WorldWideScience

Sample records for dna insect virus

  1. Supercoiled circular DNA of an insect granulosis virus

    Science.gov (United States)

    Tweeten, Kathleen A.; Bulla, Lee A.; Consigli, Richard A.

    1977-01-01

    The DNA of the granulosis virus of the Indian meal moth, Plodia interpunctella, was characterized by physical chemical and electron microscopic techniques. Twenty-five percent of the DNA extracted from purified virus was isolated as supercoiled circular molecules. The remaining 75% consisted of relaxed circular molecules. These molecular forms were indicated by the production of two radioactive bands during sedimentation of 3H-labeled granulosis virus DNA in alkaline sucrose gradients or in equilibrium density gradients of neutral cesium chloride/propidium iodide. Electron microscopic visualization of the DNA that banded at the higher density in the latter gradients revealed supercoiled structures whereas that of DNA that banded at the lower density demonstrated relaxed circular molecules. The superhelical molecules were converted to relaxed circles by treatment with pancreatic DNase. The molecular weight of the viral DNA was calculated to be 81 × 106 by sedimentation in neutral sucrose and 78 × 106 by sedimentation in alkaline sucrose. The molecular weight estimated from length measurements in electron micrographs was 76 × 106. The buoyant density of the granulosis virus DNA was 1.703 g/cm3 and that of its insect host DNA was 1.697 g/cm3. Equilibrium sedimentation in cesium chloride and thermal denaturation indicated G + C contents of 44% and 39% for the viral and host DNA, respectively. Images PMID:198791

  2. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector

    Science.gov (United States)

    Liu, Si; Xie, Jiatao; Cheng, Jiasen; Li, Bo; Chen, Tao; Fu, Yanping; Li, Guoqing; Wang, Manqun; Jin, Huanan; Wan, Hu; Jiang, Daohong

    2016-01-01

    Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically via sexual/asexual spores. Previously, we reported that a gemycircularvirus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), could infect its fungal host extracellularly. Here, we discovered that SsHADV-1 could infect a mycophagous insect, Lycoriella ingenua, and use it as a transmission vector. Virus acquired by larvae feeding on colonies of a virus-infected strain of S. sclerotiorum was replicated and retained in larvae, pupae, adults, and eggs. Virus could be transmitted to insect offspring when larvae were injected with virus particles and allowed to feed on a nonhost fungus. Virus replication in insect cells was further confirmed by inoculating Spodoptera frugiperda cells with virus particles and analyzing with RT-PCR, Northern blot, immunofluorescence, and flow cytometry assays. Larvae could transmit virus once they acquired virus by feeding on virus-infected fungal colony. Offspring larvae hatched from viruliferous eggs were virus carriers and could also successfully transmit virus. Virus transmission between insect and fungus also occurred on rapeseed plants. Virus-infected isolates produced less repellent volatile substances to attract adults of L. ingenua. Furthermore, L. ingenua was easily observed on Sclerotinia lesions in rapeseed fields, and viruliferous adults were captured from fields either sprayed with a virus-infected fungal strain or nonsprayed. Our findings may facilitate the exploration of mycoviruses for control of fungal diseases and enhance our understanding of the ecology of SsHADV-1 and other newly emerging SsHADV-1–like viruses, which were recently found to be widespread in various niches including human HIV-infected blood, human and animal feces, insects, plants, and even sewage. PMID:27791095

  3. Single-stranded DNA fragments of insect-specific nuclear polyhedrosis virus act as selective DNA insecticides for gypsy moth control.

    Science.gov (United States)

    Oberemok, Volodymyr V; Skorokhod, Oleksii A

    2014-07-01

    This paper focuses on the DNA insecticides as a novel preparation against gypsy moth (Lymantria dispar) based on DNA fragments of the anti-apoptotic gene of its nuclear polyhedrosis virus. It was found that the external application of a solution with two single-stranded DNA fragments from BIR and RING domains of LdMNPV (L.dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene induces a significantly higher mortality of gypsy moth caterpillars in comparison with the application of the control solutions. This effect does not depend on the infection of caterpillars with LdMNPV. The results also show that DNA insecticides based on LdMNPV IAP-3 gene fragments can be selective in action, and at least are not harmful to tobacco hornworm (Manduca sexta) and black cutworm (Agrotis ipsilon). Part of the gypsy moth genome cloned with the fragments of BIR and RING domains of LdMNPV IAP-3 gene as primers, has an overlap with the corresponding part of the LdMNPV IAP-3 gene and L.dispar IAP-1 mRNA for an inhibitor of apoptosis protein with the high cover by query, allows assuming that we cloned a part of gypsy moth anti-apoptosis gene. This finding gives the grounding that proposed here DNA insecticides might act through the blocking of the mechanisms involved in post transcriptional expression of insect anti-apoptosis genes. The results show the insecticidal potential of the viral genome fragments that can be used to create safe and relatively fast-acting DNA insecticides to control the quantity of gypsy moth populations, important task for forestry and agriculture. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Insect Vectors of Rice Yellow Mottle Virus

    Directory of Open Access Journals (Sweden)

    Augustin Koudamiloro

    2015-01-01

    Full Text Available Rice yellow mottle virus (RYMV is the major viral constraint to rice production in Africa. RYMV was first identified in 1966 in Kenya and then later in most African countries where rice is grown. Several studies have been conducted so far on its evolution, pathogenicity, resistance genes, and especially its dissemination by insects. Many of these studies showed that, among RYMV vectors, insects especially leaf-feeders found in rice fields are the major source of virus transmission. Many studies have shown that the virus is vectored by several insect species in a process of a first ingestion of leaf material and subsequent transmission in following feedings. About forty insect species were identified as vectors of RYMV since 1970 up to now. They were essentially the beetles, grasshoppers, and the leafhoppers. For this review, we presented the chronology of their identification. Also, the biology, ecology, host range, distribution, and caused damage of these insects were briefly summarized.

  5. Evolution of DNA Methylation across Insects.

    Science.gov (United States)

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J

    2017-03-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Isothermal Amplification of Insect DNA

    Science.gov (United States)

    The loop-mediated isothermal amplification of DNA (LAMP) method can amplify a target DNA sequence at a constant temperature in about one hour. LAMP has broad application in agriculture and medicine because of the need for rapid and inexpensive diagnoses. LAMP eliminates the need for temperature cycl...

  7. Tumorigenic DNA viruses

    Energy Technology Data Exchange (ETDEWEB)

    Klein, G.

    1989-01-01

    The eighth volume of Advances in Viral Oncology focuses on the three major DNA virus groups with a postulated or proven tumorigenic potential: papillomaviruses, animal hepatitis viruses, and the Epstein-Bar virus. In the opening chapters, the contributors analyze the evidence that papillomaviruses and animal hepatitis viruses are involved in tumorigenesis and describe the mechanisms that trigger virus-host cell interactions. A detailed section on the Epstein-Barr virus (EBV) - comprising more than half the book - examines the transcription and mRNA processing patterns of the virus genome; the mechanisms by which EBV infects lymphoid and epithelial cells; the immunological aspects of the virus; the actions of EBV in hosts with Acquired Immune Deficiency Syndrome; and the involvement of EBV in the etiology of Burkitt's lymphoma.

  8. Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta).

    Science.gov (United States)

    Rosario, Karyna; Dayaram, Anisha; Marinov, Milen; Ware, Jessica; Kraberger, Simona; Stainton, Daisy; Breitbart, Mya; Varsani, Arvind

    2012-12-01

    Viruses with circular ssDNA genomes that encode a replication initiator protein (Rep) are among the smallest viruses known to infect both eukaryotic and prokaryotic organisms. In the past few years an overwhelming diversity of novel circular Rep-encoding ssDNA (CRESS-DNA) viruses has been unearthed from various hosts and environmental sources. Since there is limited information regarding CRESS-DNA viruses in invertebrates, this study explored the diversity of CRESS-DNA viruses circulating among insect populations by targeting dragonflies (Epiprocta), top insect predators that accumulate viruses from their insect prey over space and time. Using degenerate PCR and rolling circle amplification coupled with restriction digestion, 17 CRESS-DNA viral genomes were recovered from eight different dragonfly species collected in tropical and temperate regions. Nine of the genomes are similar to cycloviruses and represent five species within this genus, suggesting that cycloviruses are commonly associated with insects. Three of the CRESS-DNA viruses share conserved genomic features with recently described viruses similar to the mycovirus Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1, leading to the proposal of the genus Gemycircularvirus. The remaining viruses are divergent species representing four novel CRESS-DNA viral genera, including a gokushovirus-like prokaryotic virus (microphage) and three eukaryotic viruses with Reps similar to circoviruses. The novelty of CRESS-DNA viruses identified in dragonflies using simple molecular techniques indicates that there is an unprecedented diversity of ssDNA viruses among insect populations.

  9. The Sexually Transmitted Insect Virus, Hz-2V

    Institute of Scientific and Technical Information of China (English)

    John P. Burand

    2009-01-01

    Hz-2V is one of only a very few sexually transmitted viruses currently known in insects. Replication of this insect pathogenic virus results in sterility of infected moths rather than mortality. The sterility of the infected host is a consequence of virus directed malformation of adult reproductive tissues, which in females results in cellular proliferation and hypertrophy of these tissues. Virus replication has additional ramifications in infected females. Infected females produce more mating pheromones and attract more mates than healthy females, ultimately facilitating virus transmission and enhancing viral fitness. The molecular mechanisms used by the virus to manipulate the host to enhance its fitness are yet to be determined. Unraveling the underlying principles of these mechanisms promises to enhance our understanding of insect reproductive physiology, as well as provide molecular tools for use in novel approaches in sterile insect control programs.

  10. Application of Genomics for Understanding Plant Virus-Insect Vector Interactions and Insect Vector Control.

    Science.gov (United States)

    Kaur, Navneet; Hasegawa, Daniel K; Ling, Kai-Shu; Wintermantel, William M

    2016-10-01

    The relationships between plant viruses and their vectors have evolved over the millennia, and yet, studies on viruses began virus and vector interactions even more recently. The advent of next generation sequencing, including rapid genome and transcriptome analysis, methods for evaluation of small RNAs, and the related disciplines of proteomics and metabolomics offer a significant shift in the ability to elucidate molecular mechanisms involved in virus infection and transmission by insect vectors. Genomic technologies offer an unprecedented opportunity to examine the response of insect vectors to the presence of ingested viruses through gene expression changes and altered biochemical pathways. This review focuses on the interactions between viruses and their whitefly or thrips vectors and on potential applications of genomics-driven control of the insect vectors. Recent studies have evaluated gene expression in vectors during feeding on plants infected with begomoviruses, criniviruses, and tospoviruses, which exhibit very different types of virus-vector interactions. These studies demonstrate the advantages of genomics and the potential complementary studies that rapidly advance our understanding of the biology of virus transmission by insect vectors and offer additional opportunities to design novel genetic strategies to manage insect vectors and the viruses they transmit.

  11. Viruses of insects reared for food and feed

    DEFF Research Database (Denmark)

    Maciel Vergara, Gabriela; Ros, Vera I.D.

    2017-01-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even...... for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays...

  12. Non-destructive sampling of ancient insect DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Elias, Scott; Gilbert, Tom

    2009-01-01

    BACKGROUND: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological...... of 77-204 base pairs (-bp) in size using species-specific and general insect primers. CONCLUSION/SIGNIFICANCE: The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost...... damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from...

  13. Non-destructive sampling of ancient insect DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Elias, Scott; Gilbert, Tom;

    2009-01-01

    BACKGROUND: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological...... damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from...... of 77-204 base pairs (-bp) in size using species-specific and general insect primers. CONCLUSION/SIGNIFICANCE: The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost...

  14. Studies on equine infectious anemia virus transmission by insects.

    Science.gov (United States)

    Issel, C J; Foil, L D

    1984-02-01

    There are several factors involved in the mechanical transmission of equine infectious anemia (EIA) virus by insects. Large hematophagous insects, especially tabanids, which feed from extravascular sites (ie, pool feeding) appear to be the most efficient vectors. The biology of the host-seeking and blood-feeding behavior of the vectors are important variables that have been overlooked in the mechanical transmission of pathogens like EIA virus. The biology, population levels, and diversity of the vectors, in addition to the clinical status and proximity of EIA virus-infected horses maintained with susceptible animals are all important variables that contribute to EIA virus transmission in nature.

  15. Viruses of insects reared for food and feed.

    Science.gov (United States)

    Maciel-Vergara, Gabriela; Ros, Vera I D

    2017-07-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in industrial settings, can be the key for a change in the way natural resources are utilized in order to produce meat, animal protein and a list of other valuable animal products. However, because insect mass rearing technology is relatively new, little is known about the different factors that determine the quality and yield of the production process. Obtaining such knowledge is crucial for the success of insect-based product development. One of the issues that is likely to compromise the success of insect rearing is the outbreak of insect diseases. In particular, viral diseases can be devastating for the productivity and the quality of mass rearing systems. Prevention and management of viral diseases imply the understanding of the different factors that interact in insect mass rearing. This publication provides an overview of the known viruses in insects most commonly reared for food and feed. Nowadays with large-scale sequencing techniques, new viruses are rapidly being discovered. We discuss factors affecting the emergence of viruses in mass rearing systems, along with virus transmission routes. Finally we provide an overview of the wide range of measures available to prevent and manage virus outbreaks in mass rearing systems, ranging from simple sanitation methods to highly sophisticated methods including RNAi and transgenics. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells.

    Science.gov (United States)

    Dong, Zhan-Qi; Chen, Ting-Ting; Zhang, Jun; Hu, Nan; Cao, Ming-Ya; Dong, Fei-Fan; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2016-06-01

    Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future.

  17. Insect-Specific Virus Discovery: Significance for the Arbovirus Community.

    Science.gov (United States)

    Bolling, Bethany G; Weaver, Scott C; Tesh, Robert B; Vasilakis, Nikos

    2015-09-10

    Arthropod-borne viruses (arboviruses), especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.

  18. Insect-Specific Virus Discovery: Significance for the Arbovirus Community

    Directory of Open Access Journals (Sweden)

    Bethany G. Bolling

    2015-09-01

    Full Text Available Arthropod-borne viruses (arboviruses, especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.

  19. Insect-Specific Virus Discovery: Significance for the Arbovirus Community

    Science.gov (United States)

    Bolling, Bethany G.; Weaver, Scott C.; Tesh, Robert B.; Vasilakis, Nikos

    2015-01-01

    Arthropod-borne viruses (arboviruses), especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching. PMID:26378568

  20. A Chikungunya Fever Vaccine Utilizing an Insect-Specific Virus Platform

    Science.gov (United States)

    Erasmus, Jesse H.; Auguste, Albert J.; Kaelber, Jason T.; Luo, Huanle; Rossi, Shannan L.; Fenton, Karla; Leal, Grace; Kim, Dal Y.; Chiu, Wah; Wang, Tian; Frolov, Ilya; Nasar, Farooq; Weaver, Scott C.

    2016-01-01

    Traditionally, vaccine development involves tradeoffs between immunogenicity and safety. Live-attenuated vaccines typically offer rapid and durable immunity but reduced safety, while the inability of inactivated vaccines to replicate enhances safety at the expense of immunogenicity, often necessitating multiple doses and boosters. To overcome these tradeoffs, we developed the insect-specific alphavirus, Eilat virus (EILV), as a vaccine platform. To address the chikungunya virus (CHIKV) pandemic, we used an EILV cDNA clone to design a chimeric virus containing the CHIKV structural proteins. The recombinant EILV/CHIKV virus was structurally identical at 10Å to wild-type CHIKV by single particle cryoelectron microscopy, mimicked the early stages of CHIKV replication in vertebrate cells from attachment and entry to viral RNA delivery, yet remained completely defective for productive replication, providing a high degree of safety. A single dose of EILV/CHIKV produced in mosquito cells elicited rapid (within 4 days) and long-lasting (>290 days) neutralizing antibodies that provided complete protection in two different mouse models. In nonhuman primates, EILV/CHIKV elicited rapid and robust immunity that protected against viremia and telemetrically-monitored fever. Our EILV platform represents the first structurally native application of an insect-specific virus in preclinical vaccine development and highlights the potential application of such viruses in vaccinology. PMID:27991917

  1. A chikungunya fever vaccine utilizing an insect-specific virus platform.

    Science.gov (United States)

    Erasmus, Jesse H; Auguste, Albert J; Kaelber, Jason T; Luo, Huanle; Rossi, Shannan L; Fenton, Karla; Leal, Grace; Kim, Dal Y; Chiu, Wah; Wang, Tian; Frolov, Ilya; Nasar, Farooq; Weaver, Scott C

    2017-02-01

    Traditionally, vaccine development involves tradeoffs between immunogenicity and safety. Live-attenuated vaccines typically offer rapid and durable immunity but have reduced safety when compared to inactivated vaccines. In contrast, the inability of inactivated vaccines to replicate enhances safety at the expense of immunogenicity, often necessitating multiple doses and boosters. To overcome these tradeoffs, we developed the insect-specific alphavirus, Eilat virus (EILV), as a vaccine platform. To address the chikungunya fever (CHIKF) pandemic, we used an EILV cDNA clone to design a chimeric virus containing the chikungunya virus (CHIKV) structural proteins. The recombinant EILV/CHIKV was structurally identical at 10 Å to wild-type CHIKV, as determined by single-particle cryo-electron microscopy, and it mimicked the early stages of CHIKV replication in vertebrate cells from attachment and entry to viral RNA delivery. Yet the recombinant virus remained completely defective for productive replication, providing a high degree of safety. A single dose of EILV/CHIKV produced in mosquito cells elicited rapid (within 4 d) and long-lasting (>290 d) neutralizing antibodies that provided complete protection in two different mouse models. In nonhuman primates, EILV/CHIKV elicited rapid and robust immunity that protected against viremia and telemetrically monitored fever. Our EILV platform represents the first structurally native application of an insect-specific virus in preclinical vaccine development and highlights the potential application of such viruses in vaccinology.

  2. Virus Innexins induce alterations in insect cell and tissue function

    Science.gov (United States)

    Polydnaviruses are dsDNA viruses that induce immune and developmental alterations in their caterpillar hosts. Characterization of polydnavirus gene families and family members is necessary to understand mechanisms of pathology and evolution of these viruses, and may aid to elucidate the role of host...

  3. Discovery of insect and human dengue virus host factors.

    Science.gov (United States)

    Sessions, October M; Barrows, Nicholas J; Souza-Neto, Jayme A; Robinson, Timothy J; Hershey, Christine L; Rodgers, Mary A; Ramirez, Jose L; Dimopoulos, George; Yang, Priscilla L; Pearson, James L; Garcia-Blanco, Mariano A

    2009-04-23

    Dengue fever is the most frequent arthropod-borne viral disease of humans, with almost half of the world's population at risk of infection. The high prevalence, lack of an effective vaccine, and absence of specific treatment conspire to make dengue fever a global public health threat. Given their compact genomes, dengue viruses (DENV-1-4) and other flaviviruses probably require an extensive number of host factors; however, only a limited number of human, and an even smaller number of insect host factors, have been identified. Here we identify insect host factors required for DENV-2 propagation, by carrying out a genome-wide RNA interference screen in Drosophila melanogaster cells using a well-established 22,632 double-stranded RNA library. This screen identified 116 candidate dengue virus host factors (DVHFs). Although some were previously associated with flaviviruses (for example, V-ATPases and alpha-glucosidases), most of the DVHFs were newly implicated in dengue virus propagation. The dipteran DVHFs had 82 readily recognizable human homologues and, using a targeted short-interfering-RNA screen, we showed that 42 of these are human DVHFs. This indicates notable conservation of required factors between dipteran and human hosts. This work suggests new approaches to control infection in the insect vector and the mammalian host.

  4. A dsRNA-binding protein of a complex invertebrate DNA virus suppresses the Drosophila RNAi response

    NARCIS (Netherlands)

    Bronkhorst, A.W.; Cleef, K.W.R. van; Venselaar, H.; Rij, R.P. van

    2014-01-01

    Invertebrate RNA viruses are targets of the host RNA interference (RNAi) pathway, which limits virus infection by degrading viral RNA substrates. Several insect RNA viruses encode suppressor proteins to counteract this antiviral response. We recently demonstrated that the dsDNA virus Invertebrate ir

  5. A dsRNA-binding protein of a complex invertebrate DNA virus suppresses the Drosophila RNAi response

    NARCIS (Netherlands)

    Bronkhorst, A.W.; Cleef, K.W.R. van; Venselaar, H.; Rij, R.P. van

    2014-01-01

    Invertebrate RNA viruses are targets of the host RNA interference (RNAi) pathway, which limits virus infection by degrading viral RNA substrates. Several insect RNA viruses encode suppressor proteins to counteract this antiviral response. We recently demonstrated that the dsDNA virus Invertebrate ir

  6. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions.

    Science.gov (United States)

    Dietzgen, Ralf G; Mann, Krin S; Johnson, Karyn N

    2016-11-09

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.

  7. Functional expression and characterization of the Epstein-Barr virus DNA polymerase catalytic subunit.

    OpenAIRE

    1993-01-01

    A recombinant baculovirus containing the complete sequence for the Epstein-Barr virus (EBV) DNA polymerase catalytic subunit, BALF5 gene product, under the control of the baculovirus polyhedrin promoter was constructed. Insect cells infected with the recombinant virus produced a protein of 110 kDa, recognized by anti-BALF5 protein-specific polyclonal antibody. The expressed EBV DNA polymerase catalytic polypeptide was purified from the cytosolic fraction of the recombinant virus-infected inse...

  8. Counting animal species with DNA barcodes: Canadian insects.

    Science.gov (United States)

    Hebert, Paul D N; Ratnasingham, Sujeevan; Zakharov, Evgeny V; Telfer, Angela C; Levesque-Beaudin, Valerie; Milton, Megan A; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R

    2016-09-05

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy.This article is part of the

  9. Counting animal species with DNA barcodes: Canadian insects

    Science.gov (United States)

    Ratnasingham, Sujeevan; Zakharov, Evgeny V.; Telfer, Angela C.; Levesque-Beaudin, Valerie; Milton, Megan A.; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R.

    2016-01-01

    Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy. This article is part of the

  10. Recent Advances in Biological Control of Pest Insects by Using Viruses in China

    Institute of Scientific and Technical Information of China (English)

    Xiu-lian SUN; Hui-yin PENG

    2007-01-01

    Insect viruses are attractive as biological control agents and could be a feasible alternative to chemical insecticides in the management of insect infestations. This review describes recent advances in the development of wild-type and genetically modified viruses as insecticides. A new strategy of application of insect viruses in China is reviewed. Also, the assessment of biosafety of genetically modified Helicoverpa armigera Nucleopolyhedovirus (HearNPV) is emphasized as a case-study.

  11. Insect vector-mediated transmission of plant viruses.

    Science.gov (United States)

    Whitfield, Anna E; Falk, Bryce W; Rotenberg, Dorith

    2015-05-01

    The majority of plant-infecting viruses are transmitted to their host plants by vectors. The interactions between viruses and vector vary in duration and specificity but some common themes in vector transmission have emerged: 1) plant viruses encode structural proteins on the surface of the virion that are essential for transmission, and in some cases additional non-structural helper proteins that act to bridge the virion to the vector binding site; 2) viruses bind to specific sites in or on vectors and are retained there until they are transmitted to their plant hosts; and 3) viral determinants of vector transmission are promising candidates for translational research aimed at disrupting transmission or decreasing vector populations. In this review, we focus on well-characterized insect vector-transmitted viruses in the following genera: Caulimovirus, Crinivirus, Luteovirus, Geminiviridae, Reovirus, Tospovirus, and Tenuivirus. New discoveries regarding these genera have increased our understanding of the basic mechanisms of virus transmission by arthropods, which in turn have enabled the development of innovative strategies for breaking the transmission cycle.

  12. Detecting ingested plant DNA in soil-living insect larvae.

    Science.gov (United States)

    Staudacher, Karin; Wallinger, Corinna; Schallhart, Nikolaus; Traugott, Michael

    2011-02-01

    Although a significant proportion of plant tissue is located in roots and other below-ground parts of plants, little is known on the dietary choices of root-feeding insects. This is caused by a lack of adequate methodology which would allow tracking below-ground trophic interactions between insects and plants. Here, we present a DNA-based approach to examine this relationship. Feeding experiments were established where either wheat (Triticum aestivum) or maize (Zea mays) was fed to Agriotes larvae (Coleoptera: Elateridae), allowing them to digest for up to 72 h. Due to the very small amount of plant tissue ingested (max = 6.76 mg), DNA extraction procedures and the sensitivity of polymerase chain reaction (PCR) had to be optimized. Whole-body DNA extracts of larvae were tested for the presence of both rbcL and trnL plastid DNA using universal primers. Moreover, based on cpDNA sequences encoding chloroplast tRNA for leucine (trnL), specific primers for maize and wheat were developed. With both, general and specific primers, plant DNA was detectable in the guts of Agriotes larvae for up to 72 h post-feeding, the maximum time of digestion in these experiments. No significant effect of time since feeding on plant DNA detection success was observed, except for the specific primers in maize-fed larvae. Here, plant DNA detection was negatively correlated with the duration of digestion. Both, meal size and initial mass of the individual larvae did not affect the rate of larvae testing positive for plant DNA. The outcomes of this study represent a first step towards a specific analysis of the dietary choices of soil-living herbivores to further increase our understanding of animal-plant feeding interactions in the soil.

  13. Salivary gland hypertrophy viruses (SGHVs): a novel group of insect pathogenic viruses

    Science.gov (United States)

    Salivary gland hypertrophy viruses (SGHVs) are a unique, unclassified group of entomopathogenic, double-stranded DNA viruses that have been reported from three genera of Diptera. These viruses replicate in nuclei of salivary gland cells in adult flies, inducing gland enlargement with little obvious ...

  14. The Plant Virus Tomato Spotted Wilt Tospovirus Activates the Immune System of Its Main Insect Vector, Frankliniella occidentalis

    Science.gov (United States)

    Medeiros, Ricardo B.; Resende, Renato de O.; de Ávila, Antonio Carlos

    2004-01-01

    Tospoviruses have the ability to infect plants and their insect vectors. Tomato spotted wilt virus (TSWV), the type species in the Tospovirus genus, infects its most important insect vector, Frankliniella occidentalis, the western flower thrips (WFT). However, no detrimental effects on the life cycle or cytopathological changes have been reported in the WFT after TSWV infection, and relatively few viral particles can be observed even several days after infection. We hypothesized that TSWV infection triggers an immune response in the WFT. Using subtractive cDNA libraries to probe WFT DNA macroarrays, we found that the WFT's immune system is activated by TSWV infection. The activated genes included (i) those encoding antimicrobial peptides, such as defensin and cecropin; (ii) genes involved in pathogen recognition, such as those encoding lectins; (iii) those encoding receptors that activate the innate immune response, such as Toll-3; and (iv) those encoding members of signal transduction pathways activated by Toll-like receptors, such as JNK kinase. Transcriptional upregulation of these genes after TSWV infection was confirmed by Northern analysis, and the kinetics of the immune response was measured over time. Several of the detected genes were activated at the same time that viral replication was first detected by reverse transcription-PCR. To our knowledge, this is the first report of the activation of an insect vector immune response by a plant virus. The results may lead to a better understanding of insects' immune responses against viruses and may help in the future development of novel control strategies against plant viruses, as well as human and animal viruses transmitted by insect vectors. PMID:15113877

  15. Aphis Glycines Virus 2, a Novel Insect Virus with a Unique Genome Structure

    Directory of Open Access Journals (Sweden)

    Sijun Liu

    2016-11-01

    Full Text Available The invasive soybean aphid, Aphis glycines, is a major pest in soybeans, resulting in substantial economic loss. We analyzed the A. glycines transcriptome to identify sequences derived from viruses of A. glycines. We identified sequences derived from a novel virus named Aphis glycines virus 2 (ApGlV2. The assembled virus genome sequence was confirmed by reverse transcription polymerase chain reaction (RT-PCR and Sanger sequencing, conserved domains were characterized, and distribution, and transmission examined. This virus has a positive sense, single-stranded RNA genome of ~4850 nt that encodes three proteins. The RNA-dependent RNA polymerase (RdRp of ApGlV2 is a permuted RdRp similar to those of some tetraviruses, while the capsid protein is structurally similar to the capsid proteins of plant sobemoviruses. ApGlV2 also encodes a larger minor capsid protein, which is translated by a readthrough mechanism. ApGlV2 appears to be widespread in A. glycines populations and to persistently infect aphids with a 100% vertical transmission rate. ApGlV2 is susceptible to the antiviral RNA interference (RNAi pathway. This virus, with its unique genome structure with both plant- and insect-virus characteristics, is of particular interest from an evolutionary standpoint.

  16. Tubular structure induced by a plant virus facilitates viral spread in its vector insect.

    Directory of Open Access Journals (Sweden)

    Qian Chen

    Full Text Available Rice dwarf virus (RDV replicates in and is transmitted by a leafhopper vector in a persistent-propagative manner. Previous cytopathologic and genetic data revealed that tubular structures, constructed by the nonstructural viral protein Pns10, contain viral particles and are directly involved in the intercellular spread of RDV among cultured leafhopper cells. Here, we demonstrated that RDV exploited these virus-containing tubules to move along actin-based microvilli of the epithelial cells and muscle fibers of visceral muscle tissues in the alimentary canal, facilitating the spread of virus in the body of its insect vector leafhoppers. In cultured leafhopper cells, the knockdown of Pns10 expression due to RNA interference (RNAi induced by synthesized dsRNA from Pns10 gene strongly inhibited tubule formation and prevented the spread of virus among insect vector cells. RNAi induced after ingestion of dsRNA from Pns10 gene strongly inhibited formation of tubules, preventing intercellular spread and transmission of the virus by the leafhopper. All these results, for the first time, show that a persistent-propagative virus exploits virus-containing tubules composed of a nonstructural viral protein to traffic along actin-based cellular protrusions, facilitating the intercellular spread of the virus in the vector insect. The RNAi strategy and the insect vector cell culture provide useful tools to investigate the molecular mechanisms enabling efficient transmission of persistent-propagative plant viruses by vector insects.

  17. First evidence of DNA methylation in insect Tribolium castaneum: environmental regulation of DNA methylation within heterochromatin.

    Science.gov (United States)

    Feliciello, Isidoro; Parazajder, Josip; Akrap, Ivana; Ugarković, Durđica

    2013-05-01

    DNA methylation has been studied in many eukaryotic organisms, in particular vertebrates, and was implicated in developmental and phenotypic variations. Little is known about the role of DNA methylation in invertebrates, although insects are considered as excellent models for studying the evolution of DNA methylation. In the red flour beetle, Tribolium castaneum (Tenebrionidae, Coleoptera), no evidence of DNA methylation has been found till now. In this paper, a cytosine methylation in Tribolium castaneum embryos was detected by methylation sensitive restriction endonucleases and immuno-dot blot assay. DNA methylation in embryos is followed by a global demethylation in larvae, pupae and adults. DNA demethylation seems to proceed actively through 5-hydroxymethylcytosine, most probably by the action of TET enzyme. Bisulfite sequencing of a highly abundant satellite DNA located in pericentromeric heterochromatin revealed similar profile of cytosine methylation in adults and embryos. Cytosine methylation was not only restricted to CpG sites but was found at CpA, CpT and CpC sites. In addition, complete cytosine demethylation of heterochromatic satellite DNA was induced by heat stress. The results reveal existence of DNA methylation cycling in T. castaneum ranging from strong overall cytosine methylation in embryos to a weak DNA methylation in other developmental stages. Nevertheless, DNA methylation is preserved within heterochromatin during development, indicating its role in heterochromatin formation and maintenance. It is, however, strongly affected by heat stress, suggesting a role for DNA methylation in heterochromatin structure modulation during heat stress response.

  18. Baculoviruses modulate a proapoptotic DNA damage response to promote virus multiplication.

    Science.gov (United States)

    Mitchell, Jonathan K; Friesen, Paul D

    2012-12-01

    The baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) initiates apoptosis in diverse insects through events triggered by virus DNA (vDNA) replication. To define the proapoptotic pathway and its role in antivirus defense, we investigated the link between the host's DNA damage response (DDR) and apoptosis. We report here that AcMNPV elicits a DDR in the model insect Drosophila melanogaster. Replication of vDNA activated DDR kinases, as evidenced by ATM-driven phosphorylation of the Drosophila histone H2AX homolog (H2Av), a critical regulator of the DDR. Ablation or inhibition of ATM repressed H2Av phosphorylation and blocked virus-induced apoptosis. The DDR kinase inhibitors caffeine and KU55933 also prevented virus-induced apoptosis in cells derived from the permissive AcMNPV host, Spodoptera frugiperda. This block occurred at a step upstream of virus-mediated depletion of the cellular inhibitor-of-apoptosis protein, an event that initiates apoptosis in Spodoptera and Drosophila. Thus, the DDR is a conserved, proapoptotic response to baculovirus infection. DDR inhibition also repressed vDNA replication and reduced virus yields 100,000-fold, demonstrating that the DDR contributes to virus production, despite its recognized antivirus role. In contrast to virus-induced phosphorylation of Drosophila H2Av, AcMNPV blocked phosphorylation of the Spodoptera H2AX homolog (SfH2AX). Remarkably, AcMNPV also suppressed SfH2AX phosphorylation following pharmacologically induced DNA damage. These findings indicate that AcMNPV alters canonical DDR signaling in permissive cells. We conclude that AcMNPV triggers a proapoptotic DDR that is subsequently modified, presumably to stimulate vDNA replication. Thus, manipulation of the DDR to facilitate multiplication is an evolutionarily conserved strategy among DNA viruses of insects and mammals.

  19. Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses

    Science.gov (United States)

    Li, Linlin; Joseph, G. Victoria; Wang, Chunlin; Jones, Morris; Fellers, Gary M.; Kunz, Thomas H.; Delwart, Eric

    2010-01-01

    Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.

  20. Viruses of insects reared for food and feed

    NARCIS (Netherlands)

    Maciel-Vergara, Gabriela; Ros, Vera I.D.

    2017-01-01

    The use of insects as food for humans or as feed for animals is an alternative for the increasing high demand for meat and has various environmental and social advantages over the traditional intensive production of livestock. Mass rearing of insects, under insect farming conditions or even in in

  1. Filter Paper for Preserving Insects, Bacteria, and Host Reservoir DNA

    Directory of Open Access Journals (Sweden)

    Somsri Wiwanitkit

    2013-03-01

    Full Text Available Sir, the recent report on “Utility of filter pa­per for preserving insects, bacteria, and host reservoir DNA for molecular testing” is very interesting (Karimian et al. 2011. Karimian et al. (2011 reported that “The filter paper method is a simple and economi­cal way to store, to preserve, and to distrib­ute DNA sam­ples for PCR analysis.” Many facts should be discussed. First, this work is only a sim­ple retrospective observational study. There is no economic analysis. No data on the cost, hence, it might not be pos­sible to conclude that the technique is an economical way. Second, Karimian et al. (2011 concluded on preservation. This might be an extrapolating summary. There must be the proposed mech­anism how the simple filter paper can preserve the sample. What the active gradi­ent in the filter paper that helps preserve must be clar­ified. It seems that the filter pa­per is only a good alternative sample collec­tion method.

  2. Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues.

    Science.gov (United States)

    Kliot, Adi; Kontsedalov, Svetlana; Lebedev, Galina; Brumin, Marina; Cathrin, Pakkianathan Britto; Marubayashi, Julio Massaharu; Skaljac, Marisa; Belausov, Eduard; Czosnek, Henryk; Ghanim, Murad

    2014-02-24

    Fluorescence in situ hybridization (FISH) is a name given to a variety of techniques commonly used for visualizing gene transcripts in eukaryotic cells and can be further modified to visualize other components in the cell such as infection with viruses and bacteria. Spatial localization and visualization of viruses and bacteria during the infection process is an essential step that complements expression profiling experiments such as microarrays and RNAseq in response to different stimuli. Understanding the spatiotemporal infections with these agents complements biological experiments aimed at understanding their interaction with cellular components. Several techniques for visualizing viruses and bacteria such as reporter gene systems or immunohistochemical methods are time-consuming, and some are limited to work with model organisms and involve complex methodologies. FISH that targets RNA or DNA species in the cell is a relatively easy and fast method for studying spatiotemporal localization of genes and for diagnostic purposes. This method can be robust and relatively easy to implement when the protocols employ short hybridizing, commercially-purchased probes, which are not expensive. This is particularly robust when sample preparation, fixation, hybridization, and microscopic visualization do not involve complex steps. Here we describe a protocol for localization of bacteria and viruses in insect and plant tissues. The method is based on simple preparation, fixation, and hybridization of insect whole mounts and dissected organs or hand-made plant sections, with 20 base pairs short DNA probes conjugated to fluorescent dyes on their 5' or 3' ends. This protocol has been successfully applied to a number of insect and plant tissues, and can be used to analyze expression of mRNAs or other RNA or DNA species in the cell.

  3. High-Level Production of a Functional Recombinant Hepatitis B Virus Polymerase in Insect Cells with a Baculovirus Expression System

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaoyan; GAO Linlin; DENG Fei; ZHANG Yanfang; LI Yan; LIN Jusheng

    2007-01-01

    HBV polymerase has intrinsic RNA-dependent reverse transcriptase, DNA-dependent DNA polymerase as well as RNaseH activity. Analysis of HBV polymerase has been hampered for many years due to the inability to express functional enzyme in a recombinant system. To obtain active polymerase at a high level, we have taken advantage of baculovirus expression system. The gene of HBV polymerase was amplified by PCR and cloned into pFastBac Dual to construct the recombinant plasmid pFastbac Dual-pol. The recombinant donor plasmid, pFastbac Dual-pol, was constructed by inserting HBV polymerase gene into EcoRI and PstI sites controlled by polyhedrin promoter. The recombinant donor plasmid was transformed into DH10Bac competent cells for transposition. Recombinant bacmid was constructed by inserting of the mini-Tn7 element from the donor plasmid into the mini-attTn7 attachment site on the bacmid. The recombinant bacmid DNA was isolated and transfected into the Sf9 cells to produce the recombinant virus, and healthy insect Sf9 cells were infected with the recombinant virus containing HBV polymerse gene to express the target protein. HBV polymerse expressed in insect cells was analyzed by SDS-PAGE. PCR results showed recombinant donor plasmid, pFastbac Dual-pol, was constructed successfully. The recombinant hepatitis B virus polymerase was expressed in insect cells at high level. The recombinant hepatitis B virus polymerase should facilitate the analysis of HBV polymerase biological characteristics, allow the investigation for new anti-HBV drugs specifically blocking HBV polymerase.

  4. Structural organization of DNA in chlorella viruses.

    Directory of Open Access Journals (Sweden)

    Timo Wulfmeyer

    Full Text Available Chlorella viruses have icosahedral capsids with an internal membrane enclosing their large dsDNA genomes and associated proteins. Their genomes are packaged in the particles with a predicted DNA density of ca. 0.2 bp nm(-3. Occasionally infection of an algal cell by an individual particle fails and the viral DNA is dynamically ejected from the capsid. This shows that the release of the DNA generates a force, which can aid in the transfer of the genome into the host in a successful infection. Imaging of ejected viral DNA indicates that it is intimately associated with proteins in a periodic fashion. The bulk of the protein particles detected by atomic force microscopy have a size of ∼60 kDa and two proteins (A278L and A282L of about this size are among 6 basic putative DNA binding proteins found in a proteomic analysis of DNA binding proteins packaged in the virion. A combination of fluorescence images of ejected DNA and a bioinformatics analysis of the DNA reveal periodic patterns in the viral DNA. The periodic distribution of GC rich regions in the genome provides potential binding sites for basic proteins. This DNA/protein aggregation could be responsible for the periodic concentration of fluorescently labeled DNA observed in ejected viral DNA. Collectively the data indicate that the large chlorella viruses have a DNA packaging strategy that differs from bacteriophages; it involves proteins and share similarities to that of chromatin structure in eukaryotes.

  5. Analysis of the Genome of the Sexually Transmitted Insect Virus Helicoverpa zea Nudivius 2

    Directory of Open Access Journals (Sweden)

    Zhiqiang Lu

    2012-01-01

    Full Text Available The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2 was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs. HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea.

  6. Virion Proteomics of Large DNA Viruses

    Institute of Scientific and Technical Information of China (English)

    Ran-ran WANG; Zhi-hong HU; Hua-lin WANG; Fei DENG

    2009-01-01

    Large DNA viruses normally have complex structures with many of protein components derived from both viral and host origins. The development in proteomics, especially mass spectrometry identification techniques provide powerful tools for analyzing large viruses. In this review, we have summarized the recent achievements on proteomic studies of large DNA viruses, such as herpesvirus, poxvirus, nimavirus and baculoviruse. The proteomics of baculovirus occlusion-derived virions (ODV) were emphasized. Different mass spectrometry techniques used on ,carious baculoviruses were introduced, and the identified structurally associated proteins of baculoviruses are summarized.

  7. Expression of the Lassa virus nucleocapsid protein in insect cells infected with a recombinant baculovirus: application to diagnostic assays for Lassa virus infection.

    Science.gov (United States)

    Barber, G N; Clegg, J C; Lloyd, G

    1990-01-01

    The coding region of the gene for the nucleocapsid protein of Lassa virus has been inserted into the genome of Autographa californica nuclear polyhedrosis virus (AcNPV) using the transfer vector pAcYM1, so that expression of the foreign DNA is under the control of the promoter of the AcNPV polyhedrin gene. Infection of cultured Spodoptera frugiperda cells with recombinant virus resulted in the synthesis of high levels of a protein that was indistinguishable from the authentic Lassa virus protein by SDS gel electrophoresis and immunoblotting with a variety of specific immune sera and monoclonal antibodies (MAbs). The kinetics of appearance of the protein were comparable to those of polyhedrin production in wild-type AcNPV-infected cells. The recombinant material was antigenic when used in ELISA for Lassa virus-specific antibodies, reacting well with MAbs specific for the nucleocapsid protein and with sera from experimentally infected guinea-pigs. The recombinant ELISA was able to clearly distinguish sera from human cases of Lassa fever against a panel of known negative sera of African origin. Recombinant-infected insect cells were an effective substitute for mammalian cells infected with Lassa virus itself in the immunofluorescence assay for Lassa virus-specific antibodies. This system offers attractive alternatives to the use of Lassa virus-infected materials as reagents in diagnostic procedures.

  8. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  9. RNA Interference in Insect Vectors for Plant Viruses

    Directory of Open Access Journals (Sweden)

    Surapathrudu Kanakala

    2016-12-01

    Full Text Available Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  10. RNA Interference in Insect Vectors for Plant Viruses.

    Science.gov (United States)

    Kanakala, Surapathrudu; Ghanim, Murad

    2016-12-12

    Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.

  11. Vertically transmitted viral endosymbionts of insects: do sigma viruses walk alone?

    Science.gov (United States)

    Longdon, Ben; Jiggins, Francis M

    2012-10-07

    Insects are host to a wide range of vertically transmitted bacterial endosymbionts, but we know relatively little about their viral counterparts. Here, we discuss the vertically transmitted viral endosymbionts of insects, firstly examining the diversity of this group, and then focusing on the well-studied sigma viruses that infect dipterans. Despite limited sampling, evidence suggests that vertically transmitted viruses may be common in insects. Unlike bacteria, viruses can be transmitted through sperm and eggs, a trait that allows them to rapidly spread through host populations even when infection is costly to the host. Work on Drosophila melanogaster has shown that sigma viruses and their hosts are engaged in a coevolutionary arms race, in which the spread of resistance genes in the host population is followed by the spread of viral genotypes that can overcome host resistance. In the long-term, associations between sigma viruses and their hosts are unstable, and the viruses persist by occasionally switching to new host species. It therefore seems likely that viral endosymbionts have major impacts on the evolution and ecology of insects.

  12. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses.

    Directory of Open Access Journals (Sweden)

    Joël T van Mierlo

    Full Text Available RNA interference (RNAi is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus infected Drosophila. Furthermore, we demonstrate that the Nora virus VP1 protein contains RNAi suppressive activity in vitro and in vivo that enhances pathogenicity of recombinant Sindbis virus in an RNAi dependent manner. Nora virus VP1 and the viral suppressor of RNAi of Cricket paralysis virus (1A antagonized Argonaute-2 (AGO2 Slicer activity of RNA induced silencing complexes pre-loaded with a methylated single-stranded guide strand. The convergent evolution of AGO2 suppression in two unrelated insect RNA viruses highlights the importance of AGO2 in antiviral defense.

  13. Characterization of Dak Nong virus, an insect nidovirus isolated from Culex mosquitoes in Vietnam.

    Science.gov (United States)

    Kuwata, Ryusei; Satho, Tomomitsu; Isawa, Haruhiko; Yen, Nguyen Thi; Phong, Tran Vu; Nga, Phan Thi; Kurashige, Tomokazu; Hiramatsu, Yukihiro; Fukumitsu, Yuki; Hoshino, Keita; Sasaki, Toshinori; Kobayashi, Mutsuo; Mizutani, Tetsuya; Sawabe, Kyoko

    2013-11-01

    In this study, we isolated and characterized an insect nidovirus from the mosquito Culex tritaeniorhynchus Giles (Diptera: Culicidae) in Vietnam, as an additional member of the new family Mesoniviridae in the order Nidovirales. The virus, designated "Dak Nong virus (DKNV)," shared many characteristics with Cavally virus and Nam Dinh virus, which have also been discovered recently in mosquitoes, and these viruses should be considered members of a single virus species, Alphamesonivirus 1. DKNV grew in cultured mosquito cells but could not replicate in the cultured vertebrate cells tested. N-terminal sequencing of the DKNV structural proteins revealed two posttranslational cleavage sites in the spike glycoprotein precursor. DKNV is assumed to be a new member of the species Alphamesonivirus 1, and the current study provides further understanding of viruses belonging to the new family Mesoniviridae.

  14. The complete DNA sequence of vaccinia virus.

    Science.gov (United States)

    Goebel, S J; Johnson, G P; Perkus, M E; Davis, S W; Winslow, J P; Paoletti, E

    1990-11-01

    The complete DNA sequence of the genome of vaccinia virus has been determined. The genome consisted of 191,636 bp with a base composition of 66.6% A + T. We have identified 198 "major" protein-coding regions and 65 overlapping "minor" regions, for a total of 263 potential genes. Genes encoded by the virus were located by examination of DNA sequence characteristics and compared with existing vaccinia virus mapping analyses, sequence data, and transcription data. These genes were found to be compactly organized along the genome with relatively few regions of noncoding sequences. Whereas several similarities to proteins of known function were discerned, the function of the majority of proteins encoded by these open reading frames is as yet undetermined.

  15. Mixed genotype transmission bodies and virions contribute to the maintenance of diversity in an insect virus

    Science.gov (United States)

    Clavijo, Gabriel; Williams, Trevor; Muñoz, Delia; Caballero, Primitivo; López-Ferber, Miguel

    2010-01-01

    An insect nucleopolyhedrovirus naturally survives as a mixture of at least nine genotypes. Infection by multiple genotypes results in the production of virus occlusion bodies (OBs) with greater pathogenicity than those of any genotype alone. We tested the hypothesis that each OB contains a genotypically diverse population of virions. Few insects died following inoculation with an experimental two-genotype mixture at a dose of one OB per insect, but a high proportion of multiple infections were observed (50%), which differed significantly from the frequencies predicted by a non-associated transmission model in which genotypes are segregated into distinct OBs. By contrast, insects that consumed multiple OBs experienced higher mortality and infection frequencies did not differ significantly from those of the non-associated model. Inoculation with genotypically complex wild-type OBs indicated that genotypes tend to be transmitted in association, rather than as independent entities, irrespective of dose. To examine the hypothesis that virions may themselves be genotypically heterogeneous, cell culture plaques derived from individual virions were analysed to reveal that one-third of virions was of mixed genotype, irrespective of the genotypic composition of the OBs. We conclude that co-occlusion of genotypically distinct virions in each OB is an adaptive mechanism that favours the maintenance of virus diversity during insect-to-insect transmission. PMID:19939845

  16. Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin

    NARCIS (Netherlands)

    Nalcacioglu, Remziye; Muratoglu, Hacer; Yesilyurt, Aydın; Oers, van Monique M.; Vlak, Just M.; Demirbag, Zihni

    2016-01-01

    Previously we have generated a recombinant Chilo iridescent virus (CIV) by inserting the green fluorescent protein gene (gfp) into the CIV 157L open reading frame (ORF) locus and showed that this recombinant (rCIV-Δ157L-gfp) was fully infectious both in cell culture as well as in insect larvae. T

  17. Expression and purification of the matrix protein of Nipah virus in baculovirus insect cell system.

    Science.gov (United States)

    Masoomi Dezfooli, Seyedehsara; Tan, Wen Siang; Tey, Beng Ti; Ooi, Chien Wei; Hussain, Siti Aslina

    2016-01-01

    Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N-terminally His-tagged NiV M protein in insect cells. A time-course study demonstrated that the highest yield of recombinant M protein (400-500 μg) was expressed from 107 infected cells 3 days after infection. A single-step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme-linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig.

  18. DNA Topology and the Initiation of Virus DNA Packaging.

    Directory of Open Access Journals (Sweden)

    Choon Seok Oh

    Full Text Available During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase's small subunit (TerS. The large terminase subunit (TerL contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead's portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.

  19. DNA Topology and the Initiation of Virus DNA Packaging.

    Science.gov (United States)

    Oh, Choon Seok; Sippy, Jean; Charbonneau, Bridget; Crow Hutchinson, Jennifer; Mejia-Romero, Olga Esther; Barton, Michael; Patel, Priyal; Sippy, Rachel; Feiss, Michael

    2016-01-01

    During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase's small subunit (TerS). The large terminase subunit (TerL) contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead's portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.

  20. Amino acid racemization in amber-entombed insects: implications for DNA preservation

    Science.gov (United States)

    Bada, J. L.; Wang, X. S.; Poinar, H. N.; Paabo, S.; Poinar, G. O.

    1994-01-01

    DNA depurination and amino acid racemization take place at similar rates in aqueous solution at neutral pH. This relationship suggests that amino acid racemization may be useful in accessing the extent of DNA chain breakage in ancient biological remains. To test this suggestion, we have investigated the amino acids in insects entombed in fossilized tree resins ranging in age from 10(4). These results suggest that in amber insect inclusions DNA depurination rates would also likely be retarded in comparison to aqueous solution measurements, and thus DNA fragments containing many hundreds of base pairs should be preserved. This conclusion is consistent with the reported successful retrieval of DNA sequences from amber-entombed organisms.

  1. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae).

    Science.gov (United States)

    Park, D-S; Suh, S-J; Hebert, P D N; Oh, H-W; Hong, K-J

    2011-08-01

    Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.

  2. Musca domestica Salivary Gland Hypertrophy Virus, a Globally Distributed Insect Virus that Infects and Sterilizes Female Houseflies

    Science.gov (United States)

    The house fly, Musca domestica, is a cosmopolitan pest of livestock and poultry that is of economic, veterinary, and public health importance. Populations of M. domestica are naturally infected with salivary gland hypertrophy virus (MdSGHV), a non-occluded dsDNA virus that inhibits egg production in...

  3. The genome of the stick insect Medauroidea extradentata is strongly methylated within genes and repetitive DNA.

    Directory of Open Access Journals (Sweden)

    Veiko Krauss

    Full Text Available BACKGROUND: Cytosine DNA methylation has been detected in many eukaryotic organisms and has been shown to play an important role in development and disease of vertebrates including humans. Molecularly, DNA methylation appears to be involved in the suppression of initiation or of elongation of transcription. Resulting organismal functions are suggested to be the regulation of gene silencing, the suppression of transposon activity and the suppression of initiation of transcription within genes. However, some data concerning the distribution of methylcytosine in insect species appear to contradict such roles. PRINCIPAL FINDINGS: By comparison of MspI and HpaII restriction patterns in genomic DNA of several insects we show that stick insects (Phasmatodea have highly methylated genomes. We isolated methylated DNA fragments from the Vietnamese Walking Stick Medauroidea extradentata (formerly known as Baculum extradentatum and demonstrated that most of the corresponding sequences are repetitive. Bisulfite sequencing of one of these fragments and of parts of conserved protein-coding genes revealed a methylcytosine content of 12.6%, mostly found at CpG, but also at CpT and CpA dinucleotides. Corresponding depletions of CpG and enrichments of TpG and CpA dinucleotides in some highly conserved protein-coding genes of Medauroidea reach a similar degree as in vertebrates and show that CpG methylation has occurred in the germline of these insects. CONCLUSIONS: Using four different methods, we demonstrate that the genome of Medauroidea extradentata is strongly methylated. Both repetitive DNA and coding genes appear to contain high levels of methylcytosines. These results argue for similar functions of DNA methylation in stick insects as those already known for vertebrates.

  4. Association of insect life stages using DNA sequences : the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera : Dytiscidae)

    NARCIS (Netherlands)

    Miller, KB; Alarie, Y; Wolfe, GW; Whiting, MF

    2005-01-01

    Insect life stages are known imperfectly in many cases, and classifications are based often on only one or a few semaphoronts of a species. This is unfortunate as information in alternative life stages often is useful for scientific study. Although recent examples of DNA in taxonomy have emphasized

  5. Interplay between DNA tumor viruses and the host DNA damage response.

    Science.gov (United States)

    McFadden, Karyn; Luftig, Micah A

    2013-01-01

    Viruses encounter many challenges within host cells in order to replicate their nucleic acid. In the case of DNA viruses, one challenge that must be overcome is recognition of viral DNA structures by the host DNA damage response (DDR) machinery. This is accomplished in elegant and unique ways by different viruses as each has specific needs and sensitivities dependent on its life cycle. In this review, we focus on three DNA tumor viruses and their interactions with the DDR. The viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) account for nearly all of the virus-associated human cancers worldwide. These viruses have also been excellent models for the study of oncogenic virus-mediated cell transformation. In this review, we will discuss how each of these viruses engage and subvert aspects of the host DDR. The first level of DDR engagement is a result of the genetic linkage between the oncogenic potential of these viruses and their ability to replicate. Namely, the promotion of cells from quiescence into the cell cycle to facilitate virus replication can be sensed through aberrant cellular DNA replication structures which activate the DDR and hinder cell transformation. DNA tumor viruses subvert this growth-suppressive DDR through changes in viral oncoprotein expression which ultimately facilitate virus replication. An additional level of DDR engagement is through direct detection of replicating viral DNA. These interactions parallel those observed in other DNA virus systems in that the need to subvert these intrinsic sensors of aberrant DNA structure in order to replicate must be in place. DNA tumor viruses are no exception. This review will cover the molecular features of DNA tumor virus interactions with the host DDR and the consequences for virus replication.

  6. Scientists Map DNA of Zika Virus from Semen

    Science.gov (United States)

    ... news/fullstory_161474.html Scientists Map DNA of Zika Virus From Semen It's another step in trying to ... complete genetic "blueprint" -- genome -- of a sample of Zika virus derived from semen has been obtained by researchers. ...

  7. Effective chikungunya virus-like particle vaccine produced in insect cells.

    Directory of Open Access Journals (Sweden)

    Stefan W Metz

    Full Text Available The emerging arthritogenic, mosquito-borne chikungunya virus (CHIKV causes severe disease in humans and represents a serious public health threat in countries where Aedes spp mosquitoes are present. This study describes for the first time the successful production of CHIKV virus-like particles (VLPs in insect cells using recombinant baculoviruses. This well-established expression system is rapidly scalable to volumes required for epidemic responses and proved well suited for processing of CHIKV glycoproteins and production of enveloped VLPs. Herein we show that a single immunization with 1 µg of non-adjuvanted CHIKV VLPs induced high titer neutralizing antibody responses and provided complete protection against viraemia and joint inflammation upon challenge with the Réunion Island CHIKV strain in an adult wild-type mouse model of CHIKV disease. CHIKV VLPs produced in insect cells using recombinant baculoviruses thus represents as a new, safe, non-replicating and effective vaccine candidate against CHIKV infections.

  8. Fluorescent in situ hybridization for the localization of viruses, bacteria and other microorganisms in insect and plant tissues.

    Science.gov (United States)

    Kliot, Adi; Ghanim, Murad

    2016-04-01

    Methods for the localization of cellular components such as nucleic acids, proteins, cellular vesicles and more, and the localization of microorganisms including viruses, bacteria and fungi have become an important part of any research program in biological sciences that enable the visualization of these components in fixed and live tissues without the need for complex processing steps. The rapid development of microscopy tools and technologies as well as related fluorescent markers and fluorophores for many cellular components, and the ability to design DNA and RNA sequence-based molecular probes and antibodies which can be visualized fluorescently, have rapidly advanced this field. This review will focus on some of the localizations methods which have been used in plants and insect pests in agriculture, and other microorganisms, which are rapidly advancing the research in agriculture-related fields.

  9. Insect-specific viruses detected in laboratory mosquito colonies and their potential implications for experiments evaluating arbovirus vector competence.

