WorldWideScience

Sample records for dna damage measured

  1. Measurement of oxidatively generated base damage in cellular DNA.

    Science.gov (United States)

    Cadet, Jean; Douki, Thierry; Ravanat, Jean-Luc

    2011-06-03

    This survey focuses on the critical evaluation of the main methods that are currently available for monitoring single and complex oxidatively generated damage to cellular DNA. Among chromatographic methods, HPLC-ESI-MS/MS and to a lesser extent HPLC-ECD which is restricted to a few electroactive nucleobases and nucleosides are appropriate for measuring the formation of single and clustered DNA lesions. Such methods that require optimized protocols for DNA extraction and digestion are sensitive enough for measuring base lesions formed under conditions of severe oxidative stress including exposure to ionizing radiation, UVA light and high intensity UVC laser pulses. In contrast application of GC-MS and HPLC-MS methods that are subject to major drawbacks have been shown to lead to overestimated values of DNA damage. Enzymatic methods that are based on the use of DNA repair glycosylases in order to convert oxidized bases into strand breaks are suitable, even if they are far less specific than HPLC methods, to deal with low levels of single modifications. Several other methods including immunoassays and (32)P-postlabeling methods that are still used suffer from drawbacks and therefore are not recommended. Another difficult topic is the measurement of oxidatively generated clustered DNA lesions that is currently achieved using enzymatic approaches and that would necessitate further investigations.

  2. DNA damage induction and tumour cell radiosensitivity : PFGE and halo measurements

    NARCIS (Netherlands)

    Woudstra, EC; Driessen, C; Konings, AWT; Kampinga, HH

    1998-01-01

    Purpose: To test whether induction of DNA damage is correlated with tumour-cell radiosensitivity. Materials and methods: Initial DNA damage caused by X-irradiation was measured in ten human tumour cell lines, which largely differed in radiosensitivity, using either the pulsed-field gel electrophores

  3. Measurement of DNA damage in individual cells using the Single Cell Gel Electrophoresis (Comet) assay.

    Science.gov (United States)

    Hartley, Janet M; Spanswick, Victoria J; Hartley, John A

    2011-01-01

    The Single Cell Gel Electrophoresis (Comet) assay is a simple, versatile and sensitive method for measuring DNA damage in individual cells, allowing the determination of heterogeneity of response within a cell population. The basic alkaline technique described is for the determination of DNA strand break damage and its repair at a single cell level. Specific modifications to the method use a lower pH ('neutral' assay), or allow the measurement of DNA interstrand cross-links. It can be further adapted to, for example, study specific DNA repair mechanisms, be combined with fluorescent in situ hybridisation, or incorporate lesion specific enzymes.

  4. Compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones

    Institute of Scientific and Technical Information of China (English)

    Ting ZHANG; Jun-ling LI; Jian XIN; Xiao-chao MA; Zeng-hong TU

    2004-01-01

    AIM: To compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones (FQ). METHODS: Lomefloxacin (LFLX), sparfloxacin (SPFX), ciprofloxacin (CPFX), and levofloxacin (LELX)were tested by comet assay and photodynamic DNA strand breaking activity under the different conditions of UVA irradiation. RESULTS: In comet assay, photogenotoxicity was evident at SPFX 1 mg/L, LFLX 5 mg/L, and CPFX 5 mg/L, and LELX 10 mg/L. In photodynamic DNA srand-breaking activity, SPFX and LFLX induced the conversion of the supercoiled form into the nicked relaxed form at 10-50 μmol/L, while CPFX at 25 μmol/L and LELX at 50 μmol/L. CONCLUSION: There were good correlations between the two methods to detect DNA damage induced by phototoxicity of fluoroquinolones. Photodynamic DNA strand breaking activity was a good method to detect DNA damage induced by photogenotoxicity of fluoroquinolones as well as comet assay.

  5. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest

    2015-01-01

    Increased levels of oxidatively damaged DNA have been documented in studies of metal, metal oxide, carbon-based and ceramic engineered nanomaterials (ENMs). In particular, 8-oxo-7,8-dihydroguanine-2'-deoxyguanosine (8-oxodG) is widely assessed as a DNA nucleobase oxidation product, measured...

  6. DNA damage and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely [Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States); Panayiotidis, Mihalis I. [School of Community Health Sciences, University of Nevada, Reno, NV 89557 (United States); Franco, Rodrigo, E-mail: rfrancocruz2@unl.edu [Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States)

    2011-06-03

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  7. Measurement of DNA damage after exposure to 2450 MHz electromagnetic radiation.

    Science.gov (United States)

    Malyapa, R S; Ahern, E W; Straube, W L; Moros, E G; Pickard, W F; Roti Roti, J L

    1997-12-01

    Recent reports suggest that exposure to 2450 MHz electromagnetic radiation causes DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in cells of rat brain irradiated in vivo (Lai and Singh, Bioelectromagnetics 16, 207-210, 1995; Int. J. Radiat. Biol. 69, 513-521, 1996). Therefore, we endeavored to determine if exposure of cultured mammalian cells in vitro to 2450 MHz radiation causes DNA damage. The alkaline comet assay (single-cell gel electrophoresis), which is reportedly the most sensitive method to assay DNA damage in individual cells, was used to measure DNA damage after in vitro 2450 MHz irradiation. Exponentially growing U87MG and C3H 10T1/2 cells were exposed to 2450 MHz continuous-wave (CW) radiation in specially designed radial transmission lines (RTLs) that provided relatively uniform microwave exposure. Specific absorption rates (SARs) were calculated to be 0.7 and 1.9 W/kg. Temperatures in the RTLs were measured in real time and were maintained at 37 +/- 0.3 degrees C. Every experiment included sham exposure(s) in an RTL. Cells were irradiated for 2 h, 2 h followed by a 4-h incubation at 37 degrees C in an incubator, 4 h and 24 h. After these treatments samples were subjected to the alkaline comet assay as described by Olive et al. (Exp. Cell Res. 198, 259-267, 1992). Images of comets were digitized and analyzed using a PC-based image analysis system, and the "normalized comet moment" and "comet length" were determined. No significant differences were observed between the test group and the controls after exposure to 2450 MHz CW irradiation. Thus 2450 MHz irradiation does not appear to cause DNA damage in cultured mammalian cells under these exposure conditions as measured by this assay.

  8. Measurement of oxidative DNA damage by gas chromatography-mass spectrometry: ethanethiol prevents artifactual generation of oxidized DNA bases.

    Science.gov (United States)

    Jenner, A; England, T G; Aruoma, O I; Halliwell, B

    1998-04-15

    Analysis of oxidative damage to DNA bases by GC-MS enables identification of a range of base oxidation products, but requires a derivatization procedure. However, derivatization at high temperature in the presence of air can cause 'artifactual' oxidation of some undamaged bases, leading to an overestimation of their oxidation products, including 8-hydroxyguanine. Therefore derivatization conditions that could minimize this problem were investigated. Decreasing derivatization temperature to 23 degrees C lowered levels of 8-hydroxyguanine, 8-hydroxyadenine, 5-hydroxycytosine and 5-(hydroxymethyl)uracil measured by GC-MS in hydrolysed calf thymus DNA. Addition of the reducing agent ethanethiol (5%, v/v) to DNA samples during trimethylsilylation at 90 degrees C also decreased levels of these four oxidized DNA bases as well as 5-hydroxyuracil. Removal of guanine from hydrolysed DNA samples by treatment with guanase, prior to derivatization, resulted in 8-hydroxyguanine levels (54-59 pmol/mg of DNA) that were significantly lower than samples not pretreated with guanase, independent of the derivatization conditions used. Only hydrolysed DNA samples that were derivatized at 23 degrees C in the presence of ethanethiol produced 8-hydroxyguanine levels (56+/-8 pmol/mg of DNA) that were as low as those of guanase-pretreated samples. Levels of other oxidized bases were similar to samples derivatized at 23 degrees C without ethanethiol, except for 5-hydroxycytosine and 5-hydroxyuracil, which were further decreased by ethanethiol. Levels of 8-hydroxyguanine, 8-hydroxyadenine and 5-hydroxycytosine measured in hydrolysed calf thymus DNA by the improved procedures described here were comparable with those reported previously by HPLC with electrochemical detection and by GC-MS with prepurification to remove undamaged base. We conclude that artifactual oxidation of DNA bases during derivatization can be prevented by decreasing the temperature to 23 degrees C, removing air from the

  9. An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay

    DEFF Research Database (Denmark)

    Johansson, Clara; Møller, Peter; Forchhammer, Lykke;

    2010-01-01

    The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due...... assay end points to number of lesions/10(6) bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA...... to differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet...

  10. Induction and repair of DNA damage measured by the comet assay in human T lymphocytes separated by immunomagnetic cell sorting.

    Science.gov (United States)

    Bausinger, Julia; Speit, Günter

    2014-11-01

    The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells.

  11. Variation in the measurement of DNA damage by comet assay measured by the ECVAG dagger inter-laboratory validation trial

    DEFF Research Database (Denmark)

    Forchhammer, Lykke; Johansson, Clara; Loft, Steffen;

    2010-01-01

    The comet assay has become a popular method for the assessment of DNA damage in biomonitoring studies and genetic toxicology. However, few studies have addressed the issue of the noted inter-laboratory variability of DNA damage measured by the comet assay. In this study, 12 laboratories analysed...... by the different laboratories as evidenced by an inter-laboratory coefficient of variation (CV) of 47%. Adjustment of the primary comet assay end points by a calibration curve prepared in each laboratory reduced the CV to 28%, a statistically significant reduction (P ... of the inter-laboratory variation originated from differences in image analysis, whereas the intra-laboratory variation was considerably smaller than the variation between laboratories. In summary, adjustment of primary comet assay results by reference standards reduces inter-laboratory variation in the level...

  12. Comet assay measures of DNA damage as biomarkers of irinotecan response in colorectal cancer in vitro and in vivo.

    Science.gov (United States)

    Wood, Joanna P; Smith, Andrew J O; Bowman, Karen J; Thomas, Anne L; Jones, George D D

    2015-09-01

    The use of irinotecan to treat metastatic colorectal cancer (CRC) is limited by unpredictable response and variable toxicity; however, no reliable clinical biomarkers are available. Here, we report a study to ascertain whether irinotecan-induced DNA damage measures are suitable/superior biomarkers of irinotecan effect. CRC-cell lines (HCT-116 and HT-29) were treated in vitro with irinotecan and peripheral blood lymphocytes (PBL) were isolated from patients before and after receiving irinotecan-based chemotherapy. Levels of in vitro-, in vivo-, and ex vivo-induced DNA damage were measured using the Comet assay; correlations between damage levels with in vitro cell survival and follow-up clinical data were investigated. Irinotecan-induced DNA damage was detectable in both CRC cell-lines in vitro, with higher levels of immediate and residual damage noted for the more sensitive HT-29 cells. DNA damage was not detected in vivo, but was measurable in PBLs upon mitogenic stimulation prior to ex vivo SN-38 treatment. Results showed that, following corrections for experimental error, those patients whose PBLs demonstrated higher levels of DNA damage following 10 h of SN-38 exposure ex vivo had significantly longer times to progression than those with lower damage levels (median 291 vs. 173 days, P = 0.014). To conclude, higher levels of irinotecan-induced initial and residual damage correlated with greater cell kill in vitro and a better clinical response. Consequently, DNA damage measures may represent superior biomarkers of irinotecan effect compared to the more often-studied genetic assays for differential drug metabolism.

  13. Gross genomic damage measured by DNA image cytometry independently predicts gastric cancer patient survival

    NARCIS (Netherlands)

    Belien, J.A.M.; Buffart, T.E.; Gill, A.; Broeckaert, M.A.M.; Quirke, P.; Meijer, G.A.; Grabsch, H.

    2009-01-01

    BACKGROUND: DNA aneuploidy reflects gross genomic changes. It can be measured by flow cytometry (FCM-DNA) or image cytometry (ICM-DNA). In gastric cancer, the prevalence of DNA aneuploidy has been reported to range from 27 to 100%, with conflicting associations with clinicopathological variables. Th

  14. Sperm DNA oxidative damage and DNA adducts

    Science.gov (United States)

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  15. Measurement of changes in impedance of DNA nanowires due to radiation induced structural damage. A novel approach for a DNA-based radiosensitive device

    Science.gov (United States)

    Heimbach, Florian; Arndt, Alexander; Nettelbeck, Heidi; Langner, Frank; Giesen, Ulrich; Rabus, Hans; Sellner, Stefan; Toppari, Jussi; Shen, Boxuan; Baek, Woon Yong

    2017-08-01

    The ability of DNA to conduct electric current has been the topic of numerous investigations over the past few decades. Those investigations indicate that this ability is dependent on the molecular structure of the DNA. Radiation-induced damages, which lead to an alteration of the molecular structure, should therefore change the electrical impedance of a DNA molecule. In this paper, the damage due to ionising radiation is shown to have a direct effect on the electrical transport properties of DNA. Impedance measurements of DNA samples were carried out by an AC impedance spectrometer before, during and after irradiation. The samples comprised of DNA segments, which were immobilized between gold electrodes with a gap of 12 μm. The impedance of all DNA samples exhibited rising capacitive behaviour with increasing absorbed dose.

  16. Experimental setup and first measurement of DNA damage induced along and around an antiproton beam

    DEFF Research Database (Denmark)

    Kavanagh, J. N.; Currell, F. J.; Timson, D. J.;

    2010-01-01

    Radiotherapy employs ionizing radiation to induce lethal DNA lesions in cancer cells while minimizing damage to healthy tissues. Due to their pattern of energy deposition, better therapeutic outcomes can, in theory, be achieved with ions compared to photons. Antiprotons have been proposed to offe...

  17. Measurement of oxidative damage at pyrimidine bases in gamma-irradiated DNA.

    Science.gov (United States)

    Douki, T; Delatour, T; Paganon, F; Cadet, J

    1996-01-01

    Oxidized nucleobases represent one of the main classes of damage induced in DNA by ionizing radiation. Emphasis was placed in this work on the measurement of four oxidized pyrimidine bases, including 5-(hydroxymethyl)uracil (5-HMUra), 5-formyluracil (5-ForUra), 5-hydroxycytosine (5-OHCyt), and 5-hydroxyuracil (5-OHUra), in isolated DNA upon exposure to gamma radiation in aerated aqueous solution. For this purpose, both high performance liquid chromatography associated with electrochemical detection (HPLC-EC) and gas chromatography coupled to mass spectrometry (GC-MS) were used. Conditions of hydrolysis of the N-glycosidic bond were carefully checked in order to achieve a quantitative release of the lesions. We showed that 60% formic acid treatment leads to the decomposition of the four lesions studied. On the other hand, hydrolysis based on the use of either 88% formic acid or 70% hydrogen fluoride in pyridine (HF/Pyr) allowed the quantitative release of the modified bases, with the exception of 5-HMUra when the latter reagent was utilized. A dose course study of the radiation-induced formation of 5-HMUra and 5-ForUra in DNA by using the GC-MS assay showed that the latter lesion was produced in a 2.1-fold higher yield than the former one. HF/Pyr and 88% formic acid hydrolysis provided similar results for 5-ForUra, indicating the reliability of both techniques for the measurement of this lesion. For 5-OHUra and 5-OHCyt, the level of modification determined by GC-MS analysis was higher after 88% formic acid treatment than upon HF/Pyr hydrolysis. When DNA was enzymatically digested and analyzed by HPLC-EC for 5-OHdCyd and 5-OHdUrd, the results were very close to those obtained by GC-MS following HF/Pyr treatment. It was concluded that additional amounts of both 5-OHUra and 5-OHCyt are produced during the 88% formic acid treatment from radiation-induced 5,6-saturated pyrimidine precursors. It is likely that cytosine and uracil diols are involved in this reaction. The

  18. Relation between DNA damage measured by comet assay and OGG1 Ser326Cys polymorphism in antineoplastic drugs biomonitoring

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2015-09-01

    Full Text Available Antineoplastic drugs are hazardous chemical agents used mostly in the treatment of patients with cancer, however health professionals that handle and administer these drugs can become exposed and develop DNA damage. Comet assay is a standard method for assessing DNA damage in human biomonitoring and, combined with formamidopyrimidine DNA glycosylase (FPG enzyme, it specifically detects DNA oxidative damage.The aim of this study was to investigate genotoxic effects in workers occupationally exposed to cytostatics (n = 46, as compared to a control group with no exposure (n = 46 at two Portuguese hospitals, by means of the alkaline comet assay. The potential of the OGG1 Ser326Cys polymorphism as a susceptibility biomarker was also investigated. Exposure was evaluated by investigating the contamination of surfaces and genotoxic assessment was done by alkaline comet assay in peripheral blood lymphocytes. OGG1 Ser326Cys (rs1052133 polymorphism was studied by Real Time PCR.As for exposure assessment, there were 121 (37% positive samples out of a total of 327 samples analysed from both hospitals. No statistically significant differences (Mann-Whitney test, p > 0.05 were found between subjects with and without exposure, regarding DNA damage and oxidative DNA damage, nevertheless the exposed group exhibited higher values. Moreover, there was no consistent trend regarding the variation of both biomarkers as assessed by comet assay with OGG1 polymorphism.Our study was not statistically significant regarding occupational exposure to antineoplastic drugs and genetic damage assessed by comet assay. However, health professionals should be monitored for risk behaviour, in order to ensure that safety measures are applied and protection devices are used correctly.

  19. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  20. Mechanism of DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xin; Bi

    2015-01-01

    DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance(DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis(TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching(TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.

  1. Rapid rates of sperm DNA damage after activation in tench (Tinca tinca: Teleostei, Cyprinidae) measured using a sperm chromatin dispersion test.

    Science.gov (United States)

    López-Fernández, Carmen; Gage, Matthew J G; Arroyo, Francisca; Gosálbez, Altea; Larrán, Ana M; Fernández, José L; Gosálvez, Jaime

    2009-08-01

    Spermatozoal haplotypic DNA is prone to damage, leading to male fertility problems. So far, the assessment of sperm DNA breakage has been challenging because protamines render the nuclear chromatin highly compacted. Here, we report the application of a new test to quantify DNA fragmentation in spermatozoa of an externally fertilizing teleost fish. The sperm chromatin dispersion (SCD) test uses a species-specific lysing solution to generate controlled protein depletion that, followed by DNA-specific fluorescent labelling, allows an easy morphological discrimination between nuclei affected by DNA damage. Using tench (Tinca tinca) as our model, we first trialled the test against established, but more technically demanding, assays employing in situ nick translation (ISNT) and the comet assay. The SCD test showed high concordance with ISNT, comet assay measures and a chromatin-swelling test, confirming the application of this straightforward SCD technique to various aspects of reproductive biology. Second, we examined between-male variation in DNA damage, and measured changes through time following spermatozoal activation. Between-male variation in the basal levels of average DNA damage ranged from 0 to 20% of sperm showing damage, and all showed increases in DNA fragmentation through time (0-60 min). The rates of DNA damage increase are the fastest so far recorded in sperm for a living organism, and may relate to the external fertilization mode. Our findings have relevance for broodstock selection and optimizing IVF protocols routinely used in modern aquaculture.

  2. DNA damage in neurodegenerative diseases.

    Science.gov (United States)

    Coppedè, Fabio; Migliore, Lucia

    2015-06-01

    Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans.

  3. DNA damage and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Stelow, R B

    1980-01-01

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 10/sup 4/ fold.

  4. Experimental study of oxidative DNA damage

    DEFF Research Database (Denmark)

    Loft, S; Deng, Xiaohong; Tuo, J

    1998-01-01

    compounds have been studied in animal experiments mainly in rats and mice, and generally with measurement of 8-oxodG with HPLC-EC. A large number of well-known carcinogens induce 8-oxodG formation in liver and/or kidneys. Moreover several animal studies have shown a close relationship between induction...... of the use of 2-nitropropane as a model for oxidative DNA damage relate particularly to formation of 8-aminoguanine derivatives that may interfere with HPLC-EC assays and have unknown consequences. Other model compounds for induction of oxidative DNA damage, such as ferric nitriloacetate, iron dextran......, potassium bromate and paraquat, are less potent and/or more organ specific. Inflammation and activation of an inflammatory response by phorbol esters or E. coli lipopolysaccharide (LPS) induce oxidative DNA damage in many target cells and enhance benzene-induced DNA damage in mouse bone marrow. Experimental...

  5. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  6. Use of the comet assay to measure DNA damage in cells exposed to photosensitizers and gamma radiation

    Science.gov (United States)

    Pouget, J.-P.; Ravanat, J.-L.; Douki, T.; Richard, M.-J.; Cadet, J.

    1999-01-01

    We used the comet assay associated with DNA-glycosylases to estimate DNA damage in cells exposed to gamma irradiation or photosensitized either with methylene blue or orange acridine. A calibration performed using irradiation allowed the measurement of the steady-state level and the yield of 8-oxodGuo as well as strand breaks and alkali-labile sites. Nous avons utilisé la méthode des comètes associée à des ADN-glycosylases, pour estimer les dommages de l'ADN dans des cellules après l'exposition à un rayonnement gamma ou après photosensibilisation par le bleu de méthylène ou l'acridine orange. Une calibration de la méthode des comètes a permis de mesurer le niveau basal et les taux de formation de 8-oxodGuo ainsi que le nombre de cassures de brins et de sites alcali labiles.

  7. Vitamin C for DNA damage prevention

    Energy Technology Data Exchange (ETDEWEB)

    Sram, Radim J., E-mail: sram@biomed.cas.cz [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic); Binkova, Blanka; Rossner, Pavel [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic)

    2012-05-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2 Prime -deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 {mu}mol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with {gamma}-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 {mu}mol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 {mu}mol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  8. Monte carlo simulation of base and nucleotide excision repair of clustered DNA damage sites. II. Comparisons of model predictions to measured data.

    Science.gov (United States)

    Semenenko, V A; Stewart, R D

    2005-08-01

    Clustered damage sites other than double-strand breaks (DSBs) have the potential to contribute to deleterious effects of ionizing radiation, such as cell killing and mutagenesis. In the companion article (Semenenko et al., Radiat. Res. 164, 180-193, 2005), a general Monte Carlo framework to simulate key steps in the base and nucleotide excision repair of DNA damage other than DSBs is proposed. In this article, model predictions are compared to measured data for selected low-and high-LET radiations. The Monte Carlo model reproduces experimental observations for the formation of enzymatic DSBs in Escherichia coli and cells of two Chinese hamster cell lines (V79 and xrs5). Comparisons of model predictions with experimental values for low-LET radiation suggest that an inhibition of DNA backbone incision at the sites of base damage by opposing strand breaks is active over longer distances between the damaged base and the strand break in hamster cells (8 bp) compared to E. coli (3 bp). Model estimates for the induction of point mutations in the human hypoxanthine guanine phosphoribosyl transferase (HPRT) gene by ionizing radiation are of the same order of magnitude as the measured mutation frequencies. Trends in the mutation frequency for low- and high-LET radiation are predicted correctly by the model. The agreement between selected experimental data sets and simulation results provides some confidence in postulated mechanisms for excision repair of DNA damage other than DSBs and suggests that the proposed Monte Carlo scheme is useful for predicting repair outcomes.

  9. Aging and oxidatively damaged nuclear DNA in animal organs

    DEFF Research Database (Denmark)

    Møller, Peter; Løhr, Mille; Folkmann, Janne K

    2010-01-01

    Oxidative stress is considered to contribute to aging and is associated with the generation of oxidatively damaged DNA, including 8-oxo-7,8-dihydroguanine. We have identified 69 studies that have measured the level of oxidatively damaged DNA in organs of animals at various ages. In general, organs...... with limited cell proliferation, i.e., liver, kidney, brain, heart, pancreas, and muscle, tended to show accumulation of DNA damage with age, whereas organs with highly proliferating cells, such as intestine, spleen, and testis, showed more equivocal or no effect of age. A restricted analysis of studies...... evidence for aging-associated accumulation of oxidatively damaged DNA in organs with limited cell proliferation....

  10. The DNA damage response during mitosis

    NARCIS (Netherlands)

    Heijink, Anne Margriet; Krajewska, Malgorzata; van Vugt, Marcel A. T. M.

    2013-01-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance

  11. The DNA damage response during mitosis

    NARCIS (Netherlands)

    Heijink, Anne Margriet; Krajewska, Malgorzata; van Vugt, Marcel A. T. M.

    2013-01-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance

  12. Chromatin structure and DNA damage repair

    Directory of Open Access Journals (Sweden)

    Dinant Christoffel

    2008-11-01

    Full Text Available Abstract The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by nucleotide excision repair. We will discuss the role of histone modifications as well as their displacement or exchange in nucleotide excision repair and make a comparison with their requirement in transcription and double strand break repair.

  13. Profiling oxidative DNA damage: effects of antioxidants.

    Science.gov (United States)

    Box, Harold C; Patrzyc, Helen B; Budzinski, Edwin E; Dawidzik, Jean B; Freund, Harold G; Zeitouni, Nathalie C; Mahoney, Martin C

    2012-11-01

    The goal of this research was to determine whether antioxidant usage could be correlated with changes in DNA damage levels. Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) was used to simultaneously measure five different oxidatively-induced base modifications in the DNA of WBC. Measurements of the five modifications were made before and after an 8-week trial during which participants took the SU.VI.MAX supplement. Levels of the five DNA modifications were compared among different groupings: users versus non-users of antioxidant supplements, before versus after the supplement intervention and men versus women. The statistical significance of differences between groups was most significant for pyrimidine base modifications and the observed trends reflect trends reported in epidemiological studies of antioxidant usage. A combination of modifications derived from pyrimidine bases is suggested as a superior indicator of oxidative stress.

  14. Using DNA damage to monitor water environment

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxicological study and environmental risk assessment. In this article, main types of DNA damage caused by pollutants in water environments were reviewed; methods of detecting DNA damage were also documented for water environmental monitoring.

  15. DNA damage in plant herbarium tissue.

    NARCIS (Netherlands)

    Staats, M.; Cuenca, A.; Richardson, J.E.; Ginkel, R.V.; Petersen, G.; Seberg, O.; Bakker, F.T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplif

  16. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  17. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  18. DNA damage in plant herbarium tissue.

    Directory of Open Access Journals (Sweden)

    Martijn Staats

    Full Text Available Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.

  19. DNA Damage in Plant Herbarium Tissue

    Science.gov (United States)

    Staats, Martijn; Cuenca, Argelia; Richardson, James E.; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4–3.8% of fresh control DNA and 1.0–1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens. PMID:22163018

  20. The Cartography of UV-induced DNA Damage Formation and DNA Repair.

    Science.gov (United States)

    Hu, Jinchuan; Adar, Sheera

    2017-01-01

    DNA damage presents a barrier to DNA-templated biochemical processes, including gene expression and faithful DNA replication. Compromised DNA repair leads to mutations, enhancing the risk for genetic diseases and cancer development. Conventional experimental approaches to study DNA damage required a researcher to choose between measuring bulk damage over the entire genome, with little or no resolution regarding a specific location, and obtaining data specific to a locus of interest, without a global perspective. Recent advances in high-throughput genomic tools overcame these limitations and provide high-resolution measurements simultaneously across the genome. In this review, we discuss the available methods for measuring DNA damage and their repair, focusing on genomewide assays for pyrimidine photodimers, the major types of damage induced by ultraviolet irradiation. These new genomic assays will be a powerful tool in identifying key components of genome stability and carcinogenesis. © 2016 The American Society of Photobiology.

  1. Apoptosis and DNA damage in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    R John Aitken; Adam J Koppers

    2011-01-01

    DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis,resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.

  2. SIRT participates at DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Yong; Joeng, Jae Min; Lee, Kee Ho [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Park, Gil Hong [College of Medicine, Korea University, Seoul (Korea, Republic of)

    2009-05-15

    Sir2 maintains genomic stability in multiple ways in yeast. As a NAD{sup +}-dependent histone deacetylase, Sir2 has been reported to control chromatin silencing. In both budding yeast and Drosophila, overexpression of Sir2 extends life span. Previous reports have also demonstrated that Sir2 participate at DNA damage repair. A protein complex containing Sir2 has been reported to translocate to DNA double-strand breaks. Following DNA damage response, SIRT1 deacetylates p53 protein and attenuates its ability as a transcription factor. Consequently, SIRT1 over-expression increases cell survival under DNA damage inducing conditions. These previous observations mean a possibility that signals generated during the process of DNA repair are delivered through SIRT1 to acetylated p53. We present herein functional evidence for the involvement of SIRT1 in DNA repair response to radiation. In addition, this modulation of DNA repair activity may be connected to deacetylation of MRN proteins.

  3. The DNA damage response in mammalian oocytes

    Directory of Open Access Journals (Sweden)

    John eCarroll

    2013-06-01

    Full Text Available DNA damage is one of the most common insults that challenge all cells. To cope, an elaborate molecular and cellular response has evolved to sense, respond to and correct the damage. This allows the maintenance of DNA fidelity essential for normal cell viability and the prevention of genomic instability that can lead to tumour formation. In the context of oocytes, the impact of DNA damage is not one of tumour formation but of the maintenance of fertility. Mammalian oocytes are particularly vulnerable to DNA damage because physiologically they may lie dormant in the ovary for many years (>40 in humans until they receive the stimulus to grow and acquire the competence to become fertilized. The implication of this is that in some organisms, such as humans, oocytes face the danger of cumulative genetic damage for decades. Thus, the ability to detect and repair DNA damage is essential to maintain the supply of oocytes necessary for reproduction. Therefore, failure to confront DNA damage in oocytes could cause serious anomalies in the embryo that may be propagated in the form of mutations to the next generation allowing the appearance of hereditary disease. Despite the potential impact of DNA damage on reproductive capacity and genetic fidelity of embryos, the mechanisms available to the oocyte for monitoring and repairing such insults have remained largely unexplored until recently. Here, we review the different aspects of the response to DNA damage in mammalian oocytes. Specifically, we address the oocyte DNA damage response from embryonic life to adulthood and throughout oocyte development.

  4. BACH2: A marker of DNA damage and ageing

    NARCIS (Netherlands)

    L.M. Uittenboogaard (Lieneke); C. Payan-Gomez; J. Pothof (Joris); W.F.J. van IJcken (Wilfred); P.G. Mastroberardino (Pier); I. van der Pluijm (Ingrid); J.H.J. Hoeijmakers (Jan); M. Tresini (Maria)

    2013-01-01

    textabstractDNA damage and ageing share expression changes involving alterations in many aspects of metabolism, suppression of growth and upregulation of defence and genome maintenance systems. "Omics" technologies have permitted large-scale parallel measurements covering global cellular

  5. The DNA damage response during mitosis.

    Science.gov (United States)

    Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M

    2013-10-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  6. The DNA damage response during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Heijink, Anne Margriet; Krajewska, Małgorzata; Vugt, Marcel A.T.M. van, E-mail: m.vugt@umcg.nl

    2013-10-15

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  7. Damage, DNA Repair, Aging, and Neurodegeneration

    Science.gov (United States)

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2017-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  8. Leucocytes isolated from simply frozen whole blood can be used in human biomonitoring for DNA damage measurement with the comet assay.

