 2206 base pairs in length with an open reading frame of 1452 base pairs encoding a 482-amino-acids protein. Bioinformatics analysis reveals that POL λ2 spans 7.9 kb on human chromosome 10q24 and is composed of 8 exons and 7 introns. It has the specific domain of DNA polymerase X family-POL Xc at the C-terminus and BRCT domain at the N-terminus. POL λ2 was localized predominantly in nucleus in transfected L0-2 cells. It was expressed abundantly in liver and testis, weakly in ovary, and undetectably in other tested human tissues. In comparison with the expression ratio between POL λ and POL λ2 in normal liver tissues and hepato-cellular carcinoma (HCC) adjacent tissues, the ratio was aberrant in 80% of those 15 HCC specimens examined due to the up-regulated expression of POL λ. This abnormality might be involved in hepato-carcinogenesis. The recombinant POL λ2 with His-tag was expressed as a soluble active protein in E. coli BL21 (DE3)CONDON Plus and purified by Ni-NTA resin and then desalted by Superdex-75 chro-matography in an FPLC system. The analysis using isotope α-32P-dCTP incorporation in vitro showed that the purified recombinant POL λ2 exhibited DNA polymerase activity.

  3. Putative DNA-dependent RNA polymerase in Mitochondrial Plasmid of Paramecium caudatum Stock GT704

    Directory of Open Access Journals (Sweden)

    Trina Ekawati Tallei

    2015-10-01

    Full Text Available Mitochondria of Paramecium caudatum stock GT704 has a set of four kinds of linear plasmids with sizes of 8.2, 4.1, 2.8 and 1.4 kb. The plasmids of 8.2 and 2.8 kb exist as dimers consisting of 4.1- and 1.4-kb monomers, respectively. The plasmid 2.8 kb, designated as pGT704-2.8, contains an open reading frame encodes for putative DNA-dependent RNA polymerase (RNAP. This study reveals that this RNAP belongs to superfamily of DNA/RNA polymerase and family of T7/T3 single chain RNA polymerase and those of mitochondrial plasmid of fungi belonging to Basidiomycota and Ascomycota. It is suggested that RNAP of pGT704-2.8 can perform transcription without transcription factor as promoter recognition. Given that only two motifs were found, it could not be ascertained whether this RNAP has a full function independently or integrated with mtDNA in carrying out its function.

  4. Single-molecule mechanics of protein-labelled DNA handles

    Directory of Open Access Journals (Sweden)

    Vivek S. Jadhav

    2016-01-01

    Full Text Available DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular

  5. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II.

    Science.gov (United States)

    Westover, Kenneth D; Bushnell, David A; Kornberg, Roger D

    2004-02-13

    The structure of an RNA polymerase II-transcribing complex has been determined in the posttranslocation state, with a vacancy at the growing end of the RNA-DNA hybrid helix. At the opposite end of the hybrid helix, the RNA separates from the template DNA. This separation of nucleic acid strands is brought about by interaction with a set of proteins loops in a strand/loop network. Formation of the network must occur in the transition from abortive initiation to promoter escape.

  6. On-Chip integration of sample pretreatment and Multiplex polymerase chain reaction (PCR) for DNA analysis

    DEFF Research Database (Denmark)

    Brivio, Monica; Snakenborg, Detlef; Søgaard, E.

    2008-01-01

    In this paper we present a modular lab-on-a-chip system for integrated sample pre-treatment (PT) by magnetophoresis and DNA amplification by polymerase chain reaction (PCR). It consists of a polymer-based microfluidic chip mounted on a custom-made thermocycler (Figure 1) and includes a simple...... and efficient method for switching the liquid flow between the PT and PCR chamber. Purification of human genomic DNA from EDTA-treated blood and multiplex PCR were successfully carried out on-chip using the developed lab-on-a-chip system....

  7. A novel molecular beacon-based method for isothermal detection of sequence-specific DNA via T7 RNA polymerase-aided target regeneration.

    Science.gov (United States)

    Yin, Bin-Cheng; Wu, Shan; Ma, Jin-Liang; Ye, Bang-Ce

    2015-06-15

    Developing molecular beacon (MB)-based method for DNA detection has been of great interest to many researchers because of its intrinsic advantages of simplicity, rapidity, and specificity. In this work, we have developed a novel MB-based method for isothermal detection of sequence-specific DNA via T7 RNA polymerase-aided target regeneration strategy. The proposed method involves three primary processes of target-mediated ligation by T4 DNA ligase, transcription reaction by T7 RNA polymerase, and MB switch for signal output. Upon the hybridization with DNA target, a rationally designed MB and a pair of primers encoded with T7 promoter sequence were ligated via the formation of a phosphodiester bond by T4 DNA ligase. The resultant joint fragment acted as template to initiate T7 RNA polymerase-mediated transcription reaction. Correspondingly, a great amount of RNA strands complementary to MB and partial primers were transcribed to initiate new cyclic reactions of MB switch, ligation, and transcription. With such signal amplification strategy of the regeneration of target-like RNA fragments, our proposed assay achieved a detection limit as low as ∼10 pM, which was ∼3 orders of magnitude lower than the traditional MB-based method with a recognition mechanism in 1:1 stoichiometric ratio between MB and target molecule. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    Science.gov (United States)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  9. DNA polymerase zeta is required for proliferation of normal mammalian cells.

    Science.gov (United States)

    Lange, Sabine S; Wittschieben, John P; Wood, Richard D

    2012-05-01

    Unique among translesion synthesis (TLS) DNA polymerases, pol ζ is essential during embryogenesis. To determine whether pol ζ is necessary for proliferation of normal cells, primary mouse fibroblasts were established in which Rev3L could be conditionally inactivated by Cre recombinase. Cells were grown in 2% O(2) to prevent oxidative stress-induced senescence. Cells rapidly became senescent or apoptotic and ceased growth within 3-4 population doublings. Within one population doubling following Rev3L deletion, DNA double-strand breaks and chromatid aberrations were found in 30-50% of cells. These breaks were replication dependent, and found in G1 and G2 phase cells. Double-strand breaks were reduced when cells were treated with the reactive oxygen species scavenger N-acetyl-cysteine, but this did not rescue the cell proliferation defect, indicating that several classes of endogenously formed DNA lesions require Rev3L for tolerance or repair. T-antigen immortalization of cells allowed cell growth. In summary, even in the absence of external challenges to DNA, pol ζ is essential for preventing replication-dependent DNA breaks in every division of normal mammalian cells. Loss of pol ζ in slowly proliferating mouse cells in vivo may allow accumulation of chromosomal aberrations that could lead to tumorigenesis. Pol ζ is unique amongst TLS polymerases for its essential role in cell proliferation.

  10. Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II.

    Science.gov (United States)

    Amegadzie, B Y; Ahn, B Y; Moss, B

    1992-05-01

    A previously unrecognized 7-kDa polypeptide copurified with the DNA-dependent RNA polymerase of vaccinia virus virions. Internal amino acid sequences of the small protein matched a viral genomic open reading frame of 63 codons. Antipeptide antiserum was used to confirm the specific and complete association of the 7-kDa protein with RNA polymerase. The amino acid sequence predicted from the viral gene, named rpo7, was 23% identical to that of the smallest subunit of Saccharomyces cerevisiae RNA polymerase II, and a metal-binding motif, Cys-X-X-Cys-Gly, was located at precisely the same location near the N terminus in the two proteins. RNA analyses demonstrated early transcriptional initiation and termination signals in the rpo7 gene sequence. The viral RNA polymerase subunit was synthesized during the early phase of infection and continued to accumulate during the late phase.

  11. N-Aroyl Indole Thiobarbituric Acids as Inhibitors of DNA Repair and Replication Stress Response Polymerases

    Science.gov (United States)

    Coggins, Grace E.; Maddukuri, Leena; Penthala, Narsima R.; Hartman, Jessica H.; Eddy, Sarah; Ketkar, Amit; Crooks, Peter A.; Eoff, Robert L.

    2013-01-01

    Using a robust and quantitative assay, we have identified a novel class of DNA polymerase inhibitors that exhibits some specificity against an enzyme involved in resistance to anti-cancer drugs, namely human DNA polymerase eta (hpol η). In our initial screen, we identified the indole thiobarbituric acid (ITBA) derivative 5-((1-(2-bromobenzoyl)-5-chloro-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (ITBA-12) as an inhibitor of the Y-family DNA member hpol η, an enzyme that has been associated with increased resistance to cisplatin and doxorubicin treatments. An additional seven DNA polymerases from different sub-families were tested for inhibition by ITBA-12. Hpol η was the most potently inhibited enzyme (30 ± 3 μM), with hpol β, hpol γ and hpol κ exhibiting comparable but higher IC50 values of 41 ± 24 μM, 49 ± 6 μM and 59 ± 11 μM, respectively. The other polymerases tested had IC50 values closer to 80 μM. Steady-state kinetic analysis was used to investigate the mechanism of polymerase inhibition by ITBA-12. Based on changes in the Michaelis constant, it was determined that ITBA-12 acts as an allosteric (or partial) competitive inhibitor of dNTP binding. The parent ITBA scaffold was modified to produce 20 derivatives and establish structure-activity relationships by testing for inhibition of hpol η. Two compounds with N-naphthoyl Ar-substituents, ITBA-16 and ITBA-19, were both found to have improved potency against hpol η with IC50 values of 16 ± 3 μM and 17 ± 3 μM, respectively. Moreover, the specificity of ITBA-16 was improved relative to ITBA-12. The presence of a chloro substituent at position 5 on the indole ring appears to be crucial for effective inhibition of hpol η, with the indole N-1-naphthoyl and N-2-naphthoyl analogs being the most potent inhibitors of hpol η. These results provide a framework from which second-generation ITBA derivatives may be developed against specialized polymerases that are involved in

  12. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis.

    Science.gov (United States)

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J; Xing, Chao; Wang, Richard C; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R; Burstein, Ezra

    2016-05-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.

  13. Single Molecule Screening of Disease DNA Without Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Young [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA

  14. Visualizing DNA Replication at the Single-Molecule Level

    NARCIS (Netherlands)

    Tanner, Nathan A.

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  15. VISUALIZING DNA REPLICATION AT THE SINGLE-MOLECULE LEVEL

    NARCIS (Netherlands)

    Tanner, Nathan A.; van Oijen, Antoine M.; Walter, NG

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  16. DNA replication at the single-molecule level

    NARCIS (Netherlands)

    Stratmann, S.A.; Oijen, A.M. van

    2014-01-01

    A cell can be thought of as a highly sophisticated micro factory: in a pool of billions of molecules – metabolites, structural proteins, enzymes, oligonucleotides – multi-subunit complexes assemble to perform a large number of basic cellular tasks, such as DNA replication, RNA/protein synthesis or i

  17. DNA replication at the single-molecule level

    NARCIS (Netherlands)

    Stratmann, S A; van Oijen, A M

    2014-01-01

    A cell can be thought of as a highly sophisticated micro factory: in a pool of billions of molecules - metabolites, structural proteins, enzymes, oligonucleotides - multi-subunit complexes assemble to perform a large number of basic cellular tasks, such as DNA replication, RNA/protein synthesis or i

  18. VISUALIZING DNA REPLICATION AT THE SINGLE-MOLECULE LEVEL

    NARCIS (Netherlands)

    Tanner, Nathan A.; van Oijen, Antoine M.; Walter, NG

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  19. Visualizing DNA Replication at the Single-Molecule Level

    NARCIS (Netherlands)

    Tanner, Nathan A.

    2010-01-01

    Recent advances in single-molecule methodology have made it possible to study the dynamic behavior of individual enzymes and their interactions with other proteins in multiprotein complexes. Here, we describe newly developed methods to study the coordination of DNA unwinding, priming, and synthesis

  20. Assessing the contribution of the herpes simplex virus DNA polymerase to spontaneous mutations

    Directory of Open Access Journals (Sweden)

    Leary Jeffry J

    2002-05-01

    Full Text Available Abstract Background The thymidine kinase (tk mutagenesis assay is often utilized to determine the frequency of herpes simplex virus (HSV replication-mediated mutations. Using this assay, clinical and laboratory HSV-2 isolates were shown to have a 10- to 80-fold higher frequency of spontaneous mutations compared to HSV-1. Methods A panel of HSV-1 and HSV-2, along with polymerase-recombinant viruses expressing type 2 polymerase (Pol within a type 1 genome, were evaluated using the tk and non-HSV DNA mutagenesis assays to measure HSV replication-dependent errors and determine whether the higher mutation frequency of HSV-2 is a distinct property of type 2 polymerases. Results Although HSV-2 have mutation frequencies higher than HSV-1 in the tk assay, these errors are assay-specific. In fact, wild type HSV-1 and the antimutator HSV-1 PAAr5 exhibited a 2–4 fold higher frequency than HSV-2 in the non-HSV DNA mutatagenesis assay. Furthermore, regardless of assay, HSV-1 recombinants expressing HSV-2 Pol had error rates similar to HSV-1, whereas the high mutator virus, HSV-2 6757, consistently showed signficant errors. Additionally, plasmid DNA containing the HSV-2 tk gene, but not type 1 tk or LacZ DNA, was shown to form an anisomorphic DNA stucture. Conclusions This study suggests that the Pol is not solely responsible for the virus-type specific differences in mutation frequency. Accordingly, it is possible that (a mutations may be modulated by other viral polypeptides cooperating with Pol, and (b the localized secondary structure of the viral genome may partially account for the apparently enhanced error frequency of HSV-2.

  1. BORRELIA BURGDORFERI DNA IN BIOLOGICAL SAMPLES FROM PATIENTS WITH SARCOIDOSIS USING THE POLYMERASE CHAIN REACTION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    连伟; 罗慰慈

    1995-01-01

    Polymerase chain reaction (PCR) was used to detect the presence of Borretia burgdoferi DNA in biological samples from patients with sarcoidcsis. The target DNA sequence was of chromosomal origin. The amplified DNA sequence was analyzed by agarose gel electrophoresis, PAGE with silver staining, and the identity of amplified DNA was confirmed by restriction enzyme cleavage and DNA-DNA hybridlzation with a 32P-labelled probe. The assay was sensitive to fewer than two copies of B. burgdor feri genome, even in the presence of a 104-fold excess of human eukaryotic DNA, and was also specific to different B. burgdorferl strains tested. Sera seroiogieally positive to B. burgdorferi (n=26), broncbemlveolar lavage fluid and supematant of BALF (n=26) and peripheral blood (n=9) from sarcoidosis patients were tested. The positive rate was low (4/26, 2/26, and 0/9, respectively). It was considered that DNA from B. bur gdor feri may be identified in a minority of patients with s,arcoidosis, and it may play a pathogenetic rote in such cases. More studies need to be done before advancing the hypothesis of an etiologic role of B. burgdorferi in sarcoidosis.

  2. Development of a real time polymerase chain reaction for quantitation of Schistosoma mansoni DNA

    Directory of Open Access Journals (Sweden)

    Ana Lisa do Vale Gomes

    2006-10-01

    Full Text Available This report describes the development of a SYBR Green I based real time polymerase chain reaction (PCR protocol for detection on the ABI Prism 7000 instrument. Primers targeting the gene encoding the SSU rRNA were designed to amplify with high specificity DNA from Schistosoma mansoni, in a real time quantitative PCR system. The limit of detection of parasite DNA for the system was 10 fg of purified genomic DNA, that means less than the equivalent to one parasite cell (genome ~580 fg DNA. The efficiency was 0.99 and the correlation coefficient (R² was 0.97. When different copy numbers of the target amplicon were used as standards, the assay could detect at least 10 copies of the specific target. The primers used were designed to amplify a 106 bp DNA fragment (Tm 83ºC. The assay was highly specific for S. mansoni, and did not recognize DNA from closely related non-schistosome trematodes. The real time PCR allowed for accurate quantification of S. mansoni DNA and no time-consuming post-PCR detection of amplification products by gel electrophoresis was required. The assay is potentially able to quantify S. mansoni DNA (and indirectly parasite burden in a number of samples, such as snail tissue, serum and feces from patients, and cercaria infested water. Thus, these PCR protocols have potential to be used as tools for monitoring of schistosome transmission and quantitative diagnosis of human infection.

  3. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    Science.gov (United States)

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  4. Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions.

    Directory of Open Access Journals (Sweden)

    Sung-Kun Kim

    Full Text Available Modified nucleosides have the potential to inhibit DNA polymerases for the treatment of viral infections and cancer. With the hope of developing potent drug candidates by the modification of the 2',4'-position of the ribose with the inclusion of a bridge, efforts were focused on the inhibition of Taq DNA polymerase using quantitative real time PCR, and the results revealed the significant inhibitory effects of 2',4'-bridged thymidine nucleoside on the polymerase. Study on the mode of inhibition revealed the competitive mechanism with which the 2',4'-bridged thymidine operates. With a Ki value of 9.7 ± 1.1 μM, the 2',4'-bridged thymidine proved to be a very promising inhibitor. Additionally, docking analysis showed that all the nucleosides including 2',4'-bridged thymidine were able to dock in the active site, indicating that the substrate analogs reflect a structural complementarity to the enzyme active site. The analysis also provided evidence that Asp610 was a key binding site for 2',4'-bridged thymidine. Molecular dynamics (MD simulations were performed to further understand the conformational variations of the binding. The root-mean-square deviation (RMSD values for the peptide backbone of the enzyme and the nitrogenous base of the inhibitor stabilized within 0.8 and 0.2 ns, respectively. Furthermore, the MD analysis indicates substantial conformational change in the ligand (inhibitor as the nitrogenous base rotated anticlockwise with respect to the sugar moiety, complemented by the formation of several new hydrogen bonds where Arg587 served as a pivot axis for binding formation. In conclusion, the active site inhibition of Taq DNA polymerase by 2',4'-bridged thymidine suggests the potential of bridged nucleosides as drug candidates.

  5. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    Science.gov (United States)

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  6. Down syndrome as a model of DNA polymerase beta haploinsufficiency and accelerated aging.

    Science.gov (United States)

    Patterson, David; Cabelof, Diane C

    2012-04-01

    Down syndrome is a condition of intellectual disability characterized by accelerated aging. As with other aging syndromes, evidence accumulated over the past several decades points to a DNA repair defect inherent in Down syndrome. This evidence has led us to suggest that Down syndrome results in reduced DNA base excision repair (BER) capacity, and that this contributes to the genomic instability and the aging phenotype of Down syndrome. We propose important roles for microRNA and/or folate metabolism and oxidative stress in the dysregulation of BER in Down syndrome. Further, we suggest these pathways are involved in the leukemogenesis of Down syndrome. We have reviewed the role of BER in the processing of oxidative stress, and the impact of folate depletion on BER capacity. Further, we have reviewed the role that loss of BER, specifically DNA polymerase beta, plays in accelerating the rate of aging. Like that seen in the DNA polymerase beta heterozygous mouse, the aging phenotype of Down syndrome is subtle, unlike the aging phenotypes seen in the classical progeroid syndromes and mouse models of aging. As such, Down syndrome may provide a model for elucidating some of the basic mechanisms of aging.

  7. RNAs nonspecifically inhibit RNA polymerase II by preventing binding to the DNA template.

    Science.gov (United States)

    Pai, Dave A; Kaplan, Craig D; Kweon, Hye Kyong; Murakami, Kenji; Andrews, Philip C; Engelke, David R

    2014-05-01

    Many RNAs are known to act as regulators of transcription in eukaryotes, including certain small RNAs that directly inhibit RNA polymerases both in prokaryotes and eukaryotes. We have examined the potential for a variety of RNAs to directly inhibit transcription by yeast RNA polymerase II (Pol II) and find that unstructured RNAs are potent inhibitors of purified yeast Pol II. Inhibition by RNA is achieved by blocking binding of the DNA template and requires binding of the RNA to Pol II prior to open complex formation. RNA is not able to displace a DNA template that is already stably bound to Pol II, nor can RNA inhibit elongating Pol II. Unstructured RNAs are more potent inhibitors than highly structured RNAs and can also block specific transcription initiation in the presence of basal transcription factors. Crosslinking studies with ultraviolet light show that unstructured RNA is most closely associated with the two large subunits of Pol II that comprise the template binding cleft, but the RNA has contacts in a basic residue channel behind the back wall of the active site. These results are distinct from previous observations of specific inhibition by small, structured RNAs in that they demonstrate a sensitivity of the holoenzyme to inhibition by unstructured RNA products that bind to a surface outside the DNA cleft. These results are discussed in terms of the need to prevent inhibition by RNAs, either though sequestration of nascent RNA or preemptive interaction of Pol II with the DNA template.

  8. Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis.

    Science.gov (United States)

    Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J

    2016-03-29

    In eukaryotes, DNA polymerase δ (pol δ) is responsible for replicating the lagging strand template and anchors to the proliferating cell nuclear antigen (PCNA) sliding clamp to form a holoenzyme. The stability of this complex is integral to every aspect of lagging strand replication. Most of our understanding comes from Saccharomyces cerevisae where the extreme stability of the pol δ holoenzyme ensures that every nucleobase within an Okazaki fragment is faithfully duplicated before dissociation but also necessitates an active displacement mechanism for polymerase recycling and exchange. However, the stability of the human pol δ holoenzyme is unknown. We designed unique kinetic assays to analyze the processivity and stability of the pol δ holoenzyme. Surprisingly, the results indicate that human pol δ maintains a loose association with PCNA while replicating DNA. Such behavior has profound implications on Okazaki fragment synthesis in humans as it limits the processivity of pol δ on undamaged DNA and promotes the rapid dissociation of pol δ from PCNA on stalling at a DNA lesion.

  9. Recursive construction and error correction of DNA molecules and libraries from synthetic and natural DNA.

    Science.gov (United States)

    Yehezkel, Tuval Ben; Linshiz, Gregory; Kaplan, Shai; Gronau, Ilan; Ravid, Sivan; Adar, Rivka; Shapiro, Ehud

    2011-01-01

    Making error-free, custom DNA assemblies from potentially faulty building blocks is a fundamental challenge in synthetic biology. Here, we show how recursion can be used to address this challenge using a recursive procedure that constructs error-free DNA molecules and their libraries from error-prone synthetic oligonucleotides and naturally existing DNA. Specifically, we describe how divide and conquer (D&C), the quintessential recursive problem-solving technique, is applied in silico to divide target DNA sequences into overlapping, albeit error prone, oligonucleotides, and how recursive construction is applied in vitro to combine them to form error-prone DNA molecules. To correct DNA sequence errors, error-free fragments of these molecules are then identified, extracted, and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error-free target molecule is formed. The method allows combining synthetic and natural DNA fragments into error-free designer DNA libraries, thus providing a foundation for the design and construction of complex synthetic DNA assemblies.

  10. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis.

    Science.gov (United States)

    Kim, Jinsook; Song, Insil; Jo, Ara; Shin, Joo-Ho; Cho, Hana; Eoff, Robert L; Guengerich, F Peter; Choi, Jeong-Yun

    2014-10-20

    DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N(2)-ethyl(Et)G, O(6)-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1-445) proteins and DNA templates containing a G, N(2)-EtG, O(6)-MeG, 8-oxoG, or abasic site. The Δ1-25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg(2+) (but not with Mn(2+)), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg(2+)). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg(2+) or Mn(2+), except for that opposite N(2)-EtG with Mn(2+) (showing a 9-fold increase for dCTP incorporation). The Δ1-25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg(2+)), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1-25 variant, was ∼7-fold stronger with 0.15 mM Mn(2+) than with Mg(2+). The results indicate that the R96G variation severely impairs most of the Mg(2+)- and Mn(2+)-dependent TLS abilities of pol ι, whereas the Δ1-25 variation selectively and substantially enhances the Mg(2+)-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences

  11. Crystal structure of the shrimp proliferating cell nuclear antigen: structural complementarity with WSSV DNA polymerase PIP-box.

    Directory of Open Access Journals (Sweden)

    Jesus S Carrasco-Miranda

    Full Text Available DNA replication requires processivity factors that allow replicative DNA polymerases to extend long stretches of DNA. Some DNA viruses encode their own replicative DNA polymerase, such as the white spot syndrome virus (WSSV that infects decapod crustaceans but still require host replication accessory factors. We have determined by X-ray diffraction the three-dimensional structure of the Pacific white leg shrimp Litopenaeus vannamei Proliferating Cell Nuclear Antigen (LvPCNA. This protein is a member of the sliding clamp family of proteins, that binds DNA replication and DNA repair proteins through a motif called PIP-box (PCNA-Interacting Protein. The crystal structure of LvPCNA was refined to a resolution of 3 Å, and allowed us to determine the trimeric protein assembly and details of the interactions between PCNA and the DNA. To address the possible interaction between LvPCNA and the viral DNA polymerase, we docked a theoretical model of a PIP-box peptide from the WSSV DNA polymerase within LvPCNA crystal structure. The theoretical model depicts a feasible model of interaction between both proteins. The crystal structure of shrimp PCNA allows us to further understand the mechanisms of DNA replication processivity factors in non-model systems.