    Science.gov (United States)

    Bolling, Bethany G; Vasilakis, Nikos; Guzman, Hilda; Widen, Steven G; Wood, Thomas G; Popov, Vsevolod L; Thangamani, Saravanan; Tesh, Robert B

    2015-02-01

    Recently, there has been a dramatic increase in the detection and characterization of insect-specific viruses in field-collected mosquitoes. Evidence suggests that these viruses are ubiquitous in nature and that many are maintained by vertical transmission in mosquito populations. Some studies suggest that the presence of insect-specific viruses may inhibit replication of a super-infecting arbovirus, thus altering vector competence of the mosquito host. Accordingly, we screened our laboratory mosquito colonies for insect-specific viruses. Pools of colony mosquitoes were homogenized and inoculated into cultures of Aedes albopictus (C6/36) cells. The infected cells were examined by electron microscopy and deep sequencing was performed on RNA extracts. Electron micrograph images indicated the presence of three different viruses in three of our laboratory mosquito colonies. Potential implications of these findings for vector competence studies are discussed.

  10. Perinatal hepatitis B virus detection by hepatitis B virus-DNA analysis.

    OpenAIRE

    De Virgiliis, S; Frau, F; Sanna, G; Turco, M P; Figus, A L; Cornacchia, G; Cao, A.

    1985-01-01

    Maternal transmission of hepatitis B virus infection in relation to the hepatitis B e antigen/antibody system and serum hepatitis B virus-DNA were evaluated. Results indicate that hepatitis B virus-DNA analysis can identify hepatitis B serum antigen positive mothers who may transmit infection to their offspring.

  11. Perinatal hepatitis B virus detection by hepatitis B virus-DNA analysis.

    Science.gov (United States)

    De Virgiliis, S; Frau, F; Sanna, G; Turco, M P; Figus, A L; Cornacchia, G; Cao, A

    1985-01-01

    Maternal transmission of hepatitis B virus infection in relation to the hepatitis B e antigen/antibody system and serum hepatitis B virus-DNA were evaluated. Results indicate that hepatitis B virus-DNA analysis can identify hepatitis B serum antigen positive mothers who may transmit infection to their offspring. Images Figure PMID:3970570

  12. Perinatal hepatitis B virus detection by hepatitis B virus-DNA analysis.

    OpenAIRE

    De Virgiliis, S; Frau, F; Sanna, G; Turco, M P; Figus, A L; Cornacchia, G; Cao, A

    1985-01-01

    Maternal transmission of hepatitis B virus infection in relation to the hepatitis B e antigen/antibody system and serum hepatitis B virus-DNA were evaluated. Results indicate that hepatitis B virus-DNA analysis can identify hepatitis B serum antigen positive mothers who may transmit infection to their offspring.

  13. Production of CCHF Virus-Like Particle by a Baculovirus-Insect Cell Expression System

    Institute of Scientific and Technical Information of China (English)

    Zhao-rui Zhou; Man-li Wang; Fei Deng; Tian-xian Li; Zhi-hong Hu; Hua-fin Wang

    2011-01-01

    Crimean-Congo Haemorrhagic Fever Virus(CCHFV)is a tick-born virus of the Nairovirus genus within the Bunyaviridae family,which is widespread and causes,high fatality. The nucleocapsid of CCHFV is comprised of N proteins that are encoded by the S segment. In this research,the N protein of CCHFV was expressed in insect cells using a recombinant baculovirus. Under an electron microscope,Virus-Like Particles (VLPs)with various size and morphology were observed in cytoplasmic vesicles in the infected cells.Sucrose-gradient purification of the cell lysate indicated that the VLPs were mainly located in the upper fraction after ultracentrifugation,which was confirmed by Western blot analysis and immuno-electron microscopy(IEM).

  14. Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector.

    Directory of Open Access Journals (Sweden)

    Yan Huo

    2014-03-01

    Full Text Available Most plant viruses are transmitted by hemipteroid insects. Some viruses can be transmitted from female parent to offspring usually through eggs, but the mechanism of this transovarial transmission remains unclear. Rice stripe virus (RSV, a Tenuivirus, transmitted mainly by the small brown planthopper (Laodelphax striatellus, is also spread to the offspring through the eggs. Here, we used the RSV-planthopper system as a model to investigate the mechanism of transovarial transmission and demonstrated the central role of vitellogenin (Vg of L. striatellus in the process of virus transmission into the eggs. Our data showed Vg can bind to pc3 in vivo and in vitro and colocalize in the germarium. RSV filamentous ribonucleoprotein particles (RNPs only accumulated in the terminal filaments and pedicel areas prior to Vg expression and was not present in the germarium until Vg was expressed, where RSV RNPs and Vg had colocalized. Observations by immunoelectron microscopy (IEM also indicated that these two proteins colocalized in nurse cells. Knockdown of Vg expression due to RNA interference resulted in inhibition of the invasion of ovarioles by RSV. Together, the data obtained indicated that RSV RNPs may enter the nurse cell of the germarium via endocytosis through binding with Vg. Finally, the virus enters the oocytes through nutritive cords, using the same route as for Vg transport. Our results show that the Vg of L. striatellus played a critical role in transovarial transmission of RSV and shows how viruses can use existing transovarial transportation systems in insect vectors for their own purposes.

  15. Hypothesis of snake and insect venoms against Human Immunodeficiency Virus: a review

    Directory of Open Access Journals (Sweden)

    Sweni Shah

    2009-11-01

    Full Text Available Abstract Background Snake and insect venoms have been demonstrated to have beneficial effects in the treatment of certain diseases including drug resistant human immunodeficiency virus (HIV infection. We evaluated and hypothesized the probable mechanisms of venoms against HIV. Methods Previous literatures published over a period of 30 years (1979-2009 were searched using the key words snake venom, insect venom, mechanisms and HIV. Mechanisms were identified and discussed. Results & Conclusion With reference to mechanisms of action, properties and components of snake venom such as sequence homology and enzymes (protease or L- amino acid oxidase may have an effect on membrane protein and/or act against HIV at multiple levels or cells carrying HIV virus resulting in enhanced effect of anti-retroviral therapy (ART. This may cause a decrease in viral load and improvement in clinical as well as immunological status. Insect venom and human Phospholipase A2 (PLA2 have potential anti-viral activity through inhibition of virion entry into the cells. However, all these require further evaluation in order to establish its role against HIV as an independent one or as a supplement.

  16. Biological Control of Tortricidae in Tea Fields in Japan Using Insect Viruses and Parasitoids

    Institute of Scientific and Technical Information of China (English)

    Madoka Nakai

    2009-01-01

    Tea is a perennial and evergreen plant. Cultivated tea trees provide a habitat for insect pests and their natural enemies. In Japan, granuloviruses (GVs) have successfully controlled two of the most important pests of tea, Adoxophyes honmai and Homona magnanima (Tortricidae: Lepidoptera). The GVs are produced in vivo and a single application sustains pesticidal efficacy throughout a year, which encompasses 4 to 5 discrete generations of both species. A. honmai and H. magnanima also have various natural enemies, especially hymenopteran parasitoids. Such resident natural enemies also play a role in reducing the pest density in virus-controlled fields, but the effect of virus infection on parasitoids sharing the same host larva has not been well studied. Survival of one of the major parasitoids ofA. honmai, Ascogaster reticulata (Braconidae: Hymenoptera), is reduced by virus infection of the host. Viruses, including GV and entomopoxvirus (EPV), and certain koinobiont endoparasitoids, including A. reticulata, are both known to regulate host endocrinology. However, the GV and EPV have distinct host regulation mechanisms, and consequently have different impacts on the survival of A. retuculata, when A. reticulata parasitizes a host that is infected with either GV or EPV. These additional effects on host regulation displayed by both viruses and parasitoids affect the outcome of virus-parasitoid interactions.

  17. Licensed DNA Vaccines against Infectious Hematopoietic Necrosis Virus (IHNV).

    Science.gov (United States)

    Alonso, Marta; Leong, Jo-Ann C

    2013-04-01

    This article reviews some of the recent patents on DNA vaccines against fish viruses, in particular against the novirhabdovirus infectious hematopoitic necrosis virus (IHNV). Although very effective in protecting fish against IHNV, only one DNA vaccine has been approved to date for use in Canada. In Europe and in US, its commercialization is restricted due to safety concerns.

  18. Viral hemorrhagic fevers of animals caused by DNA viruses

    Science.gov (United States)

    Here we outline serious diseases of food and fiber animals that cause damaging economic effect on products all over the world. The only vector-borne DNA virus is included here, such as African swine fever virus, and the herpes viruses discussed have a complex epidemiology characterized by outbreak...

  19. Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase.

    Science.gov (United States)

    Lohman, Gregory J S; Zhang, Yinhua; Zhelkovsky, Alexander M; Cantor, Eric J; Evans, Thomas C

    2014-02-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10(-3) s(-1) and K(M) DNA ligase produced only 5'-adenylylated DNA with a 20-fold lower kcat and a K(M) ≈ 300 nM. The rate of ligation increased with addition of Mn(2+), but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5'-phosphorylated dC or dG residue on the 3' side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA.

  20. Sequential infection of Rice dwarf virus in the internal organs of its insect vector after ingestion of virus.

    Science.gov (United States)

    Chen, Hongyan; Chen, Qian; Omura, Toshihiro; Uehara-Ichiki, Tamaki; Wei, Taiyun

    2011-09-01

    Confocal microscopy revealed that Rice dwarf virus (RDV) initially accumulated in epithelial cells of the filter chamber of leafhopper vector Nephotettix cincticeps 2 days after acquisition access feeding on diseased plants. Subsequently, RDV accumulation progressed to the anterior midgut, and then spread to the nervous system before infection of other organs. Furthermore, RDV accumulation progressed to the visceral muscles surrounding the anterior midgut. Later, RDV accumulation was detected in other parts of the alimentary canal, salivary glands and the follicular cells of the ovarioles in viruliferous insect vector. Our results suggest that RDV may use the muscle or neural tissues for viral dissemination from the infected vector's midgut into other tissues.

  1. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-10-01

    Full Text Available Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.

  2. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses.

    Science.gov (United States)

    Durmuş, Saliha; Ülgen, Kutlu Ö

    2017-01-01

    Viruses are obligatory intracellular pathogens and completely depend on their hosts for survival and reproduction. The strategies adopted by viruses to exploit host cell processes and to evade host immune systems during infections may differ largely with the type of the viral genetic material. An improved understanding of these viral infection mechanisms is only possible through a better understanding of the pathogen-host interactions (PHIs) that enable viruses to enter into the host cells and manipulate the cellular mechanisms to their own advantage. Experimentally-verified protein-protein interaction (PPI) data of pathogen-host systems only became available at large scale within the last decade. In this study, we comparatively analyzed the current PHI networks belonging to DNA and RNA viruses and their human host, to get insights into the infection strategies used by these viral groups. We investigated the functional properties of human proteins in the PHI networks, to observe and compare the attack strategies of DNA and RNA viruses. We observed that DNA viruses are able to attack both human cellular and metabolic processes simultaneously during infections. On the other hand, RNA viruses preferentially interact with human proteins functioning in specific cellular processes as well as in intracellular transport and localization within the cell. Observing virus-targeted human proteins, we propose heterogeneous nuclear ribonucleoproteins and transporter proteins as potential antiviral therapeutic targets. The observed common and specific infection mechanisms in terms of viral strategies to attack human proteins may provide crucial information for further design of broad and specific next-generation antiviral therapeutics.

  3. Role of virus-like particles in parasitoid-host interaction of insects.

    Science.gov (United States)

    Schmidt, O; Schuchmann-Feddersen, I

    1989-01-01

    Insect endoparasitoids are capable of suppressing the immune reaction of their habitual hosts in a specific way. Salt (1968) characterized some of the implications: This seeming contradiction--that defence reactions against all kinds of foreign bodies are available to insects and that endophagous parasitoids are nevertheless able to develop in insect hosts--is resolved by recourse to one of the principles of host specificity. Although insects as a group react to every foreign body in the sense that any organism or substance evokes a reaction in most insects, each species of insect fails to make a reaction (or makes an ineffective reaction) to a small group of organisms, its habitual parasites. It is the common paradox of parasitology that defence reactions are least effective against the most noxious parasites, involving the tautology that the most noxious parasites are those against which defence reactions are least effective. Recently, VLP of hymenopteran wasps have been shown to play a crucial part in suppressing the cellular encapsulation reaction (Stoltz and Vinson, 1979a). In some parasitoid wasps, polydnavirus particles are involved in the phenotypic transformation of hemocytes, reducing the capability of the host to mount an immune reaction towards the parasitoid egg (Stoltz and Guzo, 1986; Davies et al., 1987). However, at least in Venturia, the eggs are effectively protected by VLP that lack significant amounts of nucleic acids, precluding any virus expression in the host. The question was raised whether VLP could have acquired properties of the host immune system, which allows specific suppression of the immune response. The finding of structural similarities between VLP proteins and a host component indicated that a host function is expressed in VLP (Feddersen et al., 1986) and this observation has subsequently permitted the identification and characterization of a protein in caterpillars, which appears to inhibit cellular defense reactions (Berg et al

  4. Replication of Syngrapha falcifera Multiple-Nuclear Polyhedrosis Virus-D in Different Insect Cells

    Science.gov (United States)

    Khalid Nessr Alhag, Sadeq; Xin, Peng Jian

    Six insect cell lines were tested for susceptibility to Syngrapha falcifera multiple nucleocapsid nucleopolyhedrovirus-D (SfaMNPV-D) infection by use of a typical endpoint assay procedure. Cell lines from Trichoplusia ni (Tn5B1-4), (L105-clone), Spodoptera litura (SL-ZSU-1), Spodoptera frugiperda (IPLB-SF-21), Pieris rapaeb (Pr-E-HNU9) and Helicoverpa zea (BCIRL-HZ-AM1) in 96-well tissue culture plates were infected with dilutions of extra cellular virus suspensions of (SfaMNPV-D). Each cell/virus combination was incubated at temperatures 27°C and wells were scored for positive infection at 2 to 4 day intervals. The resulting data were analyzed by Reed and Muench method, providing virus titers for each combination of virus, cell line. The results were categorized by accuracy and by rapidity of maximum titer. Virus titer of Tn5B-4 was higher than other cell lines TCID50 8.7x108, the lowest level detected in infected was in (Pr-E-HNU9) cells TCID50 2.4x108. No Virions or polyhedral inclusion bodies were detected in infected SL-ZSU-1 cells.

  5. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    OpenAIRE

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2013-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM < 1 nM at 25°C under conditions where T4 DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of M...

  6. Role of the Insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the Emergence and Global Spread of Plant Viruses.

    Science.gov (United States)

    Gilbertson, Robert L; Batuman, Ozgur; Webster, Craig G; Adkins, Scott

    2015-11-01

    Emergence of insect-transmitted plant viruses over the past 10-20 years has been disproportionately driven by two so-called supervectors: the whitefly, Bemisia tabaci, and the Western flower thrips, Frankliniella occidentalis. High rates of reproduction and dispersal, extreme polyphagy, and development of insecticide resistance, together with human activities, have made these insects global pests. These supervectors transmit a diversity of plant viruses by different mechanisms and mediate virus emergence through local evolution, host shifts, mixed infections, and global spread. Associated virus evolution involves reassortment, recombination, and component capture. Emergence of B. tabaci-transmitted geminiviruses (begomoviruses), ipomoviruses, and torradoviruses has led to global disease outbreaks as well as multiple paradigm shifts. Similarly, F. occidentalis has mediated tospovirus host shifts and global dissemination and the emergence of pollen-transmitted ilarviruses. The plant virus-supervector interaction offers exciting opportunities for basic research and global implementation of generalized disease management strategies to reduce economic and environmental impacts.

  7. Expression of a peroral infection factor determines pathogenicity and population structure in an insect virus.

    Directory of Open Access Journals (Sweden)

    Oihane Simón

    Full Text Available A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1 in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10 in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.

  8. Expression of a Peroral Infection Factor Determines Pathogenicity and Population Structure in an Insect Virus

    Science.gov (United States)

    Simón, Oihane; Williams, Trevor; Cerutti, Martine; Caballero, Primitivo; López-Ferber, Miguel

    2013-01-01

    A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess. PMID:24223853

  9. The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis

    Directory of Open Access Journals (Sweden)

    Luc eSwevers

    2013-11-01

    Full Text Available RNAi experiments in insects are characterized by great variability in efficiency; for instance beetles and locusts are very amenable to dsRNA-mediated gene silencing, while other insect groups, most notably lepidopterans, are more refractory to RNAi. Several factors can be forwarded that could affect the efficiency of RNAi, such as the composition and function of the intracellular RNAi machinery, the mechanism of dsRNA uptake, the presence of dsRNA- and siRNA-degrading enzymes and non-specific activation of the innate immune response. In this essay, we investigate the evidence whether persistent infection with RNA viruses could be a major factor that affects the response to exogenous dsRNA in insects. The occurrence of RNA viruses in different insect groups will be discussed, as well as several mechanisms by which viruses could interfere with the process of RNAi. Finally, the impact of RNA virus infection on the design of dsRNA-based insect control strategies will be considered.

  10. The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis.

    Science.gov (United States)

    Swevers, Luc; Vanden Broeck, Jozef; Smagghe, Guy

    2013-01-01

    RNAi experiments in insects are characterized by great variability in efficiency; for instance beetles and locusts are very amenable to dsRNA-mediated gene silencing, while other insect groups, most notably lepidopterans, are more refractory to RNAi. Several factors can be forwarded that could affect the efficiency of RNAi, such as the composition and function of the intracellular RNAi machinery, the mechanism of dsRNA uptake, the presence of dsRNA- and siRNA-degrading enzymes and non-specific activation of the innate immune response. In this essay, we investigate the evidence whether persistent infection with RNA viruses could be a major factor that affects the response to exogenous dsRNA in insects. The occurrence of RNA viruses in different insect groups will be discussed, as well as several mechanisms by which viruses could interfere with the process of RNAi. Finally, the impact of RNA virus infection on the design of dsRNA-based insect control strategies will be considered.

  11. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses

    Directory of Open Access Journals (Sweden)

    Ieisha Pentland

    2015-07-01

    Full Text Available All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi’s sarcoma-associated herpesvirus (KSHV, Epstein-Barr virus (EBV and human papillomavirus (HPV utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.

  12. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.

    Science.gov (United States)

    Pentland, Ieisha; Parish, Joanna L

    2015-07-06

    All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.

  13. Identification of a novel Getah virus by Virus-Discovery-cDNA random amplified polymorphic DNA (RAPD).

    Science.gov (United States)

    Hu, Tingsong; Zheng, Ying; Zhang, Yan; Li, Gangshan; Qiu, Wei; Yu, Jing; Cui, Qinghua; Wang, Yiyin; Zhang, Chaoxiong; Zhou, Xiaofang; Feng, Ziliang; Zhou, Weiguo; Fan, Quanshui; Zhang, Fuqiang

    2012-12-27

    The identification of new virus strains is important for the study of infectious disease, but current (or existing) molecular biology methods are limited since the target sequence must be known to design genome-specific PCR primers. Thus, we developed a new method for the discovery of unknown viruses based on the cDNA--random amplified polymorphic DNA (cDNA-RAPD) technique. Getah virus, belonging to the family Togaviridae in the genus Alphavirus, is a mosquito-borne enveloped RNA virus that was identified using the Virus-Discovery-cDNA RAPD (VIDISCR) method. A novel Getah virus was identified by VIDISCR from suckling mice exposed to mosquitoes (Aedes albopictus) collected in Yunnan Province, China. The non-structural protein gene, nsP3, the structural protein gene, the capsid protein gene, and the 3'-untranslated region (UTR) of the novel Getah virus isolate were cloned and sequenced. Nucleotide sequence identities of each gene were determined to be 97.1-99.3%, 94.9-99.4%, and 93.6-99.9%, respectively, when compared with the genomes of 10 other representative strains of Getah virus. The VIDISCR method was able to identify known virus isolates and a novel isolate of Getah virus from infected mice. Phylogenetic analysis indicated that the YN08 isolate was more closely related to the Hebei HB0234 strain than the YN0540 strain, and more genetically distinct from the MM2021 Malaysia primitive strain.

  14. Rescue of mumps virus from cDNA.

    Science.gov (United States)

    Clarke, D K; Sidhu, M S; Johnson, J E; Udem, S A

    2000-05-01

    A complete DNA copy of the genome of a Jeryl Lynn strain of mumps virus (15,384 nucleotides) was assembled from cDNA fragments such that an exact antigenome RNA could be generated following transcription by T7 RNA polymerase and cleavage by hepatitis delta virus ribozyme. The plasmid containing the genome sequence, together with support plasmids which express mumps virus NP, P, and L proteins under control of the T7 RNA polymerase promoter, were transfected into A549 cells previously infected with recombinant vaccinia virus (MVA-T7) that expressed T7 RNA polymerase. Rescue of infectious virus from the genome cDNA was demonstrated by amplification of mumps virus from transfected-cell cultures and by subsequent consensus sequencing of reverse transcription-PCR products generated from infected-cell RNA to verify the presence of specific nucleotide tags introduced into the genome cDNA clone. The only coding change (position 8502, A to G) in the cDNA clone relative to the consensus sequence of the Jeryl Lynn plaque isolate from which it was derived, resulting in a lysine-to-arginine substitution at amino acid 22 of the L protein, did not prevent rescue of mumps virus, even though an amino acid alignment for the L proteins of paramyxoviruses indicates that lysine is highly conserved at that position. This system may provide the basis of a safe and effective virus vector for the in vivo expression of immunologically and biologically active proteins, peptides, and RNAs.

  15. Book Review: Insect Virology

    Science.gov (United States)

    Viruses that infect insects have long been of interest both as a means for controlling insect pest populations in an environmentally safe manner, and also as significant threats to beneficial insects of great value, such as honey bees and silkworms. Insect viruses also have been of intrinsic intere...

  16. Viral DNA in horses infected with equine infectious anemia virus.

    OpenAIRE

    Rice, N R; Lequarré, Anne-Sophie; Casey, J W; Lahn, S; Stephens, R. M.; Edwards, J.

    1989-01-01

    The amount and distribution of viral DNA were established in a horse acutely infected with the Wyoming strain of equine infectious anemia virus (EIAV). The highest concentration of viral DNA were found in the liver, lymph nodes, bone marrow, and spleen. The kidney, choroid plexus, and peripheral blood leukocytes also contained viral DNA, but at a lower level. It is estimated that at day 16 postinoculation, almost all of the viral DNA was located in the tissues, with the liver alone containing...

  17. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects

    Directory of Open Access Journals (Sweden)

    Vasco Elbrecht

    2016-04-01

    Full Text Available Cytochrome c oxidase I (COI is a powerful marker for DNA barcoding of animals, with good taxonomic resolution and a large reference database. However, when used for DNA metabarcoding, estimation of taxa abundances and species detection are limited due to primer bias caused by highly variable primer binding sites across the COI gene. Therefore, we explored the ability of the 16S ribosomal DNA gene as an alternative metabarcoding marker for species level assessments. Ten bulk samples, each containing equal amounts of tissue from 52 freshwater invertebrate taxa, were sequenced with the Illumina NextSeq 500 system. The 16S primers amplified three more insect species than the Folmer COI primers and amplified more equally, probably due to decreased primer bias. Estimation of biomass might be less biased with 16S than with COI, although variation in read abundances of two orders of magnitudes is still observed. According to these results, the marker choice depends on the scientific question. If the goal is to obtain a taxonomic identification at the species level, then COI is more appropriate due to established reference databases and known taxonomic resolution of this marker, knowing that a greater proportion of insects will be missed using COI Folmer primers. If the goal is to obtain a more comprehensive survey the 16S marker, which requires building a local reference database, or optimised degenerated COI primers could be more appropriate.

  18. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer

    Science.gov (United States)

    Fernandez, Agustin F.; Rosales, Cecilia; Lopez-Nieva, Pilar; Graña, Osvaldo; Ballestar, Esteban; Ropero, Santiago; Espada, Jesus; Melo, Sonia A.; Lujambio, Amaia; Fraga, Mario F.; Pino, Irene; Javierre, Biola; Carmona, Francisco J.; Acquadro, Francesco; Steenbergen, Renske D.M.; Snijders, Peter J.F.; Meijer, Chris J.; Pineau, Pascal; Dejean, Anne; Lloveras, Belen; Capella, Gabriel; Quer, Josep; Buti, Maria; Esteban, Juan-Ignacio; Allende, Helena; Rodriguez-Frias, Francisco; Castellsague, Xavier; Minarovits, Janos; Ponce, Jordi; Capello, Daniela; Gaidano, Gianluca; Cigudosa, Juan Cruz; Gomez-Lopez, Gonzalo; Pisano, David G.; Valencia, Alfonso; Piris, Miguel Angel; Bosch, Francesc X.; Cahir-McFarland, Ellen; Kieff, Elliott; Esteller, Manel

    2009-01-01

    The natural history of cancers associated with virus exposure is intriguing, since only a minority of human tissues infected with these viruses inevitably progress to cancer. However, the molecular reasons why the infection is controlled or instead progresses to subsequent stages of tumorigenesis are largely unknown. In this article, we provide the first complete DNA methylomes of double-stranded DNA viruses associated with human cancer that might provide important clues to help us understand the described process. Using bisulfite genomic sequencing of multiple clones, we have obtained the DNA methylation status of every CpG dinucleotide in the genome of the Human Papilloma Viruses 16 and 18 and Human Hepatitis B Virus, and in all the transcription start sites of the Epstein-Barr Virus. These viruses are associated with infectious diseases (such as hepatitis B and infectious mononucleosis) and the development of human tumors (cervical, hepatic, and nasopharyngeal cancers, and lymphoma), and are responsible for 1 million deaths worldwide every year. The DNA methylomes presented provide evidence of the dynamic nature of the epigenome in contrast to the genome. We observed that the DNA methylome of these viruses evolves from an unmethylated to a highly methylated genome in association with the progression of the disease, from asymptomatic healthy carriers, through chronically infected tissues and pre-malignant lesions, to the full-blown invasive tumor. The observed DNA methylation changes have a major functional impact on the biological behavior of the viruses. PMID:19208682

  19. Musca domestica Salivary Gland Hypertrophy Virus, a Globally Distributed Insect Virus That Infects and Sterilizes Female Houseflies

    DEFF Research Database (Denmark)

    Prompiboon, Pannipa; Lietze, Verena-Ulrike; Denton, John S S

    2010-01-01

    The housefly, Musca domestica, is a cosmopolitan pest of livestock and poultry and is of economic, veterinary, and public health importance. Populations of M. domestica are naturally infected with M. domestica salivary gland hypertrophy virus (MdSGHV), a nonoccluded double-stranded DNA virus...... that inhibits egg production in infected females and is characterized by salivary gland hypertrophy (SGH) symptoms. MdSGHV has been detected in housefly samples from North America, Europe, Asia, the Caribbean, and the southwestern Pacific. In this study, houseflies were collected from various locations...... reading frames having homology to genes encoding DNA polymerase and partial homology to the genes encoding four per os infectivity factor proteins (p74, pif-1, pif-2, and pif-3) were selected for phylogenetic analyses. Nucleotide sequences from 16 different geographic isolates were highly homologous...

  20. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    OpenAIRE

    2014-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for unders...

  1. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from lepidoptera

  2. Insect Cell Culture

    NARCIS (Netherlands)

    Oers, van M.M.; Lynn, D.E.

    2010-01-01

    Insect cell cultures are widely used in studies on insect cell physiology, developmental biology and microbial pathology. In particular, insect cell culture is an indispensable tool for the study of insect viruses. The first continuously growing insect cell cultures were established from lepidoptera

  3. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    Energy Technology Data Exchange (ETDEWEB)

    Hidajat, Rachmat; Nickols, Brian [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Forrester, Naomi [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Tretyakova, Irina [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Weaver, Scott [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2016-03-15

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  4. Hepatitis viruses exploitation of host DNA methyltransferases functions.

    Science.gov (United States)

    Pazienza, Valerio; Panebianco, Concetta; Andriulli, Angelo

    2016-08-01

    Hepatitis B virus (HBV), hepatitis C virus (HCV) and Delta (HDV) infections are a global health burden. With different routes of infection and biology, HBV, HCV and HDV are capable to induce liver cirrhosis and cancer by impinging on epigenetic mechanisms altering host cell's pathways. In the present manuscript, we reviewed the published studies taking into account the relationship between the hepatitis viruses and the DNA methyltransferases proteins.

  5. Insect Repellants During Pregnancy in the Era of the Zika Virus.

    Science.gov (United States)

    Wylie, Blair J; Hauptman, Marissa; Woolf, Alan D; Goldman, Rose H

    2016-11-01

    Health care providers must be equipped to provide appropriate advice to reproductive-aged patients for protection against the potentially devastating consequences of prenatal Zika virus exposure. The goal of this commentary is to summarize what is known about the safety and toxicity of N,N-diethyl-meta-toluamide (DEET) as a topical insect repellant and the pyrethroid permethrin for treatment of fabric, endorsed in the fight against Zika virus. Reviews assessing the safety and toxicity of DEET conducted by the U.S. Environmental Protection Agency and the Canadian Pest Management Regulatory Agency conclude that DEET has low acute toxicity and does not appear to pose a significant health concern to humans when used as directed. Some experimental animal and limited epidemiologic data suggest that prenatal pyrethroid exposure may adversely affect learning and behavior, but this level of evidence pales in comparison to the known risks of Zika virus to the fetal brain. The available evidence has led to the strong recommendation by the Centers for Disease Control and Prevention for use of these products by pregnant women as personal protection against mosquito bites in the fight against Zika virus infection. This message has been affirmed by our obstetrics and gynecology professional organizations. Because Zika virus is unlikely to be the last disease requiring vector control, those with environmental health expertise must continue to join with infectious disease specialists to communicate the potential vulnerability of our youngest (fetuses, infants, and young children) to vector-borne disease, both to the disease itself and to the strategies employed to mitigate the spread of such disease.

  6. Systematic CpT (ApG depletion and CpG excess are unique genomic signatures of large DNA viruses infecting invertebrates.

    Directory of Open Access Journals (Sweden)

    Mohita Upadhyay

    Full Text Available Differences in the relative abundance of dinucleotides, if any may provide important clues on host-driven evolution of viruses. We studied dinucleotide frequencies of large DNA viruses infecting vertebrates (n = 105; viruses infecting mammals = 99; viruses infecting aves = 6; viruses infecting reptiles = 1 and invertebrates (n = 88; viruses infecting insects = 84; viruses infecting crustaceans = 4. We have identified systematic depletion of CpT(ApG dinucleotides and over-representation of CpG dinucleotides as the unique genomic signature of large DNA viruses infecting invertebrates. Detailed investigation of this unique genomic signature suggests the existence of invertebrate host-induced pressures specifically targeting CpT(ApG and CpG dinucleotides. The depletion of CpT dinucleotides among large DNA viruses infecting invertebrates is at least in part, explained by non-canonical DNA methylation by the infected host. Our findings highlight the role of invertebrate host-related factors in shaping virus evolution and they also provide the necessary framework for future studies on evolution, epigenetics and molecular biology of viruses infecting this group of hosts.

  7. Viruses and the DNA Damage Response: Activation and Antagonism.

    Science.gov (United States)

    Luftig, Micah A

    2014-11-01

    Viruses must interact with their hosts in order to replicate; these interactions often provoke the evolutionarily conserved response to DNA damage, known as the DNA damage response (DDR). The DDR can be activated by incoming viral DNA, during the integration of retroviruses, or in response to the aberrant DNA structures generated upon replication of DNA viruses. Furthermore, DNA and RNA viral proteins can induce the DDR by promoting inappropriate S phase entry, by modifying cellular DDR factors directly, or by unintentionally targeting host DNA. The DDR may be antiviral, although viruses often require proximal DDR activation of repair and recombination factors to facilitate replication as well as downstream DDR signaling suppression to ensure cell survival. An unintended consequence of DDR attenuation during infection is the long-term survival and proliferation of precancerous cells. Therefore, the molecular basis for DDR activation and attenuation by viruses remains an important area of study that will likely provide key insights into how viruses have evolved with their hosts.

  8. Infectious Maize rayado fino virus from cloned cDNA

    Science.gov (United States)

    Maize rayado fino virus (MRFV) is the type member of the marafiviruses within the family Tymoviridae. A cDNA clone from which infectious RNA can be transcribed was produced from a US isolate of MRFV (MRFV-US). Infectivity of transcripts derived from cDNA clones was demonstrated by infection of mai...

  9. Processing and intracellular localization of rice stripe virus Pc2 protein in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shuling; Zhang, Gaozhan; Dai, Xuejuan; Hou, Yanling; Li, Min [College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009 (China); Liang, Jiansheng, E-mail: jsliang@yzu.edu.cn [College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009 (China); Liang, Changyong, E-mail: cyliang@yzu.edu.cn [College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009 (China)

    2012-08-01

    Rice stripe virus (RSV) belongs to the genus Tenuivirus and its genome consists of four single-stranded RNAs encoding seven proteins. Here, we have analyzed the processing and membrane association of Pc2 encoded by vcRNA2 in insect cells. The enhanced green fluorescent protein (eGFP) was fused to the Pc2 and used for the detection of Pc2 fusion proteins. The results showed that Pc2 was cleaved to produce two proteins named Pc2-N and Pc2-C. When expressed alone, either Pc2-N or Pc2-C could transport to the Endoplasmic reticulum (ER) membranes independently. Further mutagenesis studies revealed that Pc2 contained three ER-targeting domains. The results led us to propose a model for the topology of the Pc2 in which an internal signal peptide immediately followed a cleavage site, and two transmembrane regions are contained.

  10. Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication.

    Science.gov (United States)

    Nasar, Farooq; Palacios, Gustavo; Gorchakov, Rodion V; Guzman, Hilda; Da Rosa, Amelia P Travassos; Savji, Nazir; Popov, Vsevolod L; Sherman, Michael B; Lipkin, W Ian; Tesh, Robert B; Weaver, Scott C

    2012-09-04

    Most alphaviruses and many other arboviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates including birds, rodents, equids, humans, and nonhuman primates. Consequently, they can be propagated in most vertebrate and insect cell cultures. This ability of arboviruses to infect arthropods and vertebrates is usually essential for their maintenance in nature. However, several flaviviruses have recently been described that infect mosquitoes but not vertebrates, although the mechanism of their host restriction has not been determined. Here we describe a unique alphavirus, Eilat virus (EILV), isolated from a pool of Anopheles coustani mosquitoes from the Negev desert of Israel. Phylogenetic analyses placed EILV as a sister to the Western equine encephalitis antigenic complex within the main clade of mosquito-borne alphaviruses. Electron microscopy revealed that, like other alphaviruses, EILV virions were spherical, 70 nm in diameter, and budded from the plasma membrane of mosquito cells in culture. EILV readily infected a variety of insect cells with little overt cytopathic effect. However, in contrast to typical mosquito-borne alphaviruses, EILV could not infect mammalian or avian cell lines, and viral as well as RNA replication could not be detected at 37 °C or 28 °C. Evolutionarily, these findings suggest that EILV lost its ability to infect vertebrate cells. Thus, EILV seems to be mosquito-specific and represents a previously undescribed complex within the genus Alphavirus. Reverse genetic studies of EILV may facilitate the discovery of determinants of alphavirus host range that mediate disease emergence.

  11. Development of a subunit vaccine for infectious pancreatic necrosis virus using a baculovirus insect/larvae system

    Science.gov (United States)

    Shivappa, R.B.; McAllister, P.E.; Edwards, G.H.; Santi, N.; Evensen, O.; Vakharia, V.N.; ,

    2005-01-01

    Various attempts to develop a vaccine against infectious pancreatic necrosis virus (IPNV) have not yielded consistent results. Thus, at present, no commercial vaccine is available that can be used with confidence to immunize fry of salmon and trout. We generated a cDNA clone of the large genome segment A of an IPNV Sp strain and expressed all structural protein genes in insect cells and larvae using a baculovirus expression system. Green fluorescent protein was also co-expressed as a reporter molecule. High yields of IPNV proteins were obtained and the structural proteins self assembled to form virus-like particles (VLPs). We tested the immunogenicity of the putative VLP antigen in immersion vaccine experiments (two concentrations) in rainbow trout (Oncorhynchus mykiss) fry, and by intraperitoneal immunisation of Atlantic salmon (Salmo salar) pre-smolts using an oil adjuvant formulation. Rainbow trout were challenged by immersion using either the Sp or the VR-299 strain of IPNV two or three weeks post-vaccination, while Atlantic salmon were bath challenged with Sp strain after two months, after parr-smolt transformation. In the rainbow trout fry challenged two weeks post-immunization, cumulative mortality rates three weeks post challenge were 14 % in the fry that had received the highest dose versus 8 % in the control groups. No indication of protection was seen in repeated trials using a lower dose of antigen and challenge three weeks post-immunisation. The cumulative mortality rate of intraperitoneally immunised Atlantic salmon post-smolts four weeks post challenge was lower (56 %) than in the control fish (77 %), showing a dose-response pattern.

  12. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    Directory of Open Access Journals (Sweden)

    Junmin Li

    Full Text Available Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi which generates viral-derived small interfering RNAs (siRNAs. However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus was infected by Rice black-streaked dwarf virus (RBSDV (Reoviridae; Fijivirus, more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV, a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  13. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life.

    Science.gov (United States)

    Yutin, Natalya; Wolf, Yuri I; Koonin, Eugene V

    2014-10-01

    The numerous and diverse eukaryotic viruses with large double-stranded DNA genomes that at least partially reproduce in the cytoplasm of infected cells apparently evolved from a single virus ancestor. This major group of viruses is known as Nucleocytoplasmic Large DNA Viruses (NCLDV) or the proposed order Megavirales. Among the "Megavirales", there are three groups of giant viruses with genomes exceeding 500kb, namely Mimiviruses, Pithoviruses, and Pandoraviruses that hold the current record of viral genome size, about 2.5Mb. Phylogenetic analysis of conserved, ancestral NLCDV genes clearly shows that these three groups of giant viruses have three distinct origins within the "Megavirales". The Mimiviruses constitute a distinct family that is distantly related to Phycodnaviridae, Pandoraviruses originate from a common ancestor with Coccolithoviruses within the Phycodnaviridae family, and Pithoviruses are related to Iridoviridae and Marseilleviridae. Maximum likelihood reconstruction of gene gain and loss events during the evolution of the "Megavirales" indicates that each group of giant viruses evolved from viruses with substantially smaller and simpler gene repertoires. Initial phylogenetic analysis of universal genes, such as translation system components, encoded by some giant viruses, in particular Mimiviruses, has led to the hypothesis that giant viruses descend from a fourth, probably extinct domain of cellular life. The results of our comprehensive phylogenomic analysis of giant viruses refute the fourth domain hypothesis and instead indicate that the universal genes have been independently acquired by different giant viruses from their eukaryotic hosts.

  14. Automated Solution-Phase Synthesis of Insect Glycans to Probe the Binding Affinity of Pea Enation Mosaic Virus.

    Science.gov (United States)

    Tang, Shu-Lun; Linz, Lucas B; Bonning, Bryony C; Pohl, Nicola L B

    2015-11-01

    Pea enation mosaic virus (PEMV)--a plant RNA virus transmitted exclusively by aphids--causes disease in multiple food crops. However, the aphid-virus interactions required for disease transmission are poorly understood. For virus transmission, PEMV binds to a heavily glycosylated receptor aminopeptidase N in the pea aphid gut and is transcytosed across the gut epithelium into the aphid body cavity prior to release in saliva as the aphid feeds. To investigate the role of glycans in PEMV-aphid interactions and explore the possibility of viral control through blocking a glycan interaction, we synthesized insect N-glycan terminal trimannosides by automated solution-phase synthesis. The route features a mannose building block with C-5 ester enforcing a β-linkage, which also provides a site for subsequent chain extension. The resulting insect N-glycan terminal trimannosides with fluorous tags were used in a fluorous microarray to analyze binding with fluorescein isothiocyanate-labeled PEMV; however, no specific binding between the insect glycan and PEMV was detected. To confirm these microarray results, we removed the fluorous tag from the trimannosides for isothermal titration calorimetry studies with unlabeled PEMV. The ITC studies confirmed the microarray results and suggested that this particular glycan-PEMV interaction is not involved in virus uptake and transport through the aphid.

  15. Weather, host and vector--their interplay in the spread of insect-borne animal virus diseases.

    Science.gov (United States)

    Sellers, R F

    1980-08-01

    The spread of insect-borne animal virus diseases is influenced by a number of factors. Hosts migrate, move or are conveyed over long distances: vectors are carried on the wind for varying distances in search of hosts and breeding sites; weather and climate affect hosts and vectors through temperature, moisture and wind. As parasites of host and vector, viruses are carried by animals, birds and insects, and their spread can be correlated with the migration of hosts and the carriage of vectors on winds associated with the movements of the Intertropical Convergence Zone (ITCZ) and warm winds to the north and south of the limits of the ITCZ. The virus is often transmitted from a local cycle to a migratory cycle and back again.Examples of insect-borne virus diseases and their spread are analysed. Japanese, Murray Valley, Western equine, Eastern equine and St Louis encephalitis represent viruses transmitted by mosquito-bird or pig cycles.THE AREAS EXPERIENCING INFECTION WITH THESE VIRUSES CAN BE DIVIDED INTO A NUMBER OF ZONES: A, B, C, D, E and F. In zone A there is a continuous cycle of virus in host and vector throughout the year; in zone B, there is an upsurge in the cycle during the wet season, but the cycle continues during the dry season; there is movement of infected vectors between and within zones A and B on the ITCZ and the virus is introduced to zone C by infected vectors on warm winds; persistence may occur in zone C if conditions are right. In zone D, virus is introduced each year by infected vectors on warm winds and the arrival of the virus coincides with the presence of susceptible nestling birds and susceptible piglets. The disappearance of virus occurs at the time when migrating mosquitoes and birds are returning to warmer climates. The virus is introduced to zone E only on occasions every 5-10 years when conditions are suitable. Infected hosts introduced to zone F do not lead to circulation of virus, since the climate is unsuitable for vectors. Zones A

  16. Design stars: how small DNA viruses remodel the host nucleus.

    Science.gov (United States)

    Jiang, Mengxi; Imperiale, Michael J

    2012-05-01

    Numerous host components are encountered by viruses during the infection process. While some of these host structures are left unchanged, others may go through dramatic remodeling processes. In this review, we summarize these host changes that occur during small DNA virus infections, with a focus on host nuclear components and pathways. Although these viruses differ significantly in their genome structures and infectious pathways, there are common nuclear targets that are altered by various viral factors. Accumulating evidence suggests that these nuclear remodeling processes are often essential for productive viral infections and/or viral-induced transformation. Understanding the complex interactions between viruses and these host structures and pathways will help to build a more integrated network of how the virus completes its life cycle and point toward the design of novel therapeutic regimens that either prevent harmful viral infections or employ viruses as nontraditional treatment options or molecular tools.

  17. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses

    NARCIS (Netherlands)

    Rensen, E.I.; Mochizuki, T,; Quemin, E.R. J.; Schouten, S.; Krupovica, M.; Prangishvili, D.

    2016-01-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Her

  18. Subversion and piracy: DNA viruses and immune evasion.

    Science.gov (United States)

    Haig, D M

    2001-06-01

    During the co-evolution of viruses with their vertebrate hosts, the DNA viruses have acquired an impressive array of immunomodulatory genes to combat host immune responses and their hosts have developed a sophisticated immune system to contain virus infections. In order to replicate, the viruses have evolved mechanisms to inhibit key host anti-virus responses that include apoptosis, interferon production, chemokine production, inflammatory cytokine production, and the activity of cytotoxic T-cells, natural killer cells and antibody. In addition, some of the viruses encode cytokine or chemokine homologues that recruit or expand cell numbers for infection or that subvert the host cellular response from a protective response to a benign one. The specificity of the viral immunomodulatory molecules reflects the life cycle and the pathogenesis of the viruses. Herpesviruses achieve latency in host cells by inducing cell survival and protecting infected cells from immune recognition. This involves interference with cell signal transduction pathways. Many of the viral immunomodulatory proteins are homologues of host proteins that appear to have been pirated from the host and reassorted in the virus genomes. Some of these have unique functions and indicate novel or important aspects of both viral pathogenesis and host immunity to viruses. The specific example of orf virus infection of sheep is described.

  19. Tracking the virus-like particles of Macrobrachium rosenbergii nodavirus in insect cells

    Science.gov (United States)

    Hanapi, Ummi Fairuz; Yong, Chean Yeah; Goh, Zee Hong; Alitheen, Noorjahan Banu; Yeap, Swee Keong

    2017-01-01

    Macrobrachium rosenbergii nodavirus (MrNv) poses a major threat to the prawn industry. Currently, no effective vaccine and treatment are available to prevent the spread of MrNv. Its infection mechanism and localisation in a host cell are also not well characterised. The MrNv capsid protein (MrNvc) produced in Escherichia coli self-assembled into virus-like particles (VLPs) resembling the native virus. Thus, fluorescein labelled MrNvc VLPs were employed as a model to study the virus entry and localisation in Spodoptera frugiperda, Sf9 cells. Through fluorescence microscopy and sub-cellular fractionation, the MrNvc was shown to enter Sf9 cells, and eventually arrived at the nucleus. The presence of MrNvc within the cytoplasm and nucleus of Sf9 cells was further confirmed by the Z-stack imaging. The presence of ammonium chloride (NH4Cl), genistein, methyl-β-cyclodextrin or chlorpromazine (CPZ) inhibited the entry of MrNvc into Sf9 cells, but cytochalasin D did not inhibit this process. This suggests that the internalisation of MrNvc VLPs is facilitated by caveolae- and clathrin-mediated endocytosis. The whole internalisation process of MrNvc VLPs into a Sf9 cell was recorded with live cell imaging. We have also identified a potential nuclear localisation signal (NLS) of MrNvc through deletion mutagenesis and verified by classical-NLS mapping. Overall, this study provides an insight into the journey of MrNvc VLPs in insect cells. PMID:28194311

  20. Tracking the virus-like particles of Macrobrachium rosenbergii nodavirus in insect cells

    Directory of Open Access Journals (Sweden)

    Ummi Fairuz Hanapi

    2017-02-01

    Full Text Available Macrobrachium rosenbergii nodavirus (MrNv poses a major threat to the prawn industry. Currently, no effective vaccine and treatment are available to prevent the spread of MrNv. Its infection mechanism and localisation in a host cell are also not well characterised. The MrNv capsid protein (MrNvc produced in Escherichia coli self-assembled into virus-like particles (VLPs resembling the native virus. Thus, fluorescein labelled MrNvc VLPs were employed as a model to study the virus entry and localisation in Spodoptera frugiperda, Sf9 cells. Through fluorescence microscopy and sub-cellular fractionation, the MrNvc was shown to enter Sf9 cells, and eventually arrived at the nucleus. The presence of MrNvc within the cytoplasm and nucleus of Sf9 cells was further confirmed by the Z-stack imaging. The presence of ammonium chloride (NH4Cl, genistein, methyl-β-cyclodextrin or chlorpromazine (CPZ inhibited the entry of MrNvc into Sf9 cells, but cytochalasin D did not inhibit this process. This suggests that the internalisation of MrNvc VLPs is facilitated by caveolae- and clathrin-mediated endocytosis. The whole internalisation process of MrNvc VLPs into a Sf9 cell was recorded with live cell imaging. We have also identified a potential nuclear localisation signal (NLS of MrNvc through deletion mutagenesis and verified by classical-NLS mapping. Overall, this study provides an insight into the journey of MrNvc VLPs in insect cells.

  1. A virus of hyperthermophilic archaea with a unique architecture among DNA viruses.

    Science.gov (United States)

    Rensen, Elena Ilka; Mochizuki, Tomohiro; Quemin, Emmanuelle; Schouten, Stefan; Krupovic, Mart; Prangishvili, David

    2016-03-01

    Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Here, we describe a filamentous hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 (PFV1), with a type of virion organization not previously observed in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an envelope and an inner core consisting of two structural units: a rod-shaped helical nucleocapsid formed of two 14-kDa major virion proteins and a nucleocapsid-encompassing protein sheath composed of a single major virion protein of 18 kDa. The virion organization of PFV1 is superficially similar to that of negative-sense RNA viruses of the family Filoviridae, including Ebola virus and Marburg virus. The linear dsDNA of PFV1 carries 17,714 bp, including 60-bp-long terminal inverted repeats, and contains 39 predicted ORFs, most of which do not show similarities to sequences in public databases. PFV1 is a lytic virus that completely disrupts the host cell membrane at the end of the infection cycle.

  2. Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera).

    Science.gov (United States)

    Rosario, Karyna; Marinov, Milen; Stainton, Daisy; Kraberger, Simona; Wiltshire, Elizabeth J; Collings, David A; Walters, Matthew; Martin, Darren P; Breitbart, Mya; Varsani, Arvind

    2011-06-01

    Dragonfly cyclovirus (DfCyV), a new species of ssDNA virus discovered using viral metagenomics in dragonflies (family Libellulidae) from the Kingdom of Tonga. Metagenomic sequences of DfCyV were similar to viruses of the recently proposed genus Cyclovirus within the family Circoviridae. Specific PCRs resulted in the recovery of 21 DfCyV genomes from three dragonfly species (Pantala flavescens, Tholymis tillarga and Diplacodes bipunctata). The 1741 nt DfCyV genomes share >95 % nucleotide identity and are classified into 11 subtypes representing a single strain. The DfCyV genomes share 48-63 % genome-wide nucleotide identity with cycloviruses identified in human faecal samples. Recombination analysis revealed three recombinant DfCyV genomes, suggesting that recombination plays an important role in cyclovirus evolution. To our knowledge, this is the first report of a circular ssDNA virus identified in insects, and the data may help elucidate evolutionary links among novel Circoviridae recently identified in animals and environmental samples.

  3. Identification of diverse circular single-stranded DNA viruses in adult dragonflies and damselflies (Insecta: Odonata) of Arizona and Oklahoma, USA.

    Science.gov (United States)

    Dayaram, Anisha; Potter, Kristen A; Pailes, Roberta; Marinov, Milen; Rosenstein, Dana D; Varsani, Arvind

    2015-03-01

    Next generation sequencing and metagenomic approaches are commonly used for the identification of circular replication associated protein (Rep)-encoding single stranded (CRESS) DNA viruses circulating in various environments. These approaches have enabled the discovery of some CRESS DNA viruses associated with insects. In this study we identified and recovered 31 viral genomes which represent 24 distinct CRESS DNA viruses from seven dragonfly species (Rhionaeschna multicolor, Erythemis simplicicollis, Erythrodiplax fusca, Libellula quadrimaculata, Libellula saturata, Pachydiplax longipennis, and Pantala hymenaea) and two damselfly species (Ischnura posita, Ischnura ramburii) sampled in various locations in the states of Arizona and Oklahoma of the United States of America (USA). We also identified Sclerotinia sclerotiorum hypovirulence-associated DNA virus-1 (SsHADV-1) in P. hymenaea, E. simplicicollis and I. ramburii sampled in Oklahoma, which is the first report of SsHADV-1 in the New World. The genome architectures of the CRESS DNA viruses recovered vary, but they all have at least two major open reading frames (ORFs) that have either a bidirectional or unidirectional arrangement. Four of the viral genomes recovered, in addition to the three isolates of SsHADV-1, show similarities to viruses of the proposed gemycircularvirus group. Analysis of the Rep encoded by the remaining 24 viral genomes reveals that these are highly diverse and allude to the fact that they represent novel CRESS DNA viruses.

  4. Molecular genetics of DNA viruses: recombinant virus technology.

    Science.gov (United States)

    Neuhierl, Bernhard; Delecluse, Henri-Jacques

    2005-01-01

    Recombinant viral genomes cloned onto BAC vectors can be subjected to extensive molecular genetic analysis in the context of E. coli. Thus, the recombinant virus technology exploits the power of prokaryotic genetics to introduce all kinds of mutations into the recombinant genome. All available techniques are based on homologous recombination between a targeting vector carrying the mutated version of the gene of interest and the recombinant virus. After modification, the mutant viral genome is stably introduced into eukaryotic cells permissive for viral lytic replication. In these cells, mutant viral genomes can be packaged into infectious particles to evaluate the effect of these mutations in the context of the complete genome.

  5. Virus-encapsulated DNA origami nanostructures for cellular delivery.

    Science.gov (United States)

    Mikkilä, Joona; Eskelinen, Antti-Pekka; Niemelä, Elina H; Linko, Veikko; Frilander, Mikko J; Törmä, Päivi; Kostiainen, Mauri A

    2014-01-01

    DNA origami structures can be programmed into arbitrary shapes with nanometer scale precision, which opens up numerous attractive opportunities to engineer novel functional materials. One intriguing possibility is to use DNA origamis for fully tunable, targeted, and triggered drug delivery. In this work, we demonstrate the coating of DNA origami nanostructures with virus capsid proteins for enhancing cellular delivery. Our approach utilizes purified cowpea chlorotic mottle virus capsid proteins that can bind and self-assemble on the origami surface through electrostatic interactions and further pack the origami nanostructures inside the viral capsid. Confocal microscopy imaging and transfection studies with a human HEK293 cell line indicate that protein coating improves cellular attachment and delivery of origamis into the cells by 13-fold compared to bare DNA origamis. The presented method could readily find applications not only in sophisticated drug delivery applications but also in organizing intracellular reactions by origami-based templates.

  6. Purified JC virus T antigen derived from insect cells preferentially interacts with binding site II of the viral core origin under replication conditions.

    Science.gov (United States)

    Bollag, B; Mackeen, P C; Frisque, R J

    1996-04-01

    The human polyomavirus JC virus (JCV) establishes persistent, asymptomatic infections in most individuals, but in severely immunocompromised hosts it may cause the fatal demyelinating brain disease progressive multifocal leukoencephalopathy. In cell culture JCV multiplies inefficiently and exhibits a narrow host range. This restricted behavior occurs, in part, at the level of DNA replication, which is regulated by JCV's multifunctional large tumor protein (TAg). To prepare purified JCV TAg (JCT) for biochemical analyses, the recombinant baculovirus B-JCT was generated by cotransfection of insect cells with wild-type baculovirus and the vector pVL-JCT(Int-) containing the JCT-coding sequence downstream of the efficient polyhedrin promoter. JCT expressed in infected cells was immunoaffinity purified using the anti-JCT monoclonal antibody PAb 2000. Characterization of the viral oncoprotein indicated that it exists in solution as a mixture of monomeric and oligomeric species. With the addition of ATP, the population of monomers decreased and that of hexamers and double hexamers increased. A DNA mobility shift assay indicated that origin binding occurred primarily with the double-hexamer form. A comparison of the specific DNA-binding activities of JCT and SV40 TAg (SVT) revealed that JCT generally exhibited greater affinity for binding site II relative to binding site I (B.S. I) of both viral origin regions, whereas SVT preferentially bound B.S. I. Furthermore, JCT bound nonviral DNA more efficiently than did SVT. These functional differences between the two TAgs may contribute to the reduced DNA replication potential of JCV in vitro, and to the virus' ability to establish persistent infections in vivo.

  7. Expression of rice gall dwarf virus outer coat protein gene (S8) in insect cells.

    Science.gov (United States)

    Fan, Guo-cheng; Gao, Fang-luan; Wei, Tai-yun; Huang, Mei-ying; Xie, Li-yan; Wu, Zu-jian; Lin, Qi-ying; Xie, Lian-hui

    2010-12-01

    To obtain the P8 protein of Rice gall dwarf virus (RGDV) with biological activity, its outer coat protein gene S8 was expressed in Spodoptera frugiperda (Sf9) insect cells using the baculovirus expression system. The S8 gene was subcloned into the pFastBac™1 vector, to produce the recombinant baculovirus transfer vector pFB-S8. After transformation, pFB-S8 was introduced into the competent cells (E. coli DH10Bac) containing a shuttle vector, Bacmid, generating the recombinant bacmid rbpFB-S8. After being infected by recombinant baculovirus rvpFB-S8 at different multiplicities of infection, Sf9 cells were collected at different times and analyzed by SDS-PAGE, Western blotting and immunofluorescence microscopy. The expression level of the P8 protein was highest between 48-72 h after transfection of Sf9 cells. Immunofluorescence microscopy showed that P8 protein of RGDV formed punctate structures in the cytoplasm of Sf9 cells.

  8. Mechanics of DNA Packaging in Viruses

    National Research Council Canada - National Science Library

    Prashant K. Purohit; Jané Kondev; Rob Phillips

    2003-01-01

    .... One technique producing a host of intriguing results is the use of optical tweezers to measure the mechanical forces exerted by molecular motors during key processes such as the transcription of DNA...

  9. Differential association with cellular substructures of pseudorabies virus DNA during early and late phases of replication

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Porat, T.; Veach, R.A.; Blankenship, M.L.; Kaplan, A.S.

    1984-12-01

    Pseudorabies virus DNA synthesis can be divided into two phases, early and late, which can be distinguished from each other on the basis of the structures of the replicating DNA. The two types of replicating virus DNA can also be distinguished from each other on the basis of the cellular substructures with which each is associated. Analysis by electron microscopic autoradiography showed that during the first round of replication, nascent virus DNA was found in the vicinity of the nuclear membrane; during later rounds of replication the nascent virus DNA was located centrally within the nucleus. The degree of association of virus DNA synthesized at early and late phases with the nuclear matrix fractions also differed; a larger proportion of late than of early nascent virus DNA was associated with this fraction. While nascent cellular DNA only was associated in significant amounts with the nuclear matrix fraction, a large part (up to 40%) of all the virus DNA remained associated with this fraction. However, no retention of specific virus proteins in this fraction was observed. Except for two virus proteins, which were preferentially extracted from the nuclear matrix, approximately 20% of all virus proteins remained in the nuclear matrix fraction. The large proportion of virus DNA associated with the nuclear fraction indicated that virus DNA may be intimately associated with some proteins.