    Science.gov (United States)

    Akor-Dewu, Maryam B; El Yamani, Naouale; Bilyk, Olena; Holtung, Linda; Tjelle, Torunn E; Blomhoff, Rune; Collins, Andrew R

    2014-04-01

    Preservation of human blood cells for DNA damage analysis with the comet assay conventionally involves the isolation of mononuclear cells by centrifugation, suspension in freezing medium and slow freezing to -80 °C-a laborious process. A recent publication (Al-Salmani et al. Free Rad Biol Med 2011; 51: 719-725) describes a simple method in which small volumes of whole blood are frozen to -20 or -80 °C; on subsequent thawing, the comet assay is performed, with no indication of elevated DNA strand breakage resulting from the rapid freezing. However, leucocytes in whole blood (whether fresh or frozen) are abnormally resistant to damage by H2 O2 , and so a common test of antioxidant status (resistance to strand breakage by H2 O2 ) cannot be used. We have refined this method by separating the leucocytes from the thawed blood; we find that, after three washes, the cells respond normally to H2 O2 . In addition, we have measured specific endogenous base damage (oxidized purines) in the isolated leucocytes, using the enzyme formamidopyrimidine DNA glycosylase. In a study of blood samples from 10 subjects, H2 O2 sensitivity and endogenous damage-both reflecting the antioxidant status of the cells-correlated significantly. This modified approach to sample collection and storage is particularly applicable when the available volume of blood is limited and has great potential in biomonitoring and ecogenotoxicology studies where samples are obtained in the field or at sites remote from the testing laboratory.

  9. DNA damage in Wistar Kyoto rats exercised during pregnancy.

    Science.gov (United States)

    Corrêa, Mikaela da Silva; Gelaleti, Rafael Bottaro; Bento, Giovana Fernanda; Damasceno, Débora Cristina; Peraçoli, José Carlos

    2017-05-01

    To evaluate DNA damage levels in pregnant rats undergoing a treadmill exercise program. Wistar Kyoto rats were allocated into two groups (n= 5 animals/group): non-exercise and exercise. The pregnant rats were underwent an exercise protocol on a treadmill throughout pregnancy. Exercise intensity was set at 50% of maximal capacity during maximal exercise testing performed before mating. Body weight, blood pressure and glucose levels, and triglyceride concentration were measured during pregnancy. At day 10 post-natal, the animals were euthanized and maternal blood samples were collected for DNA damage. Blood pressure and glucose levels and biochemical measurements showed no significant differences. Increased DNA damage levels were found in exercise group compared to those of non-exercise group (pprotocol used in the study might have been exhaustive leading to maternal increased DNA damage levels, demonstrating the relevance of an adequate protocol of physical exercise.

  10. The RNA Splicing Response to DNA Damage.

    Science.gov (United States)

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  11. Biomarkers of polycyclic aromatic hydrocarbon-DNA damage and cigarette smoke exposures in paired maternal and newborn blood samples as a measure of differential susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, R.M.; Jedrychowski, W.; Hemminki, K.; Santella, R.M.; Tsai WeiYann; Yang Ke; Perera, F.P. [Columbia University, New York, NY (US). Division of Environmental Health Sciences, Mailman School of Public Health

    2001-07-01

    In this study, we report on three biomarkers measured in paired blood samples collected at birth from 160 mother/newborn pairs from Poland: 70 pairs from Krakow (a city with high air pollution including PAHs) and 90 pairs from Limanowa (an area with lower ambient pollution but greater indoor coal use). Field studies were conducted during January-March 1992. Biomarkers were: WBC aromatic-DNA adducts by {sup 32}P-postlabeling and PAH-DNA adducts by ELISA and plasma cotinine. Correlations were assessed by Spearman's rank test, and differences in biomarker levels were assessed by the Wilcoxon signed-ranks test. A significant correlation between paired newborn/maternal samples was seen for aromatic-DNA adduct levels and plasma cotinine, but not PAH-DNA adduct levels. Among the total cohort, levels of the three biomarkers were higher in newborn samples compared with paired maternal samples. The difference was significant for aromatic-DNA adduct levels (16.6 plus or minus 12.5 versus 14.21 plus or minus 15.4/10{sup 8} nucleotides; P=0.002) and plasma cotinine, but not for PAH-DNA adduct levels. When analyses were restricted to the 80 mother/newborn pairs from whom the blood sample was drawn concurrently, levels of all of the three biomarkers were significantly higher in the newborn compared with paired maternal blood samples (P {lt} 0.05). These results suggest that the fetus has reduced detoxification capabilities and increased susceptibility to DNA damage, especially in light of experimental evidence that transplacental exposures to PAHs are 10-fold lower than paired maternal exposures. Also, these results have implications for risk assessment, which currently does not adequately account for sensitive subsets of the population. 64 refs.

  12. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  13. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    Science.gov (United States)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  14. Oxidatively damaged DNA in animals exposed to particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Jantzen, Kim

    2013-01-01

    Exposure to combustion-derived particles, quartz and asbestos is associated with increased levels of oxidized and mutagenic DNA lesions. The aim of this survey was to critically assess the measurements of oxidatively damaged DNA as marker of particle-induced genotoxicity in animal tissues...

  15. Platinum nanoparticles induce damage to DNA and inhibit DNA replication

    Science.gov (United States)

    Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel

    2017-01-01

    Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8–11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent. PMID:28704436

  16. Polyomavirus interaction with the DNA damage response

    Institute of Scientific and Technical Information of China (English)

    Joshua; L.Justice; Brandy; Verhalen; Mengxi; Jiang

    2015-01-01

    Viruses are obligate intracellular parasites that subvert cellular metabolism and pathways to mediate their own replication—normally at the expense of the host cell. Polyomaviruses are a group of small DNA viruses, which have long been studied as a model for eukaryotic DNA replication. Polyomaviruses manipulate host replication proteins, as well as proteins involved in DNA maintenance and repair, to serve as essential cofactors for productive infection. Moreover, evidence suggests that polyomavirus infection poses a unique genotoxic threat to the host cell. In response to any source of DNA damage, cells must initiate an effective DNA damage response(DDR) to maintain genomic integrity, wherein two protein kinases, ataxia telangiectasia mutated(ATM) and ATM- and Rad3-related(ATR), are major regulators of DNA damage recognition and repair. Recent investigation suggests that these essential DDR proteins are required for productive polyomavirus infection. This review will focus on polyomaviruses and their interaction with ATMand ATR-mediated DNA damage responses and the effect of this interaction on host genomic stability.

  17. DNA damage response in adult stem cells.

    Science.gov (United States)

    Insinga, Alessandra; Cicalese, Angelo; Pelicci, Pier Giuseppe

    2014-04-01

    This review discusses the processes of DNA-damage-response and DNA-damage repair in stem and progenitor cells of several tissues. The long life-span of stem cells suggests that they may respond differently to DNA damage than their downstream progeny and, indeed, studies have begun to elucidate the unique stem cell response mechanisms to DNA damage. Because the DNA damage responses in stem cells and progenitor cells are distinctly different, stem and progenitor cells should be considered as two different entities from this point of view. Hematopoietic and mammary stem cells display a unique DNA-damage response, which involves active inhibition of apoptosis, entry into the cell-cycle, symmetric division, partial DNA repair and maintenance of self-renewal. Each of these biological events depends on the up-regulation of the cell-cycle inhibitor p21. Moreover, inhibition of apoptosis and symmetric stem cell division are the consequence of the down-regulation of the tumor suppressor p53, as a direct result of p21 up-regulation. A deeper understanding of these processes is required before these findings can be translated into human anti-aging and anti-cancer therapies. One needs to clarify and dissect the pathways that control p21 regulation in normal and cancer stem cells and define (a) how p21 blocks p53 functions in stem cells and (b) how p21 promotes DNA repair in stem cells. Is this effect dependent on p21s ability to inhibit p53? Such molecular knowledge may pave the way to methods for maintaining short-term tissue reconstitution while retaining long-term cellular and genomic integrity.

  18. Damage and repair of ancient DNA

    DEFF Research Database (Denmark)

    Mitchell, David; Willerslev, Eske; Hansen, Anders

    2005-01-01

    , and extensive degradation. In the course of this review, we will discuss the current aDNA literature describing the importance of aDNA studies as they relate to important biological questions and the difficulties associated with extracting useful information from highly degraded and damaged substrates derived......Under certain conditions small amounts of DNA can survive for long periods of time and can be used as polymerase chain reaction (PCR) substrates for the study of phylogenetic relationships and population genetics of extinct plants and animals, including hominids. Because of extensive DNA...... degradation, these studies are limited to species that lived within the past 10(4)-10(5) years (Late Pleistocene), although DNA sequences from 10(6) years have been reported. Ancient DNA (aDNA) has been used to study phylogenetic relationships of protists, fungi, algae, plants, and higher eukaryotes...

  19. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress

    Science.gov (United States)

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-01-01

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy. PMID:26427872

  20. DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice

    DEFF Research Database (Denmark)

    Croteau, Deborah L; de Souza-Pinto, Nadja C; Harboe, Charlotte

    2010-01-01

    Aging is associated with elevated oxidative stress and DNA damage. To achieve healthy aging, we must begin to understand how diet affects cellular processes. We postulated that fruit-enriched diets might initiate a program of enhanced DNA repair and thereby improve genome integrity. C57Bl/6 J mice...... were fed for 14 weeks a control diet or a diet with 8% peach or nectarine extract. The activities of DNA repair enzymes, the level of DNA damage, and gene expression changes were measured. Our study showed that repair of various oxidative DNA lesions was more efficient in liver extracts derived from......-fed mice. Taken together, these results suggest that an increased intake of fruits might modulate the efficiency of DNA repair, resulting in altered levels of DNA damage....

  1. DNA damage after intracerebroventricular injection of ouabain in rats.

    Science.gov (United States)

    Jornada, Luciano K; Valvassori, Samira S; Arent, Camila O; Leffa, Daniela; Damiani, Adriani A; Hainzenreder, Giana; Ferreira, Camila L; Moretti, Morgana; Andrade, Vanessa M; Quevedo, João

    2010-02-26

    There is an emerging body of data suggesting that bipolar disorder is associated with DNA damage. Intracerebroventricular (i.c.v.) administration of ouabain in rats results in manic-like alterations. We evaluated DNA damage of peripheral blood, cerebrospinal fluid and hippocampus of rats after i.c.v. ouabain injection. Ouabain-induced hyperlocomotion was examined in an open field. Additionally, we used single cell gel electrophoresis (comet assay) to measure early transient damage in cerebrospinal fluid (CSF), hippocampus and blood; and the micronucleus test to measure persistent damage in total blood samples of rats after ouabain administration. Our findings demonstrated that ouabain induced hyperlocomotion in rats, and this response remained up to 7 days following a single i.c.v. injection. In addition, we observed that the persistent increase in the rat spontaneous locomotion is associated with increased hippocampal and peripheral index of early DNA damage in rats. No significant alterations were observed in the micronucleus frequency in total blood samples of the rats after the ouabain i.c.v. injection. These results suggest that ouabain may induce peripheral and central early DNA damage, but this early damage may be repaired.

  2. DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers

    Directory of Open Access Journals (Sweden)

    Nicole Schupp

    2016-01-01

    Full Text Available Patients with chronic kidney disease (CKD exhibit an increased cancer risk compared to a healthy control population. To be able to estimate the cancer risk of the patients and to assess the impact of interventional therapies thereon, it is of particular interest to measure the patients’ burden of genomic damage. Chromosomal abnormalities, reduced DNA repair, and DNA lesions were found indeed in cells of patients with CKD. Biomarkers for DNA damage measurable in easily accessible cells like peripheral blood lymphocytes are chromosomal aberrations, structural DNA lesions, and oxidatively modified DNA bases. In this review the most common methods quantifying the three parameters mentioned above, the cytokinesis-block micronucleus assay, the comet assay, and the quantification of 8-oxo-7,8-dihydro-2′-deoxyguanosine, are evaluated concerning the feasibility of the analysis and regarding the marker’s potential to predict clinical outcomes.

  3. Homologous recombination in DNA repair and DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xuan Li; Wolf-Dietrich Heyer

    2008-01-01

    Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical sup-port for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modaUties of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.

  4. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    Science.gov (United States)

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  5. Increased DNA damage and oxidative stress among silver jewelry workers.

    Science.gov (United States)

    Aktepe, Necmettin; Kocyigit, Abdurrahim; Yukselten, Yunus; Taskin, Abdullah; Keskin, Cumali; Celik, Hakim

    2015-04-01

    Silver has long been valued as a precious metal, and it is used to make ornaments, jewelry, high-value tableware, utensils, and currency coins. Human exposures to silver and silver compounds can occur oral, dermal, or by inhalation. In this study, we investigated genotoxic and oxidative effects of silver exposure among silver jewelry workers. DNA damage in peripheral mononuclear leukocytes was measured by using the comet assay. Serum total antioxidative status (TAS), total oxidative status (TOS), total thiol contents, and ceruloplasmin levels were measured by using colorimetric methods among silver jewelry workers. Moreover, oxidative stress index (OSI) was calculated. Results were compared with non-exposed healthy subjects. The mean values of mononuclear leukocyte DNA damage were significantly higher than control subjects (p jewelry workers caused oxidative stress and accumulation of severe DNA damage.

  6. Comparison of two methods for measuring γ-H2AX nuclear fluorescence as a marker of DNA damage in cultured human cells: applications for microbeam radiation therapy

    Science.gov (United States)

    Anderson, D.; Andrais, B.; Mirzayans, R.; Siegbahn, E. A.; Fallone, B. G.; Warkentin, B.

    2013-06-01

    Microbeam radiation therapy (MRT) delivers single fractions of very high doses of synchrotron x-rays using arrays of microbeams. In animal experiments, MRT has achieved higher tumour control and less normal tissue toxicity compared to single-fraction broad beam irradiations of much lower dose. The mechanism behind the normal tissue sparing of MRT has yet to be fully explained. An accurate method for evaluating DNA damage, such as the γ-H2AX immunofluorescence assay, will be important for understanding the role of cellular communication in the radiobiological response of normal and cancerous cell types to MRT. We compare two methods of quantifying γ-H2AX nuclear fluorescence for uniformly irradiated cell cultures: manual counting of γ-H2AX foci by eye, and an automated, MATLAB-based fluorescence intensity measurement. We also demonstrate the automated analysis of cell cultures irradiated with an array of microbeams. In addition to offering a relatively high dynamic range of γ-H2AX signal versus irradiation dose ( > 10 Gy), our automated method provides speed, robustness, and objectivity when examining a series of images. Our in-house analysis facilitates the automated extraction of the spatial distribution of the γ-H2AX intensity with respect to the microbeam array — for example, the intensities in the peak (high dose area) and valley (area between two microbeams) regions. The automated analysis is particularly beneficial when processing a large number of samples, as is needed to systematically study the relationship between the numerous dosimetric and geometric parameters involved with MRT (e.g., microbeam width, microbeam spacing, microbeam array dimensions, peak dose, valley dose, and geometric arrangement of multiple arrays) and the resulting DNA damage.

  7. DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs.

    Science.gov (United States)

    Rossiello, Francesca; Aguado, Julio; Sepe, Sara; Iannelli, Fabio; Nguyen, Quan; Pitchiaya, Sethuramasundaram; Carninci, Piero; d'Adda di Fagagna, Fabrizio

    2017-02-27

    The DNA damage response (DDR) is a set of cellular events that follows the generation of DNA damage. Recently, site-specific small non-coding RNAs, also termed DNA damage response RNAs (DDRNAs), have been shown to play a role in DDR signalling and DNA repair. Dysfunctional telomeres activate DDR in ageing, cancer and an increasing number of identified pathological conditions. Here we show that, in mammals, telomere dysfunction induces the transcription of telomeric DDRNAs (tDDRNAs) and their longer precursors from both DNA strands. DDR activation and maintenance at telomeres depend on the biogenesis and functions of tDDRNAs. Their functional inhibition by sequence-specific antisense oligonucleotides allows the unprecedented telomere-specific DDR inactivation in cultured cells and in vivo in mouse tissues. In summary, these results demonstrate that tDDRNAs are induced at dysfunctional telomeres and are necessary for DDR activation and they validate the viability of locus-specific DDR inhibition by targeting DDRNAs.

  8. DNA damage checkpoint recovery and cancer development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiyong [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Zhang, Xiaoshan [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States); Teng, Lisong, E-mail: lsteng@zju.edu.cn [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Legerski, Randy J., E-mail: rlegersk@mdanderson.org [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States)

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  9. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    Energy Technology Data Exchange (ETDEWEB)

    Dusinska, Maria, E-mail: Maria.DUSINSKA@nilu.no [CEE-Health Effects Group, NILU - Norwegian Institute for Air Research, Kjeller (Norway); Staruchova, Marta; Horska, Alexandra [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia); Smolkova, Bozena [Laboratory of Cancer Genetics, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava (Slovakia); Collins, Andrew [Department of Nutrition, Faculty of Medicine, University of Oslo (Norway); Bonassi, Stefano [Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome (Italy); Volkovova, Katarina [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia)

    2012-08-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  10. Increased Mutagen Sensitivity and DNA Damage in Pulmonary Arterial Hypertension

    Science.gov (United States)

    Federici, Chiara; Drake, Kylie M.; Rigelsky, Christina M.; McNelly, Lauren N.; Meade, Sirena L.; Comhair, Suzy A. A.; Erzurum, Serpil C.

    2015-01-01

    Rationale: Pulmonary arterial hypertension (PAH) is a serious lung condition characterized by vascular remodeling in the precapillary pulmonary arterioles. We and others have demonstrated chromosomal abnormalities and increased DNA damage in PAH lung vascular cells, but their timing and role in disease pathogenesis is unknown. Objectives: We hypothesized that if DNA damage predates PAH, it might be an intrinsic cell property that is present outside the diseased lung. Methods: We measured DNA damage, mutagen sensitivity, and reactive oxygen species (ROS) in lung and blood cells from patients with Group 1 PAH, their relatives, and unrelated control subjects. Measurements and Main Results: Baseline DNA damage was significantly elevated in PAH, both in pulmonary artery endothelial cells (P < 0.05) and peripheral blood mononuclear cells (PBMC) (P < 0.001). Remarkably, PBMC from unaffected relatives showed similar increases, indicating this is not related to PAH treatments. ROS levels were also higher (P < 0.01). DNA damage correlated with ROS production and was suppressed by antioxidants (P < 0.001). PBMC from patients and relatives also showed markedly increased sensitivity to two chemotherapeutic drugs, bleomycin and etoposide (P < 0.001). Results were consistent across idiopathic, heritable, and associated PAH groups. Conclusions: Levels of baseline and mutagen-induced DNA damage are intrinsically higher in PAH cells. Similar results in PBMC from unaffected relatives suggest this may be a genetically determined trait that predates disease onset and may act as a risk factor contributing to lung vascular remodeling following endothelial cell injury. Further studies are required to fully characterize mutagen sensitivity, which could have important implications for clinical management. PMID:25918951

  11. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisag@pharm.unifi.it; Bellandi, Serena [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Pitozzi, Vanessa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Fabbri, Paolo [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Dolara, Piero [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)

    2004-11-22

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo.

  12. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2016-12-15

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

  13. Coal tar residues produce both DNA adducts and oxidative DNA damage in human mammary epithelial cells.

    Science.gov (United States)

    Leadon, S A; Sumerel, J; Minton, T A; Tischler, A

    1995-12-01

    In the present study we compare the metabolic activation of coal tar, as measured by the production of both DNA adducts and oxidative DNA damage, with that of a single carcinogen that is a constituent of this complex mixture in human mammary epithelial cells (HMEC). We find that a significant level of DNA adducts, detected by 32P-postlabeling, are formed in HMEC following exposure to coal tar residues. This treatment also results in the generation of high levels of oxidative DNA damage, as measured by the production of one type of oxidative base modification, thymine glycols. The amounts of both DNA adducts and thymine varied considerably between the various coal tar residues and did not correlate with either the total amount of polycyclic aromatic hydrocarbons (PAH) or the amount of benzo[a]pyrene (B[a]P) present in the residue. Fractionating the residue from one of the sites by sequential extraction with organic solvents indicated that while the ability to produce both types of DNA damage was contained mostly in a hexane-soluble fraction, a benzene-soluble fraction produced high levels of reactive oxygens relative to the number of total DNA adducts. We find that the total amount of PAH or B[a]P present in the coal tars from the various sites was not a predictor of the level of total DNA damage formed.

  14. DNA damage and oxidative status in PFAPA syndrome.

    Science.gov (United States)

    Tuğrul, Selahattin; Doğan, Remzi; Kocyigit, Abdurrahim; Torun, Emel; Senturk, Erol; Ozturan, Orhan

    2015-10-01

    PFAPA syndrome is a clinical entity of unknown etiology which presents with periodic episodes of fever, aphthous stomatitis, tonsillitis or pharyngitis, and cervical adenitis. In this study we investigated DNA damage and the oxidative stress parameters in patients diagnosed with PFAPA, to elucidate the underlying pathophysiological mechanism of this syndrome. Thirty-one patients diagnosed with PFAPA (Group 1), 22 patients diagnosed with normal tonsillitis or pharyngitis (Group 2), and 20 healthy volunteers (Group 3) were included in our study. Heparinized peripheral blood samples were drawn from all patients and volunteers. DNA damage was assessed by single cell alkaline electrophoresis assay in peripheral mononuclear leukocytes. Plasma levels of total antioxidant status (TAS) and total oxidative status (TOS) were determined by using a novel automated measurement method, and oxidative stress index (OSI) was calculated. DNA damage in the mononuclear leukocytes of Group 1 was significantly higher than that of Group 2 and Group 3. The oxidative stress parameters revealed that the TOS and OSI values of Group 1 were significantly higher than those of Group 2 and Group 3. TAS values of Group 1 were significantly lower than those of Group 2 and Group 3. Correlation analysis of Group 1 demonstrated a significant correlation between TOS, one of the oxidative stress parameters, and DNA damage. Correlations between DNA damage and C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values were also significant. Our study indicated that both the inflammatory and the oxidative stress parameters were significantly increased in patients with PFAPA syndrome, accompanied by a significant positive correlation between DNA damage and oxidative stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. An immunochemical assay to detect DNA damage in bovine sperm

    NARCIS (Netherlands)

    Schans, G.P. van der; Haring, R.; Dijk- Knijnenburg, H.C.M. van; Bruijnzeel, P.L.B.; Daas, N.H.G. den

    2000-01-01

    An immunochemical assay has been developed to detect oxidative damage in bovine sperm DNA. Sperm DNA contains a large amount of oxidative damage as a result of exposure to exogenous agents, but damage also can caused by normal metabolic processes and the absence of DNA repair in the later stages of

  16. Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2015-01-01

    Full Text Available Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers.

  17. Chromatin remodeling in the UV-induced DNA damage response

    NARCIS (Netherlands)

    Ö.Z. Aydin (Özge)

    2014-01-01

    markdownabstract__Abstract__ DNA damage interferes with transcription and replication, causing cell death, chromosomal aberrations or mutations, eventually leading to aging and tumorigenesis (Hoeijmakers, 2009). The integrity of DNA is protected by a network of DNA repair and associated signalling

  18. ATM and ATR:Sensing DNA damage

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Zheng-Ping Xu; Yun Huang; Hope E. Hamrick; Penelope J. Duerksen-Hughes; Ying-Nian Yu

    2004-01-01

    Cellular response to genotoxic stress is a very complex process, and it usually starts with the "sensing" or "detection" of the DNA damage, followed by a series of events that include signal transduction and activation of transcription factors. The activated transcription factors induce expressions of many genes which are involved in cellular functions such as DNA repair, cell cycle arrest, and cell death. There have been extensive studies from multiple disciplines exploring the mechanisms of cellular genotoxic responses, which have resulted in the identification of many cellular components involved in this process, including the mitogen-activated protein kinases (MAPKs) cascade. Although the initial activation of protein kinase cascade is not fully understood,human protein kinases ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) are emerging as potential sensors of DNA damage. Current progresses in ATM/ATR research and related signaling pathways are discussed in this review, in an effort to facilitate a better understanding of genotoxic stress response.

  19. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    Science.gov (United States)

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  20. No ancient DNA damage in Actinobacteria from the Neanderthal bone.

    Directory of Open Access Journals (Sweden)

    Katarzyna Zaremba-Niedźwiedzka

    Full Text Available BACKGROUND: The Neanderthal genome was recently sequenced using DNA extracted from a 38,000-year-old fossil. At the start of the project, the fraction of mammalian and bacterial DNA in the sample was estimated to be <6% and 9%, respectively. Treatment with restriction enzymes prior to sequencing increased the relative proportion of mammalian DNA to 15%, but the large majority of sequences remain uncharacterized. PRINCIPAL FINDINGS: Our taxonomic profiling of 3.95 Gb of Neanderthal DNA isolated from the Vindija Neanderthal Vi33.16 fossil showed that 90% of about 50,000 rRNA gene sequence reads were of bacterial origin, of which Actinobacteria accounted for more than 75%. Actinobacteria also represented more than 80% of the PCR-amplified 16S rRNA gene sequences from a cave sediment sample taken from the same G layer as the Neanderthal bone. However, phylogenetic analyses did not identify any sediment clones that were closely related to the bone-derived sequences. We analysed the patterns of nucleotide differences in the individual sequence reads compared to the assembled consensus sequences of the rRNA gene sequences. The typical ancient nucleotide substitution pattern with a majority of C to T changes indicative of DNA damage was observed for the Neanderthal rRNA gene sequences, but not for the Streptomyces-like rRNA gene sequences. CONCLUSIONS/SIGNIFICANCE: Our analyses suggest that the Actinobacteria, and especially members of the Streptomycetales, contribute the majority of sequences in the DNA extracted from the Neanderthal fossil Vi33.16. The bacterial DNA showed no signs of damage, and we hypothesize that it was derived from bacteria that have been enriched inside the bone. The bioinformatic approach used here paves the way for future studies of microbial compositions and patterns of DNA damage in bacteria from archaeological bones. Such studies can help identify targeted measures to increase the relative amount of endogenous DNA in the

  1. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    Science.gov (United States)

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1.

  2. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...... age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8......-oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased...

  3. Mechanism study of goldenseal-associated DNA damage.

    Science.gov (United States)

    Chen, Si; Wan, Liqing; Couch, Letha; Lin, Haixia; Li, Yan; Dobrovolsky, Vasily N; Mei, Nan; Guo, Lei

    2013-07-31

    Goldenseal has been used for the treatment of a wide variety of ailments including gastrointestinal disturbances, urinary tract disorders, and inflammation. The five major alkaloid constituents in goldenseal are berberine, palmatine, hydrastine, hydrastinine, and canadine. When goldenseal was evaluated by the National Toxicology Program (NTP) in the standard 2-year bioassay, goldenseal induced an increase in liver tumors in rats and mice; however, the mechanism of goldenseal-associated liver carcinogenicity remains unknown. In this study, the toxicity of the five goldenseal alkaloid constituents was characterized, and their toxic potencies were compared. As measured by the Comet assay and the expression of γ-H2A.X, berberine, followed by palmatine, appeared to be the most potent DNA damage inducer in human hepatoma HepG2 cells. Berberine and palmatine suppressed the activities of both topoisomerase (Topo) I and II. In berberine-treated cells, DNA damage was shown to be directly associated with the inhibitory effect of Topo II, but not Topo I by silencing gene of Topo I or Topo II. In addition, DNA damage was also observed when cells were treated with commercially available goldenseal extracts and the extent of DNA damage was positively correlated to the berberine content. Our findings suggest that the Topo II inhibitory effect may contribute to berberine- and goldenseal-induced genotoxicity and tumorigenicity.

  4. Protection of DNA damage by radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Oh, Tae Jung

    1998-12-01

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents.

  5. Ion irradiation induced direct damage to DNA

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2008-01-01

    Ion beams have been widely applied in a few biological research fields such as radioactive breeding, health protection, and tumor therapy. Up to now many interesting and impressive achievements in biology and agriculture have been made. Over the past several decades, scientists in biology, physics, and chemistry have pursued investigations focused on understanding the mechanisms of these radiobiological effects of ion beams. From the chemical point of view, these effects are due to the ion irradiation induced biomolecular damage, direct or indirect. In this review, we will present a chemical overview of the direct effects of ion irradiation upon DNA and its components, based on a review of literature combined with recent experimental results. It is suggested that, under ion bombardment, a DNA molecule undergoes a variety of processes, including radical formation, atomic displacement, intramolecular bond-scissions, emission of fragments, fragment recombination and molecular crosslink, which may lead to genetic...

  6. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Xurui Zhang

    Full Text Available Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research.

  7. Endogenous melatonin and oxidatively damaged guanine in DNA

    Directory of Open Access Journals (Sweden)

    Poulsen Henrik E

    2009-10-01

    Full Text Available Abstract Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s families (n = 55 were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight. Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR was associated with significantly higher levels of 8-oxodG (p Conclusion Low levels of endogenous melatonin production among older individuals may lead to

  8. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Michael Fasullo

    2015-04-01

    Full Text Available Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases.

  9. Analysis of pesticide exposure and DNA damage in immigrant farmworkers.

    Science.gov (United States)

    McCauley, Linda A; Lasarev, Michael; Muniz, Juan; Nazar Stewart, Valle; Kisby, Glen

    2008-01-01

    In the last decade, the Comet assay has been used increasingly in studies of workers potentially exposed to genotoxic substances in the workplace or environment. Significant increases in DNA damage measured with the Comet assay has been reported in lymphocytes of agricultural workers; however, less intrusive means of biomonitoring are needed in epidemiological investigations. This study was designed to use the Comet assay to describe the association of markers of DNA damage in oral leukocytes with biomarkers of pesticide exposure in 134 farmworkers working in berry crops in Oregon compared to control populations. The authors also examined the extent of DNA damage in young workers compared to adults and the effect of work histories, lifestyle factors, and diet on markers of DNA damage. Urinary levels of organophosphate pesticides were low at the time of sampling; however, mean levels of the Captan metabolite tetrahydrophthalimide (THPI) were found to be shifted significantly higher in the farmworkers (0.14 microg/ml) compared to controls (0.078 microg/ml) (one-sided p value=.01). Likewise, the combined molar equivalent of all dialkylphosphate metabolites was marginally higher in farmworkers (p value=.05). The mean tail intensity was significantly greater for agricultural workers compared to controls (one-sided p valuedamage in the oral leukocytes. On average, the mean tail intensity was 10.9 units greater for agricultural workers (95% CI: 6-16 units greater). Tail moment was also significantly greater for agricultural workers compared to nonagricultural workers (one-sided p valuepesticide types on DNA damage and to capture the temporal relationship between exposure to agricultural chemicals and changes in Comet parameters.