  12. Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice.

    Science.gov (United States)

    Simon, Carola; Herath, Judith; Rockstroh, Stephanie; Daniel, Rolf

    2009-05-01

    Small-insert and large-insert metagenomic libraries were constructed from glacial ice of the Northern Schneeferner, which is located on the Zugspitzplatt in Germany. Subsequently, these libraries were screened for the presence of DNA polymerase-encoding genes by complementation of an Escherichia coli polA mutant. Nine novel genes encoding complete DNA polymerase I proteins or domains typical of these proteins were recovered.

  13. Rapid Identification of Genes Encoding DNA Polymerases by Function-Based Screening of Metagenomic Libraries Derived from Glacial Ice▿

    OpenAIRE

    2009-01-01

    Small-insert and large-insert metagenomic libraries were constructed from glacial ice of the Northern Schneeferner, which is located on the Zugspitzplatt in Germany. Subsequently, these libraries were screened for the presence of DNA polymerase-encoding genes by complementation of an Escherichia coli polA mutant. Nine novel genes encoding complete DNA polymerase I proteins or domains typical of these proteins were recovered.

  14. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance*

    OpenAIRE

    Schermerhorn, Kelly M.; Gardner, Andrew F.

    2015-01-01

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, k pol and Kd , for corre...

  15. Treponema pallidum and Haemophilus ducreyi DNA detection by A Multi-Nested Polymerase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    郑和平; SylviaBruisten; 何玉山; 黄进梅; 吴兴中

    2004-01-01

    Objectives: To develop a multi-nested polymerase chain reaction in an assay to detect early Treponema pallidum and Haemophilus ducreyi DNA in the swabs of genital ulcers. Methods: Four pairs of outer and inner primers, specific to the basic membrane protein gene of Treponema pallidum and to the 16s rRNA gene of H ducreyi were synthesized. The multi-nested PCR was developed and applied to detect Treponema pallidum and Haemophilus dicreyi in clinical swabs. Result: The two samples of standard strains of Haemophilus ducreyi and one Treponema pallidum were amplified and showed 309-bp rRNA gene of Haemophilus ducreyi and 506-bp DNA of Treponema palidum, respectively. Out of 51 samples of genital ulcer detected, 29 showed Treponemapallidum positive product and noHaemophilus ducreyi DNA was found. Conclusion: The multi-nested PCR for Treponema pallidum and Haemophilus ducreyi could be useful for early detection and distinguishing diagnosis between syphilis and chancroid.

  16. Arabidopsis DNA polymerase lambda mutant is mildly sensitive to DNA double strand breaks but defective in integration ofa transgene.

    Directory of Open Access Journals (Sweden)

    Tomoyuki eFurukawa

    2015-05-01

    Full Text Available The DNA double-strand break (DSB is a critical type of damage, and can be induced by both endogenous sources (e.g. errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork and exogenous sources (e.g. ionizing radiation or radiomimetic chemicals. Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ, much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1 displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2, both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway.

  17. Differential diagnosis of Taenia saginata and Taenia solium infections: from DNA probes to polymerase chain reaction.

    Science.gov (United States)

    González, Luis Miguel; Montero, Estrella; Sciutto, Edda; Harrison, Leslie J S; Parkhouse, R Michael E; Garate, Teresa

    2002-04-01

    The objective of this work was the rapid and easy differential diagnosis of Taenia saginata and T. solium. First, a T. saginata size-selected genomic deoxyribonucleic acid (gDNA) library was constructed in the vector lambda gt10 using the 2-4 kb fraction from the parasite DNA digested with EcoR1, under 'star' conditions. After differential screening of the library and hybridization analysis with DNA from T. saginata, T. solium, T. taeniaeformis, T. crassiceps, and Echinococcus granulosus (bovine, porcine, and human), 2 recombinant phages were selected. They were designated HDP1 and HDP2. HDP1 reacted specifically with T. saginata DNA, and HDP2 recognized DNA from both T. saginata and T. solium. The 2 DNA probes were then sequenced and further characterized. HDP1 was a repetitive sequence with a 53 bp monomeric unit repeated 24 times in direct tandem along the 1272 bp fragment, while the 3954 bp HDP2 was not a repetitive sequence. Using the sequencing data, oligonucleotides were designed and used in a polymerase chain reaction (PCR). The 2 selected oligonucleotides from probe HDP1 (PTs4F1 and PTs4R1) specifically amplified gDNA from T. saginata, but not T. solium or other related cestodes, with a sensitivity of < 10 pg of T. saginata gDNA, about the quantity of DNA in one taeniid egg. The 3 oligonucleotides selected from the HDP2 sequence (PTs7S35F1, PTs7S35F2, and PTs7S35R1) allowed the differential amplification of gDNA from T. saginata, T. solium and E. granulosus in a multiplex PCR, again with a sensitivity of < 10 pg. These diagnostic tools have immediate application in the differential diagnosis of T. solium and T. saginata in humans and in the diagnosis of dubious cysts in the slaughterhouse. We also hope to apply them to epidemiological surveys of, for example, soil and water in endemic areas.

  18. Inhibition of DNA glycosylases via small molecule purine analogs.

    Directory of Open Access Journals (Sweden)

    Aaron C Jacobs

    Full Text Available Following the formation of oxidatively-induced DNA damage, several DNA glycosylases are required to initiate repair of the base lesions that are formed. Recently, NEIL1 and other DNA glycosylases, including OGG1 and NTH1 were identified as potential targets in combination chemotherapeutic strategies. The potential therapeutic benefit for the inhibition of DNA glycosylases was validated by demonstrating synthetic lethality with drugs that are commonly used to limit DNA replication through dNTP pool depletion via inhibition of thymidylate synthetase and dihydrofolate reductase. Additionally, NEIL1-associated synthetic lethality has been achieved in combination with Fanconi anemia, group G. As a prelude to the development of strategies to exploit the potential benefits of DNA glycosylase inhibition, it was necessary to develop a reliable high-throughput screening protocol for this class of enzymes. Using NEIL1 as the proof-of-principle glycosylase, a fluorescence-based assay was developed that utilizes incision of site-specifically modified oligodeoxynucleotides to detect enzymatic activity. This assay was miniaturized to a 1536-well format and used to screen small molecule libraries for inhibitors of the combined glycosylase/AP lyase activities. Among the top hits of these screens were several purine analogs, whose postulated presence in the active site of NEIL1 was consistent with the paradigm of NEIL1 recognition and excision of damaged purines. Although a subset of these small molecules could inhibit other DNA glycosylases that excise oxidatively-induced DNA adducts, they could not inhibit a pyrimidine dimer-specific glycosylase.

  19. Direct observation of enzymes replicating DNA using a single-molecule DNA stretching assay

    NARCIS (Netherlands)

    Kulczyk, A.W.; Tanner, N.A.; Loparo, J.J.; Richardson, C.C.; Oijen, A.M. van

    2010-01-01

    We describe a method for observing real time replication of individual DNA molecules mediated by proteins of the bacteriophage replication system. Linearized lambda DNA is modified to have a biotin on the end of one strand, and a digoxigenin moiety on the other end of the same strand. The biotinylat

  20. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase

    Directory of Open Access Journals (Sweden)

    Yusuke Takezawa

    2016-06-01

    Full Text Available A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT, a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H–CuII–H. In this study, we investigated the effects of a metal cofactor, MgII ion, on the TdT-catalyzed polymerization of H nucleotides. At a high MgII concentration (10 mM, the reaction was halted after several H nucleotides were appended. In contrast, at lower MgII concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the MgII concentration. In the presence of excess MgII ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with MgII ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands.

  1. Torsional stress in DNA limits collaboration among reverse gyrase molecules.

    Science.gov (United States)

    Ogawa, Taisaku; Sutoh, Kazuo; Kikuchi, Akihiko; Kinosita, Kazuhiko

    2016-04-01

    Reverse gyrase is an enzyme that can overwind (introduce positive supercoils into) DNA using the energy obtained from ATP hydrolysis. The enzyme is found in hyperthermophiles, and the overwinding reaction generally requires a temperature above 70 °C. In a previous study using microscopy, we have shown that 30 consecutive mismatched base pairs (a bubble) in DNA serve as a well-defined substrate site for reverse gyrase, warranting the processive overwinding activity down to 50 °C. Here, we inquire how multiple reverse gyrase molecules may collaborate with each other in overwinding one DNA molecule. We introduced one, two, or four bubbles in a linear DNA that tethered a magnetic bead to a coverslip surface. At 40-71 °C in the presence of reverse gyrase, the bead rotated clockwise as viewed from above, to relax the DNA twisted by reverse gyrase. Dependence on the enzyme concentration indicated that each bubble binds reverse gyrase tightly (dissociation constant 5 min. Rotation with two bubbles was significantly faster compared with one bubble, indicating that overwinding actions are basically additive, but four bubbles did not show further acceleration except at 40 °C where the activity was very low. The apparent saturation is due to the hydrodynamic friction against the rotating bead, as confirmed by increasing the medium viscosity. When torsional stress in the DNA, determined by the friction, approaches ~ 7 pN·nm (at 71 °C), the overwinding activity of reverse gyrase drops sharply. Multiple molecules of reverse gyrase collaborate additively within this limit.

  2. DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid

    NARCIS (Netherlands)

    A. Copani; J.J.M. Hoozemans; F. Caraci; M. Calafiore; E.S. van Haastert; R. Veerhuis; A.J.M. Rozemuller; E. Aronica; M.A. Sortino; F. Nicoletti

    2006-01-01

    Cultured neurons exposed to synthetic beta-amyloid (A beta) fragments reenter the cell cycle and initiate a pathway of DNA replication that involves the repair enzyme DNA polymerase-beta (DNA pol-beta) before undergoing apoptotic death. In this study, by performing coimmunoprecipitation experiments

  3. A germline polymorphism of DNA polymerase beta induces genomic instability and cellular transformation.

    Directory of Open Access Journals (Sweden)

    Jennifer Yamtich

    Full Text Available Several germline single nucleotide polymorphisms (SNPs have been identified in the POLB gene, but little is known about their cellular and biochemical impact. DNA Polymerase β (Pol β, encoded by the POLB gene, is the main gap-filling polymerase involved in base excision repair (BER, a pathway that protects the genome from the consequences of oxidative DNA damage. In this study we tested the hypothesis that expression of the POLB germline coding SNP (rs3136797 in mammalian cells could induce a cancerous phenotype. Expression of this SNP in both human and mouse cells induced double-strand breaks, chromosomal aberrations, and cellular transformation. Following treatment with an alkylating agent, cells expressing this coding SNP accumulated BER intermediate substrates, including single-strand and double-strand breaks. The rs3136797 SNP encodes the P242R variant Pol β protein and biochemical analysis showed that P242R protein had a slower catalytic rate than WT, although P242R binds DNA similarly to WT. Our results suggest that people who carry the rs3136797 germline SNP may be at an increased risk for cancer susceptibility.

  4. Characterization of a Y-Family DNA Polymerase eta from the Eukaryotic Thermophile Alvinella pompejana

    Science.gov (United States)

    Kashiwagi, Sayo; Kuraoka, Isao; Fujiwara, Yoshie; Hitomi, Kenichi; Cheng, Quen J.; Fuss, Jill O.; Shin, David S.; Masutani, Chikahide; Tainer, John A.; Hanaoka, Fumio; Iwai, Shigenori

    2010-01-01

    Human DNA polymerase η (HsPolη) plays an important role in translesion synthesis (TLS), which allows for replication past DNA damage such as UV-induced cis-syn cyclobutane pyrimidine dimers (CPDs). Here, we characterized ApPolη from the thermophilic worm Alvinella pompejana, which inhabits deep-sea hydrothermal vent chimneys. ApPolη shares sequence homology with HsPolη and contains domains for binding ubiquitin and proliferating cell nuclear antigen. Sun-induced UV does not penetrate Alvinella's environment; however, this novel DNA polymerase catalyzed efficient and accurate TLS past CPD, as well as 7,8-dihydro-8-oxoguanine and isomers of thymine glycol induced by reactive oxygen species. In addition, we found that ApPolη is more thermostable than HsPolη, as expected from its habitat temperature. Moreover, the activity of this enzyme was retained in the presence of a higher concentration of organic solvents. Therefore, ApPolη provides a robust, human-like Polη that is more active after exposure to high temperatures and organic solvents. PMID:20936172

  5. A DNA polymerase mutation that suppresses the segregation bias of an ARS plasmid in Saccharomyces cerevisiae.

    Science.gov (United States)

    Houtteman, S W; Elder, R T

    1993-03-01

    Yeast autonomously replicating sequence (ARS) plasmids exhibit an unusual segregation pattern during mitosis. While the nucleus divides equally into mother and daughter cells, all copies of the ARS plasmid will often remain in the mother cell. A screen was designed to isolate mutations that suppress this segregation bias. A plasmid with a weak ARS (wARS) that displayed an extremely high segregation bias was constructed. When cells were grown under selection for the wARS plasmid, the resulting colonies grew slowly and had abnormal morphology. A spontaneous recessive mutation that restored normal colony morphology was identified. This mutation suppressed plasmid segregation bias, as indicated by the increased stability of the wARS plasmid in the mutant cells even though the plasmid was present at a lower copy number. An ARS1 plasmid was also more stable in mutant cells than in wild-type cells. The wild-type allele for this mutant gene was cloned and identified as POL delta (CDC2). This gene encodes DNA polymerase delta, which is essential for DNA replication. These results indicate that DNA polymerase delta plays some role in causing the segregation bias of ARS plasmids.

  6. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates.

    Science.gov (United States)

    Güixens-Gallardo, Pedro; Hocek, Michal; Perlíková, Pavla

    2016-01-15

    A simple and elegant method for inhibition of non-templated nucleotide addition by DNA polymerases and for following DNA 3'-heterogeneity in enzymatic DNA synthesis by primer extension (PEX) is described. When template bearing ortho-twisted intercalating nucleic acid (ortho-TINA) at the 5'-end is used, non-templated nucleotide addition is reduced in both the A- and B-family DNA polymerases (KOD XL, KOD (exo-), Bst 2.0, Therminator, Deep Vent (exo-) and Taq). Formation of a single oligonucleotide product was observed with ortho-TINA modified template and KOD XL, KOD (exo-), Bst 2.0, Deep Vent (exo-) and Taq DNA polymerases. This approach can be applied to the synthesis of both unmodified and base-modified oligonucleotides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Human DNA polymerases catalyze lesion bypass across benzo[a]pyrene-derived DNA adduct clustered with an abasic site.

    Science.gov (United States)

    Starostenko, Lidia V; Rechkunova, Nadejda I; Lebedeva, Natalia A; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Lavrik, Olga I

    2014-12-01

    The combined action of oxidative stress and genotoxic polycyclic aromatic hydrocarbons derivatives can lead to cluster-type DNA damage that includes both a modified nucleotide and a bulky lesion. As an example, we investigated the possibility of repair of an AP site located opposite a minor groove-positioned (+)-trans-BPDE-dG or a base-displaced intercalated (+)-cis-BPDE-dG adduct (BP lesion) by a BER system. Oligonucleotides with single uracil residue in the certain position were annealed with complementary oligonucleotides bearing either a cis- or trans-BP adduct. Digestion with uracil DNA glycosylase was utilized to generate an AP site which was then hydrolyzed by APE1, and the resulting gap was processed by X-family DNA polymerases β (Polβ) and λ (Polλ), or Y-family polymerase ι (Polι). By varying reaction conditions, namely, Mg2+/Mn2+ replacement/combination and ionic strength decrease, we found that under certain conditions both Polβ and Polι can catalyze lesion bypass across both cis- and trans-BP adducts in the presence of physiological dNTP concentrations. Polβ and Polι catalyze gap filling trans-lesion synthesis in an error prone manner. By contrast, Polλ selectively introduced the correct dCTP opposite the modified dG in the case of cis-BP-dG adduct only, and did not bypass the stereoisomeric trans-adduct under any of the conditions examined. The results suggest that Polλ is a specialized polymerase that can process these kinds of lesions.

  8. Small molecule inhibitors of PCNA/PIP-box interaction suppress translesion DNA synthesis.

    Science.gov (United States)

    Actis, Marcelo; Inoue, Akira; Evison, Benjamin; Perry, Scott; Punchihewa, Chandanamali; Fujii, Naoaki

    2013-04-01

    Proliferating cell nuclear antigen (PCNA) is an essential component for DNA replication and DNA damage response. Numerous proteins interact with PCNA through their short sequence called the PIP-box to be promoted to their respective functions. PCNA supports translesion DNA synthesis (TLS) by interacting with TLS polymerases through PIP-box interaction. Previously, we found a novel small molecule inhibitor of the PCNA/PIP-box interaction, T2AA, which inhibits DNA replication in cells. In this study, we created T2AA analogues and characterized them extensively for TLS inhibition. Compounds that inhibited biochemical PCNA/PIP-box interaction at an IC50 <5 μM inhibited cellular DNA replication at 10 μM as measured by BrdU incorporation. In cells lacking nucleotide-excision repair activity, PCNA inhibitors inhibited reactivation of a reporter plasmid that was globally damaged by cisplatin, suggesting that the inhibitors blocked the TLS that allows replication of the plasmid. PCNA inhibitors increased γH2AX induction and cell viability reduction mediated by cisplatin. Taken together, these findings suggest that inhibitors of PCNA/PIP-box interaction could chemosensitize cells to cisplatin by inhibiting TLS.

  9. Pyrovanadolysis: a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate MN2plus and DNA Polymerase of Bacteriophage T7

    Energy Technology Data Exchange (ETDEWEB)

    B Akabayov; A Kulczyk; S Akabayov; C Thiele; L McLaughlin; B Beauchamp; C Richardson

    2011-12-31

    DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP{sub i}). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP{sub i}, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP{sub i} complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn{sup 2+}, larger than Mg{sup 2+}, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.

  10. Novel Cytomegalovirus UL54 DNA Polymerase Gene Mutations Selected In Vitro That Confer Brincidofovir Resistance

    Science.gov (United States)

    Ercolani, Ronald J.; Lanier, E. Randall

    2016-01-01

    Eight in vitro selection experiments under brincidofovir pressure elicited the known cytomegalovirus DNA polymerase amino acid substitutions N408K and V812L and the novel exonuclease domain substitutions D413Y, E303D, and E303G, which conferred ganciclovir and cidofovir resistance with 6- to 11-fold resistance to brincidofovir or 17-fold when E303G was combined with V812L. The new exonuclease domain I resistance mutations selected under brincidofovir pressure add to the single instance previously reported and show the expected patterns of cross-resistance. PMID:27044553

  11. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    OpenAIRE

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling le...

  12. Simple horizontal magnetic tweezers for micromanipulation of single DNA molecules and DNA-protein complexes.

    Science.gov (United States)

    McAndrew, Christopher P; Tyson, Christopher; Zischkau, Joseph; Mehl, Patrick; Tuma, Pamela L; Pegg, Ian L; Sarkar, Abhijit

    2016-01-01

    We report the development of a simple-to-implement magnetic force transducer that can apply a wide range of piconewton (pN) scale forces on single DNA molecules and DNA-protein complexes in the horizontal plane. The resulting low-noise force-extension data enable very high-resolution detection of changes in the DNA tether's extension: ~0.05 pN in force and DNA in near equilibrium conditions through the wide range of forces by ramping the force from low to high and back again, and observing minimal hysteresis in the molecule's force response. Using a calibration technique based on Stokes' drag law, we have confirmed our force measurements from DNA force-extension experiments obtained using the fluctuation-dissipation theorem applied to transverse fluctuations of the magnetic microsphere. We present data on the force-distance characteristics of a DNA molecule complexed with histones. The results illustrate how the tweezers can be used to study DNA binding proteins at the single molecule level.

  13. Identification of the first small-molecule inhibitor of the REV7 DNA repair protein interaction.

    Science.gov (United States)

    Actis, Marcelo L; Ambaye, Nigus D; Evison, Benjamin J; Shao, Youming; Vanarotti, Murugendra; Inoue, Akira; McDonald, Ezelle T; Kikuchi, Sotaro; Heath, Richard; Hara, Kodai; Hashimoto, Hiroshi; Fujii, Naoaki

    2016-09-15

    DNA interstrand crosslink (ICL) repair (ICLR) has been implicated in the resistance of cancer cells to ICL-inducing chemotherapeutic agents. Despite the clinical significance of ICL-inducing chemotherapy, few studies have focused on developing small-molecule inhibitors for ICLR. The mammalian DNA polymerase ζ, which comprises the catalytic subunit REV3L and the non-catalytic subunit REV7, is essential for ICLR. To identify small-molecule compounds that are mechanistically capable of inhibiting ICLR by targeting REV7, high-throughput screening and structure-activity relationship (SAR) analysis were performed. Compound 1 was identified as an inhibitor of the interaction of REV7 with the REV7-binding sequence of REV3L. Compound 7 (an optimized analog of compound 1) bound directly to REV7 in nuclear magnetic resonance analyses, and inhibited the reactivation of a reporter plasmid containing an ICL in between the promoter and reporter regions. The normalized clonogenic survival of HeLa cells treated with cisplatin and compound 7 was lower than that for cells treated with cisplatin only. These findings indicate that a small-molecule inhibitor of the REV7/REV3L interaction can chemosensitize cells by inhibiting ICLR.

  14. Hopping of a processivity factor on DNA revealed by single-molecule assays of diffusion

    NARCIS (Netherlands)

    Komazin-Meredith, Gloria; Mirchev, Rossen; Golan, David E.; Oijen, Antoine M. van; Coen, Donald M.; Richardson, Charles C.

    2008-01-01

    Many DNA-interacting proteins diffuse on DNA to perform their biochemical functions. Processivity factors diffuse on DNA to permit unimpeded elongation by their associated DNA polymerases, but little is known regarding their rates and mechanisms of diffusion. The processivity factor of herpes simple

  15. Cloning and sequence analysis of novel DNA polymerases from thermophilic Geobacillus species isolated from hot springs in Turkey: characterization of a DNA polymerase I from Geobacillus kaue strain NB.

    Science.gov (United States)

    Çağlayan, Melike; Bilgin, Neş'e

    2011-11-01

    The complete coding sequences of the polA genes from seven thermophilic Geobacillus species, isolated from hot springs of Gönen and Hisaralan in Turkey, were cloned and sequenced. The polA genes of these Geobacillus species contain a long open reading frame of 2,637 bp encoding DNA polymerase I with a calculated molecular mass of 99 kDa. Amino acid sequences of these Geobacillus DNA polymerases are closely related. The multiple sequence alignments show all include the conserved amino acids in the polymerase and 5'-3' exonuclease domains, but the catalytic residues varied in 3'-5' exonuclease domain of these Geobacillus DNA polymerases. One of them, DNA polymerase I from Geobacillus kaue strain NB (Gkaue polI) is purified to homogeneity and biochemically characterized in vitro. The optimum temperature for enzymatic activity of Gkaue polI is 70 °C at pH 7.5-8.5 in the presence of 8 mM Mg(2+) and 80-100 mM of monovalent ions. The addition of polyamines stimulates the polymerization activity of the enzyme. Three-dimensional structure of Gkaue polI predicted using homology modeling confirmed the conservation of all the functionally important regions in the polymerase active site.

  16. Single Molecule DNA Detection with an Atomic Vapor Notch Filter

    CERN Document Server

    Uhland, Denis; Widmann, Matthias; Lee, Sang-Yun; Wrachtrup, Jörg; Gerhardt, Ilja

    2015-01-01

    The detection of single molecules has facilitated many advances in life- and material-sciences. Commonly, it founds on the fluorescence detection of single molecules, which are for example attached to the structures under study. For fluorescence microscopy and sensing the crucial parameters are the collection and detection efficiency, such that photons can be discriminated with low background from a labeled sample. Here we show a scheme for filtering the excitation light in the optical detection of single stranded labeled DNA molecules. We use the narrow-band filtering properties of a hot atomic vapor to filter the excitation light from the emitted fluorescence of a single emitter. The choice of atomic sodium allows for the use of fluorescent dyes, which are common in life-science. This scheme enables efficient photon detection, and a statistical analysis proves an enhancement of the optical signal of more than 15% in a confocal and in a wide-field configuration.