  10. Insects antiviral and anticancer peptides: new leads for the future?

    Science.gov (United States)

    Slocinska, Malgorzata; Marciniak, Pawel; Rosinski, Grzegorz

    2008-01-01

    Insect produce wide range of protein and peptides as a first fast defense line against pathogen infection. These agents act in different ways including insect immune system activation or by direct impact on the target tumor cells or viruses. It has been shown that some of the insect peptides suppress viral gene and protein expression, rybosilate DNA, whereas others cause membrane lysis, induce apoptosis or arrest cell cycle. Several of the purified and characterized peptides of insect origin are very promising in treating of serious human diseases like human immunodeficiency virus (HIV), herpex simplex virus (HSV) or leukaemia. However, some obstacles need to be overcome. Cytotoxic activity of peptides, susceptibility to proteases or high cost of production remain still unsolved problems. Reports on the peptides antiviral and antitumour mechanisms are scanty. Thus, in this review we present characteristic, mode of action and potential medical applications of insects origin peptides with the antiviral and antitumour activity.

  11. The long and short of antiviral defense: small RNA-based immunity in insects

    NARCIS (Netherlands)

    Bronkhorst, A.W.; Rij, R.P. van

    2014-01-01

    The host RNA interference (RNAi) pathway of insects senses virus infection and induces an antiviral response to restrict virus replication. Dicer-2 detects viral double-stranded RNA, produced by RNA and DNA viruses, and generates viral small interfering RNAs (vsiRNAs). Recent small RNA profiling stu

  12. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    Science.gov (United States)

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2014-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA. PMID:24203707

  13. DNA intercalator stimulates influenza transcription and virus replication

    Directory of Open Access Journals (Sweden)

    Poon Leo LM

    2011-03-01

    Full Text Available Abstract Influenza A virus uses its host transcription machinery to facilitate viral RNA synthesis, an event that is associated with cellular RNA polymerase II (RNAPII. In this study, various RNAPII transcription inhibitors were used to investigate the effect of RNAPII phosphorylation status on viral RNA transcription. A low concentration of DNA intercalators, such as actinomycin D (ActD, was found to stimulate viral polymerase activity and virus replication. This effect was not observed in cells treated with RNAPII kinase inhibitors. In addition, the loss of RNAPIIa in infected cells was due to the shift of nonphosphorylated RNAPII (RNAPIIa to hyperphosphorylated RNAPII (RNAPIIo.

  14. DNA intercalator stimulates influenza transcription and virus replication.

    Science.gov (United States)

    Li, Olive T W; Poon, Leo L M

    2011-03-15

    Influenza A virus uses its host transcription machinery to facilitate viral RNA synthesis, an event that is associated with cellular RNA polymerase II (RNAPII). In this study, various RNAPII transcription inhibitors were used to investigate the effect of RNAPII phosphorylation status on viral RNA transcription. A low concentration of DNA intercalators, such as actinomycin D (ActD), was found to stimulate viral polymerase activity and virus replication. This effect was not observed in cells treated with RNAPII kinase inhibitors. In addition, the loss of RNAPII(a) in infected cells was due to the shift of nonphosphorylated RNAPII (RNAPII(a)) to hyperphosphorylated RNAPII (RNAPII(o)).

  15. Evolution and Phylogeny of Large DNA Viruses, Mimiviridae and Phycodnaviridae Including Newly Characterized Heterosigma akashiwo Virus

    Science.gov (United States)

    Maruyama, Fumito; Ueki, Shoko

    2016-01-01

    Nucleocytoplasmic DNA viruses are a large group of viruses that harbor double-stranded DNA genomes with sizes of several 100 kbp, challenging the traditional concept of viruses as small, simple ‘organisms at the edge of life.’ The most intriguing questions about them may be their origin and evolution, which have yielded the variety we see today. Specifically, the phyletic relationship between two giant dsDNA virus families that are presumed to be close, Mimiviridae, which infect Acanthamoeba, and Phycodnaviridae, which infect algae, is still obscure and needs to be clarified by in-depth analysis. Here, we studied Mimiviridae–Phycodnaviridae phylogeny including the newly identified Heterosigma akashiwo virus strain HaV53. Gene-to-gene comparison of HaV53 with other giant dsDNA viruses showed that only a small proportion of HaV53 genes show similarities with the others, revealing its uniqueness among Phycodnaviridae. Phylogenetic/genomic analysis of Phycodnaviridae including HaV53 revealed that the family can be classified into four distinctive subfamilies, namely, Megaviridae (Mimivirus-like), Chlorovirus-type, and Coccolitho/Phaeovirus-type groups, and HaV53 independent of the other three groups. Several orthologs found in specific subfamilies while absent from the others were identified, providing potential family marker genes. Finally, reconstruction of the evolutionary history of Phycodnaviridae and Mimiviridae revealed that these viruses are descended from a common ancestor with a small set of genes and reached their current diversity by differentially acquiring gene sets during the course of evolution. Our study illustrates the phylogeny and evolution of Mimiviridae–Phycodnaviridae and proposes classifications that better represent phyletic relationships among the family members. PMID:27965659

  16. A new insect-specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells.

    Directory of Open Access Journals (Sweden)

    Jody Hobson-Peters

    Full Text Available Recent reports of a novel group of flaviviruses that replicate only in mosquitoes and appear to spread through insect populations via vertical transmission have emerged from around the globe. To date, there is no information on the presence or prevalence of these insect-specific flaviviruses (ISFs in Australian mosquito species. To assess whether such viruses occur locally, we used reverse transcription-polymerase chain reaction (RT-PCR and flavivirus universal primers that are specific to the NS5 gene to detect these viruses in mosquito pools collected from the Northern Territory. Of 94 pools of mosquitoes, 13 were RT-PCR positive, and of these, 6 flavivirus isolates were obtained by inoculation of mosquito cell culture. Sequence analysis of the NS5 gene revealed that these isolates are genetically and phylogenetically similar to ISFs reported from other parts of the world. The entire coding region of one isolate (designated 56 was sequenced and shown to have approximately 63.7% nucleotide identity and 66.6% amino acid identity with its closest known relative (Nakiwogo virus indicating that the prototype Australian ISF represents a new species. All isolates were obtained from Coquillettidia xanthogaster mosquitoes. The new virus is tentatively named Palm Creek virus (PCV after its place of isolation. We also demonstrated that prior infection of cultured mosquito cells with PCV suppressed subsequent replication of the medically significant West Nile and Murray Valley encephalitis viruses by 10-43 fold (1 to 1.63 log at 48 hr post-infection, suggesting that superinfection exclusion can occur between ISFs and vertebrate-infecting flaviviruses despite their high level of genetic diversity. We also generated several monoclonal antibodies (mAbs that are specific to the NS1 protein of PCV, and these represent the first ISF-specific mAbs reported to date.

  17. Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship.

    Science.gov (United States)

    Johannessen, Torill Vik; Larsen, Aud; Bratbak, Gunnar; Pagarete, António; Edvardsen, Bente; Egge, Elianne D; Sandaa, Ruth-Anne

    2017-04-20

    Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae, showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.

  18. Encapsulation and delivery of plasmid DNA by virus-like nanoparticles engineered from Macrobrachium rosenbergii nodavirus.

    Science.gov (United States)

    Jariyapong, Pitchanee; Chotwiwatthanakun, Charoonroj; Somrit, Monsicha; Jitrapakdee, Sarawut; Xing, Li; Cheng, Holland R; Weerachatyanukul, Wattana

    2014-01-22

    Virus-like particles (VLPs) are potential candidates in developing biological containers for packaging therapeutic or biologically active agents. Here, we expressed Macrobrachium rosenbergii nodavirus (MrNv) capsid protein (encoding amino acids M1-N371 with 6 histidine residuals) in an Escherichia coli BL21(DE3). These easily purified capsid protein self-assembled into VLPs, and disassembly/reassembly could be controlled in a calcium-dependent manner. Physically, MrNv VLPs resisted to digestive enzymes, a property that should be advantageous for protection of active compounds against harsh conditions. We also proved that MrNv VLPs were capable of encapsulating plasmid DNA in the range of 0.035-0.042 mol ratio (DNA/protein) or 2-3 plasmids/VLP (assuming that MrNV VLPs is T=1, i made up of 60 capsid monomers). These VLPs interacted with cultured insect cells and delivered loaded plasmid DNA into the cells as shown by green fluorescent protein (GFP) reporter. With many advantageous properties including self-encapsulation, MrNv VLPs are good candidates for delivery of therapeutic agents.

  19. Trace DNA from insect skins: a comparison of five extraction protocols and direct PCR on chironomid pupal exuviae.

    Science.gov (United States)

    Kranzfelder, Petra; Ekrem, Torbjørn; Stur, Elisabeth

    2016-01-01

    Insect skins (exuviae) are of extracellular origin and shed during moulting. The skins do not contain cells or DNA themselves, but epithelial cells and other cell-based structures might accidentally attach as they are shed. This source of trace DNA can be sufficient for PCR amplification and sequencing of target genes and aid in species identification through DNA barcoding or association of unknown life stages. Species identification is essential for biomonitoring programs, as species vary in sensitivities to environmental factors. However, it requires a DNA isolation protocol that optimizes the output of target DNA. Here, we compare the relative effectiveness of five different DNA extraction protocols and direct PCR in isolation of DNA from chironomid pupal exuviae. Chironomidae (Diptera) is a species-rich group of aquatic macroinvertebrates widely distributed in freshwater environments and considered a valuable bioindicator of water quality. Genomic DNA was extracted from 61.2% of 570 sampled pupal exuviae. There were significant differences in the methods with regard to cost, handling time, DNA quantity, PCR success, sequence success and the ability to sequence target taxa. The NucleoSpin(®) Tissue XS Kit, DNeasy(®) Blood and Tissue kit, and QuickExtract(™) DNA Extraction Solution provided the best results in isolating DNA from single pupal exuviae. Direct PCR and DTAB/CTAB methods gave poor results. While the observed differences in DNA isolation methods on trace DNA will be relevant to research that focuses on aquatic macroinvertebrate ecology, taxonomy and systematics, they should also be of interest for studies using environmental barcoding and metabarcoding of aquatic environments. © 2015 John Wiley & Sons Ltd.

  20. Functional aspects of baculovirus DNA photolyases

    NARCIS (Netherlands)

    Xu, F.

    2010-01-01

    Keywords: baculovirus, ChchNPV, CPD photolyase, phylogeny, UV resistance, DNA binding, localization, proteomics Baculoviruses are insect viruses that are applied as biological control agents due to adequate virulence, host specificity and safety for the environment. Solar light negatively affects

  1. Functional aspects of baculovirus DNA photolyases

    NARCIS (Netherlands)

    Xu, F.

    2010-01-01

    Keywords: baculovirus, ChchNPV, CPD photolyase, phylogeny, UV resistance, DNA binding, localization, proteomics Baculoviruses are insect viruses that are applied as biological control agents due to adequate virulence, host specificity and safety for the environment. Solar light negatively affects

  2. Integration of hepatitis B virus DNA into chromosomal DNA during acute hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Gerald C Kimbi; Anna Kramvis; Michael C Kew

    2005-01-01

    AIM: To examine the serum from black African patients with acute hepatitis B to ascertain if integrants of viral DNA can be detected in fragments of cellular DNA leaking from damaged hepatocytes into the circulation.METHODS: DNA was extracted from the sera of five patients with uncomplicated acute hepatitis B and one with fulminant disease. Two subgenomic PCRs designed to amplify the complete genome of HBV were used and the resulting amplicons were cloned and sequenced.RESULTS: HBV and chromosomal DNA were amplified from the sera of all the patients. In one patient with uncomplicated disease, HBV DNA was integrated into host chromosome 7 q11.23 in the WBSCR1 gene. The viral DNA comprised 200 nucleotides covering the S and X genes in opposite orientation, with a 1 169 nudeotide deletion. The right virus/host junction was situated at nucleotide 1774 in the cohesive overlap region of the viral genome, at a preferred topoisomerase I cleavage motif. The chromosomal DNA was not rearranged.The patient made a full recovery and seroconverted to anti-HBs- and anti-HBe-positivity. Neither HBV nor chromosomal DNA could be amplified from his serum at that time.CONCLUSION: Integration of viral DNA into chromosomal DNA may occur rarely during acute hepatitis B and, with clonal propagation of the integrant, might play a role in hepatocarcinogenesis.

  3. Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells

    National Research Council Canada - National Science Library

    Metz, S.W.H; Gardner, J; Geertsema, C; Le, T.T; Goh, L; Vlak, J.M; Suhrbier, A; Pijlman, G.P

    2013-01-01

    ...) in insect cells using recombinant baculoviruses. This well-established expression system is rapidly scalable to volumes required for epidemic responses and proved well suited for processing of CHIKV glycoproteins and production of enveloped VLPs...

  4. The assembly of papaya mosaic virus coat protein with DNA.

    Science.gov (United States)

    Erickson, J W; Bancroft, J B

    1980-01-01

    Products of specific (pH 8.0-8.5) and nonspecific (pH 6.0) assembly reactions of papaya mosaic virus (PMV) coat protein with DNA are described. The strandedness, topology, and sugar moiety of the nucleic acid are important parameters for assembly in nonspecific conditions. The linear, single-stranded form of lambda DNA, but not the double-stranded form, reacted with PMV protein to form multiply initiated particles whose helical segments apparently annealed to produce continuous tubular particles. With the circular, single-stranded DNA of phi X174, partially tubular, partially extended particles were made. Poly(dA), unlike poly(A) [Erickson JW, AbouHaidar M, Bancroft JB: Virology 90:60, 1978], was not encapsidated by PMV protein under specific assembly conditions. With all DNAs tested, extended particles were the only products formed in specific conditions at pH 8.5.

  5. Effects of a sex-ratio distorting endosymbiont on mtDNA variation in a global insect pest

    Directory of Open Access Journals (Sweden)

    Cook James M

    2009-03-01

    Full Text Available Abstract Background Patterns of mtDNA variation within a species reflect long-term population structure, but may also be influenced by maternally inherited endosymbionts, such as Wolbachia. These bacteria often alter host reproductive biology and can drive particular mtDNA haplotypes through populations. We investigated the impacts of Wolbachia infection and geography on mtDNA variation in the diamondback moth, a major global pest whose geographic distribution reflects both natural processes and transport via human agricultural activities. Results The mtDNA phylogeny of 95 individuals sampled from 10 countries on four continents revealed two major clades. One contained only Wolbachia-infected individuals from Malaysia and Kenya, while the other contained only uninfected individuals, from all countries including Malaysia and Kenya. Within the uninfected group was a further clade containing all individuals from Australasia and displaying very limited sequence variation. In contrast, a biparental nuclear gene phylogeny did not have infected and uninfected clades, supporting the notion that maternally-inherited Wolbachia are responsible for the mtDNA pattern. Only about 5% (15/306 of our global sample of individuals was infected with the plutWB1 isolate and even within infected local populations, many insects were uninfected. Comparisons of infected and uninfected isofemale lines revealed that plutWB1 is associated with sex ratio distortion. Uninfected lines have a 1:1 sex ratio, while infected ones show a 2:1 female bias. Conclusion The main correlate of mtDNA variation in P. xylostella is presence or absence of the plutWB1 infection. This is associated with substantial sex ratio distortion and the underlying mechanisms deserve further study. In contrast, geographic origin is a poor predictor of moth mtDNA sequences, reflecting human activity in moving the insects around the globe. The exception is a clade of Australasian individuals, which may

  6. A DNA vaccine against yellow fever virus: development and evaluation.

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  7. A DNA vaccine against yellow fever virus: development and evaluation.

    Directory of Open Access Journals (Sweden)

    Milton Maciel

    2015-04-01

    Full Text Available Attenuated yellow fever (YF virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE, aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  8. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses.

    NARCIS (Netherlands)

    Mierlo, J.T. van; Bronkhorst, A.W.; Overheul, G.J.; Sadanandan, S.A.; Ekstrom, J.O.; Heestermans, M.; Hultmark, D.; Antoniewski, C.; Rij, R.P. van

    2012-01-01

    RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus inf

  9. Convergent evolution of argonaute-2 slicer antagonism in two distinct insect RNA viruses.

    NARCIS (Netherlands)

    Mierlo, J.T. van; Bronkhorst, A.W.; Overheul, G.J.; Sadanandan, S.A.; Ekstrom, J.O.; Heestermans, M.; Hultmark, D.; Antoniewski, C.; Rij, R.P. van

    2012-01-01

    RNA interference (RNAi) is a major antiviral pathway that shapes evolution of RNA viruses. We show here that Nora virus, a natural Drosophila pathogen, is both a target and suppressor of RNAi. We detected viral small RNAs with a signature of Dicer-2 dependent small interfering RNAs in Nora virus

  10. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats.

    Directory of Open Access Journals (Sweden)

    Gale Smith

    Full Text Available Respiratory Syncytial Virus (RSV is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.

  11. Identification of minimal sequences of the Rhopalosiphum padi virus 5' untranslated region required for internal initiation of protein synthesis in mammalian, plant and insect translation systems

    DEFF Research Database (Denmark)

    Groppelli, Elisabetta; Belsham, Graham; Roberts, Lisa O.

    2007-01-01

    Rhopalosiphum padi virus (RhPV) is a member of the family Dicistroviridae. The genomes of viruses in this family contain two open reading frames, each preceded by distinct internal ribosome entry site (IRES) elements. The RhPV 5' IRES is functional in mammalian, insect and plant translation systems...... (rabbit reticulocyte lysate), plant (wheatgerm extract) and insect (Sf21 cells) translation systems have now been defined. A fragment (nt 426–579) from the 3' portion of the 5' UTR can direct translation in each of these translation systems. In addition, a distinct region (nt 300–429) is also active. Thus...

  12. Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication.

    Science.gov (United States)

    Muylaert, Isabella; Elias, Per

    2007-04-13

    Herpes simplex virus has a linear double-stranded DNA genome with directly repeated terminal sequences needed for cleavage and packaging of replicated DNA. In infected cells, linear genomes rapidly become endless. It is currently a matter of discussion whether the endless genomes are circles supporting rolling circle replication or arise by recombination of linear genomes forming concatemers. Here, we have examined the role of mammalian DNA ligases in the herpes simplex virus, type I (HSV-1) life cycle by employing RNA interference (RNAi) in human 1BR.3.N fibroblasts. We find that RNAi-mediated knockdown of DNA ligase IV and its co-factor XRCC4 causes a hundred-fold reduction of virus yield, a small plaque phenotype, and reduced DNA synthesis. The effect is specific because RNAi against DNA ligase I or DNA ligase III fail to reduce HSV-1 replication. Furthermore, RNAi against DNA ligase IV and XRCC4 does not affect replication of adenovirus. In addition, high multiplicity infections of HSV-1 in human DNA ligase IV-deficient cells reveal a pronounced delay of production of infectious virus. Finally, we demonstrate that formation of endless genomes is inhibited by RNAi-mediated depletion of DNA ligase IV and XRCC4. Our results suggests that DNA ligase IV/XRCC4 serves an important role in the replication cycle of herpes viruses and is likely to be required for the formation of the endless genomes early during productive infection.

  13. Identification of a nanovirus-like DNA molecule associated with Tobacco curly shoot virus isolates containing satellite DNA

    Institute of Scientific and Technical Information of China (English)

    XIE Yan; WU Peijun; TAO Xiaorong; ZHOU Xueping

    2004-01-01

    A circular single-stranded DNA molecule, designated DNA1, was identified from Tobacco curly shoot virus (TbCSV) isolates Y35 and Y115 containing satellite DNAβ using abutting primers based on the two reported DNA1 sequences of whitefly-transmitted geminiviruses, while DNA1 molecule was not found in TbCSV isolates Y1 and Y121 without DNAβ. The immunotrapping PCR test showed that DNA1 could be encapsidated in virus particles. Southern blot further confirmed that DNA1 molecules were only associated with TbCSV isolates (Y35 and Y115) containing DNAβ. Sequences of Y35 and Y115 DNA1 comprise 1367 and 1368 nucleotides, respectively, each having a conserved ORF encoding nanovirus-like replication-associated protein (Rep). A low nucleotide sequence identity was found between DNA1 molecules and their cognate DNA-As. Y35 and Y115 DNA1 shared 92% overall nucleotide sequence identity and 96% amino acid sequence identity for Rep, while 69%~79% overall nucleotide sequence identity and 87%~90% amino acid sequence identity were found when compared with two reported DNA1 molecules associated with Ageratum yellow vein virus and Cotton leaf curl Multon virus. Sequence analysis showed that DNA1 was less related to nanovirus DNA.

  14. Host DNA damage response facilitates African swine fever virus infection.

    Science.gov (United States)

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2013-07-26

    Studies with different viral infection models on virus interactions with the host cell nucleus have opened new perspectives on our understanding of the molecular basis of these interactions in African swine fever virus (ASFV) infection. The present study aims to characterize the host DNA damage response (DDR) occurring upon in vitro infection with the ASFV-Ba71V isolate. We evaluated protein levels during ASFV time-course infection, of several signalling cascade factors belonging to DDR pathways involved in double strand break repair - Ataxia Telangiectasia Mutated (ATM), ATM-Rad 3 related (ATR) and DNA dependent protein kinase catalytic subunit (DNA-PKcs). DDR inhibitory trials using caffeine and wortmannin and ATR inducible-expression cell lines were used to confirm specific pathway activation during viral infection. Our results show that ASFV specifically elicits ATR-mediated pathway activation from the early phase of infection with increased levels of H2AX, RPA32, p53, ATR and Chk1 phosphorylated forms. Viral p72 synthesis was abrogated by ATR kinase inhibitors and also in ATR-kd cells. Furthermore, a reduction of viral progeny was identified in these cells when compared to the outcome of infection in ATR-wt. Overall, our results strongly suggest that the ATR pathway plays an essential role for successful ASFV infection of host cells.

  15. Detection of Herpes Simplex Virus DNA in Pseudoexfoliation Syndrome

    Directory of Open Access Journals (Sweden)

    Masoomeh Eghtedari

    2009-06-01

    Full Text Available Background: Pseudoexfoliation syndrome is one of the mostcommon identifiable causes of open angle glaucoma. It hasunknown etiology and pathogenesis. Infection, possibly viral,is one of the proposed pathogenic mechanisms in this condition.In the present study the presence of herpes simplex virus(HSV in specimens of anterior lens capsule of patients withpseudoexfoliation syndrome has been assessed.Methods: The presence of HSV- DNA was searched by usingpolymerase chain reaction method in specimens of anteriorlens capsule (5 mm diameter of 50 patients with pseudoexfoliationsyndrome (study group and 50 age-matchedpatients without the disease (control group who underwentcataract or combined cataract and glaucoma surgery duringa one-year (2006-2007 period in Khalili Hospital, Shiraz,Iran. The results were compared statistically with Chisquaretest and independent samples t test using SPSS software(version 11.5.Results: HSV type I DNA was detected in 18% of the patientsin the study group compared with 2% in the control group (Chisquare test, P = 0.008. The difference between the ranges ofintraocular pressure in the two groups was not statistically significant.Conclusion: The presence of HSV type I DNA suggests thepossible relationship between the virus and pseudoexfoliationsyndrome. It may be a treatable etiology in this multi-factorialdisorder and may help to future management of patients; especiallyto prevent some of the complications in this syndrome.

  16. The DNA damage response induced by infection with human cytomegalovirus and other viruses.

    Science.gov (United States)

    Xiaofei, E; Kowalik, Timothy F

    2014-05-23

    Viruses use different strategies to overcome the host defense system. Recent studies have shown that viruses can induce DNA damage response (DDR). Many of these viruses use DDR signaling to benefit their replication, while other viruses block or inactivate DDR signaling. This review focuses on the effects of DDR and DNA repair on human cytomegalovirus (HCMV) replication. Here, we review the DDR induced by HCMV infection and its similarities and differences to DDR induced by other viruses. As DDR signaling pathways are critical for the replication of many viruses, blocking these pathways may represent novel therapeutic opportunities for the treatment of certain infectious diseases. Lastly, future perspectives in the field are discussed.

  17. Antibody recognition of the glycoprotein g of viral haemorrhagic septicemia virus (VHSV purified in large amounts from insect larvae

    Directory of Open Access Journals (Sweden)

    Escribano Jose M

    2011-06-01

    Full Text Available Abstract Background There are currently no purification methods capable of producing the large amounts of fish rhabdoviral glycoprotein G (gpG required for diagnosis and immunisation purposes or for studying structure and molecular mechanisms of action of this molecule (ie. pH-dependent membrane fusion. As a result of the unavailability of large amounts of the gpG from viral haemorrhagic septicaemia rhabdovirus (VHSV, one of the most dangerous viruses affecting cultured salmonid species, research interests in this field are severely hampered. Previous purification methods to obtain recombinant gpG from VHSV in E. coli, yeast and baculovirus grown in insect cells have not produced soluble conformations or acceptable yields. The development of large-scale purification methods for gpGs will also further research into other fish rhabdoviruses, such as infectious haematopoietic necrosis virus (IHNV, spring carp viremia virus (SVCV, hirame rhabdovirus (HIRRV and snakehead rhabdovirus (SHRV. Findings Here we designed a method to produce milligram amounts of soluble VHSV gpG. Only the transmembrane and carboxy terminal-deleted (amino acid 21 to 465 gpG was efficiently expressed in insect larvae. Recognition of G21-465 by ß-mercaptoethanol-dependent neutralizing monoclonal antibodies (N-MAbs and pH-dependent recognition by sera from VHSV-hyperimmunized or VHSV-infected rainbow trout (Oncorhynchus mykiss was demonstrated. Conclusions Given that the purified G21-465 conserved some of its most important properties, this method might be suitable for the large-scale production of fish rhabdoviral gpGs for use in diagnosis, fusion and antigenicity studies.

  18. Expanding the host range of small insect RNA viruses: Providence virus (Carmotetraviridae) infects and replicates in a human tissue culture cell line.

    Science.gov (United States)

    Jiwaji, Meesbah; Short, James Roswell; Dorrington, Rosemary Ann

    2016-10-01

    Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus (PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.

  19. Oligosaccharide processing in the expression of human plasminogen cDNA by lepidopteran insect (Spodoptera frugiperda) cells

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, D.J.; Fraser, M.J.; Castellino, F.J. (Univ. of Notre Dame, IN (USA))

    1990-06-12

    A comparison has been made between the Asn{sup 289}-linked oligosaccharide structures of human plasma plasminogen and a recombinant human plasminogen, expressed in lepidopteran insect (Spodoptera frugiperda) cells, after infection of these cells with a recombinant baculovirus containing the entire human plasminogen cDNA. Using anion-exchange liquid chromatography mapping of the oligosaccharide units cleaved from the proteins by glycopeptidase F, compared with elution positions of standard oligosaccharide structures, coupled with monosaccharide compositional analysis, the authors find that the human plasma protein contained only bisialo-biantennary complex-type carbohydrate and asialo-biantennary complex carbohydrate, confirming earlier work published by this laboratory. The glycosylation pattern of the insect cell expressed recombinant human plasminogen showed considerable microheterogeneity, with identifiable high-mannose carbohydrate and truncated high-mannose oligosaccharide. Of major importance, approximately 40% of the oligosaccharide population consisted of complex carbohydrate (bisialo-biantennary), identical in structure with that of the human plasma protein. This the first direct identification of complex carbohydrate in proteins produced in insect cells and demonstrates that trimming and processing of high-mannose carbohydrate into complex-type oligosaccharide can occur. The data indicate that both normal and alternate pathways exist in these cells for incorporation and trimming of high-mannose oligosaccharides and that mannosidases, as well as galactosyl-, hexosaminidasyl-, and sialyltransferases are present, and/or can be induced, in these cells. From these observations, the authors conclude that amino acid sequences and/or protein conformational properties can control oligosaccharide processing events.

  20. Hepatitis B virus DNA integration and transactivation of cellular genes

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    Full Text Available

    Chronic hepatitis B virus (HBV infection is etiologically related to human hepatocellular carcinoma (HCC. Most HCCs contain integrated HBV DNA in hepatocyte, suggesting that the integration may be involved in carcinogenesis. Available data on the integrants from human hepatocellular carcinomas seem to represent primary integrants as well as the products of secondary rearrangements. By means of structural analyses of the possible primary integrants, it has been observed that the replication intermediates of the viral genome are the preferred substrates for integration. The integrated HBV DNA and the target cellular DNA are invariably associated with deletions, possibly reflecting the substrate for, and the mechanism of, the integration reaction. The host DNA sequences as well as the target site of integration in chromosomes are selected randomly suggesting that HBV DNA integration should bring about random mutagenic effects. Analysis of the samples recovered from hepatocellular carcinomas show that the integrated HBV DNA can mediate secondary rearrangements of chromosomes, such as translocations, inversions, deletions and (possibly amplifications. The integration of HBV DNA into the host genome occurs at early steps of clonal tumor expansion. The integration has been shown in a number of cases to affect a variety of cancer-related genes and to exert insertional mutagenesis. However, in contrast to the woodchuck model, in which specific HBV-DNA integration is detectable in most cases, insertional activation or inactivation of cellular genes appears to be a rare event in man. The discovery of transactivating functions exerted by HBx and truncated HBs(urface proteins supports the notion that these could be relevant to hepatocarcinogenesis as these transactivator sequences have been found in a large number of HCC tumors or hepatoma-derived cell lines. The HBx

  1. Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells

    NARCIS (Netherlands)

    Metz, S.W.H.; Gardner, J.; Geertsema, C.; Le, T.T.; Goh, L.; Vlak, J.M.; Suhrbier, A.; Pijlman, G.P.

    2013-01-01

    The emerging arthritogenic, mosquito-borne chikungunya virus (CHIKV) causes severe disease in humans and represents a serious public health threat in countries where Aedes spp mosquitoes are present. This study describes for the first time the successful production of CHIKV virus-like particles

  2. Effective Chikungunya Virus-like Particle Vaccine Produced in Insect Cells

    NARCIS (Netherlands)

    Metz, S.W.H.; Gardner, J.; Geertsema, C.; Le, T.T.; Goh, L.; Vlak, J.M.; Suhrbier, A.; Pijlman, G.P.

    2013-01-01

    The emerging arthritogenic, mosquito-borne chikungunya virus (CHIKV) causes severe disease in humans and represents a serious public health threat in countries where Aedes spp mosquitoes are present. This study describes for the first time the successful production of CHIKV virus-like particles (VLP

  3. Hytrosaviridae: a proposal for classification and nomenclature of a new insect virus family

    NARCIS (Netherlands)

    Abd-Alla, A.M.M.; Vlak, J.M.; Bergoin, M.; Maruniak, J.; Parker, A.; Burand, J.P.; Jehle, J.A.; Boucias, D.G.

    2009-01-01

    Salivary gland hypertrophy viruses (SGHVs) have been identified from different dipteran species, such as the tsetse fly Glossina pallidipes (GpSGHV), the housefly Musca domestica (MdSGHV) and the narcissus bulbfly Merodon equestris (MeSGHV). These viruses share the following characteristics: (i) the

  4. Residual baculovirus in insect cell-derived influenza virus-like particle preparations enhances immunogenicity.

    Directory of Open Access Journals (Sweden)

    Irina Margine

    Full Text Available Influenza virus-like particles are currently evaluated in clinical trials as vaccine candidates for influenza viruses. Most commonly they are produced in baculovirus- or mammalian- expression systems. Here we used different vaccination schemes in order to systematically compare virus-like particle preparations generated in the two systems. Our work shows significant differences in immunogenicity between the two, and indicates superior and broader immune responses induced by the baculovirus-derived constructs. We demonstrate that these differences critically influence protection and survival in a mouse model of influenza virus infection. Finally, we show that the enhanced immunogenicity of the baculovirus-derived virus-like particles is caused by contamination with residual baculovirus which activates the innate immune response at the site of inoculation.

  5. Experimental Transmission of Vesicular Stomatitis New Jersey Virus From Black Flies (Simulium vittatum) To Cattle: Clinical Outcome Is Determined By Site of Insect Feeding

    Science.gov (United States)

    Vesicular stomatitis New Jersey virus (VSNJV) is an insect-transmitted Rhabdovirus causing vesicular disease in domestic livestock including cattle, horses and pigs. The natural transmission of VSV during epidemics remains poorly understood. Transmission of VSNJV from experimentally infected black f...

  6. Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera

    Science.gov (United States)

    2011-01-01

    Background Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Results Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. Conclusions The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine. PMID:21619598

  7. Herpes Simplex Virus Latency: The DNA Repair-Centered Pathway

    Directory of Open Access Journals (Sweden)

    Jay C. Brown

    2017-01-01

    Full Text Available Like all herpesviruses, herpes simplex virus 1 (HSV1 is able to produce lytic or latent infections depending on the host cell type. Lytic infections occur in a broad range of cells while latency is highly specific for neurons. Although latency suggests itself as an attractive target for novel anti-HSV1 therapies, progress in their development has been slowed due in part to a lack of agreement about the basic biochemical mechanisms involved. Among the possibilities being considered is a pathway in which DNA repair mechanisms play a central role. Repair is suggested to be involved in both HSV1 entry into latency and reactivation from it. Here I describe the basic features of the DNA repair-centered pathway and discuss some of the experimental evidence supporting it. The pathway is particularly attractive because it is able to account for important features of the latent response, including the specificity for neurons, the specificity for neurons of the peripheral compared to the central nervous system, the high rate of genetic recombination in HSV1-infected cells, and the genetic identity of infecting and reactivated virus.

  8. Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer.

    Directory of Open Access Journals (Sweden)

    Lina Li

    Full Text Available Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA. CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9 Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.

  9. Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer.

    Science.gov (United States)

    Li, Lina; Dimitriadis, Emilios K; Yang, Yu; Li, Juan; Yuan, Zhenhua; Qiao, Chunping; Beley, Cyriaque; Smith, Richard H; Garcia, Luis; Kotin, Robert M

    2013-01-01

    Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV) inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA). CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9) Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.

  10. Subtype Identification of Avian Influenza Virus on DNA Microarray

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-rong; YU Kang-zhen; DENG Guo-hua; SHI Rui; LIU Li-ling; QIAO Chuan-ling; BAO Hong-mei; KONG Xian-gang; CHEN Hua-lan

    2005-01-01

    We have developed a rapid microarray-based assay for the reliable detection of H5, H7 and H9 subtypes of avian influenza virus (AIV). The strains used in the experiment were A/Goose/Guangdong/1/96 (H5N1), A/African starling/983/79 (H7N1) and A/Turkey/Wiscosin/1/66 (H9N2). The capture DNAs clones which encoding approximate 500-bp avian influenza virus gene fragments obtained by RT-PCR, were spotted on a slide-bound microarray. Cy5-1abeled fluorescent cDNAs,which generated from virus RNA during reverse transcription were hybridized to these capture DNAs. These capture DNAs contained multiple fragments of the hemagglutinin and matrix protein genes of AIV respectively, for subtyping and typing AIV. The arrays were scanned to determine the probe binding sites. The hybridization pattern agreed approximately with the known grid location of each target. The results show that DNA microarray technology provides a useful diagnostic method for AIV.

  11. The role of cytochrome c on apoptosis induced by Anagrapha falcifera multiple nuclear polyhedrosis virus in insect Spodoptera litura cells.

    Directory of Open Access Journals (Sweden)

    Kaiyu Liu

    Full Text Available There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line. In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell-free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells.

  12. Characterization of oligosaccharide structures on a chimeric respiratory syncytial virus protein expressed in insect cell line Sf9

    Energy Technology Data Exchange (ETDEWEB)

    Wathen, M.W.; Aeed, P.A.; Elhammer, A.P. (Upjohn Co., Kalamazoo, MI (United States))

    1991-03-19

    The oligosaccharide structures added to a chimeric protein (FG) composed of the extracellular domains of respiratory syncytial virus F and G proteins, expressed in the insect cell line Sf9, were investigated. Cells were labeled in vivo with ({sup 3}H)glucosamine and infected wit a recombinant baculovirus containing the FG gene. The secreted chimeric protein was isolated by immunoprecipitation and subjected to oligosaccharide analysis. The FG protein contains two types of O-linked oligosaccharides: GalNAc and Gal{beta}1-3GalNAc constituting 17 and 66% of the total number of structures respectively. Only one type of N-linked oligosaccharide, constituting the remaining 17% of the structures on FG, was detected: a trimannosyl core structure with a fucose residue linked {alpha}1-6 to the asparagine-linked N-acetylglucosamine.

  13. Ligation of double-stranded and single-stranded [Oligo(dT)] DNA by vaccinia virus DNA ligase

    OpenAIRE

    1996-01-01

    Vaccinia virus DNA ligase has been expressed in Escherichia coli, purified, and biochemically characterized. The enzyme ligates double-stranded (ds) DNA substrates with either cohesive or blunt-end termini and the latter reaction is stimulated by PEG. Vaccinia virus DNA ligase can also ligate oligo(dT) when annealed to either a poly(dA) or a poly(rA) backbone and, remarkably, free oligo(dT). This ligation of a single-stranded (ss) substrate is unique among eukaryotic DNA ligases. The enzyme r...

  14. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    Science.gov (United States)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  15. DNA condensates organized by the capsid protein VP15 in White Spot Syndrome Virus.

    Science.gov (United States)

    Liu, Yingjie; Wu, Jinlu; Chen, Hu; Hew, Choy Leong; Yan, Jie

    2010-12-20

    The White Spot Syndrome Virus (WSSV) has a large circular double-stranded DNA genome of around 300kb and it replicates in the nucleus of the host cells. The machinery of how the viral DNA is packaged has been remained unclear. VP15, a highly basic protein, is one of the major capsid proteins found in the virus. Previously, it was shown to be a DNA binding protein and was hypothesized to participate in the viral DNA packaging process. Using Atomic Force Microscopy imaging, we show that the viral DNA is associated with a (or more) capsid proteins. The organized viral DNA qualitatively resembles the conformations of VP15 induced DNA condensates in vitro. Furthermore, single-DNA manipulation experiments revealed that VP15 is able to condense single DNA against forces of a few pico Newtons. Our results suggest that VP15 may aid in the viral DNA packaging process by directly condensing DNA.

  16. Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication

    OpenAIRE

    2012-01-01

    Most alphaviruses and many other arboviruses are mosquito-borne and exhibit a broad host range, infecting many different vertebrates including birds, rodents, equids, humans, and nonhuman primates. Consequently, they can be propagated in most vertebrate and insect cell cultures. This ability of arboviruses to infect arthropods and vertebrates is usually essential for their maintenance in nature. However, several flaviviruses have recently been described that infect mosquitoes but not vertebra...

  17. Novel Circular Single-Stranded DNA Viruses among an Asteroid, Echinoid and Holothurian (Phylum: Echinodermata)

    Science.gov (United States)

    Jackson, Elliot W.; Bistolas, Kalia S. I.; Button, Jason B.; Hewson, Ian

    2016-01-01

    Echinoderms are prone to large population fluctuations that can be mediated by pervasive disease events. For the majority of echinoderm disease events the causative pathogen is unknown. Viruses have only recently been explored as potential pathogens using culture-independent techniques though little information currently exists on echinoderm viruses. In this study, ten circular ssDNA viruses were discovered in tissues among an asteroid (Asterias forbesi), an echinoid (Strongylocentrotus droebachiensis) and a holothurian (Parastichopus californicus) using viral metagenomics. Genome architecture and sequence similarity place these viruses among the rapidly expanding circular rep-encoding single stranded (CRESS) DNA viral group. Multiple genomes from the same tissue were no more similar in sequence identity to each other than when compared to other known CRESS DNA viruses. The results from this study are the first to describe a virus from a holothurian and continue to show the ubiquity of these viruses among aquatic invertebrates. PMID:27855181

  18. Plant Virus Metagenomics: Advances in Virus Discovery.

    Science.gov (United States)

    Roossinck, Marilyn J; Martin, Darren P; Roumagnac, Philippe

    2015-06-01

    In recent years plant viruses have been detected from many environments, including domestic and wild plants and interfaces between these systems-aquatic sources, feces of various animals, and insects. A variety of methods have been employed to study plant virus biodiversity, including enrichment for virus-like particles or virus-specific RNA or DNA, or the extraction of total nucleic acids, followed by next-generation deep sequencing and bioinformatic analyses. All of the methods have some shortcomings, but taken together these studies reveal our surprising lack of knowledge about plant viruses and point to the need for more comprehensive studies. In addition, many new viruses have been discovered, with most virus infections in wild plants appearing asymptomatic, suggesting that virus disease may be a byproduct of domestication. For plant pathologists these studies are providing useful tools to detect viruses, and perhaps to predict future problems that could threaten cultivated plants.

  19. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses.

    Science.gov (United States)

    Kim, Kyoung-Ho; Bae, Jin-Woo

    2011-11-01

    Investigation of viruses in the environment often requires the amplification of viral DNA before sequencing of viral metagenomes. In this study, two of the most widely used amplification methods, the linker amplified shotgun library (LASL) and multiple displacement amplification (MDA) methods, were applied to a sample from the seawater surface. Viral DNA was extracted from viruses concentrated by tangential flow filtration and amplified by these two methods. 454 pyrosequencing was used to read the metagenomic sequences from different libraries. The resulting taxonomic classifications of the viruses, their functional assignments, and assembly patterns differed substantially depending on the amplification method. Only double-stranded DNA viruses were retrieved from the LASL, whereas most sequences in the MDA library were from single-stranded DNA viruses, and double-stranded DNA viral sequences were minorities. Thus, the two amplification methods reveal different aspects of viral diversity.

  20. Discovery of a novel circular DNA virus in the Forbes sea star, Asterias forbesi.

    Science.gov (United States)

    Fahsbender, Elizabeth; Hewson, Ian; Rosario, Karyna; Tuttle, Allison D; Varsani, Arvind; Breitbart, Mya

    2015-09-01

    A single-stranded DNA (ssDNA) virus, Asterias forbesi-associated circular virus (AfaCV), was discovered in a Forbes sea star displaying symptoms of sea star wasting disease (SSWD). The AfaCV genome organization is typical of circular Rep-encoding ssDNA (CRESS-DNA) viruses and is similar to that of members of the family Circoviridae. PCR-based surveys indicate that AfaCV is not clearly associated with SSWD, whereas the sea star-associated densovirus (SSaDV), recently implicated in SSWD in the Pacific, was prevalent in symptomatic specimens. AfaCV represents the first CRESS-DNA virus detected in echinoderms, adding to the growing diversity of these viruses recently recovered from invertebrates.

  1. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  2. Rapid accumulation and low degradation: key parameters of Tomato yellow leaf curl virus persistence in its insect vector Bemisia tabaci.

    Science.gov (United States)

    Becker, Nathalie; Rimbaud, Loup; Chiroleu, Frédéric; Reynaud, Bernard; Thébaud, Gaël; Lett, Jean-Michel

    2015-12-02

    Of worldwide economic importance, Tomato yellow leaf curl virus (TYLCV, Begomovirus) is responsible for one of the most devastating plant diseases in warm and temperate regions. The DNA begomoviruses (Geminiviridae) are transmitted by the whitefly species complex Bemisia tabaci. Although geminiviruses have long been described as circulative non-propagative viruses, observations such as long persistence of TYLCV in B. tabaci raised the question of their possible replication in the vector. We monitored two major TYLCV strains, Mild (Mld) and Israel (IL), in the invasive B. tabaci Middle East-Asia Minor 1 cryptic species, during and after the viral acquisition, within two timeframes (0-144 hours or 0-20 days). TYLCV DNA was quantified using real-time PCR, and the complementary DNA strand of TYLCV involved in viral replication was specifically quantified using anchored real-time PCR. The DNA of both TYLCV strains accumulated exponentially during acquisition but remained stable after viral acquisition had stopped. Neither replication nor vertical transmission were observed. In conclusion, our quantification of the viral loads and complementary strands of both Mld and IL strains of TYLCV in B. tabaci point to an efficient accumulation and preservation mechanism, rather than to a dynamic equilibrium between replication and degradation.

  3. Stabilising the Herpes Simplex Virus capsid by DNA packaging

    Science.gov (United States)

    Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter

    2009-03-01

    Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.

  4. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses

    Directory of Open Access Journals (Sweden)

    Diemer Geoffrey S

    2012-06-01

    Full Text Available Abstract Background Viruses are known to be the most abundant organisms on earth, yet little is known about their collective origin and evolutionary history. With exceptionally high rates of genetic mutation and mosaicism, it is not currently possible to resolve deep evolutionary histories of the known major virus groups. Metagenomics offers a potential means of establishing a more comprehensive view of viral evolution as vast amounts of new sequence data becomes available for comparative analysis. Results Bioinformatic analysis of viral metagenomic sequences derived from a hot, acidic lake revealed a circular, putatively single-stranded DNA virus encoding a major capsid protein similar to those found only in single-stranded RNA viruses. The presence and circular configuration of the complete virus genome was confirmed by inverse PCR amplification from native DNA extracted from lake sediment. The virus genome appears to be the result of a RNA-DNA recombination event between two ostensibly unrelated virus groups. Environmental sequence databases were examined for homologous genes arranged in similar configurations and three similar putative virus genomes from marine environments were identified. This result indicates the existence of a widespread but previously undetected group of viruses. Conclusions This unique viral genome carries implications for theories of virus emergence and evolution, as no mechanism for interviral RNA-DNA recombination has yet been identified, and only scant evidence exists that genetic exchange occurs between such distinct virus lineages. Reviewers This article was reviewed by EK, MK (nominated by PF and AM. For the full reviews, please go to the Reviewers' comments section.

  5. Restriction endonuclease mapping of linear unintegrated proviral DNA of bovine leukemia virus.

    OpenAIRE

    Kettmann, R; Couez, D; Burny, A

    1981-01-01

    A detailed restriction map was deduced for the genome of the exogenous bovine leukemia virus. The cleavage sites for nine restriction enzymes were mapped. The unintegrated linear viral DNA intermediate that is produced by infection of permissive cells with bovine leukemia virus was isolated. The linear viral DNA had a unique restriction map, indicating that it is not a set of random circular permutations of the RNA genome. From hybridization with a 3'-enriched probe, the DNA restriction map w...

  6. Ecdysteroids and juvenile hormones of whiteflies, important insect vectors for plant viruses.

    Science.gov (United States)

    Gelman, Dale B; Pszczolkowski, Maciej A; Blackburn, Michael B; Ramaswamy, Sonny B

    2007-03-01

    Ecdysteroids and juvenile hormones (JHs) regulate many physiological events throughout the insect life cycle, including molting, metamorphosis, ecdysis, diapause, reproduction, and behavior. Fluctuation of whitefly ecdysteroid levels and the identity of the whitefly molting hormone (20-hydroxyecdysone) have only been reported within the last few years. An ecdysteroid commitment peak that is associated with the reprogramming of tissues for a metamorphic molt in many holometabolous and some hemimetabolous insect species was not observed in last nymphal instars of either the sweet potato whitefly, Bemisia tabaci (Biotype B), or the greenhouse whitefly, Trialeurodes vaporariorum. Ecdysteroids reach peak levels 1-2 days prior to the initiation of the nymphal-adult metamorphic molt. Adult eye and wing differentiation which signal the onset of this molt begin earlier in 4th instar T. vaporariorum (Stages 4 and 5, respectively) than in B. tabaci (Stage 6), and the premolt peak is 3-4 times greater in B. tabaci ( approximately 400 fg/microg protein) than in T. vaporariorum ( approximately 120 fg/microg protein). The JH of B. tabaci nymphs and eggs was found to be JH III, supporting the view that JHs I and II are, with rare exception, only present in lepidopteran insects. In B. tabaci eggs, JH levels were approximately 10 times greater on day 2/3 (0.44 fg/egg or 0.54 ng/g) than on day 5 (0.04 fg/egg or 0.054 ng/g) post-oviposition. Approximately, 1.4 fg/2nd-3rd instar nymph (0.36 ng/g) was detected. It is probable that the relatively high level of JH in day 2/3 eggs is associated with the differentiation of various whitefly tissues during embryonic development.

  7. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene

    Directory of Open Access Journals (Sweden)

    Montgomery Roy D

    2006-04-01

    Full Text Available Abstract Background Many viral pathogens are poorly characterized, are difficult to culture or reagents are lacking for confirmatory diagnoses. We have developed and tested a robust assay for detecting and characterizing large DNA viruses and adenoviruses. The assay is based on the use of degenerate PCR to target a gene common to these viruses, the DNA polymerase, and sequencing the products. Results We evaluated our method by applying it to fowl adenovirus isolates, catfish herpesvirus isolates, and largemouth bass ranavirus (iridovirus from cell culture and lymphocystis disease virus (iridovirus and avian poxvirus from tissue. All viruses with the exception of avian poxvirus produced the expected product. After optimization of extraction procedures, and after designing and applying an additional primer we were able to produce polymerase gene product from the avian poxvirus genome. The sequence data that we obtained demonstrated the simplicity and potential of the method for routine use in characterizing large DNA viruses. The adenovirus samples were demonstrated to represent 2 types of fowl adenovirus, fowl adenovirus 1 and an uncharacterized avian adenovirus most similar to fowl adenovirus 9. The herpesvirus isolate from blue catfish was shown to be similar to channel catfish virus (Ictalurid herpesvirus 1. The case isolate of largemouth bass ranavirus was shown to exactly match the type specimen and both were similar to tiger frog virus and frog virus 3. The lymphocystis disease virus isolate from largemouth bass was shown to be related but distinct from the two previously characterized lymphocystis disease virus isolates suggesting that it may represent a distinct lymphocystis disease virus species. Conclusion The method developed is rapid and broadly applicable to cell culture isolates and infected tissues. Targeting a specific gene for in the large DNA viruses and adenoviruses provide a common reference for grouping the newly identified

  8. The level of DNA damage in adult grasshoppers Chorthippus biguttulus (Orthoptera, Acrididae) following dimethoate exposure is dependent on the insects' habitat.

    Science.gov (United States)

    Karpeta-Kaczmarek, Julia; Kubok, Magdalena; Dziewięcka, Marta; Sawczyn, Tomasz; Augustyniak, Maria

    2016-08-01

    The comet assay was used to study the DNA damage that was induced by dimethoate in the hemocyte cells of adult Chorthippus biguttulus grasshoppers (Insecta: Orthoptera) that originated from two sites with varying levels of pollution. The primary focus of the study was to examine whether continuous exposure to environmental stress can modify the effect of pesticides on genome stability. After three days of acclimation to laboratory conditions, the level of DNA damage in the hemocytes of Bow-winged grasshoppers was within a similar range in the insects from both areas. However, the level of DNA damage following dimethoate treatment was significantly higher in the insects from the reference area (Pogoria) than in the individuals from the heavily polluted location (Szopienice). Four hours after pesticide treatment, the Tail DNA (TDNA) in the hemocytes of the male and female specimens from Pogoria was as high as 75% and 50% respectively, whereas the values in males and females from Szopienice only reached 30% and 20%, respectively. A rapid decrease in DNA damage was observed in both populations 24 h after the pesticide application. The habitat of an insect (site), the administration of the dimethoate (treatment), and the period following the application of the pesticide (time), all significantly influenced the levels of DNA damage. No interactions related to TDNA were observed between the variables 'sex' and 'treatment'. Similarly, the variable 'sex', when analyzed alongside 'treatment' and 'site' (the area from which the insects were collected), or 'treatment' and 'time' had no influence on TL. Exposure to dimethoate undoubtedly contributed to the formation of DNA damage in the hemocytes of adult C. biguttulus. However, the level of damage was clearly dependent on the place where the insects were captured.

  9. Infective viruses produced from full-length complementary DNA of swine vesicular disease viruses HK/70 strain

    Institute of Scientific and Technical Information of China (English)

    ZHENG Haixue; FENG Xia; YIN Shuanghui; GUO Jianhong; CONG Guozheng; LIU Zaixin; CHANG Huiyun; MA Junwu; XIE Qingge; LIU Xiangtao; SHANG Youjun; WU Jinyan; BAI Xingwen; JIN Ye; SUN Shiqi; GUO Huichen; TIAN Hong

    2006-01-01

    The full-length cDNA clone of swine vesicular disease virus HK/70 strain named pSVOK12 was constructed in order to study the antigenicity, replication, maturation and pathogenicity of swine vesicular disease virus. In vitro transcription RNA from pSVOK12 transfected IBRS-2 cells and the recovered virus RNA were isolated and sequenced, then indirect hemagglutination test, indirect immunofluorescence assays, eleectron microscope test, 50% tissue culture infecting dose (TCID50) assays and mouse virulence studies were performed to study the antigenicity and virulence of the recovered virus. The result showed that the infectious clones we obtained and the virus derived from pSVOK12 had the same biological properties as the parental strain HK/70. The full-length infectious cDNA clone, pSVOK12, will be very useful in studies of the antigenicity, virulence, pathogenesis, maturation and replication of SVDV.

  10. Persistence of DNA sequences of BK virus and JC virus in normal human tissues and in diseased tissues.

    Science.gov (United States)

    Chesters, P M; Heritage, J; McCance, D J

    1983-04-01

    Available evidence suggests that BK virus (BKV) and JC virus (JCV) persist in the kidneys of healthy individuals after primary infection and may reactivate when the host's immune response is impaired. Data supporting this hypothesis are presented. A previous study had shown BKV to be present in the kidneys of eight (57%) of 14 subjects. In the present study, which extended the investigation to a total of 30 subjects, BKV DNA was found in the renal tissues of 10 (33%) subjects, and JCV DNA was found in the renal tissues of three (10%) subjects. The viral DNA detected appeared not to be integrated with host DNA and to be isolated in foci. Investigation of normal and diseased brain tissue, including tissue from six subjects with multiple sclerosis, failed to reveal the presence of either JCV DNA or BKV DNA.

  11. Discovery and demonstration of small circular DNA molecules derived from Chinese tomato yellow leaf curl virus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Tomato yellow leaf curl viruses belong to Begomoviruses of geminiviruses.In this work, we first found and demonstrated that the small circular DNA molecules were derived from Chinese tomato yellow leaf curl viruses (TYLCV-CHI).These small circular DNA molecules are about 1.3 kb, which are half the full-length of TYLCV-CHI DNA A.It was shown by sequence determination and analysis that there was unknown-origin sequence insertion in the middle of the small molecules.These sequences of unknown-origin were neither homologous to DNA A nor to DNA B, and were formed by recombination of virus DNA and plant DNA.Although various defective molecules contained different unknown-origin sequence insertion, all the molecules contained the intergenic region and part of the AC1(Rep) gene.But they did not contain full ORF.

  12. Novel circular DNA viruses in stool samples of wild-living chimpanzees.

    Science.gov (United States)

    Blinkova, Olga; Victoria, Joseph; Li, Yingying; Keele, Brandon F; Sanz, Crickette; Ndjango, Jean-Bosco N; Peeters, Martine; Travis, Dominic; Lonsdorf, Elizabeth V; Wilson, Michael L; Pusey, Anne E; Hahn, Beatrice H; Delwart, Eric L

    2010-01-01

    Viral particles in stool samples from wild-living chimpanzees were analysed using random PCR amplification and sequencing. Sequences encoding proteins distantly related to the replicase protein of single-stranded circular DNA viruses were identified. Inverse PCR was used to amplify and sequence multiple small circular DNA viral genomes. The viral genomes were related in size and genome organization to vertebrate circoviruses and plant geminiviruses but with a different location for the stem-loop structure involved in rolling circle DNA replication. The replicase genes of these viruses were most closely related to those of the much smaller (approximately 1 kb) plant nanovirus circular DNA chromosomes. Because the viruses have characteristics of both animal and plant viruses, we named them chimpanzee stool-associated circular viruses (ChiSCV). Further metagenomic studies of animal samples will greatly increase our knowledge of viral diversity and evolution.

  13. Previously unknown and highly divergent ssDNA viruses populate the oceans.

    Science.gov (United States)

    Labonté, Jessica M; Suttle, Curtis A

    2013-11-01

    Single-stranded DNA (ssDNA) viruses are economically important pathogens of plants and animals, and are widespread in oceans; yet, the diversity and evolutionary relationships among marine ssDNA viruses remain largely unknown. Here we present the results from a metagenomic study of composite samples from temperate (Saanich Inlet, 11 samples; Strait of Georgia, 85 samples) and subtropical (46 samples, Gulf of Mexico) seawater. Most sequences (84%) had no evident similarity to sequenced viruses. In total, 608 putative complete genomes of ssDNA viruses were assembled, almost doubling the number of ssDNA viral genomes in databases. These comprised 129 genetically distinct groups, each represented by at least one complete genome that had no recognizable similarity to each other or to other virus sequences. Given that the seven recognized families of ssDNA viruses have considerable sequence homology within them, this suggests that many of these genetic groups may represent new viral families. Moreover, nearly 70% of the sequences were similar to one of these genomes, indicating that most of the sequences could be assigned to a genetically distinct group. Most sequences fell within 11 well-defined gene groups, each sharing a common gene. Some of these encoded putative replication and coat proteins that had similarity to sequences from viruses infecting eukaryotes, suggesting that these were likely from viruses infecting eukaryotic phytoplankton and zooplankton.