  10. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  11. Targeting Ongoing DNA Damage in Multiple Myeloma: Effects of DNA Damage Response Inhibitors on Plasma Cell Survival

    Directory of Open Access Journals (Sweden)

    Ana Belén Herrero

    2017-05-01

    Full Text Available Human myeloma cell lines (HMCLs and a subset of myeloma patients with poor prognosis exhibit high levels of replication stress (RS, leading to DNA damage. In this study, we confirmed the presence of DNA double-strand breaks (DSBs in several HMCLs by measuring γH2AX and RAD51 foci and analyzed the effect of various inhibitors of the DNA damage response on MM cell survival. Inhibition of ataxia telangiectasia and Rad3-related protein (ATR, the main kinase mediating the response to RS, using the specific inhibitor VE-821 induced more cell death in HMCLs than in control lymphoblastoid cells and U266, an HMCL with a low level of DNA damage. The absence of ATR was partially compensated by ataxia telangiectasia-mutated protein (ATM, since chemical inhibition of both kinases using VE-821 and KU-55933 significantly increased the death of MM cells with DNA damage. We found that ATM and ATR are involved in DSB repair by homologous recombination (HR in MM. Inhibition of both kinases resulted in a stronger inhibition that may underlie cell death induction, since abolition of HR using two different inhibitors severely reduced survival of HMCLs that exhibit DNA damage. On the other hand, inhibition of the other route involved in DSB repair, non-homologous end joining (NHEJ, using the DNA-PK inhibitor NU7441, did not affect MM cell viability. Interestingly, we found that NHEJ inhibition did not increase cell death when HR was simultaneously inhibited with the RAD51 inhibitor B02, but it clearly increased the level of cell death when HR was inhibited with the MRE11 inhibitor mirin, which interferes with recombination before DNA resection takes place. Taken together, our results demonstrate for the first time that MM cells with ongoing DNA damage rely on an intact HR pathway, which thereby suggests therapeutic opportunities. We also show that inhibition of HR after the initial step of end resection might be more appropriate for inducing MM cell death, since it

  12. Studies on DNA Damage Response in Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Han, Wenyuan

    global reactions known as DNA damage response (DDR). In Bacteria and Eukaryotes, the global reactions include a series of transcription regulations and protein post-translation modifications, which can activate DNA repair machineries, suppress cell division and delay DNA replication, and induce......All living organisms have to keep their genetic information intact. However, environmental stimuli and endogenous factors constantly yield various DNA lesions, which impose serious challenges for cells to maintain the stability of their genetic materials. Upon severe DNA damage, cells initiate...... programmed cell death (PCD) upon lethal DNA damage. However, little is known about DNA damage response in Archaea. To start to address the problem, I investigated the general cellular response of Sulfolobus islandicus, a model organism of Archaea, to DNA damage agents, 4-nitroquinoline 1-oxide (NQO...

  13. Economic measurement of environment damages

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.

    1980-05-01

    The densities, energy consumption, and economic development of the increasing population exacerbate environmental degradation. Air and water pollution is a major environmental problem affecting life and health, outdoor recreation, household soiling, vegetation, materials, and production. The literature review indicated that numerous studies have assessed the physical and monetary damage to populations at risk from excessive concentrations of major air and water pollutants-sulfur dioxide, total suspended particulate matter, oxidants, and carbon monoxide in air; and nutrients, oil, pesticides, and toxic metals and others in water. The measurement of the damages was one of the most controversial issues in pollution abatement. The methods that have been used to estimate the societal value of pollution abatement are: (1) chain of effects, (2) market approaches, and (3) surveys. National gross damages of air pollution of $20.2 billion and of water pollution of $11.1 billion for 1973 are substantial. These best estimates, updated for the economic and demographic conditions, could provide acceptable control totals for estimating and predicting benefits and costs of abating air and water pollution emissions. The major issues to be resolved are: (1) lack of available noneconomic data, (2) theoretical and empirical difficulties of placing a value on human life and health and on benefits such as aesthetics, and (3) lack of available demographic and economic data.

  14. Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity.

    Directory of Open Access Journals (Sweden)

    Shu-Huei Wang

    Full Text Available Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity.

  15. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Greinert, R.; Breibart, E.W.; Mitchell, D.; Smida, J.; Volkmer, B

    2000-07-01

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  16. Inter-laboratory variation in DNA damage using a standard comet assay protocol

    DEFF Research Database (Denmark)

    Forchhammer, Lykke; Ersson, Clara; Loft, Steffen

    2012-01-01

    There are substantial inter-laboratory variations in the levels of DNA damage measured by the comet assay. The aim of this study was to investigate whether adherence to a standard comet assay protocol would reduce inter-laboratory variation in reported values of DNA damage. Fourteen laboratories ...

  17. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    Institute of Scientific and Technical Information of China (English)

    Ramaraj Thirugnanasampandan; Rajarajeswaran Jayakumar

    2011-01-01

    Objective: To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods: The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results: Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions: The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage.

  18. Single Molecule Scanning of DNA Radiation Oxidative Damage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  19. Pyrosequencing: applicability for studying DNA damage-induced mutagenesis.

    Science.gov (United States)

    Minko, Irina G; Earley, Lauriel F; Larlee, Kimberly E; Lin, Ying-Chih; Lloyd, R Stephen

    2014-10-01

    Site-specifically modified DNAs are routinely used in the study of DNA damage-induced mutagenesis. These analyses involve the creation of DNA vectors containing a lesion at a pre-determined position, DNA replication, and detection of mutations at the target site. The final step has previously required the isolation of individual DNA clones, hybridization with radioactively labeled probes, and verification of mutations by Sanger sequencing. In the search for an alternative procedure that would allow direct quantification of sequence variants in a mixed population of DNA molecules, we evaluated the applicability of pyrosequencing to site-specific mutagenesis assays. The progeny DNAs were analyzed that originated from replication of N(6) -(deoxy-D-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dG)-containing vectors in primate cells, with the lesion being positioned in the 5'-GCNGG-3' sequence context. Pyrosequencing detected ∼8% G to T transversions and ∼3.5% G to A transitions, a result that was in excellent agreement with frequencies previously measured by the standard procedure (Earley LF et al. [2013]: Chem Res Toxicol 26:1108-1114). However, ∼3.5% G to C transversions and ∼2.0% deletions could not be detected by pyrosequencing. Consistent with these observations, the sensitivity of pyrosequencing for measuring the single deoxynucleotide variants differed depending on the deoxynucleotide identity, and in the given sequence contexts, was determined to be ∼1-2% for A and T and ∼5% for C. Pyrosequencing of other DNA isolates that were obtained following replication of MeFapy-dG-containing vectors in primate cells or Escherichia coli, identified several additional limitations. Collectively, our data demonstrated that pyrosequencing can be used for studying DNA damage-induced mutagenesis as an effective complementary experimental approach to current protocols.

  20. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  1. Attenuation of acridine mutagen ICR-191--DNA interactions and DNA damage by the mutagen interceptor chlorophyllin.

    Science.gov (United States)

    Pietrzak, Monika; Halicka, H Dorota; Wieczorek, Zbigniew; Wieczorek, Jolanta; Darzynkiewicz, Zbigniew

    2008-06-01

    We have investigated the ability of chlorophyllin (CHL) to interact with acridine mutagen ICR-191 (2-methoxy-6-chloro-9-(3-(2-chloroethyl)aminopropylamino)acridine) and also its ability to decrease binding of ICR-191 to DNA in a simple three-component competition system: CHL-ICR-DNA. Our data indicate a strong association of ICR-191 with CHL, stronger even than the association of ICR-191 with DNA. Calculations based on the measured affinity data show that a two- to three-fold excess of CHL reduces by about two-fold the concentration of the mutagen-DNA complex. We also exposed human leukemic HL-60 cells to ICR-191 in the absence and presence of CHL and measured the mutagen-induced DNA damage. The extent of DNA damage was assessed by analysis of histone H2AX phosphorylation. While ICR-191 induced significant increase in expression of phosphorylated H2AX (gammaH2AX), particularly in DNA replicating cells, this increase was totally abolished in the cells treated with ICR-191 in the presence of CHL.

  2. Natural transformation of bacteria by fragmented, damaged and ancient DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren

    Organisms release DNA both when they live and die. Eventually the DNA disintegrates entirely or it is re-metabolized. There is a constant deposition and decomposition that maintains an environmental pool with large quantities of extracellular DNA, some of which can be thousands of years old...... it by damaged short DNA with abasic sites, crosslinks, and miscoding lesions, which are the most common damages in environmental DNA. This is emphasized by successful natural transformation by 43,000-year-old DNA. We find that the process is a simple variant of natural transformation. On top, we illustrate...... acquire functional genetic signatures of the deeper past. Moreover, not only can old DNA revert microbes to past genotypes, but damaged DNA can also produce new variants of already functional sequences. Besides, DNA fragments carry potential to combine functional domains in new ways. The identified novel...

  3. Natural transformation of bacteria by fragmented, damaged and ancient DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren

    it by damaged short DNA with abasic sites, crosslinks, and miscoding lesions, which are the most common damages in environmental DNA. This is emphasized by successful natural transformation by 43,000-year-old DNA. We find that the process is a simple variant of natural transformation. On top, we illustrate......Organisms release DNA both when they live and die. Eventually the DNA disintegrates entirely or it is re-metabolized. There is a constant deposition and decomposition that maintains an environmental pool with large quantities of extracellular DNA, some of which can be thousands of years old....... The degrading DNA is fragmented and damaged, often to less than one hundred base pairs. Such DNA is only recognized as microbial nutrients and is not considered as direct contributors to bacterial evolutionary processes. The main study shows natural transformation by very short DNA (≥20bp). Further we also show...

  4. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, Steffen; Poulsen, H E

    1996-01-01

    of Brussels sprouts reduced the oxidative DNA damage rate, estimated by the urinary excretion of 8-oxodG, and the intake of vitamin C was a determinant for the level of 8-oxodG in sperm DNA. A low-fat diet reduced another marker of oxidative DNA damage in leukocytes. In patients with diseases associated...... with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion...... of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study...

  5. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  6. Seasonal variations of DNA damage in human lymphocytes: Correlation with different environmental variables

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisa.giovannelli@unifi.it; Pitozzi, Vanessa [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Florence (Italy); Boddi, Vieri [Department of Public Health, University of Florence, Florence (Italy); Dolara, Piero [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy)

    2006-01-29

    Several types of DNA damage, including DNA breaks and DNA base oxidation, display a seasonal trend. In the present work, a sample of 79 healthy subjects living in the city of Florence, Italy, was used to analyse this effect. Three possible causative agents were taken into consideration: solar radiation, air temperature and air ozone level. DNA damage was measured in isolated human lymphocytes at different times during the year and the observed damage was correlated with the levels of these three agents in the days preceding blood sampling. Three time windows were chosen: 3, 7 and 30 days before blood sampling. DNA strand breaks and the oxidized purinic bases cleaved by the formamidopyrimidine glycosylase (FPG sites) were measured by means of the comet assay. The results of multivariate regression analysis showed a positive correlation between lymphocyte DNA damage and air temperature, and a less strong correlation with global solar radiation and air ozone levels.

  7. Novel DNA damage checkpoint in mitosis: Mitotic DNA damage induces re-replication without cell division in various cancer cells.

    Science.gov (United States)

    Hyun, Sun-Yi; Rosen, Eliot M; Jang, Young-Joo

    2012-07-06

    DNA damage induces multiple checkpoint pathways to arrest cell cycle progression until damage is repaired. In our previous reports, when DNA damage occurred in prometaphase, cells were accumulated in 4 N-DNA G1 phase, and mitosis-specific kinases were inactivated in dependent on ATM/Chk1 after a short incubation for repair. We investigated whether or not mitotic DNA damage causes cells to skip-over late mitotic periods under prolonged incubation in a time-lapse study. 4 N-DNA-damaged cells re-replicated without cell division and accumulated in 8 N-DNA content, and the activities of apoptotic factors were increased. The inhibition of DNA replication reduced the 8 N-DNA cell population dramatically. Induction of replication without cell division was not observed upon depletion of Chk1 or ATM. Finally, mitotic DNA damage induces mitotic slippage and that cells enter G1 phase with 4 N-DNA content and then DNA replication is occurred to 8 N-DNA content before completion of mitosis in the ATM/Chk1-dependent manner, followed by caspase-dependent apoptosis during long-term repair. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. DNA damage in human cells. Progress report, August 1983-August 1984

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, L.A.

    1986-08-01

    Studies reported center on the relationship between DNA damage and mutagenesis. The mutagenic potential of apurinic sites was documented in a variety of systems. Studies on the enhancement of depurination by metal ions was continued. Recombiant DNA techniques were used for measuring nucleotide substitution in human mitochondrial DNA.

  9. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    Science.gov (United States)

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  10. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    Science.gov (United States)

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  11. Sperm DNA damage has a negative association with live-birth rates after IVF.

    Science.gov (United States)

    Simon, L; Proutski, I; Stevenson, M; Jennings, D; McManus, J; Lutton, D; Lewis, S E M

    2013-01-01

    Sperm DNA damage has a negative impact on pregnancy rates following assisted reproduction treatment (ART). The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage. Following IVF, couples with rate of 33%; in contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13%. Following ICSI, no significant differences in sperm DNA damage were found between any groups of patients. Sperm DNA damage was also associated with low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men with idiopathic infertility have high sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Sperm DNA damage has a negative impact on assisted reproduction treatment outcome, in particular, on pregnancy rates. The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage and treatment outcome. Following IVF, couples with rate of 33%. In contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13% following IVF. Following ICSI, there were no significant differences in levels of sperm DNA damage between any groups of

  12. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension

    Science.gov (United States)

    Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.

    2017-01-01

    Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562

  13. A Microscopic Study of the DNA Damage Response

    NARCIS (Netherlands)

    C. Dinant (Christoffel)

    2008-01-01

    textabstractThe integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks (DSB), single strand breaks (SSB), oxidative lesions and pyrimidine dimers. The

  14. Delineating the DNA damage response using systems biology approaches

    NARCIS (Netherlands)

    Stechow, Louise von

    2013-01-01

    Cellular responses to DNA damage are highly variable and strongly depend on the cellular and organismic context. Studying the DNA damage response is crucial for a better understanding of cancer formation and ageing as well as genotoxic stress-induced cancer therapy. To do justice to the multifaceted

  15. Chromatin modifications and the DNA damage response to ionizing radiation

    Science.gov (United States)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response. PMID:23346550

  16. Guarding chromosomes from oxidative DNA damage to the very end

    Institute of Scientific and Technical Information of China (English)

    Rong Tan; Li Lan

    2016-01-01

    The ends of each chromosome are capped by the telomere assembly to protect chromosomal integrity from telomere attrition and DNA damage.In response to DNA damage,DNA repair factors are enriched at damage sites by a sophisticated signaling and recruitment cascade.However,DNA damage response at telomeres is different from non-telomeric region of genomic DNA due to specialized sequences and structures of the telomeres.In the course of normal DNA replication or DNA damage repair,both the telomere shelterin protein complex and the condensed telomeric chromatin structure in mammalian cells are modified to protect telomeres from exposing free DNA ends which are subject to both telemere shortening and chromosome end fusion.Initiation of either homologous recombination or non-homologous end joint repair at telomeres requires disassembling andaor post-translational modifications of the shelterin complex and telomeric chromatin.In addition,cancer cells utilize distinct mechanisms to maintain telomere length and cell survival upon damage.In this review,we summarize current studies that focus on telomere end protection and telomere DNA repair using different methodologies to model telomere DNA damage and disruption.These include genetic ablation of sheltering proteins,targeting endonuclease to telomeres,and delivering oxidative damage directly.These different approaches,when combined,offer better understanding of the mechanistic differences in DNA damage response between telomeric and genomic DNA,which will provide new hope to identify potential cancer therapeutic targets to curtail cancer cell proliferation via induction of telomere dysfunctions.

  17. Sunlight-induced DNA damage in human mononuclear cells

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Hakan; Holst, Erik

    2002-01-01

    of sunlight was comparable to the interindividual variation, indicating that sunlight exposure and the individual's background were the two most important determinants for the basal level of DNA damage. Influence of other lifestyle factors such as exercise, intake of foods, infections, and age could......In this study of 301 blood samples from 21 subjects, we found markedly higher levels of DNA damage (nonpyrimidine dimer types) in the summer than in the winter detected by single-cell gel electrophoresis. The level of DNA damage was influenced by the average daily influx of sunlight ... to blood sampling. The 3 and 6 day periods before sampling influenced DNA damage the most. The importance of sunlight was further emphasized by a positive association of the DNA damage level to the amount of time the subjects had spent in the sun over a 3 day period prior to the sampling. The effect...

  18. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, S; Poulsen, H E

    1996-01-01

    of damage and the balance between the damage and repair rate, respectively. By means of biomarkers a number of important factors have been studied in humans. Ionizing radiation, a carcinogenic and pure source of ROS, induced both urinary and leukocyte biomarkers of oxidative DNA damage. Tobacco smoking......, another carcinogenic source of ROS, increased the oxidative DNA damage rate by 35-50% estimated from the urinary excretion of 8-oxodG, and the level of 8-oxodG in leukocytes by 20-50%. The main endogenous source of ROS, the oxygen consumption, showed a close correlation with the 8-oxodG excretion rate...... of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study...

  19. DNA damage response and Autophagy: a meaningful partnership

    Directory of Open Access Journals (Sweden)

    ARISTIDES G ELIOPOULOS

    2016-11-01

    Full Text Available Autophagy and the DNA damage response (DDR are biological processes essential for cellular and organismal homeostasis. Herein we summarize and discuss emerging evidence linking DDR to autophagy. We highlight published data suggesting that autophagy is activated by DNA damage and is required for several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death, and cytokine secretion. Uncovering the mechanisms by which autophagy and DDR are intertwined provides novel insight into the pathobiology of conditions associated with accumulation of DNA damage, including cancer and aging, and novel concepts for the development of improved therapeutic strategies against these pathologies.

  20. Reshaping chromatin after DNA damage: the choreography of histone proteins.

    Science.gov (United States)

    Polo, Sophie E

    2015-02-13

    DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.

  1. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  2. Distribution patterns of postmortem damage in human mitochondrial DNA

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske; Hansen, Anders J

    2002-01-01

    The distribution of postmortem damage in mitochondrial DNA retrieved from 37 ancient human DNA samples was analyzed by cloning and was compared with a selection of published animal data. A relative rate of damage (rho(v)) was calculated for nucleotide positions within the human hypervariable region......, such as MT5, have lower in vivo mutation rates and lower postmortem-damage rates. The postmortem data also identify a possible functional subregion of the HVR1, termed "low-diversity 1," through the lack of sequence damage. The amount of postmortem damage observed in mitochondrial coding regions...

  3. Stress-induced DNA damage biomarkers: applications and limitations

    Science.gov (United States)

    Nikitaki, Zacharenia; Hellweg, Christine E.; Georgakilas, Alexandros G.; Ravanat, Jean-Luc

    2015-01-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism's endogenous processes such as replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damage plays a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g., X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e., single, complex DNA lesions etc. that can be used as DNA damage biomarkers. We critically compare DNA damage detection methods and their limitations. In addition, we suggest the use of DNA repair gene products as biomarkes for identification of different types of stresses i.e., radiation, oxidative, or replication stress, based on bioinformatic approaches and meta-analysis of literature data. PMID:26082923

  4. Protective effect of antioxidants on DNA damage in leukocytes from X-linked adrenoleukodystrophy patients.

    Science.gov (United States)

    Marchetti, Desirèe P; Donida, Bruna; da Rosa, Helen T; Manini, Paula R; Moura, Dinara J; Saffi, Jenifer; Deon, Marion; Mescka, Caroline P; Coelho, Daniella M; Jardim, Laura B; Vargas, Carmen R

    2015-06-01

    Toxic metabolites accumulation and oxidative stress have been associated to the pathophysiology of X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisome metabolism. Parameters of oxidative damage to proteins and lipids in X-ALD patients were already described in literature; however, DNA injuries were not studied yet. Considering that, the aims were to investigate DNA damage by comet assay in heterozygotes and symptomatic X-ALD patients, to look for associations between DNA damage and lipid peroxidation as measured by urinary 15-F2t-isoprostane; and to evaluate the in vitro effect of N-acetyl-l-cysteine (NAC), trolox (TRO) and rosuvastatin (RSV) on DNA damage in leukocytes from symptomatic patients. Symptomatic patients presented higher DNA damage levels than those found in heterozygotes and controls; heterozygotes and controls showed similar results. In order to investigate the in vitro antioxidant effect on DNA damage, whole blood cells from symptomatic patients were incubated with NAC (1 and 2.5mM), TRO (25 and 75 μM) and RSV (0.5, 2 and 5 μM) before DNA damage analysis. NAC, TRO and RSV, at all tested concentrations, were all capable to reduce DNA damage in symptomatic X-ALD patients until control levels. Finally, DNA damage correlated with urinary isoprostanes and plasmatic levels of TBA-RS and DCFH-DA, allowing to hypothesize that DNA damage might be induced by lipid peroxidation in symptomatic patients. The present work yields experimental evidence that NAC, TRO and RSV reduce the in vitro DNA injury in symptomatic X-ALD patients, what may suggest that the administration of these antioxidants might be considered as an adjuvant therapy for X-ALD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Experimental Investigation of DNA Damage Induced by Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    DNA is considered the critical target for radiobiological effects. It is highly important to study DNAdamage induced by ionizing radiation. Especially DNA double strand breaks have been identified as themost initial damage. In this experiment, DNA double strand breaks induced by heavy ions wereinvestigated with atomic force microscopy (AFM).

  6. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, Steffen; Poulsen, H E

    1996-01-01

    per 10(5) intact nucleosides. The damaged nucleosides accumulate with age in both nuclear and mitochondrial DNA. The products of repair of these lesions are excreted into the urine in amounts corresponding to a damage rate of up to 10(4) modifications in each cell every day. The most abundant...... with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion...... of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study...

  7. MicroRNAs: new players in the DNA damage response

    Institute of Scientific and Technical Information of China (English)

    Hailiang Hu; Richard A. Gatti

    2011-01-01

    The DNA damage response (DDR) is a signal transduction pathway that decides the cell's fate either to repair DNA damage or to undergo apoptosis if there is too much damage. Post-translational modifications modulate the assembly and activity of protein complexes during the DDR pathways. MicroRNAs (miRNAs) are emerging as a class of endogenous gene modulators that control protein levels, thereby adding a new layer of regulation to the DDR. In this review, we describe a new role for miRNAs in regulating the cellular response to DNA damage with a focus on DNA double-strand break damage. We also discuss the implications of miRNA's role in the DDR to stem cells, including embryonic stem cells and cancer stem cells, stressing the potential applications for miRNAs to be used as sensitizers for cancer radiotherapy and chemotherapy.

  8. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces cell cycle synchronization in different human osteosarcoma cell lines. The UV pulse also has a destabilizing...

  9. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...

  10. Aging of hematopoietic stem cells: DNA damage and mutations?

    Science.gov (United States)

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs.

  11. Imaging the DNA damage response with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Knight, James C.; Koustoulidou, Sofia; Cornelissen, Bart [University of Oxford, CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford (United Kingdom)

    2017-06-15

    DNA integrity is constantly challenged by endogenous and exogenous factors that can alter the DNA sequence, leading to mutagenesis, aberrant transcriptional activity, and cytotoxicity. Left unrepaired, damaged DNA can ultimately lead to the development of cancer. To overcome this threat, a series of complex mechanisms collectively known as the DNA damage response (DDR) are able to detect the various types of DNA damage that can occur and stimulate the appropriate repair process. Each DNA damage repair pathway leads to the recruitment, upregulation, or activation of specific proteins within the nucleus, which, in some cases, can represent attractive targets for molecular imaging. Given the well-established involvement of DDR during tumorigenesis and cancer therapy, the ability to monitor these repair processes non-invasively using nuclear imaging techniques may facilitate the earlier detection of cancer and may also assist in monitoring response to DNA damaging treatment. This review article aims to provide an overview of recent efforts to develop PET and SPECT radiotracers for imaging of DNA damage repair proteins. (orig.)

  12. Chromatin Modifications and the DNA Damage Response to Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Tej K Pandita

    2013-01-01

    Full Text Available In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double strand breaks (DSBs, that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: 1 non-homologous end-joining (NHEJ, which re-ligates the broken ends of the DNA and 2 homologous recombination (HR, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but posttranslational modification (PTMs of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modification by t

  13. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  14. Inducible repair of oxidative DNA damage in Escherichia coli.

    Science.gov (United States)

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  15. DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response.

    Science.gov (United States)

    Colis, Laureen; Peltonen, Karita; Sirajuddin, Paul; Liu, Hester; Sanders, Sara; Ernst, Glen; Barrow, James C; Laiho, Marikki

    2014-06-30

    DNA intercalation is a major therapeutic modality for cancer therapeutic drugs. The therapeutic activity comes at a cost of normal tissue toxicity and genotoxicity. We have recently described a planar heterocyclic small molecule DNA intercalator, BMH-21, that binds ribosomal DNA and inhibits RNA polymerase I (Pol I) transcription. Despite DNA intercalation, BMH-21 does not cause phosphorylation of H2AX, a key biomarker activated in DNA damage stress. Here we assessed whether BMH-21 activity towards expression and localization of Pol I marker proteins depends on DNA damage signaling and repair pathways. We show that BMH-21 effects on the nucleolar stress response were independent of major DNA damage associated PI3-kinase pathways, ATM, ATR and DNA-PKcs. However, testing a series of BMH-21 derivatives with alterations in its N,N-dimethylaminocarboxamide arm showed that several derivatives had acquired the property to activate ATM- and DNA-PKcs -dependent damage sensing and repair pathways while their ability to cause nucleolar stress and affect cell viability was greatly reduced. The data show that BMH-21 is a chemically unique DNA intercalator that has high bioactivity towards Pol I inhibition without activation or dependence of DNA damage stress. The findings also show that interference with DNA and DNA metabolic processes can be exploited therapeutically without causing DNA damage.

  16. Proteins in the nutrient-sensing and DNA damage checkpoint pathways cooperate to restrain mitotic progression following DNA damage.

    Directory of Open Access Journals (Sweden)

    Jennifer S Searle

    2011-07-01

    Full Text Available Checkpoint pathways regulate genomic integrity in part by blocking anaphase until all chromosomes have been completely replicated, repaired, and correctly aligned on the spindle. In Saccharomyces cerevisiae, DNA damage and mono-oriented or unattached kinetochores trigger checkpoint pathways that bifurcate to regulate both the metaphase to anaphase transition and mitotic exit. The sensor-associated kinase, Mec1, phosphorylates two downstream kinases, Chk1 and Rad53. Activation of Chk1 and Rad53 prevents anaphase and causes inhibition of the mitotic exit network. We have previously shown that the PKA pathway plays a role in blocking securin and Clb2 destruction following DNA damage. Here we show that the Mec1 DNA damage checkpoint regulates phosphorylation of the regulatory (R subunit of PKA following DNA damage and that the phosphorylated R subunit has a role in restraining mitosis following DNA damage. In addition we found that proteins known to regulate PKA in response to nutrients and stress either by phosphorylation of the R subunit or regulating levels of cAMP are required for the role of PKA in the DNA damage checkpoint. Our data indicate that there is cross-talk between the DNA damage checkpoint and the proteins that integrate nutrient and stress signals to regulate PKA.

  17. Proteins in the Nutrient-Sensing and DNA Damage Checkpoint Pathways Cooperate to Restrain Mitotic Progression following DNA Damage

    Science.gov (United States)

    Searle, Jennifer S.; Wood, Matthew D.; Kaur, Mandeep; Tobin, David V.; Sanchez, Yolanda

    2011-01-01

    Checkpoint pathways regulate genomic integrity in part by blocking anaphase until all chromosomes have been completely replicated, repaired, and correctly aligned on the spindle. In Saccharomyces cerevisiae, DNA damage and mono-oriented or unattached kinetochores trigger checkpoint pathways that bifurcate to regulate both the metaphase to anaphase transition and mitotic exit. The sensor-associated kinase, Mec1, phosphorylates two downstream kinases, Chk1 and Rad53. Activation of Chk1 and Rad53 prevents anaphase and causes inhibition of the mitotic exit network. We have previously shown that the PKA pathway plays a role in blocking securin and Clb2 destruction following DNA damage. Here we show that the Mec1 DNA damage checkpoint regulates phosphorylation of the regulatory (R) subunit of PKA following DNA damage and that the phosphorylated R subunit has a role in restraining mitosis following DNA damage. In addition we found that proteins known to regulate PKA in response to nutrients and stress either by phosphorylation of the R subunit or regulating levels of cAMP are required for the role of PKA in the DNA damage checkpoint. Our data indicate that there is cross-talk between the DNA damage checkpoint and the proteins that integrate nutrient and stress signals to regulate PKA. PMID:21779180

  18. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

    Science.gov (United States)

    Wada, S.; Natsuhori, M.; Ito, N.; Funayama, T.; Kobayashi, Y.

    2003-05-01

    Investigating the biological effects of high-LET heavy ion irradiation at low fluence is important to evaluate the risk of charged particles. Especially it is important to detect radiation damage induced by the precise number of heavy ions in the individual cells. Thus we studied the relationship between the number of ions traversing the cell and DNA damage produced by the ion irradiation. We applied comet assay to measure the DNA damage in the individual cells. Cells attached on the ion track detector CR-39 were irradiated with ion beams at TIARA, JAERI-Takasaki. After irradiation, the cells were stained with ethidium bromide and the opposite side of the CR-39 was etched. We observed that the heavy ions with higher LET values induced the heavier DNA damage. The result indicated that the amount of DNA damage induced by one particle increased with the LET values of the heavy ions.

  19. Global chromatin fibre compaction in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Charlotte [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Hayward, Richard L. [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Gilbert, Nick, E-mail: Nick.Gilbert@ed.ac.uk [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  20. Biomarkers of oxidative damage to DNA and repair

    DEFF Research Database (Denmark)

    Loft, Steffen; Høgh Danielsen, Pernille; Mikkelsen, Lone

    2008-01-01

    Oxidative-stress-induced damage to DNA includes a multitude of lesions, many of which are mutagenic and have multiple roles in cancer and aging. Many lesions have been characterized by MS-based methods after extraction and digestion of DNA. These preparation steps may cause spurious base oxidation...... DNA glycosylase 1), responsible for repair of 8-oxodG, by genotyping. Products of repair in DNA or the nucleotide pool, such as 8-oxodG, excreted into the urine can be assessed by MS-based methods and generally reflects the rate of damage. Experimental and population-based studies indicate that many...

  1. Increased DNA damage in blood cells of rat treated with lead as assessed by comet assay

    Directory of Open Access Journals (Sweden)

    Mohammad Arif

    2008-06-01

    Full Text Available A growing body of evidence suggests that oxidative stress is the key player in the pathogenesis of lead-induced toxicity. The present study investigated lead induced oxidative DNA damage, if any in rat blood cells by alkaline comet assay. Lead was administered intraperitoneally to rats at doses of 25, 50 and 100 mg/kg body weight for 5 days consecutively. Blood collected on day six from sacrificed lead-treated rats was used to assess the extent of DNA damage by comet assay which entailed measurement of comet length, olive tail moment, tail DNA (% and tail length. The results showed that treatment with lead significantly increased DNA damage in a dose-dependent manner. Therefore, our data suggests that lead treatment is associated with oxidative stress-induced DNA damage in rat blood cells which could be used as an early bio-marker of lead-toxicity.

  2. Chromatin Dynamics in Genome Stability: Roles in Suppressing Endogenous DNA Damage and Facilitating DNA Repair

    Directory of Open Access Journals (Sweden)

    Nidhi Nair

    2017-07-01

    Full Text Available Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage.

  3. Endogenous melatonin and oxidatively damaged guanine in DNA

    DEFF Research Database (Denmark)

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. METHODS: Mother......-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA...... of oxidatively damaged guanine in DNA, thereby possibly increasing the risk of developing cancer. The possible different effects of melatonin in the rates of utilization of pathways for repair of oxidatively damaged guanine in DNA identified between older women and older men are intriguing....

  4. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducibl...... nitrogen oxide synthase (iNOS). NO as well as other ROS are potential DNA damaging agents. The aim was to determine the effect of long-term cytokine exposure on NO formation and DNA damage in epithelial cells....