  17. Single molecule DNA detection with an atomic vapor notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Wrachtrup, Joerg; Gerhardt, Ilja [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2015-12-01

    The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. (orig.)

  18. Sliding Clamp–DNA Interactions Are Required for Viability and Contribute to DNA Polymerase Management in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Heltzel, J.; Scouten Ponticelli, S; Sanders, L; Duzen, J; Cody, V; Pace, J; Snell, E; Sutton, M

    2009-01-01

    Sliding clamp proteins topologically encircle DNA and play vital roles in coordinating the actions of various DNA replication, repair, and damage tolerance proteins. At least three distinct surfaces of the Escherichia coli {beta} clamp interact physically with the DNA that it topologically encircles. We utilized mutant {beta} clamp proteins bearing G66E and G174A substitutions ({beta}159), affecting the single-stranded DNA-binding region, or poly-Ala substitutions in place of residues 148-HQDVR-152 ({beta}148-152), affecting the double-stranded DNA binding region, to determine the biological relevance of clamp-DNA interactions. As part of this work, we solved the X-ray crystal structure of {beta}148-152, which verified that the poly-Ala substitutions failed to significantly alter the tertiary structure of the clamp. Based on functional assays, both {beta}159 and {beta}148-152 were impaired for loading and retention on a linear primed DNA in vitro. In the case of {beta}148-152, this defect was not due to altered interactions with the DnaX clamp loader, but rather was the result of impaired {beta}148-152-DNA interactions. Once loaded, {beta}148-152 was proficient for DNA polymerase III (Pol III) replication in vitro. In contrast, {beta}148-152 was severely impaired for Pol II and Pol IV replication and was similarly impaired for direct physical interactions with these Pols. Despite its ability to support Pol III replication in vitro, {beta}148-152 was unable to support viability of E. coli. Nevertheless, physiological levels of {beta}148-152 expressed from a plasmid efficiently complemented the temperature-sensitive growth phenotype of a strain expressing {beta}159 (dnaN159), provided that Pol II and Pol IV were inactivated. Although this strain was impaired for Pol V-dependent mutagenesis, inactivation of Pol II and Pol IV restored the Pol V mutator phenotype. Taken together, these results support a model in which a sophisticated combination of competitive clamp-DNA

  19. Proteomic Profiling Reveals a Specific Role for Translesion DNA Polymerase η in the Alternative Lengthening of Telomeres

    Directory of Open Access Journals (Sweden)

    Laura Garcia-Exposito

    2016-11-01

    Full Text Available Cancer cells rely on the activation of telomerase or the alternative lengthening of telomeres (ALT pathways for telomere maintenance and survival. ALT involves homologous recombination (HR-dependent exchange and/or HR-associated synthesis of telomeric DNA. Utilizing proximity-dependent biotinylation (BioID, we sought to determine the proteome of telomeres in cancer cells that employ these distinct telomere elongation mechanisms. Our analysis reveals that multiple DNA repair networks converge at ALT telomeres. These include the specialized translesion DNA synthesis (TLS proteins FANCJ-RAD18-PCNA and, most notably, DNA polymerase eta (Polη. We observe that the depletion of Polη leads to increased ALT activity and late DNA polymerase δ (Polδ-dependent synthesis of telomeric DNA in mitosis. We propose that Polη fulfills an important role in managing replicative stress at ALT telomeres, maintaining telomere recombination at tolerable levels and stimulating DNA synthesis by Polδ.

  20. Crystallization and preliminary X-ray analysis of the Plasmodium falciparum apicoplast DNA polymerase

    Science.gov (United States)

    Milton, Morgan E.; Choe, Jun-yong; Honzatko, Richard B.; Nelson, Scott W.

    2015-01-01

    Infection by the parasite Plasmodium falciparum is the leading cause of malaria in humans. The parasite has a unique and essential plastid-like organelle called the apicoplast. The apicoplast contains a genome that undergoes replication and repair through the action of a replicative polymerase (apPOL). apPOL has no direct orthologs in mammalian polymerases and is therefore an attractive antimalarial drug target. No structural information exists for apPOL, and the Klenow fragment of Escherichia coli DNA polymerase I, which is its closest structural homolog, shares only 28% sequence identity. Here, conditions for the crystallization of and preliminary X-ray diffraction data from crystals of P. falciparum apPOL are reported. Data complete to 3.5 Å resolution were collected from a single crystal (2 × 2 × 5 µm) using a 5 µm beam. The space group P6522 (unit-cell parameters a = b = 141.8, c = 149.7 Å, α = β = 90, γ = 120°) was confirmed by molecular replacement. Refinement is in progress. PMID:25760711

  1. Rapid sequencing of DNA based on single-molecule detection

    Science.gov (United States)

    Soper, Steven A.; Davis, Lloyd M.; Fairfield, Frederick R.; Hammond, Mark L.; Harger, Carol A.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.; Nutter, Harvey L.; Shera, E. Brooks; Simpson, Daniel J.

    1991-07-01

    Sequencing the human genome is a major undertaking considering the large number of nucleotides present in the genome and the slow methods currently available to perform the task. The authors have recently reported on a scheme to sequence DNA rapidly using a non-gel based technique. The concept is based upon the incorporation of fluorescently labeled nucleotides into a strand of DNA, isolation and manipulation of a labeled DNA fragment and the detection of single nucleotides using ultra-sensitive laser-induced fluorescence detection following their cleavage from the fragment. Detection of individual fluorophores in the liquid phase was accomplished with time-gated detection following pulsed-laser excitation. The photon bursts from individual rhodamine 6G (R6G) molecules travelling through a laser beam have been observed, as have bursts from single fluorescently modified nucleotides. Using two different biotinylated nucleotides as a model system for fluorescently labeled nucleotides, the authors have observed synthesis of the complementary copy of M13 bacteriophage. Work with fluorescently labeled nucleotides is underway. Individual molecules of DNA attached to a microbead have been observed and manipulated with an epifluorescence microscope.

  2. Nucleotide insertion initiated by van der Waals interaction during polymerase beta DNA replication

    CERN Document Server

    Arulsamy, Andrew Das

    2011-01-01

    Immortality will remain a fantasy for as long as aging is determined by the erroneous biochemical reactions during a particular DNA replication. The replication and base excision repair mechanism, associated to eukaryotic DNA polymerase-beta enzyme are central to maintaining a healthy cell. Here, we give a series of unambiguous theoretical analyses and prove that the exclusive biochemical reaction involved in a single nucleotide insertion into the DNA primer can be efficiently tracked using the renormalized van der Waals interaction of the stronger type, and the Hermansson blue-shifting hydrogen bond effect. We found that there are two biochemical steps involved to complete the insertion of a single dCTP into the 3' end of a DNA primer. First, the O3' (from a DNA primer) initiates the nucleophilic attack on P_alpha?(from an incoming dCTP), in response, O3_alpha (bonded to P_alpha) retaliates by interacting with H' (bonded to O3'). These interactions are shown to be strongly interdependent and require the form...

  3. Transcriptional analysis of the DNA polymerase gene of shrimp white spot syndrome virus.

    Science.gov (United States)

    Chen, Li-Li; Wang, Han-Ching; Huang, Chiu-Jung; Peng, Shao-En; Chen, Yen-Gu; Lin, Shin-Jen; Chen, Wei-Yu; Dai, Chang-Feng; Yu, Hon-Tsen; Wang, Chung-Hsiung; Lo, Chu-Fang; Kou, Guang-Hsiung

    2002-09-15

    The white spot syndrome virus DNA polymerase (DNA pol) gene (WSSV dnapol) has already been tentatively identified based on the presence of highly conserved motifs, but it shows low overall homology with other DNA pols and is also much larger (2351 amino acid residues vs 913-1244 aa). In the present study we perform a transcriptional analysis of the WSSV dnapol gene using the total RNA isolated from WSSV-infected shrimp at different times after infection. Northern blot analysis with a WSSV dnapol-specific riboprobe found a major transcript of 7.5 kb. 5'-RACE revealed that the major transcription start point is located 27 nucleotides downstream of the TATA box, at the nucleotide residue A within a CAGT motif, one of the initiator (Inr) motifs of arthropods. In a temporal expression analysis using differential RT-PCR, WSSV dnapol transcripts were detected at low levels at 2-4 h.p.i., increased at 6 h.p.i., and remained fairly constant thereafter. This is similar to the previously reported transcription patterns for genes encoding the key enzyme of nucleotide metabolism, ribonucleotide reductase. Phylogenetic analysis showed that the DNA pols from three different WSSV isolates form an extremely tight cluster. In addition, similar to an earlier phylogenetic analysis of WSSV protein kinase, the phylogenetic tree of viral DNA pols further supports the suggestion that WSSV is a distinct virus (likely at the family level) that does not belong to any of the virus families that are currently recognized.

  4. A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis

    KAUST Repository

    Law, Julie A.

    2010-05-01

    DNA methylation is an epigenetic modification associated with gene silencing. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), which is targeted by small interfering RNAs through a pathway termed RNA-directed DNA methylation (RdDM) [1, 2]. Recently, RdDM was shown to require intergenic noncoding (IGN) transcripts that are dependent on the Pol V polymerase. These transcripts are proposed to function as scaffolds for the recruitment of downstream RdDM proteins, including DRM2, to loci that produce both siRNAs and IGN transcripts [3]. However, the mechanism(s) through which Pol V is targeted to specific genomic loci remains largely unknown. Through affinity purification of two known RdDM components, DEFECTIVE IN RNA-DIRECTED DNA METHYLATION 1 (DRD1) [4] and DEFECTIVE IN MERISTEM SILENCING 3 (DMS3) [5, 6], we found that they copurify with each other and with a novel protein, RNA-DIRECTED DNA METHYLATION 1 (RDM1), forming a complex we term DDR. We also found that DRD1 copurified with Pol V subunits and that RDM1, like DRD1 [3] and DMS3 [7], is required for the production of Pol V-dependent transcripts. These results suggest that the DDR complex acts in RdDM at a step upstream of the recruitment or activation of Pol V. © 2010 Elsevier Ltd. All rights reserved.

  5. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases

    Institute of Scientific and Technical Information of China (English)

    Scott D McCulloch; Thomas A Kunkel

    2008-01-01

    In their seminal publication describing the structure of the DNA double helix [1], Watson and Crick wrote what may be one of the greatest understatements in the scientific literature, namely that "It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material." Half a century later, we more fully appreciate what a huge challenge it is to replicate six billion nucleotides with the accuracy needed to stably maintain the human genome over many generations. This challenge is perhaps greater than was realized 50 years ago, because subsequent studies have revealed that the genome can be destabilized not only by environmental stresses that generate a large number and variety of potentially cytotoxic and mutagenic lesions in DNA but also by various sequence motifs of normal DNA that present challenges to replication. Towards a better understanding of the many determinants of genome stability, this chapter reviews the fidelity with which undamaged and damaged DNA is copied, with a focus on the eukaryotic B- and Y-family DNA polymerases, and considers how this fidelity is achieved.

  6. Detection of Toxoplasma gondii DNA by polymerase chain reaction in experimentally desiccated tissues

    Directory of Open Access Journals (Sweden)

    Márcia Andreia Barge Loução Terra

    2004-03-01

    Full Text Available Despite toxoplasmosis being a common infection among human and other warm-blooded animals worldwide, there are no findings about Toxoplasma gondii evolutionary forms in ancient populations. The molecular techniques used for amplification of genetic material have allowed recovery of ancient DNA (aDNA from parasites contained in mummified tissues. The application of polymerase chain reaction (PCR to paleoparasitological toxoplasmosis research becomes a promising option, since it might allow diagnosis, acquisition of paleoepidemiological data, access to toxoplasmosis information related origin, evolution, and distribution among the ancient populations.Furthermore, it makes possible the analysis of parasite aDNA aiming at phylogenetic studies. To standardize and evaluate PCR applicability to toxoplasmosis paleodiagnostic, an experimental mummification protocol was tested using desiccated tissues from mice infected with the ME49 strain cysts, the chronic infection group (CIG, or infected with tachyzoites (RH strain, the acute infection group (AIG. Tissues were subjected to DNA extraction followed by PCR amplification of T. gondii B1 gene. PCR recovered T. gondii DNA in thigh muscle, encephalon, heart, and lung samples. AIG presented PCR positivity in encephalon, lungs, hearts, and livers. Based on this results, we propose this molecular approach for toxoplasmosis research in past populations.

  7. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  8. Analysis of UV-induced mutation spectra in Escherichia coli by DNA polymerase {eta} from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Maria Jesus [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain); Alejandre-Duran, Encarna [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain); Ruiz-Rubio, Manuel [Departamento de Genetica, Facultad de Ciencias, Edificio Gregor Mendel, Campus Rabanales, Universidad de Cordoba (Spain)]. E-mail: ge1rurum@uco.es

    2006-10-10

    DNA polymerase {eta} belongs to the Y-family of DNA polymerases, enzymes that are able to synthesize past template lesions that block replication fork progression. This polymerase accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and therefore may contributes to resistance against sunlight in vivo, both ameliorating survival and decreasing the level of mutagenesis. We cloned and sequenced a cDNA from Arabidopsis thaliana which encodes a protein containing several sequence motifs characteristics of Pol{eta} homologues, including a highly conserved sequence reported to be present in the active site of the Y-family DNA polymerases. The gene, named AtPOLH, contains 14 exons and 13 introns and is expressed in different plant tissues. A strain from Saccharomyces cerevisiae, deficient in Pol{eta} activity, was transformed with a yeast expression plasmid containing the AtPOLH cDNA. The rate of survival to UV irradiation in the transformed mutant increased to similar values of the wild type yeast strain, showing that AtPOLH encodes a functional protein. In addition, when AtPOLH is expressed in Escherichia coli, a change in the mutational spectra is detected when bacteria are irradiated with UV light. This observation might indicate that AtPOLH could compete with DNA polymerase V and then bypass cyclobutane pyrimidine dimers incorporating two adenylates.

  9. Analysis of UV-induced mutation spectra in Escherichia coli by DNA polymerase eta from Arabidopsis thaliana.

    Science.gov (United States)

    Santiago, María Jesús; Alejandre-Durán, Encarna; Ruiz-Rubio, Manuel

    2006-10-10

    DNA polymerase eta belongs to the Y-family of DNA polymerases, enzymes that are able to synthesize past template lesions that block replication fork progression. This polymerase accurately bypasses UV-associated cis-syn cyclobutane thymine dimers in vitro and therefore may contributes to resistance against sunlight in vivo, both ameliorating survival and decreasing the level of mutagenesis. We cloned and sequenced a cDNA from Arabidopsis thaliana which encodes a protein containing several sequence motifs characteristics of Pol eta homologues, including a highly conserved sequence reported to be present in the active site of the Y-family DNA polymerases. The gene, named AtPOLH, contains 14 exons and 13 introns and is expressed in different plant tissues. A strain from Saccharomyces cerevisiae, deficient in Pol eta activity, was transformed with a yeast expression plasmid containing the AtPOLH cDNA. The rate of survival to UV irradiation in the transformed mutant increased to similar values of the wild type yeast strain, showing that AtPOLH encodes a functional protein. In addition, when AtPOLH is expressed in Escherichia coli, a change in the mutational spectra is detected when bacteria are irradiated with UV light. This observation might indicate that AtPOLH could compete with DNA polymerase V and then bypass cyclobutane pyrimidine dimers incorporating two adenylates.

  10. RNA-DNA Differences Are Generated in Human Cells within Seconds after RNA Exits Polymerase II

    Directory of Open Access Journals (Sweden)

    Isabel X. Wang

    2014-03-01

    Full Text Available RNA sequences are expected to be identical to their corresponding DNA sequences. Here, we found all 12 types of RNA-DNA sequence differences (RDDs in nascent RNA. Our results show that RDDs begin to occur in RNA chains ∼55 nt from the RNA polymerase II (Pol II active site. These RDDs occur so soon after transcription that they are incompatible with known deaminase-mediated RNA-editing mechanisms. Moreover, the 55 nt delay in appearance indicates that they do not arise during RNA synthesis by Pol II or as a direct consequence of modified base incorporation. Preliminary data suggest that RDD and R-loop formations may be coupled. These findings identify sequence substitution as an early step in cotranscriptional RNA processing.

  11. Validation study of HPV DNA detection from stained FNA smears by polymerase chain reaction

    DEFF Research Database (Denmark)

    Channir, Hani Ibrahim; Grønhøj Larsen, Christian; Ahlborn, Lise Barlebo;

    2016-01-01

    BACKGROUND: Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) often presents with cystic cervical metastasis and a small primary tumor localized in the palatine tonsils or base of the tongue, which is diagnostically challenging. Testing for HPV DNA in fine......-needle aspiration (FNA) smears from metastases may facilitate a targeted diagnostic workup for identifying the primary tumor. This study was designed to assess the ability to detect HPV DNA in FNA smears with polymerase chain reaction (PCR). METHODS: May-Grünvald-Giemsa (MGG)-stained FNA smears from metastases...... and corresponding surgical specimens were collected from 71 patients with known HPV-positive OPSCC, 12 patients with oral squamous cell carcinoma (OSCC), 20 patients with branchial cleft cysts, and 20 patients with Warthin tumors. Thirty-eight patients with OPSCC and 7 patients with OSCC had FNA smears available...

  12. DNA polymerase-associated lectin (DPAL) and its binding to the galactose-containing glycoconjugate of the replication complex.

    Science.gov (United States)

    Kelley, T J; St Amand, T; Groll, J M; Ray, S; Basu, S

    1999-10-01

    The highly purified DNA Pol-alpha from rat prostate tumor (PA-3) and human neuroblastoma (IMR-32) cells appeared to be inhibited by Ricin (RCA-II), and Con-A. Loss of activity (40 to 60%) of a specific form of DNA polymerase from IMR-32 was observed when the cells were treated with tunicamycin [Bhattacharya, P. and Basu, S. (1982) Proc. Natl. Acad. Sci., USA 79:1488-1492]. Binding of ConA and RCA to human recombinant DNA polymerase-alpha showed a specific labile site in the N-terminus [Hsi et al.. (1990) Nucleic Acid Res. 18:6231-6237]. The catalytic polypeptide, DNA polymerase-alpha of eukaryotic origin, was isolated from developing tissues or cultured cells as a family of 180 to 120 kDa polypeptides, perhaps derived from a single primary structure. Immunoblot analysis with a monoclonal antibody (SJK-237-71) indicated that the lower molecular weight polypeptides resulted from either proteolytic cleavage of post-translational modification after specific cleavages. Present results suggest DNA polymerase-alpha from embryonic chicken brain (ECB) contains an alpha-galactose-binding subunit which may be involved in developmental regulation of the enzyme. It was shown before that the catalytic subunit of DNA polymerase-alpha reduces from 186 kDa in 11-day-old ECB to 120 kDa in 19-day-old ECB [Ray, S. et al. Cell Growth and Differentiation 2:567-573] by the treatment with methyl-alpha-galactose. The low molecular weight DNA polymerase activity (120 kDa) can be reconstituted to high molecular weight (Mr = 186 kDa) with an alpha-galactose binding, 56kDa lectin-like protein. Polyclonal antibodies raised against the purified lectin were able to precipitate DNA. Pol-alpha as determined by immunostaining with the polymerase-alpha-specific monoclonal antibody SJK 132-20, suggesting this is a DNA polymerase associated-lectin (DPAL). RCA-II and GS-I-Sepharose 4B chromatographies resulted in significant purification of DNA-alpha and a complete separation of polymerase complex and

  13. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity.

    Science.gov (United States)

    Oertell, Keriann; Harcourt, Emily M; Mohsen, Michael G; Petruska, John; Kool, Eric T; Goodman, Myron F

    2016-04-19

    What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 10(3)- to 10(4)-fold, corresponding to free energy differences of ΔΔGinc∼ 5.5-7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013)J Am Chem Soc135:1205-1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = -RTlnKeq, indicating ΔΔG° of 3.5-7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore,[Formula: see text]values obtained from such steady-state evaluations ofKeqare not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site.

  14. Domain topology of the DNA polymerase D complex from a hyperthermophilic archaeon Pyrococcus horikoshii.

    Science.gov (United States)

    Tang, Xiao-Feng; Shen, Yulong; Matsui, Eriko; Matsui, Ikuo

    2004-09-21

    Family D DNA polymerase (PolD) is a recently found DNA polymerase extensively existing in Euryarchaeota of Archaea. Here, we report the domain function of PolD in oligomerization and interaction with other proteins, which were characterized with the yeast two-hybrid (Y2H) and surface plasmon resonance (SPR) assays. A proliferating cell nuclear antigen, PhoPCNA, interacted with the N-terminus of the small subunit, DP1(1-200). Specific interaction between the remaining part of the small subunit, DP1(201-622), and the N-terminus of the large subunit, DP2(1-300), was detected by the Y2H assay. The SPR assay also indicated the intrasubunit interaction within the N-terminus, DP2(1-100), and the C-terminus, DP2(792-1163), of the large subunit. A synthetic 21 amino acid peptide corresponding to the sequence from cysteine cluster II, DP2(1290-1310), tightly interacted (a dissociation constant K(D) = 4.3 nM) with the N-terminus of the small subunit, DP1(1-200). Since the peptide could increase the 3'-5' exonuclease activity of DP1 [Shen et al. (2004) Nucleic Acids Res. 32, 158], the short region DP2(1290-1310) seems to play dual roles to form the PhoPolD complex and to regulate the 3'-5' exonuclease activity of DP1 through interaction with DP1(1-200). Furthermore, DP2(792-1163) containing the catalytic residues for DNA polymerization, Asp1122 and Asp1124, interacted with the intrasubunit domain, DP2(1-100), and the intersubunit domain, DP1(1-200). DP2(792-1163) probably forms the most important domain deeply involved in both the catalysis of DNA polymerization and stabilization of the PhoPolD complex through these multiple interactions.

  15. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    Science.gov (United States)

    Vollmer, Frank

    2015-09-01

    Detecting molecules and their interactions lies at the heart of all biosensor devices, which have important applications in health, environmental monitoring and biomedicine. Achieving biosensing capability at the single molecule level is, moreover, a particularly important goal since single molecule biosensors would not only operate at the ultimate detection limit by resolving individual molecular interactions, but they could also monitor biomolecular properties which are otherwise obscured in ensemble measurements. For example, a single molecule biosensor could resolve the fleeting interaction kinetics between a molecule and its receptor, with immediate applications in clinical diagnostics. We have now developed a label-free biosensing platform that is capable of monitoring single DNA molecules and their interaction kinetics[1], hence achieving an unprecedented sensitivity in the optical domain, Figure 1. We resolve the specific contacts between complementary oligonucleotides, thereby detecting DNA strands with less than 2.4 kDa molecular weight. Furthermore we can discern strands with single nucleotide mismatches by monitoring their interaction kinetics. Our device utilizes small glass microspheres as optical transducers[1,2, 3], which are capable of increasing the number of interactions between a light beam and analyte molecules. A prism is used to couple the light beam into the microsphere. Ourr biosensing approach resolves the specific interaction kinetics between single DNA fragments. The optical transducer is assembled in a simple three-step protocol, and consists of a gold nanorod attached to a glass microsphere, where the surface of the nanorod is further modified with oligonucleotide receptors. The interaction kinetics of an oligonucleotide receptor with DNA fragments in the surrounding aqueous solution is monitored at the single molecule level[1]. The light remains confined inside the sphere where it is guided by total internal reflections along a

  16. Allele-specific polymerase chain reaction for detection of a mutation in the relax circular DNA and the covalently closed circular DNA of hepatitis B virus.

    Science.gov (United States)

    Pan, Wan-Long; Hu, Jie-Li; Fang, Yan; Luo, Qiang; Xu, Ge; Xu, Lei; Jing, Zhou-Hong; Shan, Xue-Feng; Zhu, Yan-Ling; Huang, Ai-Long

    2013-12-01

    The relax circle DNA (rcDNA) sequence and the covalently closed circle DNA (cccDNA) sequence in hepatitis B virus (HBV) are crucial regions for HBV infections. To analyze mutations in rcDNA and cccDNA, DNA sequencing is often used, although it is time-consuming and expensive. Herein, we report a simple, economic, albeit accurate allele-specific polymerase chain reaction (AS-PCR) to detect mutations in these regions of HBV. This method can be extensively used to screen for mutations at specific positions of HBV genome.

  17. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

    Science.gov (United States)

    Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E

    2013-06-01

    Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.