  14. Folding of influenza virus hemagglutinin in insect cells is fast and efficient

    NARCIS (Netherlands)

    Li, X.; Oers, van M.M.; Vlak, J.M.; Braakman, I.

    2015-01-01

    Folding of influenza virus hemagglutinin (HA) in the endoplasmic reticulum has been well defined inmammalian cells. In different mammalian cell lines the protein follows the same folding pathway withidentical folding intermediates, but folds with very different kinetics. To examine the effect of cel

  15. Folding of influenza virus hemagglutinin in insect cells is fast and efficient

    NARCIS (Netherlands)

    Li, Xin; van Oers, Monique M; Vlak, Just M; Braakman, Ineke

    2015-01-01

    Folding of influenza virus hemagglutinin (HA) in the endoplasmic reticulum has been well defined in mammalian cells. In different mammalian cell lines the protein follows the same folding pathway with identical folding intermediates, but folds with very different kinetics. To examine the effect of c

  16. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    NARCIS (Netherlands)

    S.W. Metz (Stefan); C. Geertsema (Corinne); B.E.E. Martina (Byron); P. Andrade (Paulina); J.G.M. Heldens; M.M. van Oers (Monique); J.M. Vlak (Just); G.P. Pijlman (Gorben)

    2011-01-01

    textabstractBackground: Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the proce

  17. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    NARCIS (Netherlands)

    Metz, S.W.H.; Geertsema, C.; Martina, Byron E.; Andrade, Paulina; Heldens, J.; Oers, van M.M.; Goldbach, R.W.; Vlak, J.M.; Pijlman, G.P.

    2011-01-01

    Background - Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of en

  18. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells

    NARCIS (Netherlands)

    S.W. Metz (Stefan); C. Geertsema (Corinne); B.E.E. Martina (Byron); P. Andrade (Paulina); J.G.M. Heldens; M.M. van Oers (Monique); J.M. Vlak (Just); G.P. Pijlman (Gorben)

    2011-01-01

    textabstractBackground: Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the proce

  19. Adenovirus with DNA Packaging Gene Mutations Increased Virus Release

    Science.gov (United States)

    Wechman, Stephen L.; Rao, Xiao-Mei; McMasters, Kelly M.; Zhou, Heshan Sam

    2016-01-01

    Adenoviruses (Ads) have been extensively manipulated for the development of cancer selective replication, leading to cancer cell death or oncolysis. Clinical studies using E1-modified oncolytic Ads have shown that this therapeutic platform was safe, but with limited efficacy, indicating the necessity of targeting other viral genes for manipulation. To improve the therapeutic efficacy of oncolytic Ads, we treated the entire Ad genome repeatedly with UV-light and have isolated AdUV which efficiently lyses cancer cells as reported previously (Wechman, S. L. et al. Development of an Oncolytic Adenovirus with Enhanced Spread Ability through Repeated UV Irradiation and Cancer Selection. Viruses 2016, 8, 6). In this report, we show that no mutations were observed in the early genes (E1 or E4) of AdUV while several mutations were observed within the Ad late genes which have structural or viral DNA packaging functions. This study also reported the increased release of AdUV from cancer cells. In this study, we found that AdUV inhibits tumor growth following intratumoral injection. These results indicate the potentially significant role of the viral late genes, in particular the DNA packaging genes, to enhance Ad oncolysis. PMID:27999391

  20. Cascaded multiple amplification strategy for ultrasensitive detection of HIV/HCV virus DNA.

    Science.gov (United States)

    Wang, Kun; Fan, Daoqing; Liu, Yaqing; Dong, Shaojun

    2017-01-15

    Ultrasensitive detection of HIV and HCV virus DNA is of great importance for early accurate diagnostics and therapy of HIV virus-infected patients. Herein, to our best knowledge, it is the first to use DNA cascaded multiple amplification strategy for ultrasensitive detection of HIV virus DNA with G-quadruplex-specific fluorescent or colorimetric probes as signal carriers. The developed strategy also exhibited universal applicability for HCV virus DNA detection. After reaction for about 4h, high sensitivity and specificity can be achieved at both fluorescent and colorimetric strategies (limit of detection (LOD) of 10 fM and 0.5pM were reached for fluorescent and colorimetric detection, respectively). And the single-based mismatched DNA even can be distinguished by naked eyes. It is believed that the cascaded multiple amplification strategy presents a huge advance in sensing platform and potential application in future clinical diagnosis.

  1. Utility of Filter Paper for Preserving Insects, Bacteria, and Host Reservoir DNA for Molecular Testing

    Directory of Open Access Journals (Sweden)

    F Karimian

    2011-12-01

    Methods: Total body or haemolymph of individual mosquitoes, sand flies or cockroaches squashed or placed on the paper respectively. Extracted DNA of five different bacteria species as well as blood specimens of human and great gerbil Rhombomys opimus was pipetted directly onto filter paper. The papers were stored in room temperature up to 12 months during 2009 until 2011. At monthly intervals, PCR was conducted using a 1-mm disk from the DNA impregnated filter paper as target DNA. PCR amplification was performed against different target genes of the organisms including the ITS2-rDNA of mosquitoes, mtDNA-COI of the sand flies and cockroaches, 16SrRNA gene of the bacteria, and the mtDNA-CytB of the vertebrates. Results: Successful PCR amplification was observed for all of the specimens regardless of the loci, taxon, or time of storage. The PCR amplification were ranged from 462 to 1500 bp and worked well for the specified target gene/s. Time of storage did not affect the amplification up to one year. Conclusion: The filter paper method is a simple and economical way to store, to preserve, and to distribute DNA samples for PCR analysis.

  2. Prime-boost therapeutic vaccination in mice with DNA/DNA or DNA/Fowlpox virus recombinants expressing the Human Papilloma Virus type 16 E6 and E7 mutated proteins fused to the coat protein of Potato virus X.

    Science.gov (United States)

    Illiano, Elena; Bissa, Massimiliano; Paolini, Francesca; Zanotto, Carlo; De Giuli Morghen, Carlo; Franconi, Rosella; Radaelli, Antonia; Venuti, Aldo

    2016-10-02

    The therapeutic antitumor potency of a prime-boost vaccination strategy was explored, based on the mutated, nontransforming forms of the E6 (E6F47R) and E7 (E7GGG) oncogenes of Human Papilloma Virus type 16 (HPV16), fused to the Potato virus X (PVX) coat protein (CP) sequence. Previous data showed that CP fusion improves the immunogenicity of tumor-associated antigens and may thus increase their efficacy. After verifying the correct expression of E6F47RCP and E7GGGCP inserted into DNA and Fowlpox virus recombinants by Western blotting and immunofluorescence, their combined use was evaluated for therapy in a pre-clinical mouse model of HPV16-related tumorigenicity. Immunization protocols were applied using homologous (DNA/DNA) or heterologous (DNA/Fowlpox) prime-boost vaccine regimens. The humoral immune responses were determined by ELISA, and the therapeutic efficacy evaluated by the delay in tumor appearance and reduced tumor volume after inoculation of syngeneic TC-1* tumor cells. Homologous DNA/DNA genetic vaccines were able to better delay tumor appearance and inhibit tumor growth when DNAE6F47RCP and DNAE7GGGCP were administered in combination. However, the heterologous DNA/Fowlpox vaccination strategy was able to delay tumor appearance in a higher number of animals when E6F47RCP and in particular E7GGGCP were administered alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Pleiotropic expression of Epstein--Barr virus DNA in human epithelial cells.

    OpenAIRE

    1981-01-01

    We have attempted to establish a system that can be used to study the association of Epstein--Barr virus (EBV) with epithelial cells. Attempts were made to transfect human carcinoma cells with EBV DNA. Successful transfection was confirmed by the expression of EBV-specific early antigen (EA), virus capsid antigen, and the presence of virus DNA. The transfecting preparation contained a mixture of EBV and cellular DNA extracted from two producer cell lines, P3HR-1 and AG-876. Our data suggest t...

  4. Physical mapping and molecular cloning of mung bean yellow mosaic virus DNA.

    Science.gov (United States)

    Morinaga, T; Ikegami, M; Miura, K

    1990-01-01

    Viral single-stranded DNA of mung bean yellow mosaic virus (MYMV) was converted to the double-stranded state in vitro, and physical mapping was carried out. The genome of MYMV was found to consist of two major components (designated as DNA 1 and DNA 2). In addition, some minor components were detected. Molecular cloning of the major components was carried out, using in vitro double-stranded DNA and replicative intermediate DNAs. DNA 1 is about 2.72 and DNA 2 about 2.67 kilobase pairs. No similarities were observed when the two restriction maps of DNA 1 and 2 were compared.

  5. Does Tyrosyl DNA Phosphodiesterase-2 Play a Role in Hepatitis B Virus Genome Repair?

    Science.gov (United States)

    Boregowda, Rajeev; Sohn, Ji A.; Ledesma, Felipe Cortes; Caldecott, Keith W.; Seeger, Christoph; Hu, Jianming

    2015-01-01

    Hepatitis B virus (HBV) replication and persistence are sustained by a nuclear episome, the covalently closed circular (CCC) DNA, which serves as the transcriptional template for all viral RNAs. CCC DNA is converted from a relaxed circular (RC) DNA in the virion early during infection as well as from RC DNA in intracellular progeny nucleocapsids via an intracellular amplification pathway. Current antiviral therapies suppress viral replication but cannot eliminate CCC DNA. Thus, persistence of CCC DNA remains an obstacle toward curing chronic HBV infection. Unfortunately, very little is known about how CCC DNA is formed. CCC DNA formation requires removal of the virally encoded reverse transcriptase (RT) protein from the 5’ end of the minus strand of RC DNA. Tyrosyl DNA phosphodiesterase-2 (Tdp2) was recently identified as the enzyme responsible for cleavage of tyrosyl-5’ DNA linkages formed between topoisomerase II and cellular DNA. Because the RT-DNA linkage is also a 5’ DNA-phosphotyrosyl bond, it has been hypothesized that Tdp2 might be one of several elusive host factors required for CCC DNA formation. Therefore, we examined the role of Tdp2 in RC DNA deproteination and CCC DNA formation. We demonstrated Tdp2 can cleave the tyrosyl-minus strand DNA linkage using authentic HBV RC DNA isolated from nucleocapsids and using RT covalently linked to short minus strand DNA produced in vitro. On the other hand, our results showed that Tdp2 gene knockout did not block CCC DNA formation during HBV infection of permissive human hepatoma cells and did not prevent intracellular amplification of duck hepatitis B virus CCC DNA. These results indicate that although Tdp2 can remove the RT covalently linked to the 5’ end of the HBV minus strand DNA in vitro, this protein might not be required for CCC DNA formation in vivo. PMID:26079492

  6. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains.

    Science.gov (United States)

    Martinez, Julien; Longdon, Ben; Bauer, Simone; Chan, Yuk-Sang; Miller, Wolfgang J; Bourtzis, Kostas; Teixeira, Luis; Jiggins, Francis M

    2014-09-01

    In the last decade, bacterial symbionts have been shown to play an important role in protecting hosts against pathogens. Wolbachia, a widespread symbiont in arthropods, can protect Drosophila and mosquito species against viral infections. We have investigated antiviral protection in 19 Wolbachia strains originating from 16 Drosophila species after transfer into the same genotype of Drosophila simulans. We found that approximately half of the strains protected against two RNA viruses. Given that 40% of terrestrial arthropod species are estimated to harbour Wolbachia, as many as a fifth of all arthropods species may benefit from Wolbachia-mediated protection. The level of protection against two distantly related RNA viruses--DCV and FHV--was strongly genetically correlated, which suggests that there is a single mechanism of protection with broad specificity. Furthermore, Wolbachia is making flies resistant to viruses, as increases in survival can be largely explained by reductions in viral titer. Variation in the level of antiviral protection provided by different Wolbachia strains is strongly genetically correlated to the density of the bacteria strains in host tissues. We found no support for two previously proposed mechanisms of Wolbachia-mediated protection--activation of the immune system and upregulation of the methyltransferase Dnmt2. The large variation in Wolbachia's antiviral properties highlights the need to carefully select Wolbachia strains introduced into mosquito populations to prevent the transmission of arboviruses.

  7. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains.

    Directory of Open Access Journals (Sweden)

    Julien Martinez

    2014-09-01

    Full Text Available In the last decade, bacterial symbionts have been shown to play an important role in protecting hosts against pathogens. Wolbachia, a widespread symbiont in arthropods, can protect Drosophila and mosquito species against viral infections. We have investigated antiviral protection in 19 Wolbachia strains originating from 16 Drosophila species after transfer into the same genotype of Drosophila simulans. We found that approximately half of the strains protected against two RNA viruses. Given that 40% of terrestrial arthropod species are estimated to harbour Wolbachia, as many as a fifth of all arthropods species may benefit from Wolbachia-mediated protection. The level of protection against two distantly related RNA viruses--DCV and FHV--was strongly genetically correlated, which suggests that there is a single mechanism of protection with broad specificity. Furthermore, Wolbachia is making flies resistant to viruses, as increases in survival can be largely explained by reductions in viral titer. Variation in the level of antiviral protection provided by different Wolbachia strains is strongly genetically correlated to the density of the bacteria strains in host tissues. We found no support for two previously proposed mechanisms of Wolbachia-mediated protection--activation of the immune system and upregulation of the methyltransferase Dnmt2. The large variation in Wolbachia's antiviral properties highlights the need to carefully select Wolbachia strains introduced into mosquito populations to prevent the transmission of arboviruses.

  8. Combined immunity of DNA vector and recombinant vaccinia virus expressing Gag proteins of equine infectious anemia virus

    Institute of Scientific and Technical Information of China (English)

    DAI Chunming; ZHANG Xiaoyan; WANG Shuhui; LIU Ying; DUAN Danli; SHEN Rongxian; SHAO Yiming

    2004-01-01

    In order to develop a new vaccine candidate for equine infectious anemia virus (EIAV), gag gene of Chinese donkey leukocyte attenuated strain (EIAV DLV) and its parental virulent strain (EIAV LN) were inserted respectively into the TK region of the Tiantan strain (VV) of vaccinia virus by homologous recombination and the positive clone was confirmed by blue plaque assay. Protein expression was examined by Western blot. Prime and prime-boost procedures were used to immunize mice with two DNA vectors and two recombinant vaccinia viruses expressing EIAV Gag proteins. The results showed that the specific lysis of CTL responses in the DNA+rVV groups was stronger than those in the DNA groups, amounting to 31%. Although the levels of specific antibodies were not significantly different, we could conclude that the recombinant vaccinia virus could boost the cellular responses following DNA vector priming. There was no detectable difference between the immune responses induced by DLV and LN Gag proteins. This data demonstrates that the combined immunity of DNA vector and recombinant vaccinia virus expressing EIAV gag proteins, utilizing the prime-boost procedure, can drive immunized mice to produce powerful cellular responses. These results lay an important foundation for the development of a new EIAV genetic engineering vaccine.

  9. Phylogenetic analysis and possible function of bro-like genes, a multigene family widespread among large double-stranded DNA viruses of invertebrates and bacteria.

    Science.gov (United States)

    Bideshi, Dennis K; Renault, Sylvaine; Stasiak, Karine; Federici, Brian A; Bigot, Yves

    2003-09-01

    Baculovirus repeated open reading frame (bro) genes and their relatives constitute a multigene family, typically with multiple copies per genome, known to occur among certain insect dsDNA viruses and bacteriophages. Little is known about the evolutionary history and function of the proteins encoded by these genes. Here we have shown that bro and bro-like (bro-l) genes occur among viruses of two additional invertebrate viral families, Ascoviridae and Iridoviridae, and in prokaryotic class II transposons. Analysis of over 100 sequences showed that the N-terminal region, consisting of two subdomains, is the most conserved region and contains a DNA-binding motif that has been characterized previously. Phylogenetic analysis indicated that these proteins are distributed among eight groups, Groups 1-7 consisting of invertebrate virus proteins and Group 8 of proteins in bacteriophages and bacterial transposons. No bro genes were identified in databases of invertebrate or vertebrate genomes, vertebrate viruses and transposons, nor in prokaryotic genomes, except in prophages or transposons of the latter. The phylogenetic relationship between bro genes suggests that they have resulted from recombination of viral genomes that allowed the duplication and loss of genes, but also the acquisition of genes by horizontal transfer over evolutionary time. In addition, the maintenance and diversity of bro-l genes in different types of invertebrate dsDNA viruses, but not in vertebrate viruses, suggests that these proteins play an important role in invertebrate virus biology. Experiments with the unique orf2 bro gene of Autographa californica multicapsid nucleopolyhedrovirus showed that it is not required for replication, but may enhance replication during the occlusion phase of reproduction.

  10. Electrochemical direct immobilization of DNA sequences for label-free herpes virus detection

    Science.gov (United States)

    Tam, Phuong Dinh; Trung, Tran; Tuan, Mai Anh; Chien, Nguyen Duc

    2009-09-01

    DNA sequences/bio-macromolecules of herpes virus (5'-AT CAC CGA CCC GGA GAG GGA C-3') were directly immobilized into polypyrrole matrix by using the cyclic voltammetry method, and grafted onto arrays of interdigitated platinum microelectrodes. The morphology surface of the obtained PPy/DNA of herpes virus composite films was investigated by a FESEM Hitachi-S 4800. Fourier transform infrared spectroscopy (FTIR) was used to characterize the PPy/DNA film and to study the specific interactions that may exist between DNA biomacromolecules and PPy chains. Attempts are made to use these PPy/DNA composite films for label-free herpes virus detection revealed a response time of 60 s in solutions containing as low as 2 nM DNA concentration, and self life of six months when immerged in double distilled water and kept refrigerated.

  11. Vaccinia DNA ligase complements Saccharomyces cerevisiae cdc9, localizes in cytoplasmic factories and affects virulence and virus sensitivity to DNA damaging agents.

    OpenAIRE

    Kerr, S M; Johnston, L H; Odell, M; Duncan, S A; Law, K M; Smith, G L

    1991-01-01

    The functional compatibility of vaccinia virus DNA ligase with eukaryotic counterparts was demonstrated by its ability to complement Saccharomyces cerevisiae cdc9. The vaccinia DNA ligase is a 63 kDa protein expressed early during infection that is non-essential for virus DNA replication and recombination in cultured cells. This implies complementation by a mammalian DNA ligase, yet no obvious recruitment of host DNA ligase I from the nucleus to the cytoplasm was observed during infection. An...

  12. The FACT Complex Promotes Avian Leukosis Virus DNA Integration.

    Science.gov (United States)

    Winans, Shelby; Larue, Ross C; Abraham, Carly M; Shkriabai, Nikolozi; Skopp, Amelie; Winkler, Duane; Kvaratskhelia, Mamuka; Beemon, Karen L

    2017-04-01

    All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. In this study, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity, with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-long-terminal-repeat (2-LTR) circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells.IMPORTANCE The majority of human gene therapy approaches utilize HIV-1- or murine leukemia virus (MLV)-based vectors, which preferentially integrate near genes and regulatory regions; thus, insertional mutagenesis is a substantial risk. In contrast, ALV integrates more randomly throughout the genome, which decreases the risks of deleterious integration. Understanding how ALV integration is regulated could facilitate the development of ALV-based vectors for use in human gene therapy. Here we show that the FACT complex directly binds and regulates ALV integration efficiency in vitro and in infected cells. Copyright © 2017 American Society for Microbiology.

  13. Detection of orthopoxvirus DNA by real-time PCR and identification of variola virus DNA by melting analysis.

    Science.gov (United States)

    Nitsche, Andreas; Ellerbrok, Heinz; Pauli, Georg

    2004-03-01

    Although variola virus was eradicated by the World Health Organization vaccination program in the 1970s, the diagnosis of smallpox infection has attracted great interest in the context of a possible deliberate release of variola virus in bioterrorist attacks. Obviously, fast and reliable diagnostic tools are required to detect variola virus and to distinguish it from orthopoxviruses that have identical morphological characteristics, including vaccinia virus. The advent of real-time PCR for the clinical diagnosis of viral infections has facilitated the detection of minute amounts of viral nucleic acids in a fast, safe, and precise manner, including the option to quantify and to genotype the target reliably. In this study a complete set of four hybridization probe-based real-time PCR assays for the specific detection of orthopoxvirus DNA is presented. Melting analysis following PCR enables the identification of variola virus by the PCR product's characteristic melting temperature, permitting the discrimination of variola virus from other orthopoxviruses. In addition, an assay for the specific amplification of variola virus DNA is presented. All assays can be performed simultaneously in the same cycler, and results of a PCR run are obtained in less than 1 h. The application of more than one assay for the same organism significantly contributes to the diagnostic reliability, reducing the risk of false-negative results due to unknown sequence variations. In conclusion, the assays presented will improve the speed and reliability of orthopoxvirus diagnostics and variola virus identification.

  14. Autoantigenic proteins that bind recombinogenic sequences in Epstein-Barr virus and cellular DNA.

    OpenAIRE

    1994-01-01

    We have identified conserved autoantigenic cellular proteins that bind to G-rich sequence motifs in recombinogenic regions of Epstein-Barr virus (EBV) DNA. This binding activity, called TRBP, recognizes the EBV terminal repeats, a locus responsible for interconversion of linear and circular EBV DNA. We found that TRBP also binds to EBV DNA sequences involved in deletion of EBNA2, a gene product required for immortalization. We show that TRBP binds sequences present in repetitive cellular DNA,...

  15. Evaluation of viral clearance in the production of HPV-16 L1 virus-like particles purified from insect cell cultures.

    Science.gov (United States)

    Jeong, Hye-Sung; Shin, Jin-Ho; Choi, Jung-Yun; Kim, Young-Lim; Bae, Jei-Jun; Kim, Byoung-Guk; Ryu, Seung-Rel; Kim, Soon-Nam; Min, Hong-Ki; Kim, Hong-Jin; Park, Sue-Nie

    2006-12-01

    Biopharmaceutical products produced from cell cultures have a potential for viral contamination from cell sources or from adventitious introduction during production. The objective of this study was to assess viral clearance in the production of insect cell-derived recombinant human papillomavirus (HPV)-16 type L1 virus-like particles (VLPs). We selected Japanese encephalitis virus (JEV), bovine viral diarrhea virus (BVDV), and minute virus of mice (MVM) as relevant viruses to achieve the aim of this study. A downstream process for the production of purified HPV-16 L1 VLPs consisted of detergent lysis of harvested cells, sonication, sucrose cushion centrifugation, and cesium chloride (CsCl) equilibrium density centrifugation. The capacity of each purification/treatment step to clear viruses was expressed as reduction factor by measuring the difference in log virus infectivity of sample pools before and after each process. As a result, detergent treatment (0.5% v/v, Nonidet P-40/phosphate-buffered saline) was effective for inactivating enveloped viruses such as JEV and BVDV, but no significant reduction ( or = 4.40 log(10) reductions). Given the study conditions we used, overall cumulative reduction factors for clearance of JEV, BVDV, and MVM were > or = 10.50, > or = 9.20, and > or = 6.40 log(10) in 150 ml of starting cell cultures, respectively.

  16. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    Energy Technology Data Exchange (ETDEWEB)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A. [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia); Mason, William S.; Litwin, Samuel [Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States); Jilbert, Allison R., E-mail: allison.jilbert@adelaide.edu.au [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia)

    2013-11-15

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10{sup 5}-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis.

  17. Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles.

    Science.gov (United States)

    Ladd Effio, Christopher; Hahn, Tobias; Seiler, Julia; Oelmeier, Stefan A; Asen, Iris; Silberer, Christine; Villain, Louis; Hubbuch, Jürgen

    2016-01-15

    Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In order to accelerate and simplify VLP downstream processing, there is a demand for novel development approaches, technologies, and purification tools. Membrane adsorbers have been identified as promising stationary phases for the processing of bionanoparticles due to their large pore sizes. In this work, we present the potential of two strategies for designing VLP processes following the basic tenet of 'quality by design': High-throughput experimentation and process modeling of an anion-exchange membrane capture step. Automated membrane screenings allowed the identification of optimal VLP binding conditions yielding a dynamic binding capacity of 5.7 mg/mL for human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A mechanistic approach was implemented for radial ion-exchange membrane chromatography using the lumped-rate model and stoichiometric displacement model for the in silico optimization of a VLP capture step. For the first time, process modeling enabled the in silico design of a selective, robust and scalable process with minimal experimental effort for a complex VLP feedstock. The optimized anion-exchange membrane chromatography process resulted in a protein purity of 81.5%, a DNA clearance of 99.2%, and a VLP recovery of 59%.

  18. A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics.

    Science.gov (United States)

    Rosario, Karyna; Duffy, Siobain; Breitbart, Mya

    2012-10-01

    Despite their small size and limited protein-coding capacity, the rapid evolution rates of single-stranded DNA (ssDNA) viruses have led to their emergence as serious plant and animal pathogens. Recently, metagenomics has revealed an unprecedented diversity of ssDNA viruses, expanding their known environmental distributions and host ranges. This review summarizes and contrasts the basic characteristics of known circular ssDNA viral groups, providing a resource for analyzing the wealth of ssDNA viral sequences identified through metagenomics. Since ssDNA viruses are largely identified based on conserved rolling circle replication proteins, this review highlights distinguishing motifs and catalytic residues important for replication. Genomes identified through metagenomics have demonstrated unique ssDNA viral genome architectures and revealed characteristics that blur the boundaries between previously well-defined groups. Metagenomic discovery of ssDNA viruses has created both a challenge to current taxonomic classification schemes and an opportunity to revisit hypotheses regarding the evolutionary history of these viruses.

  19. [Characterization of hepatitis C virus structural proteins and HCV-like particles produced in recombinant baculovirus infected insect cells].

    Science.gov (United States)

    Belzhelarskaia, S N; Koroleva, N N; Popenko, V V; Drutsa, V L; Orlova, O V; Rubtsov, P M; Kochetkov, S N

    2010-01-01

    Three proteins, namely: "core" protein C and glycoproteins E1 and E2, are main structural proteins forming a hepatitis C vius (HCV) virion. The virus structure and assembly, a role of the structural proteins in virion morphogenesis remain unknown because of the lack of an efficient culture system for HCV to be grown in vitro. Using recombinant baculoviruses expressing HCV structural protein genes in insect cells the specific structural proteins at the level of 25-35% relative to a common cell protein content, heterodimers of the glcoproteins, and HCV-like particles have been obtained. It has been demonstrated that recombinant proteins C, E1, and E2 go through the posttranslation modification, the glycoproteins form the non-covalent heterodimer, and HCV-like particles are located in endoplasmatic reticulum membrains of infected cells. An ability of the expressed proteins for forming E1E2 dimers and HCV-like particles was used for studying the role of E1 protein glcosylation upon expression and processing of the glycoproteins.

  20. Functional analysis of DNA 4 coding region from a Chinese Zhangzhou isolate of banana bunchy top virus

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The DNA 4 coding region of banana bunchy top virus from a Chinese Zhangzhou isolate (BBTV-ZZ) is cloned by PCR. The sequencing analysis shows that it is 351 nucleotides long and it putatively encodes a protein of 116 amino acids. On the basis of a plant binary vector pBin438, the plant expression vector pBBTV-4B harboring the BBTV-ZZ DNA 4 coding region has been constructed and then transferred to tobacco (Nicotiana tobacum cv. Xanthi nc) by a Agrobacterium-mediated procedure. Under insect-free condition, movement-defective mutant of CMV-Fny strain (CMV-Fny-△MP) is mechanically inoculated on the lower leaves of transgenic plants. Systemic symptoms with different degrees of severity are developed in the upper uninoculated leaves of transgenic plants at 12 days postinoculation (dpi), while no symptoms can be seen in the uninoculated leaves of untransformed plants at any time. Accumulation of CMV-Fny is detected on the upper uninoculated leaves of transgenic plants, but is not on that of untransformed plants by indirect double antibody sandwich enzyme-link immunosorbent assay (DAS-ELISA). The results reveal that transgenic plants have acquired the property of cell-to-cell movement and systemic spread of CMV-Fny-△MP. This suggests that the protein encoded by BBTV-ZZ DNA 4 might have function of viral movement protein.

  1. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes.

    Directory of Open Access Journals (Sweden)

    Xiaolong Lin

    Full Text Available DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120-242 molecular operational taxonomic units (OTUs depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD, Generalized Mixed Yule Coalescent model (GMYC, Poisson Tree Process (PTP, subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs are used. We suggest that a 4-5% threshold is appropriate to delineate species of Tanytarsus non-biting midges.

  2. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    OpenAIRE

    Alvaro Díaz-Badillo; María de Lourdes Muñoz; Gerardo Perez-Ramirez; Victor Altuzar; Juan Burgueño; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Alejandro Cisneros; Joel Navarrete-Espinosa; Feliciano Sanchez-Sinencio

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybrid...

  3. Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

    Directory of Open Access Journals (Sweden)

    Xie Jiatao

    2011-09-01

    Full Text Available Abstract Background In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses via horizontal gene transfer (HGT. It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. Results Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. Conclusions Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.

  4. A bead-based multiplex assay for the detection of DNA viruses infecting laboratory rodents.

    Science.gov (United States)

    Höfler, Daniela; Nicklas, Werner; Mauter, Petra; Pawlita, Michael; Schmitt, Markus

    2014-01-01

    The Federation of European Laboratory Animal Science Association (FELASA) recommends screening of laboratory rodents and biological materials for a broad variety of bacterial agents, viruses, and parasites. Methods commonly used to date for pathogen detection are neither cost-effective nor time- and animal-efficient or uniform. However, an infection even if silent alters experimental results through changing the animals' physiology and increases inter-individual variability. As a consequence higher numbers of animals and experiments are needed for valid and significant results. We developed a novel high-throughput multiplex assay, called rodent DNA virus finder (rDVF) for the simultaneous identification of 24 DNA viruses infecting mice and rats. We detected all 24 DNA viruses with high specificity and reproducibility. Detection limits for the different DNA viruses varied between 10 and 1000 copies per PCR. The validation of rDVF was done with DNA isolated from homogenised organs amplified by pathogen specific primers in one multiplex PCR. The biotinylated amplicons were detected via hybridisation to specific oligonucleotide probes coupled to spectrally distinct sets of fluorescent Luminex beads. In conclusion, rDVF may have the potential to replace conventional testing and may simplify and improve routine detection of DNA viruses infecting rodents.

  5. A bead-based multiplex assay for the detection of DNA viruses infecting laboratory rodents.

    Directory of Open Access Journals (Sweden)

    Daniela Höfler

    Full Text Available The Federation of European Laboratory Animal Science Association (FELASA recommends screening of laboratory rodents and biological materials for a broad variety of bacterial agents, viruses, and parasites. Methods commonly used to date for pathogen detection are neither cost-effective nor time- and animal-efficient or uniform. However, an infection even if silent alters experimental results through changing the animals' physiology and increases inter-individual variability. As a consequence higher numbers of animals and experiments are needed for valid and significant results. We developed a novel high-throughput multiplex assay, called rodent DNA virus finder (rDVF for the simultaneous identification of 24 DNA viruses infecting mice and rats. We detected all 24 DNA viruses with high specificity and reproducibility. Detection limits for the different DNA viruses varied between 10 and 1000 copies per PCR. The validation of rDVF was done with DNA isolated from homogenised organs amplified by pathogen specific primers in one multiplex PCR. The biotinylated amplicons were detected via hybridisation to specific oligonucleotide probes coupled to spectrally distinct sets of fluorescent Luminex beads. In conclusion, rDVF may have the potential to replace conventional testing and may simplify and improve routine detection of DNA viruses infecting rodents.

  6. Malvastrum yellow vein virus,a new Begomovirus species associated with satellite DNA molecule

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xueping; XIE Yan; PENG Yan; ZHANG Zhongkai

    2003-01-01

    Virus isolate Y47 was obtained from Malvastrum coromandelianum showing yellow vein symptom in Honghe, Yunnan Province. The complete nucleotide sequence of DNA-A was determined, it contains 2731 nucleotides, having typical genomic organization of a begomovirus, encoding 6 ORFs with 2 ORFs [AV1(CP) and AV2] in virion- sense DNA and 4 ORFs (AC1-AC4) in complementary- sense DNA. Comparisons show that the total DNA-A of Y47 has the highest sequence identity (77%) with that of Okra yellow vein mosaic virus-[201] (AJ002451), while less than 76% identities are found when compared with other begomoviruses. The molecular data show that virus isolate Y47 is a distinct begomovirus species, for which the name Malvastrum yellow vein virus is proposed. Satellite DNA molecule (Y47β) was found to be associated with Y47 using the primers (beta01 and beta02) specific for DNAβ. Y47β consists of 1348 nucleotides, with a functional ORF (C1) in complementary-sense DNA. Y47β Has 62%-67% sequence identity with DNAβ molecule associated with Cotton leaf curl Multan virus or Cotton leaf curl Rajasthan virus, while lower than 46% sequence identities are found when compared with other reported DNAβ molecules. Relationship dendrograms show that DNAβ molecules are co-evolved with their help begomoviruses.

  7. [Expression of rice dwarf virus outer coat protein gene(S8) in insect cells].

    Science.gov (United States)

    Li, S; Liu, H; Chen, Z; Li, Y

    2001-04-01

    Outer coat protein gene(S8) of RDV was cloned into the transfer vector pVL 1393 to construct a recombinant vector pVL1393-S8. The recombinant vector pVL1393-S8 and the linear baculovirus RP23. LacZ were cotransfected into sf9 cells to produce the recombinant virus RP23-S8. RP23-S8 infected sf9 cells were collected and analysed by SDS-PAGE and Western-blot. The results showed that the S8 gene of RDV was expressed in sf9 cells and the expression level of sf9 cells was higher between 72-96 h after infected.

  8. Insect symbiont facilitates vector acquisition, retention, and transmission of plant virus

    Science.gov (United States)

    Su, Qi; Pan, Huipeng; Liu, Baiming; Chu, Dong; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhang, Youjun

    2013-01-01

    Tomato yellow leaf curl virus (TYLCV) was first detected in China in 2006, following the introduction of Bemisia tabaci Q into China in 2003. Since then, the incidence of TYLCV in tomato fields in China has greatly increased as has the abundance and distribution of Q whiteflies containing the bacterial symbiont Hamiltonella with high frequency. This suggested that the symbiont Hamiltonella might associate with the transmission efficiency of TYLCV by the whitefly vector. Here we report the first evidence that the Hamiltonella is closely associated with the acquisition, retention, and transmission efficiency of TYLCV by the whitefly vector. Our findings combined with the outbreaks of TYLCV following the introduction of Q, provided an explanation for why Hamiltonella is being maintained at a relatively high level in Chinese B. tabaci Q and also have implications for disease and vector management. PMID:23455639

  9. Facile preparation of a DNA sensor for rapid herpes virus detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: tampd-hast@mail.hut.edu.vn [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Tuan, Mai Anh, E-mail: tuanma-itims@mail.hut.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam); Huy, Tran Quang [National Institute of Hygiene and Epidemiology (NIHE), 01 Yersin, Hai Ba Trung District, Hanoi (Viet Nam); Le, Anh-Tuan [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam)

    2010-10-12

    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  10. Random DNA libraries from three species of the stick insect genus Bacillus (Insecta: Phasmida): repetitive DNA characterization and first observation of polyneopteran MITEs.

    Science.gov (United States)

    Ricci, Marco; Luchetti, Andrea; Bonandin, Livia; Mantovani, Barbara

    2013-12-01

    The repetitive DNA content of the stick insect species Bacillus rossius (facultative parthenogenetic), Bacillus grandii (gonochoric), and Bacillus atticus (obligate parthenogenetic) was analyzed through the survey of random genomic libraries roughly corresponding to 0.006% of the genome. By repeat masking, 19 families of transposable elements were identified (two LTR and six non-LTR retrotransposons; 11 DNA transposons). Moreover, a de novo analysis revealed, among the three libraries, the first MITE family observed in polyneopteran genomes. On the whole, transposable element abundance represented 23.3% of the genome in B. rossius, 22.9% in B. atticus, and 18% in B. grandii. Tandem repeat content in the three libraries is much lower: 1.32%, 0.64%, and 1.86% in B. rossius, B. grandii, and B. atticus, respectively. Microsatellites are the most abundant in all species. Minisatellites were only found in B. rossius and B. atticus, and five monomers belonging to the Bag320 satellite family were detected in B. atticus. Assuming the survey provides adequate representation of the relative genome, the obligate parthenogenetic species (B. atticus), compared with the other two species analyzed, does not show a lower transposable element content, as expected from some theoretical and empirical studies.

  11. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner.

    Directory of Open Access Journals (Sweden)

    Josef Köck

    Full Text Available Persistence of hepatitis B virus (HBV infection requires covalently closed circular (cccDNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process.

  12. Advances in Research on Hepatitis B Virus DNA Integration

    Institute of Scientific and Technical Information of China (English)

    Ju-sheng LIN; Lin-lin GAO

    2008-01-01

    Since HBV DNA integration was discovered for the first time in 1980, various methods have been used to detect and study it, such as Southern Blot, in situ hybridization, polymerase chain reaction and so on. HBV DNA integration is thought to be random on the whole although some hot spots of integration were described by some researchers, one of which might be the repetitive sequences of the genomic DNA. Besides, DNA damage, especially double-strand breaks could promote HBV DNA integration into host genome. HBV DNA integration into cells may damage the stability of the genome, cause DNA rearrangement, promote DNA deletion and induce the formation of HCC.

  13. Giardia canis: ultrastructural analysis of G. canis trophozoites transfected with full length G. canis virus cDNA transcripts

    Science.gov (United States)

    Giardia canis virus (GCV) is a double-stranded RNA (dsRNA) virus of the family Totiviridae. In this study, the full-length cDNA of the G. canis virus was constructed in pPoly2/sfinot vector and RNA was transcribed in vitro. Virus-free G. canis trophozoites were transfected with in vitro transcribed ...

  14. Complete Genome Sequence of the WHO International Standard for Hepatitis B Virus DNA

    Science.gov (United States)

    Jenkins, Adrian; Minhas, Rehan

    2017-01-01

    ABSTRACT   The World Health Organization (WHO) international standard (IS) for hepatitis B virus (HBV) DNA for use in nucleic acid amplification assays was characterized by determining the complete genome sequence, which was assigned genotype A. This information will aid the design, development, and evaluation of HBV DNA amplification assays. PMID:28209818

  15. Low prevalence of DNA virus in the human endometrium og endometriosis

    DEFF Research Database (Denmark)

    Vestergaard, Anna Lindeløv; Knudsen, Ulla Breth; Munk, Torben

    2010-01-01

    biopsies and subjected to highly sensitive PCR tests detecting human papillomavirus (HPV) types, the herpes family viruses HSV-1 and -2, CMV, and EBV, and the polyomaviruses SV40, JCV, BKV, KIV, WUV, and MCV. The prevalence of pathogenic DNA viruses in the human endometrium was generally low (0......The chronic female disease endometriosis causes debilitating pain and lowered fertility. The aetiology is unknown, but indications of an infectious agent are present. This study investigates the possible involvement of a pathogenic virus in endometriosis patients and controls. DNA was purified from......–10%). The virus prevalence was found to vary slightly when comparing the endometrium of healthy women and women with endometriosis. However, these were not significant differences, and no viruses were identified in endometriotic lesions. These results do not point towards any evidence that endometriosis is caused...

  16. Effects of hydroxyurea on murine type C virus-specific DNA synthesis in newly infected cells.

    Science.gov (United States)

    Lovinger, G G; Gilden, R V; Hatanaka, M

    1978-07-01

    Cell transformation and replication of the Rauscher pseudotype of Moloney murine sarcoma virus in mouse embryo fibroblasts were inhibited by hydroxyurea within a critical time period of 30 to 90 min postinfection. In cells infected by Rauscher leukemia virus, treatment with 1mM hydroxyurea during the critical time period resulted in the accumulation of minus-strand DNA (molecular weight, 3 x 10(6)) in association with the parental viral genoma RNA. This 5 to 6 x 10(6) dalton RNA:DNA hybrid was found in the cytoplasm. Positive-strand DNA of genomic or smaller size was not detected in the presence of hydroxyurea, but virus-specific DNA was found in the nucleus 30 min after removal of drug.

  17. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette

    2004-01-01

    elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion......A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene......+ T-cell responses were not induced. Thus, in addition to specific CD8+ T cell-mediated immunopathology, gene-gun DNA vaccination causes non-specific enhancement of RSV disease without affecting virus clearance....

  18. Budding of peste des petits ruminants virus-like particles from insect cell membrane based on intracellular co-expression of peste des petits ruminants virus M, H and N proteins by recombinant baculoviruses.

    Science.gov (United States)

    Liu, Fuxiao; Wu, Xiaodong; Zhao, Yonggang; Li, Lin; Wang, Zhiliang

    2014-10-01

    Peste des petits ruminants virus (PPRV), an etiological agent of peste des petits ruminants (PPR), is classified into the genus Morbillivirus in the family Paramyxovirida. In this study, two full-length open reading frames (ORF) corresponding to the PPRV matrix (M) and haemagglutinin (H) genes underwent a codon-optimization based on insect cells, respectively. Two codon-optimized ORFs along with one native nucleocapsid (N) ORF were used to construct recombinant baculoviruses co-expressing the PPRV M, H and N proteins in insect cells. Analysis of Western blot, immunofluorescence, confocal microscopy and flow cytometry demonstrated co-expression of the three proteins but at different levels in insect cells, and PPR virus-like particles (VLPs) budded further from cell membrane based on self-assembly of the three proteins by viewing of ultrathin section with a transmission electron microscope (TEM). Subsequently, a small number of VLPs were purified by sucrose density gradient centrifugation for TEM viewing. The PPR VLPs, either purified by sucrose density gradient centrifugation or budding from insect cell membrane on ultrathin section, morphologically resembled authentic PPRVs but were smaller in diameter by the TEM examination. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Preparation, characterization and immunogenicity analysis of Chikungunya virus-like particles produced in insect cells%基孔肯雅病毒样颗粒的制备及免疫原性研究

    Institute of Scientific and Technical Information of China (English)

    李建东; 张全福; 张硕; 李川; 刘琴芝; 梁米芳; 李德新

    2015-01-01

    目的 评价基孔肯雅病毒(CHIKV)病毒样颗粒(VLPs)免疫原性.方法 通过构建CHIKV结构蛋白编码基因C-E3-E2-6K-E1昆虫细胞表达载体,然后与杆状病毒线性DNA共转染SF9昆虫细胞制备重组杆状病毒,感染悬浮培养的SF9细胞制备VLPs.IFA、SDS-PAGE和Western-Blot法对表达产物进行鉴定分析,用纯化VLPs免疫BALB/c小鼠,评价免疫原性.结果 CHIKV结构蛋白装配形成病毒样球形颗粒,免疫小鼠可诱导CHIKV特异性抗体,能够有效中和CHIKV感染Vero细胞.结论 CHIKV VLPs能够通过杆状病毒系统在昆虫细胞中有效分泌表达,并具有较强免疫原性,为基于CHIKV VLPs的免疫学检测试剂乃至疫苗的研制奠定了基础.%Objective To prepare the virus-like particles (VLPs) of Chikungunya virus (CHIKV) and evaluate the immunogenicity.Method CHIKV structural protein C-E3-E2-6K-E1 encoding gene were amplified by fusion PCR,and cloned into an insect cell expression vector.The recombinant Baculovirus were recovered by co-transfection of the expression plasmid with baculovirus linear DNA into SF9 insect cells,and CHIKV VLPs were prepared from suspension culture SF9 cells.Structural proteins expression were analyzed using IFA,SDS-PAGE and Western-Blot,and morphological analysis via electron microscopy.Result Which showed that CHIKV structural proteins were secreted into the cell culture supernatant and assembled into virus-like spherical particles.BALB /c mice were immunized with the VLPs,high levels of CHIKV specific antibodies were detected in the sera,and CHIKV infection of Vero cells could be effectively neutralized.Couclusion The results showed that CHIKV VLPs can be efficiently produced by the baculovirus expression system in insect cells,and specific IgG and neutralization antibodies could be induced in mice after VLPs immunization.This research laid the foundation for the development of CHIKV VLPs based on immunological detection reagents and even vaccines.

  20. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.

  1. Specificity of Developmental Resistance in Gypsy Moth (Lymantria dispar) to two DNA-Insect Viruses

    Institute of Scientific and Technical Information of China (English)

    Kelli Hoover; Michael J. Grove

    2009-01-01

    Gypsy moth (Lymantria dispar) larvae displayed marked developmental resistance within an instar to L. dispar M nucleopolyhedrovirus (LdMNPV) regardless of the route of infection (oral or intrahemocoelic) in a previous study, indicating that in gypsy moth, this resistance has a systemic component. In this study, gypsy moth larvae challenged with the Amsacta moorei entomopoxvirus (AMEV) showed developmental resistance within the fourth instar to oral, but not intrahemocoelic, inoculation. In general, gypsy moth is considered refractory to oral challenge with AMEV, but in this study, 43% mortality occurred in newly molted fourth instars fed a dose of 5×106 large spheroids of AMEV; large spheroids were found to be more infectious than small spheroids when separated by a sucrose gradient. Developmental resistance within the fourth instar was reflected by a 2-fold reduction in mortality (18%-21%) with 5×106 large spheroids in larvae orally challenged at 24, 48 or 72 h post-molt. Fourth instars were highly sensitive to intrahemocoelic challenge with AMEV; 1PFU produced approximately 80% mortality regardless of age within the instar. These results indicate that in gypsy moth, systemic developmental resistance may be specific to LdMNPV, reflecting a co-evolutionary relationship between the baculovirus and its host.

  2. Comparison of different prime-boost regimes with DNA and recombinant Orf virus based vaccines expressing glycoprotein D of pseudorabies virus in pigs

    NARCIS (Netherlands)

    Rooij, van E.M.A.; Rijsewijk, F.A.M.; Moonen-Leusen, H.W.; Bianchi, A.T.J.; Rziha, H.J.

    2010-01-01

    Both DNA and Orf virus (ORFV; Parapox virus) based vaccines have shown promise as alternatives for conventional vaccines in pigs against pseudorabies virus (PRV) infection causing Aujeszky's disease. In the present study we evaluated the efficacy of different prime-boost regimes in pigs in terms of

  3. Expression of hemagglutinin protein from the avian influenza virus H5N1 in a baculovirus/insect cell system significantly enhanced by suspension culture

    Directory of Open Access Journals (Sweden)

    Spencer Lynn

    2006-02-01

    Full Text Available Abstract Background Prevention of a possible avian influenza pandemic necessitates the development of rapid diagnostic tests and the eventual production of a vaccine. Results For vaccine production, hemagglutinin (HA1 from avian influenza H5N1 was expressed from a recombinant baculovirus. Recombinant HA1 was expressed in monolayer or suspension culture insect cells by infection with the recombinant baculovirus. The yield of rHA1 from the suspension culture was 68 mg/l, compared to 6 mg/l from the monolayer culture. Immunization of guinea pigs with 50 μg of rHA1 yielded hemagglutinin inhibition and virus neutralization titers of 1:160 after two times vaccination with rHA1 protein. Conclusion Thus, the production of rHA1 using an insect suspension cell system provides a promising basis for economical production of a H5 antigen.

  4. High-throughput sequencing of fecal DNA to identify insects consumed by wild Weddell's saddleback tamarins (Saguinus weddelli, Cebidae, Primates) in Bolivia.

    Science.gov (United States)

    Mallott, E K; Malhi, R S; Garber, P A

    2015-03-01

    The genus Saguinus represents a successful radiation of over 20 species of small-bodied New World monkeys. Studies of the tamarin diet indicate that insects and small vertebrates account for ∼16-45% of total feeding and foraging time, and represent an important source of lipids, protein, and metabolizable energy. Although tamarins are reported to commonly consume large-bodied insects such as grasshoppers and walking sticks (Orthoptera), little is known concerning the degree to which smaller or less easily identifiable arthropod prey comprises an important component of their diet. To better understand tamarin arthropod feeding behavior, fecal samples from 20 wild Bolivian saddleback tamarins (members of five groups) were collected over a 3 week period in June 2012, and analyzed for the presence of arthropod DNA. DNA was extracted using a Qiagen stool extraction kit, and universal insect primers were created and used to amplify a ∼280 bp section of the COI mitochondrial gene. Amplicons were sequenced on the Roche 454 sequencing platform using high-throughput sequencing techniques. An analysis of these samples indicated the presence of 43 taxa of arthropods including 10 orders, 15 families, and 12 identified genera. Many of these taxa had not been previously identified in the tamarin diet. These results highlight molecular analysis of fecal DNA as an important research tool for identifying anthropod feeding patterns in primates, and reveal broad diversity in the taxa, foraging microhabitats, and size of arthropods consumed by tamarin monkeys.

  5. Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor

    Science.gov (United States)

    Tran, Thi Luyen; Nguyen, Thi Thuy; Huyen Tran, Thi Thu; Chu, Van Tuan; Thinh Tran, Quang; Tuan Mai, Anh

    2017-09-01

    The carbon nanotubes field effect transistor (CNTFET) based DNA sensor was developed, in this paper, for detection of influenza A virus DNA. Number of factors that influence the output signal and analytical results were investigated. The initial probe DNA, decides the available DNA strands on CNTs, was 10 μM. The hybridization time for defined single helix was 120 min. The hybridization temperature was set at 30 °C to get a net change in drain current of the DNA sensor without altering properties of any biological compounds. The response time of the DNA sensor was less than one minute with a high reproducibility. In addition, the DNA sensor has a wide linear detection range from 1 pM to 10 nM, and a very low detection limit of 1 pM. Finally, after 7-month storage in 7.4 pH buffer, the output signal of DNA sensor recovered 97%.

  6. Solid-to-fluid – like DNA transition in viruses facilitates infection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ting; Sae-Ueng, Udom; Li, Dong; Lander, Gabriel C.; Zuo, Xiaobing; Jonsson, Bengt; Rau, Donald; Shefer, Ivetta; Evilevitch, Alex

    2014-10-14

    Releasing the packaged viral DNA into the host cell is an essential process to initiate viral infection. In many double-stranded DNA bacterial viruses and herpesviruses, the tightly packaged genome is hexagonally ordered and stressed in the protein shell, called the capsid. DNA condensed in this state inside viral capsids has been shown to be trapped in a glassy state, with restricted molecular motion in vitro. This limited intracapsid DNA mobility is caused by the sliding friction between closely packaged DNA strands, as a result of the repulsive interactions between the negative charges on the DNA helices. It had been unclear how this rigid crystalline structure of the viral genome rapidly ejects from the capsid, reaching rates of 60,000 bp/s. Through a combination of single- molecule and bulk techniques, we determined how the structure and energy of the encapsidated DNA in phage λ regulates the mobility required for its ejection. Our data show that packaged λ -DNA undergoes a solid-to-fluid – like disordering transition as a function of temperature, resultin g locally in less densely packed DNA, reducing DNADNA repulsions. This p rocess leads to a sig- nificant increase in genome mobility or fluidity, which facilitates genome release at temperatures close to that of viral infection (37 °C), suggesting a remarkab le physical adaptation of bac- terial viruses to the environment of Escherichia coli cells in a human host.

  7. cDNA clone of hepatitis A virus encoding a virulent virus: induction of viral hepatitis by direct nucleic acid transfection of marmosets.

    OpenAIRE

    Emerson, S U; Lewis, M; Govindarajan, S. (Srinath); M. Shapiro(Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America); Moskal, T; Purcell, R. H.

    1992-01-01

    Direct inoculation of marmoset livers with an in vitro transcription mixture containing cDNA and full-length genomic RNA transcripts of hepatitis A virus resulted in acute viral hepatitis. Elevations in serum levels of liver enzymes were correlated with appearance of antibody to hepatitis A virus. Genomes of infectious hepatitis A virus isolated from the feces of transfected marmosets contained the same mutation as the cDNA template used for transfection. Liver biopsies confirmed that the vir...

  8. Advances and challenges in the development of therapeutic DNA vaccines against hepatitis B virus infection.

    Science.gov (United States)

    Cova, Lucyna

    2014-01-01

    Despite the existence of an effective prophylactic vaccine, chronic hepatitis B virus (HBV) infection remains a major public health problem. Because very weak and functionally impaired virus-specific immune responses play a key role in the persistence of HBV infection, the stimulation of these responses appears to be of particular importance for virus clearance. In this regard DNA-based vaccination has emerged as novel, promising therapeutic approach for chronic hepatitis B. This review provides an update of preclinical studies in animal models (mouse, chimpanzee, duck, woodchuck), which evaluated the ability of DNA vaccines targeting hepadnaviral proteins to induce potent and sustained immune responses in naïve animals and to enhance virus clearance and break immune tolerance in chronic virus-carriers. Different strategies have been developed and evaluated in these models to optimize DNA vaccine including genetic adjuvants, combination with antiviral drugs, prime-boost regimens and plasmid delivery. The delivery of DNA by in vivo electroporation appears to be of particular interest for increase of vaccine potency in both small and large animal models. Based on the promising results generated in preclinical studies, first clinical trials of DNA vaccines have been initiated, although effective therapy of chronic hepatitis B awaits further improvements in vaccine efficacy.

  9. Hepatitis B virus DNA polymerase gene polymorphism based ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... HBV is distributed into various genotypes based on nucleic acid sequence variation. ... compared to genotype B and higher incidence of HCC in genotype D ... DNA sequencing technology to sequence HBV DNA polymerase ...

  10. Plasma Epstein–Barr virus and Hepatitis B virus in non-Hodgkin lymphomas: Two lymphotropic, potentially oncogenic, latently occurring DNA viruses

    Directory of Open Access Journals (Sweden)

    Mahua Sinha

    2016-01-01

    Full Text Available Context: There is a need to study potential infective etiologies in lymphomas. Lymphocyte-transforming viruses can directly infect lymphocytes, disrupt normal cell functions, and promote cell division. Epstein–Barr virus (EBV is known to be associated with several lymphomas, especially Hodgkin lymphomas (HLs. And recently, the lymphocyte-transforming role of hepatitis B virus (HBV has been emphasized. Aims: The aim of this study was to elucidate the association of two potentially oncogenic, widely prevalent latent DNA viruses, EBV and HBV, in non-HL (NHL. Settings and Design: In this prospective study, we estimated plasma EBV and HBV DNA in NHL patients. Materials and Methods: Peripheral blood was obtained from newly diagnosed, treatment na ïve, histologically confirmed NHL patients. Plasma EBV DNA was quantified by real-time polymerase chain reaction (PCR targeting Epstein–Barr Nucleic acid 1 while the plasma HBV DNA was detected using nested PCR targeting HBX gene. In a small subset of patients, follow-up plasma samples post-anticancer chemotherapy were available and retested for viral DNA. Results: Of the 110 NHL patients, ~79% were B-cell NHL and ~21% were T-cell NHL. Plasma EBV-DNA was detected in 10% NHLs with a higher EBV association in Burkitt lymphoma (33.3% than other subtypes. Pretherapy HBV DNA was detected in 21% NHLs; most of them being diffuse large B-cell lymphoma (DLBCL. Moreover, 42% of DLBCL patients had HBV DNA in plasma. Since all patients were HBV surface antigen seronegative at diagnosis, baseline plasma HBV-DNAemia before chemotherapy was indicative of occult hepatitis B infection. Conclusions: Our findings indicate a significant association of HBV with newly diagnosed DLBCL.

  11. Characterization of burdock mottle virus, a novel member of the genus Benyvirus, and the identification of benyvirus-related sequences in the plant and insect genomes.

    Science.gov (United States)

    Kondo, Hideki; Hirano, Shuichi; Chiba, Sotaro; Andika, Ida Bagus; Hirai, Makoto; Maeda, Takanori; Tamada, Tetsuo

    2013-10-01

    The complete nucleotide sequence of the burdock mottle virus (BdMoV) isolated from an edible burdock plant (Arctium lappa) in Japan has been determined. BdMoV has a bipartite genome, whose organization is similar to RNA1 and RNA2 of benyviruses, beet necrotic yellow vein virus (BNYVV), beet soil-borne mosaic virus (BSBMV), and rice stripe necrosis virus (RSNV). BdMoV RNA1 (7038 nt) contains a single open reading frame (ORF) encoding a 249-kDa polypeptide that consists of methyl-transferase, helicase, papain-like protease, AlkB-like, and RNA-dependent RNA polymerase domains. The AlkB-like domain sequence is not present in the proteins encoded by other known benyviruses, but is found in replication-associated proteins of viruses mainly belonging to the families Alfaflexiviridae and Betaflexiviridae. BdMoV RNA2 (4315 nt) contains six ORFs that are similar to those of benyviruses: these are coat protein (CP), CP readthrough, triple gene block movement and cysteine-rich proteins. Phylogenetic analyses showed that BdMoV is more closely related to BNYVV and BSBMV than to RSNV. Database searches showed that benyvirus replicase-related sequences are present in the chromosomes of a chickpea plant (Cicer arietinum) and a blood-sucking insect (Rhodnius prolixus). Some other benyvirus-related sequences are found in the transcriptome shotgun libraries of a few species of plants and a bark beetle. Our results show that BdMoV is a distinct species of the genus Benyvirus and that ancestral and extant benyviruses may have infected or currently infect a wide range of hosts, including plants and insects.