  5. Typical Cell Signaling Response to Ionizing Radiation:DNA Damage and Extranuclear Damage

    Institute of Scientific and Technical Information of China (English)

    Hui Yu

    2012-01-01

    To treat many types of cancer,ionizing radiation (IR) is primarily used as external-beam radiotherapy,brachytherapy,and targeted radionuclide therapy.Exposure of tumor cells to IR can induce DNA damage as well as generation of reactiveoxygen species (ROS) and reactive nitrogen species (RNS) which can cause non-DNA lesions or extracellular damage like lipid perioxidation.The initial radiation-induced cell responses to DNA damage and ROS like the proteolytic processing,as well as synthesis and releasing ligands (such as growth factors,cytokines,and hormone) can cause the delayed secondary responses in irradiated and unirradiated bystander cells through paracrine and autocrine pathways.

  6. Roles of RNA-Binding Proteins in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Mihoko Kai

    2016-02-01

    Full Text Available Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR, and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP with low complexity domains, called intrinsically disordered proteins (IDPs, and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs in a poly(ADP-ribose (PAR-dependent manner (unpublished data. DNA-dependent PARP1 (poly-(ADP ribose polymerase 1 makes key contributions in the DNA damage response (DDR network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as

  7. Radiation damage to DNA: the effect of LET

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.F.; Milligan, J.R. [California Univ., San Diego, La Jolla, CA (United States). School of Medicine

    1997-03-01

    Mechanisms whereby ionizing radiation induced damage are introduced into cellular DNA are discussed. The types of lesions induced are summarized and the rationale is presented which supports the statement that radiation induced singly damaged sites are biologically unimportant. The conclusion that multiply damaged sites are critical is discussed and the mechanisms whereby such lesions are formed are presented. Structures of multiply damaged sites are summarized and problems which they present to cellular repair systems are discussed. Lastly the effects of linear energy transfer on the complexity of multiply damaged sites are surveyed and the consequences of this increased complexity are considered in terms of cell survival and mutation. (author)

  8. Antioxidant vitamins and cancer risk: is oxidative damage to DNA a relevant biomarker?

    DEFF Research Database (Denmark)

    Loft, Steffen; Møller, Peter; Cooke, Marcus S;

    2008-01-01

    Oxidative damage to DNA is regarded as an important step in carcinogenesis. These lesions may arise as a consequence of exposure to xenobiotics, but are also generated as a consequence of endogenous generation of oxidizing compounds. Measurements of oxidative damage to guanines, such as 8-oxo-7, ...

  9. Oxidative Damage to DNA and Its Relationship With Diabetic Complications

    Institute of Scientific and Technical Information of China (English)

    HONG-ZHI PAN; DONG CHANG; LEI-GUANG FENG; FENG-JUAN XU; HONG-YU KUANG; MING-JUN LU

    2007-01-01

    Objective To detect the oxidative DNA damage in diabetic patients and to investigate the relationship of oxidative DNA damage with diabetes and diabetic nephropathy. Methods Single cell gel electrophoresis (SCGE) was used to detect the DNA strand breaks in peripheral blood lymphocytes, and oxidative DNA damage product and serum 8-OHdG were determined by a competitive ELISA in 47 cases, including 25 patients without diabetic complications, 22 patients with diabetic nephropathy and 25 normal control subjects. Results Diabetic patients showed greater oxidative damage to DNA. The percentage of comet cells and the length of DNA migration (comet tail length) of peripheral blood lymphocytes were significantly increased in patients with diabetes, and significantly higher in patients with diabetic nephropathy than in diabetic patients without vascular complications (P<0.05). There was a significant increase in serum 8-OHdG in diabetic patients compared with normal subjects (P<0.05). Moreover, serum 8-OHdG was much higher in patients with diabetic nephropathy than in diabetic patients without vascular complications (P<0.05). Conclusion There is severe oxidative DNA damage in diabetic patients. Enhanced oxidative stress may be associated with diabetes, especially in patients with diabetic nephropathy.

  10. Can cytotoxic activity of anthracyclines be related to DNA damage?

    Science.gov (United States)

    Nishiyama, M; Horichi, N; Mazouzi, Z; Bungo, M; Saijo, N; Tapiero, H

    1990-02-01

    Accumulation, cytotoxicity, and DNA damages produced by doxorubicin (DOX), pirarubicin (THP-DOX), fluoro-doxorubicin (ME2303) or its isolated metabolite M1 have been investigated in human myelogenous leukemia cells, sensitive (K562) and resistant to DOX (K562/DOX). These compounds differed by lipophilicity and/or sugar moiety either with (DOX, THP-DOX) or without (ME2303, M1) amino group. In K562 cells, the cytotoxicity was correlated to DNA single-stranded breaks and the intracellular drug amount of DOX or M1. This was not true when the cells were treated with THP-DOX or ME2303. In addition, THP-DOX produced total DNA protein cross-linking. In K562 cells DNA damage was not repaired, while in K562/DOX repair of DNA damage produced by all drugs could be observed. Although in K562/DOX cells drug accumulation was much reduced, higher intracellular drug concentration was required to induce similar level of cytotoxicity and DNA damage. Thus, cytotoxicity produced by anthracycline is not always associated with DNA damage. Different level of resistance to DOX, THP-DOX, ME2303 or M1 is associated with reduced drug accumulation which varies with the structure.

  11. Single-molecule visualization of ROS-induced DNA damage in large DNA molecules.

    Science.gov (United States)

    Lee, Jinyong; Kim, Yongkyun; Lim, Sangyong; Jo, Kyubong

    2016-02-07

    We present a single molecule visualization approach for the quantitative analysis of reactive oxygen species (ROS) induced DNA damage, such as base oxidation and single stranded breaks in large DNA molecules. We utilized the Fenton reaction to generate DNA damage with subsequent enzymatic treatment using a mixture of three types of glycosylases to remove oxidized bases, and then fluorescent labeling on damaged lesions via nick translation. This single molecule analytical platform provided the capability to count one or two damaged sites per λ DNA molecule (48.5 kb), which were reliably dependent on the concentrations of hydrogen peroxide and ferrous ion at the micromolar level. More importantly, the labeled damaged sites that were visualized under a microscope provided positional information, which offered the capability of comparing DNA damaged sites with the in silico genomic map to reveal sequence specificity that GTGR is more sensitive to oxidative damage. Consequently, single DNA molecule analysis provides a sensitive analytical platform for ROS-induced DNA damage and suggests an interesting biochemical insight that the genome primarily active during the lysogenic cycle may have less probability for oxidative DNA damage.

  12. Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA.

    OpenAIRE

    Loft, Steffen; Danielsen, Pernille; Løhr, Mille; Jantzen, Kim; Hemmingsen, Jette G.; Roursgaard, Martin; Karotki, Dorina Gabriela; Møller, Peter

    2012-01-01

    Oxidatively damaged DNA may be important in carcinogenesis. 8-Oxo-7,8-dihydroguanine (8-oxoGua) is an abundant and mutagenic lesion excised by oxoguanine DNA glycosylase 1 (OGG1) and measurable in urine or plasma by chromatographic methods with electrochemical or mass spectrometric detectors, reflecting the rate of damage in steady state. A common genetic OGG1 variant may affect the activity and was associated with increased levels of oxidized purines in leukocytes without apparent effect on ...

  13. Profiling DNA damage response following mitotic perturbations

    DEFF Research Database (Denmark)

    S Pedersen, Ronni; Karemore, Gopal; Gudjonsson, Thorkell

    2016-01-01

    Genome integrity relies on precise coordination between DNA replication and chromosome segregation. Whereas replication stress attracted much attention, the consequences of mitotic perturbations for genome integrity are less understood. Here, we knockdown 47 validated mitotic regulators to show...... phenotypes. To demonstrate the potential of this resource, we show that DNA breakage after cytokinesis failure is preceded by replication stress, which mounts during consecutive cell cycles and coincides with decreased proliferation. Together, our results provide a resource to gauge the magnitude...

  14. Bacterial natural transformation by highly fragmented and damaged DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations......DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often DNA is recognized as nutrient source...... for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake...

  15. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors.

    Science.gov (United States)

    Francia, Sofia; Cabrini, Matteo; Matti, Valentina; Oldani, Amanda; d'Adda di Fagagna, Fabrizio

    2016-04-01

    The DNA damage response (DDR) plays a central role in preserving genome integrity. Recently, we reported that the endoribonucleases DICER and DROSHA contribute to DDR activation by generating small non-coding RNAs, termed DNA damage response RNA (DDRNA), carrying the sequence of the damaged locus. It is presently unclear whether DDRNAs act by promoting the primary recognition of DNA lesions or the secondary recruitment of DDR factors into cytologically detectable foci and consequent signal amplification. Here, we demonstrate that DICER and DROSHA are dispensable for primary recruitment of the DDR sensor NBS1 to DNA damage sites. Instead, the accumulation of the DDR mediators MDC1 and 53BP1 (also known as TP53BP1), markers of secondary recruitment, is reduced in DICER- or DROSHA-inactivated cells. In addition, NBS1 (also known as NBN) primary recruitment is resistant to RNA degradation, consistent with the notion that RNA is dispensable for primary recognition of DNA lesions. We propose that DICER, DROSHA and DDRNAs act in the response to DNA damage after primary recognition of DNA lesions and, together with γH2AX, are essential for enabling the secondary recruitment of DDR factors and fuel the amplification of DDR signaling.

  16. mapDamage: testing for damage patterns in ancient DNA sequences.

    Science.gov (United States)

    Ginolhac, Aurelien; Rasmussen, Morten; Gilbert, M Thomas P; Willerslev, Eske; Orlando, Ludovic

    2011-08-01

    Ancient DNA extracts consist of a mixture of contaminant DNA molecules, most often originating from environmental microbes, and endogenous fragments exhibiting substantial levels of DNA damage. The latter introduce specific nucleotide misincorporations and DNA fragmentation signatures in sequencing reads that could be advantageously used to argue for sequence validity. mapDamage is a Perl script that computes nucleotide misincorporation and fragmentation patterns using next-generation sequencing reads mapped against a reference genome. The Perl script outputs are further automatically processed in embedded R script in order to detect typical patterns of genuine ancient DNA sequences. The Perl script mapDamage is freely available with documentation and example files at http://geogenetics.ku.dk/all_literature/mapdamage/. The script requires prior installation of the SAMtools suite and R environment and has been validated on both GNU/Linux and MacOSX operating systems.

  17. Activation of DNA damage response signaling by condensed chromatin.

    Science.gov (United States)

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  18. Synthesis of damaged DNA containing the oxidative lesion 3'-oxothymidine.

    Science.gov (United States)

    Bedi, Mel F; Li, Weiye; Gutwald, Taylor; Bryant-Friedrich, Amanda C

    2017-09-01

    Oxidative events that take place during regular oxygen metabolism can lead to the formation of organic or inorganic radicals. The interaction of these radicals with macromolecules in the organism and with DNA in particular is suspected to lead to apoptosis, DNA lesions and cell damage. Independent generation of DNA lesions resulting from oxidative damage is used to promote the study of their effects on biological systems. An efficient synthesis of oligodeoxyribonucleotides (ODNs) containing the oxidative damage lesion 3'-oxothymidine has been accomplished via incorporation of C3'-hydroxymethyl thymidine as its corresponding 5'-phosphoramidite. Through oxidative cleavage using sodium periodate in aqueous solution, the lesion of interest is easily generated. Due to its inherent instability it cannot be directly isolated, but must be generated in situ. 3'-Oxothymidine is a demonstrated damage product formed upon generation of the C3'-thymidinyl radical in ODN. Copyright © 2017. Published by Elsevier Ltd.

  19. DNA damage to spermatozoa has impacts on fertilization and pregnancy.

    Science.gov (United States)

    Lewis, S E M; Aitken, R J

    2005-10-01

    DNA damage in the male germ line has been associated with poor semen quality, low fertilization rates, impaired preimplantation development, increased abortion and an elevated incidence of disease in the offspring, including childhood cancer. The causes of this DNA damage are still uncertain but the major candidates are oxidative stress and aberrant apoptosis. The weight of evidence currently favours the former and, in keeping with this conclusion, positive results have been reported for antioxidant therapy both in vivo and in vitro. Resolving the causes of DNA damage in the male germ line will be essential if we are to prevent the generation of genetically damaged human embryos, particularly in the context of assisted conception therapy.

  20. DNA Damage Caused By Pesticide-contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    K.KRISHNAMURTHI; S. SARAVANA DEVI; T. CHAKRABARTI

    2006-01-01

    Objective To determine the DNA damaging potential and the genotoxicity of individual compounds in pesticide contaminated soil. Methods In the present study, DNA damaging potential of pesticide-contaminated soil and the genotoxicity of individual compounds present in the soil were assessed using fluorimetric analysis of DNA unwinding assay. Results The contaminated soil sample showed 79% (P<0.001) of DNA strand break, whereas technical grade of major carbaryl and α-naphthol constituents of the contaminated soil showed 64% (P<0.01) and 60% (P<0.02) damage respectively. Conclusion Our results indicate that the toxicity caused by contaminated soil is mainly due to carbaryl and α -napthol, which are the major constituents of the soil sample analyzed by GC-MS.

  1. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    Science.gov (United States)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  2. DNA damage, repair and tanning acceleration

    NARCIS (Netherlands)

    Vink, A.A.; Berg, P.T.M. van den; Roza, L.

    1999-01-01

    Exposure of the skin to solar ultraviolet radiation (UV) leads to various adverse effects, such as the induction of cellular damage and mutations, suppression of the skin's immune system, and the induction of skin cancer. These effects are the consequence of various molecular alterations in the skin

  3. APOBEC3A damages the cellular genome during DNA replication.

    Science.gov (United States)

    Green, Abby M; Landry, Sébastien; Budagyan, Konstantin; Avgousti, Daphne C; Shalhout, Sophia; Bhagwat, Ashok S; Weitzman, Matthew D

    2016-01-01

    The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.

  4. Studying S-phase DNA Damage Checkpoints using the Fission Yeast Schizosaccharomyces pombe

    Science.gov (United States)

    Willis, Nicholas; Rhind, Nicholas

    2016-01-01

    Slowing of replication in response to DNA damage is a universal response to DNA damage during S-phase. Originally discovered to be defective in checkpoint mutant cells in metazoans, this S-phase DNA damage checkpoint response has been extensively studied in yeast. Unlike other checkpoints that completely arrest cell cycle, the S-phase DNA damage checkpoint slows but does not completely halt replication in response to DNA damage. An analysis of mutants defective in the slowing response requires a sensitive assay to measure this quantitative effect. The use of centrifugal elutriation to synchronize cells and improved techniques in preparing cells for flow cytometry allow for more sensitive and accurate measurement of cells’ ability to slow replication in the presence of DNA damage. This chapter describes the use of transient cdc10-M17 temperature sensitive allele arrest and release combined with centrifugal elutriation to synchronize cells in G1. The S-phase progression of these cells is then assayed by flow cytometry of isolated nuclei, which allows sensitive determination of replication kinetics. PMID:21870281

  5. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development.

    Directory of Open Access Journals (Sweden)

    Joanna E Gawecka

    Full Text Available Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF. SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B followed by irreversible DNA degradation by a nuclease(s. Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development.

  6. The effects of male age on sperm DNA damage in healthy non-smokers

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, T; Eskenazi, B; Baumgartner, A; Marchetti, F; Young, S; Weldon, R; Anderson, D; Wyrobek, A

    2006-03-08

    The trend for men to have children at older ages raises concerns that advancing age may increase the production of genetically defective sperm, increasing the risks of transmitting germ-line mutations. We investigated the associations between male age and sperm DNA damage and the influence of several lifestyle factors in a healthy non-clinical group of 80 non-smokers (age: 22-80) with no known fertility problems using the sperm Comet analyses. The average percent of DNA that migrated out of the sperm nucleus under alkaline electrophoresis increased with age (0.18% per year, p=0.006); but there was no age association for damage measured under neutral conditions (p=0.7). Men who consumed >3 cups coffee per day had {approx}20% higher % tail DNA under neutral but not alkaline conditions compared to men who consumed no caffeine (p=0.005). Our findings indicate that (a) older men have increased sperm DNA damage associated with alkali-labile sites or single-strand DNA breaks, and (b) independent of age, men with substantial daily caffeine consumption have increased sperm DNA damage associated with double-strand DNA breaks. DNA damage in sperm can be converted to chromosomal aberrations and gene mutations after fertilization increasing the risks for developmental defects and genetic diseases among offspring.

  7. Damaging the Integrated HIV Proviral DNA with TALENs.

    Directory of Open Access Journals (Sweden)

    Christy L Strong

    Full Text Available HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs to target a highly conserved sequence in the transactivation response element (TAR of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.

  8. CUPRAC colorimetric and electroanalytical methods determining antioxidant activity based on prevention of oxidative DNA damage.

    Science.gov (United States)

    Uzunboy, Seda; Çekiç, Sema Demirci; Eksin, Ece; Erdem, Arzum; Apak, Reşat

    2017-02-01

    An unbalanced excess of oxygen/nitrogen species (ROS/RNS) can give oxidative hazard to DNA and other biomacromolecules under oxidative stress conditions. While the 'comet' assay for measuring DNA damage is neither specific nor practical, monitoring oxidative changes on individual DNA bases and other oxidation products needs highly specialized equipment and operators. Thus, we developed a modified CUPRAC (cupric ion reducing antioxidant capacity) colorimetric method to determine the average total damage on DNA produced by Fenton oxidation, taking advantage of the fact that the degradation products of DNA but not the original macromolecule is CUPRAC-responsive. The DNA-protective effects of water-soluble antioxidants were used to devise a novel antioxidant activity assay, considered to be physiologically more realistic than those using artificial probes. Our method, based on the measurement of DNA oxidative products with CUPRAC colorimetry proved to be 2 orders-of-magnitude more sensitive than the widely used TBARS (thiobarbituric acid-reactive substances) colorimetric assay used as reference. Additionally, the DNA damage was electrochemically investigated using pencil graphite electrodes (PGEs) as DNA sensor platform in combination with differential pulse voltammetry (DPV). The interaction of the radical species with DNA in the absence/presence of antioxidants was detected according to the changes in guanine oxidation signal.

  9. Oxidative stress and DNA damages induced by cadmium accumulation

    Institute of Scientific and Technical Information of China (English)

    LIN Ai-jun; ZHANG Xu-hong; CHEN Mei-mei; CAO Qing

    2007-01-01

    Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.

  10. SOS processing of unique oxidative DNA damages in Escherichia coli.

    Science.gov (United States)

    Laspia, M F; Wallace, S S

    1989-05-05

    phi X174 replicative form (RF) I transfecting DNA containing thymine glycols (5,6-dihydroxy-5,6-dihydrothymine), urea glycosides or apurinic (AP) sites was used to study SOS processing of unique DNA damages in Escherichia coli. All three lesions can be found in DNA damaged by chemical oxidants or radiation and are representative of several common structural modifications of DNA bases. When phi X DNA containing thymine glycols was transfected into host cells that were ultraviolet-irradiated to induce the SOS response, a substantial increase in survival was observed compared to transfection into uninduced hosts. Studies with mutants demonstrated that both the activated form of RecA and UmuDC proteins were required for this reactivation. In contrast, no increase in survival was observed when DNA containing urea glycosides or AP sites was transfected into ultraviolet-induced hosts. These data suggest that SOS-induced reactivation does not reflect a generalized repair system for all replication-blocking, lethal lesions but rather that the efficiency of reactivation is damage dependent. Further, we found that a significant fraction of potentially lethal thymine glycols could be ultraviolet-reactivated in an umuC lexA recA-independent manner, suggesting the existence of an as yet uncharacterized damage-inducible SOS-independent mode of thymine glycol repair.

  11. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    NARCIS (Netherlands)

    S. Vives (Sergi); M.T. Gilbert (Thomas); C. Arenas (Conchita); E. Gigli (Elena); O. Lao Grueso (Oscar); C. Lalueza-Fox (Carles)

    2008-01-01

    textabstractBackground. We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis was rest

  12. Measurement of DNA damage in peripheral blood by the γ-H2AX assay as predictor of colorectal cancer risk.

    Science.gov (United States)

    Zhao, Lina; Chang, David W; Gong, Yilei; Eng, Cathy; Wu, Xifeng

    2017-05-01

    The detection of γ-H2AX focus is one of the most sensitive ways to monitor DNA double-strand breaks (DSBs). Although changes in γ-H2AX activity have been studied in tumor cells in colorectal cancer (CRC), changes in peripheral blood lymphocytes (PBLs) have not been examined previously. We hypothesize that higher levels of irradiation-induced γ-H2AX in PBLs may be associated with an elevated risk of colorectal cancer (CRC). In a case-control study, the baseline and ionizing radiation (IR)-induced γ-H2AX levels in PBLs from frequency-matched 320 untreated CRC patients and 320 controls were detected by a laser scanning cytometer-based immunocytochemical method. We used unconditional multivariable logistic regression to evaluate CRC risk by using the ratio of IR-induced γ-H2AX to the baseline levels with adjustment of age, sex and smoking status. We found CRC cases had significantly higher γ-H2AX ratio (1.5 vs. 1.41, Prisk of CRC (OR=6.72, 95% CI=4.54-9.94). Quartile analyses also showed significant dose-response relationship between higher γ-H2AX ratio and increased risk of CRC (P for trendrisk; however, no interactions with γ-H2AX ratio were observed. These results support the premise that DSBs in peripheral blood as measured by γ-H2AX level might represent an intermediate phenotype to assess the risk of CRC. Future prospective studies are necessary to confirm our findings in independent populations. Copyright © 2017. Published by Elsevier B.V.

  13. DNA damage among thyroid cancer and multiple cancer cases, controls, and long-lived individuals

    Energy Technology Data Exchange (ETDEWEB)

    Sigurdson, A J; Hauptmann, M; Alexander, B J; Doody, M M; Thomas, C B; Struewing, J P; Jones, I M

    2004-08-24

    Variation in the detection, signaling, and repair of DNA damage contributes to human cancer risk. To assess capacity to modulate endogenous DNA damage among radiologic technologists who had been diagnosed with breast cancer and another malignancy (breast-other; n=42), early-onset breast cancer (early-onset, age {<=} 35; n=38), thyroid cancer (n=68), long-lived cancer-free individuals (hyper-normals; n=20) and cancer-free controls (n=49) we quantified DNA damage (single strand breaks and abasic sites) in untreated lymphoblastoid cell lines using the alkaline comet assay. Komet{trademark} software provided comet tail length, % DNA in tail (tail DNA), comet distributed moment (CDM), and Olive tail moment (OTM) summarized as the geometric mean of 100 cells. Category cut-points (median and 75th percentile) were determined from the distribution among controls. Tail length (for {>=} 75% vs. below the median, age adjusted) was most consistently associated with the highest odds ratios in the breast-other, early-onset, and thyroid cancer groups (with risk increased 10-, 5- or 19-fold, respectively, with wide confidence intervals) and decreased risk among the hyper-normal group. For the other three Comet measures, risk of breast-other was elevated approximately three-fold. Risk of early-onset breast cancer was mixed and risk of thyroid cancer ranged from null to a two-fold increase. The hyper-normal group showed decreased odds ratios for tail DNA and OTM, but not CDM. DNA damage, as estimated by all Comet measures, was relatively unaffected by survival time, reproductive factors, and prior radiation treatment. We detected a continuum of endogenous DNA damage that was highest among cancer cases, less in controls, and suggestively lowest in hyper-normal individuals. Measuring this DNA damage phenotype may contribute to the identification of susceptible sub-groups. Our observations require replication in a prospective study with a large number of pre-diagnostic samples.

  14. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  15. Parvovirus diversity and DNA damage responses.

    Science.gov (United States)

    Cotmore, Susan F; Tattersall, Peter

    2013-02-01

    Parvoviruses have a linear single-stranded DNA genome, around 5 kb in length, with short imperfect terminal palindromes that fold back on themselves to form duplex hairpin telomeres. These contain most of the cis-acting information required for viral "rolling hairpin" DNA replication, an evolutionary adaptation of rolling-circle synthesis in which the hairpins create duplex replication origins, prime complementary strand synthesis, and act as hinges to reverse the direction of the unidirectional cellular fork. Genomes are packaged vectorially into small, rugged protein capsids ~260 Å in diameter, which mediate their delivery directly into the cell nucleus, where they await their host cell's entry into S phase under its own cell cycle control. Here we focus on genus-specific variations in genome structure and replication, and review host cell responses that modulate the nuclear environment.

  16. Looking for Waldo: a potential thermodynamic signature to DNA damage.

    Science.gov (United States)

    Gold, Barry; Stone, Michael P; Marky, Luis A

    2014-04-15

    DNA in its simplest form is an ensemble of nucleic acids, water, and ions, and the conformation of DNA is dependent on the relative proportions of all three components. When DNA is covalently damaged by endogenous or exogenous reactive species, including those produced by some anticancer drugs, the ensemble undergoes localized changes that affect nucleic acid structure, thermodynamic stability, and the qualitative and quantative arrangement of associated cations and water molecules. Fortunately, the biological effects of low levels of DNA damage are successfully mitigated by a large number of proteins that efficiently recognize and repair DNA damage in the midst of a vast excess of canonical DNA. In this Account, we explore the impact of DNA modifications on the high resolution and dynamic structure of DNA, DNA stability, and the uptake of ions and water and explore how these changes may be sensed by proteins whose function is to initially locate DNA lesions. We discuss modifications on the nucleobases that are located in the major and minor grooves of DNA and include lesions that are observed in vivo, including oxidized bases, as well as some synthetic nucleobases that allow us to probe how the location and nature of different substituents affect the thermodynamics and structure of the DNA ensemble. It is demonstrated that disruption of a cation binding site in the major groove by modification of the N7-position on the purines, which is the major site for DNA alkylation, is enthalpically destabilizing. Accordingly, tethering a cationic charge in the major groove is enthalpically stabilizing. The combined structural and thermodynamic studies provide a detailed picture of how different DNA lesions affect the dynamics of DNA and how modified bases interact with their environment. Our work supports the hypothesis that there is a "thermodynamic signature" to DNA lesions that can be exploited in the initial search that requires differentiation between canonical DNA and

  17. Measurement of damage in systemic vasculitis: a comparison of the Vasculitis Damage Index with the Combined Damage Assessment Index

    DEFF Research Database (Denmark)

    Suppiah, Ravi; Flossman, Oliver; Mukhtyar, Chetan;

    2011-01-01

    To compare the Vasculitis Damage Index (VDI) with the Combined Damage Assessment Index (CDA) as measures of damage from vasculitis.......To compare the Vasculitis Damage Index (VDI) with the Combined Damage Assessment Index (CDA) as measures of damage from vasculitis....

  18. Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion.

    Science.gov (United States)

    Juvekar, Ashish; Hu, Hai; Yadegarynia, Sina; Lyssiotis, Costas A; Ullas, Soumya; Lien, Evan C; Bellinger, Gary; Son, Jaekyoung; Hok, Rosanna C; Seth, Pankaj; Daly, Michele B; Kim, Baek; Scully, Ralph; Asara, John M; Cantley, Lewis C; Wulf, Gerburg M

    2016-07-26

    We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1(f/f)p53(f/f)), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors.

  19. A dual role of Cdk2 in DNA damage response

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2009-05-01

    Full Text Available Abstract Once it was believed that Cdk2 was the master regulator of S phase entry. Gene knockout mouse studies of cell cycle regulators revealed that Cdk2 is dispensable for S phase initiation and progression whereby Cdk1 can compensate for the loss of Cdk2. Nevertheless, recent evidence indicates that Cdk2 is involved in cell cycle independent functions such as DNA damage repair. Whether these properties are unique to Cdk2 or also being compensated by other Cdks in the absence of Cdk2 is under extensive investigation. Here we review the emerging new role of Cdk2 in DNA damage repair and also discuss how the loss of Cdk2 impacts the G1/S phase DNA damage checkpoint.

  20. A dual role of Cdk2 in DNA damage response.

    Science.gov (United States)

    Satyanarayana, Ande; Kaldis, Philipp

    2009-05-18

    Once it was believed that Cdk2 was the master regulator of S phase entry. Gene knockout mouse studies of cell cycle regulators revealed that Cdk2 is dispensable for S phase initiation and progression whereby Cdk1 can compensate for the loss of Cdk2. Nevertheless, recent evidence indicates that Cdk2 is involved in cell cycle independent functions such as DNA damage repair. Whether these properties are unique to Cdk2 or also being compensated by other Cdks in the absence of Cdk2 is under extensive investigation. Here we review the emerging new role of Cdk2 in DNA damage repair and also discuss how the loss of Cdk2 impacts the G1/S phase DNA damage checkpoint.

  1. Mechanisms for radiation damage in DNA. Final report, June 1, 1986--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sevilla, M.D.

    1996-08-01

    Over the last 10 years significant advances have been made impacting the understanding of radiation damage to DNA. The principal objective of this work was the elucidation of the fundamental mechanisms of radiation damage to DNA through the direct and indirect effects. Recently the work concentrated on the direct effect of radiation damage on DNA. The objective was to elucidate the ultimate radiation chemical damage to DNA arising from the direct effect. In this effort the focus was on the application of three techniques. ESR spectroscopic measurement of initial radicals formed in DNA and its hydration layer at low temperatures. Ab initio molecular orbital calculations were employed to give highly accurate theoretical predictions of early events such as electron and hole localization sites which serve to test and to clarify the experimental observations. HPLC and GC-mass spectroscopic assays of DNA base products formation provide the ultimate chemical outcome of the initial radiation events. The bridge between the early ion radical species and the non-radical products is made in ESR studies which follow the chemistry of the early species as they react with water and or other DNA bases. The use of these techniques has resulted in a new and fundamental understanding of the radiation damage to DNA on a molecular scale. From this work, a working model for DNA damage from the initial ionization event to the eventual formation of molecular base damage products and strand breaks has been formulated. Results over the past several years which have led to the formulation of this model are described.

  2. DNA Damage of Lymphocytes in Volunteers after 4 hours Use of Mobile Phone.

    Science.gov (United States)

    Ji, Seonmi; Oh, Eunha; Sul, Donggeun; Choi, Jae Wook; Park, Heechan; Lee, Eunil

    2004-11-01

    There has been gradually increasing concern about the adverse health effects of electromagnetic radiation originating from cell phones which are widely used in modern life. Cell phone radiation may affect human health by increasing free radicals of human blood cells. This study has been designed to identify DNA damage of blood cells by electromagnetic radiation caused by cell phone use. This study investigated the health effect of acute exposure to commercially available cell phones on certain parameters such as an indicator of DNA damage for 14 healthy adult volunteers. Each volunteer during the experiment talked over the cell phone with the keypad facing the right side of the face for 4 hours. The single cell gel electrophoresis assay (Comet assay), which is very sensitive in detecting the presence of DNA strand-breaks and alkali-labile damage in individual cells, was used to assess peripheral blood cells (T-cells, B-cells, granulocytes) from volunteers before and after exposure to cell phone radiation. The parameters of Comet assay measured were Olive Tail Moment and Tail DNA %. The Olive Tail Moment of B-cells and granulocytes and Tail DNA % of B-cells and granulocytes were increased by a statistically significant extent after 4- hour use of a cell phone compared with controls. It is concluded that cell phone radiation caused the DNA damage during the 4 hours of experimental condition. Nonetheless, this study suggested that cell phone use may increase DNA damage by electromagnetic radiation and other contributing factors.