  18. A cDNA encoding RAP74, a general initiation factor for transcription by RNA polymerase II.

    Science.gov (United States)

    Finkelstein, A; Kostrub, C F; Li, J; Chavez, D P; Wang, B Q; Fang, S M; Greenblatt, J; Burton, Z F

    1992-01-30

    RAP30/74 (also known as TFIIF, beta gamma and FC is one of several general factors required for initiation by RNA polymerase II. The small RAP30 subunit of RAP30/74 binds directly to polymerase and appears structurally and functionally homologous to bacterial sigma factors in their RNA polymerase-binding region. RAP30/74 or recombinant RAP30 suppresses nonspecific binding of RNA polymerase II to DNA and is required for RNA polymerase II to assemble stably into a preinitiation complex containing promoter DNA and the general factors TFIID, TFIIA and TFIIB; both RAP30 and RAP74 are physical components of the preinitiation complex. A complementary DNA encoding human RAP30 has been isolated, and here we report the isolation of a cDNA encoding human RAP74. RAP30 and RAP74 produced in Escherichia coli can be used in place of natural human RAP30/74 to direct accurate transcription initiation by RNA polymerase II in vitro.

  19. Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects

    Science.gov (United States)

    Song, Yong-Shun; Shu, Yao-Gen; Zhou, Xin; Ou-Yang, Zhong-Can; Li, Ming

    2017-01-01

    The fidelity of DNA replication by DNA polymerase (DNAP) has long been an important issue in biology. While numerous experiments have revealed details of the molecular structure and working mechanism of DNAP which consists of both a polymerase site and an exonuclease (proofreading) site, there were quite a few theoretical studies on the fidelity issue. The first model which explicitly considered both sites was proposed in the 1970s and the basic idea was widely accepted by later models. However, all these models did not systematically investigate the dominant factor on DNAP fidelity, i.e. the higher-order terminal effects through which the polymerization pathway and the proofreading pathway coordinate to achieve high fidelity. In this paper, we propose a new and comprehensive kinetic model of DNAP based on some recent experimental observations, which includes previous models as special cases. We present a rigorous and unified treatment of the corresponding steady-state kinetic equations of any-order terminal effects, and derive analytical expressions for fidelity in terms of kinetic parameters under bio-relevant conditions. These expressions offer new insights on how the higher-order terminal effects contribute substantially to the fidelity in an order-by-order way, and also show that the polymerization-and-proofreading mechanism is dominated only by very few key parameters. We then apply these results to calculate the fidelity of some real DNAPs, which are in good agreements with previous intuitive estimates given by experimentalists.

  20. A parallel synthesis scheme for generating libraries of DNA polymerase substrates and inhibitors.

    Science.gov (United States)

    Strobel, Heike; Dugué, Laurence; Marlière, Philippe; Pochet, Sylvie

    2002-12-02

    We report a combinatorial approach aimed at producing in a single step a large family of nucleoside triphosphate derivatives that could be tested for their ability to be substrates for DNA polymerases. We propose as a unique triphosphate building block a nucleotide with a hydrazine function anchored to an imidazole ring. Condensation between the 5'-triphosphate derivative of 1-(2-deoxy-beta-D-erythro-pentofuranosyl)-imidazole-4-hydrazide (dY(NH(2))TP) and any aldehyde or ketone, followed by reduction of the intermediate hydrazones dXmTP, resulted in the corresponding hydrazides (dXnTP). Following this scheme, a series of aldehydes having various aromatic parts yielded a number of adducts dY(NHR)TP. Vent (exo-) DNA polymerase is found to be able to catalyse the single incorporation of these bulky triphosphate derivatives. Subsequent extensions of the modified pairs with canonical triphosphates resulted mainly in abortive elongations at primer+2, except after the incorporation of dY(NHben)TP and, to a lesser extent, dY(NHphe)TP opposite C. These results illustrate the potential of this parallel synthetic scheme for generating new substrates or inhibitors of replication in a single step.

  1. DNA polymerase conformational dynamics and the role of fidelity-conferring residues: Insights from computational simulations

    Directory of Open Access Journals (Sweden)

    Massimiliano eMeli

    2016-05-01

    Full Text Available Herein we investigate the molecular bases of DNA polymerase I conformational dynamics that underlie the replication fidelity of the enzyme. Such fidelity is determined by conformational changes that promote the rejection of incorrect nucleotides before the chemical ligation step. We report a comprehensive atomic resolution study of wild type and mutant enzymes in different bound states and starting from different crystal structures, using extensive molecular dynamics (MD simulations that cover a total timespan of ~ 5 microseconds. The resulting trajectories are examined via a combination of novel methods of internal dynamics and energetics analysis, aimed to reveal the principal molecular determinants for the (destabilization of a certain conformational state. Our results show that the presence of fidelity-decreasing mutations or the binding of incorrect nucleotides in ternary complexes tend to favor transitions from closed towards open structures, passing through an ensemble of semi-closed intermediates. The latter ensemble includes the experimentally observed ajar conformation which, consistent with previous experimental observations, emerges as a molecular checkpoint for the selection of the correct nucleotide to incorporate. We discuss the implications of our results for the understanding of the relationships between the structure, dynamics and function of DNA polymerase I at the atomistic level.

  2. Single molecule studies of DNA packaging by bacteriophages

    Science.gov (United States)

    Fuller, Derek Nathan

    The DNA packaging dynamics of bacteriophages φ29, gamma, and T4 were studied at the single molecule level using a dual trap optical tweezers. Also, a method for producing long DNA molecules by PCR for optical tweezers studies of protein DNA interactions is presented and thoroughly characterized. This DNA preparation technique provided DNA samples for the φ29 and T4 studies. In the studies of φ29, the role of charge was investigated by varying the ionic conditions of the packaging buffer. Ionic conditions in which the DNA charge was highly screened due to divalent and trivalent cations showed the lowest resistance to packaging of the DNA to high density. This confirmed the importance of counterions in shielding the DNA interstrand repulsion when packaged to high density. While the ionic nature of the packaging buffer had a strong effect on packaging velocities, there was no clear trend between the counterion-screened charge of the DNA and the maximum packaging velocity. The packaging studies of lambda and T4 served as systems for comparative studies with φ29. Each system showed similarities to the φ29 system and unique differences. Both the lambda and T4 packaging motors were capable of generating forces in excess of 50 pN and showed remarkably high processivity, similar to φ29. However, dynamic structural transitions were observed with lambda that are not observed with φ29. The packaging of the lambda genome showed capsid expansion at approximately 30 percent of the genome packaged and capsid rupture at 90 percent of the genome packaged in the absence of capsid stabilizing protein gpD. Unique to the T4 packaging motor, packaging dynamics showed a remarkable amount of variability in velocities. This variability was seen both within individual packaging phages and from one phage to the next. This is possibly due to different conformational states of the packaging machinery. Additionally, lambda and T4 had average packaging velocities under minimal load of 600

  3. Conformational changes during nucleotide selection by Sulfolobus solfataricus DNA polymerase Dpo4.

    Science.gov (United States)

    Eoff, Robert L; Sanchez-Ponce, Raymundo; Guengerich, F Peter

    2009-07-31

    The mechanism of nucleotide selection by Y-family DNA polymerases has been the subject of intense study, but significant structural contacts and/or conformational changes that relate to polymerase fidelity have been difficult to identify. Here we report on the conformational dynamics of a model Y-family polymerase Dpo4 from Sulfolobus solfataricus. Hydrogen-deuterium exchange in tandem with mass spectrometry was used to monitor changes in Dpo4 structure as a function of time and the presence or absence of specific substrates and ligands. Analysis of the data revealed previously unrecognized structural changes that accompany steps in the catalytic cycle leading up to phosphoryl transfer. For example, the solvent accessibility of the alphaB-loop-alphaC region in the finger domain decreased in the presence of all four dNTP insertion events, but the rate of deuterium exchange, an indicator of conformational flexibility, only decreased during an accurate insertion event. Of particular note is a change in the region surrounding the H-helix of the thumb domain. Upon binding DNA and Mg2+, the H-helix showed a decrease in solvent accessibility and flexibility that was relaxed only upon addition of dCTP, which forms a Watson-Crick base pair with template dG and not during mispairing events. The current study expands upon a previous report from our group that used a fluorescent probe located near the thumb domain to measure the kinetic properties of Dpo4 conformational changes. We now present a model for nucleotide selection by Dpo4 that arises from a synthesis of both structural and kinetic data.

  4. Size separation of DNA molecules by pulsed electric field dielectrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Nedelcu, S [National Institute for R and D in Microtechnologies, Str. Erou Iancu Nicolae 32B, PO Box 38-160, 023573 Bucharest (Romania); Watson, J H P [School of Physics and Astronomy, University of Southampton, Highfield, SO17 1BJ, Southampton (United Kingdom)

    2004-08-07

    In this paper we propose an electrode design and a switching pattern of the applied DC electrode potentials for a microfluidic device to be used in size separation of DNA molecules. Estimates on the separation resolution, which are based on numerical solutions of a Newton-type equation on time-averaged quantities, are presented for an input batch sample of DNA fragments with sizes up to 220 base pairs (bp). The active area of the device (which can be microfabricated by standard photolitographic techniques) is a channel 6 {mu}m wide, 8 {mu}m deep and 150 {mu}m in length, flanked by 23 plane parallel integrated electrodes, individually addressed with low DC voltages, up to {+-} 25 V. In the active area a time-dependent non-uniform electric field, or a travelling dielectrophoretic wave (TDW) is being produced. In order to enhance the separation resolution, the polarization DC potentials are switched with a relatively high frequency ({approx} 10{sup -7} s), which is chosen accordingly with the buffer conductivity and dielectric constants of the fluid and particles. Since the external field is of DC type, we put forward an explanatory model of the dielectric response of the DNA to the time-dependent applied field. We then numerically investigate the size-dependent response of the DNA in a low conductivity buffer ({approx}0.01 {omega}{sup -1} m{sup -1}) under the influence of the electric field, which is calculated by means of the method of moments. The results of the computer modelling indicate the existence of a threshold value for the size of the successfully transported molecules, which can be adjusted by varying the velocity of the dielectrophoretic wave produced by the system. The estimated error in selecting a chosen group of molecules with sizes above a specified value is about 5 bp, while the processing times are of the order of hundred of seconds.

  5. Quantitation of Genital Herpes Virus DNA by Polymerase Chain Reaction and ELISA

    Institute of Scientific and Technical Information of China (English)

    CHENG Peihua(程培华)

    2002-01-01

    Objective:To detect and quantitate genital herpes simplex virus (HSV) DNA in specimens from 100 patients clinically diagnosed with genital herpes.Methods: Polymerase Chain Reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) were used with a standard curve of DNA copies of HSV as quantitative contrast.Results: Ninety-three cases were confirmed HSV positive and 7 cases were found to be negative. There were 58 cases of HSV-2 (62.4%) and 35 cases of HSV-1 (37.6%) among the 93 positive cases. The number of DNA plasmids ranged from 115 to 1.1×105 per 250μL among the 93 positive samples (mean =7.1×104/250μL). The number of HSV DNA plasmids ranged from 136 to 1.1×105 copies per 250μL (mean =7.6×104) among those with HSV-2, and 115 to 9.4×104 per 250μL (mean =6.3×104) among those with HSV-1. Meanwhile 10μL of extracted and dissolved DNA randomly taken from 8 each of HSV-2 and HSV-1 samples were tested. The number of HSV-2 DNA plasmids ranged from 35 copies to 2.7×104 (Mean =1.8×104) and the number of HSV-1 DNA ranged from 29 to 2.5×104 (Mean = 1.6×104). In the 7 negative cases, the quantity of HSV plasmids was zero.Conclusion: The sensitivity of ELISA quantitation (93%) is equal to that of Southern blot. The sensitivity of PCR for diagnosis is 91%, and 88% for PCR typing.

  6. Zebrafish lacking functional DNA polymerase gamma survive to juvenile stage, despite rapid and sustained mitochondrial DNA depletion, altered energetics and growth.

    Science.gov (United States)

    Rahn, Jennifer J; Bestman, Jennifer E; Stackley, Krista D; Chan, Sherine S L

    2015-12-02

    DNA polymerase gamma (POLG) is essential for replication and repair of mitochondrial DNA (mtDNA). Mutations in POLG cause mtDNA instability and a diverse range of poorly understood human diseases. Here, we created a unique Polg animal model, by modifying polg within the critical and highly conserved polymerase domain in zebrafish. polg(+/-) offspring were indistinguishable from WT siblings in multiple phenotypic and biochemical measures. However, polg(-/-) mutants developed severe mtDNA depletion by one week post-fertilization (wpf), developed slowly and had regenerative defects, yet surprisingly survived up to 4 wpf. An in vivo mtDNA polymerase activity assay utilizing ethidium bromide (EtBr) to deplete mtDNA, showed that polg(+/-) and WT zebrafish fully recover mtDNA content two weeks post-EtBr removal. EtBr further reduced already low levels of mtDNA in polg(-/-) animals, but mtDNA content did not recover following release from EtBr. Despite significantly decreased respiration that corresponded with tissue-specific levels of mtDNA, polg(-/-) animals had WT levels of ATP and no increase in lactate. This zebrafish model of mitochondrial disease now provides unique opportunities for studying mtDNA instability from multiple angles, as polg(-/-) mutants can survive to juvenile stage, rather than lose viability in embryogenesis as seen in Polg mutant mice.

  7. Comparison of DNA extraction methods for polymerase chain reaction amplification of guanaco (Lama guanicoe) fecal DNA samples.

    Science.gov (United States)

    Espinosa, M I; Bertin, A; Squeo, F A; Cortés, A; Gouin, N

    2015-01-23

    Feces-based population genetic studies have become increasingly popular. However, polymerase chain reaction (PCR) amplification rates from fecal material vary depending on the species, populations, loci, and extraction protocols. Here, we assessed the PCR amplification success of three microsatellite markers and a segment of the mitochondrial control region of DNA extracted from field-collected feces of guanaco (Lama guanicoe) using two protocols - Qiagen DNA Stool Kit and 2 cetyltrimethylammonium bromide/phenol:chloroform:isoamyl alcohol (2CTAB/PCI) method. Chelex resin treatment to remove inhibitors was also tested. Our results show that the mitochondrial locus was the most difficult to amplify. PCR success rates improved for all markers after Chelex treatment of extracted DNA, and 2CTAB/PCI method (95.83%) appeared to perform slightly better than stool kit (91.67%) for the nuclear markers. Amplification success was significantly influenced by the extraction method, Chelex treatment, and locus (P 0.89), but they decreased slightly after treatment for amplification of nuclear markers and markedly after treatment for amplification of the mitochondrial control region. Thus, we showed that Chelex treatment gives high PCR success, especially for nuclear markers, and adequate DNA extraction rates can be achieved from L. guanicoe feces even from non-fresh fecal material. Although not significant, 2CTAB/PCI method tended to provide higher successful amplification rates on a whole set of samples, suggesting that the method could be particularly useful when using small sample sizes.

  8. Helicase and Polymerase Move Together Close to the Fork Junction and Copy DNA in One-Nucleotide Steps

    Directory of Open Access Journals (Sweden)

    Manjula Pandey

    2014-03-01

    Full Text Available By simultaneously measuring DNA synthesis and dNTP hydrolysis, we show that T7 DNA polymerase and T7 gp4 helicase move in sync during leading-strand synthesis, taking one-nucleotide steps and hydrolyzing one dNTP per base-pair unwound/copied. The cooperative catalysis enables the helicase and polymerase to move at a uniformly fast rate without guanine:cytosine (GC dependency or idling with futile NTP hydrolysis. We show that the helicase and polymerase are located close to the replication fork junction. This architecture enables the polymerase to use its strand-displacement synthesis to increase the unwinding rate, whereas the helicase aids this process by translocating along single-stranded DNA and trapping the unwound bases. Thus, in contrast to the helicase-only unwinding model, our results suggest a model in which the helicase and polymerase are moving in one-nucleotide steps, DNA synthesis drives fork unwinding, and a role of the helicase is to trap the unwound bases and prevent DNA reannealing.

  9. Role of the LEXE Motif of Protein-primed DNA Polymerases in the Interaction with the Incoming Nucleotide*

    Science.gov (United States)

    Santos, Eugenia; Lázaro, José M.; Pérez-Arnaiz, Patricia; Salas, Margarita; de Vega, Miguel

    2014-01-01

    The LEXE motif, conserved in eukaryotic type DNA polymerases, is placed close to the polymerization active site. Previous studies suggested that the second Glu was involved in binding a third noncatalytic ion in bacteriophage RB69 DNA polymerase. In the protein-primed DNA polymerase subgroup, the LEXE motif lacks the first Glu in most cases, but it has a conserved Phe/Trp and a Gly preceding that position. To ascertain the role of those residues, we have analyzed the behavior of mutants at the corresponding φ29 DNA polymerase residues Gly-481, Trp-483, Ala-484, and Glu-486. We show that mutations at Gly-481 and Trp-483 hamper insertion of the incoming dNTP in the presence of Mg2+ ions, a reaction highly improved when Mn2+ was used as metal activator. These results, together with previous crystallographic resolution of φ29 DNA polymerase ternary complex, allow us to infer that Gly-481 and Trp-483 could form a pocket that orients Val-250 to interact with the dNTP. Mutants at Glu-486 are also defective in polymerization and, as mutants at Gly-481 and Trp-483, in the pyrophosphorolytic activity with Mg2+. Recovery of both reactions with Mn2+ supports a role for Glu-486 in the interaction with the pyrophosphate moiety of the dNTP. PMID:24324256

  10. Use of neuropathological tissue for molecular genetic studies: parameters affecting DNA extraction and polymerase chain reaction.

    Science.gov (United States)

    Kösel, S; Graeber, M B

    1994-01-01

    Nuclear and mitochondrial DNA were extracted from gray matter of human cerebral cortex which had either been formalin-fixed and embedded into paraffin or stored in formalin for up to 26 years. Extraction conditions were optimized for proteinase K digestion, i.e., enzyme concentration, digestion temperature and incubation time. Using the polymerase chain reaction (PCR), DNA was successfully amplified from archival material and sequenced employing a direct nonradioactive cycle sequencing protocol. In general, tissue embedded into paraffin following brief fixation in formalin gave good quantitative results, i.e., up to 1 microgram DNA/mg tissue were extracted. This yield was at least one order of magnitude higher than that obtained with tissue stored in formalin. However, paraffin-embedded neuropathological material was found to contain an as-yet-unidentified PCR inhibitor, and a deleterious effect of long-term fixation in unbuffered low-grade formalin was clearly detectable. Importantly, both paraffin-embedded tissue blocks and human brain that had been stored in formalin for many years yielded DNA sufficient for qualitative analysis. The implications of these findings for the use of neuropathological material in molecular genetic studies are discussed.

  11. Requirement of Rad5 for DNA Polymerase ζ-Dependent Translesion Synthesis in Saccharomyces cerevisiae

    Science.gov (United States)

    Pagès, Vincent; Bresson, Anne; Acharya, Narottam; Prakash, Satya; Fuchs, Robert P.; Prakash, Louise

    2008-01-01

    In yeast, Rad6–Rad18-dependent lesion bypass involves translesion synthesis (TLS) by DNA polymerases η or ζ or Rad5-dependent postreplication repair (PRR) in which error-free replication through the DNA lesion occurs by template switching. Rad5 functions in PRR via its two distinct activities—a ubiquitin ligase that promotes Mms2–Ubc13-mediated K63-linked polyubiquitination of PCNA at its lysine 164 residue and a DNA helicase that is specialized for replication fork regression. Both these activities are important for Rad5's ability to function in PRR. Here we provide evidence for the requirement of Rad5 in TLS mediated by Polζ. Using duplex plasmids carrying different site-specific DNA lesions—an abasic site, a cis–syn TT dimer, a (6-4) TT photoproduct, or a G-AAF adduct—we show that Rad5 is needed for Polζ-dependent TLS. Rad5 action in this role is likely to be structural, since neither the inactivation of its ubiquitin ligase activity nor the inactivation of its helicase activity impairs its role in TLS. PMID:18757916

  12. RNA polymerase motors on DNA track: effects of traffic congestion on RNA synthesis

    CERN Document Server

    Tripathi, Tripti

    2007-01-01

    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by a ssDNA. In some circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track. We refer to such collective movements of the RNAPs as RNAP traffic because of the similarities between the collective dynamics of the RNAPs on ssDNA track and that of vehicles in highway traffic. In this paper we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechano-chemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the ssDNA track. We also suggest novel experiments for testing o...

  13. Culture-Negative Endocarditis Diagnosed Using 16S DNA Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Stephen Duffett

    2012-01-01

    Full Text Available 16S DNA polymerase chain reaction (PCR is a molecular amplification technique that can be used to identify bacterial pathogens in culture-negative endocarditis. Bacterial DNA can be isolated from surgically excised valve tissue or from blood collected in EDTA vials. Use of this technique is particularly helpful in identifying the bacterial pathogen in cases of culture-negative endocarditis. A case involving a 48-year-old man who presented with severe aortic regurgitation and a four-month prodrome of low-grade fever is reported. Blood and valve tissue cultures following valve replacement were negative. A valve tissue sample was sent for investigation with 16S DNA PCR, which successfully identified Streptococcus salivarius and was interpreted as the true diagnosis. A review of the literature suggests that 16S DNA PCR from valve tissue is a more sensitive diagnostic test than culture. It is also extremely specific, based on a sequence match of at least 500 base pairs.

  14. Reprogramming the assembly of unmodified DNA with a small molecule

    Science.gov (United States)

    Avakyan, Nicole; Greschner, Andrea A.; Aldaye, Faisal; Serpell, Christopher J.; Toader, Violeta; Petitjean, Anne; Sleiman, Hanadi F.

    2016-04-01

    The ability of DNA to store and encode information arises from base pairing of the four-letter nucleobase code to form a double helix. Expanding this DNA ‘alphabet’ by synthetic incorporation of new bases can introduce new functionalities and enable the formation of novel nucleic acid structures. However, reprogramming the self-assembly of existing nucleobases presents an alternative route to expand the structural space and functionality of nucleic acids. Here we report the discovery that a small molecule, cyanuric acid, with three thymine-like faces, reprogrammes the assembly of unmodified poly(adenine) (poly(A)) into stable, long and abundant fibres with a unique internal structure. Poly(A) DNA, RNA and peptide nucleic acid (PNA) all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, which brings together poly(A) triplexes with a subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen-bonding molecules can be used to induce the assembly of nucleic acids in water, which leads to new structures from inexpensive and readily available materials.

  15. Bypass of a 5',8-cyclopurine-2'-deoxynucleoside by DNA polymerase β during DNA replication and base excision repair leads to nucleotide misinsertions and DNA strand breaks.

    Science.gov (United States)

    Jiang, Zhongliang; Xu, Meng; Lai, Yanhao; Laverde, Eduardo E; Terzidis, Michael A; Masi, Annalisa; Chatgilialoglu, Chryssostomos; Liu, Yuan

    2015-09-01

    5',8-Cyclopurine-2'-deoxynucleosides including 5',8-cyclo-dA (cdA) and 5',8-cyclo-dG (cdG) are induced by hydroxyl radicals resulting from oxidative stress such as ionizing radiation. 5',8-cyclopurine-2'-deoxynucleoside lesions are repaired by nucleotide excision repair with low efficiency, thereby leading to their accumulation in the human genome and lesion bypass by DNA polymerases during DNA replication and base excision repair (BER). In this study, for the first time, we discovered that DNA polymerase β (pol β) efficiently bypassed a 5'R-cdA, but inefficiently bypassed a 5'S-cdA during DNA replication and BER. We found that cell extracts from pol β wild-type mouse embryonic fibroblasts exhibited significant DNA synthesis activity in bypassing a cdA lesion located in replication and BER intermediates. However, pol β knock-out cell extracts exhibited little DNA synthesis to bypass the lesion. This indicates that pol β plays an important role in bypassing a cdA lesion during DNA replication and BER. Furthermore, we demonstrated that pol β inserted both a correct and incorrect nucleotide to bypass a cdA at a low concentration. Nucleotide misinsertion was significantly stimulated by a high concentration of pol β, indicating a mutagenic effect induced by pol β lesion bypass synthesis of a 5',8-cyclopurine-2'-deoxynucleoside. Moreover, we found that bypass of a 5'S-cdA by pol β generated an intermediate that failed to be extended by pol β, resulting in accumulation of single-strand DNA breaks. Our study provides the first evidence that pol β plays an important role in bypassing a 5',8-cyclo-dA during DNA replication and repair, as well as new insight into mutagenic effects and genome instability resulting from pol β bypassing of a cdA lesion.