  12. Induction of the Sulfolobus shibatae virus SSV1 DNA replication by mitomycin C

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The temperate virus SSV1 from the hyperthermophilic archaeon Sulfolobus shibatae provides a useful model system for the study of archaeal DNA replication. Southern hybridization showed that SSV1 existed primarily as a provirus in its host that was grown without shaking. Upon UV or mitomycin C induction, the cellular level of free SSV1 DNA increased drastically whereas that of integrated viral DNA remained unchanged. The results of mitomycin C induction were more reproducible than those of UV induction. We found that, when the cells that had been grown without shaking were shaken, the replication of SSV1 DNA was also induced. Based on our results, we developed a method for the induction of SSV1 DNA replication by mitomycin C. When the S. shibatae virus production was induced using this method, the cellular level of free SSV1 DNA started to increase 10 h after induction, and peaked after 12-15 h. A fully induced S. shibatae cell contained ~50 molecules of free SSV1 DNA. The development of this induction method and the description of the process of SSV1 DNA replication following induction are valuable to the analysis of the origin and mode of replication of the virus.

  13. Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus, a vector insect transmitting rice stripe virus (RSV

    Directory of Open Access Journals (Sweden)

    Wang Shengyue

    2010-05-01

    Full Text Available Abstract Background The small brown planthopper (Laodelphax striatellus is an important agricultural pest that not only damages rice plants by sap-sucking, but also acts as a vector that transmits rice stripe virus (RSV, which can cause even more serious yield loss. Despite being a model organism for studying entomology, population biology, plant protection, molecular interactions among plants, viruses and insects, only a few genomic sequences are available for this species. To investigate its transcriptome and determine the differences between viruliferous and naïve L. striatellus, we employed 454-FLX high-throughput pyrosequencing to generate EST databases of this insect. Results We obtained 201,281 and 218,681 high-quality reads from viruliferous and naïve L. striatellus, respectively, with an average read length as 230 bp. These reads were assembled into contigs and two EST databases were generated. When all reads were combined, 16,885 contigs and 24,607 singletons (a total of 41,492 unigenes were obtained, which represents a transcriptome of the insect. BlastX search against the NCBI-NR database revealed that only 6,873 (16.6% of these unigenes have significant matches. Comparison of the distribution of GO classification among viruliferous, naïve, and combined EST databases indicated that these libraries are broadly representative of the L. striatellus transcriptomes. Functionally diverse transcripts from RSV, endosymbiotic bacteria Wolbachia and yeast-like symbiotes were identified, which reflects the possible lifestyles of these microbial symbionts that live in the cells of the host insect. Comparative genomic analysis revealed that L. striatellus encodes similar innate immunity regulatory systems as other insects, such as RNA interference, JAK/STAT and partial Imd cascades, which might be involved in defense against viral infection. In addition, we determined the differences in gene expression between vector and naïve samples, which

  14. Epstein-Barr Virus and Human herpes virus 6 Type A DNA Enhance IL-17 Production in Mice.

    Science.gov (United States)

    Rahal, Elias A; Hajjar, Helene; Rajeh, Mirna; Yamout, Bassem; Abdelnoor, Alexander M

    2015-06-01

    Several studies have shown a potential association between the Herpesviridae members, the Epstein-Barr virus (EBV) and Human herpes virus 6 (HHV-6), and an increased risk of autoimmune disease development. Because of the ability of these viruses to cause recurrent infections, various viral antigens, including viral DNA, are consistently shed. These antigens may then play a role in triggering autoimmune processes or contributing to autoimmune mechanisms. Therefore, this study examined whether the DNA of EBV or that of HHV-6A is capable of triggering IL-17, the autoimmune-associated cytokine, in mice. BALB/c mice were intraperitoneally injected with various copy numbers of either EBV or HHV-6A DNA. One group was injected with sterile water (the DNA solvent), and another was left uninjected. A mouse group that was administered DNA obtained from Staphylococcus epidermidis was included to ensure that any observed effects would pertain to the viral DNA tested. Mice were sacrificed and their sera were examined using an enzyme-linked immunosorbent assay for IL-17 and IL-23, as pro-autoimmune cytokines, IL-10, as an anti-inflammatory cytokine, and IFN-γ, as a pro-inflammatory cytokine, on days 3, 6, and 9 post-injection. All mouse groups injected with different copy numbers of EBV DNA or HHV-6A DNA displayed higher IL-17 levels than did the group injected with water on days 3, 6, and 9 post-injection. The highest IL-17 levels appeared to coincide with a marked increase in IL-23 and a decrease in IL-10 levels. Unlike the S. epidermidis DNA, which increased IFN-γ levels but not IL-17 or IL-23 levels, the viral DNA tested increased all three mediators, indicating that triggering Th17 responses is a specific property of EBV and HHV-6A DNA. In conclusion, EBV and HHV-6A viral DNA are capable of enhancing the production of the pro-inflammatory cytokine IL-17, which has been shown to play a role in autoimmune diseases.

  15. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene.

    Science.gov (United States)

    Zhao, Qi-chao; Liu, Ming-hong; Zhang, Xian-wen; Lin, Chao-yang; Zhang, Qing; Shen, Zhi-cheng

    2015-10-01

    Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, Cry1Ac and Cry1Ig, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (G10) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice.

  16. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus.

    Directory of Open Access Journals (Sweden)

    Nathan Zauberman

    2008-05-01

    Full Text Available Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the "stargate", allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane-containing viruses.

  17. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus.

    Science.gov (United States)

    Zauberman, Nathan; Mutsafi, Yael; Halevy, Daniel Ben; Shimoni, Eyal; Klein, Eugenia; Xiao, Chuan; Sun, Siyang; Minsky, Abraham

    2008-05-13

    Icosahedral double-stranded DNA viruses use a single portal for genome delivery and packaging. The extensive structural similarity revealed by such portals in diverse viruses, as well as their invariable positioning at a unique icosahedral vertex, led to the consensus that a particular, highly conserved vertex-portal architecture is essential for viral DNA translocations. Here we present an exception to this paradigm by demonstrating that genome delivery and packaging in the virus Acanthamoeba polyphaga mimivirus occur through two distinct portals. By using high-resolution techniques, including electron tomography and cryo-scanning electron microscopy, we show that Mimivirus genome delivery entails a large-scale conformational change of the capsid, whereby five icosahedral faces open up. This opening, which occurs at a unique vertex of the capsid that we coined the "stargate", allows for the formation of a massive membrane conduit through which the viral DNA is released. A transient aperture centered at an icosahedral face distal to the DNA delivery site acts as a non-vertex DNA packaging portal. In conjunction with comparative genomic studies, our observations imply a viral packaging pathway akin to bacterial DNA segregation, which might be shared by diverse internal membrane-containing viruses.

  18. Discovery of a novel circular single-stranded DNA virus from porcine faeces.

    Science.gov (United States)

    Sikorski, Alyssa; Argüello-Astorga, Gerardo R; Dayaram, Anisha; Dobson, Renwick C J; Varsani, Arvind

    2013-01-01

    A large number of novel single-stranded DNA (ssDNA) viruses have been characterised from various environmental sources in the last 5 years. The bulk of these have been from faecal sources, and faecal sampling is an ideal non-invasive pathogen sampling method. We characterised a novel ssDNA from a porcine faecal sample from Cass Basin of the South Island of New Zealand. The novel viral genome has two large open reading frames (ORFs), which are bidirectionally transcribed and separated by intergenic regions. The largest ORF has some degree of similarity (DNA virus (PigSCV), whereas the second-largest ORF has high similarity to the putative replication-associated protein (Rep) of ChiSCV (~50 %) and bovine stool-associated circular DNA virus (BoSCV; ~30 %). Based on genome architecture, location of putative stem-loop like elements, and maximum-likelihood phylogenetic analysis of the gene encoding the Rep protein, the novel isolate belongs to the same family of ssDNA viruses as ChiSCV and BoSCV.

  19. Virus DNA packaging: the strategy used by phage lambda.

    Science.gov (United States)

    Catalano, C E; Cue, D; Feiss, M

    1995-06-01

    Phage lambda, like a number of other large DNA bacteriophages and the herpesviruses, produces concatemeric DNA during DNA replication. The concatemeric DNA is processed to produce unit-length, virion DNA by cutting at specific sites along the concatemer. DNA cutting is co-ordinated with DNA packaging, the process of translocation of the cut DNA into the preformed capsid precursor, the prohead. A key player in the lambda DNA packaging process is the phage-encoded enzyme terminase, which is involved in (i) recognition of the concatemeric lambda DNA; (ii) initiation of packaging, which includes the introduction of staggered nicks at cosN to generate the cohesive ends of virion DNA and the binding of the prohead; (iii) DNA packaging, possibly including the ATP-driven DNA translocation; and (iv) following translocation, the cutting of the terminal cosN to complete DNA packaging. To one side of cosN is the site cosB, which plays a role in the initiation of packaging; along with ATP, cosB stimulates the efficiency and adds fidelity to the endonuclease activity of terminase in cutting cosN. cosB is essential for the formation of a post-cleavage complex with terminase, complex I, that binds the prohead, forming a ternary assembly, complex II. Terminase interacts with cosN through its large subunit, gpA, and the small terminase subunit, gpNu1, interacts with cosB. Packaging follows complex II formation. cosN is flanked on the other side by the site cosQ, which is needed for termination, but not initiation, of DNA packaging. cosQ is required for cutting of the second cosN, i.e. the cosN at which termination occurs. DNA packaging in lambda has aspects that differ from other lambda DNA transactions. Unlike the site-specific recombination system of lambda, for DNA packaging the initial site-specific protein assemblage gives way to a mobile, translocating complex, and unlike the DNA replication system of lambda, the same protein machinery is used for both initiation and

  20. Efficient extraction of virus DNA by NucliSens Extractor allows sensitive detection of hepatitis B virus by PCR.

    Science.gov (United States)

    Gobbers, E; Oosterlaken, T A; van Bussel, M J; Melsert, R; Kroes, A C; Claas, E C

    2001-12-01

    The NucliSens Extractor is an automated nucleic acid isolation system based on guanidinium thiocyanate (GuSCN)-silica extraction technology. The system has been validated for the isolation of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) RNAs from human samples in combination with nucleic acid sequence-based amplification- and reverse transcription-PCR-based methods. We evaluated the extractor for hepatitis B virus (HBV) DNA extraction from human samples using a noncommercial HBV DNA PCR. Several sample pretreatment procedures in combination with the extractor were compared with the Qiagen extraction method, and the impact of the sample volume used in the extraction on the sensitivity was investigated. Heating of the lysed sample prior to extractor isolation and the use of a large sample volume resulted in highly sensitive detection of HBV DNA. Incubation of a 1-ml sample in GuSCN at 80 degrees C (10 min) and at 37 degrees C (30 min) allowed detection of 4 and 40 HBV genome equivalents/ml, respectively, in standard dilution panels. Sample lysis in GuSCN at room temperature and proteinase K treatment prior to use of the extractor were less efficient procedures. All clinical samples that were PCR positive after Qiagen extraction and/or that were HBsAg positive were also PCR positive after extractor isolation. HBV DNA, HCV RNA, and HIV type 1 RNA were efficiently coextracted from a single sample, allowing reliable detection of viral genomes.

  1. Induction of Cervical Neoplasia in the Mouse by Herpes Simplex Virus Type 2 DNA

    Science.gov (United States)

    Anthony, Donald D.; Budd Wentz, W.; Reagan, James W.; Heggie, Alfred D.

    1989-06-01

    Induction of cervical neoplasia in the mouse cervix by herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) has been reported. The present study was done to determine if transfection with DNA of HSV-2 can induce carcinogenesis in this animal model. Genomic HSV-2 DNA was isolated from infected HEp-2 cells and separated from host cell DNA by cesium chloride density gradient centrifugation. The DNA was applied to mouse cervix for periods of 80-100 weeks. Experimental controls were treated with uninfected genomic HEp-2 cell DNA or with calf thymus DNA. Vaginal cytological preparations from all animals were examined monthly to detect epithelial abnormalities. Animals were sacrificed and histopathology studies were done when cellular changes indicative of premalignant or malignant lesions were seen on vaginal smears. Cytologic and histologic materials were coded and evaluated without knowledge of whether they were from animals treated with virus or control DNA. Premalignant and malignant cervical lesions similar to those that occur in women were detected in 61% of the histologic specimens obtained from animals exposed to HSV-2 DNA. The yield of invasive cancers was 21% in animals treated with HSV-2 DNA. No cancers were detected in mice treated with either HEp-2 or calf thymus DNA. Dysplasia was detected in only one of these control animals.

  2. Large scale full-length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori.

    Science.gov (United States)

    Suetsugu, Yoshitaka; Futahashi, Ryo; Kanamori, Hiroyuki; Kadono-Okuda, Keiko; Sasanuma, Shun-ichi; Narukawa, Junko; Ajimura, Masahiro; Jouraku, Akiya; Namiki, Nobukazu; Shimomura, Michihiko; Sezutsu, Hideki; Osanai-Futahashi, Mizuko; Suzuki, Masataka G; Daimon, Takaaki; Shinoda, Tetsuro; Taniai, Kiyoko; Asaoka, Kiyoshi; Niwa, Ryusuke; Kawaoka, Shinpei; Katsuma, Susumu; Tamura, Toshiki; Noda, Hiroaki; Kasahara, Masahiro; Sugano, Sumio; Suzuki, Yutaka; Fujiwara, Haruhiko; Kataoka, Hiroshi; Arunkumar, Kallare P; Tomar, Archana; Nagaraju, Javaregowda; Goldsmith, Marian R; Feng, Qili; Xia, Qingyou; Yamamoto, Kimiko; Shimada, Toru; Mita, Kazuei

    2013-09-01

    The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes.

  3. Comparative analysis of DNA extraction methods to study the body surface microbiota of insects: A case study with ant cuticular bacteria.

    Science.gov (United States)

    Birer, Caroline; Tysklind, Niklas; Zinger, Lucie; Duplais, Christophe

    2017-05-06

    High-throughput sequencing of the 16S rRNA gene has considerably helped revealing the essential role of bacteria living on insect cuticles in the ecophysiology and behaviour of their hosts. However, our understanding of host-cuticular microbiota feedbacks remains hampered by the difficulties of working with low bacterial DNA quantities as with individual insect cuticle samples, which are more prone to molecular biases and contaminations. Herein, we conducted a methodological benchmark on the cuticular bacterial loads retrieved from two Neotropical ant species of different body size and ecology: Atta cephalotes (~15 mm) and Pseudomyrmex penetrator (~5 mm). We evaluated the richness and composition of the cuticular microbiota, as well as the amount of biases and contamination produced by four DNA extraction protocols. We also addressed how bacterial community characteristics would be affected by the number of individuals or individual body size used for DNA extraction. Most extraction methods yielded similar results in terms of bacterial diversity and composition for A. cephalotes (~15 mm). In contrast, greater amounts of artefactual sequences and contaminations, as well as noticeable differences in bacterial community characteristics were observed between extraction methods for P. penetrator (~5 mm). We also found that large (~15 mm) and small (~5 mm) A. cephalotes individuals harbour different bacterial communities. Our benchmark suggests that cuticular microbiota of single individual insects can be reliably retrieved provided that blank controls, appropriate data cleaning, and individual body size and functional role within insect society are considered in the experiment. © 2017 John Wiley & Sons Ltd.

  4. Progress in recombinant DNA-derived vaccines for Lassa virus and filoviruses.

    Science.gov (United States)

    Grant-Klein, Rebecca J; Altamura, Louis A; Schmaljohn, Connie S

    2011-12-01

    Developing vaccines for highly pathogenic viruses such as those causing Lassa, Ebola, and Marburg hemorrhagic fevers is a daunting task due to both scientific and logistical constraints. Scientific hurdles to overcome include poorly defined relationships between pathogenicity and protective immune responses, genetic diversity of viruses, and safety in a target population that includes a large number of individuals with compromised immune systems. Logistical obstacles include the requirement for biosafety level-4 containment to study the authentic viruses, the poor public health infrastructure of the endemic disease areas, and the cost of developing these vaccines for use in non-lucrative markets. Recombinant DNA-based vaccine approaches offer promise of overcoming some of these issues. In this review, we consider the status of various recombinant DNA candidate vaccines against Lassa virus and filoviruses which have been tested in animals.

  5. Archaeal Haloarcula californiae Icosahedral Virus 1 Highlights Conserved Elements in Icosahedral Membrane-Containing DNA Viruses from Extreme Environments

    Directory of Open Access Journals (Sweden)

    Tatiana A. Demina

    2016-07-01

    Full Text Available Despite their high genomic diversity, all known viruses are structurally constrained to a limited number of virion morphotypes. One morphotype of viruses infecting bacteria, archaea, and eukaryotes is the tailless icosahedral morphotype with an internal membrane. Although it is considered an abundant morphotype in extreme environments, only seven such archaeal viruses are known. Here, we introduce Haloarcula californiae icosahedral virus 1 (HCIV-1, a halophilic euryarchaeal virus originating from salt crystals. HCIV-1 also retains its infectivity under low-salinity conditions, showing that it is able to adapt to environmental changes. The release of progeny virions resulting from cell lysis was evidenced by reduced cellular oxygen consumption, leakage of intracellular ATP, and binding of an indicator ion to ruptured cell membranes. The virion contains at least 12 different protein species, lipids selectively acquired from the host cell membrane, and a 31,314-bp-long linear double-stranded DNA (dsDNA. The overall genome organization and sequence show high similarity to the genomes of archaeal viruses in the Sphaerolipoviridae family. Phylogenetic analysis based on the major conserved components needed for virion assembly—the major capsid proteins and the packaging ATPase—placed HCIV-1 along with the alphasphaerolipoviruses in a distinct, well-supported clade. On the basis of its virion morphology and sequence similarities, most notably, those of its core virion components, we propose that HCIV-1 is a member of the PRD1-adenovirus structure-based lineage together with other sphaerolipoviruses. This addition to the lineage reinforces the notion of the ancient evolutionary links observed between the viruses and further highlights the limits of the choices found in nature for formation of a virion.

  6. Observing Insects.

    Science.gov (United States)

    Arbel, Ilil

    1991-01-01

    Describes how to observe and study the fascinating world of insects in public parks, backyards, and gardens. Discusses the activities and habits of several common insects. Includes addresses for sources of beneficial insects, seeds, and plants. (nine references) (JJK)

  7. Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor.

    Directory of Open Access Journals (Sweden)

    Varun Rai

    Full Text Available A nanoporous alumina membrane-based ultrasensitive DNA biosensor is constructed using 5'-aminated DNA probes immobilized onto the alumina channel walls. Alumina nanoporous membrane-like structure is carved over platinum wire electrode of 76 µm diameter dimension by electrochemical anodization. The hybridization of complementary target DNA with probe DNA molecules attached inside the pores influences the pore size and ionic conductivity. The biosensor demonstrates linear range over 6 order of magnitude with ultrasensitive detection limit of 9.55×10(-12 M for the quantification of ss-31 mer DNA sequence. Its applicability is challenged against real time cDNA PCR sample of dengue virus serotype1 derived from asymmetric PCR. Excellent specificity down to one nucleotide mismatch in target DNA sample of DENV3 is also demonstrated.

  8. Elevated levels of cell-free circulating DNA in patients with acute dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Tran Thi Ngoc Ha

    Full Text Available BACKGROUND: Apoptosis is thought to play a role in the pathogenesis of severe dengue and the release of cell-free DNA into the circulatory system in several medical conditions. Therefore, we investigated circulating DNA as a potential biomarker for severe dengue. METHODS AND FINDINGS: A direct fluorometric degradation assay using PicoGreen was performed to quantify cell-free DNA from patient plasma. Circulating DNA levels were significantly higher in patients with dengue virus infection than with other febrile illnesses and healthy controls. Remarkably, the increase of DNA levels correlated with the severity of dengue. Additionally, multivariate logistic regression analysis showed that circulating DNA levels independently correlated with dengue shock syndrome. CONCLUSIONS: Circulating DNA levels were increased in dengue patients and correlated with dengue severity. Additional studies are required to show the benefits of this biomarker in early dengue diagnosis and for the prognosis of shock complication.

  9. Proteomic footprints of a member of Glossinavirus (Hytrosaviridae): An expeditious approach to virus control strategies in tsetse factories

    NARCIS (Netherlands)

    Kariithi, H.M.; Lent, van J.W.M.; Oers, van M.M.; Abd-Alla, A.M.M.; Vlak, J.M.

    2013-01-01

    The Glossinavirus (Glossina pallidipes salivary gland hypertrophy virus (GpSGHV)) is a rod-shaped enveloped insect virus containing a 190,032bp-long, circular dsDNA genome. The virus is pathogenic for the tsetse fly Glossina pallidipes and has been associated with the collapse of selected mass-reare

  10. Hepatitis B virus DNA splicing in Lebanese blood donors and genotype A to E strains: implications for hepatitis B virus DNA quantification and infectivity.

    Science.gov (United States)

    El Chaar, Mira; El Jisr, Tamima; Allain, Jean-Pierre

    2012-10-01

    Hepatitis B virus (HBV) is one of the major viruses transmissible by blood that causes chronic infection in immunocompromised individuals. The study of 61 HBV carrier blood donors from Lebanon revealed multiple patterns of spliced HBV DNA. HBV DNA splicing was examined and quantified in samples of five genotypes and in seroconversion panels. The Lebanese sample median viral load was 1.5 ×10(2) IU/ml. All strains were genotype D, serotype ayw; 35 clustered as subgenotype D1 and 7 clustered as subgenotype D2. Three splice variants (SP1, SP1A, and Pol/S) were observed in 12 high-viral-load samples. Twenty samples of each genotype, A to E, were tested for the presence of HBV spliced DNA and SP1-specific splice variant. An unspliced HBV genome was dominant, but 100% of strains with a viral load of ≥10(5) copies/ml contained various proportions of spliced DNA. SP1 was detected in 56/100 (56%) samples in levels that correlated with the overall viral load. HBV DNA quantification with S (unspliced) and X (total DNA) regions provided different levels of viral load, with the difference corresponding to spliced DNA. During the highly infectious window period, the SP1 variant became detectable shortly after the hepatitis B surface antigen (HBsAg), suggesting a correlation between the initiation of splicing and the production of detectable levels of HBsAg. The quantification of HBV DNA with primers located outside and inside the spliced region might provide different estimations of viral load and differentiate between infectious and defective viral genomes. The role of splicing neoproteins in HBV replication and interaction with the host remains to be determined.

  11. Formation of peste des petits ruminants spikeless virus-like particles by co-expression of M and N proteins in insect cells.

    Science.gov (United States)

    Liu, Fuxiao; Wu, Xiaodong; Li, Lin; Liu, Zengshan; Wang, Zhiliang

    2014-02-01

    Peste des petits ruminants virus (PPRV) has a non-segmented negative sense RNA genome and is classified within the Morbillivirus genus of the Paramyxoviridae. Using the Bac-to-Bac® baculovirus expression system, we constructed recombinant baculoviruses that were able to co-express the PPRV matrix and nucleocapsid proteins in insect cells under the control of the polyhedron and p10 promoters, respectively. The results showed that although both structural proteins were expressed at a relatively low level, the interaction between them caused the formation of virus-like particles (VLPs) by viewing of transmission electron microscopy. The VLPs morphologically resembled authentic PPRVs but lacked spikes protruding from the particulate surfaces. Interestingly, the diameter of PPRV VLPs ranged from 100 to 150 nm, far less than the mean diameter (400-500 nm) of parental virions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay

    Science.gov (United States)

    Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility. PMID:26544710

  13. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus and PCV2 (DNA virus from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29% and TGEV (11.7% preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  14. Application of motif-based tools on evolutionary analysis of multipartite single-stranded DNA viruses.

    Directory of Open Access Journals (Sweden)

    Hsiang-Iu Wang

    Full Text Available Multipartite viruses contain more than one distinctive genome component, and the origin of multipartite viruses has been suggested to evolve from a non-segmented wild-type virus. To explore whether recombination also plays a role in the evolution of the genomes of multipartite viruses, we developed a systematic approach that employs motif-finding tools to detect conserved motifs from divergent genomic regions and applies statistical approaches to select high-confidence motifs. The information that this approach provides helps us understand the evolution of viruses. In this study, we compared our motif-based strategy with current alignment-based recombination-detecting methods and applied our methods to the analysis of multipartite single-stranded plant DNA viruses, including bipartite begomoviruses, Banana bunchy top virus (BBTV (consisting of 6 genome components and Faba bean necrotic yellows virus (FBNYV (consisting of 8 genome components. Our analysis revealed that recombination occurred between genome components in some begomoviruses, BBTV and FBNYV. Our data also show that several unusual recombination events have contributed to the evolution of BBTV genome components. We believe that similar approaches can be applied to resolve the evolutionary history of other viruses.

  15. Application of motif-based tools on evolutionary analysis of multipartite single-stranded DNA viruses.

    Science.gov (United States)

    Wang, Hsiang-Iu; Chang, Chih-Hung; Lin, Po-Heng; Fu, Hui-Chuan; Tang, Chuanyi; Yeh, Hsin-Hung

    2013-01-01

    Multipartite viruses contain more than one distinctive genome component, and the origin of multipartite viruses has been suggested to evolve from a non-segmented wild-type virus. To explore whether recombination also plays a role in the evolution of the genomes of multipartite viruses, we developed a systematic approach that employs motif-finding tools to detect conserved motifs from divergent genomic regions and applies statistical approaches to select high-confidence motifs. The information that this approach provides helps us understand the evolution of viruses. In this study, we compared our motif-based strategy with current alignment-based recombination-detecting methods and applied our methods to the analysis of multipartite single-stranded plant DNA viruses, including bipartite begomoviruses, Banana bunchy top virus (BBTV) (consisting of 6 genome components) and Faba bean necrotic yellows virus (FBNYV) (consisting of 8 genome components). Our analysis revealed that recombination occurred between genome components in some begomoviruses, BBTV and FBNYV. Our data also show that several unusual recombination events have contributed to the evolution of BBTV genome components. We believe that similar approaches can be applied to resolve the evolutionary history of other viruses.

  16. Production of H5N1 influenza virus matrix protein 2 ectodomain protein bodies in tobacco plants and in insect cells as a candidate universal influenza vaccine

    Directory of Open Access Journals (Sweden)

    Sandiswa Mbewana

    2015-12-01

    Full Text Available The spread of influenza A viruses is partially controlled and prevented by vaccination. The matrix protein 2 ectodomain (M2e is the most conserved sequence in influenza A viruses, and is therefore a good potential target for a vaccine to protect against multiple virus subtypes. We explored the feasibility of a M2e-based universal influenza A vaccine candidate based on the highly pathogenic avian influenza A virus, H5N1. A synthetic M2e gene was human and plant codon optimised and fused in-frame with a sequence encoding the N-terminal proline-rich domain (Zera® of the γ-zein protein of maize. Zera®M2e was expressed transiently in Nicotiana benthamiana and Sf21 baculovirus / insect cell expression systems, and Zera®M2e protein bodies (PBs were successfully produced in both expression systems. The plant-produced Zera®M2e PBs were purified and injected into Balb/c mice. Western blot analysis using insect cell-produced Zera®M2e PBs and multiple tandem M2e sequences (5xM2e fused with the avian influenza H5N1 transmembrane and cytosolic tail (5xM2e_tHA confirmed the presence of M2e-specific antibodies in immunised mice sera. The immunogenicity of the Zera®M2e indicates that our plant-produced protein has potential as an inexpensive universal influenza A vaccine.

  17. Repeatedly positive human immunodeficiency virus type 1 DNA polymerase chain reaction in human immunodeficiency virus-exposed seroreverting infants.

    Science.gov (United States)

    Bakshi, S S; Tetali, S; Abrams, E J; Paul, M O; Pahwa, S G

    1995-08-01

    Three human immunodeficiency virus type 1 (HIV-1)-exposed children who had repeatedly positive DNA polymerase chain reaction (PCR) tests for HIV in > or = 5 samples before seroreversion to HIV-negative status are reported. The children belong to a cohort of 210 infants who were born to HIV-infected mothers and were tested at intervals of 1 to 3 months by HIV viral culture, PCR, and p24 antigen; only the PCR was positive in > or = 5 samples in the children reported here. Their clinical features were indistinguishable from other seroreverters. All three children had a transient drop in CD4:CD8 ratio to < 1.0. The transiently positive DNA PCR in HIV-exposed infants may indicate either that HIV infection was eliminated by a strong host immune response or that infection was caused by an attenuated/defective strain of virus.

  18. A Glimpse of Nucleo-Cytoplasmic Large DNA Virus Biodiversity through the Eukaryotic Genomics Window

    Directory of Open Access Journals (Sweden)

    Lucie Gallot-Lavallée

    2017-01-01

    Full Text Available The nucleocytoplasmic large DNA viruses (NCLDV are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. We performed an update survey of NCLDV genes hidden in eukaryotic sequences to measure the incidence of this phenomenon in common public sequence databases. A total of 66 eukaryotic genomic or transcriptomic datasets—many of which are from algae and aquatic protists—contained at least one of the five most consistently conserved NCLDV core genes. Phylogenetic study of the eukaryotic NCLDV-like sequences identified putative new members of already recognized viral families, as well as members of as yet unknown viral clades. Genomic evidence suggested that most of these sequences resulted from viral DNA integrations rather than contaminating viruses. Furthermore, the nature of the inserted viral genes helped predicting original functional capacities of the donor viruses. These insights confirm that genomic insertions of NCLDV DNA are common in eukaryotes and can be exploited to delineate the contours of NCLDV biodiversity.

  19. A Glimpse of Nucleo-Cytoplasmic Large DNA Virus Biodiversity through the Eukaryotic Genomics Window.

    Science.gov (United States)

    Gallot-Lavallée, Lucie; Blanc, Guillaume

    2017-01-20

    The nucleocytoplasmic large DNA viruses (NCLDV) are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. We performed an update survey of NCLDV genes hidden in eukaryotic sequences to measure the incidence of this phenomenon in common public sequence databases. A total of 66 eukaryotic genomic or transcriptomic datasets-many of which are from algae and aquatic protists-contained at least one of the five most consistently conserved NCLDV core genes. Phylogenetic study of the eukaryotic NCLDV-like sequences identified putative new members of already recognized viral families, as well as members of as yet unknown viral clades. Genomic evidence suggested that most of these sequences resulted from viral DNA integrations rather than contaminating viruses. Furthermore, the nature of the inserted viral genes helped predicting original functional capacities of the donor viruses. These insights confirm that genomic insertions of NCLDV DNA are common in eukaryotes and can be exploited to delineate the contours of NCLDV biodiversity.

  20. Tsv-N1: A Novel DNA Algal Virus that Infects Tetraselmis striata

    Directory of Open Access Journals (Sweden)

    António Pagarete

    2015-07-01

    Full Text Available Numbering in excess of 10 million per milliliter of water, it is now undisputed that aquatic viruses are one of the major factors shaping the ecology and evolution of Earth’s microbial world. Nonetheless, environmental viral diversity and roles remain poorly understood. Here we report the first thorough characterization of a virus (designated TsV that infects the coastal marine microalga Tetraselmis striata. Unlike previously known microalgae-infecting viruses, TsV is a small (60 nm DNA virus, with a 31 kb genome. From a range of eight different strains belonging to the Chlamydomonadaceae family, TsV was only able to infect T. striata. Gene expression dynamics revealed an up-regulation of viral transcripts already 1 h post-infection (p.i.. First clear signs of infection were observed 24 h p.i., with the appearance of viral factories inside the nucleus. TsV assembly was exclusively nuclear. TsV-N1 genome revealed very different from previously known algae viruses (Phycodnaviridae. Putative function and/or homology could be resolved for only 9 of the 33 ORFs encoded. Among those was a surprising DNA polymerase type Delta (only found in Eukaryotes, and two genes with closest homology to genes from human parasites of the urogenital tract. These results support the idea that the diversity of microalgae viruses goes far beyond the Phycodnaviridae family and leave the door open for future studies on implications of microalgae viruses for human health.

  1. Transformation of Cowpea Vigna unguiculata with a Full-Length DNA Copy of Cowpea Mosaic Virus M-RNA

    NARCIS (Netherlands)

    Hille, Jacques; Goldbach, Rob

    1987-01-01

    A full-length DNA copy of the M-RNA of cowpea mosaic virus (CPMV), supplied with either the 35S promoter from cauliflower mosaic virus (CaMV) or the nopaline synthase promoter from Agrobacterium tumefaciens, was introduced into the T-DNA region of a Ti-plasmid-derived gene vector and transferred to

  2. Transformation of Cowpea Vigna unguiculata with a Full-Length DNA Copy of Cowpea Mosaic Virus M-RNA

    NARCIS (Netherlands)

    Hille, Jacques; Goldbach, Rob

    1987-01-01

    A full-length DNA copy of the M-RNA of cowpea mosaic virus (CPMV), supplied with either the 35S promoter from cauliflower mosaic virus (CaMV) or the nopaline synthase promoter from Agrobacterium tumefaciens, was introduced into the T-DNA region of a Ti-plasmid-derived gene vector and transferred to

  3. Coat as a Dagger: The Use of Capsid Proteins to Perforate Membranes during Non-Enveloped DNA Viruses Trafficking

    Science.gov (United States)

    Bilkova, Eva; Forstova, Jitka; Abrahamyan, Levon

    2014-01-01

    To get access to the replication site, small non-enveloped DNA viruses have to cross the cell membrane using a limited number of capsid proteins, which also protect the viral genome in the extracellular environment. Most of DNA viruses have to reach the nucleus to replicate. The capsid proteins involved in transmembrane penetration are exposed or released during endosomal trafficking of the virus. Subsequently, the conserved domains of capsid proteins interact with cellular membranes and ensure their efficient permeabilization. This review summarizes our current knowledge concerning the role of capsid proteins of small non-enveloped DNA viruses in intracellular membrane perturbation in the early stages of infection. PMID:25055856

  4. Rapid quantification of semen hepatitis B virus DNA by real-time polymerase chain reaction

    Institute of Scientific and Technical Information of China (English)

    Wei-Ping Qian; Li-Ka Shing; Yue-Qiu Tan; Ying Chen; Ying Peng; Zhi Li; Guang-Xiu Lu; Marie C. Lin; Hsiang-Fu Kung; Ming-Ling He

    2005-01-01

    AIM: To examine the sensitivity and accuracy of real-time polymerase chain reaction (PCR) for the quantification of hepatitis B virus (HBV) DNA in semen.METHODS: Hepatitis B viral DNA was isolated from HBV carriers' semen and sera using phenol extraction method and QTAamp DNA blood mini kit (Qiagen, Germany). HBV DNA was detected by conventional PCR and quantified by TaqMan technology-based real-time PCR (quantitative polymerase chain reaction (qPCR)). The detection threshold was 200 copies of HBV DNA for conventional PCR and 10 copies of HBV DNA for real time PCR per reaction.RESULTS: Both methods of phenol extraction and QIAamp DNA blood mini kit were suitable for isolating HBV DNA from semen. The value of the detection thresholds was 500 copies of HBV DNA per mL in the semen. The viral loads were 7.5×107 and 1.67×107 copies of HBV DNA per mL in two HBV infected patients' sera, while 2.L4×105 and 3.02×105 copies of HBV DNA per mL in the semen.CONCLUSION: Real-time PCR is a more sensitive and accurate method to detect and quantify HBV DNA in the semen.

  5. Covert Infection of Insects by Baculoviruses

    Directory of Open Access Journals (Sweden)

    Trevor Williams

    2017-07-01

    Full Text Available Baculoviruses (Baculoviridae are occluded DNA viruses that are lethal pathogens of the larval stages of some lepidopterans, mosquitoes, and sawflies (phytophagous Hymenoptera. These viruses have been developed as biological insecticides for control of insect pests and as expression vectors in biotechnological applications. Natural and laboratory populations frequently harbor covert infections by baculoviruses, often at a prevalence exceeding 50%. Covert infection can comprise either non-productive latency or sublethal infection involving low level production of virus progeny. Latency in cell culture systems involves the expression of a small subset of viral genes. In contrast, covert infection in lepidopterans is associated with differential infection of cell types, modulation of virus gene expression and avoidance of immune system clearance. The molecular basis for covert infection may reside in the regulation of host–virus interactions through the action of microRNAs (miRNA. Initial findings suggest that insect nudiviruses and vertebrate herpesviruses may provide useful analogous models for exploring the mechanisms of covert infection by baculoviruses. These pathogens adopt mixed-mode transmission strategies that depend on the relative fitness gains that accrue through vertical and horizontal transmission. This facilitates virus persistence when opportunities for horizontal transmission are limited and ensures virus dispersal in migratory host species. However, when host survival is threatened by environmental or physiological stressors, latent or persistent infections can be activated to produce lethal disease, followed by horizontal transmission. Covert infection has also been implicated in population level effects on host–pathogen dynamics due to the reduced reproductive capacity of infected females. We conclude that covert infections provide many opportunities to examine the complexity of insect–virus pathosystems at the organismal

  6. The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect

    Directory of Open Access Journals (Sweden)

    Aliza Hariton Shalev

    2016-07-01

    Full Text Available The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV, in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector.

  7. Expression of a viral polymerase-bound host factor turns human cell lines permissive to a plant- and insect-infecting virus

    Science.gov (United States)

    de Medeiros, Ricardo B.; Figueiredo, Juliana; Resende, Renato de O.; De Avila, Antonio C.

    2005-01-01

    Tospoviruses are the only plant-infecting members of the Bunyaviridae family of ambisense ssRNA viruses. Tomato spotted wilt tospovirus (TSWV), the type-member, also causes mild infection on its main insect vector, Frankliniella occidentalis. Herein, we identified an F. occidentalis putative transcription factor (FoTF) that binds to the TSWV RNA-dependent RNA polymerase and to viral RNA. Using in vitro RNA synthesis assays, we show that addition of purified FoTF improves viral replication, but not transcription. Expression of FoTF deletion mutants, unable to bind the RNA-dependent RNA polymerase or viral RNA, blocks TSWV replication in F. occidentalis cells. Finally, expression of FoTF wild-type turns human cell lines permissive to TSWV replication. These data indicate that FoTF is a host factor required for TSWV replication in vitro and in vivo, provide an experimental system that could be used to compare molecular defense mechanisms in plant, insect, and human cells against the same pathogen (TSWV), and could lead to a better understanding of evolutionary processes of ambisense RNA viruses. PMID:15657123

  8. Infection cycles of large DNA viruses: Emerging themes and underlying questions

    Energy Technology Data Exchange (ETDEWEB)

    Mutsafi, Yael, E-mail: yael.mutsafi@weizmann.ac.il; Fridmann-Sirkis, Yael; Milrot, Elad; Hevroni, Liron; Minsky, Abraham, E-mail: avi.minsky@weizmann.ac.il

    2014-10-15

    The discovery of giant DNA viruses and the recent realization that such viruses are diverse and abundant blurred the distinction between viruses and cells. These findings elicited lively debates on the nature and origin of viruses as well as on their potential roles in the evolution of cells. The following essay is, however, concerned with new insights into fundamental structural and physical aspects of viral replication that were derived from studies conducted on large DNA viruses. Specifically, the entirely cytoplasmic replication cycles of Mimivirus and Vaccinia are discussed in light of the highly limited trafficking of large macromolecules in the crowded cytoplasm of cells. The extensive spatiotemporal order revealed by cytoplasmic viral factories is described and contended to play an important role in promoting the efficiency of these ‘nuclear-like’ organelles. Generation of single-layered internal membrane sheets in Mimivirus and Vaccinia, which proceeds through a novel membrane biogenesis mechanism that enables continuous supply of lipids, is highlighted as an intriguing case study of self-assembly. Mimivirus genome encapsidation was shown to occur through a portal different from the ‘stargate’ portal that is used for genome release. Such a ‘division of labor’ is proposed to enhance the efficacy of translocation processes of very large viral genomes. Finally, open questions concerning the infection cycles of giant viruses to which future studies are likely to provide novel and exciting answers are discussed. - Highlights: • The discovery of giant DNA viruses blurs the distinction between viruses and cells. • Mimivirus and Vaccinia replicate exclusively in their host cytoplasm. • Mimivirus genome is delivered through a unique portal coined the Stargate. • Generation of Mimivirus internal membrane proceeds through a novel pathway.

  9. Allele-specific polymerase chain reaction for detection of a mutation in the relax circular DNA and the covalently closed circular DNA of hepatitis B virus.

    Science.gov (United States)

    Pan, Wan-Long; Hu, Jie-Li; Fang, Yan; Luo, Qiang; Xu, Ge; Xu, Lei; Jing, Zhou-Hong; Shan, Xue-Feng; Zhu, Yan-Ling; Huang, Ai-Long

    2013-12-01

    The relax circle DNA (rcDNA) sequence and the covalently closed circle DNA (cccDNA) sequence in hepatitis B virus (HBV) are crucial regions for HBV infections. To analyze mutations in rcDNA and cccDNA, DNA sequencing is often used, although it is time-consuming and expensive. Herein, we report a simple, economic, albeit accurate allele-specific polymerase chain reaction (AS-PCR) to detect mutations in these regions of HBV. This method can be extensively used to screen for mutations at specific positions of HBV genome.

  10. Detection of a new insect flavivirus and isolation of Aedes flavivirus in Northern Italy

    Directory of Open Access Journals (Sweden)

    Roiz David

    2012-10-01

    Full Text Available Abstract Background During recent years, numerous novel ‘insect flaviviruses’ have been discovered in natural mosquito populations. In a previous study we described the presence of flavivirus DNA sequences integrated in Aedes albopictus (Asian tiger mosquito populations from Northern Italy in 2007. Methods During 2008 we collected and tested Aedes females for flavivirus presence and developed phylogenetic analysis, virus isolation, electron microscopy studies and RNAse treatments. Results We detected a high prevalence of flavivirus in Ae. albopictus (77.5%. The phylogenetic analysis identified the insect flavivirus sequences as Aedes flavivirus (AEFV recently described in Japan, and that may have been introduced in Italy travelling with the tiger mosquito. Some of these pools grew in C6/36 cells, producing cytopathic effects, and the RNase treatment results showed the presence of the detected sequences in RNA forms. Furthermore, we detected a new insect flavivirus in one pool of Aedes cinereus/geminus mosquitoes. Phylogenetic analysis of this virus shows that it forms a distinct cluster within the clade of insect flavivirus. Conclusions This is the first study to report a high prevalence, to describe the seasonal activity and an isolation of the insect flavivirus Aedes flavivirus in Europe. Moreover we describe the detection of a new insect flavivirus detected from Ae. cinereus mosquitoes from Italy. These flavivirus may be common, ubiquitous and diverse in nature and we discuss the implications of the insect flavivirus group in virus evolution and transmission.

  11. Search for varicella zoster virus DNA in saliva of healthy individuals aged 20-59 years.

    Science.gov (United States)

    Birlea, Marius; Cohrs, Randall J; Bos, Nathan; Mehta, Satish K; Pierson, Duane L; Gilden, Don

    2014-02-01

    All neurological and ocular complications of varicella zoster virus (VZV) reactivation can occur without rash. Virological verification requires detection of VZV DNA or anti-VZV IgG antibody in cerebrospinal fluid (CSF), or anti-VZV IgM antibody in serum or CSF. If VZV were readily detected in other tissue in patients with neurological disease without rash and found to correlate with tests listed above, more invasive tests such as lumbar puncture might be obviated. Saliva is a potential source of VZV DNA. To study the potential diagnostic value of detecting VZV DNA in saliva from patients with neurological disease, saliva of healthy adults was searched for VZV DNA. A single saliva sample obtained by passive drool was centrifuged at 16,000g for 20 min. DNA was extracted from the supernatant and cell pellet and examined in triplicate for VZV DNA by real time PCR. A single random saliva sample from 80 healthy men and women aged 20-59 years revealed no VZV DNA (Table ), but was uniformly positive for cell (GAPdH) DNA. Because VZV DNA was not found in a random saliva sample from 80 individuals 20-59-year-old, a VZV-positive sample during neurologic disease may have potential significance. Further studies will determine whether VZV DNA in saliva correlates with VZV DNA or anti-VZV antibody in CSF in patients with neurological disease.

  12. New Type of Papillomavirus and Novel Circular Single Stranded DNA Virus Discovered in Urban Rattus norvegicus Using Circular DNA Enrichment and Metagenomics

    Science.gov (United States)

    Hansen, Thomas Arn; Fridholm, Helena; Frøslev, Tobias Guldberg; Kjartansdóttir, Kristín Rós; Willerslev, Eske; Nielsen, Lars Peter; Hansen, Anders Johannes

    2015-01-01

    Rattus norvegicus (R. norvegicus) are ubiquitous and their presence has several effects on the human populations in our urban areas on a global scale. Both historically and presently, this close interaction has facilitated the dissemination of many pathogens to humans, making screening for potentially zoonotic and emerging viruses in rats highly relevant. We have investigated faecal samples from R. norvegicus collected from urban areas using a protocol based on metagenomic enrichment of circular DNA genomes and subsequent sequencing. We found a new type of papillomavirus, with a L1 region 82% identical to that of the known R. norvegicus Papillomavirus 2. Additionally, we found 20 different circular replication associated protein (Rep)-encoding single stranded DNA (CRESS-DNA) virus-like genomes, one of which has homology to the replication-associated gene of Beak and feather disease virus. Papillomaviruses are a group of viruses known for their carcinogenic potential, and although they are known to infect several different vertebrates, they are mainly studied and characterised in humans. CRESS-DNA viruses are found in many different environments and tissue types. Both papillomaviruses and CRESS-DNA viruses are known to have pathogenic potential and screening for novel and known viruses in R. norvegicus could help identify viruses with pathogenic potential. PMID:26559957

  13. DNA vaccination of pigs with open reading frame 1-7 of PRRS virus

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Blixenkrone-Møller, Merete; Jensen, Merethe Holm

    2004-01-01

    We cloned all open reading frames of a Danish isolate of porcine reproductive and respiratory syndrome (PRRS) virus in DNA vaccination vectors. Pigs were vaccinated using a gene gun with each single construct (ORF1, ORF2, ORF3, ORF4, ORF5, ORF6, or ORF7) or combinations thereof. Vaccination...

  14. Hepatitis B virus (HBV) DNA levels and the management of HBV-infected health care workers

    NARCIS (Netherlands)

    van der Eijk, A A; de Man, R A; Niesters, H G M; Schalm, S W; Zaaijer, H L

    2006-01-01

    Different guidelines exist for the management of hepatitis B virus (HBV)-infected health care workers (HCWs). Various HBV DNA levels are used as a cutoff level to determine whether an HBV-infected HCW is allowed to perform exposure-prone procedures (EPPs) or not. In this paper we discuss the factors

  15. Epstein-Barr Virus (EBV) DNA in sera of patients with primary EBV infection

    OpenAIRE

    2001-01-01

    Detection of Epstein-Barr Virus (EBV) DNA by PCR in serum had a sensitivity of 80%, a specificity of 94%, and positive and negative predictive values of 95 and 79%, respectively, for the diagnosis of primary EBV infection. We suggest that this is a useful addition to the panel of tests used for this purpose.

  16. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX

    Directory of Open Access Journals (Sweden)

    Stöcklein Walter

    2007-08-01

    Full Text Available Abstract Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method.

  17. Inhibition of simian virus 40 DNA replication by ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Edenberg, H.J.

    1983-07-30

    The effects of ultraviolet light (uv) upon SV40 DNA synthesis in monkey cells were examined to determine whether replication forks were halted upon encountering lesions in the DNA, or alternatively whether lesions were rapidly bypassed. Ultraviolet light inhibits elongation of nascent DNA strands; the extent of incorporation of (/sup 3/H)deoxythymidine ((/sup 3/H)dT) into DNA decreases with increasing uv fluence. Inhibition begins within minutes of irradiation, and becomes more pronounced with increasing time after irradiation. The synthesis of form I (covalently closed) molecules is inhibited even more severely than is total incorporation: post-uv incorporation is predominantly into replication intermediates. In contrast to previous reports, we find that replication intermediates labeled after uv resemble those in unirradiated cells, and contain covalently closed parental strands. DNA strands made after uv are approximately the size of parental DNA which has been cleaved at pyrimidine dimers by a uv endonuclease, indicating that they do not extend past dimers. The hypothesis that replication forks are halted upon encountering pyrimidine dimers in the template strand is consistent with these data.

  18. Infection cycles of large DNA viruses: emerging themes and underlying questions.

    Science.gov (United States)

    Mutsafi, Yael; Fridmann-Sirkis, Yael; Milrot, Elad; Hevroni, Liron; Minsky, Abraham

    2014-10-01

    The discovery of giant DNA viruses and the recent realization that such viruses are diverse and abundant blurred the distinction between viruses and cells. These findings elicited lively debates on the nature and origin of viruses as well as on their potential roles in the evolution of cells. The following essay is, however, concerned with new insights into fundamental structural and physical aspects of viral replication that were derived from studies conducted on large DNA viruses. Specifically, the entirely cytoplasmic replication cycles of Mimivirus and Vaccinia are discussed in light of the highly limited trafficking of large macromolecules in the crowded cytoplasm of cells. The extensive spatiotemporal order revealed by cytoplasmic viral factories is described and contended to play an important role in promoting the efficiency of these 'nuclear-like' organelles. Generation of single-layered internal membrane sheets in Mimivirus and Vaccinia, which proceeds through a novel membrane biogenesis mechanism that enables continuous supply of lipids, is highlighted as an intriguing case study of self-assembly. Mimivirus genome encapsidation was shown to occur through a portal different from the 'stargate' portal that is used for genome release. Such a 'division of labor' is proposed to enhance the efficacy of translocation processes of very large viral genomes. Finally, open questions concerning the infection cycles of giant viruses to which future studies are likely to provide novel and exciting answers are discussed.

  19. Molecular Adjuvant Ag85A Enhances Protection against Influenza A Virus in Mice Following DNA Vaccination

    Directory of Open Access Journals (Sweden)

    Hong Li

    2012-12-01

    Full Text Available A novel DNA vaccine vector encoding the Mycobacterium tuberculosis secreted antigen Ag85A fused with the influenza A virus (IAV HA2 protein epitopes, pEGFP/Ag85A-sHA2 (pAg85A-sHA2, was designed to provide protection against influenza. The antigen encoded by the DNA vaccine vector was efficiently expressed in mammalian cells, as determined by reverse transcription polymerase chain reaction (RT-PCR and fluorescence analyses. Mice were immunized with the vaccine vector by intramuscular injection before challenge with A/Puerto Rico/8/34 virus (PR8 virus. Sera and the splenocyte culture IFN-γ levels were significantly higher in immunized mice compared with the control mice. The novel vaccine group showed a high neutralization antibody titer in vitro. The novel vaccine vector also reduced the viral loads, increased the survival rates in mice after the PR8 virus challenge and reduced the alveolar inflammatory cell numbers. Sera IL-4 concentrations were significantly increased in mice immunized with the novel vaccine vector on Day 12 after challenge with the PR8 virus. These results demonstrated that short HA2 (sHA2 protein epitopes may provide protection against the PR8 virus and that Ag85A could strengthen the immune response to HA2 epitopes, thus, Ag85A may be developed as a new adjuvant for influenza vaccines.

  20. Dead element replicating: degenerate R2 element replication and rDNA genomic turnover in the Bacillus rossius stick insect (Insecta: Phasmida.

    Directory of Open Access Journals (Sweden)

    Francesco Martoni

    Full Text Available R2 is an extensively investigated non-LTR retrotransposon that specifically inserts into the 28S rRNA gene sequences of a wide range of metazoans, disrupting its functionality. During R2 integration, first strand synthesis can be incomplete so that 5' end deleted copies are occasionally inserted. While active R2 copies repopulate the locus by retrotransposing, the non-functional truncated elements should frequently be eliminated by molecular drive processes leading to the concerted evolution of the rDNA array(s. Although, multiple R2 lineages have been discovered in the genome of many animals, the rDNA of the stick insect Bacillus rossius exhibits a peculiar situation: it harbors both a canonical, functional R2 element (R2Brfun as well as a full-length but degenerate element (R2Brdeg. An intensive sequencing survey in the present study reveals that all truncated variants in stick insects are present in multiple copies suggesting they were duplicated by unequal recombination. Sequencing results also demonstrate that all R2Brdeg copies are full-length, i. e. they have no associated 5' end deletions, and functional assays indicate they have lost the active ribozyme necessary for R2 RNA maturation. Although it cannot be completely ruled out, it seems unlikely that the degenerate elements replicate via reverse transcription, exploiting the R2Brfun element enzymatic machinery, but rather via genomic amplification of inserted 28S by unequal recombination. That inactive copies (both R2Brdeg or 5'-truncated elements are not eliminated in a short term in stick insects contrasts with findings for the Drosophila R2, suggesting a widely different management of rDNA loci and a lower efficiency of the molecular drive while achieving the concerted evolution.

  1. Mouse polyoma virus and adenovirus replication in mouse cells temperature-sensitive in DNA synthesis.

    Science.gov (United States)

    Sheinin, R; Fabbro, J; Dubsky, M

    1985-01-01

    Mouse adenovirus multiplies, apparently without impediment, in temperature-inactivated ts A1S9, tsC1 and ts2 mouse fibroblasts. Thus, the DNA of mouse adenovirus can replicate in the absence of functional DNA topoisomerase II, a DNA-chain-elongation factor, and a protein required for traverse of the G1/S interface, respectively, encoded in the ts A1S9, tsC1 and ts2 genetic loci. These results are compared with those obtained with polyoma virus.

  2. Plasma Epstein-Barr virus DNA as a biomarker for nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    KC Allen Chan

    2014-01-01

    Nasopharyngeal carcinoma (NPC) is common in southern China and Southeast Asia. Epstein-Barr virus (EBV) infection is an important etiology for NPC, and EBV genome can be detected in almost all tumor tissues of NPC in this region. Plasma EBV DNA, when quantitatively analyzed using real-time polymerase chain reaction (PCR), has been developed as a biomarker for NPC. In this review, the different clinical applications of plasma EBV DNA in the management of NPC, including screening, monitoring, and prognostication, are discussed. In addition, the biological issues of circulating EBV DNA, including the molecular nature and clearance kinetics, are also explored.

  3. 鳞翅目昆虫线粒体DNA的研究进展%Research Progress on Mitochondrial DNA of Lepidoptera Insect

    Institute of Scientific and Technical Information of China (English)

    李青青; 段焰青; 李地艳; 刘晓飞; 徐怀亮; 周汝敏; 曹能; 李佛琳

    2009-01-01

    线粒体DNA(mtDNA)具有母性遗传,缺乏重组和进化速度快等特点,是研究鳞翅目昆虫系统学常用的分子标记.分析了鳞翅目昆虫线粒体DNA的结构特点,并就近年来对鳞翅目昆虫中进行过mtDNA研究的基因片段进行了简要综述,旨在为今后鳞翅目昆虫学研究提供参考.%Mitochondrial DNA (mtDNA), which exhibits maternal inheritance, lack of recombination and fast rate of evolution, has been a rich source of genetic markers in the Order Lepidoptera. Based on the description of mitochondrial DNA genome structure characters, mtDNA genes studied in Lepidoptera insects have been reviewed briefly in this paper in order to provide basic information for the future study.

  4. 三七病毒病媒介昆虫诱集试验研究%Experimental Study for the Trap of Virus Vector Insects of Notoginseng

    Institute of Scientific and Technical Information of China (English)

    陈昱君; 王勇; 杨建忠; 刘云芝; 韦美丽; 黄天卫; 朱云飞

    2015-01-01

    Taking trap plate method to trap the virus vector insects of notoginseng in annual and biennial garden from different locations in order to ascertain vector insect groups of notoginseng. The results showed that there were the insect groups include 2 section,4 families that may transmit the virus disease.The insect quantity in garden displayed Jiangna township of Yanshan county>Horse Pond town of Wenshan county>Dry River village of Yanshan County and whiteflies>thrips>planthoppers>leaf hoppers>aphids.The whiteflies,leafhoppers and aphids taxi yellow plate;planthoppers was stronger tropism to blue plate.The number of Thrips on the blue plate was bigger than on the yellow one in annual garden. The situation in biennid garden was contrang to the annual garden. leafhoppers,planthoppers like suck younger notoginseng plants and mealworms were pleased on the two years old plant that ahading.Suggested that using insect board traps method to control the vectors insects to achieve the goal of controlling spread of notoginseng virus disease.%采取诱虫板诱集法,对不同地点的一年生三七园、二年生三七园内昆虫进行诱集试验研究,以探明三七园内虫媒昆虫类群。结果表明:在三七产区不同代表性三七园内均可诱到包括2目4科可传播病毒病的昆虫类群。诱集虫量表现为砚山江那七园跃文山马塘七园跃砚山干河七园;粉虱类跃蓟马类跃叶蝉类跃飞虱类跃蚜虫类。其中粉虱类、叶蝉类、蚜虫类对黄板的趋性较强;飞虱类对蓝板的趋性较强;蓟马类则显示一年生三七园内蓝板诱集量高于黄板,二年生三七园内黄板诱集量高于蓝板。几种类群昆虫中,叶蝉、飞虱喜为害幼嫩的三七植株,粉虱则喜在荫蔽度较好的二年生三七上取食。建议生产上采用捕虫板诱杀法防治传毒昆虫,从而达到控制三七病毒病扩展蔓延的目的。

  5. A new species of bromeliad-feeding Cephaloleia Chevrolat (Coleoptera, Chrysomelidae, Cassidinae) from Costa Rica: evidence from DNA barcodes, larval and adult morphology and insect diets.