  3. Occupational exposure to polycyclic aromatic hydrocarbons and DNA damage by industry: a nationwide study in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski, Boleslaw; Pesch, Beate; Rabstein, Sylvia; Raulf-Heimsoth, Monika; Rihs, Hans-Peter; Erkes, Anja; Engelhardt, Beate; Kaefferlein, Heiko Udo; Angerer, Juergen; Bruening, Thomas [BGFA - Research Institute of Occupational Medicine, German Social Accident Insurance, Ruhr-University Bochum, Bochum (Germany); Wilhelm, Michael [Ruhr-University Bochum, Institute of Hygiene, Social and Environmental Medicine, Bochum (Germany); Rossbach, Bernd [Johannes Gutenberg-University Mainz, Institute of Occupational, Social and Environmental Medicine, Mainz (Germany); Preuss, Ralf [Friedrich-Alexander-University Erlangen/Nuernberg, Institute and Outpatient Clinic of Occupational, Social- and Environmental Medicine, Erlangen (Germany); Hahn, Jens-Uwe [BGIA - Institute for Occupational Health and Safety, German Social Accident Insurance, Sankt Augustin (Germany); Seidel, Albrecht [Biochemical Institute for Environmental Carcinogens, Grosshansdorf (Germany); Adams, Ansgar [BAD Health Prevention and Technical Safety GmbH, Koblenz (Germany); Scherenberg, Michael [Occupational Medical Center Oberhausen, German Social Accident Insurance of the Construction Industry, Oberhausen (Germany); Straif, Kurt [International Agency for Research on Cancer (IARC), World Health Organisation, Lyon Cedex 08 (France)

    2009-10-15

    Exposure to polycyclic aromatic hydrocarbons (PAH) and DNA damage were analyzed in coke oven (n = 37), refractory (n = 96), graphite electrode (n = 26), and converter workers (n = 12), whereas construction workers (n = 48) served as referents. PAH exposure was assessed by personal air sampling during shift and biological monitoring in urine post shift (1-hydroxypyrene, 1-OHP and 1-, 2 + 9-, 3-, 4-hydroxyphenanthrenes, {sigma}OHPHE). DNA damage was measured by 8-oxo-7,8-dihydro-2{sup '}-deoxyguanosine (8-oxodGuo) and DNA strand breaks in blood post shift. Median 1-OHP and {sigma}OHPHE were highest in converter workers (13.5 and 37.2 {mu}g/g crea). The industrial setting contributed to the metabolite concentrations rather than the air-borne concentration alone. Other routes of uptake, probably dermal, influenced associations between air-borne concentrations and levels of PAH metabolites in urine making biomonitoring results preferred parameters to assess exposure to PAH. DNA damage in terms of 8-oxo-dGuo and DNA strand breaks was higher in exposed workers compared to referents ranking highest for graphite-electrode production. The type of industry contributed to genotoxic DNA damage and DNA damage was not unequivocally associated to PAH on the individual level most likely due to potential contributions of co-exposures. (orig.)

  4. Can graphene quantum dots cause DNA damage in cells?

    Science.gov (United States)

    Wang, Dan; Zhu, Lin; Chen, Jian-Feng; Dai, Liming

    2015-05-01

    Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems.Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01734c

  5. Oxidative DNA damage background estimated by a system model of base excision repair.

    Science.gov (United States)

    Sokhansanj, Bahrad A; Wilson, David M

    2004-08-01

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level, based on measuring 8-oxoguanine lesions as a biomarker, have led to estimates that vary over three to four orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our findings show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  6. Radioprotection against DNA damage by an extract of Indian green mussel, Perna viridis (L).

    Science.gov (United States)

    Kumaran, Sreekumar P; Kutty, Binoj C; Chatterji, Anil; Subrayan, Parameswaran P; Mishra, Kaushala Prasad

    2007-01-01

    This study describes the radioprotective ability of a hydrolysate prepared using an enzyme-acid hydrolysis method from the green mussel Perna viridis in terms of its ability to prevent radiation-induced damage in plasmid DNA, cell death, reactive oxygen species (ROS) formation, and DNA damage in mice lymphocytes. The mussel hydrolysate (MH) present during irradiation showed significant protection from gamma-radiation-induced strand breaks in plasmid DNA as evaluated by gel electrophoresis. Viability studies by trypan blue dye exclusion and MTT assay showed that preincubation of mice splenic lymphocytes with MH protected them from gamma-radiation-mediated killing. Moreover, the presence of MH during irradiation of isolated mice lymphocytes significantly decreased the DNA damage, as measured by comet assay. Measurement of intracellular ROS by dichlorofluorescein fluorescence revealed that the presence of MH effectively reduced the ROS generated in lymphocytes by both chemical method and gamma-irradiation. Prevention of DNA damage both in plasmid and lymphocytes and cell death in lymphocytes appears correlated with reduction of oxidatively generated free radicals. It is concluded that protection against radiation-induced cell death and DNA damage by MH was attributable to reduction of reactive free radical species generated by gamma-radiation.

  7. Oxidative DNA damage background estimated by a system model of base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, B A; Wilson, III, D M

    2004-05-13

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  8. Mechanisms and Components of the DNA Damage Checkpoint

    Science.gov (United States)

    2002-09-01

    Saccharomyces cerevisiae DNA damage checkpoint. Molecular Cell 9: 1055-1065. (reprint included as Appendix 2) "* Schwartz, M.F., Duong, J.K., Sun, Z., Pradhan...phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Molecular Cell 9, 1055-1065. 13 Molecular Cell , Vol. 9,1055-1065...Cambridge, Massachusetts 02139. 1999), and mutation of conserved amino acids in the Molecular Cell 1056 A Rad9 B ,•o 0, 1 sitesN NC -T6 RVTQSA o- 0~ --T240

  9. Nuclear DNA damage signalling to mitochondria in ageing.

    Science.gov (United States)

    Fang, Evandro Fei; Scheibye-Knudsen, Morten; Chua, Katrin F; Mattson, Mark P; Croteau, Deborah L; Bohr, Vilhelm A

    2016-05-01

    Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.

  10. Linking abnormal mitosis to the acquisition of DNA damage

    Science.gov (United States)

    Pellman, David

    2012-01-01

    Cellular defects that impair the fidelity of mitosis promote chromosome missegregation and aneuploidy. Increasing evidence reveals that errors in mitosis can also promote the direct and indirect acquisition of DNA damage and chromosome breaks. Consequently, deregulated cell division can devastate the integrity of the normal genome and unleash a variety of oncogenic stimuli that may promote transformation. Recent work has shed light on the mechanisms that link abnormal mitosis with the development of DNA damage, how cells respond to such affronts, and the potential impact on tumorigenesis. PMID:23229895

  11. 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage

    DEFF Research Database (Denmark)

    Loft, S; Fischer-Nielsen, A; Jeding, I B

    1993-01-01

    , rats, and mice. The excretion of 8OHdG decreased with age in rats in parallel with the decline in metabolic rate with advancing age. The excretion of 8OHdG reflects the formation and repair of only one out of approximately 20 described oxidative DNA modifications. So far, methods are not available......Living organisms are continuously exposed to reactive oxygen species as a consequence of biochemical reactions as well as external factors. Oxidative DNA damage has been implicated in aging, carcinogenesis and other degenerative diseases. The urinary excretion of the DNA repair product 8......-hydroxydeoxyguanosine (8OHdG) has been proposed as a noninvasive biomarker of oxidative DNA damage in humans in vivo. We have developed a three-dimensional HPLC analysis with electrochemical detection for the analysis of 8OHdG in urine and studied factors affecting the excretion of this biomarker in 83 healthy humans...

  12. DNA damage response in nephrotoxic and ischemic kidney injury.

    Science.gov (United States)

    Yan, Mingjuan; Tang, Chengyuan; Ma, Zhengwei; Huang, Shuang; Dong, Zheng

    2016-10-27

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.

  13. DNA damage mediated transcription arrest: Step back to go forward.

    Science.gov (United States)

    Mullenders, Leon

    2015-12-01

    The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored.

  14. Potential importance of transition metals in the induction of DNA damage by sperm preparation media.

    Science.gov (United States)

    Aitken, R J; Finnie, J M; Muscio, L; Whiting, S; Connaughton, H S; Kuczera, L; Rothkirch, T B; De Iuliis, G N

    2014-10-10

    What are the mechanisms by which the preparation of spermatozoa on discontinuous density gradients leads to an increase in oxidative DNA damage? The colloidal silicon solutions that are commonly used to prepare human spermatozoa for assisted reproduction technology (ART) purposes contain metals in concentrations that promote free radical-mediated DNA damage. Sporadic reports have already appeared indicating that the use of colloidal silicon-based discontinuous density gradients for sperm preparation is occasionally associated with the induction of oxidative DNA damage. The cause of this damage is however unknown. This study comprised a series of experiments designed to: (i) confirm the induction of oxidative DNA damage in spermatozoa prepared on commercially available colloidal silicon gradients, (ii) compare the levels of damage observed with alterative sperm preparation techniques including an electrophoretic approach and (iii) determine the cause of the oxidative DNA damage and develop strategies for its prevention. The semen samples employed for this analysis involved a cohort of >50 unselected donors and at least three independent samples were used for each component of the analysis. The setting was a University biomedical science laboratory. The major techniques employed were: (i) flow cytometry to study reactive oxygen species generation, lipid peroxidation and DNA damage, (ii) computer-aided sperm analysis to measure sperm movement and (iii) inductively coupled mass spectrometry to determine the elemental composition of sperm preparation media. Oxidative DNA damage is induced in spermatozoa prepared on PureSperm(®) discontinuous colloidal silicon gradients (P media revealed that metal contamination is a relatively constant feature of such products. While the presence of metals, particularly transition metals, may exacerbate the levels of oxidative DNA damage seen in human spermatozoa, the significance of such damage has not yet been tested in suitably

  15. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-10-01

    Full Text Available Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.

  16. DNA damage induced by cis- and carboplatin as indicator for in vitro sensitivity of ovarian carcinoma cells

    Directory of Open Access Journals (Sweden)

    de Wilde Rudy L

    2009-10-01

    Full Text Available Abstract Background The DNA damage by platinum cytostatics is thought to be the main cause of their cytotoxicity. Therefore the measurement of the DNA damage induced by cis- and carboplatin should reflect the sensitivity of cancer cells toward the platinum chemotherapeutics. Methods DNA damage induced by cis- and carboplatin in primary cells of ovarian carcinomas was determined by the alkaline comet assay. In parallel, the reduction of cell viability was measured by the fluorescein diacetate (FDA hydrolysis assay. Results While in the comet assay the isolated cells showed a high degree of DNA damage after a 24 h treatment, cell viability revealed no cytotoxicity after that incubation time. The individual sensitivities to DNA damage of 12 tumour biopsies differed up to a factor of about 3. DNA damage after a one day treatment with cis- or carboplatin correlated well with the cytotoxic effects after a 7 day treatment (r = 0,942 for cisplatin r = 0.971 for carboplatin. In contrast to the platinum compounds the correlation of DNA damage and cytotoxicity induced by adriamycin was low (r = 0,692, or did not exist for gemcitabine. Conclusion The measurement of DNA damage induced by cis- and carboplatin is an accurate method to determine the in vitro chemosensitivity of ovarian cancer cells towards these cytostatics, because of its quickness, sensitivity, and low cell number needed.

  17. Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reilly, Michelle S; Grogan, Dennis W

    2002-02-19

    To investigate the generality of efficient double-strand break repair and damage-induced mutagenesis in hyperthermophilic archaea, we systematically measured the effects of five DNA-damaging agents on Sulfolobus acidocaldarius and compared the results to those obtained for Escherichia coli under corresponding conditions. The observed lethality of gamma-radiation was very similar for S. acidocaldarius and E. coli, arguing against unusually efficient double-strand break repair in S. acidocaldarius. In addition, DNA-strand-breaking agents (gamma-radiation or bleomycin), as well as DNA-cross-linking agents (mechlorethamine, butadiene diepoxide or cisplatin) stimulated forward mutation, reverse mutation, and formation of recombinants via conjugation in Sulfolobus cells. Although two of the five DNA-damaging agents failed to revert the E. coli auxotrophs under these conditions, all five reverted S. acidocaldarius auxotrophs.

  18. DNA damage in Populus tremuloides clones exposed to elevated O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Helen H., E-mail: helen.tai@agr.gc.c [Agriculture and Agri-Food Canada, Potato Research Centre, P.O. Box 20280, Fredericton, New Brunswick, E3B 4Z7 (Canada); Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, 1350 Regent Street S., Fredericton, New Brunswick, E3B 5P7 (Canada); Percy, Kevin E. [Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, 1350 Regent Street S., Fredericton, New Brunswick, E3B 5P7 (Canada); Karnosky, David F. [School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-04-15

    The effects of elevated concentrations of atmospheric tropospheric ozone (O{sub 3}) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO{sub 2}) were examined. Growing season mean hourly O{sub 3} concentrations were 36.3 and 47.3 ppb for ambient and elevated O{sub 3} plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O{sub 3} concentrations were 79 and 89 ppb, respectively. Elevated CO{sub 2} averaged 524 ppm (+150 ppm) over the growing season. Exposure to O{sub 3} and CO{sub 2} in combination with O{sub 3} increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O{sub 3} compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O{sub 3} and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O{sub 3} tolerance or sensitivity. - Ozone tolerant clones and sensitive Populus tremuloides clones show differences in DNA damage and repair.

  19. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    Science.gov (United States)

    Fekete, A.; Kovács, G.; Hegedüs, M.; Módos, K.; Rontó, Gy.; Lammer, H.; Panitz, C.

    The experiment ``Phage and uracil response'' (PUR) will be accommodated in the EXPOSE facility of the ISS aiming to examine and quantify the effect of specific space conditions on bacteriophage T7 and isolated T7 DNA thin films. To achieve this new method was elaborated for the preparation of DNA and nucleoprotein thin films (1). During the EXPOSE Experiment Verification Tests (EVT) the samples were exposed to vacuum (10 -6 Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated, and we also studied the effect of temperature in vacuum as well as the influence of temperature fluctuations. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, DNA-DNA cross-links) accumulate throughout exposure. DNA damage was determined by quantitative PCR using 555 bp and 3826 bp fragments of T7 DNA (2) and by neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of the PCR products have been detected indicating the damage of isolated and intraphage DNA. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target. Fekete et al. J. Luminescence 102-103, 469-475, 2003 Hegedüs et al. Photochem. Photobiol. 78, 213-219, 2003

  20. ATM signaling and genomic stability in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, Martin F. [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia) and Central Clinical Division, University of Queensland, Brisbane (Australia)]. E-mail: martinl@qimr.edu.au; Birrell, Geoff [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Chen, Philip [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Kozlov, Sergei [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Scott, Shaun [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Gueven, Nuri [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia)

    2005-01-06

    DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. Mechanisms for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed.

  1. Roles of histone ubiquitylation in DNA damage signaling

    Institute of Scientific and Technical Information of China (English)

    Sui-Sui DONG; Michael S. Y. HUEN

    2011-01-01

    Histone ubiquitylation has emerged as an important chromatin modification associated with DNA damage signaling and repair pathways.These histone marks,laid down by E3 ubiquitin ligases that include RNF8 and RNF168,decorate chromatin domains surrounding DNA double-strand breaks (DSBs).Recent work implicated ubiquitylated histones in orchestrating cell cycle checkpoints,DNA repair and gene transcription.Here we summarize recent advances that contribute to our current knowledge of the highly dynamic nature of DSB-associated histone ubiquitylation,and discuss major challenges ahead in understanding the versatility of ubiquitin conjugation in maintaining genome stability.

  2. Induction of dnaN and dnaQ gene expression in Escherichia coli by alkylation damage to DNA.

    Science.gov (United States)

    Quiñones, A; Kaasch, J; Kaasch, M; Messer, W

    1989-02-01

    The dnaN and dnaQ genes encode the beta-subunit and the epsilon-subunit of the DNA polymerase III holoenzyme. By transcriptional fusions to the galK gene, translational fusions to lacZ and comparative S1 mapping analysis, we investigated the in-vivo regulation of dnaN and dnaQ. We found that DNA damage caused by the alkylating agent methyl methanesulphonate (MMS) leads to a significant induction in dnaN and dnaQ gene expression suggesting a requirement of increased amounts of at least some DNA polymerase III holoenzyme subunits for recovery from DNA damage caused by MMS. These results are first evidences that subunits of the DNA polymerase III holoenzyme are DNA damage inducible. This MMS induction of dnaN and dnaQ gene expression is unrelated to the adaptive response. It was not observed in lexA and recA mutants which abolish the induction of the SOS response.

  3. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  4. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    ; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage....... Urinary excretion of 8-oxodG increased during the first day in altitude hypoxia, and there were more endonuclease III-sensitive sites on day 3 at high altitude. The subjects had more DNA strand breaks in altitude hypoxia than at sea level. The level of DNA strand breaks further increased immediately after...... exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive...

  5. CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation

    DEFF Research Database (Denmark)

    Kousholt, Arne Nedergaard; Fugger, Kasper; Hoffmann, Saskia

    2012-01-01

    by camptothecin and ionizing radiation. In contrast, we find that DNA end resection was critically required for sustained ATR-CHK1 checkpoint signaling and for maintaining both the intra-S- and G2-phase checkpoints. Consequently, resection-deficient cells entered mitosis with persistent DNA damage. In conclusion......To prevent accumulation of mutations, cells respond to DNA lesions by blocking cell cycle progression and initiating DNA repair. Homology-directed repair of DNA breaks requires CtIP-dependent resection of the DNA ends, which is thought to play a key role in activation of ATR (ataxia telangiectasia...... mutated and Rad3 related) and CHK1 kinases to induce the cell cycle checkpoint. In this paper, we show that CHK1 was rapidly and robustly activated before detectable end resection. Moreover, we show that the key resection factor CtIP was dispensable for initial ATR-CHK1 activation after DNA damage...

  6. DNA damage in male gonad cells of Green mussel (Perna viridis) upon exposure to tobacco products.

    Science.gov (United States)

    Nagarajappa; Ganguly, Anutosh; Goswami, Usha

    2006-05-01

    DNA damage (determined by the Comet Assay) and the occurrence of deformed nuclei were measured as endpoints of genotoxicity in male gonad cells of the marine mussel (Perna viridis). Upon exposure of the organism to varying concentrations of extracts of smoked and non-smoked cigar tobacco over a period of 16 days, DNA damage was found to be highest in marine mussels exposed to extracts of smoked cigar tobacco. Conversely, more deformed nuclei were detected in marine mussels exposed to extracts of non-smoked cigar tobacco. The level of DNA damage and the number of deformed nuclei reach a maximum at day 12 of exposure to both extracts but decrease thereafter. This phenomenon is attributed to the organism's capacity to maintain the integrity of its genetic material upon exposure to potential genotoxicants present in the tobacco extracts. A dose response in DNA damage and deformed nuclei was also detected in isolated gonad cells upon in vitro exposure to hydrogen peroxide a known DNA strand breaking agent. The results of this study indicate that the DNA in male gonad cells of the marine mussel is damaged upon exposure to genotoxicants, and suggests the suitability of the organism for future investigations into the effect of such agents on its reproductive capacities.

  7. Viruses and the DNA Damage Response: Activation and Antagonism.

    Science.gov (United States)

    Luftig, Micah A

    2014-11-01

    Viruses must interact with their hosts in order to replicate; these interactions often provoke the evolutionarily conserved response to DNA damage, known as the DNA damage response (DDR). The DDR can be activated by incoming viral DNA, during the integration of retroviruses, or in response to the aberrant DNA structures generated upon replication of DNA viruses. Furthermore, DNA and RNA viral proteins can induce the DDR by promoting inappropriate S phase entry, by modifying cellular DDR factors directly, or by unintentionally targeting host DNA. The DDR may be antiviral, although viruses often require proximal DDR activation of repair and recombination factors to facilitate replication as well as downstream DDR signaling suppression to ensure cell survival. An unintended consequence of DDR attenuation during infection is the long-term survival and proliferation of precancerous cells. Therefore, the molecular basis for DDR activation and attenuation by viruses remains an important area of study that will likely provide key insights into how viruses have evolved with their hosts.

  8. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    , signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management....

  9. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    Science.gov (United States)

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  10. UV Radiation Damage and Bacterial DNA Repair Systems

    Science.gov (United States)

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  11. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  12. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Nikita A Kuznetsov

    Full Text Available Human 8-oxoguanine DNA glycosylase (hOGG1 is a key enzyme responsible for initiating the base excision repair of 7,8-dihydro-8-oxoguanosine (oxoG. In this study a thermodynamic analysis of the interaction of hOGG1 with specific and non-specific DNA-substrates is performed based on stopped-flow kinetic data. The standard Gibbs energies, enthalpies and entropies of specific stages of the repair process were determined via kinetic measurements over a temperature range using the van't Hoff approach. The three steps which are accompanied with changes in the DNA conformations were detected via 2-aminopurine fluorescence in the process of binding and recognition of damaged oxoG base by hOGG1. The thermodynamic analysis has demonstrated that the initial step of the DNA substrates binding is mainly governed by energy due to favorable interactions in the process of formation of the recognition contacts, which results in negative enthalpy change, as well as due to partial desolvation of the surface between the DNA and enzyme, which results in positive entropy change. Discrimination of non-specific G base versus specific oxoG base is occurring in the second step of the oxoG-substrate binding. This step requires energy consumption which is compensated by the positive entropy contribution. The third binding step is the final adjustment of the enzyme/substrate complex to achieve the catalytically competent state which is characterized by large endothermicity compensated by a significant increase of entropy originated from the dehydration of the DNA grooves.

  13. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  14. Systemic oxidatively generated DNA/RNA damage in clinical depression

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Krogh, Jesper; Miskowiak, Kamilla;

    2013-01-01

    , such as dementia and type 2 diabetes. We hypothesized that increased severity of depression is associated with increased systemic oxidatively generated DNA and RNA damage, and that this increase is attenuated by an effective antidepressant treatment. METHODS: The urinary excretion of markers of systemic......BACKGROUND: Depression has been associated with increased oxidative stress and hypothesized to accelerate aging. Nucleic acid damage from oxidation is a critical part of the aging process, and a suggested early event in age-related somatic morbidities that are also prevalent in depression...... oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, were determined in healthy controls (N=28), moderately depressed, non-medicated patients (N=26) and severely depressed patients eligible for electroconvulsive therapy...

  15. Radiation damage to DNA: The importance of track structure

    CERN Document Server

    Hill, M A

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that...

  16. The alkaline comet assay: towards validation in biomonitoring of DNA damaging exposures.

    Science.gov (United States)

    Møller, Peter

    2006-04-01

    Generation of DNA damage is considered to be an important initial event in carcinogenesis. The single cell gel electrophoresis (comet) assay is a technically simple and fast method that detects genotoxicity in virtually any mammalian cell type without requirement for cell culture. This review discusses the strength of the comet assay in biomonitoring at its present state of validation. The simple version of the alkaline comet assay detects DNA migration caused by strand breaks, alkaline labile sites, and transient repair sites. By incubation with bacterial glycosylase/endonuclease enzymes, broad classes of oxidative DNA damage, alkylations, and ultraviolet light-induced photoproducts are detected as additional DNA migration. The most widely measured enzyme sensitive sites have been those detected by formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (ENDOIII). Reports from biomonitoring studies show that the basal level of DNA damage in leukocytes is influenced be a variety of lifestyle and environmental exposures, including exercise, air pollution, sunlight, and diet. Although not all types of carcinogenic exposures should be expected to damage DNA in leukocytes, the comet assay is a valuable method for detection of genotoxic exposure in humans. However, the predictive value of the comet assay is unknown because it has not been investigated in prospective cohort studies. Also, it is important that the performance of the assay is investigated in multi-laboratory validation trials. As a tool in risk assessment the comet assay can be used in characterization of hazards.

  17. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    Directory of Open Access Journals (Sweden)

    Elisa eFerrando-May

    2013-07-01

    Full Text Available Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly nonlinear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to nonlinear photoperturbation experiments.

  18. Regulation of DNA replication by the S-phase DNA damage checkpoint

    Directory of Open Access Journals (Sweden)

    Rhind Nicholas

    2009-07-01

    Full Text Available Abstract Cells slow replication in response to DNA damage. This slowing was the first DNA damage checkpoint response discovered and its study led to the discovery of the central checkpoint kinase, Ataxia Telangiectasia Mutated (ATM. Nonetheless, the manner by which the S-phase DNA damage checkpoint slows replication is still unclear. The checkpoint could slow bulk replication by inhibiting replication origin firing or slowing replication fork progression, and both mechanisms appear to be used. However, assays in various systems using different DNA damaging agents have produced conflicting results as to the relative importance of the two mechanisms. Furthermore, although progress has been made in elucidating the mechanism of origin regulation in vertebrates, the mechanism by which forks are slowed remains unknown. We review both past and present efforts towards determining how cells slow replication in response to damage and try to resolve apparent conflicts and discrepancies within the field. We propose that inhibition of origin firing is a global checkpoint mechanism that reduces overall DNA synthesis whenever the checkpoint is activated, whereas slowing of fork progression reflects a local checkpoint mechanism that only affects replisomes as they encounter DNA damage and therefore only affects overall replication rates in cases of high lesion density.

  19. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Treffers, Louise W; Verlaan-de Vries, Matty

    2015-01-01

    with the DNA damaging agent methyl methanesulfonate (MMS). We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified......Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR). To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment...... dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO...

  20. DNA damage by reactive species: Mechanisms, mutation and repair.

    Science.gov (United States)

    Jena, N R

    2012-07-01

    DNA is continuously attacked by reactive species that can affect its structure and function severely. Structural modifications to DNA mainly arise from modifications in its bases that primarily occur due to their exposure to different reactive species. Apart from this, DNA strand break, inter- and intra-strand crosslinks and DNA-protein crosslinks can also affect the structure of DNA significantly. These structural modifications are involved in mutation, cancer and many other diseases. As it has the least oxidation potential among all the DNA bases, guanine is frequently attacked by reactive species, producing a plethora of lethal lesions. Fortunately, living cells are evolved with intelligent enzymes that continuously protect DNA from such damages. This review provides an overview of different guanine lesions formed due to reactions of guanine with different reactive species. Involvement of these lesions in inter- and intra-strand crosslinks, DNA-protein crosslinks and mutagenesis are discussed. How certain enzymes recognize and repair different guanine lesions in DNA are also presented.

  1. Sunlight exposure-mediated DNA damage in young adults.

    Science.gov (United States)

    Kato, Masashi; Iida, Machiko; Goto, Yuji; Kondo, Takaaki; Yajima, Ichiro

    2011-08-01

    Previous experimental studies showed that single ultraviolet B (UVB) light irradiation increased levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a well-established biomarker of carcinogenesis and oxidative DNA damage, in epithelial cells in animals and humans. We conducted for the first time an epidemiologic study to investigate the correlations among levels of oxidative DNA damage, skin pigmentation, and sunlight exposure in human daily life. Digitalized skin pigmentation levels and creatinine-adjusted urinary 8-OHdG levels were examined in 127 healthy young adults aged 20 to 24 years and in hairless mice with normal pigmented skin (HL-mice; n = 20) and hyperpigmented skin (HL-HPS-mice; n = 20). Data obtained by a questionnaire were also analyzed for the 127 subjects. Binary logistic regression analysis showed that increased sunlight intensity, but not sunlight-exposed time or sunlight-exposed skin area, was correlated with elevation in creatinine-adjusted urinary 8-OHdG levels. In contrast, increased skin pigmentation level, but not the use of sunscreen, was correlated with reduction in urinary 8-OHdG level in humans. UVB irradiation corresponding to several minutes of sunlight exposure significantly increased urinary 8-OHdG levels in HL-mice but not in HL-HPS-mice. We showed that increase in intensity of sunlight in human daily life increased levels of DNA damage. We also showed a protective effect of skin pigmentation on sunlight exposure-mediated DNA damage. We have provided more reliable evidence of routine sunlight exposure-mediated DNA damage in humans through the combination of epidemiologic and experimental studies. ©2011 AACR.

  2. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-08-28

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75{+-}1.55 {mu}m versus after supplementation: 70.25{+-}1.31 {mu}m; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels.

  3. DNA Damage: A Main Determinant of Vascular Aging.

    Science.gov (United States)

    Bautista-Niño, Paula K; Portilla-Fernandez, Eliana; Vaughan, Douglas E; Danser, A H Jan; Roks, Anton J M

    2016-05-18

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  4. DNA Damage: A Main Determinant of Vascular Aging

    Directory of Open Access Journals (Sweden)

    Paula K. Bautista-Niño

    2016-05-01

    Full Text Available Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial, of cellular changes (apoptosis, senescence, autophagy, mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1, cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP/senescence-messaging secretome (SMS, insulin and insulin-like growth factor 1 (IGF-1 signaling, the adenosine monophosphate-activated protein kinase (AMPK-mammalian target of rapamycin (mTOR-nuclear factor kappa B (NFκB axis, reactive oxygen species (ROS vs. endothelial nitric oxide synthase (eNOS-cyclic guanosine monophosphate

  5. Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair

    Directory of Open Access Journals (Sweden)

    Devita Surjana

    2010-01-01

    Full Text Available Nicotinamide is a water-soluble amide form of niacin (nicotinic acid or vitamin B3. Both niacin and nicotinamide are widely available in plant and animal foods, and niacin can also be endogenously synthesized in the liver from dietary tryptophan. Nicotinamide is also commercially available in vitamin supplements and in a range of cosmetic, hair, and skin preparations. Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD+, an essential coenzyme in ATP production and the sole substrate of the nuclear enzyme poly-ADP-ribose polymerase-1 (PARP-1. Numerous in vitro and in vivo studies have clearly shown that PARP-1 and NAD+ status influence cellular responses to genotoxicity which can lead to mutagenesis and cancer formation. This paper will examine the role of nicotinamide in the protection from carcinogenesis, DNA repair, and maintenance of genomic stability.

  6. Telomeric DNA quantity, DNA damage, and heat shock protein gene expression as physiological stress markers in chickens.

    Science.gov (United States)

    Sohn, S H; Subramani, V K; Moon, Y S; Jang, I S

    2012-04-01

    In this longitudinal study with Single Comb White Leghorn chickens, we investigated the effects of stress conditions in birds that were subjected to a high stocking density with feed restrictions on the quantity of telomeric DNA, the rate of DNA damage, and the expression levels of heat shock proteins (HSP) and hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) genes. The telomere length and telomere-shortening rates were analyzed by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes. The DNA damage rate of lymphocytes was quantified by the comet assay. The expression levels of HSP70, HSP90, and HMGCR genes were measured by quantitative real-time PCR in lymphocytes. The telomere-shortening rate of the lymphocytes was significantly higher in the stress group than in the control. The DNA damage also increased in birds raised under stress conditions, as compared with the control group. The stress conditions had a significant effect on the expressions of HMGCR and HSP90α in lymphocytes but had no significance on HSP70 and HSP90β in blood. We conclude that the telomere length, especially the telomere-shortening rates, the quantification of total DNA damage, and the expression levels of the HMGCR and HSP90α genes can be used as sensitive physiological stress markers in chickens.

  7. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response

    DEFF Research Database (Denmark)

    Beli, Petra; Lukashchuk, Natalia; Wagner, Sebastian A

    2012-01-01

    The regulatory networks of the DNA damage response (DDR) encompass many proteins and posttranslational modifications. Here, we use mass spectrometry-based proteomics to analyze the systems-wide response to DNA damage by parallel quantification of the DDR-regulated phosphoproteome, acetylome, and ...... cellular hypersensitivity to DNA-damaging agents. Collectively, these data broaden our knowledge of DNA damage signaling networks and highlight an important link between RNA metabolism and DNA repair....