  16. Effect of Aperiodicity on the Charge Transfer Through DNA Molecules

    Science.gov (United States)

    Ghosh, Angsula; Chaudhuri, Puspitapallab

    The effect of aperiodicity on the charge transfer process through DNA molecules is investigated using a tight-binding model. Single-stranded aperiodic Fibonacci polyGC and polyAT sequences along with aperiodic Rudin-Shapiro poly(GCAT) sequences are used in the study. Based on the tight-binding model, molecular orbital calculations of the DNA chains are performed and ionization potentials compared, as this might be relevant to understanding the charge transfer process. Charges migrate through the sequences in a multistep hopping process. Results for current conduction through aperiodic sequences are compared with those for the corresponding periodic sequences. We find that dinucleotide aperiodic Fibonacci sequences decrease the current while tetranucleotide aperiodic Rudin-Shapiro sequences increase the current when compared with the corresponding periodic sequences. The conductance in all cases decays exponentially as the sequence length increases.

  17. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips....... Consequently, the technique is sensitive to sequence variation without requiring enzymatic labeling or a restriction step. This technique may serve as the basis for a new mapping technology ideally suited for investigating the long-range structure of entire genomes extracted from single cells....

  18. Direct observation ofλ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    Institute of Scientific and Technical Information of China (English)

    杨凤云; 王凯歌; 孙聃; 赵伟; 王海青; 何鑫; 王归仁; 白晋涛

    2016-01-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fl uidic channels are impor-tant in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties ofλ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fl uorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value;(ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the infl uence of electro-osmosis fl ow. These new findings will theoretically guide the practical application of fl uidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules.

  19. L-Homoserylaminoethanol, a novel dipeptide alcohol inhibitor of eukaryotic DNA polymerase from a plant cultured cells, Nicotina tabacum L.

    Science.gov (United States)

    Kuriyama, Isoko; Asano, Naoki; Kato, Ikuo; Oshige, Masahiko; Sugino, Akio; Kadota, Yasuhiro; Kuchitsu, Kazuyuki; Yoshida, Hiromi; Sakaguchi, Kengo; Mizushina, Yoshiyuki

    2004-03-01

    We found a novel inhibitor specific to eukaryotic DNA polymerase epsilon(pol epsilon) from plant cultured cells, Nicotina tabacum L. The compound (compound 1) was a dipeptide alcohol, L-homoserylaminoethanol. The 50% inhibition of pol epsilon activity by the compound was 43.6 microg/mL, and it had almost no effect on the activities of the other eukaryotic DNA polymerases such as alpha, beta, gamma and delta, prokaryotic DNA polymerases, nor DNA metabolic enzymes such as human telomerase, human immunodeficiency virus type 1 reverse transcriptase, T7 RNA polymerase, human DNA topoisomerase I and II, T4 polynucleotide kinase and bovine deoxyribonuclease I. Kinetic studies showed that inhibition of pol epsilon by the compound was non-competitive with respect to both template-primer DNA and nucleotide substrate. We succeeded in chemically synthesizing the stereoisomers, L-homoserylaminoethanol and D-homoserylaminoethanol, and found both were effective to the same extent. The IC(50) values of L- and D-homoserylaminoethanols for pol epsilon were 42.0 and 41.5 microg/mL, respectively. This represents the second discovery of a pol epsilon-specific inhibitor, and the first report on a water-soluble peptide-like compound as the inhibitor, which is required in biochemical studies of pol epsilon.

  20. The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering.

    Directory of Open Access Journals (Sweden)

    Francisco M Iglesias

    2015-02-01

    Full Text Available DNA replication is a key process in living organisms. DNA polymerase α (Polα initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3 locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes.

  1. Role of a GAG hinge in the nucleotide-induced conformational change governing nucleotide specificity by T7 DNA polymerase.

    Science.gov (United States)

    Jin, Zhinan; Johnson, Kenneth A

    2011-01-14

    A nucleotide-induced change in DNA polymerase structure governs the kinetics of polymerization by high fidelity DNA polymerases. Mutation of a GAG hinge (G542A/G544A) in T7 DNA polymerase resulted in a 1000-fold slower rate of conformational change, which then limited the rate of correct nucleotide incorporation. Rates of misincorporation were comparable to that seen for wild-type enzyme so that the net effect of the mutation was a large decrease in fidelity. We demonstrate that a presumably modest change from glycine to alanine 20 Å from the active site can severely restrict the flexibility of the enzyme structure needed to recognize and incorporate correct substrates with high specificity. These results emphasize the importance of the substrate-induced conformational change in governing nucleotide selectivity by accelerating the incorporation of correct base pairs but not mismatches.

  2. Mutating Asn-666 to Glu in the O-helix region of the taq DNA polymerase gene.

    Science.gov (United States)

    Sadeghi, H Mir Mohammad; Rajaei, R; Moazen, F; Rabbani, M; Jafarian-Dehkordi, A

    2010-01-01

    Taq DNA polymerase is widely used in laboratories and for this reason many investigators have focused their attention on understanding the role of various regions and amino acids in this enzyme. O-helix is a part of taq polymerase suggested to play an important role in the enzyme fidelity. The influence of Asn666 in this helix on the enzyme function has never been investigated, and therefore by using nested PCR, a portion of taq DNA polymerase gene containing Asn666Glu mutation was amplified. This DNA was digested with Eco RI restriction enzyme to confirm the presence of Asn666Glu mutation. After digesting this product and the wild type taq-pET-15b plasmid with NheI and BamHI restriction enzymes, they were ligated and used for the transformation of E. coli DH5α competent cells. The obtained colonies were screened for the presence of the mutated taq polymerase gene using EcoRI, NdeI and BamHI restriction enzymes. In conclusion, with the use of the obtained recombinant plasmid it is possible to study the role of this amino acid on taq DNA polymerase function.

  3. Proofreading activity of DNA polymerase Pol2 mediates 3'-end processing during nonhomologous end joining in yeast.

    Directory of Open Access Journals (Sweden)

    Shun-Fu Tseng

    2008-04-01

    Full Text Available Genotoxic agents that cause double-strand breaks (DSBs often generate damage at the break termini. Processing enzymes, including nucleases and polymerases, must remove damaged bases and/or add new bases before completion of repair. Artemis is a nuclease involved in mammalian nonhomologous end joining (NHEJ, but in Saccharomyces cerevisiae the nucleases and polymerases involved in NHEJ pathways are poorly understood. Only Pol4 has been shown to fill the gap that may form by imprecise pairing of overhanging 3' DNA ends. We previously developed a chromosomal DSB assay in yeast to study factors involved in NHEJ. Here, we use this system to examine DNA polymerases required for NHEJ in yeast. We demonstrate that Pol2 is another major DNA polymerase involved in imprecise end joining. Pol1 modulates both imprecise end joining and more complex chromosomal rearrangements, and Pol3 is primarily involved in NHEJ-mediated chromosomal rearrangements. While Pol4 is the major polymerase to fill the gap that may form by imprecise pairing of overhanging 3' DNA ends, Pol2 is important for the recession of 3' flaps that can form during imprecise pairing. Indeed, a mutation in the 3'-5' exonuclease domain of Pol2 dramatically reduces the frequency of end joins formed with initial 3' flaps. Thus, Pol2 performs a key 3' end-processing step in NHEJ.

  4. A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands.

    Science.gov (United States)

    Johnson, Robert E; Klassen, Roland; Prakash, Louise; Prakash, Satya

    2015-07-16

    Genetic studies with S. cerevisiae Polδ (pol3-L612M) and Polε (pol2-M644G) mutant alleles, each of which display a higher rate for the generation of a specific mismatch, have led to the conclusion that Polε is the primary leading strand replicase and that Polδ is restricted to replicating the lagging strand template. Contrary to this widely accepted view, here we show that Polδ plays a major role in the replication of both DNA strands, and that the paucity of pol3-L612M-generated errors on the leading strand results from their more proficient removal. Thus, the apparent lack of Polδ contribution to leading strand replication is due to differential mismatch removal rather than differential mismatch generation. Altogether, our genetic studies with Pol3 and Pol2 mutator alleles support the conclusion that Polδ, and not Polε, is the major DNA polymerase for carrying out both leading and lagging DNA synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands

    Science.gov (United States)

    Prakash, Louise; Prakash, Satya

    2015-01-01

    SUMMARY Genetic studies with S. cerevisiae Polδ (pol3-L612M) and Polε (pol2-M644G) mutant alleles, each of which display a higher rate for the generation of a specific mismatch, have led to the conclusion that Polε is the primary leading strand replicase and that Polδ is restricted to replicating the lagging strand template. Contrary to this widely accepted view, here we show that Polδ plays a major role in the replication of both DNA strands, and that the paucity of pol3-L612M generated errors on the leading strand results from their more proficient removal. Thus, the apparent lack of Polδ contribution to leading strand replication is due to differential mismatch removal rather than differential mismatch generation. Altogether, our genetic studies with Pol3 and Pol2 mutator alleles support the conclusion that Polδ, and not Polε, is the major DNA polymerase for carrying out both leading and lagging DNA synthesis. PMID:26145172

  6. Nested polymerase chain reaction (PCR) targeting 16S rDNA for bacterial identification in empyema.

    Science.gov (United States)

    Prasad, Rajniti; Kumari, Chhaya; Das, B K; Nath, Gopal

    2014-05-01

    Empyema in children causes significant morbidity and mortality. However, identification of organisms is a major concern. To detect bacterial pathogens in pus specimens of children with empyema by 16S rDNA nested polymerase chain reaction (PCR) and correlate it with culture and sensitivity. Sixty-six children admitted to the paediatric ward with a diagnosis of empyema were enrolled prospectively. Aspirated pus was subjected to cytochemical examination, culture and sensitivity, and nested PCR targeting 16S rDNA using a universal eubacterial primer. Mean (SD) age was 5·8 (1·8) years (range 1-13). Analysis of aspirated pus demonstrated total leucocyte count >1000×10(6)/L, elevated protein (≧20 g/L) and decreased glucose (≤2·2 mmol/L) in 80·3%, 98·5% and 100%, respectively. Gram-positive cocci were detected in 29 (43·9%) and Gram-negative bacilli in two patients. Nested PCR for the presence of bacterial pathogens was positive in 50·0%, compared with 36·3% for culture. 16S rDNA PCR improves rates of detection of bacteria in pleural fluid, and can detect bacterial species in a single assay as well as identifying unusual and unexpected causal agents.

  7. Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System

    KAUST Repository

    Yamashita, Mami

    2017-05-08

    The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.

  8. Dynamic Conformational Change Regulates the Protein-DNA Recognition: An Investigation on Binding of a Y-Family Polymerase to Its Target DNA

    Science.gov (United States)

    Chu, Xiakun; Liu, Fei; Maxwell, Brian A.; Wang, Yong; Suo, Zucai; Wang, Haijun; Han, Wei; Wang, Jin

    2014-01-01

    Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4) during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates. PMID:25188490

  9. Insights into the error bypass of 1-Nitropyrene DNA adduct by DNA polymerase ι: A QM/MM study

    Science.gov (United States)

    Li, Yanwei; Bao, Lei; Zhang, Ruiming; Tang, Xiaowen; Zhang, Qingzhu; Wang, Wenxing

    2017-10-01

    The error bypass mechanism of DNA polymerase ι toward N-(deoxyguanosin-8-yl)-1-aminopyrene adduction was studied by using quantum mechanics/molecular mechanics method. The most favorable mechanism highlights three elementary steps: proton transfer from dC to dATP, phosphoryl transfer, and deprotonation of dAMP. The phosphoryl transfer step was found to be rate-determining. The calculated average barrier (23.8 kcal mol-1) is in accordance with the experimental value (21.5 kcal mol-1). Electrostatic influence analysis indicates that residues Asp126 and Lys207 significantly suppress the error bypass while Glu127 facilitates the process. These results highlight the origins of the mutagenicity of nitrated polycyclic aromatic hydrocarbons in molecular detail.

  10. A Micro Polymerase Chain Reaction Module for Integrated and Portable DNA Analysis Systems

    Directory of Open Access Journals (Sweden)

    Elisa Morganti

    2011-01-01

    Full Text Available This work deals with the design, fabrication, and thermal characterization of a disposable miniaturized Polymerase Chain Reaction (PCR module that will be integrated in a portable and fast DNA analysis system. It is composed of two independent parts: a silicon substrate with embedded heater and thermometers and a PDMS (PolyDiMethylSiloxane chamber reactor as disposable element; the contact between the two parts is assured by a mechanical clamping obtained using a Plastic Leaded Chip Carrier (PLCC. This PLCC is also useful, avoid the PCR mix evaporation during the thermal cycles. Finite Element Analysis was used to evaluate the thermal requirements of the device. The thermal behaviour of the device was characterized revealing that the temperature can be controlled with a precision of ±0.5°C. Different concentrations of carbon nanopowder were mixed to the PDMS curing agent in order to increase the PDMS thermal conductivity and so the temperature control accuracy.

  11. Clostridium difficile DNA polymerase IIIC: basis for activity of antibacterial compounds.

    Science.gov (United States)

    Torti, Andrea; Lossani, Andrea; Savi, Lida; Focher, Federico; Wright, George Edward; Brown, Neal Curtis; Xu, Wei-Chu

    2011-10-01

    Based on the finding that aerobic Gram-positive antibacterials that inhibit DNA polymerase IIIC (pol IIIC) were potent inhibitors of the growth of anaerobic Clostridium difficile (CD) strains, we chose to clone and express the gene for pol IIIC from this organism. The properties of the recombinant enzyme are similar to those of related pol IIICs from Gram-positive aerobes, e.g. B. subtilis. Inhibitors of the CD enzyme also inhibited B. subtilis pol IIIC, and were competitive with respect to the cognate substrate 2'-deoxyguanosine 5'-triphosphate (dGTP). Significantly, several of these inhibitors of the CD pol IIIC had potent activity against the growth of CD clinical isolates in culture.

  12. [Downregulation of Human Adenovirus DNA Polymerase Gene by Modified siRNAs].

    Science.gov (United States)

    Nikitenko, N A; Speiseder, T; Chernolovskaya, E L; Zenkova, M A; Dobner, T; Prassolov, V S

    2016-01-01

    Human adenoviruses, in particular D8, D19, and D37, cause ocular infections. Currently, there is no available causally directed treatment, which efficiently counteracts adenoviral infectious diseases. In our previous work, we showed that gene silencing by means of RNA interference is an effective approach for downregulation of human species D adenoviruses replication. In this study, we compared the biological activity of siRNAs and their modified analogs targeting human species D adenoviruses DNA polymerase. We found that one of selectively 2'-O-methyl modified siRNAs mediates stable and long-lasting suppression of the target gene (12 days post transfection). We suppose that this siRNA can be used as a potential therapeutic agent against human species D adenoviruses.

  13. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication.

    Science.gov (United States)

    Langston, Lance D; Zhang, Dan; Yurieva, Olga; Georgescu, Roxana E; Finkelstein, Jeff; Yao, Nina Y; Indiani, Chiara; O'Donnell, Mike E

    2014-10-28

    DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG-Pol ε complex and showed that it is a functional polymerase-helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.

  14. Inhibitory effect of monogalactosyldiacylglycerol, extracted from spinach using supercritical CO2, on mammalian DNA polymerase activity.

    Science.gov (United States)

    Iijima, Hiroshi; Musumi, Keiichi; Hada, Takahiko; Maeda, Naoki; Yonezawa, Yuko; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2006-03-08

    We investigated the effective extraction of monogalactosyldiacylglycerol (MGDG) from dried spinach (Spinacia oleracea) using supercritical fluid carbon dioxide (SC-CO(2)) with a modifier/entrainer. The yield of MGDG in the SC-CO(2) extract was not influenced by increasing temperature at a constant pressure, although the total extract yield was decreased. The total extract yield and MGDG yield in the extract from commercially purchased spinach (unknown subspecies), were greatly influenced by lower pressure. In a modifier (i.e., ethanol) concentration range of 2.5-20%, both the extract and MGDG yield increased as the ethanol concentration rose. The highest total extract yield (69.5 mg/g of spinach) and a good MGDG yield (16.3 mg/g of spinach) were obtained at 80 degrees C, 25 MPa, and 20% ethanol. The highest MGDG concentration (76.0% in the extract) was obtained at 80 degrees C, 25 MPa, and 2.5% ethanol, although the total extract yield under these conditions was low (5.2 mg/g of spinach). The optimal conditions for the extraction of MGDG were 80 degrees C, 20 MPa, and 10% ethanol. Of the 11 subspecies of spinach tested under these conditions, "Ujyou" had the highest concentration of MGDG. The total extract yield and MGDG concentration of Ujyou were 20.4 mg of the extract/g of spinach and 70.5%, respectively. The concentration of MGDG was higher in the SC-CO(2) extract than in the extract obtained using solvents such as methanol and n-hexane. The extract of Ujyou, which was the optimal subspecies for the extraction of MGDG, inhibited the activity of calf DNA polymerase alpha with IC(50) values of 145 microg/mL but was not effective against DNA polymerase beta.

  15. A novel thermostable polymerase for RNA and DNA Loop-mediated isothermal amplification (LAMP

    Directory of Open Access Journals (Sweden)

    Yogesh eChander

    2014-08-01

    Full Text Available Meeting the goal of providing point of care (POC tests for molecular detection of pathogens in low resource settings places stringent demands on all aspects of the technology. OmniAmp DNA polymerase (Pol is a thermostable viral enzyme that enables true POC use in clinics or in field by overcoming important barriers to isothermal amplification. In this paper, we describe the multiple advantages of OmniAmp Pol as an isothermal amplification enzyme and provide examples of its use in loop-mediated isothermal amplification (LAMP for pathogen detection. The inherent reverse transcriptase activity of OmniAmp Pol allows single enzyme detection of RNA targets in RT-LAMP. Common methods of nucleic acid amplification are highly susceptible to sample contaminants, necessitating elaborate nucleic acid purification protocols that are incompatible with POC or field use. OmniAmp Pol was found to be less inhibited by whole blood components typical in certain crude sample preparations . Moreover, the thermostability of the enzyme compared to alternative DNA polymerases (Bst and reverse transcriptases allows pretreatment of complete reaction mixes immediately prior to amplification, which facilitates amplification of highly structured genome regions. Compared to Bst, OmniAmp Pol has a faster time to result, particularly with more dilute templates. Molecular diagnostics in field settings can be challenging due to the lack of refrigeration. The stability of OmniAmp Pol is compatible with a dry format that enables long term storage at ambient temperatures. A final requirement for field operability is compatibility with either commonly available instruments or, in other cases, a simple, inexpensive, portable detection mode requiring minimal training or power. Detection of amplification products is shown using lateral flow strips and analysis on a real-time PCR instrument. Results of this study show that OmniAmp Pol is ideally suited for low resource molecular

  16. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene

    Directory of Open Access Journals (Sweden)

    Montgomery Roy D

    2006-04-01

    Full Text Available Abstract Background Many viral pathogens are poorly characterized, are difficult to culture or reagents are lacking for confirmatory diagnoses. We have developed and tested a robust assay for detecting and characterizing large DNA viruses and adenoviruses. The assay is based on the use of degenerate PCR to target a gene common to these viruses, the DNA polymerase, and sequencing the products. Results We evaluated our method by applying it to fowl adenovirus isolates, catfish herpesvirus isolates, and largemouth bass ranavirus (iridovirus from cell culture and lymphocystis disease virus (iridovirus and avian poxvirus from tissue. All viruses with the exception of avian poxvirus produced the expected product. After optimization of extraction procedures, and after designing and applying an additional primer we were able to produce polymerase gene product from the avian poxvirus genome. The sequence data that we obtained demonstrated the simplicity and potential of the method for routine use in characterizing large DNA viruses. The adenovirus samples were demonstrated to represent 2 types of fowl adenovirus, fowl adenovirus 1 and an uncharacterized avian adenovirus most similar to fowl adenovirus 9. The herpesvirus isolate from blue catfish was shown to be similar to channel catfish virus (Ictalurid herpesvirus 1. The case isolate of largemouth bass ranavirus was shown to exactly match the type specimen and both were similar to tiger frog virus and frog virus 3. The lymphocystis disease virus isolate from largemouth bass was shown to be related but distinct from the two previously characterized lymphocystis disease virus isolates suggesting that it may represent a distinct lymphocystis disease virus species. Conclusion The method developed is rapid and broadly applicable to cell culture isolates and infected tissues. Targeting a specific gene for in the large DNA viruses and adenoviruses provide a common reference for grouping the newly identified

  17. Synthesis of deoxynucleoside triphosphates that include proline, urea, or sulfonamide groups and their polymerase incorporation into DNA.

    Science.gov (United States)

    Hollenstein, Marcel

    2012-10-15

    To expand the chemical array available for DNA sequences in the context of in vitro selection, I present herein the synthesis of five nucleoside triphosphate analogues containing side chains capable of organocatalysis. The synthesis involved the coupling of L-proline-containing residues (dU(tP)TP and dU(cP)TP), a dipeptide (dU(FP)TP), a urea derivative (dU(Bpu)TP), and a sulfamide residue (dU(Bs)TP) to a suitably protected common intermediate, followed by triphosphorylation. These modified dNTPs were shown to be excellent substrates for the Vent (exo(-)) and Pwo DNA polymerases, as well as the Klenow fragment of E. coli DNA polymerase I, although they were only acceptable substrates for the 9°N(m) polymerase. All of the modified dNTPs, with the exception of dU(Bpu)TP, were readily incorporated into DNA by the polymerase chain reaction (PCR). Modified oligonucleotides efficiently served as templates for PCR for the regeneration of unmodified DNA. Thermal denaturation experiments showed that these modifications are tolerated in the major groove. Overall, these heavily modified dNTPs are excellent candidates for SELEX.

  18. Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (η) in pathogenic yeast Candida albicans

    Science.gov (United States)

    Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman

    2017-01-01

    Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π-π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.

  19. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.

    Science.gov (United States)

    Endo, Masayuki; Sugiyama, Hiroshi

    2014-06-17

    CONSPECTUS: Direct imaging of molecular motions is one of the most fundamental issues for elucidating the physical properties of individual molecules and their reaction mechanisms. Atomic force microscopy (AFM) enables direct molecular imaging, especially for biomolecules in the physiological environment. Because AFM can visualize the molecules at nanometer-scale spatial resolution, a versatile observation scaffold is needed for the precise imaging of molecule interactions in the reactions. The emergence of DNA origami technology allows the precise placement of desired molecules in the designed nanostructures and enables molecules to be detected at the single-molecule level. In our study, the DNA origami system was applied to visualize the detailed motions of target molecules in reactions using high-speed AFM (HS-AFM), which enables the analysis of dynamic motions of biomolecules in a subsecond time resolution. In this system, biochemical properties such as the placement of various double-stranded DNAs (dsDNAs) containing unrestricted DNA sequences, modified nucleosides, and chemical functions can be incorporated. From a physical point of view, the tension and rotation of dsDNAs can be controlled by placement into the DNA nanostructures. From a topological point of view, the orientations of dsDNAs and various shapes of dsDNAs including Holliday junctions can be incorporated for studies on reaction mechanisms. In this Account, we describe the combination of the DNA origami system and HS-AFM for imaging various biochemical reactions including enzymatic reactions and DNA structural changes. To observe the behaviors and reactions of DNA methyltransferase and DNA repair enzymes, the substrate dsDNAs were incorporated into the cavity of the DNA frame, and the enzymes that bound to the target dsDNA were observed using HS-AFM. DNA recombination was also observed using the recombination substrates and Holliday junction intermediates placed in the DNA frame, and the

  20. Computational Evaluation of Nucleotide Insertion Opposite Expanded and Widened DNA by the Translesion Synthesis Polymerase Dpo4.

    Science.gov (United States)

    Albrecht, Laura; Wilson, Katie A; Wetmore, Stacey D

    2016-06-23

    Expanded (x) and widened (y) deoxyribose nucleic acids (DNA) have an extra benzene ring incorporated either horizontally (xDNA) or vertically (yDNA) between a natural pyrimidine base and the deoxyribose, or between the 5- and 6-membered rings of a natural purine. Far-reaching applications for (x,y)DNA include nucleic acid probes and extending the natural genetic code. Since modified nucleobases must encode information that can be passed to the next generation in order to be a useful extension of the genetic code, the ability of translesion (bypass) polymerases to replicate modified bases is an active area of research. The common model bypass polymerase DNA polymerase IV (Dpo4) has been previously shown to successfully replicate and extend past a single modified nucleobase on a template DNA strand. In the current study, molecular dynamics (MD) simulations are used to evaluate the accommodation of expanded/widened nucleobases in the Dpo4 active site, providing the first structural information on the replication of (x,y)DNA. Our results indicate that the Dpo4 catalytic (palm) domain is not significantly impacted by the (x,y)DNA bases. Instead, the template strand is displaced to accommodate the increased C1'-C1' base-pair distance. The structural insights unveiled in the present work not only increase our fundamental understanding of Dpo4 replication, but also reveal the process by which Dpo4 replicates (x,y)DNA, and thereby will contribute to the optimization of high fidelity and efficient polymerases for the replication of modified nucleobases.