    Science.gov (United States)

    García-Robledo, Carlos; Staines, Charles L; Kress, W John

    2015-01-01

    The Neotropical genus Cephaloleia Chevrolat (Coleoptera: Chrysomelidae: Cassidinae) includes 214 species distributed from the south of Mexico to Argentina. Cephaloleia beetles feed mostly on plants from the order Zingiberales. The interactions between Cephaloleia beetles and their Zingiberales host plants is proposed as one of the oldest and most conservative associations. Here we describe a new species of Cephaloleia (Cephaloleiakuprewiczae sp. n.) that feeds on two species of bromeliads (Pitcairniaarcuata and Pitcairniabrittoniana, Bromeliaceae: Pitcairnioideae). Cephaloleiakuprewiczae was previously described as Cephaloleiahistrionica. This study includes evidence from DNA barcodes (COI), larval and adult morphology and insect diets that separates Cephaloleiakuprewiczae from Cephaloleiahistrionica as a new species.

  6. A new species of bromeliad-feeding Cephaloleia Chevrolat (Coleoptera, Chrysomelidae, Cassidinae from Costa Rica: evidence from DNA barcodes, larval and adult morphology and insect diets

    Directory of Open Access Journals (Sweden)

    Carlos Garcia-Robledo

    2015-01-01

    Full Text Available The Neotropical genus Cephaloleia Chevrolat (Coleoptera: Chrysomelidae: Cassidinae includes 214 species distributed from the south of Mexico to Argentina. Cephaloleia beetles feed mostly on plants from the order Zingiberales. The interactions between Cephaloleia beetles and their Zingiberales host plants is proposed as one of the oldest and most conservative associations. Here we describe a new species of Cephaloleia (C. kuprewiczae sp. n. that feeds on two species of bromeliads (Pitcairnia arcuata and P. brittoniana, Bromeliaceae: Pitcairnioideae. Cephaloleia kuprewiczae was previously described as Cephaloleia histrionica. This study includes evidence from DNA barcodes (COI, larval and adult morphology and insect diets that separates C. kuprewiczae from C. histrionica as a new species.

  7. "Junk" DNA as a genetic decoy

    OpenAIRE

    Magueijo, Joao

    2003-01-01

    We propose that the evolutionary purpose of junk DNA is to protect the gene. Mutation agents, such as retro-viruses, hit ``decoy'' DNA most of the time. Although the argument is far from general, we propose that the percentage of junk DNA should correlate with the number of retroviruses attacking a given species. It should also anti-correlate with the ideal mutation rates (higher in insects than in mammals).

  8. Immunogenicity of DNA and Recombinant Sendai Virus Vaccines Expressing the HIV-1 gag Gene

    Institute of Scientific and Technical Information of China (English)

    Xia FENG; Shuang-qing YU; Tsugumine Shu; Tetsuro Matano; Mamoru Hasegawa; Xiao-li WANG; Hong-tao MA; Hong-xia LI; Yi ZENG

    2008-01-01

    Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendal virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1(+)-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.

  9. An Epstein-Barr virus mutant produces immunogenic defective particles devoid of viral DNA.

    Science.gov (United States)

    Pavlova, Sophia; Feederle, Regina; Gärtner, Kathrin; Fuchs, Walter; Granzow, Harald; Delecluse, Henri-Jacques

    2013-02-01

    Virus-like particles (VLPs) from hepatitis B and human papillomaviruses have been successfully used as preventative vaccines against these infectious agents. These VLPs consist of a self-associating capsid polymer formed from a single structure protein and are devoid of viral DNA. Since virions from herpesviruses consist of a large number of molecules of viral and cellular origin, generating VLPs from a subset of these would be a particularly arduous task. Therefore, we have adopted an alternative strategy that consists of producing DNA-free defective virus particles in a cell line infected by a herpesvirus mutant incapable of packaging DNA. We previously reported that an Epstein-Barr virus (EBV) mutant devoid of the terminal repeats (ΔTR) that act as packaging signals in herpesviruses produces substantial amounts of VLPs and of light particles (LPs). However, ΔTR virions retained some infectious genomes, and although these mutants had lost their transforming abilities, this poses potential concerns for clinical applications. Therefore, we have constructed a series of mutants that lack proteins involved in maturation and assessed their ability to produce viral DNA-free VLP/LPs. Some of the introduced mutations were deleterious for capsid maturation and virus production. However, deletion of BFLF1/BFRF1A or of BBRF1 resulted in the production of DNA-free VLPs/LPs. The ΔBFLF1/BFRF1A viruses elicited a potent CD4(+) T-cell response that was indistinguishable from the one obtained with wild-type controls. In summary, the defective particles produced by the ΔBFLF1/BFRF1A mutant fulfill the criteria of efficacy and safety expected from a preventative vaccine.

  10. Transcriptional analysis of the DNA polymerase gene of shrimp white spot syndrome virus.

    Science.gov (United States)

    Chen, Li-Li; Wang, Han-Ching; Huang, Chiu-Jung; Peng, Shao-En; Chen, Yen-Gu; Lin, Shin-Jen; Chen, Wei-Yu; Dai, Chang-Feng; Yu, Hon-Tsen; Wang, Chung-Hsiung; Lo, Chu-Fang; Kou, Guang-Hsiung

    2002-09-15

    The white spot syndrome virus DNA polymerase (DNA pol) gene (WSSV dnapol) has already been tentatively identified based on the presence of highly conserved motifs, but it shows low overall homology with other DNA pols and is also much larger (2351 amino acid residues vs 913-1244 aa). In the present study we perform a transcriptional analysis of the WSSV dnapol gene using the total RNA isolated from WSSV-infected shrimp at different times after infection. Northern blot analysis with a WSSV dnapol-specific riboprobe found a major transcript of 7.5 kb. 5'-RACE revealed that the major transcription start point is located 27 nucleotides downstream of the TATA box, at the nucleotide residue A within a CAGT motif, one of the initiator (Inr) motifs of arthropods. In a temporal expression analysis using differential RT-PCR, WSSV dnapol transcripts were detected at low levels at 2-4 h.p.i., increased at 6 h.p.i., and remained fairly constant thereafter. This is similar to the previously reported transcription patterns for genes encoding the key enzyme of nucleotide metabolism, ribonucleotide reductase. Phylogenetic analysis showed that the DNA pols from three different WSSV isolates form an extremely tight cluster. In addition, similar to an earlier phylogenetic analysis of WSSV protein kinase, the phylogenetic tree of viral DNA pols further supports the suggestion that WSSV is a distinct virus (likely at the family level) that does not belong to any of the virus families that are currently recognized.

  11. DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus

    Science.gov (United States)

    Emmenegger, E.J.; Kurath, G.

    2008-01-01

    The emergence of spring viremia of carp virus (SVCV) in the United States constitutes a potentially serious alien pathogen threat to susceptible fish stocks in North America. A DNA vaccine with an SVCV glycoprotein (G) gene from a North American isolate was constructed. In order to test the vaccine a challenge model utilizing a specific pathogen-free domestic koi stock and a cold water stress treatment was also developed. We have conducted four trial studies demonstrating that the pSGnc DNA vaccine provided protection in vaccinated fish against challenge at low, moderate, and high virus doses of the homologous virus. The protection was significant (p vaccine construct containing a luciferase reporter gene and to non-vaccinated controls in fish ranging in age from 3 to 14 months. In all trials, the SVCV-G DNA immunized fish were challenged 28-days post-vaccination (546 degree-days) and experienced low mortalities varying from 10 to 50% with relative percent survivals ranging from 50 to 88%. The non-vaccinated controls and mock construct vaccinated fish encountered high cumulative percent mortalities ranging from 70 to 100%. This is the first report of a SVCV DNA vaccine being tested successfully in koi. These experiments prove that the SVCV DNA (pSGnc) vaccine can elicit specific reproducible protection and validates its potential use as a prophylactic vaccine in koi and other vulnerable North American fish stocks.

  12. Virus DNA translocation: progress towards a first ascent of mount pretty difficult.

    Science.gov (United States)

    Maluf, Nasib K; Feiss, Michael

    2006-07-01

    Virion DNA molecules of large dsDNA viruses are highly condensed. To pack the DNA, an ATP hydrolysis-powered motor translocates the DNA into a preformed empty protein shell, the prohead. The icosahedral prohead has a special fivefold vertex, the portal vertex, where the translocation machinery acts. The portal vertex contains the portal protein, a gear-shaped dodecamer of radially disposed subunits with a central channel for DNA entry. The symmetry mismatch between the fivefold symmetry of the shell vertex and the 12-fold symmetry of the portal protein has prompted DNA packaging models in which ATP-driven portal protein rotation drives DNA translocation. In this issue of Molecular Microbiology, Baumann and colleagues test portal rotation models using bacteriophage T4. A fusion between the gp20 portal protein and the HOC external shell decoration protein is used to create a block to portal rotation. Finding that DNA packaging is unimpeded in proheads containing the fusion argues that portal rotation is not crucial to DNA translocation. The paper is a landmark for describing direct testing of the mechanism of DNA translocation.

  13. Head-to-Head Comparison of Three Vaccination Strategies Based on DNA and Raw Insect-Derived Recombinant Proteins against Leishmania

    Science.gov (United States)

    Núñez, María del Carmen; Laurenti, Márcia D.; Gómez-Sebastián, Silvia; Rodríguez, Fernando; Pérez-Martín, Eva; Escribano, José M.

    2012-01-01

    Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories –the cheapest way of producing DNA-PROT vaccines– is a practical and cost-effective way for potential “off the shelf” supplying vaccines at very low prices for the protection against

  14. Head-to-head comparison of three vaccination strategies based on DNA and raw insect-derived recombinant proteins against Leishmania.

    Science.gov (United States)

    Todolí, Felicitat; Rodríguez-Cortés, Alhelí; Núñez, María Del Carmen; Laurenti, Márcia D; Gómez-Sebastián, Silvia; Rodríguez, Fernando; Pérez-Martín, Eva; Escribano, José M; Alberola, Jordi

    2012-01-01

    Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories -the cheapest way of producing DNA-PROT vaccines- is a practical and cost-effective way for potential "off the shelf" supplying vaccines at very low prices for the protection against

  15. First characterization of infectious cDNA clones of Olive mild mosaic virus

    Directory of Open Access Journals (Sweden)

    Joana M.S. CARDOSO

    2012-09-01

    Full Text Available Full-length cDNA clones of an Olive mild mosaic virus (OMMV isolate were constructed in order to find infectious cDNA clones. The sequencing of three individual full-length clones revealed some differences between them. In vitro transcription of these clones was performed and the effect of spontaneous mutations in the biological behaviour of the in vitro transcripts was evaluated by symptomatology, RNA accumulation and virus replication in inoculated plants. In vitro synthesized RNA from one of these clones was found to mimic the wild-type OMMV, making it useful in future studies on protein structure and function by site directed mutagenesis of individual genes. This is the first report on constructing full-length cDNA clones of OMMV from which infectious RNAs can be transcribed in vitro.

  16. Physical mapping of BK virus DNA with SacI, MboII, and AluI restriction endonucleases.

    Science.gov (United States)

    Yang, R C; Wu, R

    1978-12-01

    A new restriction endonuclease, SacI from Streptomyces achromogenes cleaves BK virus (strain MM) DNA into 3 fragments, whereas MboII from Moraxella bovis and AluI from Arthrobacter luteus give 22 and 30 fragments, respectively. All these specific DNA fragments were ordered and mapped on the viral genome by two methods first, by the reciprocal digestion method using uniformly 32P-labeled DNA; and second, by the partial digestion technique using the single-end 32P-labeled DNA. This study, together with those reported earlier, defined the location of 90 cleavage sites on the BK virus DNA.

  17. Structural mimics of viruses through peptide/DNA co-assembly.

    Science.gov (United States)

    Ni, Rong; Chau, Ying

    2014-12-31

    A synthetic mimic of viral structure has been constructed by the synergistic co-assembly of a 16-amino acid peptide and plasmid DNA. The rational design of this short peptide, including segments for binding DNA and forming β-sheet, is inspired by viral capsid protein. The resulting nanostructures, which we term nanococoons, appear as ellipsoids of virus-like dimension (65 × 47 nm) and display repeating stripes of ∼4 nm wide. We propose that the co-assembly process involves DNA as a template to assist the organization of peptide strands by electrostatic interaction, while the bilayer β-sheets and their lateral association stabilize the peptide "capsid" and organize the DNA within. The hierarchy affords an extremely stable structure, protecting peptide and DNA against enzymatic digestion. It opens a new and facile avenue to fabricate viral alternatives with diverse functions.

  18. Analysis of JC virus DNA replication using a quantitative and high-throughput assay.

    Science.gov (United States)

    Shin, Jong; Phelan, Paul J; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A

    2014-11-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication.

  19. Expression and solubilization of insect cell-based rabies virus glycoprotein and assessment of its immunogenicity and protective efficacy in mice.

    Science.gov (United States)

    Ramya, R; Mohana Subramanian, B; Sivakumar, V; Senthilkumar, R L; Sambasiva Rao, K R S; Srinivasan, V A

    2011-10-01

    Rabies is a fatal zoonotic disease of serious public health and economic significance worldwide. The rabies virus glycoprotein (RVG) has been the major target for subunit vaccine development, since it harbors domains responsible for induction of virus-neutralizing antibodies, infectivity, and neurovirulence. The glycoprotein (G) was cloned using the baculovirus expression vector system (BEVS) and expressed in Spodoptera frugiperda (Sf-9) cells. In order to obtain a soluble form of G suitable for experimentation in mice, 18 different combinations of buffers and detergents were evaluated for their ability to solubilize the insect cell membrane-associated G. The combination that involved 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) detergent in lysis buffer 1, formulated with Tris, NaCl, 10% dimethyl sulfoxide (DMSO), and EDTA, gave the highest yield of soluble G, as evidenced by the experimental data. Subsequently, several other parameters, such as the concentration of CHAPS and the duration and temperature of the treatment for the effective solubilization of G, were optimized. The CHAPS detergent, buffered at a concentration of 0.4% to 0.7% (wt/vol) at room temperature (23 to 25°C) for 30 min to 1 h using buffer 1, containing 10% DMSO, resulted in consistently high yields. The G solubilized using CHAPS detergent was found to be immunogenic when tested in mice, as evidenced by high virus-neutralizing antibody titers in sera and 100% protection upon virulent intracerebral challenge with the challenge virus standard (CVS) strain of rabies virus. The results of the mice study indicated that G solubilized with CHAPS detergent retained the immunologically relevant domains in the native conformation, thereby paving the way for producing a cell-free and efficacious subunit vaccine.

  20. Use of DNA and recombinant canarypox viral (ALVAC) vectors for equine herpes virus vaccination.

    Science.gov (United States)

    Minke, J M; Fischer, L; Baudu, Ph; Guigal, P M; Sindle, T; Mumford, J A; Audonnet, J C

    2006-05-15

    In this study, experimental canarypox virus (ALVAC) and plasmid DNA recombinant vaccines expressing the gB, gC and gD glycoproteins of EHV-1 were assessed for their ability to protect conventional ponies against a respiratory challenge with EHV-1. In addition, potential means of enhancing serological responses in horses to ALVAC and DNA vaccination were explored. These included co-administration of the antigen with conventional adjuvants, complexation with DMRIE-DOPE and co-expression of the antigen along with equine GM-CSF. Groups of EHV primed ponies were vaccinated twice intra-muscularly with one dose of the appropriate test vaccine at an interval of 5 weeks. Two to 3 weeks after the second vaccination, ponies were infected intra-nasally with the virulent Ab4 strain of EHV-1 after which they were observed clinically and sampled for virological investigations. The results demonstrated that DNA and ALVAC vaccination markedly reduced virus excretion after challenge in terms of duration and magnitude, but failed to protect against cell-associated viremia. Noteworthy was the almost complete absence of virus excretion in the group of ponies vaccinated with ALVAC-EHV in the presence of Carbopol adjuvant or DNA plasmid formulated with aluminium phosphate. The administration of the DNA vaccine in the presence of GM-CSF and formulated in DMRIE-DOPE and of the ALVAC vaccine in the presence of Carbopol adjuvant significantly improved virus neutralising antibody responses to EHV-1. These findings indicate that DNA and ALVAC vaccination is a promising approach for the immunological control of EHV-1 infection, but that more research is needed to identify the immunodominant protective antigens of EHV-1 and their interaction with the equine immune system.

  1. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis

    OpenAIRE

    Qiang Wang; Xiaonan Ma; ShaSha Qian; Xin Zhou; Kai Sun; Xiaolan Chen; Xueping Zhou; Jackson, Andrew O.; Zhenghe Li

    2015-01-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The ...

  2. 百合病毒病媒介昆虫的研究%Studies on Insect Vectors on Lily Virus Disease

    Institute of Scientific and Technical Information of China (English)

    朱亚灵

    2013-01-01

    通过对百合病毒病媒介昆虫种类的调查与鉴定,研究其种群与百合病毒病病情间的关系。结果表明,桃蚜(Myzus persicae)是传播百合病毒病的主要种类;百合病毒病田间发病率与百株蚜量呈正相关(P<0.01, r=0.8729),说明百合种植地蚜虫数量较多,则病毒病严重;而蚜虫数量少,则病毒病发生较轻。因此控制迁入百合地的蚜虫数量是防治百合病毒病发生的关键措施。%Based on the investigation and identification of the species of insect vectors, the relationship of vectors and lily virus diseases was studied. The results showed that Myzus persicae is the most important vector. There was positive relationship between the incidence in the field and the amounts of vectors on one hundred plants. The correlation coefficient was 0.8729. This suggested that more amounts of vectors were, more severe the virus was. So reducing amounts of vectors is the essential measure for controlling lily virus disease.

  3. Epstein-Barr virus DNA loads in adult human immunodeficiency virus type 1-infected patients receiving highly active antiretroviral therapy

    Science.gov (United States)

    Ling, Paul D.; Vilchez, Regis A.; Keitel, Wendy A.; Poston, David G.; Peng, Rong Sheng; White, Zoe S.; Visnegarwala, Fehmida; Lewis, Dorothy E.; Butel, Janet S.

    2003-01-01

    Patients with human immunodeficiency virus type 1 (HIV-1) infection are at high risk of developing Epstein-Barr virus (EBV)-associated lymphoma. However, little is known of the EBV DNA loads in patients receiving highly active antiretroviral therapy (HAART). Using a real-time quantitative polymerase chain reaction assay, we demonstrated that significantly more HIV-1-infected patients receiving HAART than HIV-1-uninfected volunteers had detectable EBV DNA in blood (57 [81%] of 70 vs. 11 [16%] of 68 patients; P=.001) and saliva (55 [79%] of 68 vs. 37 [54%] of 68 patients; P=.002). The mean EBV loads in blood and saliva samples were also higher in HIV-1-infected patients than in HIV-1-uninfected volunteers (P=.001). The frequency of EBV detection in blood was associated with lower CD4+ cell counts (P=.03) among HIV-1-infected individuals, although no differences were observed in the EBV DNA loads in blood or saliva samples in the HIV-1-infected group. Additional studies are needed to determine whether EBV-specific CD4+ and CD8+ cells play a role in the pathogenesis of EBV in HIV-1-infected patients receiving HAART.

  4. Immunogenicity analysis following human immunodeficiency virus recombinant DNA and recombinant vaccinia virus Tian Tan prime-boost immunization.

    Science.gov (United States)

    Liu, Cunxia; Du, Shouwen; Li, Chang; Wang, Yuhang; Wang, Maopeng; Li, Yi; Yin, Ronglan; Li, Xiao; Ren, Dayong; Qin, Yanqing; Ren, Jingqiang; Jin, Ningyi

    2013-06-01

    This study assessed and compared the immunogenicity of various immunization strategies in mice using combinations of recombinant DNA (pCCMp24) and recombinant attenuated vaccinia virus Tian Tan (rddVTT-CCMp24). Intramuscular immunization was performed on days 0 (prime) and 21 (boost). The immunogenicity of the vaccine schedules was determined by measuring human immunodeficiency virus (HIV)-specific binding antibody levels and cytokine (interleukin-2 and interleukin-4) concentrations in peripheral blood, analyzing lymphocyte proliferation capacity against HIV epitopes and CD4(+)/CD8(+) cell ratio, and monitoring interferon-gamma levels at different times post-immunization. The results showed that pCCMp24, rddVTT-CCMp24 and their prime-boost immunization induced humoral and cellular immune responses. The pCCMp24/rddVTT-CCMp24 immunization strategy increased CD8(+) T cells and induced more IFN-γ-secreting cells compared with single-shot rDNA. The prime-boost immunization strategy also induced the generation of cellular immunological memory to HIV epitope peptides. These results demonstrated that prime-boost immunization with rDNA and rddVTT-CCMp24 had a tendency to induce greater cellular immune response than single-shot vaccinations, especially IFN-γ response, providing a basis for further studies.

  5. Cellular DNA ligase I is recruited to cytoplasmic vaccinia virus factories and masks the role of the vaccinia ligase in viral DNA replication.

    Science.gov (United States)

    Paran, Nir; De Silva, Frank S; Senkevich, Tatiana G; Moss, Bernard

    2009-12-17

    Vaccinia virus (VACV) encodes DNA polymerase and additional proteins that enable cytoplasmic replication. We confirmed the ability of VACV DNA ligase mutants to replicate and tested the hypothesis that cellular ligases compensate for loss of viral gene expression. RNA silencing of human DNA ligase I expression and a small molecule inhibitor of human DNA ligase I [corrected] severely reduced replication of viral DNA in cells infected with VACV ligase-deficient mutants, indicating that the cellular enzyme plays a complementary role. Replication of ligase-deficient VACV was greatly reduced and delayed in resting primary cells, correlating with initial low levels of ligase I and subsequent viral induction and localization of ligase I in virus factories. These studies indicate that DNA ligation is essential for poxvirus replication and explain the ability of ligase deletion mutants to replicate in dividing cells but exhibit decreased pathogenicity in mice. Encoding its own ligase might allow VACV to "jump-start" DNA synthesis.

  6. Comparison of Herpes simplex virus plaque development after viral treatment with anti-DNA or antilipid agents

    Energy Technology Data Exchange (ETDEWEB)

    Coohill, T.P.; Babich, M.; Taylor, W.D.; Snipes, W.

    1980-06-01

    The plaque development of Herpes simplex virus type 1 (HSV) is slower for viruses treated with two anti-DNA agents: ultraviolet radiation (uv) or n-acetoxy-2-acetyl-aminofluorene. For HSV treated with three antimembrane agents - butylated hydroxytoluene, acridine plus near uv radiation, or ether - the plaque development time is the same as for untreated viruses. These differences hold even for viruses that survived treatment that lowered viability below the 1% level. Gamma ray inactivation of HSV produces no change in plaque development even though this agent is believed to preferentially affect viral DNA.

  7. Inhibitory effect of oxymatrine on serum hepatitis B virus DNA in HBV transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Lun-Gen Lu; Min-De Zeng; Yi-Min Mao; Jing-Yuan Fang; Yu-Lin Song; Zhao-Hui Shen; Ai-Ping Cao

    2004-01-01

    AIM: To study the inhibitory effect of oxymatrine on serum hepatitis B virus (HBV) DNA in HBV transgenic mice.METHODS: HBV transgenic mice model was established by microinjection, and identified by HBV DNA integration and replication. Transgenic mice with replicating HBV were divided into 3 groups, and injected with normal saline (group A, n=9), 50 mg/kg (group B, n=8) and 100 mg/kg (group C, n=9) oxymatrine intraperitoneally once a day for 30 d, respectively. Quantitation of serum HBV DNA in HBV transgenic mice was performed by competitive polymerase chain reaction (PCR) in combination with DNA hybridization quantitative detection technique before and after treatment.RESULTS: Compared with pre-treatment, the serum HBV DNA in group A (F=1.04, P=0.9612) and group B (F=1.13,P=0.8739) had no changes after treatment. However, in group C serum HBV DNA was significantly decreased (F=13.97,P=0.0012). The serum HBV DNA after treatment was lower in group C than in groups B and A (F=8.65, P=0.0068;F=12.35, P=0.0018; respectively). The serum HBV DNA after treatment was lower in group B than in group A, but there was no statistical significance (F=1.43, P=0.652).CONCLUSION: Oxymatrine has inhibitory effects on serum HBV DNA in HBV transgenic mice.

  8. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    Science.gov (United States)

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  9. Nucleotide sequence of a cDNA coding for the barley seed protein CMa: an inhibitor of insect α-amylase

    DEFF Research Database (Denmark)

    Rasmussen, Søren Kjærsgård; Johansson, A.

    1992-01-01

    The primary structure of the insect alpha-amylase inhibitor CMa of barley seeds was deduced from a full-length cDNA clone pc43F6. Analysis of RNA from barley endosperm shows high levels 15 and 20 days after flowering. The cDNA predicts an amino acid sequence of 119 residues preceded by a signal...... peptide of 25 amino acids. Ala and Leu account for 55% of the signal peptide. CMa is 60-85% identical with alpha-amylase inhibitors of wheat, but shows less than 50% identity to trypsin inhibitors of barley and wheat. The 10 Cys residues are located in identical positions compared to the cereal inhibitor...

  10. Real-time PCR protocols for the quantification of the begomovirus tomato yellow leaf curl Sardinia virus in tomato plants and in its insect vector.

    Science.gov (United States)

    Noris, Emanuela; Miozzi, Laura

    2015-01-01

    Tomato yellow leaf curl Sardinia virus (TYLCSV) (Geminiviridae) is an important pathogen, transmitted by the whitefly Bemisia tabaci, that severely affects the tomato production in the Mediterranean basin. Here, we describe real-time PCR protocols suitable for relative and absolute quantification of TYLCSV in tomato plants and in whitefly extracts. Using primers and probe specifically designed for TYLCSV, the protocols for relative quantification allow to compare the amount of TYLCSV present in different plant or whitefly samples, normalized to the amount of DNA present in each sample using endogenous tomato or Bemisia genes as internal references. The absolute quantification protocol allows to calculate the number of genomic units of TYLCSV over the genomic units of the plant host (tomato), with a sensitivity of as few as ten viral genome copies per sample. The described protocols are potentially suitable for several applications, such as plant breeding for resistance, analysis of virus replication, and virus-vector interaction studies.

  11. [Important points in virus research using recombinant DNA technology].

    Science.gov (United States)

    Nikaido, Takahiko; Takeuchi, Kaoru

    2007-06-01

    Cartagena Protocol on Biosafety to the Convention on Biological Diversity seeks to protect biological diversity from potential risks posed by living modified organisms (LMOs) resulting from modern biotechnology. This protocol was ratified in Japan after establishing domestic law and regulations for the protocol. In the domestic law, use of LMOs is classified into type 1 use (use without containment measures) and type 2 use (use with containment measures). According to the domestic law, most of experiments using recombinant viruses are required for the approval of the Minister. In this article, we will explain Cartagena Protocol and the Japanese domestic low and indicate an example of application form for the approval of the Minister.

  12. Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils

    Science.gov (United States)

    Han, Li-Li; Yu, Dan-Ting; Zhang, Li-Mei; Shen, Ju-Pei; He, Ji-Zheng

    2017-01-01

    Viral community structures in complex agricultural soils are largely unknown. Electron microscopy and viromic analyses were conducted on six typical Chinese agricultural soil samples. Tailed bacteriophages, spherical and filamentous viral particles were identified by the morphological analysis. Based on the metagenomic analysis, single-stranded DNA viruses represented the largest viral component in most of the soil habitats, while the double-stranded DNA viruses belonging to the Caudovirales order were predominanted in Jiangxi-maize soils. The majority of functional genes belonged to the subsystem “phages, prophages, transposable elements, and plasmids”. Non-metric multidimensional analysis of viral community showed that the environment medium type was the most important driving factor for the viral community structure. For the major viral groups detected in all samples (Microviridae and Caudovirales), the two groups gathered viruses from different sites and similar genetic composition, indicating that viral diversity was high on a local point but relatively limited on a global scale. This is a novel report of viral diversity in Chinese agricultural soils, and the abundance, taxonomic, and functional diversity of viruses that were observed in different types of soils will aid future soil virome studies and enhance our understanding of the ecological functions of soil viruses. PMID:28327667

  13. White Spot Syndrome Virus Orf514 Encodes a Bona Fide DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Rogerio R. Sotelo-Mundo

    2011-01-01

    Full Text Available White spot syndrome virus (WSSV is the causative agent of white spot syndrome, one of the most devastating diseases in shrimp aquaculture. The genome of WSSV includes a gene that encodes a putative family B DNA polymerase (ORF514, which is 16% identical in amino acid sequence to the Herpes virus 1 DNA polymerase. The aim of this work was to demonstrate the activity of the WSSV ORF514-encoded protein as a DNA polymerase and hence a putative antiviral target. A 3.5 kbp fragment encoding the conserved polymerase and exonuclease domains of ORF514 was overexpressed in bacteria. The recombinant protein showed polymerase activity but with very low level of processivity. Molecular modeling of the catalytic protein core encoded in ORF514 revealed a canonical polymerase fold. Amino acid sequence alignments of ORF514 indicate the presence of a putative PIP box, suggesting that the encoded putative DNA polymerase may use a host processivity factor for optimal activity. We postulate that WSSV ORF514 encodes a bona fide DNA polymerase that requires accessory proteins for activity and maybe target for drugs or compounds that inhibit viral DNA replication.

  14. Complex forms of mitochondrial DNA in human B cells transformed by Epstein-Barr virus (EBV)

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Zeuthen, J

    1983-01-01

    Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed lymphoblast......Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed...... lymphoblastoid cell lines. These complex forms of mtDNA were present in much lower frequencies in lymphocytes isolated from donor blood (1.3%-4.6%). Similar low frequencies were found with primary fibroblasts (1.1%) or freshly isolated monkey liver cells (2.1%). Samples from cultures of Burkitt lymphoma (BL......) cell lines of EBV-positive or -negative origin contained intermediate (5%-7%) frequencies of complex forms of mtDNA....

  15. Expression and humoral immune response to Hepatitis C virus using a plasmid DNA construct

    Directory of Open Access Journals (Sweden)

    Ray S

    2003-01-01

    Full Text Available PURPOSE: The objective of this study was to clone a c-DNA fragment of hepatitis C virus in a eukaryotic expression vector and to measure the efficacy of humoral immune responses in mice inoculated with this recombinant plasmid. This study was an attempt to lay a foundation for HCV nucleic acid vaccine development in the future. METHODS: A c-DNA fragment of BK146, a clone of HCV type 1b, was sub-cloned into an eukaryotic expression vector pMT3. HepG2 and COS cells were transfected with this construct, named pMT3-BK146. The expression of HCV mRNA and proteins was studied by reverse transcribed polymerase chain reaction, radio Immunoprecipitation (RIPA and immunofluorescence (IFA. The DNA of this construct was injected into the footpad of BALB/c mice and antibody response was tested by enzyme immunoassay and indirect immunofluorescence. RESULTS: COS and HepG2 cells transiently transfected with the recombinant plasmid pMT3-BK146 showed the expression of HCV proteins by RT-PCR, RIPA and immunofluorescence. This DNA clone when injected into Balb/c mice was able to generate specific antibody response to hepatitis C virus by ELISA and IFA. CONCLUSIONS: A c-DNA fragment of HCV cloned in an eukaryotic expression vector was able to express core protein. This DNA clone was also able to elicit antibody response in mice. This can be an initial step towards the development of a potential DNA vaccine for hepatitis C virus infection.

  16. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests.

    Science.gov (United States)

    Keeling, Christopher I; Henderson, Hannah; Li, Maria; Yuen, Mack; Clark, Erin L; Fraser, Jordie D; Huber, Dezene P W; Liao, Nancy Y; Docking, T Roderick; Birol, Inanc; Chan, Simon K; Taylor, Greg A; Palmquist, Diana; Jones, Steven J M; Bohlmann, Joerg

    2012-08-01

    Bark beetles (Coleoptera: Curculionidae: Scolytinae) are major insect pests of many woody plants around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant historical pest of western North American pine forests. It is currently devastating pine forests in western North America--particularly in British Columbia, Canada--and is beginning to expand its host range eastward into the Canadian boreal forest, which extends to the Atlantic coast of North America. Limited genomic resources are available for this and other bark beetle pests, restricting the use of genomics-based information to help monitor, predict, and manage the spread of these insects. To overcome these limitations, we generated comprehensive transcriptome resources from fourteen full-length enriched cDNA libraries through paired-end Sanger sequencing of 100,000 cDNA clones, and single-end Roche 454 pyrosequencing of three of these cDNA libraries. Hybrid de novo assembly of the 3.4 million sequences resulted in 20,571 isotigs in 14,410 isogroups and 246,848 singletons. In addition, over 2300 non-redundant full-length cDNA clones putatively containing complete open reading frames, including 47 cytochrome P450s, were sequenced fully to high quality. This first large-scale genomics resource for bark beetles provides the relevant sequence information for gene discovery; functional and population genomics; comparative analyses; and for future efforts to annotate the MPB genome. These resources permit the study of this beetle at the molecular level and will inform research in other Dendroctonus spp. and more generally in the Curculionidae and other Coleoptera. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Jokinen, Jenny; Lukashevich, Igor S. [Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  18. Evolution of DNA ligases of Nucleo-Cytoplasmic Large DNA viruses of eukaryotes: a case of hidden complexity

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2009-12-01

    Full Text Available Abstract Background Eukaryotic Nucleo-Cytoplasmic Large DNA Viruses (NCLDV encode most if not all of the enzymes involved in their DNA replication. It has been inferred that genes for these enzymes were already present in the last common ancestor of the NCLDV. However, the details of the evolution of these genes that bear on the complexity of the putative ancestral NCLDV and on the evolutionary relationships between viruses and their hosts are not well understood. Results Phylogenetic analysis of the ATP-dependent and NAD-dependent DNA ligases encoded by the NCLDV reveals an unexpectedly complex evolutionary history. The NAD-dependent ligases are encoded only by a minority of NCLDV (including mimiviruses, some iridoviruses and entomopoxviruses but phylogenetic analysis clearly indicated that all viral NAD-dependent ligases are monophyletic. Combined with the topology of the NCLDV tree derived by consensus of trees for universally conserved genes suggests that this enzyme was represented in the ancestral NCLDV. Phylogenetic analysis of ATP-dependent ligases that are encoded by chordopoxviruses, most of the phycodnaviruses and Marseillevirus failed to demonstrate monophyly and instead revealed an unexpectedly complex evolutionary trajectory. The ligases of the majority of phycodnaviruses and Marseillevirus seem to have evolved from bacteriophage or bacterial homologs; the ligase of one phycodnavirus, Emiliana huxlei virus, belongs to the eukaryotic DNA ligase I branch; and ligases of chordopoxviruses unequivocally cluster with eukaryotic DNA ligase III. Conclusions Examination of phyletic patterns and phylogenetic analysis of DNA ligases of the NCLDV suggest that the common ancestor of the extant NCLDV encoded an NAD-dependent ligase that most likely was acquired from a bacteriophage at the early stages of evolution of eukaryotes. By contrast, ATP-dependent ligases from different prokaryotic and eukaryotic sources displaced the ancestral NAD

  19. Specific Inhibition of Herpes Simplex Virus DNA Polymerase by Helical Peptides Corresponding to the Subunit Interface

    Science.gov (United States)

    Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.

    1995-02-01

    The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.

  20. Impact of two different commercial DNA extraction methods on BK virus viral load

    Directory of Open Access Journals (Sweden)

    Massimiliano Bergallo

    2016-03-01

    Full Text Available Background and aim: BK virus, a member of human polyomavirus family, is a worldwide distributed virus characterized by a seroprevalence rate of 70-90% in adult population. Monitoring of viral replication is made by evaluation of BK DNA by quantitative polymerase chain reaction. Many different methods can be applied for extraction of nucleic acid from several specimens. The aim of this study was to assess the impact of two different DNA extraction procedure on BK viral load. Materials and methods: DNA extraction procedure including the Nuclisens easyMAG platform (bioMerieux, Marcy l’Etoile, France and manual QIAGEN extraction (QIAGEN Hilden, Germany. BK DNA quantification was performed by Real Time TaqMan PCR using a commercial kit. Result and discussion: The samples capacity, cost and time spent were compared for both systems. In conclusion our results demonstrate that automated nucleic acid extraction method using Nuclisense easyMAG was superior to manual protocol (QIAGEN Blood Mini kit, for the extraction of BK virus from serum and urine specimens.

  1. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses

    Directory of Open Access Journals (Sweden)

    Ogata Hiroyuki

    2007-12-01

    Full Text Available Abstract Background DNA viruses have a wide range of genome sizes (5 kb up to 1.2 Mb, compared to 0.16 Mb to 1.5 Mb for obligate parasitic bacteria that do not correlate with their virulence or the taxonomic distribution of their hosts. The reasons for such large variation are unclear. According to the traditional view of viruses as gifted "gene pickpockets", large viral genome sizes could originate from numerous gene acquisitions from their hosts. We investigated this hypothesis by studying 67 large DNA viruses with genome sizes larger than 150 kb, including the recently characterized giant mimivirus. Given that horizontally transferred DNA often have anomalous nucleotide compositions differing from the rest of the genome, we conducted a detailed analysis of the inter- and intra-genome compositional properties of these viruses. We then interpreted their compositional heterogeneity in terms of possible causes, including strand asymmetry, gene function/expression, and horizontal transfer. Results We first show that the global nucleotide composition and nucleotide word usage of viral genomes are species-specific and distinct from those of their hosts. Next, we identified compositionally anomalous (cA genes in viral genomes, using a method based on Bayesian inference. The proportion of cA genes is highly variable across viruses and does not exhibit a significant correlation with genome size. The vast majority of the cA genes were of unknown function, lacking homologs in the databases. For genes with known homologs, we found a substantial enrichment of cA genes in specific functional classes for some of the viruses. No significant association was found between cA genes and compositional strand asymmetry. A possible exogenous origin for a small fraction of the cA genes could be confirmed by phylogenetic reconstruction. Conclusion At odds with the traditional dogma, our results argue against frequent genetic transfers to large DNA viruses from their

  2. KARAKTERISTIK SEKUEN cDNA PENGKODE GEN ANTI VIRUS DARI UDANG WINDU, Penaeus monodon

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2016-11-01

    Full Text Available Transgenesis pada ikan merupakan sebuah teknik modern yang berpotensi besar dalam menghasilkan organisme yang memiliki karakter lebih baik melalui rekombinan DNA gen target termasuk gen anti virus dalam peningkatan resistensi pada udang. Gen anti virus PmAV (Penaeus monodon Anti Viral gene merupakan salah satu gen pengkode anti virus yang berasal dari spesies krustase. Penelitian ini dilakukan untuk mengetahui karakteristik gen anti virus yang diisolasi dari udang windu, Penaeus monodon. Isolasi gen anti virus menggunakan metode Polymerase Chain Reaction (PCR dan selanjutnya dipurifikasi untuk sekuensing. Data yang dihasilkan dianalisis dengan program Genetyx Versi 7 dan basic local alignment search tool (BLAST. Hasil penelitian menunjukkan bahwa gen anti virus PmAV yang berhasil diisolasi dari cDNA udang windu dengan panjang sekuen 520 bp yang mengkodekan 170 asam amino. BLAST-N menunjukkan tingkat similaritas yang sangat tinggi (100% dengan gen anti virus yang ada di GeneBank. Komposisi asam amino penyusun gen anti virus yang paling besar adalah serin (10,00%, sedangkan yang terkecil adalah asam amino prolin dan lisin masing-masing 1,76%. Analisis sekuen gen dan deduksi asam amino (BLAST-P memperlihatkan adanya C-type lectin-like domain (CTLD yang memiliki kemiripan dengan gen C-type lectin yang diisolasi dari beberapa spesies krustase. Transgenic fish technology is a potential modern technique in producing better character organism through DNA recombinant of target genes including anti viral gene for improvement of shrimp immunity. PmAV (Penaeus monodon Anti Viral gene is one of anti viral genes isolated from crustacean species. The research was conducted to analyze the characteristics anti viral gene isolated from tiger prawn, Penaeus monodon. Anti viral gene was isolated using Polymerase Chain Reaction (PCR technique and then purified for sequencing. Data obtained were analyzed using Genetyx Version 7 software and basic local alignment

  3. Assessing the contribution of the herpes simplex virus DNA polymerase to spontaneous mutations

    Directory of Open Access Journals (Sweden)

    Leary Jeffry J

    2002-05-01

    Full Text Available Abstract Background The thymidine kinase (tk mutagenesis assay is often utilized to determine the frequency of herpes simplex virus (HSV replication-mediated mutations. Using this assay, clinical and laboratory HSV-2 isolates were shown to have a 10- to 80-fold higher frequency of spontaneous mutations compared to HSV-1. Methods A panel of HSV-1 and HSV-2, along with polymerase-recombinant viruses expressing type 2 polymerase (Pol within a type 1 genome, were evaluated using the tk and non-HSV DNA mutagenesis assays to measure HSV replication-dependent errors and determine whether the higher mutation frequency of HSV-2 is a distinct property of type 2 polymerases. Results Although HSV-2 have mutation frequencies higher than HSV-1 in the tk assay, these errors are assay-specific. In fact, wild type HSV-1 and the antimutator HSV-1 PAAr5 exhibited a 2–4 fold higher frequency than HSV-2 in the non-HSV DNA mutatagenesis assay. Furthermore, regardless of assay, HSV-1 recombinants expressing HSV-2 Pol had error rates similar to HSV-1, whereas the high mutator virus, HSV-2 6757, consistently showed signficant errors. Additionally, plasmid DNA containing the HSV-2 tk gene, but not type 1 tk or LacZ DNA, was shown to form an anisomorphic DNA stucture. Conclusions This study suggests that the Pol is not solely responsible for the virus-type specific differences in mutation frequency. Accordingly, it is possible that (a mutations may be modulated by other viral polypeptides cooperating with Pol, and (b the localized secondary structure of the viral genome may partially account for the apparently enhanced error frequency of HSV-2.

  4. Quasispecies analysis of JC virus DNA present in urine of healthy subjects.

    Science.gov (United States)

    Van Loy, Tom; Thys, Kim; Tritsmans, Luc; Stuyver, Lieven J

    2013-01-01

    JC virus is a human polyomavirus that infects the majority of people without apparent symptoms in healthy subjects and it is the causative agent of progressive multifocal leucoencephalopathy (PML), a disorder following lytic infection of oligodendrocytes that mainly manifests itself under immunosuppressive conditions. A hallmark for JC virus isolated from PML-brain is the presence of rearrangements in the non-coding control region (NCCR) interspersed between the early and late genes on the viral genome. Such rearrangements are believed to originate from the archetype JC virus which is shed in urine by healthy subjects and PML patients. We applied next generation sequencing to explore the non-coding control region variability in urine of healthy subjects in search for JC virus quasispecies and rearrangements reminiscent of PML. For 61 viral shedders (out of a total of 254 healthy subjects) non-coding control region DNA and VP1 (major capsid protein) coding sequences were initially obtained by Sanger sequencing. Deletions between 1 and 28 nucleotides long appeared in ∼24.5% of the NCCR sequences while insertions were only detected in ∼3.3% of the samples. 454 pyrosequencing was applied on a subset of 54 urine samples demonstrating the existence of JC virus quasispecies in four subjects (∼7.4%). Hence, our results indicate that JC virus DNA in urine is not always restricted to one unique virus variant, but can be a mixture of naturally occurring variants (quasispecies) reflecting the susceptibility of the non-coding control region for genomic rearrangements in healthy individuals. Our findings pave the way to explore the presence of viral quasispecies and the altered viral tropism that might go along with it as a potential risk factor for opportunistic secondary infections such as PML.

  5. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals.

    Science.gov (United States)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-Ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase-Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6.

  6. Advances in the characteristics and mechanisms of the transmission of plant viruses by insect vectors%植物病毒病媒介昆虫的传毒特性和机制研究进展

    Institute of Scientific and Technical Information of China (English)

    史晓斌; 谢文; 张友军

    2012-01-01

    Plant virus diseases are the "cancer" of the crops, and up to now there is still no effective method to control them. Currently 80% of the known plant virus diseases depend on insect vectors, and the transmission of plant viruses by insects is an interaction of insects, viruses and host plants. The procedure of plant virus transmission has several processes, such as acquisition, retention and inoculation, and a series of virus receptors or proteins are involved in the process. The ways of plant virus transmission consist of stylet-bome, foregut-borne and circulative types, which are nonpersistent, semipersistent and persistent, respectively. The acquisition access period, retention site and inoculation access period are different depending on different insect vectors. The procedure can be affected by many factors including sex and age of insect vectors, host plants, environmental conditions, and symbionts of insects. The main related proteins are as follows; coat protein, minor coat protein, GroEL, helper component and underside-jaw protein. In recent years, the research of plant virus genome has made a great progress, and the mechanism of the virus transmission has attracted an extensive attention. This article reviews the recent studies and developments of this field, including the ways of plant virus transmission vectored by insects, the factors influencing the efficiency of virus transmission, and the mechanisms of virus transmission, especially the possible receptors of the insects related to the virus transmission.%植物病毒病是农作物的“癌症”,至今缺少有效的防治方法.目前已知80%的植物病毒病依赖于媒介昆虫传播,而媒介昆虫对植物病毒的传播是一个昆虫、病毒、寄主植物互作的过程,历经获毒、持毒和传毒等多个阶段,昆虫体内一系列病毒受体或蛋白参与了这个过程.昆虫传播病毒的方式有口针携带式、前肠保留式和体内循环式3类,它们各自对应的

  7. Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linlin; Wang, Xinyan; Ma, Qiang; Lin, Zihan; Chen, Shufan; Li, Yang [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China); Lu, Lehui [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China); Qu, Hongping [Department of Biotechnology, College of Life Science, Jilin Normal University, Siping, 136000 (China); Su, Xingguang, E-mail: suxg@jlu.edu.cn [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2016-04-15

    In this work, a novel multiplex electrochemiluminescence (ECL) DNA sensor has been developed for determination of hepatitis B virus (HBV) and hepatitis C virus (HCV) based on multicolor CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs). The electrochemically synthesized graphene nanosheets (GNs) were selected as conducting bridge to anchor CdTe QDs{sub 551}-capture DNA{sub HBV} and CdTe QDs{sub 607}-capture DNA{sub HCV} on the glassy carbon electrode (GCE). Then, different concentrations of target DNA{sub HBV} and target DNA{sub HCV} were introduced to hybrid with complementary CdTe QDs-capture DNA. Au NPs-probe DNA{sub HBV} and Au NPs-probe DNA{sub HCV} were modified to the above composite film via hybrid with the unreacted complementary CdTe QDs-capture DNA. Au NPs could quench the electrochemiluminescence (ECL) intensity of CdTe QDs due to the inner filter effect. Therefore, the determination of target DNA{sub HBV} and target DNA{sub HCV} could be achieved by monitoring the ECL DNA sensor based on Au NPs-probe DNA/target DNA/CdTe QDs-capture DNA/GNs/GCE composite film. Under the optimum conditions, the ECL intensity of CdTe QDs{sub 551} and CdTe QDs{sub 607} and the concentration of target DNA{sub HBV} and target DNA{sub HCV} have good linear relationship in the range of 0.0005–0.5 nmol L{sup −1} and 0.001–1.0 nmol L{sup −1} respectively, and the limit of detection were 0.082 pmol L{sup −1} and 0.34 pmol L{sup −1} respectively (S/N = 3). The DNA sensor showed good sensitivity, selectivity, reproducibility and acceptable stability. The proposed DNA sensor has been employed for the determination of target DNA{sub HBV} and target DNA{sub HCV} in human serum samples with satisfactory results. - Highlights: • A novel electrochemiluminescence DNA sensor has been developed for the determination of target DNA{sub HBV} and target DNA{sub HCV}. • The DNA sensor shows good sensitivity, reproducibility and stability. • The ECL provided a

  8. Edible Insects

    NARCIS (Netherlands)

    Huis, van A.; Dunkel, F.V.

    2016-01-01

    The interest in insects as human food in the Western world is increasingly considered as a viable alternative to other protein sources. In tropical countries it is common practice and about 2000 insect species are eaten. Insects emit low levels of greenhouse gases, need little water, and require

  9. A heterologous DNA prime-Venezuelan equine encephalitis virus replicon particle boost dengue vaccine regimen affords complete protection from virus challenge in cynomolgus macaques.

    Science.gov (United States)

    Chen, Lan; Ewing, Dan; Subramanian, Hemavathy; Block, Karla; Rayner, Jonathan; Alterson, Kimberly D; Sedegah, Martha; Hayes, Curtis; Porter, Kevin; Raviprakash, Kanakatte

    2007-11-01

    A candidate vaccine (D1ME-VRP) expressing dengue virus type 1 premembrane and envelope proteins in a Venezuelan equine encephalitis (VEE) virus replicon particle (VRP) system was constructed and tested in conjunction with a plasmid DNA vaccine (D1ME-DNA) expressing identical dengue virus sequences. Cynomolgus macaques were vaccinated with three doses of DNA (DDD), three doses of VRP (VVV group), or a heterologous DNA prime-VRP boost regimen (DDV) using two doses of DNA vaccine and a third dose of VRP vaccine. Four weeks after the final immunization, the DDV group produced the highest dengue virus type 1-specific immunoglobulin G antibody responses and virus-neutralizing antibody titers. Moderate T-cell responses were demonstrated only in DDD- and DDV-vaccinated animals. When vaccinated animals were challenged with live virus, all vaccination regimens showed significant protection from viremia. DDV-immunized animals were completely protected from viremia (mean time of viremia = 0 days), whereas DDD- and VVV-vaccinated animals had mean times of viremia of 0.66 and 0.75 day, respectively, compared to 6.33 days for the control group of animals.

  10. Respiratory DNA viruses are undetectable in nasopharyngeal secretions from adenotonsillectomized children

    Science.gov (United States)

    Prates, Mirela Moreira; Gagliardi, Talita Bianca; Biasoli, Balduino; Leite, Marcelo Junqueira; Buzatto, Guilherme; Hyppolito, Miguel Angelo; Aragon, Davi Casale; Tamashiro, Edwin; Valera, Fabiana Cardoso Pereira

    2017-01-01

    Respiratory viruses are frequently detected in association with chronic tonsillar hypertrophy in the absence of symptoms of acute respiratory infection (ARI). The present analysis was done in follow-up to a previous clinical study done by this same group. Nasopharyngeal washes (NPWs) were obtained from 83 of 120 individuals at variable times post adenotonsillectomy, in the absence of ARI symptoms. A look back at virus detection results in NPWs from the same 83 individuals at the time of tonsillectomy revealed that 73.5% (61/83) were positive for one or more viruses. The overall frequency of respiratory virus detection in post-tonsillectomy NPWs was 58.8%. Rhinovirus (RV) was the agent most frequently detected, in 38 of 83 subjects (45.8%), followed by enterovirus in 7 (8.4%), human metapneumovirus in 6 (7.2%), human respiratory syncytial virus in 3 (3.6%) and human coronavirus in 1 (1.2%). Remarkably, there was no detection of adenovirus (HAdV) or human bocavirus (HBoV) in asymptomatic individuals in follow-up of adenotonsillectomy. In keeping with persistence of respiratory DNA viruses in human tonsils, tonsillectomy significantly reduces asymptomatic shedding of HAdV and HBoV in NPWs. PMID:28306724

  11. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Gagnon, David [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Gjoerup, Ole [Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111 (United States); Archambault, Jacques [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Bullock, Peter A., E-mail: Peter.Bullock@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  12. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    Energy Technology Data Exchange (ETDEWEB)

    Knipe, David M., E-mail: david_knipe@hms.harvard.edu

    2015-05-15

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.

  13. Virus-derived DNA drives mosquito vector tolerance to arboviral infection

    Science.gov (United States)

    Goic, Bertsy; Stapleford, Kenneth A.; Frangeul, Lionel; Doucet, Aurélien J.; Gausson, Valérie; Blanc, Hervé; Schemmel-Jofre, Nidia; Cristofari, Gael; Lambrechts, Louis; Vignuzzi, Marco; Saleh, Maria-Carla

    2016-01-01

    Mosquitoes develop long-lasting viral infections without substantial deleterious effects, despite high viral loads. This makes mosquitoes efficient vectors for emerging viral diseases with enormous burden on public health. How mosquitoes resist and/or tolerate these viruses is poorly understood. Here we show that two species of Aedes mosquitoes infected with two arboviruses from distinct families (dengue or chikungunya) generate a viral-derived DNA (vDNA) that is essential for mosquito survival and viral tolerance. Inhibition of vDNA formation leads to extreme susceptibility to viral infections, reduction of viral small RNAs due to an impaired immune response, and loss of viral tolerance. Our results highlight an essential role of vDNA in viral tolerance that allows mosquito survival and thus may be important for arbovirus dissemination and transmission. Elucidating the mechanisms of mosquito tolerance to arbovirus infection paves the way to conceptualize new antivectorial strategies to selectively eliminate arbovirus-infected mosquitoes. PMID:27580708

  14. Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Lukashevich, Igor S; Bredenbeek, Peter J; Franco, David

    2015-04-01

    Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime-boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines.

  15. Characterization of the archaeal thermophile Sulfolobus turreted icosahedral virus validates an evolutionary link among double-stranded DNA viruses from all domains of life.

    Science.gov (United States)

    Maaty, Walid S A; Ortmann, Alice C; Dlakić, Mensur; Schulstad, Katie; Hilmer, Jonathan K; Liepold, Lars; Weidenheft, Blake; Khayat, Reza; Douglas, Trevor; Young, Mark J; Bothner, Brian

    2006-08-01

    Icosahedral nontailed double-stranded DNA (dsDNA) viruses are present in all three domains of life, leading to speculation about a common viral ancestor that predates the divergence of Eukarya, Bacteria, and Archaea. This suggestion is supported by the shared general architecture of this group of viruses and the common fold of their major capsid protein. However, limited information on the diversity and replication of archaeal viruses, in general, has hampered further analysis. Sulfolobus turreted icosahedral virus (STIV), isolated from a hot spring in Yellowstone National Park, was the first icosahedral virus with an archaeal host to be described. Here we present a detailed characterization of the components forming this unusual virus. Using a proteomics-based approach, we identified nine viral and two host proteins from purified STIV particles. Interestingly, one of the viral proteins originates from a reading frame lacking a consensus start site. The major capsid protein (B345) was found to be glycosylated, implying a strong similarity to proteins from other dsDNA viruses. Sequence analysis and structural predication of virion-associated viral proteins suggest that they may have roles in DNA packaging, penton formation, and protein-protein interaction. The presence of an internal lipid layer containing acidic tetraether lipids has also been confirmed. The previously presented structural models in conjunction with the protein, lipid, and carbohydrate information reported here reveal that STIV is strikingly similar to viruses associated with the Bacteria and Eukarya domains of life, further strengthening the hypothesis for a common ancestor of this group of dsDNA viruses from all domains of life.

  16. Coordinated leading and lagging strand DNA synthesis by using the herpes simplex virus 1 replication complex and minicircle DNA templates.

    Science.gov (United States)

    Stengel, Gudrun; Kuchta, Robert D

    2011-01-01

    The origin-specific replication of the herpes simplex virus 1 genome requires seven proteins: the helicase-primase (UL5-UL8-UL52), the DNA polymerase (UL30-UL42), the single-strand DNA binding protein (ICP8), and the origin-binding protein (UL9). We reconstituted these proteins, excluding UL9, on synthetic minicircular DNA templates and monitored leading and lagging strand DNA synthesis using the strand-specific incorporation of dTMP and dAMP. Critical features of the assays that led to efficient leading and lagging stand synthesis included high helicase-primase concentrations and a lagging strand template whose sequence resembled that of the viral DNA. Depending on the nature of the minicircle template, the replication complex synthesized leading and lagging strand products at molar ratios varying between 1:1 and 3:1. Lagging strand products (∼0.2 to 0.6 kb) were significantly shorter than leading strand products (∼2 to 10 kb), and conditions that stimulated primer synthesis led to shorter lagging strand products. ICP8 was not essential; however, its presence stimulated DNA synthesis and increased the length of both leading and lagging strand products. Curiously, human DNA polymerase α (p70-p180 or p49-p58-p70-p180), which improves the utilization of RNA primers synthesized by herpesvirus primase on linear DNA templates, had no effect on the replication of the minicircles. The lack of stimulation by polymerase α suggests the existence of a macromolecular assembly that enhances the utilization of RNA primers and may functionally couple leading and lagging strand synthesis. Evidence for functional coupling is further provided by our observations that (i) leading and lagging strand synthesis produce equal amounts of DNA, (ii) leading strand synthesis proceeds faster under conditions that disable primer synthesis on the lagging strand, and (iii) conditions that accelerate helicase-catalyzed DNA unwinding stimulate decoupled leading strand synthesis but not

  17. Recombinant covalently closed circular hepatitis B virus DNA induces prolonged viral persistence in immunocompetent mice.