  8. Mechanisms and clinical correlates of sperm DNA damage

    Institute of Scientific and Technical Information of China (English)

    Lara Tamburrino; Sara Marchiani; Margarita Montoya; Francesco Elia Marino; Ilaria Natali; Marta Cambi; Gianni Forti; Elisabetta Baldi; Monica Muratori

    2012-01-01

    Among the different DNA anomalies that can be present in the male gamete,DNA fragmentation is the most frequent,particularly in infertile subjects.There is now consistent evidence that a sperm containing fragmented DNA can be alive,motile,morphologically normal and able to fertilize an oocyte.There is also evidence that the oocyte is able to repair DNA damage; however,the extent of this repair depends on the type of DNA damage present in the sperm,as well as on the quality of the oocyte.Thus,it is important to understand the possible consequences of sperm DNA fragmentation (SDF) for embryo development,implantation,pregnancy outcome and the health of progeny conceived,both naturally and by assisted reproductive technology (ART).At present,data on the consequences of SDF for reproduction are scarce and,in many ways,inconsistent.The differences in study conclusions might result from the different methods used to detect SDF,the study design and the inclusion criteria.Consequently,it is difficult to decide whether SDF testing should be carried out in fertility assessment and ART.It is clear that there is an urgent need for the standardisation of the methods and for additional clinical studies on the impact of SDF on ART outcomes.

  9. Nanoparticles can cause DNA damage across a cellular barrier

    Science.gov (United States)

    Bhabra, Gevdeep; Sood, Aman; Fisher, Brenton; Cartwright, Laura; Saunders, Margaret; Evans, William Howard; Surprenant, Annmarie; Lopez-Castejon, Gloria; Mann, Stephen; Davis, Sean A.; Hails, Lauren A.; Ingham, Eileen; Verkade, Paul; Lane, Jon; Heesom, Kate; Newson, Roger; Case, Charles Patrick

    2009-12-01

    The increasing use of nanoparticles in medicine has raised concerns over their ability to gain access to privileged sites in the body. Here, we show that cobalt-chromium nanoparticles (29.5 +/- 6.3 nm in diameter) can damage human fibroblast cells across an intact cellular barrier without having to cross the barrier. The damage is mediated by a novel mechanism involving transmission of purine nucleotides (such as ATP) and intercellular signalling within the barrier through connexin gap junctions or hemichannels and pannexin channels. The outcome, which includes DNA damage without significant cell death, is different from that observed in cells subjected to direct exposure to nanoparticles. Our results suggest the importance of indirect effects when evaluating the safety of nanoparticles. The potential damage to tissues located behind cellular barriers needs to be considered when using nanoparticles for targeting diseased states.

  10. Detection of DNA damage in individual cells by flow cytometric analysis using anti-DNA monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Frankfurt, O.S. (Roswell Park Memorial Institute, Buffalo, NY (USA))

    1987-06-01

    A new method for the measurement of DNA damage in individual cells treated with alkylating agents is described. The method is based on the binding of anti-DNA monoclonal antibody to DNA in situ. Binding of antibody was evaluated by flow cytometry with indirect immunofluorescence. No binding of antibody to DNA in non-treated HeLa S3 cells was detected. Treatment of cells with HN2 or L-phenylalanine mustard induced binding of antibody to DNA in situ. Binding of antibody was observed after treating cells with doses of drugs which reduced the surviving fraction below 20%. Intensity of binding increased in proportion to the drug dose. In HN2-treated cells a cell subset with the lowest antibody binding was observed among cells in G1 phase. Binding of antibody to DNA in HN2-treated cells was eliminated by single-strand (ss) specific S1 nuclease. In competition assay, antibody was inhibited by thermally denatured DNA, but not by native double-stranded (ds) DNA, RNA, nucleosides and deoxyribohomopolymers. Immunoreactivity of cells with the monoclonal antibody F7-26 may be a useful probe for the assessment of cell damage induced by alkylating agents, especially in heterogeneous cell populations.

  11. DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Suarez, Patricia [Oncological Research Unit, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtemoc 330, Col. Doctores, 06725 Mexico, D.F. (Mexico); Ostrosky-Wegman, Patricia [Biomedical Research Institute, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); Gallegos-Hernandez, Francisco [Department of Clinical Oncology, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City (Mexico); Penarroja-Flores, Rubicelia; Toledo-Garcia, Jorge [Oncological Research Unit, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtemoc 330, Col. Doctores, 06725 Mexico, D.F. (Mexico); Bravo, Jose Luis [Atmospheric Sciences Institute, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); Rojas del Castillo, Emilio [Biomedical Research Institute, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); Benitez-Bribiesca, Luis [Oncological Research Unit, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtemoc 330, Col. Doctores, 06725 Mexico, D.F. (Mexico)], E-mail: luisbenbri@mexis.com

    2008-04-02

    Combined chemotherapy is used for the treatment of a number of malignancies such as breast cancer. The target of these antineoplastic agents is nuclear DNA, although it is not restricted to malignant cells. The aim of the present study was to assess DNA damage in peripheral blood lymphocytes (PBLs) of breast cancer patients subjected to combined adjuvant chemotherapy (5-fluorouracil, epirubicin and cyclophosphamide, FEC), using a modified comet assay to detect DNA single-strand breaks (SSB) and double-strand breaks (DSB). Forty-one female patients with advanced breast cancer before and after chemotherapy and 60 healthy females participated in the study. Alkaline and neutral comet assays were performed in PBLs according to a standard protocol, and DNA tail moment was measured by a computer-based image analysis system. Breast cancer patients before treatment had higher increased background levels of SSB and DSB as compared to healthy women. During treatment, a significant increase in DNA damage was observed after the 2nd cycle, which persisted until the end of treatment. Eighty days after the end of treatment the percentage of PBLs with SSB and DSB remained elevated, but the magnitude of DNA damage (tail moment) returned to baseline levels. There was no correlation between PBL DNA damage and response to chemotherapy. DNA-SSB and DSB in PBLs are present in cancer patients before treatment and increase significantly after combined chemotherapy. No correlation with response to adjuvant chemotherapy was found. Biomonitoring DNA damage in PBLs of cancer patients could help prevent secondary effects and the potential risks of developing secondary cancers.

  12. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    OpenAIRE

    Vives, Sergi; Gilbert, Thomas; Arenas, Conchita; Gigli, Elena, 1978-; Lao Grueso, Oscar; Lalueza-Fox, Carles

    2008-01-01

    textabstractBackground. We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis was restricted to C → T and G → A miscoding lesions (the predominant manifestation of post mortem damage) that are seen at a frequency of more than one clone among sequences from a single PCR, but do not r...

  13. DNA damage and repair activity after broccoli intake in young healthy smokers

    DEFF Research Database (Denmark)

    Riso, Patrizia; Martini, Daniela; Møller, Peter;

    2010-01-01

    Cruciferous vegetables contain compounds with antioxidant properties (e.g. carotenoids, vitamin C and folates) and can alter the activity of xenobiotic metabolism (i.e. isothiocyanates). These constituents may be particularly important for subjects who are exposed to free radicals and genotoxic....... Blood was collected before and after each period. The level of oxidatively damaged DNA lesions (formamidopyrimidine DNA glycosylase-sensitive sites), resistance to ex vivo H(2)O(2) treatment and repair of oxidised DNA lesions were measured in peripheral blood mononuclear cells (PBMCs). We also measured...

  14. Effects of Fluoride on Lipid Peroxidation, DNA Damage and Apoptosis in Human Embryo Hepatocytes

    Institute of Scientific and Technical Information of China (English)

    AI-GUO WANG; TAO XIA; QI-LONG CHU; MING ZHANG; FANG LIU; XUE-MIN CHEN; KE-DI YANG

    2004-01-01

    Objective To investigate the effects of fluoride on lipid peroxidation, DNA damage and apoptosis in human embryo hepatocyte L-02 cells. Methods Lipid peroxide (LPO) level, reduced glutathione (GSH) content, DNA damage, apoptosis, and cell cycle analysis were measured after in vitro cultured L-02 cells were exposed to sodium fluoride at different doses (40 μg/mL, 80 μg/mL, and 160 μg/mL) for 24 hours. Results Fluoride caused an increase of LPO levels and a decrease of GSH content in L-02 cells. There appeared to be an obvious dose-effect relationship between the fluoride concentration and the observed changes. Fluoride also caused DNA damage and apoptosis and increased the cell number in S phase of cell cycle in the cells tested. There was a statistically significant difference in DNA damage and apoptosis when comparing the high dose of fluoride treated cells with the low dose of fluoride treated cells. Conclusion Fluoride can cause lipid peroxidation, DNA damage, and apoptosis in the L-02 cell experimental model and there is a significant positive correlation between fluoride concentration and these pathological changes.

  15. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    Science.gov (United States)

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  16. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  17. Reduction in oxidatively generated DNA damage following smoking cessation

    Directory of Open Access Journals (Sweden)

    Freund Harold G

    2011-05-01

    Full Text Available Abstract Background Cigarette smoking is a known cause of cancer, and cancer may be in part due to effects of oxidative stress. However, whether smoking cessation reverses oxidatively induced DNA damage unclear. The current study sought to examine the extent to which three DNA lesions showed significant reductions after participants quit smoking. Methods Participants (n = 19 in this study were recruited from an ongoing 16-week smoking cessation clinical trial and provided blood samples from which leukocyte DNA was extracted and assessed for 3 DNA lesions (thymine glycol modification [d(TgpA]; formamide breakdown of pyrimidine bases [d(TgpA]; 8-oxo-7,8-dihydroguanine [d(Gh] via liquid chromatography tandem mass spectrometry (LC-MS/MS. Change in lesions over time was assessed using generalized estimating equations, controlling for gender, age, and treatment condition. Results Overall time effects for the d(TgpA (χ2(3 = 8.068, p fpA (χ2(3 = 8.477, p h (χ2(3 = 37.599, p gpA and d(PfpA lesions show relatively greater rebound at Week 16 compared to the d(Gh lesion (88% of baseline for d(TgpA, 64% of baseline for d(PfpA, vs 46% of baseline for d(Gh. Conclusions Overall, results from this analysis suggest that cigarette smoking contributes to oxidatively induced DNA damage, and that smoking cessation appears to reduce levels of specific damage markers between 30-50 percent in the short term. Future research may shed light on the broader array of oxidative damage influenced by smoking and over longer durations of abstinence, to provide further insights into mechanisms underlying carcinogenesis.

  18. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA).

    Science.gov (United States)

    Fayzullina, Saniya; Martin, Lee J

    2014-01-01

    Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0) exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT)-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

  19. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA.

    Directory of Open Access Journals (Sweden)

    Saniya Fayzullina

    Full Text Available Spinal Muscular Atrophy (SMA is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0 exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

  20. Chromatin compaction protects genomic DNA from radiation damage.

    Directory of Open Access Journals (Sweden)

    Hideaki Takata

    Full Text Available Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs in compact chromatin after ionizing irradiation was 5-50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.

  1. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation......Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  2. Detection of DNA damage induced by topoisomerase II inhibitors, gamma radiation and crosslinking agents using the comet assay.

    Science.gov (United States)

    Hazlehurst, Lori A

    2009-01-01

    The comet assay is a simple gel electrophoresis method for visualizing and quantifying DNA damage. The comet assay is sensitive and reproducible and can be used to detect single-strand DNA breaks, double-strand DNA breaks, protein-associated DNA strand breaks and DNA crosslinks. The comet assay uses fluorescent DNA-binding dyes to detect both damaged DNA that resides in the tail region and undamaged DNA that is retained in the head region following gel electrophoresis. This assay is a single cell-based assay and thus is highly adaptable for measuring DNA damage in clinical samples. Furthermore, unlike other assays the detection of DNA damage is not dependent on the random incorporation of radiolabeled nucleotides. Again this can be problematic with clinical samples as proliferation rates are often slow and culturing of primary patient specimens for 48 h required to randomly label DNA is often not possible. In this chapter we will outline the comet assay for the detection of DNA damage induced by topoisomerase II inhibitors, cross-linking agents and gamma radiation.

  3. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    DEFF Research Database (Denmark)

    Vives, Sergi; Gilbert, M Thomas; Arenas, Conchita

    2008-01-01

    ABSTRACT: BACKGROUND: We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis...... was restricted to C-->T and G-->A miscoding lesions (the predominant manifestation of post mortem damage) that are seen at a frequency of more than one clone among sequences from a single PCR, but do not represent the true endogenous sequence. FINDINGS: The data indicates an extreme bias towards C-->T over G......-->A miscoding lesions (observed ratio of 67:2 compared to an expected ratio of 7:2), implying that the mtDNA Light strand molecule suffers proportionally more damage-derived miscoding lesions than the Heavy strand. CONCLUSION: The clustering of Cs in the Light strand as opposed to the singleton pattern of Cs...

  4. Quantitative evaluation of p53 as a new indicator of DNA damage in human spermatozoa

    Directory of Open Access Journals (Sweden)

    Salvatore Raimondo

    2014-01-01

    The aim of this study was to assess if a p53 ELISA assay could be a new indicator of DNA damage in human spermatozoa. Materials and Methods: 103 human semen samples were evaluated using both Acridine Orange test and p53 ELISA and results were compared. Results: A clear correlation between the values measured by two methods was obtained. Conclusions: If this hypothesis will be confirmed by further studies, the p53 ELISA assay could become a new and more precise indicator of DNA damage in human spermatozoa.

  5. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900MHz radiofrequency fields.

    Science.gov (United States)

    Sun, Yulong; Zong, Lin; Gao, Zhen; Zhu, Shunxing; Tong, Jian; Cao, Yi

    2017-03-01

    HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900MHz radiofrequency fields (RF) at 120μW/cm(2) power intensity for 4h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2'-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Homologous recombination is required for recovery from oxidative DNA damage.

    Science.gov (United States)

    Hayashi, Michio; Umezu, Keiko

    2017-04-03

    We have been studying the genetic events, including chromosome loss, chromosome rearrangements and intragenic point mutations, that are responsible for the deletion of a URA3 marker in a loss of heterozygosity (LOH) assay in the yeast Saccharomycess cerevisiae. With this assay, we previously showed that homologous recombination plays an important role in genome maintenance in response to DNA lesions that occur spontaneously in normally growing cells. Here, to investigate DNA lesions capable of triggering homologous recombination, we examined the effects of oxidative stress, a prominent cause of endogenous DNA damage, on LOH events. Treatment of log-phase cells with H2O2 first caused growth arrest and then, during the subsequent recovery, chromosome loss and various chromosome rearrangements were induced more than 10-fold. Further analysis of the rearrangements showed that gene conversion was strongly induced, approximately 100 times more frequently than in untreated cells. Consistent with these results, two diploid strains deficient for homologous recombination, rad52Δ/rad52Δ and rad51Δ/rad51Δ, were sensitive to H2O2 treatment. In addition, chromosome DNA breaks were detected in H2O2-treated cells using pulsed-field gel electrophoresis. Altogether, these results suggest that oxidative stress induced recombinogenic lesions on chromosomes, which then triggered homologous recombination leading to chromosome rearrangements, and that this response contributed to the survival of cells afflicted by oxidative DNA damage. We therefore conclude that homologous recombination is required for the recovery of cells from oxidative stress.

  7. X-Ray induced DNA damage – why use plants?

    Directory of Open Access Journals (Sweden)

    John William Einset

    2015-06-01

    Full Text Available The comet assay was used to monitor DNA repair after X-ray exposures caused by 0.2-15 Gy. A clear distinction in the time course of DNA repair after 2 Gy was observed with an early ‘rapid phase’, lasting 20-40 minutes, being followed by a ‘slow phase’ which actually consists of a period of negligible repair and then rapid repair during 140-160 minutes. The fact that homozygous mutants for both ATM and BRCA1 fail to repair DNA completely during 3 hours after 2 Gy exposures indicates that repair processes occurring during the ‘slow phase’ involve ds breaks in DNA. Both BRCA1 and Rad51 expression are strongly upregulated by X-rays in Arabidopsis. Rye grass, Norway spruce and Sawara cypress also have ‘slow phase’ repair similar to Arabidopsis, suggesting that the requisite enzymes have to be induced in these plants as well. To look at the effect of genome size in relation to sensitivity to DNA damage, we exposed isolated nuclei from Norway spruce (19.2 Gbp genome, celery (14.1 Gbp, spinach (12.6 Gbp Sawara cypress (8.9 Gbp, lettuce (2.6 Gbp and Arabidopsis (0.135 Gbp to X-rays. After a 1 Gy exposure, a linear relationship was seen between % tails and genome size, confirming the idea that larger genomes are more sensitive to X-ray damage.

  8. Increased DNA and RNA damage by oxidation in patients with bipolar I disorder

    DEFF Research Database (Denmark)

    Jacoby, A S; Vinberg, M; Poulsen, H E

    2016-01-01

    . This prospective study investigated for we believe the first time the damage generated by oxidation of DNA and RNA strictly in patients with type I BD in a manic or mixed state and subsequent episodes and remission compared with healthy control subjects. Urinary excretion of 8-oxo-deoxyguanosine (8-oxodG) and 8......-oxo-guanosine (8-oxoGuo), valid markers of whole-body DNA and RNA damage by oxidation, respectively, was measured in 54 patients with BD I and in 35 healthy control subjects using a modified ultraperformance liquid chromatography and mass spectrometry assay. Repeated measurements were evaluated...... in various affective phases during a 6- to 12-month period and compared with repeated measurements in healthy control subjects. Independent of lifestyle and demographic variables, a 34% (PRNA damage by oxidation across all affective states, including euthymia, was found in patients...

  9. Decreased repair of gamma damaged DNA in progeria

    Energy Technology Data Exchange (ETDEWEB)

    Rainbow, A.J.; Howes, M.

    1977-01-01

    A sensitive host-cell reactivation technique was used to examine the DNA repair ability of fibroblasts from two patients with classical progeria. Fibroblasts were infected with either non-irradiated or gamma-irradiated adenovirus type 2 and at 48 hrs after infection cells were examined for the presence of viral structural antigens using immunofluorescent staining. The production of viral structural antigens was considerably reduced in the progeria lines as compared to normal fibroblasts when gamma-irradiated virus was used, indicating a defect in the repair of gamma ray damaged DNA in the progeria cells.

  10. Human longevity and variation in DNA damage response and repair

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike

    2014-01-01

    others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning...... and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10-5), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using...

  11. DNA damage by reactive species: Mechanisms, mutation and repair

    Indian Academy of Sciences (India)

    N R Jena

    2012-07-01

    DNA is continuously attacked by reactive species that can affect its structure and function severely. Structural modifications to DNA mainly arise from modifications in its bases that primarily occur due to their exposure to different reactive species. Apart from this, DNA strand break, inter- and intra-strand crosslinks and DNA–protein crosslinks can also affect the structure of DNA significantly. These structural modifications are involved in mutation, cancer and many other diseases. As it has the least oxidation potential among all the DNA bases, guanine is frequently attacked by reactive species, producing a plethora of lethal lesions. Fortunately, living cells are evolved with intelligent enzymes that continuously protect DNA from such damages. This review provides an overview of different guanine lesions formed due to reactions of guanine with different reactive species. Involvement of these lesions in inter- and intra-strand crosslinks, DNA–protein crosslinks and mutagenesis are discussed. How certain enzymes recognize and repair different guanine lesions in DNA are also presented.

  12. Preservation of ancient DNA in thermally damaged archaeological bone

    Science.gov (United States)

    Ottoni, Claudio; Koon, Hannah E. C.; Collins, Matthew J.; Penkman, Kirsty E. H.; Rickards, Olga; Craig, Oliver E.

    2009-02-01

    Evolutionary biologists are increasingly relying on ancient DNA from archaeological animal bones to study processes such as domestication and population dispersals. As many animal bones found on archaeological sites are likely to have been cooked, the potential for DNA preservation must be carefully considered to maximise the chance of amplification success. Here, we assess the preservation of mitochondrial DNA in a medieval cattle bone assemblage from Coppergate, York, UK. These bones have variable degrees of thermal alterations to bone collagen fibrils, indicative of cooking. Our results show that DNA preservation is not reliant on the presence of intact collagen fibrils. In fact, a greater number of template molecules could be extracted from bones with damaged collagen. We conclude that moderate heating of bone may enhance the retention of DNA fragments. Our results also indicate that ancient DNA preservation is highly variable, even within a relatively recent assemblage from contexts conducive to organic preservation, and that diagenetic parameters based on protein diagenesis are not always useful for predicting ancient DNA survival.

  13. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    10), nitrous oxide, nitrogen dioxide, carbon monoxide, and/or number concentration of UFPs at urban background or busy street monitoring stations was not a significant predictor of DNA damage, although personal UFP exposure was correlated with urban background concentrations of CO and NO2......Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable...... instruments in six 18-hr periods in 15 healthy nonsmoking subjects. Exposure contrasts of outdoor pollution were achieved by bicycling in traffic for 5 days and in the laboratory for 1 day. Oxidative DNA damage was assessed as strand breaks and oxidized purines in mononuclear cells isolated from venous blood...

  14. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    -oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased...... correlations between 8-oxodG/8-ocoGuo excretion and 9AM plasma cortisol, but no associations to perceived stress. In an animal study of experimentally induced chronic stress performed in metabolism cages, we found no increase in urinary 8-oxodG/8-oxoGuo or cerebral (hippocampal and frontal cortex) levels...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased...

  15. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM.

    Science.gov (United States)

    Zhou, Yi; Lee, Ji-Hoon; Jiang, Wenxia; Crowe, Jennie L; Zha, Shan; Paull, Tanya T

    2017-01-05

    Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice.

  16. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  17. Protective effects of melatonin on the ionizing radiation induced DNA damage in the rat brain.

    Science.gov (United States)

    Undeger, Ulko; Giray, Belma; Zorlu, A Faruk; Oge, Kamil; Baçaran, Nurçen

    2004-03-01

    Melatonin is an endogenously produced antioxidant with radioprotective actions while ionizing radiation is a well-known cytotoxic and mutagenic agent of which the biological results are attributable to its free radical producing effects. The effect of melatonin on the DNA strand breakage and lipid peroxidation induced by ionizing radiation in the rat brain were investigated in order to clarify its radioprotective ability. The DNA strand breakage in rat brain exposed to 1000 cGy ionizing radiation was assessed by alkaline single cell gel electrophoresis and the lipid peroxidation was evaluated by measuring thiobarbituric acid reactive substances (TBARS) concentrations. A significant increase in DNA damage (p radiation treated rat brain. Pre-treatment of rats with intraperitoneal doses of 100 mg/kg melatonin provided a significant decrease in the DNA strand breakage and lipid peroxidation. Our results indicate that melatonin can protect brain cells from oxidative damage induced by ionizing radiation.

  18. Micronutrients intake associated with DNA damage assessed by in a human biomonitoring study

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2015-05-01

    ingestion decreases DNA damage and DNA oxidative damage (Hart et al., 1999; Heilbronn & Ravussin, 2003. A significant negative correlation was found between folate and % DNA in tail. Courtemanche et al. (2004 also found that folate deficiency leads to increased DNA damage in primary lymphocytes, and that deficiency in the physiological level of folate caused more DNA damage than low-dose radiation in primary T lymphocytes. A significant negative correlation between vitamin B12 and DNA oxidative damage (FPG was found, suggesting that vitamin B12 acts like a protective factor (Ames, 2001; Ames & Wakimoto, 2002; Ames, 2006. Minnet et al. (2011 also found a negative correlation between DNA damage and vitamin B12 levels, meaning that higher levels of vitamin B12 decrease DNA damage, in good agreement with the results herein. Comet assay allows for the study of the effects of nutrients with known anti- or pro-oxidant capacities on different cell types and in different concentrations. These studies have revealed an apparent paradox, or at least a hormetic effect, whereby many of these antioxidant compounds seem to protect against DNA damage at low doses while actually causing DNA damage at higher doses (Wasson et al., 2008. There are several possible reasons why significant associations are difficult to find. First, samples usually comprise mostly healthy persons; second, it is possible that a synergistic effect exists involving all antioxidants which is not seen for each individual nutrient (Watters et al., 2007. Third, it is plausible that associations between some of the antioxidants examined and oxidative DNA damage may be better captured using other measures of oxidative DNA damage. Fourth, it is possible that the range of antioxidant concentrations and/or oxidative DNA damage in this study was not wide enough to detect associations or that the associations simply do not exist (Watters et al., 2007. Previous studies have suggested a significant moderating effect of long

  19. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    2008-02-21

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  20. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    2007-12-01

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  1. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  2. ATM kinase: Much more than a DNA damage responsive protein.

    Science.gov (United States)

    Guleria, Ayushi; Chandna, Sudhir

    2016-03-01

    ATM, mutation of which causes Ataxia telangiectasia, has emerged as a cardinal multifunctional protein kinase during past two decades as evidenced by various studies from around the globe. Further to its well established and predominant role in DNA damage response, ATM has also been understood to help in maintaining overall functional integrity of cells; since its mutation, inactivation or deficiency results in a variety of pathological manifestations besides DNA damage. These include oxidative stress, metabolic syndrome, mitochondrial dysfunction as well as neurodegeneration. Recently, high throughput screening using proteomics, metabolomics and transcriptomic studies revealed several proteins which might be acting as substrates of ATM. Studies that can help in identifying effective regulatory controls within the ATM-mediated pathways/mechanisms can help in developing better therapeutics. In fact, more in-depth understanding of ATM-dependent cellular signals could also help in the treatment of variety of other disease conditions since these pathways seem to control many critical cellular functions. In this review, we have attempted to put together a detailed yet lucid picture of the present-day understanding of ATM's role in various pathophysiological conditions involving DNA damage and beyond.

  3. Oxidative DNA damage in mouse sperm chromosomes: Size matters.

    Science.gov (United States)

    Kocer, Ayhan; Henry-Berger, Joelle; Noblanc, Anais; Champroux, Alexandre; Pogorelcnik, Romain; Guiton, Rachel; Janny, Laurent; Pons-Rejraji, Hanae; Saez, Fabrice; Johnson, Graham D; Krawetz, Stephen A; Alvarez, Juan G; Aitken, R John; Drevet, Joël R

    2015-12-01

    Normal embryo and foetal development as well as the health of the progeny are mostly dependent on gamete nuclear integrity. In the present study, in order to characterize more precisely oxidative DNA damage in mouse sperm we used two mouse models that display high levels of sperm oxidative DNA damage, a common alteration encountered both in in vivo and in vitro reproduction. Immunoprecipitation of oxidized sperm DNA coupled to deep sequencing showed that mouse chromosomes may be largely affected by oxidative alterations. We show that the vulnerability of chromosomes to oxidative attack inversely correlated with their size and was not linked to their GC richness. It was neither correlated with the chromosome content in persisting nucleosomes nor associated with methylated sequences. A strong correlation was found between oxidized sequences and sequences rich in short interspersed repeat elements (SINEs). Chromosome position in the sperm nucleus as revealed by fluorescent in situ hybridization appears to be a confounder. These data map for the first time fragile mouse sperm chromosomal regions when facing oxidative damage that may challenge the repair mechanisms of the oocyte post-fertilization.

  4. Microvesicles Contribute to the Bystander Effect of DNA Damage.

    Science.gov (United States)

    Lin, Xiaozeng; Wei, Fengxiang; Major, Pierre; Al-Nedawi, Khalid; Al Saleh, Hassan A; Tang, Damu

    2017-04-07

    Genotoxic treatments elicit DNA damage response (DDR) not only in cells that are directly exposed but also in cells that are not in the field of treatment (bystander cells), a phenomenon that is commonly referred to as the bystander effect (BE). However, mechanisms underlying the BE remain elusive. We report here that etoposide and ultraviolet (UV) exposure stimulate the production of microvesicles (MVs) in DU145 prostate cancer cells. MVs isolated from UV-treated DU145 and A431 epidermoid carcinoma cells as well as etoposide-treated DU145 cells induced phosphorylation of ataxia-telangiectasia mutated (ATM) at serine 1981 (indicative of ATM activation) and phosphorylation of histone H2AX at serine 139 (γH2AX) in naïve DU145 cells. Importantly, neutralization of MVs derived from UV-treated cells with annexin V significantly reduced the MV-associated BE activities. Etoposide and UV are known to induce DDR primarily through the ATM and ATM- and Rad3-related (ATR) pathways, respectively. In this regard, MV is likely a common source for the DNA damage-induced bystander effect. However, pre-treatment of DU145 naïve cells with an ATM (KU55933) inhibitor does not affect the BE elicited by MVs isolated from etoposide-treated cells, indicating that the BE is induced upstream of ATM actions. Taken together, we provide evidence supporting that MVs are a source of the DNA damage-induced bystander effect.

  5. Breaking the DNA damage response to improve cervical cancer treatment.

    Science.gov (United States)

    Wieringa, Hylke W; van der Zee, Ate G J; de Vries, Elisabeth G E; van Vugt, Marcel A T M

    2016-01-01

    Every year, cervical cancer affects ∼500,000 women worldwide, and ∼275,000 patients die of this disease. The addition of platin-based chemotherapy to primary radiotherapy has increased 5-year survival of advanced-stage cervical cancer patients, which is, however, still only 66%. One of the factors thought to contribute to treatment failure is the ability of tumor cells to repair chemoradiotherapy-induced DNA damage. Therefore, sensitization of tumor cells for chemoradiotherapy via inhibition of the DNA damage response (DDR) as a novel strategy to improve therapy effect, is currently studied pre-clinically as well as in the clinic. Almost invariably, cervical carcinogenesis involves infection with the human papillomavirus (HPV), which inactivates part of the DNA damage response. This HPV-mediated partial inactivation of the DDR presents therapeutic targeting of the residual DDR as an interesting approach to achieve chemoradio-sensitization for cervical cancer. How the DDR can be most efficiently targeted, however, remains unclear. The fact that cisplatin and radiotherapy activate multiple signaling axes within the DDR further complicates a rational choice of therapeutic targets within the DDR. In this review, we provide an overview of the current preclinical and clinical knowledge about targeting the DDR in cervical cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 20. The HUMN Project-An International Collaborative Study on the Use of the Micronucleus Technique for Measuring DNA Damage in Humans

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The International Collaborative Project on Micronucleus Frequency in Human Populations (HUMN) was organized to collect data on micronucleus (MN) frequencies in different human populations and different cell types. The test procedures considered by this project are assays using human lymphocytes (cytokinesis-block method), exfoliated epithelial cells, and other cell types. Data(including descriptions of the populations monitored, detailed test protocols, and test results)are being obtained from a large number of laboratories throughout the world and are being entered into a unified database. The information will be used to: 1)determine the extent of variation of “normal” values for different laboratories and the influence of other factors potentially affecting baseline MN frequency, e.g., age, gender and life-style; 2)provide information on the effect of experimental protocol variations on MN frequency measurements; 3)design and test optimal protocols for the different cell types; and 4) determine the extent to which MN frequency is a valid biomarker of ageing and risk for diseases such as cancer.

  7. Ionizing radiation-induced DNA damage and its repair in human cells. Final performance report, July 1992--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dizdaroglu, M.

    1995-12-31

    The studies of DNA damage in living cells in vitro and in vivo were continued. A variety of systems including cultured mammalian cells, animals, and human tissues were used to conduct these studies. In addition, enzymatic repair of DNA base damage was studied using several DNA glycosylases. To this end, substrate specificities of these enzymes were examined in terms of a large number of base lesions in DNA. In the first phase of the studies, the author sought to introduce improvements to his methodologies for measurement of DNA damage using the technique of gas chromatography/mass spectrometry (GC/MS). In particular, the quantitative measurement of DNA base damage and DNA-protein crosslinks was improved by incorporation of isotope-dilution mass spectrometry into the methodologies. This is one of the most accurate techniques for quantification of organic compounds. Having improved the measurement technique, studies of DNA damage in living cells and DNA repair by repair enzymes were pursued. This report provides a summary of these studies with references to the original work.