  1. The Second Subunit of DNA Polymerase Delta Is Required for Genomic Stability and Epigenetic Regulation1[OPEN

    Science.gov (United States)

    Cheng, Jinkui; Lai, Jinsheng; Gong, Zhizhong

    2016-01-01

    DNA polymerase δ plays crucial roles in DNA repair and replication as well as maintaining genomic stability. However, the function of POLD2, the second small subunit of DNA polymerase δ, has not been characterized yet in Arabidopsis (Arabidopsis thaliana). During a genetic screen for release of transcriptional gene silencing, we identified a mutation in POLD2. Whole-genome bisulfite sequencing indicated that POLD2 is not involved in the regulation of DNA methylation. POLD2 genetically interacts with Ataxia Telangiectasia-mutated and Rad3-related and DNA polymerase α. The pold2-1 mutant exhibits genomic instability with a high frequency of homologous recombination. It also exhibits hypersensitivity to DNA-damaging reagents and short telomere length. Whole-genome chromatin immunoprecipitation sequencing and RNA sequencing analyses suggest that pold2-1 changes H3K27me3 and H3K4me3 modifications, and these changes are correlated with the gene expression levels. Our study suggests that POLD2 is required for maintaining genome integrity and properly establishing the epigenetic markers during DNA replication to modulate gene expression. PMID:27208288

  2. Single molecule analysis of Trypanosoma brucei DNA replication dynamics.

    Science.gov (United States)

    Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina

    2015-03-11

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated.

  3. DNA polymerase kappa from Trypanosoma cruzi localizes to the mitochondria, bypasses 8-oxoguanine lesions and performs DNA synthesis in a recombination intermediate.

    Science.gov (United States)

    Rajão, M A; Passos-Silva, D G; DaRocha, W D; Franco, G R; Macedo, A M; Pena, S D J; Teixeira, S M; Machado, C R

    2009-01-01

    DNA polymerase kappa (Pol kappa) is a low-fidelity polymerase that has the ability to bypass several types of lesions. The biological role of this enzyme, a member of the DinB subfamily of Y-family DNA polymerases, has remained elusive. In this report, we studied one of the two copies of Pol kappa from the protozoan Trypanosoma cruzi (TcPol kappa). The role of this TcPol kappa copy was investigated by analysing its subcellular localization, its activities in vitro, and performing experiments with parasites that overexpress this polymerase. The TcPOLK sequence has the N-terminal extension which is present only in eukaryotic DinB members, but its C-terminal region is more similar to prokaryotic and archaeal counterparts since it lacks C(2)HC motifs and PCNA interaction domain. Our results indicate that in contrast to its previously described orthologues, this polymerase is localized to mitochondria. The overexpression of TcPOLK increases T. cruzi resistance to hydrogen peroxide, and in vitro polymerization assays revealed that TcPol kappa efficiently bypasses 8-oxoguanine lesions. Remarkably, our results also demonstrate that the DinB subfamily of polymerases can participate in homologous recombination, based on our findings that TcPol kappa increases T. cruzi resistance to high doses of gamma irradiation and zeocin and can catalyse DNA synthesis within recombination intermediates.

  4. NSC666715 and Its Analogs Inhibit Strand-Displacement Activity of DNA Polymerase β and Potentiate Temozolomide-Induced DNA Damage, Senescence and Apoptosis in Colorectal Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Aruna S Jaiswal

    Full Text Available Recently approved chemotherapeutic agents to treat colorectal cancer (CRC have made some impact; however, there is an urgent need for newer targeted agents and strategies to circumvent CRC growth and metastasis. CRC frequently exhibits natural resistance to chemotherapy and those who do respond initially later acquire drug resistance. A mechanism to potentially sensitize CRC cells is by blocking the DNA polymerase β (Pol-β activity. Temozolomide (TMZ, an alkylating agent, and other DNA-interacting agents exert DNA damage primarily repaired by a Pol-β-directed base excision repair (BER pathway. In previous studies, we used structure-based molecular docking of Pol-β and identified a potent small molecule inhibitor (NSC666715. In the present study, we have determined the mechanism by which NSC666715 and its analogs block Fen1-induced strand-displacement activity of Pol-β-directed LP-BER, cause apurinic/apyrimidinic (AP site accumulation and induce S-phase cell cycle arrest. Induction of S-phase cell cycle arrest leads to senescence and apoptosis of CRC cells through the p53/p21 pathway. Our initial findings also show a 10-fold reduction of the IC50 of TMZ when combined with NSC666715. These results provide a guide for the development of a target-defined strategy for CRC chemotherapy that will be based on the mechanisms of action of NSC666715 and TMZ. This combination strategy can be used as a framework to further reduce the TMZ dosages and resistance in CRC patients.

  5. In vitro effect of aflatoxin B1 on the transcriptional activity of DNA template, chromatin and soluble DNA-dependent RNA polymerases in buffalo liver.

    Science.gov (United States)

    Mashaly, R I; Habib, S L; Salem, M H; el Deeb, S A; Safwat, M M; Sarhan, F

    1988-04-01

    The effect of aflatoxin B1 on the DNA template and DNA-dependent RNA polymerases in buffalo liver was studied. Aflatoxin B1 inhibited both Mg2+- and Mn2+-activated RNA polymerases in a dose-dependent manner. At 10 micrograms the inhibition of both enzymes was almost complete. The inhibitory effect on the solubilized enzymes was higher than the chromatin-bound, suggesting a direct effect at the enzyme level. On the other hand, incubating DNA or deoxyribonucleoprotein (DNP) with 2 micrograms aflatoxin reduces its transcriptional capacity with a greater effect on the Mg2+-activated RNA polymerase than the Mn2+-activated enzyme. These results suggest that aflatoxin B1 inhibits in vitro transcription in buffalo liver at both enzyme and template levels.

  6. Potent host-directed small-molecule inhibitors of myxovirus RNA-dependent RNA-polymerases.

    Directory of Open Access Journals (Sweden)

    Stefanie A Krumm

    Full Text Available Therapeutic targeting of host cell factors required for virus replication rather than of pathogen components opens new perspectives to counteract virus infections. Anticipated advantages of this approach include a heightened barrier against the development of viral resistance and a broadened pathogen target spectrum. Myxoviruses are predominantly associated with acute disease and thus are particularly attractive for this approach since treatment time can be kept limited. To identify inhibitor candidates, we have analyzed hit compounds that emerged from a large-scale high-throughput screen for their ability to block replication of members of both the orthomyxovirus and paramyxovirus families. This has returned a compound class with broad anti-viral activity including potent inhibition of different influenza virus and paramyxovirus strains. After hit-to-lead chemistry, inhibitory concentrations are in the nanomolar range in the context of immortalized cell lines and human PBMCs. The compound shows high metabolic stability when exposed to human S-9 hepatocyte subcellular fractions. Antiviral activity is host-cell species specific and most pronounced in cells of higher mammalian origin, supporting a host-cell target. While the compound induces a temporary cell cycle arrest, host mRNA and protein biosynthesis are largely unaffected and treated cells maintain full metabolic activity. Viral replication is blocked at a post-entry step and resembles the inhibition profile of a known inhibitor of viral RNA-dependent RNA-polymerase (RdRp activity. Direct assessment of RdRp activity in the presence of the reagent reveals strong inhibition both in the context of viral infection and in reporter-based minireplicon assays. In toto, we have identified a compound class with broad viral target range that blocks host factors required for viral RdRp activity. Viral adaptation attempts did not induce resistance after prolonged exposure, in contrast to rapid

  7. Genotyping the hepatitis B virus with a fragment of the HBV DNA polymerase gene in Shenyang, China

    Directory of Open Access Journals (Sweden)

    Juan Feng

    2011-06-01

    Full Text Available Abstract The hepatitis B virus (HBV has been classified into eight genotypes (A-H based on intergenotypic divergence of at least 8% in the complete nucleotide sequence or more than 4% in the S gene. To facilitate the investigation of the relationship between the efficacy of drug treatment and the mutation with specific genotype of HBV, we have established a new genotyping strategy based on a fragment of the HBV DNA polymerase gene. Pairwise sequence and phylogenetic analyses were performed using CLUSTAL V (DNASTAR on the eight (A-H standard full-length nucleotide sequences of HBV DNA from GenBank (NCBI and the corresponding semi-nested PCR products from the HBV DNA polymerase gene. The differences in the semi-nested PCR fragments of the polymerase genes among genotypes A through F were greater than 4%, which is consistent with the intergenotypic divergence of at least 4% in HBV DNA S gene sequences. Genotyping using the semi-nested PCR products of the DNA polymerase genes revealed that only genotypes B, C, and D were present in the 50 cases, from Shenyang, China, with a distribution of 11 cases (22%, 25 cases (50%, and 14 cases (28% respectively. These results demonstrate that our new genotyping method utilizing a fragment of the HBV DNA polymerase gene is valid and can be employed as a general genotyping strategy in areas with prevalent HBV genotypes A through F. In Shenyang, China, genotypes C, B, and D were identified with this new genotyping method, and genotype C was demonstrated to be the dominant genotype.

  8. CSI-FID: high throughput label-free detection of DNA binding molecules.

    Science.gov (United States)

    Hauschild, Karl E; Stover, James S; Boger, Dale L; Ansari, Aseem Z

    2009-07-15

    Determining the sequence specifity of DNA binding molecules is a non-trivial task. Here we describe the development of a platform for assaying the sequence specificity of DNA ligands using label free detection on high density DNA microarrays. This is achieved by combining Cognate Site Identification (CSI) with Fluorescence Intercalation Displacement (FID) to create CSI-FID. We use the well-studied small molecule DNA ligand netropsin to develop this high throughput platform. Analysis of the DNA binding properties of protein- and small molecule-based libraries with CSI-FID will advance the development of genome-anchored molecules for therapeutic purposes.

  9. A comparison of three DNA extractive procedures with Leptospira for polymerase chain reaction analysis

    Directory of Open Access Journals (Sweden)

    Veloso IF

    2000-01-01

    Full Text Available Three DNA extraction methods were evaluated in this study: proteinase K followed by phenol-chloroform; a plant proteinase (E6870 followed by phenol-chloroform; and boiling of leptospires in 0.1 mM Tris, pH 7.0 for 10 min at 100°C, with no phenol treatment. Every strain treated with proteinase K or E6870 afforded positive polymerase chain reaction (PCR reaction. On the other hand, from five strains extracted by the boiling method, three did not feature the 849 bp band characteristic in Leptospira. We also evaluated by RAPD-PCR, DNAs from serovars isolated with proteinase K and proteinase 6870 with primers B11/B12. Each of the DNA samples provided PCR profiles in agreement with previous data. Moreover, the results with E6870 showed less background non-specific amplification, suggesting that removal of nucleases was more efficient with E6870. The limit for detection by PCR using Lep13/Lep14 was determined to be 10(2 leptospira, using the silver stain procedure.

  10. A power-efficient thermocycler based on induction heating for DNA amplification by polymerase chain reaction

    Science.gov (United States)

    Pal, Debjani; Venkataraman, V.; Mohan, K. Naga; Chandra, H. Sharat; Natarajan, Vasant

    2004-09-01

    We have built a thermocycler based on the principles of induction heating for polymerase chain reaction (PCR) of target sequences in DNA samples of interest. The cycler has an average heating rate of ˜0.8 °C/s and a cooling rate of ˜0.5 °C/s, and typically takes ˜4 h to complete a 40-cycle PCR protocol. It is power-efficient (˜6 W per reaction tube), micro-processor controlled, and can be adapted for battery operation. Using this instrument, we have successfully amplified a 350 bp segment from a plasmid and SRY, the human sex determining gene, which occurs as a single-copy sequence in genomic DNA of human males. The PCR products from this thermocycler are comparable to those obtained by the use of commercially available machines. Its easy front-end operation, low-power design, portability and low cost makes it suitable for diagnostic field applications of PCR.

  11. Thermostable DNA polymerase from a viral metagenome is a potent RT-PCR enzyme.

    Directory of Open Access Journals (Sweden)

    Michael J Moser

    Full Text Available Viral metagenomic libraries are a promising but previously untapped source of new reagent enzymes. Deep sequencing and functional screening of viral metagenomic DNA from a near-boiling thermal pool identified clones expressing thermostable DNA polymerase (Pol activity. Among these, 3173 Pol demonstrated both high thermostability and innate reverse transcriptase (RT activity. We describe the biochemistry of 3173 Pol and report its use in single-enzyme reverse transcription PCR (RT-PCR. Wild-type 3173 Pol contains a proofreading 3'-5' exonuclease domain that confers high fidelity in PCR. An easier-to-use exonuclease-deficient derivative was incorporated into a PyroScript RT-PCR master mix and compared to one-enzyme (Tth and two-enzyme (MMLV RT/Taq RT-PCR systems for quantitative detection of MS2 RNA, influenza A RNA, and mRNA targets. Specificity and sensitivity of 3173 Pol-based RT-PCR were higher than Tth Pol and comparable to three common two-enzyme systems. The performance and simplified set-up make this enzyme a potential alternative for research and molecular diagnostics.

  12. Modulation of Pleurodeles waltl DNA polymerase mu expression by extreme conditions encountered during spaceflight.

    Directory of Open Access Journals (Sweden)

    Véronique Schenten

    Full Text Available DNA polymerase µ is involved in DNA repair, V(DJ recombination and likely somatic hypermutation of immunoglobulin genes. Our previous studies demonstrated that spaceflight conditions affect immunoglobulin gene expression and somatic hypermutation frequency. Consequently, we questioned whether Polμ expression could also be affected. To address this question, we characterized Polμ of the Iberian ribbed newt Pleurodeles waltl and exposed embryos of that species to spaceflight conditions or to environmental modifications corresponding to those encountered in the International Space Station. We noted a robust expression of Polμ mRNA during early ontogenesis and in the testis, suggesting that Polμ is involved in genomic stability. Full-length Polμ transcripts are 8-9 times more abundant in P. waltl than in humans and mice, thereby providing an explanation for the somatic hypermutation predilection of G and C bases in amphibians. Polμ transcription decreases after 10 days of development in space and radiation seem primarily involved in this down-regulation. However, space radiation, alone or in combination with a perturbation of the circadian rhythm, did not affect Polμ protein levels and did not induce protein oxidation, showing the limited impact of radiation encountered during a 10-day stay in the International Space Station.

  13. Small circular DNA molecules act as rigid motifs to build DNA nanotubes.

    Science.gov (United States)

    Zheng, Hongning; Xiao, Minyu; Yan, Qin; Ma, Yinzhou; Xiao, Shou-Jun

    2014-07-23

    Small circular DNA molecules with designed lengths, for example 64 and 96 nucleotides (nt), after hybridization with a few 32-nt staple strands respectively, can act as rigid motifs for the construction of DNA nanotubes with excellent uniformity in ring diameter. Unlike most native DNA nanotubes, which consist of longitudinal double helices, nanotubes assembled from circular DNAs are constructed from lateral double helices. Of the five types of DNA nanotubes designed here, four are built by alternating two different rings of the same ring size, while one is composed of all the same 96-nt rings. Nanotubes constructed from the same 96-nt rings are 10-100 times shorter than those constructed from two different 96-nt rings, because there are fewer hinge joints on the rings.

  14. Detection of Mycobacterium tuberculosis DNA in clinical samples by using a simple lysis method and polymerase chain reaction.

    Science.gov (United States)

    Folgueira, L; Delgado, R; Palenque, E; Noriega, A R

    1993-01-01

    We have evaluated the polymerase chain reaction for detection of Mycobacterium tuberculosis in clinical samples from patients with tuberculous infection. Two simple methods for mycobacterial DNA release have been compared: sonication and lysis with nonionic detergents and proteinase K. The more effective method was the enzymatic technique. By using this protocol with 75 specimens we detected M. tuberculosis DNA in all of the samples, whereas only 48 and 71 samples were positive by acid-fast staining and culture, respectively. Images PMID:8463383

  15. Structure and associated DNA-helicase activity of a general transcription initiation factor that binds to RNA polymerase II.

    Science.gov (United States)

    Sopta, M; Burton, Z F; Greenblatt, J

    1989-10-05

    RAP30/74 is a heteromeric general transcription initiation factor which binds to RNA polymerase II. Here we report that preparations of RAP30/74 contain an ATP-dependent DNA helicase whose probable function is to melt the DNA at transcriptional start sites. The sequence of the RAP30 subunit of RAP30/74 indicates that RAP30 may be distantly related to bacterial sigma factors.

  16. Cooperative motion of a key positively charged residue and metal ions for DNA replication catalyzed by human DNA Polymerase-η.

    Science.gov (United States)

    Genna, Vito; Gaspari, Roberto; Dal Peraro, Matteo; De Vivo, Marco

    2016-04-07

    Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases.

  17. Comparison of specific binding sites for Escherichia coli RNA polymerase with naturally occurring hairpin regions in single-stranded DNA of coliphage M13. [Aspergillus oryzae

    Energy Technology Data Exchange (ETDEWEB)

    Niyogi, S.K.; Mitra, S.

    1978-08-25

    Escherichia coli RNA polymerase binds specifically to the single-stranded circular DNA of coliphage M13 in the presence of a saturating concentration of the bacterial DNA binding protein presumably as an essential step in the synthesis of the RNA primer required for synthesizing the complementary DNA strand in parental replicative-form DNA. The RNA polymerase-protected DNA regions were isolated after extensive digestion with pancreatic DNase, S1 endonuclease of Aspergillus oryzae, and exonuclease I of E. coli. The physicochemical properties of the RNA polymerase-protected segments (called PI and PII) were compared with those of the naturally occurring hairpin regions.

  18. One-end immobilization of individual DNA molecules on a functional hydrophobic glass surface.

    Science.gov (United States)

    Matsuura, Shun-ichi; Kurita, Hirofumi; Nakano, Michihiko; Komatsu, Jun; Takashima, Kazunori; Katsura, Shinji; Mizuno, Akira

    2002-12-01

    We demonstrate an effective method for DNA immobilization on a hydrophobic glass surface. The new DNA immobilizing technique is extremely simple compared with conventional techniques that require heterobifunctional crosslinking reagent between DNA and substrate surface that are both modified chemically. In the first process, a coverslip was treated with dichlorodimethylsilane resulting in hydrophobic surface. lambda DNA molecules were ligated with 3'-terminus disulfide-modified 14 mer oligonucleotides at one cohesive end. After reduction of the disulfide to sulfhydryl (thiol) groups the resulting thiol-modified lambda DNA molecules were reacted on silanized coverslip. Fluorescent observation showed that the thiol-modified lambda DNA molecules were anchored specifically to the hydrophobic surface at one terminus, although non-specific binding of the DNA molecules was suppressed. It was observed that the one-end-attached DNA molecule was bound firmly to the surface and stretched reversibly in one direction when a d.c. electric field was applied.

  19. Extraction of DNA from exfoliative cytology specimens and its suitability for analysis by the polymerase chain reaction.

    Science.gov (United States)

    Jackson, D P; Payne, J; Bell, S; Lewis, F A; Taylor, G R; Peel, K R; Sutton, J; Quirke, P

    1990-01-01

    The extraction of DNA from archival exfoliative cytology samples would allow the molecular biological analysis of this readily available material using the polymerase chain reaction (PCR). We have quantitatively and qualitatively studied the extraction of DNA from a variety of cytological preparations. For both fresh and archival cervical smears, overnight incubation with proteinase K produces high yields of high molecular weight DNA, but simply boiling the samples produces DNA suitable for PCR amplification of a single copy gene. Increasing the proteinase K incubation to several days allows the extraction of DNA from fixed and stained archival cytology slides from a variety of sites. The extracted DNA was again suitable for PCR analysis. Fresh and archival cytological material can be utilized for molecular biological study of disease processes using PCR. Archival cytological material is probably the best source of DNA and RNA after stored frozen tissue.

  20. Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli.

    Science.gov (United States)

    Hu, Jian-Hua; Wang, Feng; Liu, Chun-Zhao

    2015-04-01

    An efficient induction strategy that consisted of multiple additions of small doses of isopropyl-β-D-thiogalactopyranoside (IPTG) in the early cell growth phase was developed for enhancing Pfu DNA polymerase production in Escherichia coli. In comparison to the most commonly used method of a single induction of 1 mM IPTG, the promising induction strategy resulted in an increase in the Pfu activity of 13.5% in shake flasks, while simultaneously decreasing the dose of IPTG by nearly half. An analysis of the intracellular IPTG concentrations indicated that the cells need to maintain an optimum intracellular IPTG concentration after 6 h for efficient Pfu DNA polymerase production. A significant increase in the Pfu DNA polymerase activity of 31.5% under the controlled dissolved oxygen concentration of 30% in a 5 L fermentor was achieved using the multiple IPTG induction strategy in comparison with the single IPTG induction. The induction strategy using multiple inputs of IPTG also avoided over accumulation of IPTG and reduced the cost of Pfu DNA polymerase production.

  1. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    Energy Technology Data Exchange (ETDEWEB)

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  2. AraUTP-Affi-Gel 10: a novel affinity absorbent for the specific purification of DNA polymerase alpha-primase.

    Science.gov (United States)

    Izuta, S; Saneyoshi, M

    1988-10-01

    For the specific purification of eukaryotic DNA-dependent DNA polymerase alpha, we prepared two novel affinity resins bearing 5-(E)-(4-aminostyryl) araUTP as a ligand. One of them was araUTP-Sepharose 4B which was coupled directly with the ligand and the other was araUTP-Affi-Gel 10 which was coupled with the ligand through a spacer. No DNA polymerase alpha-primase activity from cherry salmon (Oncorhynchus masou) testes was bound on the araUTP-Sepharose 4B in all cases examined. On the other hand, the araUTP-Affi-Gel 10 retains this enzyme activity when poly(dA) or poly(dA)-oligo(dT)12-18 is present. The retained enzyme activity was sharply eluted around 100-mM KCl concentrations as a single peak, and this fraction showed a specific activity of about 170,000 units/mg as alpha-polymerase activity. The highly purified DNA polymerase alpha-primase isolated using the araUTP-Affi-Gel 10 contained only three polypeptides, which showed Mr values of 120,000, 62,000, and 58,000, respectively, as judged using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  3. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence.

    Science.gov (United States)

    Gawel, Damian; Seed, Patrick C

    2011-01-01

    Uropathogenic Escherichia coli (UPEC) produces ~80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ~100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress.

  4. Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature.

    Science.gov (United States)

    Sakofsky, Cynthia J; Foster, Patricia L; Grogan, Dennis W

    2012-04-01

    The intrinsically thermostable Y-family DNA polymerases of Sulfolobus spp. have revealed detailed three-dimensional structure and catalytic mechanisms of trans-lesion DNA polymerases, yet their functions in maintaining their native genomes remain largely unexplored. To identify functions of the Y-family DNA polymerase Dbh in replicating the Sulfolobus genome under extreme conditions, we disrupted the dbh gene in Sulfolobus acidocaldarius and characterized the resulting mutant strains phenotypically. Disruption of dbh did not cause any obvious growth defect, sensitivity to any of several DNA-damaging agents, or change in overall rate of spontaneous mutation at a well-characterized target gene. Loss of dbh did, however, cause significant changes in the spectrum of spontaneous forward mutation in each of two orthologous target genes of different sequence. Relative to wild-type strains, dbh(-) constructs exhibited fewer frame-shift and other small insertion-deletion mutations, but exhibited more base-pair substitutions that converted G:C base pairs to T:A base pairs. These changes, which were confirmed to be statistically significant, indicate two distinct activities of the Dbh polymerase in Sulfolobus cells growing under nearly optimal culture conditions (78-80°C and pH 3). The first activity promotes slipped-strand events within simple repetitive motifs, such as mononucleotide runs or triplet repeats, and the second promotes insertion of C opposite a potentially miscoding form of G, thereby avoiding G:C to T:A transversions.

  5. Nucleotide sequence of the DNA polymerase gene of herpes simplex virus type 2 and comparison with the type 1 counterpart.