    Science.gov (United States)

    Qi, Zhihua; Li, Gaiyun; Hu, Hao; Yang, Chunhui; Zhang, Xiaoming; Leng, Qibin; Xie, Youhua; Yu, Demin; Zhang, Xinxin; Gao, Yueqiu; Lan, Ke; Deng, Qiang

    2014-07-01

    It remains crucial to develop a laboratory model for studying hepatitis B virus (HBV) chronic infection. We hereby produced a recombinant covalently closed circular DNA (rcccDNA) in view of the key role of cccDNA in HBV persistence. A loxP-chimeric intron was engineered into a monomeric HBV genome in a precursor plasmid (prcccDNA), which was excised using Cre/loxP-mediated DNA recombination into a 3.3-kb rcccDNA in the nuclei of hepatocytes. The chimeric intron was spliced from RNA transcripts without interrupting the HBV life cycle. In cultured hepatoma cells, cotransfection of prcccDNA and pCMV-Cre (encoding Cre recombinase) resulted in accumulation of nuclear rcccDNA that was heat stable and epigenetically organized as a minichromosome. A mouse model of HBV infection was developed by hydrodynamic injection of prcccDNA. In the presence of Cre recombinase, rcccDNA was induced in the mouse liver with effective viral replication and expression, triggering a compromised T-cell response against HBV. Significant T-cell hyporesponsiveness occurred in mice receiving 4 μg prcccDNA, resulting in prolonged HBV antigenemia for up to 9 weeks. Persistent liver injury was observed as elevated alanine transaminase activity in serum and sustained inflammatory infiltration in the liver. Although a T-cell dysfunction was induced similarly, mice injected with a plasmid containing a linear HBV replicon showed rapid viral clearance within 2 weeks. Collectively, our study provides an innovative approach for producing a cccDNA surrogate that established HBV persistence in immunocompetent mice. It also represents a useful model system in vitro and in vivo for evaluating antiviral treatments against HBV cccDNA. Importance: (i) Unlike plasmids that contain a linear HBV replicon, rcccDNA established HBV persistence with sustained liver injury in immunocompetent mice. This method could be a prototype for developing a mouse model of chronic HBV infection. (ii) An exogenous intron was

  18. Multi-antigenic DNA immunization using herpes simplex virus type 2 genomic fragments.

    Science.gov (United States)

    Braun, Ralph P; Dong, Lichun; Jerome, Sarah; Herber, Renee; Roberts, Lee K; Payne, Lendon G

    2008-01-01

    A novel DNA vaccine was generated using genomic fragments of a pathogen as the source of both the antigen coding and regulatory regions. The constructs, termed subgenomic vaccines (SGVs), incorporated genomic DNA sequences up to 45 kbp that encompass 15-20 different genes. The SGVs were developed to generate vaccines capable of expressing multiple genes from a single construct, which could be of great benefit for commercialization. The unique feature of the SGVs is that genes are expressed from their native promoters rather than heterologous promoters typical of DNA vaccines. SGVs composed of genomic fragments from the DS-DNA virus Herpes Simplex Virus Type 2 (HSV-2) induced HSV-2 specific immune responses following particle-mediated epidermal delivery (PMED) in mice and these responses protected animals from lethal infectious challenge. A second generation SGV (SGV-H2), intended as an HSV-2 therapeutic vaccine, was generated that had five HSV-2 genes and was capable of generating multi-antigenic responses in naïve mice, and enhancing responses in infected animals. When compared with standard single plasmid vaccines, immunization with the SGV-H2 was found to be at least as effective as single plasmids or plasmid mixtures. The activity of the SGV-H2 could be greatly enhanced by co-delivering plasmids expressing E. coli heat labile toxin (LT) or cholera toxin CT as adjuvants as has been found previously for standard single-gene DNA vaccines.

  19. Cloning and physical mapping of DNA complementary to potato leafroll virus RNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, O.P.

    1987-01-01

    Potato leafroll virus (PLRV) was aphid-transmitted from potato (Solanum tuberosum cultivar Russett Burbank) to ground cherry (Physalis floridana), where it was maintained by serial aphid transmission. Serological and plant differential tests indicated that the isolate was not contaminated with beet western yellows virus. Purified PLRV RNA was poly(A)-tailed in vitro and used as a template for reverse transcriptase, primed with oligo(dT). Alkaline gel electrophoresis of /sup 32/P-labeled first-strand complementary DNA (cDNA) indicated a major size range of 0.1 to 3.5 kilobases (kb). A small percentage of transcripts corresponded to full length PLRV RNA. Following RNase H and DNA polymerase I-mediated second strand synthesis, double-stranded cDNA was cloned into the Pst I site of the plasmid pUC9 using oligo (dC)-oligo(dG) tailing methodology. Escherichia coli JM109 transformants were screened with first-strand /sup 32/P-cDNA in colony hybridization experiments to confirm that recombinants contained PLRV-specific sequences.

  20. Rapid non-enzymatic extraction method for isolating PCR-quality camelpox virus DNA from skin.

    Science.gov (United States)

    Yousif, A Ausama; Al-Naeem, A Abdelmohsen; Al-Ali, M Ahmad

    2010-10-01

    Molecular diagnostic investigations of orthopoxvirus (OPV) infections are performed using a variety of clinical samples including skin lesions, tissues from internal organs, blood and secretions. Skin samples are particularly convenient for rapid diagnosis and molecular epidemiological investigations of camelpox virus (CMLV). Classical extraction procedures and commercial spin-column-based kits are time consuming, relatively expensive, and require multiple extraction and purification steps in addition to proteinase K digestion. A rapid non-enzymatic procedure for extracting CMLV DNA from dried scabs or pox lesions was developed to overcome some of the limitations of the available DNA extraction techniques. The procedure requires as little as 10mg of tissue and produces highly purified DNA [OD(260)/OD(280) ratios between 1.47 and 1.79] with concentrations ranging from 6.5 to 16 microg/ml. The extracted CMLV DNA was proven suitable for virus-specific qualitative and, semi-quantitative PCR applications. Compared to spin-column and conventional viral DNA extraction techniques, the two-step extraction procedure saves money and time, and retains the potential for automation without compromising CMLV PCR sensitivity.

  1. Immobilization and One-Dimensional Arrangement of Virus Capsids with Nanoscale Precision Using DNA Origami

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Nicholas [Univ. of California, Berkeley, CA (United States); Liu, Minghui [Arizona State Univ., Tempe, AZ (United States); Tong, Gary J [Univ. of California, Berkeley, CA (United States); Li, Zhe [Arizona State Univ., Tempe, AZ (United States); Liu, Yan [Arizona State Univ., Tempe, AZ (United States); Yan, Hao [Arizona State Univ., Tempe, AZ (United States); Francis, Matthew B [Univ. of California, Berkeley, CA (United States)

    2010-06-24

    DNA origami was used as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. To do this, we first modified the interior surface of bacteriophage MS2 capsids with fluorescent dyes as a model cargo. An unnatural amino acid on the external surface was then coupled to DNA strands that were complementary to those extending from origami tiles. Two different geometries of DNA tiles (rectangular and triangular) were used. The capsids associated with tiles of both geometries with virtually 100% efficiency under mild annealing conditions, and the location of capsid immobilization on the tile could be controlled by the position of the probe strands. The rectangular tiles and capsids could then be arranged into one-dimensional arrays by adding DNA strands linking the corners of the tiles. The resulting structures consisted of multiple capsids with even spacing (~100 nm). We also used a second set of tiles that had probe strands at both ends, resulting in a one-dimensional array of alternating capsids and tiles. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multicomponent systems from biological scaffolds using the power of rationally engineered DNA nanostructures.

  2. Development of procedures for the identification of human papilloma virus DNA fragments in laser plume

    Science.gov (United States)

    Woellmer, Wolfgang; Meder, Tom; Jappe, Uta; Gross, Gerd; Riethdorf, Sabine; Riethdorf, Lutz; Kuhler-Obbarius, Christina; Loening, Thomas

    1996-01-01

    For the investigation of laser plume for the existence of HPV DNA fragments, which possibly occur during laser treatment of virus infected tissue, human papillomas and condylomas were treated in vitro with the CO2-laser. For the sampling of the laser plume a new method for the trapping of the material was developed by use of water-soluble gelatine filters. These samples were analyzed with the polymerase chain reaction (PCR) technique, which was optimized in regard of the gelatine filters and the specific primers. Positive PCR results for HPV DNA fragments up to the size of a complete oncogene were obtained and are discussed regarding infectiousity.

  3. DNA microarrays immobilized on unmodified plastics in a microfluidic biochip for rapid typing of Avian Influenza Virus

    DEFF Research Database (Denmark)

    Yi, Sun; Perch-Nielsen, Ivan R.; Dufva, Martin

    2011-01-01

    , a portable cyclic olefin copolymer (COC) microarray device containing eight individually addressable microfluidic channels was developed for fast identification of Avian Influenza Virus (AIV) by DNA hybridization. This plastic biochip offers benefits of low fabrication cost and parallel processing...

  4. Analysis of simian virus 40 DNA with the restriction enzyme of Haemophilus aegyptius, endonuclease Z.

    Science.gov (United States)

    Huang, E S; Newbold, J E; Pagano, J S

    1973-04-01

    Limited digestion of simian virus 40 (SV40) DNA from both small- and large- plaque strains with the restriction endonuclease Z from Haemophilus aegyptius yielded 10 specific fragments. The number of nucleotide pairs for each fragment, determined by co-electrophoresis with phiX174 RF fragments produced by endonuclease Z, ranges from 2,050 to 80. The difference in the pattern between the large- and small-plaque strains is the disappearance of one fragment containing approximately 255 nucleotide pairs and the appearance of a new fragment with 145 nucleotide pairs. This finding can be explained either by deletions or insertions totaling 110 nucleotide pairs. Complementary RNA synthesized in vitro from the adeno-SV40 hybrid virus, strain ND-1, hybridized preferentially to four of the fragments of SV40 DNA.

  5. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Directory of Open Access Journals (Sweden)

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  6. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Science.gov (United States)

    Díaz-Badillo, Alvaro; de Lourdes Muñoz, María; Perez-Ramirez, Gerardo; Altuzar, Victor; Burgueño, Juan; Mendoza-Alvarez, Julio G.; Martínez-Muñoz, Jorge P.; Cisneros, Alejandro; Navarrete-Espinosa, Joel; Sanchez-Sinencio, Feliciano

    2014-01-01

    Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV) serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples. PMID:24776933

  7. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  8. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes.

    Science.gov (United States)

    Zhu, Wuyang; Li, Jiangjiao; Tang, Li; Wang, Huanqin; Li, Jia; Fu, Juanjuan; Liang, Guodong

    2011-07-10

    To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV) promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP) or Gaussia luciferase (G.luc) were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  9. DNA Virus Vectors for Vaccine Production in Plants: Spotlight on Geminiviruses

    Directory of Open Access Journals (Sweden)

    Kathleen L. Hefferon

    2014-08-01

    Full Text Available Plants represent a safe, efficacious and inexpensive production platform by which to provide vaccines and other therapeutic proteins to the world’s poor. Plant virus expression vector technology has rapidly become one of the most popular methods to express pharmaceutical proteins in plants. This review discusses several of the state-of-the-art plant expression systems based upon geminiviruses that have been engineered for vaccine production. An overview of the advantages of these small, single-stranded DNA viruses is provided and comparisons are made with other virus expression systems. Advances in the design of several different geminivirus vectors are presented in this review, and examples of vaccines and other biologics generated from each are described.

  10. Rapid quantification of hepatitis B virus DNA by real-time PCR using efficient TaqMan probe and extraction of virus DNA

    Institute of Scientific and Technical Information of China (English)

    Yan-Qin Lu; Jin-Xiang Han; Peng Qi; Wei Xu; Yan-Hui Zu; Bo Zhu

    2006-01-01

    AIM: To rapidly quantify hepatitis B virus (HBV) DNA by real-time PCR using efficient TaqMan probe and extraction methods of virus DNA.METHODS: Three standards were prepared by cloning PCR products which targeted S, C and X region of HBV genome into pGEM-T vector respectively. A pair of primers and matched TaqMan probe were selected by comparing the copy number and the Ct values of HBV serum samples derived from the three different standard curves using certain serum DNA. Then the efficiency of six HBV DNA extraction methods including guanidinium isothiocyanate, proteinase K, NaI, NaOH lysis, alkaline lysis and simple boiling was analyzed in sample A, B and C by real-time PCR. Meanwhile, 8 clinical HBV serum samples were quantified.RESULTS: The copy number of the same HBV serum sample originated from the standard curve of S, C and Xregions was 5.7 x 104/mL, 6.3 x 102/mL and 1.6 x 103/mL respectively. The relative Ct value was 26.6, 31.8 and 29.5 respectively. Therefore, primers and matched probe from S region were chosen for further optimization of six extraction methods. The copy number of HBV serum samples A, B and C was 3.49 x 109/mL, 2.08 x 106/mL and 4.40 x 107/mL respectively, the relative Ct value was 19.9, 30 and 26.2 in the method of NaOH lysis,which was the efficientest among six methods. Simple boiling showed a slightly lower efficiency than NaOH lysis. Guanidinium isothiocyanate, proteinase K and NaI displayed that the copy number of HBV serum sample A,B and C was around 105/mL, meanwhile the Ct value was about 30. Alkaline failed to quantify the copy number of three HBV serum samples. Standard deviation (SD) and coefficient variation (CV) were very low in all 8 clinical HBV serum samples, showing that quantification of HBV DNA in triplicate was reliable and accurate.CONCLUSION: Real-time PCR based on optimized primers and TaqMan probe from S region in combination with NaOH lysis is a simple, rapid and accurate method for quantification of HBV serum DNA.

  11. The preparation of an infectious full-length cDNA clone of Saffold virus

    OpenAIRE

    Okuwa Takako; Shimizu Hiroyuki; Asif Naeem; Hosomi Takushi; Himeda Toshiki; Muraki Yasushi; Ohara Yoshiro

    2011-01-01

    Abstract The pathogenicity of Saffold virus (SAFV) among humans still remains unclear, although it was identified as a novel human cardiovirus in 2007. In order to encourage the molecular pathogenetic studies of SAFV, we generated an infectious cDNA clone of SAFV type 3 (SAFV-3). The present study demonstrated that the synthesis of the full-length infectious RNA by T7 RNA polymerase was terminated by a homologous sequence motif with the human preproparathyroid hormone (PTH) signal in the SAFV...

  12. Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent;

    2009-01-01

    Young mink kits (n = 8)were vaccinated withDNA plasmids encoding the viral haemagglutinin protein (H) of a vaccine strain of Canine distemper virus (CDV). Virus neutralising (VN) antibodieswere induced after 2 immunisations and after the third immunisation all kits had high VN antibody titres...... demonstrate that early life DNA vaccination with the H gene of a CDV vaccine strain induced robust protective immunity against a recent wild type CDV....

  13. Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion

    Science.gov (United States)

    Luthra, Priya; Aguirre, Sebastian; Yen, Benjamin C.; Pietzsch, Colette A.; Sanchez-Aparicio, Maria T.; Tigabu, Bersabeh; Morlock, Lorraine K.; García-Sastre, Adolfo; Leung, Daisy W.; Williams, Noelle S.; Fernandez-Sesma, Ana; Bukreyev, Alexander

    2017-01-01

    ABSTRACT Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication. PMID:28377530

  14. Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion

    Directory of Open Access Journals (Sweden)

    Priya Luthra

    2017-04-01

    Full Text Available Ebola virus (EBOV protein VP35 inhibits production of interferon alpha/beta (IFN by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication.

  15. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing.

    Directory of Open Access Journals (Sweden)

    Jana Sachsenröder

    Full Text Available BACKGROUND: Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2 with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. RESULTS: The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9% and mammalian viruses (23.9%; 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV, represents a novel pig virus. CONCLUSION: The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures

  16. Temperature influences the expression profiling of immune response genes in rainbow trout following DNA vaccination and VHS virus infection

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Gautier, Laurent; Rasmussen, Jesper Skou

    A DNA vaccine encoding the glycoprotein (G) genes of the salmonid rhabdovirus viral haemorrhagic septicaemia virus (VHSV) has proven highly efficient against the disease caused by this virus in rainbow trout (Oncorhynchus mykiss). Several studies have demonstrated that this vaccine induces both...

  17. Detection of Avian Influenza Virus by Fluorescent DNA Barcode-based Immunoassay with Sensitivity Comparable to PCR

    DEFF Research Database (Denmark)

    Cao, Cuong; Dhumpa, Raghuram; Bang, Dang Duong

    2010-01-01

    In this paper, a coupling of fluorophore-DNA barcode and bead-based immunoassay for detecting avian influenza virus (AIV) with PCR-like sensitivity is reported. The assay is based on the use of sandwich immunoassay and fluorophore-tagged oligonucleotides as representative barcodes. The detection...... potential as an alternative for surveillance of epidemic outbreaks caused by AIV, other viruses and microorganisms....

  18. Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses.

    Science.gov (United States)

    Rao, Venigalla B; Feiss, Michael

    2015-11-01

    Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead's portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL's N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage ϕ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics.

  19. Canine distemper virus DNA vaccination of mink can overcome interference by maternal antibodies.

    Science.gov (United States)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent; Pertoldi, Cino; Blixenkrone-Møller, Merete

    2015-03-10

    Canine distemper virus (CDV) is highly contagious and can cause severe disease against which conventional live vaccines are ineffective in the presence of maternal antibodies. Vaccination in the presences of maternal antibodies was challenged by vaccination of 5 days old and 3 weeks old mink kits with CDV DNA vaccines. Virus neutralising (VN) antibody responses were induced in mink kits vaccinated with a plasmid encoding the haemaglutinin protein (H) of CDV (n=5, pCDV-H) or a combination of the H, fusion (F) and nucleoprotein (N) of CDV (n=5, pCDV-HFN). These DNA vaccinated kits were protected against virulent experimental infection with field strains of CDV. The pCDV-H was more efficient in inducing protective immunity in the presence of maternal antibodies compared to the pCDV-HFN. The results show that DNA vaccination with the pCDV-H or pCDV-HFN (n=4) only given once at 5 days of age induces virus specific immune response in neonatal mink and protection against virulent CDV exposure later in life.

  20. TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING.

    Directory of Open Access Journals (Sweden)

    Yanming Wang

    2015-06-01

    Full Text Available Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α was induced by herpes simplex virus type 1 (HSV-1 infection in dendritic cells (DCs. Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING, which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING.

  1. TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING.

    Directory of Open Access Journals (Sweden)

    Yanming Wang

    2015-06-01

    Full Text Available Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α was induced by herpes simplex virus type 1 (HSV-1 infection in dendritic cells (DCs. Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING, which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING.

  2. Insect immunology and hematopoiesis.

    Science.gov (United States)

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.

  3. Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions

    OpenAIRE

    Dietzgen, Ralf G.; Krin S. Mann; Karyn N. Johnson

    2016-01-01

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus...

  4. Immunogenicity of Virus Like Particle Forming Baculoviral DNA Vaccine against Pandemic Influenza H1N1.

    Directory of Open Access Journals (Sweden)

    Yong-Dae Gwon

    Full Text Available An outbreak of influenza H1N1 in 2009, representing the first influenza pandemic of the 21st century, was transmitted to over a million individuals and claimed 18,449 lives. The current status in many countries is to prepare influenza vaccine using cell-based or egg-based killed vaccine. However, traditional influenza vaccine platforms have several limitations. To overcome these limitations, many researchers have tried various approaches to develop alternative production platforms. One of the alternative approach, we reported the efficacy of influenza HA vaccination using a baculoviral DNA vaccine (AcHERV-HA. However, the immune response elicited by the AcHERV-HA vaccine, which only targets the HA antigen, was lower than that of the commercial killed vaccine. To overcome the limitations of this previous vaccine, we constructed a human endogenous retrovirus (HERV envelope-coated, baculovirus-based, virus-like-particle (VLP-forming DNA vaccine (termed AcHERV-VLP against pandemic influenza A/California/04/2009 (pH1N1. BALB/c mice immunized with AcHERV-VLP (1×107 FFU AcHERV-VLP, i.m. and compared with mice immunized with the killed vaccine or mice immunized with AcHERV-HA. As a result, AcHERV-VLP immunization produced a greater humoral immune response and exhibited neutralizing activity with an intrasubgroup H1 strain (PR8, elicited neutralizing antibody production, a high level of interferon-γ secretion in splenocytes, and diminished virus shedding in the lung after challenge with a lethal dose of influenza virus. In conclusion, VLP-forming baculovirus DNA vaccine could be a potential vaccine candidate capable of efficiently delivering DNA to the vaccinee and VLP forming DNA eliciting stronger immunogenicity than egg-based killed vaccines.

  5. Replication of hepatitis B virus in primary duck hepatocytes transfected with linear viral DNA

    Institute of Scientific and Technical Information of China (English)

    Yun-Qing Yao; Wei-Ping Zhou; Hong Ren; Qi Liu; Shu-Hua Guo; Ding-Feng Zhang; Ni Tang; Ai-Long Huang; Xiao-Yi Zou; Jiang-Feng Xiao; Yun Luo; Da-Zhi Zhang; Bo Wang

    2005-01-01

    AIM: To explore the expression and replication of hepatitis B virus (HBV) DNA in primary duck hepatocytes (PDHs).METHODS: Complete HBV genome was transfected into PDHs by electroporation (transfected group, 1.19×1012copies of linear HBV DNA/1×107 PDHs). After 1-5 d of transfection, HBsAg and HBeAg in the supernatant and lysate of PDHs were measured with the IMX System.Meanwhile, replicative intermediates of HBV DNA were analyzed by Southern blotting and Dot blotting. PDHs electroporated were used as control group.RESULTS: HBsAg in the hepatocyte lysates of transfected group was 15.24 (1 d), 14.55 (3 d) and 5.13 (5 d; P/N values, positive≥2.1) respectively. HBeAg was negative (<2.1). Both HBsAg and HBeAg were negative in the supernatant of transfected group. Dot blotting revealed that HBV DNA was strongly positive in the transfected group and negative in the control group. Southern blot analysis of intracellular total DNA indicated that there were relaxed circular (rc DNA), covalently closed circular (ccc DNA), and single-stranded (ss DNA) HBV DNA replicative intermediates in the transfected group, there was no integrated HBV DNA in the cellular genome. These parameters were negative in control group.CONCLUSION: Expression and replication of HBV genes can occur in hepatocytes from non-mammalian species.HBV replication has no critical species-specificity, and yet hepatic-specific regulating factors in hepatocytes may be essential for viral replication.

  6. Plasma EBV-DNA monitoring in Epstein-Barr virus-positive Hodgkin lymphoma patients.

    Science.gov (United States)

    Spacek, Martin; Hubacek, Petr; Markova, Jana; Zajac, Miroslav; Vernerova, Zdenka; Kamaradova, Katerina; Stuchly, Jan; Kozak, Tomas

    2011-01-01

    Epstein-Barr virus (EBV) is associated with approximately one-third of Hodgkin lymphoma (HL) cases. EBV-DNA is often present in the plasma and whole blood of EBV-associated HL patients. However, the significance of EBV-DNA monitoring is debated. In a cohort of 165 adult HL patients, EBV-DNA viral load was prospectively monitored both in the plasma and whole blood. Diagnostic tissue samples of all patients were histologically reviewed; in 72% nodular sclerosis was detected, 24% presented with mixed cellularity (MC), and 5% had other type of HL. Tissues from 150 patients were also analyzed for the presence of latent EBV infection using in situ hybridization for EBV-encoded RNA (EBER) and immunohistochemistry for latent membrane protein (LMP1). Using these methods, 29 (19%) patients were classified as EBV positive. Using real-time quantitative PCR, 22 (76%) of EBV-positive HL patients had detectable EBV-DNA in the plasma and 19 (66%) patients in whole blood prior to therapy. In the group of EBV-negative HL cases, three (2%) patients had detectable plasma EBV-DNA and 30 (25%) patients whole blood EBV-DNA before treatment. EBV-positive HL was significantly associated with EBV-DNA positivity both in the plasma and whole blood in pretreatment samples, increasing age and MC subtype. Serial analysis of plasma EBV-DNA showed that response to therapy was associated with decline in viral load. Moreover, significantly increased plasma EBV-DNA level recurred before disease relapse in one patient. Our results further suggest that the assessment of plasma EBV-DNA viral load might be of value for estimation of prognosis and follow-up of patients with EBV-positive HL.

  7. Cellular DNA repair cofactors affecting hepatitis B virus infection and replication

    Institute of Scientific and Technical Information of China (English)

    Fan Zhao; Ning-Bo Hou; Ting Song; Xiang He; Zi-Rui Zheng; Qing-Jun Ma; Li Li; Yan-Hong Zhang; Hui Zhong

    2008-01-01

    AIM: To investigate whether hepatitis B virus (HBV)infection activates DNA damage response and DNA repair cofactors inhibit HBV infection and replication.METHODS: Human hepatocyte cell line HL7702 was studied. Immunoblotting was performed to test the expression of ataxia telangiectasia-mutated (ATM)-Rad3-related protein (ATR), p21 and the level of phosphorylation of Chk1, p53, H2AX, ATM in HBV-infected or non-infected-cells. Special short RNAi oligos was transfected to induce transient ATR knockdown in HL7702. ATR-ATM chemical inhibitors caffeine (CF) and theophylline (TP), or Chk1 inhibitor 7-hydroxystaurosporine (UCN01) was studied to determine whether they suppress cellular DNA damage response and MG132 inhibits proteasome.RESULTS: The ATR checkpoint pathway, responding to single-strand breaks in DNA, was activated in response to HBV infection. ATR knockdown cells decreased the HBV DNA yields, implying that HBV infection and replication could activate and exploit the activated DNA damage response. CF/TP or UCN01 reduced the HBV DNA yield by 70% and 80%, respectively. HBV abrogated the ATR-dependent DNA damage signaling pathway by degrading p21, and introduction of the p21 protein before HBV infection reduced the HBV DNA yield. Consistent with this result, p21 accumulation after MG132 treatment also sharply decreased the HBV DNA yield.CONCLUSION: HBV infection can be treated with therapeutic approaches targeting host cell proteins by inhibiting a cellular gene required for HBV replication or by restoring a response abrogated by HBV, thus providing a potential approach to the prevention and treatrnent of HBV infection.

  8. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins

    Directory of Open Access Journals (Sweden)

    Karyna eRosario

    2015-07-01

    Full Text Available Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-stranded DNA (ssDNA viruses that encode a conserved replication initiator protein (Rep in the marine environment. Although eukaryotic circular Rep-encoding ssDNA (CRESS-DNA viruses were originally thought to only infect plants and vertebrates, recent studies have identified these viruses in a number of invertebrates. To further explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA genomes, with Reps that share less than 60.1% identity with previously reported viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included approximately one third of the marine invertebrate associated viruses identified here and whose members may represent a novel family. Investigation of putative capsid proteins (Cap encoded within the eukaryotic CRESS-DNA viral genomes from this study and those in GenBank demonstrated conserved patterns of predicted intrinsically disordered regions (IDRs, which can be used to complement similarity-based searches to identify divergent structural proteins within novel genomes. Overall, this study expands our knowledge of CRESS-DNA viruses associated with invertebrates and explores a new tool to evaluate divergent structural proteins encoded by these viruses.

  9. DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Hearn, Jason; Wang, Eryu; Weaver, Scott; Pushko, Peter

    2014-06-15

    Chikungunya virus (CHIKV) causes outbreaks of chikungunya fever worldwide and represents an emerging pandemic threat. Vaccine development against CHIKV has proved challenging. Currently there is no approved vaccine or specific therapy for the disease. To develop novel experimental CHIKV vaccine, we used novel immunization DNA (iDNA) infectious clone technology, which combines the advantages of DNA and live attenuated vaccines. Here we describe an iDNA vaccine composed of plasmid DNA that encode the full-length infectious genome of live attenuated CHIKV clone 181/25 downstream from a eukaryotic promoter. The iDNA approach was designed to initiate replication of live vaccine virus from the plasmid in vitro and in vivo. Experimental CHIKV iDNA vaccines were prepared and evaluated in cultured cells and in mice. Transfection with 10 ng of iDNA was sufficient to initiate replication of vaccine virus in vitro. Vaccination of BALB/c mice with a single 10 μg of CHIKV iDNA plasmid resulted in seroconversion, elicitation of neutralizing antibodies, and protection from experimental challenge with a neurovirulent CHIKV. Live attenuated CHIKV 181/25 vaccine can be delivered in vitro and in vivo by using DNA vaccination. The iDNA approach appears to represent a promising vaccination strategy for CHIK and other alphaviral diseases. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Reconstruction of putative DNA virus from endogenous rice tungro bacilliform virus-like sequences in the rice genome: implications for integration and evolution

    Directory of Open Access Journals (Sweden)

    Kishima Yuji

    2004-10-01

    Full Text Available Abstract Background Plant genomes contain various kinds of repetitive sequences such as transposable elements, microsatellites, tandem repeats and virus-like sequences. Most of them, with the exception of virus-like sequences, do not allow us to trace their origins nor to follow the process of their integration into the host genome. Recent discoveries of virus-like sequences in plant genomes led us to set the objective of elucidating the origin of the repetitive sequences. Endogenous rice tungro bacilliform virus (RTBV-like sequences (ERTBVs have been found throughout the rice genome. Here, we reconstructed putative virus structures from RTBV-like sequences in the rice genome and characterized to understand evolutionary implication, integration manner and involvements of endogenous virus segments in the corresponding disease response. Results We have collected ERTBVs from the rice genomes. They contain rearranged structures and no intact ORFs. The identified ERTBV segments were shown to be phylogenetically divided into three clusters. For each phylogenetic cluster, we were able to make a consensus alignment for a circular virus-like structure carrying two complete ORFs. Comparisons of DNA and amino acid sequences suggested the closely relationship between ERTBV and RTBV. The Oryza AA-genome species vary in the ERTBV copy number. The species carrying low-copy-number of ERTBV segments have been reported to be extremely susceptible to RTBV. The DNA methylation state of the ERTBV sequences was correlated with their copy number in the genome. Conclusions These ERTBV segments are unlikely to have functional potential as a virus. However, these sequences facilitate to establish putative virus that provided information underlying virus integration and evolutionary relationship with existing virus. Comparison of ERTBV among the Oryza AA-genome species allowed us to speculate a possible role of endogenous virus segments against its related disease.

  11. Characterization of Immune Responses Induced by Ebola Virus Glycoprotein (GP) and Truncated GP Isoform DNA Vaccines and Protection Against Lethal Ebola Virus Challenge in Mice

    Science.gov (United States)

    Li, Wenfang; Ye, Ling; Carrion, Ricardo; Mohan, Gopi S.; Nunneley, Jerritt; Staples, Hilary; Ticer, Anysha; Patterson, Jean L.; Compans, Richard W.; Yang, Chinglai

    2015-01-01

    In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed “antigenic subversion.” To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection. PMID:25877553

  12. Detection of tomato yellow leaf curl Thailand virus by PCR without DNA extraction.

    Science.gov (United States)

    Ieamkhang, Supaporn; Riangwong, Lumpueng; Chatchawankanphanich, Orawan

    2005-11-01

    We report the simple and rapid method for detection of tomato yellow leaf curl Thailand virus (TYLCTHV) based on the direct capture of virus particles to the surface of a polymerase chain reaction (PCR) tube. This method allowed PCR without the time-consuming procedures of DNA extraction from infected plant tissue. A small amount of tomato tissue (approximately 10 mg) was ground in extraction buffer to release viruses from plant tissues. The constituents of the plant extract that might inhibit PCR activity were discarded by washing the tube with PBST buffer before adding the PCR mixture to the tube. This method was used for detection of TYLCTHV with plant sap solution diluted up to 1:20,000 and was more sensitive than an enzyme-linked immunosorbent assay (ELISA) method. In addition, this method can be used for detection of TYLCTHV in viruliferous whiteflies. The PCR tubes with captured TYLCTHV could be used for PCR, after storage at 4 degrees C for 4 wk. The method presented here was used for detection of begomoviruses in cucurbit and pepper. In addition, this method was effectively used to detect papaya ringspot virus in papaya and zucchini yellow mosaic virus in cucumber by reverse transcriptase (RT)-PCR.

  13. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells.

    Directory of Open Access Journals (Sweden)

    Y Lei

    Full Text Available DENV envelope glycoprotein (E is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.

  14. 常见嗜尸性昆虫mtDNA提取方法的比较%Comparison of mtDNA Extracting Methods for Common Sarcosaphagous Insects

    Institute of Scientific and Technical Information of China (English)

    陈瑶清; 郭亚东; 李茂枝; 熊枫; 李剑波; 蔡继峰

    2011-01-01

    目的 比较十六烷基三甲基溴化铵(cetyl triethyl ammonium bromide,CTAB)法、十二烷基硫酸钠-醋酸钾(sodium dodecyl sulfate-potassium acetate,SDS-KAc)法和十二烷基硫酸钠-蛋白酶K(sodium dodecyl sulfate-protein K,SDS-PK)法对法医学常见嗜尸性昆虫mtDNA的提取效果.方法 随机采集放置在长沙地区室外草地家兔尸体上的大头金蝇、双色葬甲、金龟科、墨胸胡蜂4种72只常见嗜尸性昆虫,分别采用CTAB、SDS-KAc、SDS-PK 3种方法提取总DNA.核酸蛋白测定仪检测DNA纯度及浓度,用mtDNA特异性引物进行PCR扩增,琼脂糖凝胶电泳检测PCR产物,对PCR产物进行序列测定,将测序结果上传到GenBank.结果 3种方法均能成功提取4种嗜尸性昆虫的mtDNA,SDS-PK法提取效果最好,CTAB法对陈旧性样本提取效果优于另两种方法,SDS-KAc法对各类样本的提取效果相近.结论 实验中应根据不同情况,选择最恰当的提取方法.制备高质量DNA推荐使用SDS-PK法,陈旧性样本推荐使用CTAB法,在各类预实验中可采取低成本的SDS-KAc法.%Objective To compare effects of three different methods for mtDNA extraction from common sarcosaphagous insects including cetyl trimethyl ammonium bromide (CTAB) method, sodium dodecyl sul-fate-potassium acetate (SDS-Kac) method and sodium dodecyl sulfate-proteinase K (SDS-PK) method. Methods Seventy-two insects from four species [Chrysomya megacephala (Fabricius, 1784), Eusilpha bi-color (Fairmaire, 1896), Paraeutrichopus pecoudi (Mateu, 1954), Vespa velutina (Lepeletier, 1836)] were collected from the corpses of the rabbits in Changsha district. The total DNA of above samples was extracted by CTAB, SDS-Kac and SDS-PK methods. The purity and concentration of DNA were examined by protein-nucleic acid spectrophotometry, and mtDNA were amplified by specific primers and PCR products were detected by agarose gel electrophoresis. Then PCR products were sequenced and subsequently uploaded to

  15. Discovery of two novel viruses expands the diversity of single-stranded DNA and single-stranded RNA viruses infecting a cosmopolitan marine diatom.

    Science.gov (United States)

    Kimura, Kei; Tomaru, Yuji

    2015-02-01

    Recent studies have suggested that diatom viruses are an important factor affecting diatom population dynamics, which in turn are important in considering marine primary productivity. The marine planktonic diatom Chaetoceros tenuissimus Meunier is a cosmopolitan species and often causes blooms off the western coast of Japan. To date, two viruses, C. tenuissimus DNA virus (CtenDNAV) type I and CtenRNAV type I, have been identified that potentially affect C. tenuissimus population dynamics in the natural environment. In this study, we successfully isolated and characterized two additional novel viruses (CtenDNAV type II and CtenRNAV type II). This paper reports the basic characteristics of these new viruses isolated from surface water or sediment from the Hiroshima Bay, Japan. The physiological and morphological characteristics of the two new viruses were similar to those of the previously isolated viruses. However, the amino acid sequences of the structural proteins of CtenDNAV type II and CtenRNAV type II were clearly distinct from those of both type I viruses, with identity scores of 38.3% and 27.6%, respectively. Our results suggest that at least four genetically distinct viruses sharing the same diatom host are present in western Japan and affect the population dynamics of C. tenuissimus. Moreover, the result that CtenRNAV type II lysed multiple diatom species indicates that RNA viruses may affect various diatom populations in the natural environment.

  16. Varicella-zoster virus (VZV) origin of DNA replication oriS influences origin-dependent DNA replication and flanking gene transcription.

    Science.gov (United States)

    Khalil, Mohamed I; Sommer, Marvin H; Hay, John; Ruyechan, William T; Arvin, Ann M

    2015-07-01

    The VZV genome has two origins of DNA replication (oriS), each of which consists of an AT-rich sequence and three origin binding protein (OBP) sites called Box A, C and B. In these experiments, the mutation in the core sequence CGC of the Box A and C not only inhibited DNA replication but also inhibited both ORF62 and ORF63 expression in reporter gene assays. In contrast the Box B mutation did not influence DNA replication or flanking gene transcription. These results suggest that efficient DNA replication enhances ORF62 and ORF63 transcription. Recombinant viruses carrying these mutations in both sites and one with a deletion of the whole oriS were constructed. Surprisingly, the recombinant virus lacking both copies of oriS retained the capacity to replicate in melanoma and HELF cells suggesting that VZV has another origin of DNA replication.

  17. Infectious RNA transcripts from Ross River virus cDNA clones and the construction and characterization of defined chimeras with Sindbis virus.

    Science.gov (United States)

    Kuhn, R J; Niesters, H G; Hong, Z; Strauss, J H

    1991-06-01

    We have constructed a full-length cDNA clone of the virulent T48 strain of Ross River virus, a member of the alphavirus genus. Infectious RNA can be transcribed from this clone using SP6 or T7 RNA polymerase. The rescued virus has properties indistinguishable from those of the T48 strain of Ross River virus. We have used this clone, together with a full-length cDNA clone of Sindbis virus, to construct chimeric plasmids in which the 5' and the 3' nontranslated regions of the Sindbis and Ross River genomes were exchanged. The nontranslated regions of the two viral genomes differ in both size and sequence although they maintain specific conserved sequence elements. Virus was recovered from all four chimeras. Chimeras containing heterologous 3' nontranslated regions had replicative efficiencies equal to those of the parents. In contrast, the chimeras containing heterologous 5' nontranslated regions were defective in RNA synthesis and virus production, and the severity of the defect was dependent upon the host. Replication of a virus containing a heterologous 5' nontranslated region may be inefficient due to the formation of defective protein-RNA complexes, whereas, the presumptive complexes formed between host or virus proteins and the 3' nontranslated region to promote RNA synthesis appear to function normally in the chimeras.

  18. Establishment and assessment of two methods for quantitative detection of serum duck hepatitis B virus DNA

    Institute of Scientific and Technical Information of China (English)

    Ya-Xi Chen; Ai-Long Huang; Zhen-Yuan Qi; Shu-Hua Guo

    2004-01-01

    AIM: To establish and assess the methods for quantitative detection of serum duck hepatitis B virus (DHBV) DNA by quantitative membrane hybridization using DHBV DNA probe labeled directly with alkaline phosphatase and fluorescence quantitative PCR (qPCR).METHODS: Probes of DHBV DNA labeled directly with alkaline phosphatase and chemiluminescent substrate CDP-star were used in this assay. DHBV DNA was detected by autoradiography,and then scanned by DNA dot-blot. In addition, three primers derived from DHBV DNA S gene were designed. Semi-nested primer was labeled by AmpliSensor. Standard curve of the positive standards of DHBV DNA was established after asymmetric preamplification, semi-nested amplification and on-line detection. Results from 100 samples detected separately by alkaline phosphatase direct-labeled DHBV DNA probe with dot-blot hybridization and digoxigeninlabeled DHBV DNA probe hybridization. Seventy samples of duck serum were tested by fluorescent qPCR and digoxigeninlabeled DHBV DNA probe in dot-blot hybridization assay and the correlation of results was analysed.RESULTS: Sensitivity of alkaline phosphatase direct-labeled DHBV DNA probe was 10 pg. The coincidence was 100%compared with digoxigenin-labeled DHBV DNA probe assay.After 30 cycles, amplification products showed two bands of about 180 bp and 70 bp by 20 g/L agarose gel electrophoresis.Concentration of amplification products was in direct proportion to the initial concentration of positive standards. The detection index was in direct proportion to the quantity of amplification products accumulated in the current cycle.The initial concentration of positive standards was in inverse proportion to the number of cycles needed for enough quantities of amplification products. Correlation coefficientof the results was (0.97, P<0.01) between fluorescent qPCRand dot-blot hybridization.CONCLUSION: Alkaline phosphatase direct-labeled DHBV DNA probe in dot-blot hybridization and fluorescent qPCR can be

  19. Immune Responses in Mice Injected with gD Plasmid DNA of Infectious Bovine Rhinotracheitis Virus

    Institute of Scientific and Technical Information of China (English)

    LI Ji-chang; TONG Guang-zhi; QIU Hua-ji

    2004-01-01

    The gene encoding gD of isolate Luojing of infectious bovine rhinotracheitis virus (IBRV)was amplified,sequenced, and cloned into plasmid pcDNA 3.1, resulting in a recombinant pcDNA-gD. Groups of BALB/c mice were injected with 100 μ g of plasmid only or together with liposome. After immunization, serum samples were collected from mice every 2 weeks for a 10-week period and tested for protein-specific antibody with enzyme-linked immunosorbent assay(ELISA). It was showed that the plasmid encoding IBRV glycopretein D developed gene-specific antibody. This report indicates the potential of DNA injection as a method of vaccination.

  20. DNA barcoding techniques for avian influenza virus surveillance in migratory bird habitats.

    Science.gov (United States)

    Lee, Dong-Hun; Lee, Hyun-Jeong; Lee, Youn-Jeong; Kang, Hyun-Mi; Jeong, Ok-Mi; Kim, Min-Chul; Kwon, Ji-Sun; Kwon, Jun-Hun; Kim, Chang-Bae; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2010-04-01

    Avian influenza virus (AIV) circulates among free-ranging, wild birds. We optimized and validated a DNA barcoding technique for AIV isolation and host-species identification using fecal samples from wild birds. DNA barcoding was optimized using tissue and fecal samples from known bird species, and the method was shown to distinguish 26 bird species. Subsequently, fecal samples (n=743) collected from wild waterfowl habitats confirmed the findings from the laboratory tests. All identified AIV-positive hosts (n=35) were members of the order Anseriformes. We successfully applied the DNA barcoding technique to AIV surveillance and examined AIV epidemiology and host ecology in these wild waterfowl populations. This methodology may be useful in the design of AIV surveillance strategies.

  1. Development of multiplex PCR for simultaneous detection and differentiation of six DNA and RNA viruses from clinical samples of sheep and goats.

    Science.gov (United States)

    He, Ya-Peng; Zhang, Qi; Fu, Ming-Zhe; Xu, Xin-Gang

    2017-05-01

    Multiplex reverse transcription-polymerase chain reaction (RT-PCR) and PCR protocols were developed and subsequently evaluated for its effectiveness in detecting simultaneously single and mixed infections in sheep and goats. Specific primers for three DNA viruses and three RNA viruses, including foot and mouth disease virus (FMDV), Bluetongue virus (BTV), peste des petits ruminants virus (PPRV), sheeppox virus (SPPV), goatpox virus (GTPV) and orf virus (ORFV) were used for testing procedure. A single nucleic acid extraction protocol was adopted for the simultaneous extraction of both RNA and DNA viruses. The multiplex PCR consisted with two-step procedure which included reverse transcription of RNA virus and multiplex PCR of viral cDNA and DNA. The multiplex PCR assay was shown to be sensitive because it could detect at least 100pg of viral genomic DNA or RNA from a mixture of six viruses in a reaction. The assay was also highly specific in detecting one or more of the same viruses in various combinations in specimens. Thirty seven clinical samples collected from sheep and goats were detected among forty three samples tested by both uniplex and multiplex PCR, showing highly identification. As results of the sensitivity and specificity, the multiplex PCR is a useful approach for clinical diagnosis of mixed infections of DNA and RNA viruses in sheep and goats with a reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Detection of Torque Teno Virus DNA in Exhaled Breath by Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Kawanishi,Satoshi

    2012-10-01

    Full Text Available To determine whether exhaled breath contains Torque teno virus (TTV or not, we tested exhaled breath condensate (EBC samples by semi-nested PCR assay. We detected TTV DNA in 35% (7/20 of EBC samples collected from the mouth of one of the authors, demonstrating that TTV DNA is excreted in exhaled breath with moderate frequency. TTV DNA was detected also in oral EBC samples from 4 of 6 other authors, indicating that TTV DNA excretion in exhaled breath is not an exception but rather a common phenomenon. Furthermore, the same assay could amplify TTV DNA from room air condensate (RAC samples collected at distances of 20 and 40cm from a human face with 40 (8/20 and 35% (7/20 positive rates, respectively. TTV transmission has been reported to occur during infancy. These distances seem equivalent to that between an infant and its household members while caring for the infant. Taken together, it seems that exhaled breath is one of the possible transmission routes of TTV. We also detected TTV DNA in 25% (10/40 of RAC samples collected at a distance of more than 180cm from any human face, suggesting the risk of airborne infection with TTV in a room.

  3. Engineering the vaccinia virus L1 protein for increased neutralizing antibody response after DNA immunization

    Directory of Open Access Journals (Sweden)

    Moss Bernard

    2009-03-01

    Full Text Available Abstract Background The licensed smallpox vaccine, comprised of infectious vaccinia virus, has associated adverse effects, particularly for immunocompromised individuals. Therefore, safer DNA and protein vaccines are being investigated. The L1 protein, a component of the mature virion membrane that is conserved in all sequenced poxviruses, is required for vaccinia virus entry into host cells and is a target for neutralizing antibody. When expressed by vaccinia virus, the unglycosylated, myristoylated L1 protein attaches to the viral membrane via a C-terminal transmembrane anchor without traversing the secretory pathway. The purpose of the present study was to investigate modifications of the gene expressing the L1 protein that would increase immunogenicity in mice when delivered by a gene gun. Results The L1 gene was codon modified for optimal expression in mammalian cells and potential N-glycosylation sites removed. Addition of a signal sequence to the N-terminus of L1 increased cell surface expression as shown by confocal microscopy and flow cytometry of transfected cells. Removal of the transmembrane domain led to secretion of L1 into the medium. Induction of binding and neutralizing antibodies in mice was enhanced by gene gun delivery of L1 containing the signal sequence with or without the transmembrane domain. Each L1 construct partially protected mice against weight loss caused by intranasal administration of vaccinia virus. Conclusion Modifications of the vaccinia virus L1 gene including codon optimization and addition of a signal sequence with or without deletion of the transmembrane domain can enhance the neutralizing antibody response of a DNA vaccine.

  4. Discovery, Prevalence, and Persistence of Novel Circular Single-Stranded DNA Viruses in the Ctenophores Mnemiopsis leidyi and Beroe ovata.

    Science.gov (United States)

    Breitbart, Mya; Benner, Bayleigh E; Jernigan, Parker E; Rosario, Karyna; Birsa, Laura M; Harbeitner, Rachel C; Fulford, Sidney; Graham, Carina; Walters, Anna; Goldsmith, Dawn B; Berger, Stella A; Nejstgaard, Jens C

    2015-01-01

    Gelatinous zooplankton, such as ctenophores and jellyfish, are important components of marine and brackish ecosystems and play critical roles in aquatic biogeochemistry. As voracious predators of plankton, ctenophores have key positions in aquatic food webs and are often successful invaders when introduced to new areas. Gelatinous zooplankton have strong impacts on ecosystem services, particularly in coastal environments. However, little is known about the factors responsible for regulating population dynamics of gelatinous organisms, including biological interactions that may contribute to bloom demise. Ctenophores are known to contain specific bacterial communities and a variety of invertebrate parasites and symbionts; however, no previous studies have examined the presence of viruses in these organisms. Building upon recent studies demonstrating a diversity of single-stranded DNA viruses that encode a replication initiator protein (Rep) in aquatic invertebrates, this study explored the presence of circular, Rep-encoding single-stranded DNA (CRESS-DNA) viruses in the ctenophores Mnemiopsis leidyi and Beroe ovata collected from the Skidaway River Estuary and Savannah River in Georgia, USA. Using rolling circle amplification followed by restriction enzyme digestion, this study provides the first evidence of viruses in ctenophores. Investigation of four CRESS-DNA viruses over an 8-month period using PCR demonstrated temporal trends in viral prevalence and indicated that some of the viruses may persist in ctenophore populations throughout the year. Although future work needs to examine the ecological roles of these ctenophore-associated viruses, this study indicates that viral infection may play a role in population dynamics of gelatinous zooplankton.

  5. Amplification of Epstein-Barr Virus (EBV) DNA by Superinfection with a Strain of EBV Derived from Nasopharyngeal Carcinoma

    OpenAIRE

    1988-01-01

    Epstein-Barr virus (EBV) from a nasopharyngeal carcinoma (NPC) hybrid cell line (NPC-KT) lacking defective viral DNA molecules superinfected Raji cells and induced EBV early antigens (EA), as did virus from P3HR-1 cells, which contained defective molecules. The EBV polypeptides induced by NPC-KT appeared to be identical to those induced by P3HR-1 virus. The ability of NPC-KT virus to induce EA was enhanced more than 10-fold by treatment of superinfected cells with dimethyl sulfoxide; however,...

  6. The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster.

    Science.gov (United States)

    Webster, Claire L; Waldron, Fergal M; Robertson, Shaun; Crowson, Daisy; Ferrari, Giada; Quintana, Juan F; Brouqui, Jean-Michel; Bayne, Elizabeth H; Longdon, Ben; Buck, Amy H; Lazzaro, Brian P; Akorli, Jewelna; Haddrill, Penelope R; Obbard, Darren J

    2015-07-01

    Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont--which is known to be protective against virus infections in Drosophila--we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host-virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.

  7. Genome-wide analysis of DNA methylation in the sexual stage of the insect pathogenic fungus Cordyceps militaris.

    Science.gov (United States)

    Wang, Yu-long; Wang, Zhang-xun; Liu, Chun; Wang, Si-bao; Huang, Bo

    2015-12-01

    DNA methylation is a basic epigenetic mechanism found in eukaryotes, but its patterns and roles vary significantly among diverse taxa. In fungi, DNA methylation has various effects on diverse biological processes. However, its function in the sexual development of fungi remains unclear. Cordyceps militaris, readily performs sexual reproduction and thus provides a remarkably rich model for understanding epigenetic processes in sexual development. Here, we surveyed the methylome of C. militaris at single-base resolution to assess DNA methylation patterns during sexual development using genomic bisulfite sequencing (BS-Seq). The results showed that approximately 0.4 % of cytosines are methylated, similar to the DNA methylation level (0.39 %) during asexual development. Importantly, we found that DNA methylation in the fungi undergoes global reprogramming during fungal development. Moreover, RNA-Seq analysis indicated that the differentially methylated regions (DMRs) have no correlation with the genes that have roles during fungal sexual development in C. militaris. These results provide a comprehensive characterization of DNA methylation in the sexual development of C. militaris, which will contribute to future investigations of epigenetics in fungi.

  8. Effect of phylogenetic diversity of velogenic Newcastle disease virus challenge on virus shedding post homologous and heterologous DNA vaccination in chickens.

    Science.gov (United States)

    Mohamed, Mahmoud H A; Abdelaziz, Adel M; Kumar, Sachin; Al-Habib, Malik A; Megahed, Mohamed M

    2016-01-01

    Newcastle disease (ND) is a highly devastating disease for the poultry industry as it causes high economic losses. In this present study, a DNA vaccine containing the F and HN surface antigens of a highly virulent Newcastle disease virus (NDV), NDV/1/Chicken/2005 (FJ939313), was successfully generated. Cell transfection test indicated that the vaccine expressed the F and HN genes in Hep-2 cells. The main objective of this study was to compare the extent of protection induced by DNA vaccination after homologous and heterologous NDV-challenge as determined by the amount of NDV shedding after challenge. NDV-antibody-negative chickens were vaccinated either once, twice or thrice intramuscularly at 7, 14 and 21 days old and were challenged 14 days post vaccination with either homologous virus (vaccine-matched velogenic viscerotropic Newcastle disease virus (vvNDV) strain, FJ939313), phylogenetically related to group VII, or a phylogenetically divergent heterologous virus (unmatched vvNDV strain, AY968809), which belongs to genogroup VI and shows 84.1% nucleotide similarity to the NDV-sequences of the DNA vaccine. Our data indicate that birds, which received a single dose of the DNA vaccine were poorly protected, and only 30-40% of these birds survived after challenge with high virus shedding titre. Multiple administration of the DNA vaccine induced high protection rates of 70-90% with reduced virus shedding compared to the non-vaccinated and challenged birds. Generally, homologous challenge led to reduced tracheal and cloacal shedding compared to the heterologous vvNDV strain. This study provides a promising approach for the control of ND in chickens using DNA vaccines, which are phylogenetically closely related to the circulating field strains.

  9. The Baltic Sea Virome: Diversity and Transcriptional Activity of DNA and RNA Viruses

    Science.gov (United States)

    McCrow, John P.; Ininbergs, Karolina; Dupont, Christopher L.; Badger, Jonathan H.; Hoffman, Jeffery M.; Ekman, Martin; Allen, Andrew E.; Bergman, Birgitta; Venter, J. Craig

    2017-01-01

    ABSTRACT Metagenomic and metatranscriptomic data were generated from size-fractionated samples from 11 sites within the Baltic Sea and adjacent marine waters of Kattegat and freshwater Lake Torneträsk in order to investigate the diversity, distribution, and transcriptional activity of virioplankton. Such a transect, spanning a salinity gradient from freshwater to the open sea, facilitated a broad genome-enabled investigation of natural as well as impacted aspects of Baltic Sea viral communities. Taxonomic signatures representative of phages within the widely distributed order Caudovirales were identified with enrichments in lesser-known families such as Podoviridae and Siphoviridae. The distribution of phage reported to infect diverse and ubiquitous heterotrophic bacteria (SAR11 clades) and cyanobacteria (Synechococcus sp.) displayed population-level shifts in diversity. Samples from higher-salinity conditions (>14 practical salinity units [PSU]) had increased abundances of viruses for picoeukaryotes, i.e., Ostreococcus. These data, combined with host diversity estimates, suggest viral modulation of diversity on the whole-community scale, as well as in specific prokaryotic and eukaryotic lineages. RNA libraries revealed single-stranded DNA (ssDNA) and RNA viral populations throughout the Baltic Sea, with ssDNA phage highly represented in Lake Torneträsk. Further, our data suggest relatively high transcriptional activity of fish viruses within diverse families known to have broad host ranges, such as Nodoviridae (RNA), Iridoviridae (DNA), and predicted zoonotic viruses that can cause ecological and economic damage as well as impact human health. IMPORTANCE Inferred virus-host relationships, community structures of ubiquitous ecologically relevant groups, and identification of transcriptionally active populations have been achieved with our Baltic Sea study. Further, these data, highlighting the transcriptional activity of viruses, represent one of the more

  10. Rad51 and Rad52 are involved in homologous recombination of replicating herpes simplex virus DNA.

    Directory of Open Access Journals (Sweden)

    Ka-Wei Tang

    Full Text Available Replication of herpes simplex virus 1 is coupled to recombination, but the molecular mechanisms underlying this process are poorly characterized. The role of Rad51 and Rad52 recombinases in viral recombination was examined in human fibroblast cells 1BR.3.N (wild type and in GM16097 with replication defects caused by mutations in DNA ligase I. Intermolecular recombination between viruses, tsS and tsK, harboring genetic markers gave rise to ∼17% recombinants in both cell lines. Knock-down of Rad51 and Rad52 by siRNA reduced production of recombinants to 11% and 5%, respectively, in wild type cells and to 3% and 5%, respectively, in GM16097 cells. The results indicate a specific role for Rad51 and Rad52 in recombination of replicating herpes simplex virus 1 DNA. Mixed infections using clinical isolates with restriction enzyme polymorphisms in the US4 and US7 genes revealed recombination frequencies of 0.7%/kbp in wild type cells and 4%/kbp in GM16097 cells. Finally, tandem repeats in the US7 gene remained stable upon serial passage, indicating a high fidelity of recombination in infected cells.

  11. Modulation of DNA Damage and Repair Pathways by Human Tumour Viruses

    Directory of Open Access Journals (Sweden)

    Robert Hollingworth

    2015-05-01

    Full Text Available With between 10% and 15% of human cancers attributable to viral infection, there is great interest, from both a scientific and clinical viewpoint, as to how these pathogens modulate host cell functions. Seven human tumour viruses have been identified as being involved in the development of specific malignancies. It has long been known that the introduction of chromosomal aberrations is a common feature of viral infections. Intensive research over the past two decades has subsequently revealed that viruses specifically interact with cellular mechanisms responsible for the recognition and repair of DNA lesions, collectively known as the DNA damage response (DDR. These interactions can involve activation and deactivation of individual DDR pathways as well as the recruitment of specific proteins to sites of viral replication. Since the DDR has evolved to protect the genome from the accumulation of deleterious mutations, deregulation is inevitably associated with an increased risk of tumour formation. This review summarises the current literature regarding the complex relationship between known human tumour viruses and the DDR and aims to shed light on how these interactions can contribute to genomic instability and ultimately the development of human cancers.