  8. DNA damage in workers occupationally exposed to pesticide mixtures.

    Science.gov (United States)

    Simoniello, M F; Kleinsorge, E C; Scagnetti, J A; Grigolato, R A; Poletta, G L; Carballo, M A

    2008-11-01

    Pesticides are used in agriculture to protect crops but represent at the same time a potential risk to farmers and environment. The aim of this work is the evaluation of 54 subjects occupationally exposed to pesticides and 30 subjects as a control group using the quantification of DNA damage level by means of the alkaline Comet assay and the evaluation of repair processes. Damage index Comet assay (DICA) and damage index repair assay (DIRA) were studied in 27 pesticide applicator workers, 27 non-pesticide applicators and controls. Our results show that both exposed groups revealed significant increase in DICA when compared with controls (P pesticides was investigated and no significant differences were observed considering age, gender, smoking and alcohol consumption in relation to DICA and DIRA. Since DNA damage is an important step in events leading from carcinogen exposure to cancer disease, our study highlights the potential health risk associated with agrochemical exposure in developing countries with vast cultivated areas, such as Argentina.

  9. Environmental car exhaust pollution damages human sperm chromatin and DNA.

    Science.gov (United States)

    Calogero, A E; La Vignera, S; Condorelli, R A; Perdichizzi, A; Valenti, D; Asero, P; Carbone, U; Boggia, B; De Rosa, N; Lombardi, G; D'Agata, R; Vicari, L O; Vicari, E; De Rosa, M

    2011-06-01

    The adverse role of traffic pollutants on male fertility is well known. Aim of this study was to evaluate their effects on sperm chromatin/DNA integrity. To accomplish this, 36 men working at motorway tollgates and 32 unexposed healthy men (controls) were enrolled. All of them were interviewed about their lifestyle. Hormone, semen samples, and environmental and biological markers of pollution were evaluated. Sperm chromatin and DNA integrity were evaluated by flow cytometry following propidium iodide staining and TUNEL assay, respectively. LH, FSH, and testosterone serum levels were within the normal range in tollgate workers. Sperm concentration, total sperm count, total and progressive motility, and normal forms were significantly lower in these men compared with controls. Motorway tollgate workers had a significantly higher percentage of spermatozoa with damaged chromatin and DNA fragmentation, a late sign of apoptosis, compared with controls. A significant direct correlation was found between spermatozoa with damaged chromatin or fragmented DNA and the length of occupational exposure, suggesting a time-dependent relationship. This study showed that car exhaust exposure has a genotoxic effect on human spermatozoa. This may be of relevant importance not only for the reproductive performance of the men exposed, but also for the offspring health.

  10. Preparation of next-generation sequencing libraries from damaged DNA.

    Science.gov (United States)

    Briggs, Adrian W; Heyn, Patricia

    2012-01-01

    Next-generation sequencing (NGS) has revolutionized ancient DNA research, especially when combined with high-throughput target enrichment methods. However, attaining high sequencing depth and accuracy from samples often remains problematic due to the damaged state of ancient DNA, in particular the extremely low copy number of ancient DNA and the abundance of uracil residues derived from cytosine deamination that lead to miscoding errors. It is therefore critical to use a highly efficient procedure for conversion of a raw DNA extract into an adaptor-ligated sequencing library, and equally important to reduce errors from uracil residues. We present a protocol for NGS library preparation that allows highly efficient conversion of DNA fragments into an adaptor-ligated form. The protocol incorporates an option to remove the vast majority of uracil miscoding lesions as part of the library preparation process. The procedure requires only two spin column purification steps and no gel purification or bead handling. Starting from an aliquot of DNA extract, a finished, highly amplified library can be generated in 5 h, or under 3 h if uracil removal is not required.

  11. Analyses of the secondary particle radiation and the DNA damage it causes to human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E.; Rusek A.; Sivertz, M.; Yip, K.; Thompson, K.; Tafrov, S.

    2011-11-22

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  12. Analyses of the Secondary Particle Radiation and the DNA Damage it Causes to Human Keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E. A.; Tafrov S.; Rusek, A.; Sivertz, M. B.; Yip, K.; Thompson, K. H.

    2011-11-01

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  13. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kitanovic, Ana [Institut fuer Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany); Woelfl, Stefan [Institut fuer Pharmazie und Molekulare Biotechnologie, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg (Germany)]. E-mail: wolfl@uni-hd.de

    2006-02-22

    Response to DNA damage, lack of nutrients and other stress conditions is an essential property of living systems. The coordinate response includes DNA damage repair, activation of alternate biochemical pathways, adjustment of cellular proliferation and cell cycle progression as well as drastic measures like cellular suicide which prevents proliferation of severely damaged cells. Investigating the transcriptional response of Saccharomyces cerevisiae to low doses of the alkylating agent methylmethane sulfonate (MMS) we observed induction of genes involved in glucose metabolism. RT-PCR analysis showed that the expression of the key enzyme in gluconeogenesis fructose-1,6-bisphosphatase (FBP1) was clearly up-regulated by MMS in glucose-rich medium. Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin. Reintroduction of FBP1 in the knockout restored the wild-type phenotype while overexpression increased MMS sensitivity of wild-type, shortened life span and increased induction of RNR2 after treatment with MMS. Deletion of FBP1 reduced production of reactive oxygen species (ROS) in response to MMS treatment and in untreated aged cells, and increased the amount of cells able to propagate and to form colonies, but had no influence on the genotoxic effect of MMS. Our results indicate that FBP1 influences the connection between DNA damage, aging and oxidative stress through either direct signalling or an intricate adaptation in energy metabolism.0.

  14. Study of DNA damage with a new system for irradiation of samples in a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gual, Maritza R., E-mail: mrgual@instec.c [Instituto Superior de Tecnologias y Ciencias Aplicadas, InSTEC, Avenida Salvador Allende y Luaces, Quinta de Los Molinos, Plaza de la Revolucion, Havana, AP 6163 (Cuba); Milian, Felix M. [Universidade Estadual de Santa Cruz, UESC (Brazil); Deppman, Airton [Instituto de Fisica, Universidad de Sao Paulo, IF-USP, Rua do Matao, Travessa R, no. 187, Ciudade Universitaria, Butanta, CEP 05508-900, Sao Paulo (Brazil); Coelho, Paulo R.P. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP (Brazil)

    2011-02-15

    In this paper, we report results of a quantitative analysis of the effects of neutrons on DNA, and, specifically, the production of simple and double breaks of plasmid DNA in aqueous solutions with different concentrations of free-radical scavengers. The radiation damage to DNA was evaluated by electrophoresis through agarose gels. The neutron and gamma doses were measured separately with thermoluminescent detectors. In this work, we have also demonstrated usefulness of a new system for positioning and removing samples in channel BH3 of the IEA-R1 reactor at the Instituto de Pesquisas Energeticas e Nucleares (Brazil) without necessity of interrupting the reactor operation.

  15. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes.

    Science.gov (United States)

    Karpov, Dmitry S; Spasskaya, Daria S; Tutyaeva, Vera V; Mironov, Alexander S; Karpov, Vadim L

    2013-09-17

    The 26S proteasome is an ATP-dependent multi-subunit protease complex and the major regulator of intracellular protein turnover and quality control. However, its role in the DNA damage response is controversial. We addressed this question in yeast by disrupting the transcriptional regulation of the PRE1 proteasomal gene. The mutant strain has decreased proteasome activity and is hyper-resistant to various DNA-damaging agents. We found that Rpn4-target genes MAG1, RAD23, and RAD52 are overexpressed in this strain due to Rpn4 stabilisation. These genes represent three different pathways of base excision, nucleotide excision and double strand break repair by homologous recombination (DSB-HR). Consistently, the proteasome mutant displays increased DSB-HR activity. Our data imply that the proteasome may have a negative role in DNA damage response.

  16. The impact of impaired DNA damage responses on cells, tissues and organisms

    NARCIS (Netherlands)

    Yi, Xia

    2007-01-01

    Current cancer therapies rely mainly on DNA damaging insults (irradiation, DNA alkylating agents, DNA synthesis inhibitors etc.). The rationale behind these treatments is that rapidly growing cancer cells suffer more from DNA damaging insults. Unfortunately, the majority of current therapies fail to

  17. Image-based modeling reveals dynamic redistribution of DNA damage into nuclear sub-domains.

    Directory of Open Access Journals (Sweden)

    Sylvain V Costes

    2007-08-01

    Full Text Available Several proteins involved in the response to DNA double strand breaks (DSB form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF are believed to be located where DNA damage occurs. To test this assumption, we analyzed the spatial distribution of 53BP1, phosphorylated ATM, and gammaH2AX RIF in cells irradiated with high linear energy transfer (LET radiation and low LET. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. As expected, simulations produced DNA-weighted random (Poisson distributions. In contrast, the distributions of RIF obtained as early as 5 min after exposure to high LET (1 GeV/amu Fe were non-random. This deviation from the expected DNA-weighted random pattern can be further characterized by "relative DNA image measurements." This novel imaging approach shows that RIF were located preferentially at the interface between high and low DNA density regions, and were more frequent than predicted in regions with lower DNA density. The same preferential nuclear location was also measured for RIF induced by 1 Gy of low-LET radiation. This deviation from random behavior was evident only 5 min after irradiation for phosphorylated ATM RIF, while gammaH2AX and 53BP1 RIF showed pronounced deviations up to 30 min after exposure. These data suggest that DNA damage-induced foci are restricted to certain regions of the nucleus of human epithelial cells. It is possible that DNA lesions are collected in these nuclear sub-domains for more efficient repair.

  18. Mitochondrial DNA damage and animal longevity: insights from comparative studies.

    Science.gov (United States)

    Pamplona, Reinald

    2011-03-02

    Chemical reactions in living cells are under strict enzyme control and conform to a tightly regulated metabolic program. However, uncontrolled and potentially deleterious endogenous reactions occur, even under physiological conditions. Aging, in this chemical context, could be viewed as an entropic process, the result of chemical side reactions that chronically and cumulatively degrade the function of biological systems. Mitochondria are a main source of reactive oxygen species (ROS) and chemical sidereactions in healthy aerobic tissues and are the only known extranuclear cellular organelles in animal cells that contain their own DNA (mtDNA). ROS can modify mtDNA directly at the sugar-phosphate backbone or at the bases, producing many different oxidatively modified purines and pyrimidines, as well as single and double strand breaks and DNA mutations. In this scenario, natural selection tends to decrease the mitochondrial ROS generation, the oxidative damage to mtDNA, and the mitochondrial mutation rate in long-lived species, in agreement with the mitochondrial oxidative stress theory of aging.

  19. Evidence for DNA Damage as a Biological Link Between Diabetes and Cancer

    Institute of Scientific and Technical Information of China (English)

    Shao Chin Lee; Juliana CN Chan

    2015-01-01

    Objective:This review examines the evidence that:Diabetes is a state of DNA damage;pathophysiological factors in diabetes can cause DNA damage;DNA damage can cause mutations;and DNA mutation is linked to carcinogenesis.Data Sources:We retrieved information from the PubMed database up to January,2014,using various search terms and their combinations including DNA damage,diabetes,cancer,high glucose,hyperglycemia,free fatty acids,palmitic acid,advanced glycation end products,mutation and carcinogenesis.Study Selection:We included data from peer-reviewed journals and a textbook printed in English on relationships between DNA damage and diabetes as well as pathophysiological factors in diabetes.Publications on relationships among DNA damage,mutagenesis,and carcinogenesis,were also reviewed.We organized this information into a conceptual framework to explain the possible causal relationship between DNA damage and carcinogenesis in diabetes.Results:There are a large amount of data supporting the view that DNA mutation is a typical feature in carcinogenesis.Patients with type 2 diabetes have increased production of reactive oxygen species,reduced levels of antioxidant capacity,and increased levels of DNA damage.The pathophysiological factors and metabolic milieu in diabetes can cause DNA damage such as DNA strand break and base modification (i.e.,oxidation).Emerging experimental data suggest that signal pathways (i.e.,Akt/tuberin) link diabetes to DNA damage.This collective evidence indicates that diabetes is a pathophysiological state of oxidative stress and DNA damage which can lead to various types of mutation to cause aberration in cells and thereby increased cancer risk.Conclusions:This review highlights the interrelationships amongst diabetes,DNA damage,DNA mutation and carcinogenesis,which suggests that DNA damage can be a biological link between diabetes and cancer.

  20. Radiation track, DNA damage and response—a review

    Science.gov (United States)

    Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S.

    2016-11-01

    The purpose of this paper has been to review the current status and progress of the field of radiation biophysics, and draw attention to the fact that physics, in general, and radiation physics in particular, with the aid of mathematical modeling, can help elucidate biological mechanisms and cancer therapies. We hypothesize that concepts of condensed-matter physics along with the new genomic knowledge and technologies and mechanistic mathematical modeling in conjunction with advances in experimental DNA (Deoxyrinonucleic acid molecule) repair and cell signaling have now provided us with unprecedented opportunities in radiation biophysics to address problems in targeted cancer therapy, and genetic risk estimation in humans. Obviously, one is not dealing with ‘low-hanging fruit’, but it will be a major scientific achievement if it becomes possible to state, in another decade or so, that we can link mechanistically the stages between the initial radiation-induced DNA damage; in particular, at doses of radiation less than 2 Gy and with structural changes in genomic DNA as a precursor to cell inactivation and/or mutations leading to genetic diseases. The paper presents recent development in the physics of radiation track structure contained in the computer code system KURBUC, in particular for low-energy electrons in the condensed phase of water for which we provide a comprehensive discussion of the dielectric response function approach. The state-of-the-art in the simulation of proton and carbon ion tracks in the Bragg peak region is also presented. The paper presents a critical discussion of the models used for elastic scattering, and the validity of the trajectory approach in low-electron transport. Brief discussions of mechanistic and quantitative aspects of microdosimetry, DNA damage and DNA repair are also included as developed by the authors’ work.

  1. Effects of DNA damage on oocyte meiotic maturation and early embryonic development

    Directory of Open Access Journals (Sweden)

    Shen YIN,Junyu MA,Wei SHEN

    2014-09-01

    Full Text Available DNA damage is one of the most common threats to meiotic cells. It has the potential to induce infertility and genetic abnormalities that may be passed to the embryo. Here, we reviewed exogenous factors which could induce DNA damage. Specially, we addressed the different effects of DNA damage on mouse oocytes and embryonic development. Complex DNA damage, double-strand breaks, represents a more difficult repair process and involves various repair pathways. Understanding the mechanisms involved in DNA damage responses may improve therapeutic strategies for ovarian cancer and fertility preservation.

  2. Studies on DNA Damage Response in Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Han, Wenyuan

    global reactions known as DNA damage response (DDR). In Bacteria and Eukaryotes, the global reactions include a series of transcription regulations and protein post-translation modifications, which can activate DNA repair machineries, suppress cell division and delay DNA replication, and induce...... scattered light, damaged cell membrane and electron-dense area. During NQO and MMS treatment, degradation of chromatin proteins was coincided with DNA-less cell formation, suggesting their roles in protecting genomic DNA from massive degradation. Further, HU inhibited NQO-induced DSB formation and DNA...... damage response, suggesting the crucial roles of DSB in triggering DNA damage response. Then, NQO-induced DNA-less formation was impaired in the culture with retarded cell cycle, suggesting that DNA replication played an important role in DNA damage response in Sulfolobus. We also investigated the roles...

  3. Sperm DNA damage in men from infertile couples

    Institute of Scientific and Technical Information of China (English)

    Juris Erenpreiss; Saad Elzanaty; Aleksander Giwercman

    2008-01-01

    Aim: To investigate the prevalence of high levels of sperm DNA damage among men from infertile couples with both normal and abnormal standard semen parameters. Methods: A total of 350 men from infertile couples were assessed. Standard semen analysis and sperm chromatin structure assay (SCSA) were carried out. Results: Ninety-seven men (28% of the whole study group) had a DNA fragmentation index (DFI) > 20%, and 43 men (12%) had a DFI > 30%. In the group of men with abnormal semen parameters (n = 224), 35% had a DFI > 20%, and 16% had a DFI > 30%, whereas these numbers were 15% and 5%, respectively, in the group of men with normal semen parameters (n = 126). Men with low sperm motility and abnormal morphology had significantly higher odds ratios (Ors) for having a DFI > 20% (4.0 for motility and 1.9 for morphology) and DFI > 30% (6.2 for motility and 2.8 for morphology) compared with men with normal sperm motility and morphology. Conclusion: In almost one-third of unselected men from infertile couples, the DFI exceeded the level of 20% above which, according to previous studies, the in vivo fertility is reduced. A significant proportion of men with otherwise normal semen parameters also had high sperm DNA damage levels. Thus, the SCSA test could add to explaining causes of infertility in cases where semen analysis has not shown any deviation from the norm. We also recommend running the SCSA test to choose the appropriate assisted reproductive technique (ART).

  4. DNA damage and mutations induced by arachidonic acid peroxidation.

    Science.gov (United States)

    Lim, Punnajit; Sadre-Bazzaz, Kianoush; Shurter, Jesse; Sarasin, Alain; Termini, John

    2003-12-30

    Endogenous cellular oxidation of omega6-polyunsaturated fatty acids (PUFAs) has long been recognized as a contributing factor in the development of various cancers. The accrual of DNA damage as a result of reaction with free radical and electrophilic aldehyde products of lipid peroxidation is believed to be involved; however, the genotoxic and mutation-inducing potential of specific membrane PUFAs remains poorly defined. In the present study we have examined the ability of peroxidizing arachidonic acid (AA, 20:4omega6) to induce DNA strand breaks, base modifications, and mutations. The time-dependent induction of single-strand breaks and oxidative base modifications by AA in genomic DNA was quantified using denaturing glyoxal gel electrophoresis. Mutation spectra were determined in XP-G fibroblasts and a repair-proficient line corrected for this defect by c-DNA complementation (XP-G(+)). Mutation frequencies were elevated from approximately 5- to 30-fold over the background following reaction of DNA with AA for various times. The XPG gene product was found to be involved in the suppression of mutations after extended reaction of DNA with AA. Arachidonic acid-induced base substitutions were consistent with the presence of both oxidized and aldehyde base adducts in DNA. The frequency of multiple-base substitutions induced by AA was significantly reduced upon correction for the XPG defect (14% vs 2%, P = 0.0015). Evidence is also presented which suggests that the induced frequency of multiple mutations is lesion dependent. These results are compared to published data for mutations stimulated by alpha,beta-unsaturated aldehydes identified as products of lipid peroxidation.

  5. Spectroscopic study of site selective DNA damage induced by intense soft X-rays

    CERN Document Server

    Fujii, K

    2003-01-01

    To investigate the mechanisms of DNA damage induced by direct photon impact, we observed the near edge X-ray absorption fine structures (NEXAFS) of DNA nucleobases using monochromatic synchrotron soft X-rays around nitrogen and oxygen K-shell excitation regions. Each spectrum obtained has unique structure corresponding to pi* excitation of oxygen or nitrogen 1s electron. These aspects open a way of nucleobase-selective photo-excitation in a DNA molecule using high resolution monochromatized soft X-rays. From the analysis of polarization-dependent intensities of the pi* resonance peak, it is clarified that adenine, guanine an uracil form orientated surface structure. Furthermore from the direct measurement of positive ions desorbed from photon irradiated DNA components, it is revealed that the sugar moiety is a fragile site in a DNA molecule. (author)

  6. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS. Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR defects.

  7. Detection, characterization and measure of a new radiation-induced damage in isolated and cellular DNA; Detection, caracterisation et mesure d'un nouveau dommage radio-induit de l'ADN isole et cellulaire

    Energy Technology Data Exchange (ETDEWEB)

    Regulus, P

    2006-10-15

    Deoxyribonucleic acid (DNA) contains the genetic information and chemical injury to this macromolecule may have severe biological consequences. We report here the detection of 4 new radiation-induced DNA lesions by using a high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) approach. For that purpose, the characteristic fragmentation of most 2'-deoxy-ribo nucleosides, the loss of 116 Da corresponding to the loss of the 2-deoxyribose moiety, was used in the so-called neutral loss mode of the HPLC-MS/MS. One of the newly detected lesions, named dCyd341 because it is a 2'-deoxycytidine modification exhibiting a molecular weight of 341 Da, was also detected in cellular DNA. Characterization of this modified nucleoside was performed using NMR and exact mass determination of the product obtained by chemical synthesis. A mechanism of formation was then proposed, in which the first event is the H-abstraction at the C4 position of a 2-deoxyribose moiety. Then, the sugar modification produced exhibits a reactive aldehyde that, through reaction with a vicinal cytosine base, gives rise to dCyd341. dCyd341 could be considered as a complex damage since its formation involves a DNA strand break and a cross-link between a damaged sugar residue and a vicinal cytosine base located most probably on the complementary DNA strand. In addition to its characterization, preliminary biological studies revealed that cells are able to remove the lesion from DNA. Repair studies have revealed the ability of cells to excise the lesion. Identification of the repair systems involved could represent an interesting challenge. (author)

  8. Sea urchin coelomocytes are resistant to a variety of DNA damaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Loram, Jeannette; Raudonis, Renee; Chapman, Jecar; Lortie, Mae [Bermuda Institute of Ocean Sciences, St. George' s, Bermuda, GE 01 (Bermuda); Bodnar, Andrea, E-mail: andrea.bodnar@bios.edu [Bermuda Institute of Ocean Sciences, St. George' s, Bermuda, GE 01 (Bermuda)

    2012-11-15

    Increasing anthropogenic activities are creating environmental pressures that threaten marine ecosystems. Effective environmental health assessment requires the development of rapid, sensitive, and cost-effective tools to predict negative impacts at the individual and ecosystem levels. To this end, a number of biological assays using a variety of cells and organisms measuring different end points have been developed for biomonitoring programs. The sea urchin fertilization/development test has been useful for evaluating environmental toxicology and it has been proposed that sea urchin coelomocytes represent a novel cellular biosensor of environmental stress. In this study we investigated the sensitivity of coelomocytes from the sea urchin Lytechinus variegatus to a variety of DNA-damaging agents including ultraviolet (UV) radiation, hydrogen peroxide (H{sub 2}O{sub 2}), methylmethane sulfonate (MMS) and benzo[a]pyrene (BaP). LD{sub 50} values determined for coelomocytes after 24 h of exposure to these DNA damaging agents indicated a high level of resistance to all treatments. Significant increases in the formation of apurinic/apyrimidinic (AP or abasic) sites in DNA were only detected using high doses of H{sub 2}O{sub 2}, MMS and UV radiation. Comparison of sea urchin coelomocytes with hemocytes from the gastropod mollusk Aplysia dactylomela and the decapod crustacean Panulirus argus indicated that sensitivity to different DNA damaging agents varies between species. The high level of resistance to genotoxic agents suggests that DNA damage may not be an informative end point for environmental health assessment using sea urchin coelomocytes however, natural resistance to DNA damaging agents may have implications for the occurrence of neoplastic disease in these animals.

  9. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    Science.gov (United States)

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-12-22

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects.

  10. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    Science.gov (United States)

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  11. DNA2—An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein?

    Directory of Open Access Journals (Sweden)

    Elzbieta Pawłowska

    2017-07-01

    Full Text Available The human DNA2 (DNA replication helicase/nuclease 2 protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair (LP-BER, interacting with the replication protein A (RPA and the flap endonuclease 1 (FEN1. DNA2 can promote the restart of arrested replication fork along with Werner syndrome ATP-dependent helicase (WRN and Bloom syndrome protein (BLM. In mitochondria, DNA2 can facilitate primer removal during strand-displacement replication. DNA2 is involved in DNA double strand (DSB repair, in which it is complexed with BLM, RPA and MRN for DNA strand resection required for homologous recombination repair. DNA2 can be a major protein involved in the repair of complex DNA damage containing a DSB and a 5′ adduct resulting from a chemical group bound to DNA 5′ ends, created by ionizing radiation and several anticancer drugs, including etoposide, mitoxantrone and some anthracyclines. The role of DNA2 in telomere end maintenance and cell cycle regulation suggests its more general role in keeping genomic stability, which is impaired in cancer. Therefore DNA2 can be an attractive target in cancer therapy. This is supported by enhanced expression of DNA2 in many cancer cell lines with oncogene activation and premalignant cells. Therefore, DNA2 can be considered as a potential marker, useful in cancer therapy. DNA2, along with PARP1 inhibition, may be considered as a potential target for inducing synthetic lethality, a concept of killing tumor cells by targeting two essential genes.

  12. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    Science.gov (United States)

    2007-04-01

    Li, 2005). Task 2: Establish whether pre-RC reformation , re-initiation or re-elongation induces the DNA damage response. In task 2 of the...300 l of 0.5-mm glass beads (Biospec Products, Bartlesville, OK) and 300 l of SDS-PAGE loading buffer [8% glycerol (vol/vol), 100 mM Tris-HCl, pH

  13. Wavenumber imaging for damage detection and measurement

    Science.gov (United States)

    Rogge, M. D.; Johnston, P. H.

    2012-05-01

    This paper presents a method for analyzing ultrasonic wavefield data using the Continuous Wavelet Transform (CWT) applied in the spatial domain. Unlike data obtained by sparse arrays of transducers, full wavefield data contains information local to the structure and can be used to obtain more detailed measurements of damage type, location, size, etc. By calculating the CWT of the wavefield in the spatial domain, the wavenumber spectrum is determined for the inspected locations. Because wavenumber is affected by the local geometry and material properties of the structure through which Lamb waves propagate, the wavenumber spectrum can be analyzed to assess the location, severity, and size of damage. The technique is first applied to experimental wavefield data obtained using a laser Doppler vibrometer and automated positioning stage. The out-of-plane velocity along the length of a composite stringer was measured to detect the presence of delaminations within the composite overwrap. Next, simulated corrosion is detected and measured within an aluminum plate using the two dimensional CWT. The experimental results show the usefulness of the technique for vehicle structure inspection applications.

  14. Associations of subjective vitality with DNA damage, cardiovascular risk factors and physical performance

    DEFF Research Database (Denmark)

    Maynard, Scott; Keijzers, Guido; Hansen, A-M;

    2015-01-01

    by comet assay) (P = 0.046) and BMI (P = 0.002), and positively associated with all of the physical performance parameters (all P physical performance parameters and cardiovascular risk factors. In addition, the load of short telomeres was inversely......AIM: To examine associations of DNA damage, cardiovascular risk factors and physical performance with vitality, in middle-aged men. We also sought to elucidate underlying factors of physical performance by comparing physical performance parameters to DNA damage parameters and cardiovascular risk...... associated with maximum jump force (P = 0.018), with lowered significance after exclusion of either arthritis sufferers (P = 0.035) or smokers (P = 0.031). CONCLUSION: Here, we show that self-reported vitality is associated with DNA breaks, BMI and objective (measured) physical performance in a cohort...

  15. Environmental exposure to human carcinogens in teenagers and the association with DNA damage

    DEFF Research Database (Denmark)

    Franken, Carmen; Koppen, Gudrun; Lambrechts, Nathalie

    2017-01-01

    Background We investigated whether human environmental exposure to chemicals that are labeled as (potential) carcinogens leads to increased (oxidative) damage to DNA in adolescents. Material and methods Six hundred 14–15-year-old youngsters were recruited all over Flanders (Belgium) and in two...... areas with important industrial activities. DNA damage was assessed by alkaline and formamidopyrimidine DNA glycosylase (Fpg) modified comet assays in peripheral blood cells and analysis of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Personal exposure to potentially carcinogenic compounds...... was measured in urine, namely: chromium, cadmium, nickel, 1-hydroxypyrene as a proxy for exposure to other carcinogenic polycyclic aromatic hydrocarbons (PAHs), t,t-muconic acid as a metabolite of benzene, 2,5-dichlorophenol (2,5-DCP), organophosphate pesticide metabolites, and di(2-ethylhexyl) phthalate (DEHP...

  16. Lymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.

    Science.gov (United States)

    Bacaksiz, Aysegul; Kayaalti, Zeliha; Soylemez, Esma; Tutkun, Engin; Soylemezoglu, Tulin

    2014-01-01

    Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline single cell gel electrophoresis (SCGE). The DNA damage was evaluated by the percentage of DNA in the comet tail (% tail DNA) for each cell. According to our results, workers exposed to asphalt fumes had higher DNA damage than the control group (p asphalt fumes caused a significant increase in DNA damage and the comet assay is a suitable method for determining DNA damage in asphalt workers.

  17. Cytotoxicity and DNA Damage Effect of TGA-capped CdTe Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    LI Yan-bo; ZHANG Hai-xia; GUO Cai-xia; HU Gui-qin; DU Hai-ying; JIN Ming-hua; HUANG Pei-li; SUN Zhi-wei; YANG Wen-sheng

    2012-01-01

    The cytotoxicity and DNA damage caused by thioglycolic acid(TGA)-capped cadmium telluride(CdTe)quantum dots(QDs)to hepatocyte line HL-7702 were investigated.Cell viability was measured by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay; DNA damage was detected by single cell gel electrophoresis(SCGE); the change of cell cycle progression was examined by propidium iodide(PI)-flow cytometry(FCM);apoptosis was measured by acridine orange/ethidium bromide(AO/EB)assay and Annexin V-FITC/PI-FCM(FITC:fluorescein isothiocyanate).The results show that the cytotoxicity induced by CdTe QDs was increased in a dose-dependent and time-dependent manner; after exposure to QDs for 24 h,as the exposure dose increased,the rate of DNA damage was significantly increased(P<0.05),and the degree of DNA damage was elevated.As the dose of CdTe QDs increased,the percentage of G0/G1 phase cells was significantly decreased(P<0.001),while the percenttages of S and G2/M phases cells were significantly increased(P<0.001).In AO/EB assay,apoptotic cells could be observed under a fluorescence microscope,and apoptotic rate was increased as exposure dose increased.In Annexin V-FITC/PI-FCM assay,the apoptotic rates of CdTe QDs treated groups were significantly increased compared with that of control group(P<0.05).Our studies indicate that CdTe QDs could influence cell viability,and induce DNA damage,the S and G2/M phases arrest and apoptosis of HL-7702.

  18. Senescence of primary amniotic cells via oxidative DNA damage.

    Directory of Open Access Journals (Sweden)

    Ramkumar Menon

    Full Text Available OBJECTIVE: Oxidative stress is a postulated etiology of spontaneous preterm birth (PTB and preterm prelabor rupture of the membranes (pPROM; however, the precise mechanistic role of reactive oxygen species (ROS in these complications is unclear. The objective of this study is to examine impact of a water soluble cigarette smoke extract (wsCSE, a predicted cause of pregnancy complications, on human amnion epithelial cells. METHODS: Amnion cells isolated from fetal membranes were exposed to wsCSE prepared in cell culture medium and changes in ROS levels, DNA base and strand damage was determined by using 2'7'-dichlorodihydro-fluorescein and comet assays as well as Fragment Length Analysis using Repair Enzymes (FLARE assays, respectively. Western blot analyses were used to determine the changes in mass and post-translational modification of apoptosis signal-regulating kinase (ASK1, phospho-p38 (P-p38 MAPK, and p19(arf. Expression of senescence-associated β-galectosidase (SAβ-gal was used to confirm cell ageing in situ. RESULTS: ROS levels in wsCSE-exposed amnion cells increased rapidly (within 2 min and significantly (p<0.01 at all-time points, and DNA strand and base damage was evidenced by comet and FLARE assays. Activation of ASK1, P-p38 MAPK and p19(Arf correlated with percentage of SAβ-gal expressing cells after wsCSE treatment. The antioxidant N-acetyl-L-cysteine (NAC prevented ROS-induced DNA damage and phosphorylation of p38 MAPK, whereas activation of ASK1 and increased expression of p19(Arf were not significantly affected by NAC. CONCLUSIONS: The findings support the hypothesis that compounds in wsCSE induces amnion cell senescence via a mechanism involving ROS and DNA damage. Both pathways may contribute to PTB and pPROM. Our results imply that antioxidant interventions that control ROS may interrupt pathways leading to pPROM and other causes of PTB.