    Science.gov (United States)

    Tsurumi, T; Maeno, K; Nishiyama, Y

    1987-01-01

    The complete nucleotide sequence of the DNA polymerase gene of herpes simplex virus (HSV) type 2 strain 186 has been determined. The gene included a 3720-bp major open reading frame capable of encoding 1240 amino acids. The predicted primary translation product had an Mr of 137,354, which was slightly larger than its HSV-1 counterpart. A comparison of the predicted functional amino acid sequences of the HSV-1 and HSV-2 DNA polymerases revealed 95.5% overall amino acid homology, the value of which was the highest among those of the other known polypeptides encoded by HSV-1 and HSV-2. The functional amino acid changes were spread in the N-terminal one-third of the protein, whereas the C-terminal two-third was almost identical between the two types except a particular hydrophilic region. A highly conserved sequence of 6 aa, YGDTDS, which has been observed in DNA polymerases of HSV-1, Epstein-Barr virus, adenovirus, and vaccinia virus, was also present at positions 889 to 894 in the C-terminal region of HSV-2 DNA polymerase.

  6. Selective modification of adenovirus replication can be achieved through rational mutagenesis of the adenovirus type 5 DNA polymerase.

    Science.gov (United States)

    Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek; Dewhurst, Stephen

    2012-10-01

    Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates.

  7. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    Science.gov (United States)

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  8. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    Science.gov (United States)

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  9. Translesion DNA polymerases Pol , Pol , Pol , Pol and Rev1 are not essential for repeat-induced point mutation in Neurospora crassa

    Indian Academy of Sciences (India)

    Ranjan Tamuli; C Ravindran; Durgadas P Kasbekar

    2006-12-01

    Pol , Pol , Pol , Pol and Rev1 are specialized DNA polymerases that are able to synthesize DNA across a damaged template. DNA synthesis by such translesion polymerases can be mutagenic due to the miscoding nature of most damaged nucleotides. In fact, many mutational and hypermutational processes in systems ranging from yeast to mammals have been traced to the activity of such polymerases. We show however, that the translesion polymerases are dispensable for repeat-induced point mutation (RIP) in Neurospora crassa. Additionally, we demonstrate that the upr-1 gene, which encodes the catalytic subunit of Pol , is a highly polymorphic locus in Neurospora.

  10. Biochemical analysis of DNA polymerase η fidelity in the presence of replication protein A.

    Directory of Open Access Journals (Sweden)

    Samuel C Suarez

    Full Text Available DNA polymerase η (pol η synthesizes across from damaged DNA templates in order to prevent deleterious consequences like replication fork collapse and double-strand breaks. This process, termed translesion synthesis (TLS, is an overall positive for the cell, as cells deficient in pol η display higher mutation rates. This outcome occurs despite the fact that the in vitro fidelity of bypass by pol η alone is moderate to low, depending on the lesion being copied. One possible means of increasing the fidelity of pol η is interaction with replication accessory proteins present at the replication fork. We have previously utilized a bacteriophage based screening system to measure the fidelity of bypass using purified proteins. Here we report on the fidelity effects of a single stranded binding protein, replication protein A (RPA, when copying the oxidative lesion 7,8-dihydro-8-oxo-guanine(8-oxoG and the UV-induced cis-syn thymine-thymine cyclobutane pyrimidine dimer (T-T CPD. We observed no change in fidelity dependent on RPA when copying these damaged templates. This result is consistent in multiple position contexts. We previously identified single amino acid substitution mutants of pol η that have specific effects on fidelity when copying both damaged and undamaged templates. In order to confirm our results, we examined the Q38A and Y52E mutants in the same full-length construct. We again observed no difference when RPA was added to the bypass reaction, with the mutant forms of pol η displaying similar fidelity regardless of RPA status. We do, however, observe some slight effects when copying undamaged DNA, similar to those we have described previously. Our results indicate that RPA by itself does not affect pol η dependent lesion bypass fidelity when copying either 8-oxoG or T-T CPD lesions.

  11. Identification of a nanovirus-like DNA molecule associated with Tobacco curly shoot virus isolates containing satellite DNA

    Institute of Scientific and Technical Information of China (English)

    XIE Yan; WU Peijun; TAO Xiaorong; ZHOU Xueping

    2004-01-01

    A circular single-stranded DNA molecule, designated DNA1, was identified from Tobacco curly shoot virus (TbCSV) isolates Y35 and Y115 containing satellite DNAβ using abutting primers based on the two reported DNA1 sequences of whitefly-transmitted geminiviruses, while DNA1 molecule was not found in TbCSV isolates Y1 and Y121 without DNAβ. The immunotrapping PCR test showed that DNA1 could be encapsidated in virus particles. Southern blot further confirmed that DNA1 molecules were only associated with TbCSV isolates (Y35 and Y115) containing DNAβ. Sequences of Y35 and Y115 DNA1 comprise 1367 and 1368 nucleotides, respectively, each having a conserved ORF encoding nanovirus-like replication-associated protein (Rep). A low nucleotide sequence identity was found between DNA1 molecules and their cognate DNA-As. Y35 and Y115 DNA1 shared 92% overall nucleotide sequence identity and 96% amino acid sequence identity for Rep, while 69%~79% overall nucleotide sequence identity and 87%~90% amino acid sequence identity were found when compared with two reported DNA1 molecules associated with Ageratum yellow vein virus and Cotton leaf curl Multon virus. Sequence analysis showed that DNA1 was less related to nanovirus DNA.

  12. The inhibition of P338 lymphocytic leukemia DNA polymerase alpha activity by cis-diamminedichloroplatinum(II) and related derivatives.

    Science.gov (United States)

    Oswald, C B; Hall, I H

    1989-01-01

    Cis-platinum derivatives were observed to inhibit the activity of DNA polymerase alpha of P388 lymphocytic leukemia cells. A 600g nuclear preparation of the polymerase alpha was inhibited by cis-diamminedichloroplatinum(II) [cDDP], diamminemalonatoplatinum(II) [MAL], (1,2-diaminocyclohexane)-dichloroplatinum(II) [DACH-Pt-CL2], and (1,2-diaminocyclohexane)malonato-platinum(II) [DACH-Pt-MAL]. cDDP was a more potent inhibitor of the enzyme activity which was positively correlated with the observed inhibition of DNA synthesis of P388 cells in vivo and in vitro. The inhibition of the 600g preparation by cDDP could be partially reversed by the addition of exogenous ctDNA, but 35% inhibition was not retreivable by adding new template. Isolation of the P388 DNA polymerase alpha enzyme by DEAE column chromatography led to an enzyme with 100 fold purification, which was sensitive to N-ethyl maleimide at 0.1 mM concentration. cDDP inhibited the activity of this enzyme in a dose dependent manner. However, MAL, DACH-Pt-Cl2 and DACH-Pt-MAL afforded no inhibition, nor did the latter two derivatives bind to the enzyme. cDDP inhibition of the activity of purified enzyme was partially reversed by the addition of exogenous ctDNA and by the addition of dGTP, whereas addition of other d(NTP)s had no effect on the recovery of the enzyme activity. These studies suggest that cDDP inhibits DNA polymerase alpha activity and that the inhibition is not the sole mechanism of the action of the drug in suppression of DNA synthesis and cell death. Preliminary studies suggest that the drug may bind to the apoprotein of the enzyme in a competitive manner with dGTP.

  13. Preparation of Taq DNA Polymerase by Thermal Purification%Taq DNA聚合酶的热纯化制备

    Institute of Scientific and Technical Information of China (English)

    丁燕华; 刘树涛; 齐庆远

    2011-01-01

    [Objective]The paper was to improve the preparation efficacy of Taq DNA polymerase.[Method]Ni column was used to purify Taq DNA polymerase carrying with 6xHis tag, and recombined vector.Using the thermal-resistant characteristics of Taq DNA polymerase, the crude extract was treated at 75 ℃ for 1 h, and the activity of prepared enzyme solution was verified by PCR test.[Result]The recombinant pET-32A-Taq could highly express in BL21 (DE3) host bacteria and remove hybrid protein by thermal denaturation.The enzyme preparation with the activity further higher than purchased Taq DNA polymerase was obtained.[Conclusion]Taq DNA polymerase prepared by thermal purification method is simple with low cost, and can meet the needs of a large number of conventional PCR amplification.%[目的]提高Taq DNA聚合酶的制备效率.[方法]利用Ni柱亲和色谱纯化载有6xHis标记的Taq DNA聚合酶,并重组载体,利用Taq DNA聚合酶的耐热特性,对粗提液75℃处理1h,之后通过PCR试验验证制备酶液的活力.[结果]所获重组的pET-32A-Taq能够在BL21(DE3)宿主菌中高效表达并可通过热变性去除杂蛋白,获得了活力远高于购买的Taq DNA聚合酶的酶制剂.[结论]使用热纯化法制备的Taq DNA聚合酶工艺简单,成本较低,能满足常规大量PCR实验要求.

  14. Preparation of Taq DNA Polymerase by Thermal Purification%Taq DNA聚合酶的热纯化制备

    Institute of Scientific and Technical Information of China (English)

    丁燕华; 刘树涛; 齐庆远

    2011-01-01

    [ Objective ] The paper was to improve the preparation efficacy of Taq DNA polymerase. [ Method ] Ni column was used to purify Taq DNA polymerase carrying with 6xHis tag, and recombined vector. Using the thermal -resistant characteristics of TaqDNA polymerase, the crude extract was treated at 75 ℃ for 1 h, and the activity of prepared enzyme solution was verified by PCR test. [ Result] The recombinant pET-32A-Taq could highly express in BL21 (DE3) host bacteria and remove hybrid protein by thermal denaturation. The enzyme preparation with the activity further higher than purchased TaqDNA polymerase was obtained. [ Conclusion ] Taq DNA polymerase prepared by thermal purification method is simple with low cost, and can meet the needs of a large number of conventional PCR amplification.%[目的]提高Taq DNA聚合酶的制备效率.[方法]利用Ni柱亲和色谱纯化载有6xHis标记的Taq DNA聚合酶,并重组载体,利用Taq DNA聚合酶的耐热特性,对粗提液75℃处理1h,之后通过PCR试验验证制备酶液的活力.[结果]所获重组的pET-32A-Taq能够在BL21(DE3)宿主菌中高效表达并可通过热变性去除杂蛋白,获得了活力远高于购买的Taq DNA聚合酶的酶制剂.[结论]使用热纯化法制备的Taq DNA聚合酶工艺简单,成本较低,能满足常规大量PCR实验要求.

  15. Placing molecules with Bohr radius resolution using DNA origami

    Science.gov (United States)

    Funke, Jonas J.; Dietz, Hendrik

    2016-01-01

    Molecular self-assembly with nucleic acids can be used to fabricate discrete objects with defined sizes and arbitrary shapes. It relies on building blocks that are commensurate to those of biological macromolecular machines and should therefore be capable of delivering the atomic-scale placement accuracy known today only from natural and designed proteins. However, research in the field has predominantly focused on producing increasingly large and complex, but more coarsely defined, objects and placing them in an orderly manner on solid substrates. So far, few objects afford a design accuracy better than 5 nm, and the subnanometre scale has been reached only within the unit cells of designed DNA crystals. Here, we report a molecular positioning device made from a hinged DNA origami object in which the angle between the two structural units can be controlled with adjuster helices. To test the positioning capabilities of the device, we used photophysical and crosslinking assays that report the coordinate of interest directly with atomic resolution. Using this combination of placement and analysis, we rationally adjusted the average distance between fluorescent molecules and reactive groups from 1.5 to 9 nm in 123 discrete displacement steps. The smallest displacement step possible was 0.04 nm, which is slightly less than the Bohr radius. The fluctuation amplitudes in the distance coordinate were also small (±0.5 nm), and within a factor of two to three of the amplitudes found in protein structures.

  16. Bypass of Aflatoxin B[subscript 1] Adducts by the Sulfolobus solfataricus DNA Polymerase IV

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Surajit; Brown, Kyle L.; Egli, Martin; Stone, Michael P. (Vanderbilt)

    2012-07-18

    Aflatoxin B{sub 1} (AFB{sub 1}) is oxidized to an epoxide in vivo, which forms an N7-dG DNA adduct (AFB{sub 1}-N7-dG). The AFB{sub 1}-N7-dG can rearrange to a formamidopyrimidine (AFB{sub 1}-FAPY) derivative. Both AFB{sub 1}-N7-dG and the {beta}-anomer of the AFB{sub 1}-FAPY adduct yield G {yields} T transversions in Escherichia coli, but the latter is more mutagenic. We show that the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) bypasses AFB{sub 1}-N7-dG in an error-free manner but conducts error-prone replication past the AFB{sub 1}-FAPY adduct, including misinsertion of dATP, consistent with the G {yields} T mutations observed in E. coli. Three ternary (Dpo4-DNA-dNTP) structures with AFB{sub 1}-N7-dG adducted template:primers have been solved. These demonstrate insertion of dCTP opposite the AFB{sub 1}-N7-dG adduct, and correct vs incorrect insertion of dATP vs dTTP opposite the 5'-template neighbor dT from a primed AFB{sub 1}-N7-dG:dC pair. The insertion of dTTP reveals hydrogen bonding between the template N3 imino proton and the O{sup 2} oxygen of dTTP, and between the template T O{sup 4} oxygen and the N3 imino proton of dTTP, perhaps explaining why this polymerase does not efficiently catalyze phosphodiester bond formation from this mispair. The AFB{sub 1}-N7-dG maintains the 5'-intercalation of the AFB{sub 1} moiety observed in DNA. The bond between N7-dG and C8 of the AFB{sub 1} moiety remains in plane with the alkylated guanine, creating a 16{sup o} inclination of the AFB{sub 1} moiety with respect to the guanine. A binary (Dpo4-DNA) structure with an AFB{sub 1}-FAPY adducted template:primer also maintains 5'-intercalation of the AFB{sub 1} moiety. The {beta}-deoxyribose anomer is observed. Rotation about the FAPY C5-N{sup 5} bond orients the bond between N{sup 5} and C8 of the AFB{sub 1} moiety out of plane in the 5'-direction, with respect to the FAPY base. The formamide group extends in the 3'-direction. This improves

  17. The Y-Family DNA Polymerase Dpo4 Uses a Template Slippage Mechanism To Create Single-Base Deletions

    Energy Technology Data Exchange (ETDEWEB)

    Y Wu; R Wilson; J Pata

    2011-12-31

    The Y-family polymerases help cells tolerate DNA damage by performing translesion synthesis, yet they also can be highly error prone. One distinctive feature of the DinB class of Y-family polymerases is that they make single-base deletion errors at high frequencies in repetitive sequences, especially those that contain two or more identical pyrimidines with a 5? flanking guanosine. Intriguingly, different deletion mechanisms have been proposed, even for two archaeal DinB polymerases that share 54% sequence identity and originate from two strains of Sulfolobus. To reconcile these apparent differences, we have characterized Dpo4 from Sulfolobus solfataricus using the same biochemical and crystallographic approaches that we have used previously to characterize Dbh from Sulfolobus acidocaldarius. In contrast to previous suggestions that Dpo4 uses a deoxynucleoside triphosphate (dNTP)-stabilized misalignment mechanism when creating single-base deletions, we find that Dpo4 predominantly uses a template slippage deletion mechanism when replicating repetitive DNA sequences, as was previously shown for Dbh. Dpo4 stabilizes the skipped template base in an extrahelical conformation between the polymerase and the little-finger domains of the enzyme. This contrasts with Dbh, in which the extrahelical base is stabilized against the surface of the little-finger domain alone. Thus, despite sharing a common deletion mechanism, these closely related polymerases use different contacts with the substrate to accomplish the same result.

  18. NanoPCR observation: different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions

    Science.gov (United States)

    Shen, Cenchao; Yang, Wenjuan; Ji, Qiaoli; Maki, Hisaji; Dong, Anjie; Zhang, Zhizhou

    2009-11-01

    Nanoparticle-assisted PCR (polymerase chain reaction) technology is getting more and more attention recently. It is believed that some of the DNA recombinant technologies will be upgraded by nanotechnology in the near future, among which DNA replication is one of the core manipulation techniques. So whether or not the DNA replication fidelity is compromised in nanoparticle-assisted PCR is a question. In this study, a total of 16 different metallic and non-metallic nanoparticles (NPs) were tested for their effects on DNA replication fidelity in vitro and in vivo. Sixteen types of nanomaterials were distinctly different in enhancing the PCR efficiency, and their relative capacity to retain DNA replication fidelity was largely different from each other based on rpsL gene mutation assay. Generally speaking, metallic nanoparticles induced larger error rates in DNA replication fidelity than non-metallic nanoparticles, and non-metallic nanomaterials such as carbon nanopowder or nanotubes were still safe as PCR enhancers because they did not compromise the DNA replication fidelity in the Taq DNA polymerase-based PCR system.

  19. Discovery and demonstration of small circular DNA molecules derived from Chinese tomato yellow leaf curl virus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Tomato yellow leaf curl viruses belong to Begomoviruses of geminiviruses.In this work, we first found and demonstrated that the small circular DNA molecules were derived from Chinese tomato yellow leaf curl viruses (TYLCV-CHI).These small circular DNA molecules are about 1.3 kb, which are half the full-length of TYLCV-CHI DNA A.It was shown by sequence determination and analysis that there was unknown-origin sequence insertion in the middle of the small molecules.These sequences of unknown-origin were neither homologous to DNA A nor to DNA B, and were formed by recombination of virus DNA and plant DNA.Although various defective molecules contained different unknown-origin sequence insertion, all the molecules contained the intergenic region and part of the AC1(Rep) gene.But they did not contain full ORF.

  20. Physisorption of DNA molecules on chemically modified single-walled carbon nanotubes with and without sonication.

    Science.gov (United States)

    Umemura, Kazuo; Ishibashi, Yu; Oura, Shusuke

    2016-09-01

    We investigated the physisorption phenomenon of single-stranded DNA (ssDNA) molecules onto two types of commercially available chemically functionalized single-walled carbon nanotubes (SWNTs) by atomic force microscopy (AFM) and agarose gel electrophoresis. We found that DNA molecules can adsorb on the water-soluble SWNT surfaces without sonication, although sonication treatment has been used for hybridization of DNA and SWNTs in many previous studies. Using our method, damage of DNA molecules by sonication can be avoided. On the other hand, the amount of DNA molecules adsorbed on SWNT surfaces increased when the samples were sonicated. This fact suggests that the sonication is effective not only at debundling of SWNTs, but also at assisting DNA adsorption. Furthermore, DNA adsorption was affected by the types of functionalized SWNTs. In the case of SWNTs functionalized with polyethylene glycol (PEG-SWNT), physisorption of ssDNA molecules was confirmed only by agarose-gel electrophoresis. In contrast, amino-terminated SWNTs (NH2-SWNTs) showed a change in the height distribution profile based on AFM observations. These results suggest that DNA molecules tended to adsorb to NH2-SWNT surfaces, although DNA molecules can also adsorb on PEG-SWNT surfaces. Our results revealed fundamental information for developing nanobiodevices using hybrids of DNA and SWNTs.

  1. Absence of RNase H allows replication of pBR322 in Escherichia coli mutants lacking DNA polymerase I.

    Science.gov (United States)

    Kogoma, T

    1984-12-01

    rnh (formerly termed sdrA) mutants of Escherichia coli K-12, capable of continuous DNA replication in the absence of protein synthesis (stable DNA replication), are devoid of ribonuclease H (RNase H, EC 3.1.26.4) activity. Plasmid pBR322 was found to replicate in rnh mutants in the absence of DNA polymerase I, the polA gene product, which is normally required for replication of this plasmid. The plasmid copy number in polA rnh double mutants was as high as in the wild-type strains. When a chimeric construct between pBR322 and pSC101 was introduced into a polA rnh double mutant, the replication of the plasmid via the pBR322 replicon was inhibited if the plasmid also carried an rnh+ gene or if the host harbored an F' plasmid carrying an rnh+ gene. Thus, DNA polymerase I-independent replication of pBR322 requires the absence of RNase H activity. This alternative mechanism requiring neither DNA polymerase I nor RNase H appears to involve a transcriptional event in the region of the normal origin of replication.

  2. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  3. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    Science.gov (United States)

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Direct observation of λ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique

    Science.gov (United States)

    Fengyun, Yang; Kaige, Wang; Dan, Sun; Wei, Zhao; Hai-qing, Wang; Xin, He; Gui-ren, Wang; Jin-tao, Bai

    2016-07-01

    The electrodynamic characteristics of single DNA molecules moving within micro-/nano-fluidic channels are important in the design of biomedical chips and bimolecular sensors. In this study, the dynamic properties of λ-DNA molecules transferring along the microchannels driven by the external electrickinetic force were systemically investigated with the single molecule fluorescence imaging technique. The experimental results indicated that the velocity of DNA molecules was strictly dependent on the value of the applied electric field and the diameter of the channel. The larger the external electric field, the larger the velocity, and the more significant deformation of DNA molecules. More meaningfully, it was found that the moving directions of DNA molecules had two completely different directions: (i) along the direction of the external electric field, when the electric field intensity was smaller than a certain threshold value; (ii) opposite to the direction of the external electric field, when the electric field intensity was greater than the threshold electric field intensity. The reversal movement of DNA molecules was mainly determined by the competition between the electrophoresis force and the influence of electro-osmosis flow. These new findings will theoretically guide the practical application of fluidic channel sensors and lab-on-chips for precisely manipulating single DNA molecules. Project supported by the National Natural Science Foundation of China (Grant No. 61378083), the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), the Major Research Plan of National Natural Science Foundation of China (Grant No. 91123030), and the Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01).

  5. Cost-effective optimization of real-time PCR based detection of Campylobacter and Salmonella with inhibitor tolerant DNA polymerases

    DEFF Research Database (Denmark)

    Fachmann, Mette Sofie Rousing; Josefsen, Mathilde Hasseldam; Hoorfar, Jeffrey

    2015-01-01

    PCR master mix performed best for both meat and fecal samples (LODs of 102 and 104 CFU ml-1 in the purest and crudest DNA extractions, respectively) compared with Tth (LOD=102 -103 and 105 -106 CFU ml-1 ). AmpliTaqGold and HotMasterTaq both performed well (LOD=102 -104 CFU ml-1 ) with meat samples and poorly......AIMS: The aim of this study was to cost-effectively improve detection of foodborne pathogens in PCR inhibitory samples through the use of alternative DNA polymerases. METHODS AND RESULTS: Commercially available polymerases (n=16) and PCR master mixes (n=4) were screened on DNA purified from...... bacterial cells in two validated real-time PCR assays for Campylobacter and Salmonella. The five best performing (based on: limit of detection (LOD), maximum fluorescence, shape of amplification curves, and amplification efficiency) were subsequently applied to meat and fecal samples. The VeriQuest q...

  6. ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA

    Energy Technology Data Exchange (ETDEWEB)

    M Langelier; J Planck; S Roy; J Pascal

    2011-12-31

    Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNA interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.

  7. Mutations of mitochondrial DNA polymerase gammaA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia.

    Science.gov (United States)

    Lamantea, Eleonora; Tiranti, Valeria; Bordoni, Andreina; Toscano, Antonio; Bono, Francesco; Servidei, Serena; Papadimitriou, Alex; Spelbrink, Hans; Silvestri, Laura; Casari, Giorgio; Comi, Giacomo P; Zeviani, Massimo

    2002-08-01

    One form of familial progressive external ophthalmoplegia with multiple mitochondrial DNA deletions recently has been associated with mutations in POLG1, the gene encoding pol gammaA, the catalytic subunit of mitochondrial DNA polymerase. We screened the POLG1 gene in several PEO families and identified five different heterozygous missense mutations of POLG1 in 10 autosomal dominant families. Recessive mutations were found in three families. Our data show that mutations of POLG1 are the most frequent cause of familial progressive external ophthalmoplegia associated with accumulation of multiple mitochondrial DNA deletions, accounting for approximately 45% of our family cohort.

  8. Titantium Dioxide Nanoparticles Assembled by DNA Molecules Hybridization and Loading of DNA Interacting Proteins.

    Science.gov (United States)

    Wu, Aiguo; Paunesku, Tatjana; Brown, Eric M B; Babbo, Angela; Cruz, Cecille; Aslam, Mohamed; Dravid, Vinayak; Woloschak, Gayle E

    2008-02-01

    This work demonstrates the assembly of TiO(2) nanoparticles with attached DNA oligonucleotides into a 3D mesh structure by allowing base pairing between oligonucleotides. A change of the ratio of DNA oligonucleotide molecules and TiO(2) nanoparticles regulates the size of the mesh as characterized by UV-visible light spectra, transmission electron microscopy and atomic force microscopy images. This type of 3D mesh, based on TiO(2)-DNA oligonucleotide nanoconjugates, can be used for studies of nanoparticle assemblies in material science, energy science related to dye-sensitized solar cells, environmental science as well as characterization of DNA interacting proteins in the field of molecular biology. As an example of one such assembly, proliferating cell nuclear antigen protein (PCNA) was cloned, its activity verified, and the protein was purified, loaded onto double strand DNA oligonucleotide-TiO(2) nanoconjugates, and imaged by atomic force microscopy. This type of approach may be used to sample and perhaps quantify and/or extract specific cellular proteins from complex cellular protein mixtures affinity based on their affinity for chosen DNA segments assembled into the 3D matrix.