  12. Distribution and expression in vitro and in vivo of DNA vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus)

    Institute of Scientific and Technical Information of China (English)

    郑风荣; 孙修勤; 刘洪展; 吴兴安; 钟楠; 王波; 周国栋

    2010-01-01

    Lymphocystis disease,caused by the lymphocystis disease virus (LCDV),is a significant worldwide problem in fish industry causing substantial economic losses.In this study,we aimed to develop the DNA vaccine against LCDV,using DNA vaccination technology.We evaluated plasmid pEGFP-N2-LCDV1.3 kb as a DNA vaccine candidate.The plasmid DNA was transiently expressed after liposome transfection into the eukaryotic COS 7 cell line.The distribution and expression of the DNA vaccine (pEGFP-N2-LCDV1.3kb) were also ana...

  13. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    Energy Technology Data Exchange (ETDEWEB)

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-02-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, /sup 32/P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.

  14. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja;

    2002-01-01

    It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...... whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non...

  15. A Comparative Analysis of the Structural Architecture of ssDNA Viruses

    Directory of Open Access Journals (Sweden)

    Antonette Bennett

    2008-01-01

    Full Text Available Virus assembly, utilizing a limited number of viral coat protein (CP or VP building blocks, is an excellent example of a directed macromolecular interaction occurring in nature. Two basic principles govern the assembly of spherical (icosahedral viruses: (i Genetic Economy – the encapsidated genome encodes a single or few CPs that assemble a protective shell (the viral capsid; and (ii specificity – the CPs have to fold to recognize each other and form exact CP–CP interfacial interactions during the assembly pathway. Using a variety of biophysical techniques, including X-ray crystallography and cryo-electron microscopy, combined with homology model building, biochemistry and molecular biology, the nature of the interactions between protein–protein subunits and protein–nucleic acid that facilitate viral capsid assembly have been studied. This review discusses both the similarities and differences that have been elucidated for ssDNA Microviridae, Geminiviridae, and Parvoviridae virus families. The Microviridae represent a family of bacteriophages that utilize several CPs and scaffold proteins to assemble a T = 1 icosahedral capsid, the Geminiviridae plant viruses assemble a unique twinned quasi-isometric (geminate pseudo T = 1 virion assembled from a single CP and the Parvoviridae represent animal viruses whose T = 1 capsids are formed from the common overlapping region of two to four VPs that have unique N-terminal extensions. A survey of the three-dimensional (3D data available for these viruses shows that they utilize structural commonalities, facilitated by disparate CP/VP amino acid sequences for the successful assembly of mature infectious virions.

  16. Deficiências minerais nas fôlhas induzidas por moléstias e pragas Leaf deficiencies associated with virus infection or insect toxin

    Directory of Open Access Journals (Sweden)

    A. S. Costa

    1965-01-01

    Full Text Available Certas moléstias de vírus e o efeito fitotóxico provocado por toxinas de alguns insetos influenciam a composição mineral das fôlhas de plantas afetadas. As alterações provocadas podem se assemelhar a deficiências minerais puramente nutricionais e, em certos casos, há realmente menor teor do elemento associado aos sintomas da moléstia. A aplicação do elemento faltante nos casos citados não provoca geralmente recuperação dos tecidos afetados, com exceção da deficiência de zinco associada à infecção de citros pela tristeza. É sugerido que a resposta à aplicação do elemento em deficiência dependerá de ser ou não esta, sintoma primário ou secundário da moléstia. É salientado que as recomendações sôbre adubação, baseadas nos resultados da diagnose foliar, deverão sempre considerar a possibilidade de não serem as deficiências constatadas resultantes sempre da falta de disponibilidade do elemento no solo, mas, possivelmente, da interferência de fatôres como a infecção por vírus, ação de toxina de inseto etc.Virus diseases or the toxicogenic effect induced by insect feeding influence the mineral content of affected plants. Some of the changes induced result in leaf deficiencies similar to those associated with lack of the available element in the soil. Application of the lacking element in most cases does not promote a favorable response with exception of the zinc deficiency associated with tristeza infection in citrus. It is suggested that the negative or positive response might depend on the symptom being primary or secondary. It is pointed out that fertilizer recommendations based on foliar diagnosis should always take into consideration that the deficiencies encountered are not necessarily theresult of lack of the available element in thesoil, but sometimes of the interference of virus diseases, insect toxins, and other factors.

  17. Detection of BK virus DNA in nasopharyngeal aspirates from children with respiratory infections but not in saliva from immunodeficient and immunocompetent adult patients.

    OpenAIRE

    SUNDSFJORD, A.; Spein, A R; Lucht, E.; Flaegstad, T; Seternes, O M; Traavik, T.

    1994-01-01

    Our understanding of important stages in the pathogenesis of the human polyomavirus BK virus (BKV) and JC virus (JCV) infections is limited. In this context, nasopharyngeal aspirates from 201 children with respiratory diseases and saliva from 60 human immunodeficiency virus type 1-infected adults and 10 healthy adult controls were collected and analyzed for the presence of BKV and JCV DNA by PCR. Neither BKV nor JCV DNA was detected in the saliva specimens. We demonstrated BKV DNA, but no inf...

  18. Development and characterization of an infectious cDNA clone of the modified live virus vaccine strain of equine arteritis virus.

    Science.gov (United States)

    Zhang, Jianqiang; Go, Yun Young; Huang, Chengjin M; Meade, Barry J; Lu, Zhengchun; Snijder, Eric J; Timoney, Peter J; Balasuriya, Udeni B R

    2012-08-01

    A stable full-length cDNA clone of the modified live virus (MLV) vaccine strain of equine arteritis virus (EAV) was developed. RNA transcripts generated from this plasmid (pEAVrMLV) were infectious upon transfection into mammalian cells, and the resultant recombinant virus (rMLV) had 100% nucleotide identity to the parental MLV vaccine strain of EAV. A single silent nucleotide substitution was introduced into the nucleocapsid gene (pEAVrMLVB), enabling the cloned vaccine virus (rMLVB) to be distinguished from parental MLV vaccine as well as other field and laboratory strains of EAV by using an allelic discrimination real-time reverse transcription (RT)-PCR assay. In vitro studies revealed that the cloned vaccine virus rMLVB and the parental MLV vaccine virus had identical growth kinetics and plaque morphologies in equine endothelial cells. In vivo studies confirmed that the cloned vaccine virus was very safe and induced high titers of neutralizing antibodies against EAV in experimentally immunized horses. When challenged with the heterologous EAV KY84 strain, the rMLVB vaccine virus protected immunized horses in regard to reducing the magnitude and duration of viremia and virus shedding but did not suppress the development of signs of EVA, although these were reduced in clinical severity. The vaccine clone pEAVrMLVB could be further manipulated to improve the vaccine efficacy as well as to develop a marker vaccine for serological differentiation of EAV naturally infected from vaccinated animals.

  19. Protective efficacy and immunogenicity of a combinatory DNA vaccine against Influenza A Virus and the Respiratory Syncytial Virus.

    Directory of Open Access Journals (Sweden)

    Viktoria Stab

    Full Text Available The Respiratory Syncytial Virus (RSV and Influenza A Virus (IAV are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8⁺ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.

  20. Protective efficacy and immunogenicity of a combinatory DNA vaccine against Influenza A Virus and the Respiratory Syncytial Virus.

    Science.gov (United States)

    Stab, Viktoria; Nitsche, Sandra; Niezold, Thomas; Storcksdieck Genannt Bonsmann, Michael; Wiechers, Andrea; Tippler, Bettina; Hannaman, Drew; Ehrhardt, Christina; Uberla, Klaus; Grunwald, Thomas; Tenbusch, Matthias

    2013-01-01

    The Respiratory Syncytial Virus (RSV) and Influenza A Virus (IAV) are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA) of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8⁺ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.

  1. Eating insects

    NARCIS (Netherlands)

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards eating

  2. Insect Keepers

    Science.gov (United States)

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  3. DNA Epstein-Barr virus (EBV sebagai biomaker diagnosis karsinoma nasofaring

    Directory of Open Access Journals (Sweden)

    Janti Sudiono

    2013-09-01

    Full Text Available Background: Nasopharyngeal carcinoma (NPC is a malignant neoplasm arising from the mucosal epithelium of the nasopharynx with various cells differentiation. Nasopharyngeal carcinoma is vastly more common in certain regions of East Asia, South Asia and Africa with viral, dietary which is typically includes consumption of salted vegetables, fish, meat and genetic factors that implicated in its causation. The undifferentiated is the most common type of NPC and strongly associated with Epstein-Barr virus (EBV infection. Purpose: This paper was aimed to review about molecular biomarker as non invasive diagnosis of NPC especially in related to EBV infection in nasopharyngeal epithelial cells. Reviews: The pathogenesis of NPC particularly the endemic type seems to follow a multi-step process, in which EBV, ethnic background, and environmental carcinogens all seem to play important role. EBV DNA plasm level is used continuously in clinic as a promise, sensitive and specific molecular marker diagnostic that reflected the stage, treatment response and prognosis of NPC. Detection of nuclear antigen associated with Epstein-Barr virus (EBNA and viral DNA has revealed that EBV can infect epithelial cells and associated with their transformation in carcinogenesis. Latent membrane protein (LMP-1 and LMP-2 oncogenes EBV encoded related to proliferative gene expression indicated invasive and progressive growth of NPC. Conclusion: The new biomarkers for NPC, including EBV DNA in serum; EBV DNA and BamH1-A Reading Frame-1 (BARF1 mRNA in NPC brushings have been developed for the molecular non invasive diagnosis of this tumour.Latar belakang: Nasopharyngeal carcinoma (NPC, sering dikenal sebagai kanker nasofaring merupakan tumor ganas yang berasal dari epitel mukosa nasofaring dengan derajat diferensiasi sel yang bervariasi. Paling banyak ditemukan di Asia Selatan, Asia Timur, dan Afrika. Virus, pola diet tipikal seperti konsumsi sayuran, ikan dan daging yang

  4. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses.

    Science.gov (United States)

    Crow, Marni S; Lum, Krystal K; Sheng, Xinlei; Song, Bokai; Cristea, Ileana M

    In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.

  5. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF.

  6. Evidence for and Localization of Vegetative Viral DNA Replication by Autoradiographic Detection of RNA·DNA Hybrids in Sections of Tumors Induced by Shope Papilloma Virus

    Science.gov (United States)

    Orth, Gérard; Jeanteur, Philippe; Croissant, Odile

    1971-01-01

    The occurrence and localization of vegetative viral DNA replication was studied in sections of tumors induced by the rabbit Shope papilloma virus, in cottontail and domestic rabbit papillomas, in primary domestic rabbit carcinoma, and in transplantable VX2 carcinoma, by in situ hybridization of radioactive RNA complementary to viral DNA. Vegetative viral DNA replication and viral protein synthesis were compared by means of cytological hybridization and immunofluorescence techniques on adjacent frozen sections. Vegetative viral DNA replication is completely repressed in the proliferating cellular layers of these tumors, which suggests a provirus state of the viral genome, as in other cells transformed by oncogenic DNA viruses. Vegetative viral DNA replication is induced, after initiation of the keratinization, in cells of cottonail rabbit papillomas, where it is usually followed by viral protein synthesis; this illustrates the influence of the physiological state of the host cell on the control of viral functions. Vegetative viral DNA replication is deteced only in a few cells of domestic rabbit papillomas, at the end of the keratinization process; this observation provides indirect evidence that the DNA synthesis specifically induced in these tumors after the onset of keratinization reflects mostly the induction of cellular DNA synthesis. Images PMID:4331563

  7. African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase.

    Science.gov (United States)

    Coelho, João; Martins, Carlos; Ferreira, Fernando; Leitão, Alexandre

    2015-01-01

    Topoisomerases modulate the topological state of DNA during processes, such as replication and transcription, that cause overwinding and/or underwinding of the DNA. African swine fever virus (ASFV) is a nucleo-cytoplasmic double-stranded DNA virus shown to contain an OFR (P1192R) with homology to type II topoisomerases. Here we observed that pP1192R is highly conserved among ASFV isolates but dissimilar from other viral, prokaryotic or eukaryotic type II topoisomerases. In both ASFV/Ba71V-infected Vero cells and ASFV/L60-infected pig macrophages we detected pP1192R at intermediate and late phases of infection, cytoplasmically localized and accumulating in the viral factories. Finally, we used a Saccharomyces cerevisiae temperature-sensitive strain in order to demonstrate, through complementation and in vitro decatenation assays, the functionality of P1192R, which we further confirmed by mutating its predicted catalytic residue. Overall, this work strengthens the idea that P1192R constitutes a target for studying, and possibly controlling, ASFV transcription and replication.

  8. Presence of human papilloma virus, herpes simplex virus and Epstein-Barr virus DNA in oral biopsies from Sudanese patients with regard to toombak use.

    Science.gov (United States)

    Jalouli, Jamshid; Ibrahim, Salah O; Sapkota, Dipak; Jalouli, Miranda M; Vasstrand, Endre N; Hirsch, Jan M; Larsson, Per-Anders

    2010-09-01

    Using PCR/DNA sequencing, we investigated the prevalence of human papillomavirus (HPV), herpes simplex virus (HSV) and Epstein-Barr virus (EBV) DNA in brush biopsies obtained from 150 users of Sudanese snuff (toombak) and 25 non-users of toombak in formalin-fixed paraffin-embedded tissue samples obtained from 31 patients with oral dysplasias (25 toombak users and 6 non-users), and from 217 patients with oral cancers (145 toombak users and 72 non-users). In the brush tissue samples from toombak users, HPV was detected in 60 (40%), HSV in 44 (29%) and EBV in 97 (65%) of the samples. The corresponding figures for the 25 samples from non-users were 17 (68%) positive for HPV, 6 (24%) positive for HSV and 21 (84%) for EBV. The formalin-fixed samples with oral dysplasias were all negative for HPV. In the 145 oral cancer samples from toombak users, HPV was detected in 39 (27%), HSV in 15 (10%) and EBV in 53 (37%) of the samples. The corresponding figures for the samples from non-users were 15 (21%) positive for HPV, 5 (7%) for HSV and 16 (22%) for EBV. These findings illustrate that prevalence of HSV, HPV and EBV infections are common and may influence oral health and cancer development. It is not obvious that cancer risk is increased in infected toombak users. These observations warrant further studies involving toombak-associated oral lesions, to uncover the possible mechanisms of these viral infections in the development of oral cancer, and the influence of toombak on these viruses.

  9. Insect phylogenomics.

    Science.gov (United States)

    Behura, S K

    2015-08-01

    Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study the evolution and systematics of species. Recently, several studies employing phylogenomic tools have provided better insights into insect evolution. Next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phy-logenomic investigations help us to better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators and disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution.

  10. Interleukin-12 as a Genetic Adjuvant Enhances Hepatitis C Virus NS3 DNA Vaccine Immunogenicity

    Institute of Scientific and Technical Information of China (English)

    Malihe Naderi; Atefeh Saeedi; Abdolvahab Moradi; Mishar Kleshadi; Mohammad Reza Zolfaghari; Ali Gorji; Amir Ghaemi

    2013-01-01

    Hepatitis C virus (HCV) chronic infection is a worldwide health problem,and numerous efforts have been invested to develop novel vaccines.An efficient vaccine requires broad immune response induction against viral proteins.To achieve this goal,we constructed a DNA vaccine expressing nonstructural 3 (NS3) gene (pcDNA3.1-HCV-NS3) and assessed the immune response in C57BL/6 mice.In this study,the NS3 gene was amplified with a nested-reverse transcriptase-polymerase chain reaction (RT-PCR) method using sera of HCV-infected patients with genotype 1 a.The resulting NS3 gene was subcloned into a pcDNA3.1 eukaryotic expression vector,and gene expression was detected by western blot.The resultant DNA vaccine was co-administered with interleukin-12 (IL-12) as an adjuvant to female C57BL/6 mice.After the final immunizations,lymphocyte proliferation,cytotoxicity,and cytokine levels were assessed to measure immune responses.Our data suggest that co-administration of HCV NS3 DNA vaccine with IL-12 induces production of significant levels of both IL-4 and interferon (IFN)-γ (p<0.05).Cytotoxicity and lymphocyte proliferation responses of vaccinated mice were significantly increased compared to control (p<0.05).Collectively,our results demonstrated that co-administration of HCV NS3 and IL-12 displayed strong immunogenicity in a murine model.

  11. DNA replication catalyzed by herpes simplex virus type 1 proteins reveals trombone loops at the fork.

    Science.gov (United States)

    Bermek, Oya; Willcox, Smaranda; Griffith, Jack D

    2015-01-30

    Using purified replication factors encoded by herpes simplex virus type 1 and a 70-base minicircle template, we obtained robust DNA synthesis with leading strand products of >20,000 nucleotides and lagging strand fragments from 600 to 9,000 nucleotides as seen by alkaline gel electrophoresis. ICP8 was crucial for the synthesis on both strands. Visualization of the deproteinized products using electron microscopy revealed long, linear dsDNAs, and in 87%, one end, presumably the end with the 70-base circle, was single-stranded. The remaining 13% had multiple single-stranded segments separated by dsDNA segments 500 to 1,000 nucleotides in length located at one end. These features are diagnostic of the trombone mechanism of replication. Indeed, when the products were examined with the replication proteins bound, a dsDNA loop was frequently associated with the replication complex located at one end of the replicated DNA. Furthermore, the frequency of loops correlated with the fraction of DNA undergoing Okazaki fragment synthesis.

  12. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S. [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa); Arbuthnot, Patrick, E-mail: Patrick.Arbuthnot@wits.ac.za [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa)

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  13. Insect bite reactions

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2013-01-01

    Full Text Available Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some

  14. Two-stage baculovirus production in insect-cell bioreactors.

    NARCIS (Netherlands)

    Lier, van F.L.J.

    1995-01-01

    Baculoviruses are insect-pathogenic viruses with a narrow host range. The viruses can be an alternative to chemical insecticides. From research aimed at improving the efficacy of the viruses in insect control another application evolved: the use of the baculovirus to express foreign proteins in inse

  15. Two-stage baculovirus production in insect-cell bioreactors

    NARCIS (Netherlands)

    Lier, van F.

    1995-01-01

    Baculoviruses are insect-pathogenic viruses with a narrow host range. The viruses can be an alternative to chemical insecticides. From research aimed at improving the efficacy of the viruses in insect control another application evolved: the use of the baculovirus to express foreign protein

  16. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine.

    Science.gov (United States)

    Yan, Jian; Villarreal, Daniel O; Racine, Trina; Chu, Jaemi S; Walters, Jewell N; Morrow, Matthew P; Khan, Amir S; Sardesai, Niranjan Y; Kim, J Joseph; Kobinger, Gary P; Weiner, David B

    2014-05-19

    Despite an intensive vaccine program influenza infections remain a major health problem, due to the viruses' ability to change its envelope glycoprotein hemagglutinin (HA), through shift and drift, permitting influenza to escape protection induced by current vaccines or natural immunity. Recently a new variant, H7N9, has emerged in China causing global concern. First, there have been more than 130 laboratory-confirmed human infections resulting in an alarmingly high death rate (32.3%). Second, genetic changes found in H7N9 appear to be associated with enabling avian influenza viruses to spread more effectively in mammals, thus transmitting infections on a larger scale. Currently, no vaccines or drugs are effectively able to target H7N9. Here, we report the rapid development of a synthetic consensus DNA vaccine (pH7HA) to elicit potent protective immunity against the H7N9 viruses. We show that pH7HA induces broad antibody responses that bind to divergent HAs from multiple new members of the H7N9 family. These antibody responses result in high-titer HAI against H7N9. Simultaneously, this vaccine induces potent polyfunctional effector CD4 and CD8T cell memory responses. Animals vaccinated with pH7HA are completely protected from H7N9 virus infection and any morbidity associated with lethal challenge. This study establishes that this synthetic consensus DNA vaccine represents a new tool for targeting emerging infection, and more importantly, its design, testing and development into seed stock for vaccine production in a few days in the pandemic setting has significant implications for the rapid deployment of vaccines protecting against emerging infectious diseases.

  17. Forest insect pests in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The papers presented in this book cover the range of forest insect pest management activities in Canada. The first section contains papers on the current status of insect pests by region, including data on insect populations and extent of defoliation caused by the insect. The next section covers pest management technology, including the use of insecticides, insect viruses, fungal pathogens, growth regulators, antifeedants, pheromones, natural predators, and aerial spraying. The third section contains papers on the application of technology and equipment for forest pest control, and includes papers on the impacts of insecticides on the forest environment. The fourth section describes operational control programs by province. The final paper presents future strategies for the management of forest pests. An author index is included.

  18. Rescue of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone

    Science.gov (United States)

    Schwarz, Megan C.; Sourisseau, Marion; Espino, Michael M.; Gray, Essanna S.; Chambers, Matthew T.; Tortorella, Domenico

    2016-01-01

    ABSTRACT The recent Zika virus (ZIKV) outbreak has been linked to severe pathogenesis. Here, we report the construction of a plasmid carrying a cytomegalovirus (CMV) promoter-expressed prototype 1947 Uganda MR766 ZIKV cDNA that can initiate infection following direct plasmid DNA transfection of mammalian cells. Incorporation of a synthetic intron in the nonstructural protein 1 (NS1) region of the ZIKV polyprotein reduced viral cDNA-associated toxicity in bacteria. High levels of infectious virus were produced following transfection of the plasmid bearing the wild-type MR766 ZIKV genome, but not one with a disruption to the viral nonstructural protein 5 (NS5) polymerase active site. Multicycle growth curve and plaque assay experiments indicated that the MR766 virus resulting from plasmid transfection exhibited growth characteristics that were more similar to its parental isolate than previously published 2010 Cambodia and 2015 Brazil cDNA-rescued ZIKV. This ZIKV infectious clone will be useful for investigating the genetic determinants of ZIKV infection and pathogenesis and should be amenable to construction of diverse infectious clones expressing reporter proteins and representing a range of ZIKV isolates. IMPORTANCE The study of ZIKV, which has become increasingly important with the recent association of this virus with microcephaly and Guillain-Barré syndrome, would benefit from an efficient strategy to genetically manipulate the virus. This work describes a model system to produce infectious virus in cell culture. We created a plasmid carrying the prototype 1947 Uganda MR766 ZIKV genome that both was stable in bacteria and could produce high levels of infectious virus in mammalian cells through direct delivery of this DNA. Furthermore, growth properties of this rescued virus closely resembled those of the viral isolate from which it was derived. This model system will provide a simple and effective means to study how ZIKV genetics impact viral replication and

  19. 丙型肝炎病毒NS5B基因在昆虫细胞中的表达%Expression of Hepatitis C Virus NS5B Gene in Insect Cells

    Institute of Scientific and Technical Information of China (English)

    李磊; 郜金荣; 徐进平; 叶林柏; 张斌; 吴正辉

    2001-01-01

    将含有丙型肝炎病毒(HCV)NS5B基因的转移载体pBlueBac5B与野生型杆状病毒(AcNPV)DNA共转染Sf9昆虫细胞,通过空斑纯化获得带有NS5B基因的重组病毒AcNS5B.提取重组病毒基因组DNA进行Southern分析,发现有一条1.8 kb的DNA片段与标记的探针发生杂交.AcNS5B感染Sf9细胞后,在细胞中表达了分子量为66×103 的蛋白,用Western blot方法检查这种蛋白质,能与兔抗HCVNS5B抗血清发生特异的强烈反应.%The plasmid pBlueBac 5B containing Hepatitis C Virus NS5B gene was cotransfected with the genome DNA of wild type AcNPV to Sf9 insect cells. The recombinant baculovirus AcNS5B was obtained by plaque selection. Southern blot indicates that the NS5B gene be integrated into the genome of AcNS5B and recombinant HCV NS5B protein be expressed by Sf9 cells infected with AcNS5B. This protein can react with the anti-NS5B sera of rabbit as evidence of Western blots.

  20. Quantitation of Genital Herpes Virus DNA by Polymerase Chain Reaction and ELISA

    Institute of Scientific and Technical Information of China (English)

    CHENG Peihua(程培华)

    2002-01-01

    Objective:To detect and quantitate genital herpes simplex virus (HSV) DNA in specimens from 100 patients clinically diagnosed with genital herpes.Methods: Polymerase Chain Reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) were used with a standard curve of DNA copies of HSV as quantitative contrast.Results: Ninety-three cases were confirmed HSV positive and 7 cases were found to be negative. There were 58 cases of HSV-2 (62.4%) and 35 cases of HSV-1 (37.6%) among the 93 positive cases. The number of DNA plasmids ranged from 115 to 1.1×105 per 250μL among the 93 positive samples (mean =7.1×104/250μL). The number of HSV DNA plasmids ranged from 136 to 1.1×105 copies per 250μL (mean =7.6×104) among those with HSV-2, and 115 to 9.4×104 per 250μL (mean =6.3×104) among those with HSV-1. Meanwhile 10μL of extracted and dissolved DNA randomly taken from 8 each of HSV-2 and HSV-1 samples were tested. The number of HSV-2 DNA plasmids ranged from 35 copies to 2.7×104 (Mean =1.8×104) and the number of HSV-1 DNA ranged from 29 to 2.5×104 (Mean = 1.6×104). In the 7 negative cases, the quantity of HSV plasmids was zero.Conclusion: The sensitivity of ELISA quantitation (93%) is equal to that of Southern blot. The sensitivity of PCR for diagnosis is 91%, and 88% for PCR typing.

  1. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme.

    Science.gov (United States)

    Wang, Yi-Ping; Du, Wen-Juan; Huang, Li-Ping; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-01-01

    Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354-370 and that K(354), R(355), and K(367) are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression

  2. Cell line-specific accumulation of the baculovirus non-hr origin of DNA replication in infected insect cells

    NARCIS (Netherlands)

    Pijlman, G.P.; Vermeesch, A.M.G.; Vlak, J.M.

    2003-01-01

    Successive Viral passage of Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) in the S. exigua cell line Se301 leads to the rapid accumulation of the non-hr origin of DNA replication (ori) as large concatemers. Passage of SeMNPV in two other S. exigua cell lines, SeUCR1 and SeIZD2109, did

  3. Cell line-specific accumulation of the baculovirus non-hr origin of DNA replication in infected insect cells

    NARCIS (Netherlands)

    Pijlman, G.P.; Vermeesch, A.M.G.; Vlak, J.M.

    2003-01-01

    Successive Viral passage of Spodoptera exigua multicapsid nucleopolyhedrovirus (SeMNPV) in the S. exigua cell line Se301 leads to the rapid accumulation of the non-hr origin of DNA replication (ori) as large concatemers. Passage of SeMNPV in two other S. exigua cell lines, SeUCR1 and SeIZD2109, did

  4. CONSECUTIVE IMMUNIZATION WITH RECOMBINANT FOWLPOX VIRUS AND PLASMID DNA FOR ENHANCING CELLULAR AND HUMORAL IMMUNITY

    Institute of Scientific and Technical Information of China (English)

    罗坤; 金宁一; 郭志儒; 秦云龙; 郭炎; 方厚华; 安汝国; 殷震

    2001-01-01

    To investigate the influence of consecutive immunization on cellular and humoral immunity in mice. Methods: We evaluated a consecutive immunization strategy of priming with recombinant fowlpox virus vUTALG and boosting with plasmid DNA pcDNAG encoding HIV-1 capsid protein Gag. Results: In immunized mice, the number of CD4+ T cells from splenic lymphocytes increased significantly and the proliferation response of splenocytes to ConA and LPS elevated markedly and HIV-1-specific antibody response could be induced. Conclusion: Consecutive immunization could increase cellular and humoral immunity responses in mice.

  5. Detection of Hepatitis B Virus DNA by Duplex Scorpion Primer-based PCR Assay

    Institute of Scientific and Technical Information of China (English)

    KONG De-Ming孔德明; SHEN Han-Xi沈含熙; MI Huai-Feng宓怀风

    2004-01-01

    The application of a new fiuorogenic probe-based PCR assay (PCR duplex scorpion primer assay) to the detection of Hepatitis B virus (HBV) DNA in human sera was described. Duplex scorpion primer is a modified variant of duplex Amplifluor, and the incorporation of a PCR stopper between probe and primer sequences improve the detection specificity and sensitivity. Combined with PCR amplification, this probe can give unambiguous positive results for the reactions initiated with more than 20 HBV molecules. In addition, the particular unimolecular probing mechanism of this probe makes the use of short target-specific probe sequence possible, which will render this probe applicable in some specific systems.

  6. A simple and effective method for isolation of genomic DNA of insects%一种简洁实用的昆虫基因组DNA提取方法

    Institute of Scientific and Technical Information of China (English)

    陈保锋; 章欢; 申跃武; 母波; 梁素华

    2013-01-01

    Isolation of genomic DNA of insects is the base of molecular biology research,but some isolation methods are complicated and not effective in practice.The proteinase K method was improved to improve the extraction efficiency in this paper,which was suitable for many kinds of insects.The genomic DNA obtained by this method is suitable for PCR amplification and molecular marker.%昆虫基因组提取是昆虫分子生物学研究的基础,但是并不是每种提取方法都能取得良好的效果,本研究对蛋白酶K法进行了改进,提高了提取效率,对于多种昆虫均能获得高质量的基因组DNA,完全满足后续的PCR扩增和分子标记等实验.

  7. Impact of salivary gland hypertrophy virus infection on the mating success of male Glossina pallidipes: consequences for the sterile insect technique.

    Directory of Open Access Journals (Sweden)

    Gratian N Mutika

    Full Text Available Many species of tsetse flies are infected by a virus (GpSGHV that causes salivary gland hypertrophy (SGH. Female Glossina pallidipes (Austen with SGH symptoms (SGH+ have reduced fecundity and SGH+ male G. pallidipes are unable to inseminate female flies. Consequently, G. pallidipes laboratory colonies with a high prevalence of SGH have been difficult to maintain and have collapsed on several occasions. To assess the potential impact of the release of SGH+ sterile male G. pallidipes on the efficacy of an integrated control programme with a sterile insect technique (SIT component, we examined the mating efficiency and behaviour of male G. pallidipes in field cages in relation to SGH prevalence. The results showed in a field cage setting a significantly reduced mating frequency of 19% for a male G. pallidipes population with a high prevalence of SGH (83% compared to 38% for a male population with a low prevalence of SGH (7%. Premating period and mating duration did not vary significantly with SGH status. A high percentage (>80% of females that had mated with SGH+ males had empty spermathecae. The remating frequency of female G. pallidipes was very low irrespective of the SGH status of the males in the first mating. These results indicate that a high prevalence of SGH+ in G. pallidipes not only affects colony stability and performance but, in view of their reduced mating propensity and competitiveness, releasing SGH+ sterile male G. pallidipes will reduce the efficiency of a sterile male release programme.

  8. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  9. A census of α-helical membrane proteins in double-stranded DNA viruses infecting bacteria and archaea.

    Science.gov (United States)

    Kristensen, David M; Saeed, Usman; Frishman, Dmitrij; Koonin, Eugene V

    2015-11-10

    Viruses are the most abundant and genetically diverse biological entities on earth, yet the repertoire of viral proteins remains poorly explored. As the number of sequenced virus genomes grows into the thousands, and the number of viral proteins into the hundreds of thousands, we report a systematic computational analysis of the point of first-contact between viruses and their hosts, namely viral transmembrane (TM) proteins. The complement of α-helical TM proteins in double-stranded DNA viruses infecting bacteria and archaea reveals large-scale trends that differ from those of their hosts. Viruses typically encode a substantially lower fraction of TM proteins than archaea or bacteria, with the notable exception of viruses with virions containing a lipid component such as a lipid envelope, internal lipid core, or inner membrane vesicle. Compared to bacteriophages, archaeal viruses are substantially enriched in membrane proteins. However, this feature is not always stable throughout the evolution of a viral lineage; for example, TM proteins are not part of the common heritage shared between Lipothrixviridae and Rudiviridae. In contrast to bacteria and archaea, viruses almost completely lack proteins with complicated membrane topologies composed of more than 4 TM segments, with the few detected exceptions being obvious cases of relatively recent horizontal transfer from the host. The dramatic differences between the membrane proteomes of cells and viruses stem from the fact that viruses do not depend on essential membranes for energy transformation, ion homeostasis, nutrient transport and signaling.

  10. Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus

    Science.gov (United States)

    Honorato Castro, Ana C.; França, Erick G.; de Paula, Lucas F.; Soares, Marcia M. C. N.; Goulart, Luiz R.; Madurro, João M.; Brito-Madurro, Ana G.

    2014-09-01

    An electrochemical genosensor was constructed for detection of specific DNA sequence of the hepatitis B virus, based on graphite electrodes modified with poly(4-aminophenol) and incorporating a specific oligonucleotide probe. The modified electrode containing the probe was evaluated by differential pulse voltammetry, before and after incubation with the complementary oligonucleotide target. Detection was performed by monitoring oxidizable DNA bases (direct detection) or using ethidium bromide as indicator of the hybridization process (indirect detection). The device showed a detection limit for the oligonucleotide target of 2.61 nmol L-1. Indirect detection using ethidium bromide was promising in discriminating mismatches, which is a very desirable attribute for detection of disease-related point mutations. In addition, it was possible to observe differences between hybridized and non-hybridized surfaces by atomic force microscopy.

  11. DNA vaccination protects mice against Zika virus-induced damage to the testes

    Science.gov (United States)

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  12. Insights from the structure of a smallpox virus topoisomerase-DNA transition state mimic

    Science.gov (United States)

    Perry, Kay; Hwang, Young; Bushman, Frederic D.; Van Duyne, Gregory D.

    2010-01-01

    Summary Poxviruses encode their own type IB topoisomerases (TopIBs) which release superhelical tension generated by replication and transcription of their genomes. To investigate the reaction catalyzed viral TopIBs, we have determined the structure of a variola virus topoisomerase-DNA complex trapped as a vanadate transition state mimic. The structure reveals how the viral TopIB enzymes are likely to position the DNA duplex for ligation following relaxation of supercoils and identifies the sources of friction observed in single molecule experiments that argue against free rotation. The structure also identifies a conformational change in the leaving group sugar that must occur prior to cleavage and reveals a mechanism for promoting ligation following relaxation of supercoils that involves a novel Asp-minor groove interaction. Overall, the new structural data support a common catalytic mechanism for the TopIB superfamily but indicate distinct methods for controlling duplex rotation in the small vs. large enzyme subfamilies. PMID:20152159

  13. VIRUS GENOME IMAGING VIA a2GRAMS: BUILDING A MATLAB TOOLBOX FOR PROKARYOTIC DNA ANALYSIS

    Directory of Open Access Journals (Sweden)

    C. Dantas Silva

    2005-07-01

    Full Text Available Much of genomic signal analysis approaches  for feature extraction and functional cataloguing  have been focused on oligonucleotide  patterns in the  linear  primary  sequences of genomes.  New DNA-imaging tools  for genomic signal  processing  namely  codongrams  and  a2grams  had  recently  been  offered for extracting meaningful  genomic features  embedded  in DNA. A MatlabT M   toolbox  was implemented for allowing the image analysis of viruses and bacteriophages. Twenty different a2grams are defined for a genome, one for each amino acid (valgram  is an a2 gram for valine; alagram  is an a2 gram for alanine, etc.  They  furnish information about  the distribution and occurrence  of the investigated amino acid. The codongram  describes the distribution of a specific codon through  the genome.  The a2gram  for a particular amino acid provides  information about the sections of the  DNA strand, which potentially leads to the synthesis  of such an amino acid.  DNA ×grams are among powerful visual tools for GSA like spectrograms,  which can  be applied  when searching  for particular nucleotide  patterns.   Among such  patterns, the  software  includes  built-in  options  the  following:  metgram  to  find out  potential start position of genes, Shine-Dalgarno sequence localizer (translation mRNA → protein, TATA  Box (replication DNA → mRNA, Enter  a sequence (DNA particular sequence finder.  A few genomes of viruses and  bacteriophage were made available  in the  DEMO  version:  Bacteriophage ΦX 174, phage MS2, Tomato Bushy  Stunt Virus  (TBSV,  Tobacco  Mosaic Virus  (TMV,  Phage  M13, and  Simian virus  SV40 (genome  lengths ranging  from 3,569 to  6,400 bp.   This  tool  is particularly helpful  for comparing  viruses, and it is also particularly valuable  for educational purposes.

  14. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets.

    Science.gov (United States)

    Liu, Chao; Chang, Le; Jia, Tingting; Guo, Fei; Zhang, Lu; Ji, Huimin; Zhao, Junpeng; Wang, Lunan

    2017-05-12

    Quantification Hepatitis B virus (HBV) DNA plays a critical role in the management of chronic HBV infections. However, HBV is a DNA virus with high levels of genetic variation, and drug-resistant mutations have emerged with the use of antiviral drugs. If a mutation caused a sequence mismatched in the primer or probe of a commercial DNA quantification kit, this would lead to an underestimation of the viral load of the sample. The aim of this study was to determine whether commercial kits, which use only one pair of primers and a single probe, accurately quantify the HBV DNA levels and to develop an improved duplex real-time PCR assay. We developed a new duplex real-time PCR assay that used two pairs of primers and two probes based on the conserved S and C regions of the HBV genome. We performed HBV DNA quantitative detection of HBV samples and compared the results of our duplex real-time PCR assays with the COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. The target region of the discordant sample was amplified, sequenced, and validated using plasmid. The results of the duplex real-time PCR were in good accordance with the commercial COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. We showed that two samples from Chinese HBV infections underestimated viral loads when quantified by the Roche kit because of a mismatch between the viral sequence and the reverse primer of the Roche kit. The HBV DNA levels of six samples were undervalued by duplex real-time PCR assays of the C region because of mutations in the primer of C region. We developed a new duplex real-time PCR assay, and the results of this assay were similar to the results of commercial kits. The HBV DNA level could be undervalued when using the COBAS TaqMan HBV Test version 2 for Chinese HBV infections owing to a mismatch with the primer/probe. A duplex real-time PCR assay based on the S and C regions could solve this problem to some extent.

  15. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver.

    Science.gov (United States)

    Reaiche-Miller, Georget Y; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A; Mason, William S; Litwin, Samuel; Jilbert, Allison R

    2013-11-01

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10(5)-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis.

  16. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes

    NARCIS (Netherlands)

    Santini, S.; Jeudy, S.; Bartoli, J.; Poirot, O.; Lescot, M.; Abergel, C.; Berbe, V.; Wommack, K.E.; Noordeloos, A.A.M.; Brussaard, C.P.D.; Claverie, J.M.

    2013-01-01

    Large dsDNA viruses are involved in the population control of many globally distributed species of eukaryotic phytoplankton and have a prominent role in bloom termination. The genus Phaeocystis (Haptophyta, Prymnesiophyceae) includes several high-biomass-forming phytoplankton species, such as Phaeoc

  17. Monitoring of the antiviral potential of bee venom and wax extracts against Adeno-7 (DNA) and Rift Valley fever virus (RNA) viruses models.

    Science.gov (United States)

    Hassan, Mostafa I; Mohamed, Aly F; Amer, Moner A; Hammad, Kotb M; Riad, Saber A

    2015-04-01

    This study monitored the antiviral potential of bee venom and four wax extracts, ethanol white and black beeswax (EWW/EBW) and acetone white and black beeswax (AWW/ABW) extracts. Two different virus models namely Adeno-7 as DNA model and RVFV as RNA virus models. End point calculation assay was used to calculate virus depletion titer. The depletion of viral infectivity titer of ABW to Adeno-7 virus showed strong antiviral activity recorded a depletion of viral infectivity titer (1.66 log (10)/ ml) that gave equal action with bee venom and more than interferon IFN (1 log (10)/ ml). On the other hand, antiviral activity of EBW showed a moderate potential, while AWW showed no antiviral activity. Finally EWW showed synergetic activity against Adeno-7 virus activity. Thus, activity of wax extracts to RVFV was arranged in order of IFN bee venom > AWW & EBW > EWW and ABW recorded 3.34, 0.65, 0.5, 0.34 respectively. It is the first time to study the beeswax effect against DNA and RNA virus' models; acetone black beeswax recorded a depletion titer 1.66 log (10)/ml.

  18. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges.

    Science.gov (United States)

    Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2015-01-01

    Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.

  19. 乙肝病毒携带产妇乳汁中乙型肝炎病毒 DNA 载量检测%Hepatitis B virus carrying hepatitis B virus DNA in the parturients load testing

    Institute of Scientific and Technical Information of China (English)

    索淑一

    2013-01-01

    Objective Testing analysis of hepatitis b virus carriers of hepatitis b virus DNA in milk loads, to explore the safety of the hepatitis b virus carriers of breastfeeding, for carrying hepatitis b virus maternal provide reference to choose the right means of feeding. Methods Application of fluorescence quantitative polymerase chain reaction technology, the second liver virus carried in our hospital obstetrics term, 90 cases of maternal serum HBV antigen positive hepatitis b virus DNA in maternal milk loads for testing.applying Results Viral load in the milk of the big 3 this world group and HBV DNA positive rate than small 3 this world, HBsAg, HBcAb positive group, P 0.05. Conclusion Serum HBV - DNA positive maternal milk maternal HBV - DNA tests help guide hepatitis b right choice feeding way, increase the breastfeeding rate as much as possible.%目的:检测分析乙型肝炎病毒携带者乳汁中乙型肝炎病毒DNA载量,探讨乙型肝炎病毒携带者母乳喂养的安全性,为乙肝病毒携带产妇选择合适的喂养方式提供参考。方法应用荧光定量聚合酶链式反应技术,对我院产科足月分娩的乙肝病毒携带产妇90例血清 HBV 抗原阳性产妇乳汁中乙型肝炎病毒 DNA 载量进行检测。结果大三阳组乳汁的病毒载量以及 HBV-DNA 阳性率要高于小三阳组、HBsAg、HBcAb 阳性组,P <0.05。小三阳组乳汁 HBV-DNA 病毒载量以及 HBV-DNA 阳性率与 HBsAg、HBcAb 阳性组相当,P >0.05。结论血清 HBV-DNA 阳性产妇作乳汁 HBV-DNA 检测有助于指导乙肝产妇正确选择喂养方式,尽可能提高母乳喂养率。

  20. Quantitative and qualitative differences in DNA complementary to avian myeloblastosis virus between normal and leukemic chicken cells.

    Science.gov (United States)

    Baluda, M A; Shoyab, M; Evans, R; Markham, P D; Ali, M

    1975-01-01

    Hybridization of avian myeloblastosis virus (AMV) RNA with DNA immobilized on filters or in liquid with a vast DNA excess was used to measure the viral specific DNA sequences in chicken cells. Newly synthesized viral DNA (v-DNA) appears within an hour after infection of chicken embryo fibroblasts (CEF) with avian oncornaviruses. A fraction of newly synthesized v-DNA becomes integrated into the cellular genome and the remainder gradually disappears. A covalent linkage between v-DNA and cellular DNA was demonstrated to exist in CEF and in leukemic myeloblasts by alkaline sucrose velocity sedimentation. Hybridization of AMV RNA in DNA excess has revealed that there are 2 clases of viral specific sequences within normal as well as in leukemic cells. The 2 types of sequences differ in their rate of hybridization. The amount of both types of DNA sequences is about 2 times higher in leukemic cells than in normal cells. Both the fast- and slowly reacting sequences in leukemic cells exhibit a higher Tm (2 degrees C) than the respective DNA sequences in normal cells. Furthermore, when nucleotide sequences in AMV RNA complementary to normal DNA are removed first by exhaustive hybridization with normal DNA, the residual RNA only hybridizes with leukemic DNA but not with normal DNA. These results suggest that leukemic cells contain viral specific DNA sequences which are absent in normal cells. Endogenous v-DNA has been shown to be integrated in cellular DNA region(s) with a reiteration frequency of approximately 1,200 copies per cell and each integration unit appears to have a size approximately equivalent to the 35S RNA subunit of the viral genome. Viral sequences acquired after infection appear to be integrated in the unique region of cell DNA, or in tandem with the endogenous viral sequences.

  1. Frequency of Epstein-Barr virus DNA sequences in human gliomas

    Directory of Open Access Journals (Sweden)

    Renata Fragelli Fonseca

    Full Text Available CONTEXT AND OBJECTIVE: The Epstein-Barr virus (EBV is the most common cause of infectious mononucleosis and is also associated with several human tumors, including Burkitt's lymphoma, Hodgkin's lymphoma, some cases of gastric carcinoma and nasopharyngeal carcinoma, among other neoplasms. The aim of this study was to screen 75 primary gliomas for the presence of specific EBV DNA sequences by means of the polymerase chain reaction (PCR, with confirmation by direct sequencing. DESIGN AND SETTING: Prevalence study on EBV molecular genetics at a molecular pathology laboratory in a university hospital and at an applied genetics laboratory in a national institution. METHODS: A total of 75 primary glioma biopsies and 6 others from other tumors from the central nervous system were obtained. The tissues were immediately frozen for subsequent DNA extraction by means of traditional methods using proteinase K digestion and extraction with a phenol-chloroform-isoamyl alcohol mixture. DNA was precipitated with ethanol, resuspended in buffer and stored. The PCRs were carried out using primers for amplification of the EBV BamM region. Positive and negative controls were added to each reaction. The PCR products were used for direct sequencing for confirmation. RESULTS: The viral sequences were positive in 11/75 (14.7% of our samples. CONCLUSION: The prevalence of EBV DNA was 11/75 (14.7% in our glioma collection. Further molecular and epidemiological studies are needed to establish the possible role played by EBV in the tumorigenesis of gliomas.

  2. Inhibitory activities of microalgal extracts against Epstein-Barr virus DNA release from lymphoblastoid cells

    Institute of Scientific and Technical Information of China (English)

    Yih-Yih KOK; Pauline BALRAJ; Alan Soo-Beng KHOO; Wan-Loy CHU; Siew-Moi PHANG; Shar Mariam MOHAMED; Rakesh NAIDU; Pey-Jiun LAI; Shui-Nyuk LING; Joon-Wah MAK; Patricia Kim-Chooi LIM

    2011-01-01

    This study aimed to assess the inhibitory activities of methanol extracts from the microalgae Ankistrodesmus convolutus, Synechococcus elongatus, and Spirulina platensis against Epstein-Barr virus (EBV) in three Burkitt's lymphoma (BL) cell lines, namely Akata, B95-8, and P3HR-1. The antiviral activity was assessed by quantifying the cell-free EBV DNA using real-time polymerase chain reaction (PCR) technique. The methanol extracts from Ankistrodesmus convolutus and Synechococcus elongatus displayed low cytotoxicity and potent effect in reducing cell-free EBV DNA (EC50<0.01 μg/ml) with a high therapeutic index (>28000). After fractionation by column chromatography, the fraction from Synechococcus elongatus (SEF1) reduced the cell-free EBV DNA most effectively (EC50=2.9 μg/ml, therapeutic index>69). Upon further fractionation by high performance liquid chromatography (HPLC), the sub-fraction SEF1'a was most active in reducing the cell-free EBV DNA (EC50=1.38 μg/ml, therapeutic index>14.5). This study suggests that microalgae could be a potential source of antiviral compounds that can be used against EBV.

  3. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    Science.gov (United States)

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  4. Copy number of tandem direct repeats within the inverted repeats of Marek's disease virus DNA.

    Science.gov (United States)

    Kanamori, A; Nakajima, K; Ikuta, K; Ueda, S; Kato, S; Hirai, K

    1986-12-01

    We previously reported that DNA of the oncogenic strain BC-1 of Marek's disease virus serotype 1 (MDV1) contains three units of tandem direct repeats with 132 base pair (bp) repeats within the inverted repeats of the long regions of the MDV1 genome, whereas the attenuated, nononcogenic viral DNA contains multiple units of tandem direct repeats (Maotani et al., 1986). In the present study, the difference in the copy numbers of 132 bp repeats of oncogenic and nononcogenic MDV1 DNAs in other strains of MDV1 was investigated by Southern blot hybridization. The main copy numbers in different oncogenic MDV1 strains differed: those of BC-1, JM and highly oncogenic Md5 were 3, 5 to 12 and 2, respectively. The viral DNA population with two units of repeats was small, but detectable, in cells infected with either the oncogenic BC-1 or JM strain. The MDV1 DNA in various MD cell lines contained either two units or both two and three units of repeats. The significance of the copy number of repeats in oncogenicity of MDV1 is discussed.

  5. Insect Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature and environment derived from beetle and other insect fossils. Parameter keywords describe what was measured in this data set. Additional...

  6. A new theraphosid spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection.

    Directory of Open Access Journals (Sweden)

    Daniel Mendes Pereira Ardisson-Araújo

    Full Text Available Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3 has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV expression. Five different forms of Ba3 were assessed; (1 the full-length sequence, (2 the pro-peptide and mature region, (3 only the mature region, and the mature region fused to an (4 insect or a (5 virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect

  7. A New theraphosid Spider Toxin Causes Early Insect Cell Death by Necrosis When Expressed In Vitro during Recombinant Baculovirus Infection

    Science.gov (United States)

    Ardisson-Araújo, Daniel Mendes Pereira; Morgado, Fabrício Da Silva; Schwartz, Elisabeth Ferroni; Corzo, Gerardo; Ribeiro, Bergmann Morais

    2013-01-01

    Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3) has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV) expression. Five different forms of Ba3 were assessed; (1) the full-length sequence, (2) the pro-peptide and mature region, (3) only the mature region, and the mature region fused to an (4) insect or a (5) virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect cells. PMID

  8. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses.

    Directory of Open Access Journals (Sweden)

    Tom A Williams

    Full Text Available Mimivirus is a nucleocytoplasmic large DNA virus (NCLDV with a genome size (1.2 Mb and coding capacity ( 1000 genes comparable to that of some cellular organisms. Unlike other viruses, Mimivirus and its NCLDV relatives encode homologs of broadly conserved informational genes found in Bacteria, Archaea, and Eukaryotes, raising the possibility that they could be placed on the tree of life. A recent phylogenetic analysis of these genes showed the NCLDVs emerging as a monophyletic group branching between Eukaryotes and Archaea. These trees were interpreted as evidence for an independent "fourth domain" of life that may have contributed DNA processing genes to the ancestral eukaryote. However, the analysis of ancient evolutionary events is challenging, and tree reconstruction is susceptible to bias resulting from non-phylogenetic signals in the data. These include compositional heterogeneity and homoplasy, which can lead to the spurious grouping of compositionally-similar or fast-evolving sequences. Here, we show that these informational gene alignments contain both significant compositional heterogeneity and homoplasy, which were not adequately modelled in the original analysis. When we use more realistic evolutionary models that better fit the data, the resulting trees are unable to reject a simple null hypothesis in which these informational genes, like many other NCLDV genes, were acquired by horizontal transfer from eukaryotic hosts. Our results suggest that a fourth domain is not required to explain the available sequence data.

  9. Infectivity and complete nucleotide sequence of cucumber fruit mottle mosaic virus isolate Cm cDNA.

    Science.gov (United States)

    Rhee, Sun-Ju; Hong, Jin-Sung; Lee, Gung Pyo

    2014-07-01

    Three isolates of cucumber fruit mottle mosaic virus (CFMMV) were collected from melon, cucumber, and pumpkin plants in Korea. A full-length cDNA clone of CFMMV-Cm (melon isolate) was produced and evaluated for infectivity after T7 transcription in vitro (pT7CF-Cmflc). The complete CFMMV genome sequence of the infectious clone pT7CF-Cmflc was determined. The genome of CFMMV-Cm consisted of 6,571 nucleotides and shared high nucleotide sequence identity (98.8 %) with the Israel isolate of CFMMV. Based on the infectious clone pT7CF-Cmflc, a CaMV 35S-promoter driven cDNA clone (p35SCF-Cmflc) was subsequently constructed and sequenced. Mechanical inoculation with RNA transcripts of pT7CF-Cmflc and agro-inoculation with p35SCF-Cmflc resulted in systemic infection of cucumber and melon, producing symptoms similar to those produced by CFMMV-Cm. Progeny virus in infected plants was detected by RT-PCR, western blot assay, and transmission electron microscopy.

  10. Herpes Simplex Virus-Type1 (HSV-1) Impairs DNA Repair in Cortical Neurons.

    Science.gov (United States)

    De Chiara, Giovanna; Racaniello, Mauro; Mollinari, Cristiana; Marcocci, Maria Elena; Aversa, Giorgia; Cardinale, Alessio; Giovanetti, Anna; Garaci, Enrico; Palamara, Anna Teresa; Merlo, Daniela

    2016-01-01

    Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer's disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions.

  11. Detection of Hepatitis B Virus M204I Mutation by Quantum Dot-Labeled DNA Probe

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    2017-04-01

    Full Text Available Quantum dots (QDs are semiconductor nanoparticles with a diameter of less than 10 nm, which have been widely used as fluorescent probes in biochemical analysis and vivo imaging because of their excellent optical properties. Sensitive and convenient detection of hepatitis B virus (HBV gene mutations is important in clinical diagnosis. Therefore, we developed a sensitive, low-cost and convenient QDs-mediated fluorescent method for the detection of HBV gene mutations in real serum samples from chronic hepatitis B (CHB patients who had received lamivudine or telbivudine antiviral therapy. We also evaluated the efficiency of this method for the detection of drug-resistant mutations compared with direct sequencing. In CHB, HBV DNA from the serum samples of patients with poor response or virological breakthrough can be hybridized to probes containing the M204I mutation to visualize fluorescence under fluorescence microscopy, where fluorescence intensity is related to the virus load, in our method. At present, the limits of the method used to detect HBV genetic variations by fluorescence quantum dots is 103 IU/mL. These results show that QDs can be used as fluorescent probes to detect viral HBV DNA polymerase gene variation, and is a simple readout system without complex and expensive instruments, which provides an attractive platform for the detection of HBV M204I mutation.

  12. Hierarchical Assembly of Plasmonic Nanostructures using Virus Capsid Scaffolds on DNA Origami Tiles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Debin; Capehart, Stacy L.; Pal, Suchetan; Liu, Minghui; Zhang, Lei; Schuck, P. J.; Liu, Yan; Yan, Hao; Francis, Matthew B.; De Yoreo, James J.

    2014-07-07

    Plasmonic nanoarchitectures using biological scaffolds have shown the potential to attain controllable plasmonic fluorescence via precise spatial arrangement of fluorophores and plasmonic antennae. However, previous studies report a predominance of fluorescence quenching for small metal nanoparticles (less than ~60 nm) due to their small scattering cross-sections. In this work, we report the design and performance of fluorescent plasmonic structures composed of fluorophore-modified virus capsids and gold nanoparticles (AuNPs) assembled on DNA origami tiles. The virus capsid creates a scaffold for control over the three dimensional arrangement of the fluorophores, whereas the DNA origami tile provides precise control over the distance between the capsid and the AuNP. Using finite-difference time-domain (FDTD) numerical simulations and multimodal single-particle imaging measurements, we show that the judicial design of these structures places the dye molecules near the hot spot of the AuNP. This effectively increases the fluorescence intensity in the quenching regime of the AuNP, with an enhancement factor that increases with increasing AuNP size. This strategy of using biological scaffolds to control fluorescence paves the way for exploring the parameters that determine plasmonic fluorescence. It may lead to a better understanding of the antenna effects of photon absorption and emission, enabling the construction of multicomponent plasmonic systems.

  13. Herpes Simplex Virus-Type1 (HSV-1) Impairs DNA Repair in Cortical Neurons

    Science.gov (United States)

    De Chiara, Giovanna; Racaniello, Mauro; Mollinari, Cristiana; Marcocci, Maria Elena; Aversa, Giorgia; Cardinale, Alessio; Giovanetti, Anna; Garaci, Enrico; Palamara, Anna Teresa; Merlo, Daniela

    2016-01-01

    Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer’s disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions. PMID:27803664

  14. Inhibition of Cellular Entry of Lymphocytic Choriomeningitis Virus by Amphipathic DNA Polymers

    Science.gov (United States)

    Lee, Andrew M.; Rojek, Jillian M.; Gundersen, Anette; Ströher, Ute; Juteau, Jean-Marc; Vaillant, Andrew; Kunz, Stefan

    2008-01-01

    The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) represents a powerful experimental model for the study of the basic virology and pathogenesis of arenaviruses. In the present study, we used the LCMV model to evaluate the anti-viral potential of phosphorothioate oligonucleotides against arenaviruses. Our findings indicate that amphipathic DNA polymers (APs) are potent inhibitors of infection with a series of LCMV isolates with IC50 in the low nanomolar range. APs target the surface glycoprotein (GP) of LCMV and block viral entry and cell-cell propagation of the virus, without affecting later steps in replication or release of progeny virus from infected cells. The anti-viral action of APs is sequence-independent but is critically dependent on their size and hydrophobicity. Mechanistically, we provide evidence that APs disrupt the interaction between LCMVGP and its cellular receptor, α-dystroglycan. Exposure of LCMV to APs does not affect the stability of the GP virion sp