  9. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    KAUST Repository

    Ghosh, Sharmistha

    2010-04-06

    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. DNA Polymerases η and ζ Combine to Bypass O(2)-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA Adduct Formed from Tobacco Carcinogens.

    Science.gov (United States)

    Gowda, A S Prakasha; Spratt, Thomas E

    2016-03-21

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are important human carcinogens in tobacco products. They are metabolized to produce a variety 4-(3-pyridyl)-4-oxobutyl (POB) DNA adducts including O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT), the most abundant POB adduct in NNK- and NNN-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past O(2)-POB-dT and O(2)-Me-dT by purified human DNA polymerases η, κ, ι, and yeast polymerase ζ in vitro. Under conditions of polymerase in excess, polymerase η was most effective at the insertion of dNTPs opposite O(2)-alkyl-dTs. The time courses were biphasic suggesting the formation of inactive DNA-polymerase complexes. The kpol parameter was reduced approximately 100-fold in the presence of the adduct for pol η, κ, and ι. Pol η was the most reactive polymerase for the adducts due to a higher burst amplitude. For all three polymerases, the nucleotide preference was dATP > dTTP ≫ dGTP and dCTP. Yeast pol ζ was most effective in bypassing the adducts; the kcat/Km values were reduced only 3-fold in the presence of the adducts. The identity of the nucleotide opposite the O(2)-alkyl-dT did not significantly affect the ability of pol ζ to bypass the adducts. The data support a model in which pol η inserts ATP or dTTP opposite O(2)-POB-dT, and then, pol ζ extends past the adduct.

  11. Effects of Metal Ions on Conductivity and Structure of Single DNA Molecule in Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Dong Ruixin

    2010-01-01

    Full Text Available Abstract We design a novel nano-gap electrode to measure the current of DNA molecule, by which the current–voltage characteristics of individual native DNA, Ag-DNA and Ni-DNA molecules are obtained, respectively. The results show that the voltage gap of Ag- and Ni-DNA is higher than that of native DNA, and the conductance is lower than native DNA in neutral environment. The structure transition from B- to Z-DNA is observed in the presence of high concentrations of nickel ions and Ag-DNA appears chaos state by STM image and U-V spectra characterization. But in alkaline environment, the conductance of Ni-DNA rises and the voltage gap decreases with the increasing of nickel ion concentration denotes that the conductive ability of Ni-DNA is higher than that of native DNA.

  12. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    OpenAIRE

    Hideshi Yokoyama; Kazuhiko Yamasaki; Ikuo Matsui; Eriko Matsui

    2013-01-01

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large sub...

  13. Fully Streched Single DNA Molecules in a Nanofluidic Chip Show Large-Scale Structural Variation

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Marie, Rodolphe; Bauer, D. L.

    2013-01-01

    When stretching and imaging DNA molecules in nanofluidic devices, it is important to know the relation between the physical length as measured in the lab and the distance along the contour of the DNA. Here a single DNA molecule longer than 1 Mbp is loaded into a nanofluidic device consisting of two...... crossing nanoslits (85nm x 50 microns) connected to microchannels. An applied pressure creates a stagnation point at the crossing of the nanoslits. The drag force from the fluid stretches the DNA. We determine the degree of stretching of the molecule (i) without the use of markers, (ii) without knowing...... the contour length of the DNA, and (iii) without having the full DNA molecule inside the field-of-view. The analysis is based on the transverse motion of the DNA due its Brownian motion, i.e. the DNA's response to the thermal fluctuations of the liquid surrounding it. The parameter values obtained by fitting...

  14. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication

    Science.gov (United States)

    Langston, Lance D.; Zhang, Dan; Yurieva, Olga; Georgescu, Roxana E.; Finkelstein, Jeff; Yao, Nina Y.; Indiani, Chiara; O’Donnell, Mike E.

    2014-01-01

    DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG–Pol ε complex and showed that it is a functional polymerase–helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes. PMID:25313033

  15. Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising highly cy-dye labelled DNA.

    Directory of Open Access Journals (Sweden)

    Samantha A Wynne

    Full Text Available Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10 of Pyrococcus furiosus (Pfu polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP in PCR and synthesise highly fluorescent "CyDNA" densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers.

  16. Inhibition of DNA polymerase λ and associated inflammatory activities of extracts from steamed germinated soybeans.

    Science.gov (United States)

    Mizushina, Yoshiyuki; Kuriyama, Isoko; Yoshida, Hiromi

    2014-04-01

    During the screening of selective DNA polymerase (pol) inhibitors from more than 50 plant food materials, we found that the extract from steamed germinated soybeans (Glycine max L.) inhibited human pol λ activity. Among the three processed soybean samples tested (boiled soybeans, steamed soybeans, and steamed germinated soybeans), both the hot water extract and organic solvent extract from the steamed germinated soybeans had the strongest pol λ inhibition. We previously isolated two glucosyl compounds, a cerebroside (glucosyl ceramide, AS-1-4, compound ) and a steroidal glycoside (eleutheroside A, compound ), from dried soybean, and these compounds were prevalent in the extracts of the steamed germinated soybeans as pol inhibitors. The hot water and organic solvent extracts of the steamed germinated soybeans and compounds and selectively inhibited the activity of eukaryotic pol λ in vitro but did not influence the activities of other eukaryotic pols, including those from the A-family (pol γ), B-family (pols α, δ, and ε), and Y-family (pols η, ι, and κ), and also showed no effect on the activity of pol β, which is of the same family (X) as pol λ. The tendency for in vitro pol λ inhibition by these extracts and compounds showed a positive correlation with the in vivo suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation in mouse ear. These results suggest that steamed germinated soybeans, especially the glucosyl compound components, may be useful for their anti-inflammatory properties.

  17. Analysis ulcerative colitis for presence Epstein-Barr virus DNA sequences by polymerase chain reaction technique

    Directory of Open Access Journals (Sweden)

    Sahar Mehrabani khasraghi

    2016-02-01

    Full Text Available Introduction: Ulcerative colitis (UC is one type of inflammatory bowel disease (IBD. The purpose of this study is to explore the prevalence of Epstein–Barr virus (EBV in UC patients in comparison with healthy subjects using the polymerase chain reaction (PCR method. Methods: In this case-control study, five biopsies of patients with UC and 30 healthy people as controls were selected. Sampling was performed by endoscopic biopsy operation. After DNA extraction, PCR was used to determine EBV genome by specific primers. Statistical analysis was performed using the chi-square test. Results: The results of PCR indicated that EBV genome was detected in 60.0% of samples in the case group, and 36.7% of samples in the control group were positive for EBV. Thus, no significant association was observed between the prevalence of EBV and incidence of UC in comparison with the control group (P = 0.36. Conclusion: The findings presented herein demonstrate no direct molecular evidence to support an association of EBV with UC. These results, do not exclude the possibility oncogenic role of EBV to infect the different colon cell.

  18. Whole-Genome Profiling of a Novel Mutagenesis Technique Using Proofreading-Deficient DNA Polymerase δ

    Directory of Open Access Journals (Sweden)

    Yuh Shiwa

    2012-01-01

    Full Text Available A novel mutagenesis technique using error-prone DNA polymerase δ (polδ, the disparity mutagenesis model of evolution, has been successfully employed to generate novel microorganism strains with desired traits. However, little else is known about the spectra of mutagenic effects caused by disparity mutagenesis. We evaluated and compared the performance of the polδMKII mutator, which expresses the proofreading-deficient and low-fidelity polδ, in Saccharomyces cerevisiae haploid strain with that of the commonly used chemical mutagen ethyl methanesulfonate (EMS. This mutator strain possesses exogenous mutant polδ supplied from a plasmid, tthereby leaving the genomic one intact. We measured the mutation rate achieved by each mutagen and performed high-throughput next generation sequencing to analyze the genome-wide mutation spectra produced by the 2 mutagenesis methods. The mutation frequency of the mutator was approximately 7 times higher than that of EMS. Our analysis confirmed the strong G/C to A/T transition bias of EMS, whereas we found that the mutator mainly produces transversions, giving rise to more diverse amino acid substitution patterns. Our present study demonstrated that the polδMKII mutator is a useful and efficient method for rapid strain improvement based on in vivo mutagenesis.

  19. Cattle fetal sex determination by polymerase chain reaction using DNA isolated from maternal plasma.

    Science.gov (United States)

    da Cruz, A S; Silva, D C; Costa, E O A; De M-Jr, P; da Silva, C C; Silva, D M; da Cruz, A D

    2012-03-01

    The objective of this study was to evaluate the use of polymerase chain reaction analysis (PCR) of fetal cells/DNA in the maternal plasma of pregnant cows to determine the sex of the fetus. Plasma was harvested from 35 cows of mixed genotype at different stages of pregnancy ranging from 5 to 35 weeks. A male calf and a heifer calf provided the control samples. Fetal sex was determined by amplification of Y-specific sequences. For the 35 cows, the fetal sex predicted by this technique was in accordance with the sex of the calf at birth in 88.6% of cases. The agreement between predicted and observed fetal sex was less for cows with a gestational length of 35-48 days (63.6%). Regression analysis showed that there was a strong relationship between the probability of correctly predicting fetal sex and the stage of gestation. It was estimated that the test performed at 43.8 days post fertilization would have 95% accuracy, increasing to 99% accuracy for testing at 48.4 days and 99.9% accuracy for tests at 55.0 days or later. It was concluded that PCR analysis of fetal cells in maternal plasma can be used to predict successfully the sex of the fetus in cattle.

  20. Secondary Interaction Interfaces with PCNA Control Conformational Switching of DNA Polymerase PolB from Polymerization to Editing.

    Science.gov (United States)

    Xu, Xiaojun; Yan, Chunli; Kossmann, Bradley R; Ivanov, Ivaylo

    2016-08-25

    Replicative DNA polymerases (Pols) frequently possess two distinct DNA processing activities: DNA synthesis (polymerization) and proofreading (3'-5' exonuclease activity). The polymerase and exonuclease reactions are performed alternately and are spatially separated in different protein domains. Thus, the growing DNA primer terminus has to undergo dynamic conformational switching between two distinct functional sites on the polymerase. Furthermore, the transition from polymerization (pol) mode to exonuclease (exo) mode must occur in the context of a DNA Pol holoenzyme, wherein the polymerase is physically associated with processivity factor proliferating cell nuclear antigen (PCNA) and primer-template DNA. The mechanism of this conformational switching and the role that PCNA plays in it have remained obscure, largely due to the dynamic nature of ternary Pol/PCNA/DNA assemblies. Here, we present computational models of ternary assemblies for archaeal polymerase PolB. We have combined all available structural information for the binary complexes with electron microscopy data and have refined atomistic models for ternary PolB/PCNA/DNA assemblies in pol and exo modes using molecular dynamics simulations. In addition to the canonical PIP-box/interdomain connector loop (IDCL) interface of PolB with PCNA, contact analysis of the simulation trajectories revealed new secondary binding interfaces, distinct between the pol and exo states. Using targeted molecular dynamics, we explored the conformational transition from pol to exo mode. We identified a hinge region between the thumb and palm domains of PolB that is critical for conformational switching. With the thumb domain anchored onto the PCNA surface, the neighboring palm domain executed rotational motion around the hinge, bringing the core of PolB down toward PCNA to form a new interface with the clamp. A helix from PolB containing a patch of arginine residues was involved in the binding, locking the complex in the exo

  1. A DNA-Based Encryption Method Based on Two Biological Axioms of DNA Chip and Polymerase Chain Reaction (PCR) Amplification Techniques.

    Science.gov (United States)

    Zhang, Yunpeng; Wang, Zhiwen; Wang, Zhenzhen; Liu, Xin; Yuan, Xiaojing

    2017-09-27

    Researchers have gained a deeper understanding of DNA-based encryption and its effectiveness in enhancing information security in recent years. However, there are many theoretical and technical issues about DNA-based encryption that need to be addressed before it can be effectively used in the field of security. Currently, the most popular DNA-based encryption schemes are based on traditional cryptography and the integration of existing DNA technology. These schemes are not completely based on DNA computing and biotechnology. Herein, as inspired by nature, encryption based on DNA has been developed, which is, in turn, based on two fundamental biological axioms about DNA sequencing: 1) DNA sequencing is difficult under the conditions of not knowing the correct sequencing primers and probes, and 2) without knowing the correct probe, it is difficult to decipher precisely and sequence the information of unknown and mixed DNA/peptide nucleic acid (PNA) probes, which only differ in nucleotide sequence, arranged on DNA chips (microarrays). In essence, when creating DNA-based encryption by means of biological technologies, such as DNA chips and polymerase chain reaction (PCR) amplification, the encryption method discussed herein cannot be decrypted, unless the DNA/PNA probe or PCR amplification is known. The biological analysis, mathematical analysis, and simulation results demonstrate the feasibility of the method, which provides much stronger security and reliability than that of traditional encryption methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase.

    Science.gov (United States)

    Matsui, Ikuo; Matsui, Eriko; Yamasaki, Kazuhiko; Yokoyama, Hideshi

    2013-07-05

    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  3. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Hideshi Yokoyama

    2013-07-01

    Full Text Available Archaea-specific D-family DNA polymerase (PolD forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  4. Catalytic effects of mutations of distant protein residues in human DNA polymerase β: theory and experiment.

    Science.gov (United States)

    Klvaňa, Martin; Murphy, Drew L; Jeřábek, Petr; Goodman, Myron F; Warshel, Arieh; Sweasy, Joann B; Florián, Jan

    2012-11-06

    We carried out free-energy calculations and transient kinetic experiments for the insertion of the right (dC) and wrong (dA) nucleotides by wild-type (WT) and six mutant variants of human DNA polymerase β (Pol β). Since the mutated residues in the point mutants, I174S, I260Q, M282L, H285D, E288K, and K289M, were not located in the Pol β catalytic site, we assumed that the WT and its point mutants share the same dianionic phosphorane transition-state structure of the triphosphate moiety of deoxyribonucleotide 5'-triphosphate (dNTP) substrate. On the basis of this assumption, we have formulated a thermodynamic cycle for calculating relative dNTP insertion efficiencies, Ω = (k(pol)/K(D))(mut)/(k(pol)/K(D))(WT) using free-energy perturbation (FEP) and linear interaction energy (LIE) methods. Kinetic studies on five of the mutants have been published previously using different experimental conditions, e.g., primer-template sequences. We have performed a presteady kinetic analysis for the six mutants for comparison with wild-type Pol β using the same conditions, including the same primer/template DNA sequence proximal to the dNTP insertion site used for X-ray crystallographic studies. This consistent set of kinetic and structural data allowed us to eliminate the DNA sequence from the list of factors that can adversely affect calculated Ω values. The calculations using the FEP free energies scaled by 0.5 yielded 0.9 and 1.1 standard deviations from the experimental log Ω values for the insertion of the right and wrong dNTP, respectively. We examined a hybrid FEP/LIE method in which the FEP van der Waals term for the interaction of the mutated amino acid residue with its surrounding environment was replaced by the corresponding van der Waals term calculated using the LIE method, resulting in improved 0.4 and 1.0 standard deviations from the experimental log Ω values. These scaled FEP and FEP/LIE methods were also used to predict log Ω for R283A and R283L Pol

  5. A novel small molecule inhibitor of influenza A viruses that targets polymerase function and indirectly induces interferon.

    Directory of Open Access Journals (Sweden)

    Mila Brum Ortigoza

    Full Text Available Influenza viruses continue to pose a major public health threat worldwide and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The antiviral cytokine, interferon (IFN is an essential mediator of the innate immune response and influenza viruses, like many viruses, have evolved strategies to evade this response, resulting in increased replication and enhanced pathogenicity. A cell-based assay that monitors IFN production was developed and applied in a high-throughput compound screen to identify molecules that restore the IFN response to influenza virus infected cells. We report the identification of compound ASN2, which induces IFN only in the presence of influenza virus infection. ASN2 preferentially inhibits the growth of influenza A viruses, including the 1918 H1N1, 1968 H3N2 and 2009 H1N1 pandemic strains and avian H5N1 virus. In vivo, ASN2 partially protects mice challenged with a lethal dose of influenza A virus. Surprisingly, we found that the antiviral activity of ASN2 is not dependent on IFN production and signaling. Rather, its IFN-inducing property appears to be an indirect effect resulting from ASN2-mediated inhibition of viral polymerase function, and subsequent loss of the expression of the viral IFN antagonist, NS1. Moreover, we identified a single amino acid mutation at position 499 of the influenza virus PB1 protein that confers resistance to ASN2, suggesting that PB1 is the direct target. This two-pronged antiviral mechanism, consisting of direct inhibition of virus replication and simultaneous activation of the host innate immune response, is a unique property not previously described for any single antiviral molecule.

  6. Association Between Single Nucleotide Polymorphisms in DNA Polymerase Kappa Gene and Breast Cancer Risk in Chinese Han Population

    Science.gov (United States)

    Dai, Zhi-Jun; Liu, Xing-Han; Ma, Yun-Feng; Kang, Hua-Feng; Jin, Tian-Bo; Dai, Zhi-Ming; Guan, Hai-Tao; Wang, Meng; Liu, Kang; Dai, Cong; Yang, Xue-Wen; Wang, Xi-Jing

    2016-01-01

    Abstract DNA polymerases are responsible for ensuring stability of the genome and avoiding genotoxicity caused by a variety of factors during DNA replication. Consequently, these proteins have been associated with an increased cancer risk. DNA polymerase kappa (POLK) is a specialized DNA polymerase involved in translesion DNA synthesis (TLS) that allows DNA synthesis over the damaged DNA. Recently, some studies investigated relationships between POLK polymorphisms and cancer risk, but the role of POLK genetic variants in breast cancer (BC) remains to be defined. In this study, we aimed to evaluate the effects of POLK polymorphisms on BC risk. We used the Sequenom MassARRAY method to genotype 3 single nucleotide polymorphisms (SNPs) in POLK (rs3213801, rs10077427, and rs5744533), in order to determine the genotypes of 560 BC patients and 583 controls. The association of genotypes and BC was assessed by computing the odds ratio (OR) and 95% confidence intervals (95% CIs) from logistic regression analyses. We found a statistically significant difference between patient and control groups in the POLK rs10077427 genotypic groups, excluding the recessive model. A positive correlation was also found between positive progesterone receptor (PR) status, higher Ki67 index, and rs10077427 polymorphism. For rs5744533 polymorphism, the codominant, dominant, and allele models frequencies were significantly higher in BC patients compared to healthy controls. Furthermore, our results indicated that rs5744533 SNP has a protective role in the postmenopausal women. However, we failed to find any associations between rs3213801 polymorphism and susceptibility to BC. Our results indicate that POLK polymorphisms may influence the risk of developing BC, and, because of this, may serve as a prognostic biomarker among Chinese women. PMID:26765445

  7. Structural coupling between RNA polymerase composition and DNA supercoiling in coordinating transcription: a global role for the omega subunit?

    Science.gov (United States)

    Geertz, Marcel; Travers, Andrew; Mehandziska, Sanja; Sobetzko, Patrick; Chandra-Janga, Sarath; Shimamoto, Nobuo; Muskhelishvili, Georgi

    2011-01-01

    In growing bacterial cells, the global reorganization of transcription is associated with alterations of RNA polymerase composition and the superhelical density of the DNA. However, the existence of any regulatory device coordinating these changes remains elusive. Here we show that in an exponentially growing Escherichia coli rpoZ mutant lacking the polymerase ω subunit, the impact of the Eσ(38) holoenzyme on transcription is enhanced in parallel with overall DNA relaxation. Conversely, overproduction of σ(70) in an rpoZ mutant increases both overall DNA supercoiling and the transcription of genes utilizing high negative superhelicity. We further show that transcription driven by the Eσ(38) and Eσ(70) holoenzymes from cognate promoters induces distinct superhelical densities of plasmid DNA in vivo. We thus demonstrate a tight coupling between polymerase holoenzyme composition and the supercoiling regimen of genomic transcription. Accordingly, we identify functional clusters of genes with distinct σ factor and supercoiling preferences arranging alternative transcription programs sustaining bacterial exponential growth. We propose that structural coupling between DNA topology and holoenzyme composition provides a basic regulatory device for coordinating genome-wide transcription during bacterial growth and adaptation. IMPORTANCE Understanding the mechanisms of coordinated gene expression is pivotal for developing knowledge-based approaches to manipulating bacterial physiology, which is a problem of central importance for applications of biotechnology and medicine. This study explores the relationships between variations in the composition of the transcription machinery and chromosomal DNA topology and suggests a tight interdependence of these two variables as the major coordinating principle of gene regulation. The proposed structural coupling between the transcription machinery and DNA topology has evolutionary implications and suggests a new methodology for

  8. Polymerase reaction without primers throughout for the reconstruction of full-length cDNA from products of rapid amplification of cDNA ends (RACE).

    Science.gov (United States)

    Sunohara, Mitsuhiro; Kawakami, Masanori; Kage, Hidenori; Watanabe, Kousuke; Emoto, Noriko; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2011-07-01

    Rapid amplification of cDNA ends (RACE) has widely been used to determine both ends of the cDNA from its partial sequence. Conventionally, 5'- and 3'-RACE products were ligated at a restriction site in the overlap region to reconstruct the full-length cDNA; however, reconstruction is difficult if no appropriate restriction enzymes are available. Here, we report a novel method to reconstruct full-length cDNA with DNA polymerase. Instead of usual PCR, chain reactions were avoided and the elongation time was shortened, which enables non-specific products or undesired point mutations to be minimized. We successfully reconstructed and TA-cloned a full-length cDNA of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene variant 2 from RACE products obtained from a surgically resected lung adenocarcinoma sample. We also evaluated some parameters to provide recommendations for this new method.

  9. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Stumpf

    2014-10-01

    Full Text Available Mitochondrial DNA (mtDNA encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS, would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA

  10. Hybridisation of short DNA molecules investigated with in situ atomic force microscopy

    DEFF Research Database (Denmark)

    Holmberg, Maria; Kuhle, A.; Garnaes, J.;

    2003-01-01

    By introducing the complementary DNA (cDNA) strand to a molecular layer of short single stranded DNA (ssDNA), immobilised on a gold surface, we have investigated hybridisation between the two DNA strands through the technique of in situ atomic force microscopy (AFM). Before introduction of c...... the two DNA strands has been studied. Introduction of the cDNA strand resulted in an increase in smoothness and thickness of the molecular layer. Both the increase in order and thickness of the molecular layer can be expected if hybridisation occurs, since double stranded DNA molecules have a more rigid...

  11. Battle for the bulge: directing small molecules to DNA and RNA defects.

    Science.gov (United States)

    Bevilacqua, Philip C

    2002-08-01

    Small molecules were tailored to specifically bind bulged DNA by complementing the geometry and nucleotide size of the bulge site. The prospect of generating small molecules that influence the secondary structure of DNA and RNA holds great promise for clinical applications.

  12. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    DEFF Research Database (Denmark)

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders;

    2011-01-01

    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  13. Thermophoretic forces on DNA measured with a single-molecule spring balance

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Lüscher, Christopher James; Marie, Rodolphe

    2014-01-01

    We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement...

  14. Nested real-time quantitative polymerase chain reaction assay for detection of hepatitis B virus covalently closed circular DNA

    Institute of Scientific and Technical Information of China (English)

    XU Chun-hai; LI Zhao-shen; DAI Jun-ying; ZHU Hai-yang; YU Jian-wu; L(U) Shu-Ian

    2011-01-01

    peripheral blood mononuclear cells; marrow mononuclear cells Background Successful treatment of hepatitis B can be achieved only if the template for hepatitis B virus (HBV) DNA replication, the covalently closed circular HBV DNA (cccDNA) can be completely cleared. To date, detecting cccDNA remains clinically challenging. The purpose of this study was to develop a nested real-time quantitative polymerase chain reaction (PCR) assay for detecting HBV cccDNA in peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (MMNCs).Methods Based on the structural differences between HBV cccDNA and HBV relaxed circular DNA (rcDNA), two pairs of primers were synthesized as well as a downstream TaqMan probe. Blood and bone marrow samples were collected from hepatitis B patients and healthy controls. To remove rcDNA, samples were incubated with mung bean nuclease and the resultant purified HBV cccDNA was then amplified by nested real-time fluorescence quantitative PCR. The ccc