  19. Chk2 Activation Dependence on Nbs1 after DNA Damage

    OpenAIRE

    Buscemi, Giacomo; Savio, Camilla; Zannini, Laura; Miccichè, Francesca; Masnada, Debora; Nakanishi, Makoto; Tauchi, Hiroshi; Komatsu, Kenshi; Mizutani, Shuki; Khanna, KumKum; Chen, Phil; Concannon, Patrick; Chessa, Luciana; Delia, Domenico

    2001-01-01

    The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G1 arrest. Here we show that the ATM-dependent activation of Chk2 by γ- radiation requires Nbs1, the gene product ...

  20. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Gigli Elena

    2008-07-01

    Full Text Available Abstract Background We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA hypervariable region 1 (HVS1. The analysis was restricted to C→T and G→A miscoding lesions (the predominant manifestation of post mortem damage that are seen at a frequency of more than one clone among sequences from a single PCR, but do not represent the true endogenous sequence. Findings The data indicates an extreme bias towards C→T over G→A miscoding lesions (observed ratio of 67:2 compared to an expected ratio of 7:2, implying that the mtDNA Light strand molecule suffers proportionally more damage-derived miscoding lesions than the Heavy strand. Conclusion The clustering of Cs in the Light strand as opposed to the singleton pattern of Cs in the Heavy strand could explain the observed bias, a phenomenon that could be further tested with non-PCR based approaches. The characterization of the HVS1 hotspots will be of use to future Neandertal mtDNA studies, with specific regards to assessing the authenticity of new positions previously unknown to be polymorphic.

  1. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  2. Simplified qPCR method for detecting excessive mtDNA damage induced by exogenous factors.

    Science.gov (United States)

    Gureev, Artem P; Shaforostova, Ekaterina A; Starkov, Anatoly A; Popov, Vasily N

    2017-05-01

    Damage to mitochondrial DNA (mtDNA) is a meaningful biomarker for evaluating genotoxicity of drugs and environmental toxins. Existing PCR methods utilize long mtDNA fragments (∼8-10kb), which complicates detecting exact sites of mtDNA damage. To identify the mtDNA regions most susceptible to damage, we have developed and validated a set of primers to amplify ∼2kb long fragments, while covering over 95% of mouse mtDNA. We have modified the detection method by greatly increasing the enrichment of mtDNA, which allows us solving the problem of non-specific primer annealing to nuclear DNA. To validate our approach, we have determined the most damage-susceptible mtDNA regions in mice treated in vivo and in vitro with rotenone and H2O2. The GTGR-sequence-enriched mtDNA segments located in the D-loop region were found to be especially susceptible to damage. Further, we demonstrate that H2O2-induced mtDNA damage facilitates the relaxation of mtDNA supercoiled conformation, making the sequences with minimal damage more accessible to DNA polymerase, which, in turn, results in a decrease in threshold cycle value. Overall, our modified PCR method is simpler and more selective to the specific sites of damage in mtDNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Genotoxicity of refinery waste assessed by some DNA damage tests.

    Science.gov (United States)

    Gupta, Amit Kumar; Ahmad, Irshad; Ahmad, Masood

    2015-04-01

    Refinery waste effluent is well known to contain polycyclic aromatic hydrocarbons, phenols and heavy metals as potentially genotoxic substances. The aim of the present study was to assess the genotoxic potential of Mathura refinery wastewater (MRWW) by various in vitro tests including the single cell gel electrophoresis, plasmid nicking assay and S1 nuclease assay. Treatment of human lymphocytes to different MRWW concentrations (0.15×, 0.3×, 0.5× and 0.78×) caused the formation of comets of which the mean tail lengths increased proportionately and differed significantly from those of unexposed controls. The toxic effect of MRWW on DNA was also studied by plasmid nicking assay and S1 nuclease assay. Strand breaks formation in the MRWW treated pBR322 plasmid confirmed its genotoxic effect. Moreover, a dose dependent increase in cleavage of calf thymus DNA in S1 nuclease assay was also suggestive of the DNA damaging potential of MRWW. A higher level of ROS generation in the test water sample was recorded which might be contributing to its genotoxicity. Interaction between the constituents of MRWW and calf thymus DNA was also ascertained by UV-visible spectroscopy.

  4. The effect of environmental exposure to pyrethroids and DNA damage in human sperm.

    Science.gov (United States)

    Jurewicz, Joanna; Radwan, Michał; Wielgomas, Bartosz; Sobala, Wojciech; Piskunowicz, Marta; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2015-01-01

    The present study was designed to investigate whether environmental exposure to pyrethroids was associated with sperm DNA damage. Between January 2008 and April 2011 286 men under 45 years of age with a normal sperm concentration of 15-300 10(6)/ml [WHO 2010] were recruited from an infertility clinic in Lodz, Poland. Participants were interviewed and provided urine, saliva, and semen samples. The pyrethroids metabolites: 3-phenoxybenzoic acid (3PBA), cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (CDCCA), trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (TDCCA), and cis-2,2-dibromovinyl-2,2-dimethylcyclopropane-carboxylic acid (DBCA) were analyzed in the urine using a validated gas chromatography ion-tap mass spectrometry method. Sperm DNA damage was assessed using a flow cytometry based on sperm chromatin structure assay (SCSA). A positive association was observed between CDCCA >50th percentile and the percentage of medium DNA fragmentation index (M DFI) and percentage of immature sperms (HDS) (p = 0.04, p = 0.04 respectively). The level of 3PBA >50th percentile in urine was positively related to the percentage of high DNA fragmentation index (H DFI) (p = 0.03). The TDCCA, DBCA levels, and the sum of pyrethroid metabolites were not associated with any sperm DNA damage measures. Our results suggest that environmental pyrethroid exposure may affect sperm DNA damage measures index indicated the reproductive effects of pyrethroid exposure on adult men. In view of the importance of human reproductive health and the widespread usage of pyrethroids, it is important to further investigate these correlations.

  5. Preventive activity of olive oil phenolic compounds on alkene epoxides induced oxidative DNA damage on human peripheral blood mononuclear cells.

    Science.gov (United States)

    Fuccelli, Raffaela; Sepporta, Maria Vittoria; Rosignoli, Patrizia; Morozzi, Guido; Servili, Maurizio; Fabiani, Roberto

    2014-01-01

    The aim of this study was to investigate the ability of epoxides of styrene (styrene-7,8-oxide; SO) and 1,3-butadiene (3,4-epoxy-1-butene; 1,2:3,4:-diepoxybutane) to cause oxidative stress and oxidative DNA damage on human peripheral blood mononuclear cells (PBMCs) and whether a complex mixture of olive oil phenols (OOPE) could prevent these effects. The DNA damage was measured by the single-cell gel electrophoresis (SCGE; comet assay). We found that the DNA damage induced by alkene epoxides could be prevented by N-acetyl-cysteine (10 mM) and catalase (100 U/ml). Alkene epoxides caused a significant (P DNA glycosylase (FPG)- and Endonuclease III (ENDO III)-sensitive sites in PBMCs, demonstrating the presence of oxidized bases. OOPE (1 μg of total phenols/ml) was able to prevent the alkene epoxide induced DNA damage both after 2 and 24 h of incubation. In addition, OOPE completely inhibited the SO-induced intracellular peroxide accumulation in PBMCs and prevented the oxidative DNA damage induced by SO, as evidenced by the disappearance of both FPG- and ENDO III-sensitive sites. This is the first study demonstrating the ability of OOPE to prevent the DNA damage induced by alkene epoxides providing additional information about the chemopreventive properties of olive oil.

  6. Voltammetric Detection of Damage to DNA by Arsenic Compounds at a DNA Biosensor

    Directory of Open Access Journals (Sweden)

    R. Wennrich

    2005-11-01

    Full Text Available DNA biosensor can serve as a powerfull tool for simple in vitro tests of chemicaltoxicity. In this paper, damage to DNA attached to the surface of screen-printed carbonelectrode by arsenic compounds in solution is described. Using the Co(III complex with1,10-phenanthroline, [Co(phen3]3+ , as an electrochemical DNA marker and the Ru(IIcomplex with bipyridyne, [Ru(bipy3]2+ , as a DNA oxidation catalyst, the portion of originaldsDNA which survives an incubation of the biosensor in the cleavage medium was evaluated.The model cleavage mixture was composed of an arsenic compound at 10-3 mol/Lconcentration corresponding to real contaminated water, 2x10-4 mol/L Fe(II or Cu(II ions asthe redox catalyst, and 1.5x10-2 mol/L hydrogen peroxide. DNA damage by arsenite,dimethylarsinic acid as the metabolic product of inorganic arsenic and widely used herbicide,as well as phenylarsonic acid and p-arsanilic acid as the representatives of feed additives wasfound in difference to arsenate.

  7. Increase in DNA damage in lymphocytes and micronucleus frequency in buccal cells in silica-exposed workers

    Directory of Open Access Journals (Sweden)

    Ajanta Halder

    2012-01-01

    Full Text Available The alkaline single cell gel electrophoresis (comet assay was applied to study the genotoxic properties of silica in human peripheral blood lymphocytes (PBL. The study was designed to evaluate the DNA damage of lymphocytes and the end points like micronuclei from buccal smears in a group of 45 workers, occupationally exposed to silica, from small mines and stone quarries. The results were compared to 20 sex and age matched normal individuals. There was a statistically significant difference in the damage levels between the exposed group and the control groups. The types of damages (type I -type 1V were used to measure the DNA damage. The numbers of micronuclei were higher in the silica-exposed population. The present study suggests that the silica exposure can induce lymphocyte DNA damage and produces significant variation of micronuclei in buccal smear.

  8. Designing a Single-Molecule Biophysics Tool for Characterising DNA Damage for Techniques that Kill Infectious Pathogens Through DNA Damage Effects.

    Science.gov (United States)

    Miller, Helen; Wollman, Adam J M; Leake, Mark C

    2016-01-01

    Antibiotics such as the quinolones and fluoroquinolones kill bacterial pathogens ultimately through DNA damage. They target the essential type IIA topoisomerases in bacteria by stabilising the normally transient double-strand break state which is created to modify the supercoiling state of the DNA. Here we discuss the development of these antibiotics and their method of action. Existing methods for DNA damage visualisation, such as the comet assay and immunofluorescence imaging can often only be analysed qualitatively and this analysis is subjective. We describe a putative single-molecule fluorescence technique for quantifying DNA damage via the total fluorescence intensity of a DNA origami tile fully saturated with an intercalating dye, along with the optical requirements for how to implement these into a light microscopy imaging system capable of single-molecule millisecond timescale imaging. This system promises significant improvements in reproducibility of the quantification of DNA damage over traditional techniques.

  9. Regulation of HuR by DNA Damage Response Kinases

    Directory of Open Access Journals (Sweden)

    Hyeon Ho Kim

    2010-01-01

    Full Text Available As many DNA-damaging conditions repress transcription, posttranscriptional processes critically influence gene expression during the genotoxic stress response. The RNA-binding protein HuR robustly influences gene expression following DNA damage. HuR function is controlled in two principal ways: (1 by mobilizing HuR from the nucleus to the cytoplasm, where it modulates the stability and translation of target mRNAs and (2 by altering its association with target mRNAs. Here, we review evidence that two main effectors of ataxia-telangiectasia-mutated/ATM- and Rad3-related (ATM/ATR, the checkpoint kinases Chk1 and Chk2, jointly influence HuR function. Chk1 affects HuR localization by phosphorylating (hence inactivating Cdk1, a kinase that phosphorylates HuR and thereby blocks HuR's cytoplasmic export. Chk2 modulates HuR binding to target mRNAs by phosphorylating HuR's RNA-recognition motifs (RRM1 and RRM2. We discuss how HuR phosphorylation by kinases including Chk1/Cdk1 and Chk2 impacts upon gene expression patterns, cell proliferation, and survival following genotoxic injury.

  10. DNA Damage by Radiation in Tradescantia Leaf Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Hyun, Kyung Man; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-04-15

    The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Tradescantia tests are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay. The development of comet assay has enabled investigators to detect DNA damage at the levels of cells. To adapt this assay to plant cells, nuclei were directly obtained from Tradescantia leaf samples. A significant dose-dependent increase in the average tail moment values over the negative control was observed. Recently the adaptation of this technique to plant cells opens new possibilities for studies in variety area. The future applications of the comet assay could impact some other important areas, certainly, one of the limiting factors to its utility is the imagination of the investigator.

  11. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  12. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  13. Muscle damage after delivery of naked plasmid DNA into skeletal muscles is batch dependent.

    Science.gov (United States)

    Wooddell, Christine I; Subbotin, Vladimir M; Sebestyén, Magdolna G; Griffin, Jacob B; Zhang, Guofeng; Schleef, Martin; Braun, Serge; Huss, Thierry; Wolff, Jon A

    2011-02-01

    Various plasmids were delivered into rodent limb muscles by hydrodynamic limb vein (HLV) injection of naked plasmid DNA (pDNA). Some of the pDNA preparations caused significant muscle necrosis and associated muscle regeneration 3 to 4 days after the injection whereas others caused no muscle damage. Occurrence of muscle damage was independent of plasmid sequence, size, and encoded genes. It was batch dependent and correlated with the quantity of bacterial genomic DNA (gDNA) that copurified with the pDNA. To determine whether such an effect was due to bacterial DNA or simply to fragmented DNA, mice were treated by HLV injection with sheared bacterial or murine gDNA. As little as 20 μg of the large fragments of bacterial gDNA caused muscle damage that morphologically resembled damage caused by the toxic pDNA preparations, whereas murine gDNA caused no damage even at a 10-fold higher dose. Toxicity from the bacterial gDNA was not due to endotoxin and was eliminated by DNase digestion. We conclude that pDNA itself does not cause muscle damage and that purification methods for the preparation of therapeutic pDNA should be optimized for removal of bacterial gDNA.

  14. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  15. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    Science.gov (United States)

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Application of the comet assay for investigation of oxidative DNA damage in equine peripheral blood mononuclear cells.

    Science.gov (United States)

    Marlin, David J; Johnson, Lucy; Kingston, Demelza A; Smith, Nicola C; Deaton, Chris M; Mann, Sarah; Heaton, Paul; Van Vugt, Fenneke; Saunders, Kelly; Kydd, Julia; Harris, Pat A

    2004-08-01

    Oxidative stress occurs when antioxidant defense mechanisms are overwhelmed by free radicals and may lead to DNA damage, which has been implicated in processes such as aging and diseases such as cancer. The two main techniques presently used to quantify DNA damage are measurement of 8-hydroxydeoxyguanosine and the Comet assay (also known as single-cell gel electrophoresis). The aim of this study was to apply the comet assay to equine peripheral blood mononuclear cells (PBMCs) and identify two conditions in which we hypothesized that oxidative DNA damage would be increased in PBMCs: aging and equine recurrent airway obstruction (RAO, a condition similar to human asthma). The images obtained were similar to those previously published for humans, cats, and dogs. The optimum concentration of H(2)O(2) to estimate susceptibility to exogenous damage was 50 microM. Mean intraassay coefficients of variation were 4.7 and 9.7% for endogenous and exogenous tail-DNA quantities, respectively, and 7.3 and 8.3%, respectively, for interassay coefficients. There was no significant difference in either endogenous or exogenous percentages of tail DNA for samples collected from six ponies on three consecutive days. There was no significant difference in endogenous, exogenous, or exogenous (corrected for endogenous) oxidative DNA damage between mature and aged ponies. However, young pony foals had significantly less endogenous DNA damage than mature or aged ponies (P < 0.05). RAO-affected horses without airway inflammation (i.e., in clinical remission) had significantly greater endogenous damage compared with non-RAO-affected control animals (P = 0.009). There was a significant correlation between endogenous percentage of tail DNA in PBMCs and red blood cell hemolysate glutathione concentration (r = 0.720; P < 0.001). In conclusion, the comet assay appears to be suitable for investigating DNA damage in equine PBMCs.

  17. Potentially lethal damage repair by total and quiescent tumor cells following various DNA-damaging treatments

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro; Ono, Koji; Suzuki, Minoru; Kinashi, Yuko; Takagaki, Masao [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Hori, Hitoshi; Kasai, Soko; Nagasawa, Hideko; Uto, Yoshihiro

    1999-08-01

    After continuous labeling of proliferating (P) cells with 5-bromo-2'-deoxyuridine (BrdU) for 5 days, SCC VII tumor-bearing mice received various kinds of DNA-damaging treatments: gamma-ray irradiation, tirapazamine (TPZ, hypoxia-specific cytotoxin) administration, or cisplatin injection. From 0.5 to 72 hr after treatment, tumors were excised, minced, and trypsinized. Single tumor cell suspensions were incubated for 48 hr with a cytokinesis-blocker, cytochalasin-B. Then, the micronucleus (MN) frequency for BrdU-unlabeled cells, quiescent (Q) cells at treatment, was determined using immunofluorescence staining for BrdU. The MN frequency for total (P+Q) cells was obtained from tumors that were not pretreated with BrdU labeling. The sensitivity to each DNA-damaging treatment was evaluated in terms of the frequency of induced micronuclei in binuclear tumor cells (MN frequency). Treatment with gamma-rays or cisplatin resulted in a larger MN frequency in total cells than in Q cells. In contrast, TPZ treatment produced a smaller MN frequency in total cells than in Q cells. Regardless of the treatment used, Q cells showed greater repair capacities than total cells. However, TPZ caused much smaller repair capacity in both total and Q cells, compared with gamma-rays or cisplatin. Gamma-rays and cisplatin produced similar repair patterns. Differences in sensitivity between total and Q cells and repair patterns of the two cell populations were thought to depend on differences between the two cell populations in the toxicity of the DNA-damaging treatment and distribution pattern of the anticancer agent. (author)

  18. A Single-Molecule Study on the Structural Damage of Ultraviolet Radiated DNA

    Directory of Open Access Journals (Sweden)

    Pu Chun Ke

    2008-04-01

    Full Text Available The structural damage of double-stranded DNA under UV radiation was examined using single-molecule fluorescence microscopy. Compared to undamaged DNA, the diffusion coefficient of λ-DNA was significantly increased with 12 min or 20 min of radiation but remained unchanged for 40 min of exposure possibly due to strand crosslinking. The structural damage of DNA was further examined using transmission electron microscopy which revealed kinks and sharp bends along the DNA backbone.

  19. Oxidative Damage to DNA and Lipids: Correlation with Protein Glycation in Patients with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    M.T. Goodarzi

    2008-01-01

    Full Text Available Introduction & Objective: Diabetic hyperglycemia is associated with increased production of Reactive Oxygen Species (ROS. ROS reacts with DNA results in products such as 8-hydroxydeoxyguanosine that excrete in urine due to DNA repair processes. This study aims to evaluate correlation between oxidative damage of DNA and protein glycation in patients with Type 1 diabetes. We measured urinary 8-OHdG level in diabetic and control group and evaluated its correlation to glycated hemoglobin (HbA1c and glycated serum protein (GSP levels. Furthermore plasma malondialdehyde (MDA level was measured as an important indicator of lipid peroxidation in diabetes.Materials & Methods: We studied 32 patients with diabetes mellitus Type 1 and compared them with 48 sex and age-matched non-diabetic controls. GSP and MDA measurement were made by colorimetric assay. Hemoglobin A1c measured by ion-exchange chromatography method and urinary 8-OHdG measurement was made by competitive in vitro enzyme-linked immunosorbent assay (ELISA.Results: In the present study urinary 8-OHdG, blood HbA1c, plasma MDA and GSP levels were significantly higher in diabetics comparing to the control subjects (P<0.05. Furthermore, we found significant correlation between urinary 8-OHdG and HbA1c (P<0.05 in diabetic group. In addition, fasting blood sugar showed significant correlation with GSP and MDA (P<0.05. However the correlation of MDA with HbA1c was not significant in diabetic patients.Conclusion: This case-control study in young diabetic patients showed that increased blood glucose and related metabolic disorders result in oxidative stress and oxidative damage to DNA and lipids. Furthermore oxidative damage to DNA correlated to glycemic control, while there was no significant correlation between lipid peroxidation and the level of HbA1c.

  20. Interplay between DNA tumor viruses and the host DNA damage response.

    Science.gov (United States)

    McFadden, Karyn; Luftig, Micah A

    2013-01-01

    Viruses encounter many challenges within host cells in order to replicate their nucleic acid. In the case of DNA viruses, one challenge that must be overcome is recognition of viral DNA structures by the host DNA damage response (DDR) machinery. This is accomplished in elegant and unique ways by different viruses as each has specific needs and sensitivities dependent on its life cycle. In this review, we focus on three DNA tumor viruses and their interactions with the DDR. The viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) account for nearly all of the virus-associated human cancers worldwide. These viruses have also been excellent models for the study of oncogenic virus-mediated cell transformation. In this review, we will discuss how each of these viruses engage and subvert aspects of the host DDR. The first level of DDR engagement is a result of the genetic linkage between the oncogenic potential of these viruses and their ability to replicate. Namely, the promotion of cells from quiescence into the cell cycle to facilitate virus replication can be sensed through aberrant cellular DNA replication structures which activate the DDR and hinder cell transformation. DNA tumor viruses subvert this growth-suppressive DDR through changes in viral oncoprotein expression which ultimately facilitate virus replication. An additional level of DDR engagement is through direct detection of replicating viral DNA. These interactions parallel those observed in other DNA virus systems in that the need to subvert these intrinsic sensors of aberrant DNA structure in order to replicate must be in place. DNA tumor viruses are no exception. This review will cover the molecular features of DNA tumor virus interactions with the host DDR and the consequences for virus replication.

  1. ELF alternating magnetic field decreases reproduction by DNA damage induction.

    Science.gov (United States)

    Panagopoulos, Dimitris J; Karabarbounis, Andreas; Lioliousis, Constantinos

    2013-11-01

    In the present experiments, the effect of 50-Hz alternating magnetic field on Drosophila melanogaster reproduction was studied. Newly eclosed insects were separated into identical groups of ten males and ten females and exposed to three different intensities of the ELF magnetic field (1, 11, and 21 G) continuously during the first 5 days of their adult lives. The reproductive capacity was assessed by the number of F1 pupae according to a well-defined protocol of ours. The magnetic field was found to decrease reproduction by up to 4.3%. The effect increased with increasing field intensities. The decline in reproductive capacity was found to be due to severe DNA damage (DNA fragmentation) and consequent cell death induction in the reproductive cells as determined by the TUNEL assay applied during early and mid-oogenesis (from germarium to stage 10) where physiological apoptosis does not occur. The increase in DNA damage was more significant than the corresponding decrease in reproductive capacity (up to ~7.5%). The TUNEL-positive signal denoting DNA fragmentation was observed exclusively at the two most sensitive developmental stages of oogenesis: the early and mid-oogenesis checkpoints (i.e. region 2a/2b of the germarium and stages 7-8 just before the onset of vitellogenesis)-in contrast to exposure to microwave radiation of earlier work of ours in which the DNA fragmentation was induced at all developmental stages of early and mid-oogenesis. Moreover, the TUNEL-positive signal was observed in all three types of egg chamber cells, mainly in the nurse and follicle cells and also in the oocyte, in agreement with the microwave exposure of our earlier works. According to previous reports, cell death induction in the oocyte was observed only in the case of microwave exposure and not after exposure to other stress factors as toxic chemicals or food deprivation. Now it is also observed for the first time after ELF magnetic field exposure. Finally, in contrast to microwave

  2. Genotoxicity of formaldehyde: Molecular basis of DNA damage and mutation

    Directory of Open Access Journals (Sweden)

    Masanobu eKawanishi

    2014-09-01

    Full Text Available Formaldehyde is commonly used in the chemical industry and is present in the environment, such as vehicle emissions, some building materials, food and tobacco smoke. It also occurs as a natural product in most organisms, the sources of which include a number of metabolic processes. It causes various acute and chronic adverse effects in humans if they inhale its fumes. Among the chronic effects on human health, we summarize data on genotoxicity and carcinogenicity in this review, and we particularly focus on the molecular mechanisms involved in the formaldehyde mutagenesis. Formaldehyde mainly induces N-hydroxymethyl mono-adducts on guanine, adenine and cytosine, and N-methylene crosslinks between adjacent purines in DNA. These crosslinks are types of DNA damage potentially fatal for cell survival if they are not removed by the nucleotide excision repair pathway. In the previous studies, we showed evidence that formaldehyde causes intra-strand crosslinks between purines in DNA using a unique method (Matsuda et al. Nucleic Acids Res. 26, 1769-1774,1998. Using shuttle vector plasmids, we also showed that formaldehyde as well as acetaldehyde induces tandem base substitutions, mainly at 5’-GG and 5’-GA sequences, which would arise from the intra-strand crosslinks. These mutation features are different from those of other aldehydes such as crotonaldehyde, acrolein, glyoxal and methylglyoxal. These findings provide molecular clues to improve our understanding of the genotoxicity and carcinogenicity of formaldehyde.

  3. Host DNA damage response facilitates African swine fever virus infection.

    Science.gov (United States)

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2013-07-26

    Studies with different viral infection models on virus interactions with the host cell nucleus have opened new perspectives on our understanding of the molecular basis of these interactions in African swine fever virus (ASFV) infection. The present study aims to characterize the host DNA damage response (DDR) occurring upon in vitro infection with the ASFV-Ba71V isolate. We evaluated protein levels during ASFV time-course infection, of several signalling cascade factors belonging to DDR pathways involved in double strand break repair - Ataxia Telangiectasia Mutated (ATM), ATM-Rad 3 related (ATR) and DNA dependent protein kinase catalytic subunit (DNA-PKcs). DDR inhibitory trials using caffeine and wortmannin and ATR inducible-expression cell lines were used to confirm specific pathway activation during viral infection. Our results show that ASFV specifically elicits ATR-mediated pathway activation from the early phase of infection with increased levels of H2AX, RPA32, p53, ATR and Chk1 phosphorylated forms. Viral p72 synthesis was abrogated by ATR kinase inhibitors and also in ATR-kd cells. Furthermore, a reduction of viral progeny was identified in these cells when compared to the outcome of infection in ATR-wt. Overall, our results strongly suggest that the ATR pathway plays an essential role for successful ASFV infection of host cells.

  4. Dynamics of the human nuclear proteome in response to DNA damage

    NARCIS (Netherlands)

    Dirksen, Eef Hubert Cecil

    2006-01-01

    The genome is constantly challenged by factors that can induce DNA damage and thereby threaten the viability of the cell. If DNA damage remains unrepaired it can lead to the development of cancer. Although much is known about the role of proteins and protein complexes in the cellular response to DNA

  5. Role of Rad54, Rad54b and Snm1 in DNA damage repair

    NARCIS (Netherlands)

    J. Wesoly (Joanna)

    2003-01-01

    textabstractThe aim of this thesis is to investigate the function of a number of genes involved in mammalian DNA damage repair, in particular in repair of DNA double-strand breaks (DSBs). Among a large number of different damages that can be introduced to DNA, DSBs are especially toxic. If left unre

  6. Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson's disease

    NARCIS (Netherlands)

    L.H. Sanders (Laurie); J. McCoy (Jennifer); X. Hu (Xiaoping); P.G. Mastroberardino (Pier); B.C. Dickinson (Bryan); C.J. Chang (Christopher); C.T. Chu (Charleen); B. van Houten (Bennett); J.T. Greenamyre (Timothy)

    2014-01-01

    textabstractDNA damage can cause (and result from) oxidative stress and mitochondrial impairment, both of which are implicated in the pathogenesis of Parkinson's disease (PD). We therefore examined the role of mitochondrial DNA (mtDNA) damage in human postmortem brain tissue and in in vivo and in vi

  7. Role of Rad54, Rad54b and Snm1 in DNA damage repair

    NARCIS (Netherlands)

    J. Wesoly (Joanna)

    2003-01-01

    textabstractThe aim of this thesis is to investigate the function of a number of genes involved in mammalian DNA damage repair, in particular in repair of DNA double-strand breaks (DSBs). Among a large number of different damages that can be introduced to DNA, DSBs are especially toxic. If

  8. Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson's disease

    NARCIS (Netherlands)

    L.H. Sanders (Laurie); J. McCoy (Jennifer); X. Hu (Xiaoping); P.G. Mastroberardino (Pier); B.C. Dickinson (Bryan); C.J. Chang (Christopher); C.T. Chu (Charleen); B. van Houten (Bennett); J.T. Greenamyre (Timothy)

    2014-01-01

    textabstractDNA damage can cause (and result from) oxidative stress and mitochondrial impairment, both of which are implicated in the pathogenesis of Parkinson's disease (PD). We therefore examined the role of mitochondrial DNA (mtDNA) damage in human postmortem brain tissue and in in vivo and in

  9. Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA

    DEFF Research Database (Denmark)

    Loft, Steffen; Danielsen, Pernille Høgh; Løhr, Mille;

    2012-01-01

    Oxidatively damaged DNA may be important in carcinogenesis. 8-Oxo-7,8-dihydroguanine (8-oxoGua) is an abundant and mutagenic lesion excised by oxoguanine DNA glycosylase 1 (OGG1) and measurable in urine or plasma by chromatographic methods with electrochemical or mass spectrometric detectors...... to air pollution, toxic metals, tobacco smoke and low plasma antioxidant levels, whereas fruit and vegetable intake or dietary interventions showed no association. In rodent studies some types of feed may be source of 8-oxoGua in collected urine. Of cancer therapies, cisplatin increased 8-oxo...

  10. DNA Damage Follows Repair Factor Depletion and Portends Genome Variation in Cancer Cells after Pore Migration.

    Science.gov (United States)

    Irianto, Jerome; Xia, Yuntao; Pfeifer, Charlotte R; Athirasala, Avathamsa; Ji, Jiazheng; Alvey, Cory; Tewari, Manu; Bennett, Rachel R; Harding, Shane M; Liu, Andrea J; Greenberg, Roger A; Discher, Dennis E

    2017-01-23

    Migration through micron-size constrictions has been seen to rupture the nucleus, release nuclear-localized GFP, and cause localized accumulations of ectopic 53BP1-a DNA repair protein. Here, constricted migration of two human cancer cell types and primary mesenchymal stem cells (MSCs) increases DNA breaks throughout the nucleoplasm as assessed by endogenous damage markers and by electrophoretic "comet" measurements. Migration also causes multiple DNA repair proteins to segregate away from DNA, with cytoplasmic mis-localization sustained for many hours as is relevant to delayed repair. Partial knockdown of repair factors that also regulate chromosome copy numbers is seen to increase DNA breaks in U2OS osteosarcoma cells without affecting migration and with nucleoplasmic patterns of damage similar to constricted migration. Such depletion also causes aberrant levels of DNA. Migration-induced nuclear damage is nonetheless reversible for wild-type and sub-cloned U2OS cells, except for lasting genomic differences between stable clones as revealed by DNA arrays and sequencing. Gains and losses of hundreds of megabases in many chromosomes are typical of the changes and heterogeneity in bone cancer. Phenotypic differences that arise from constricted migration of U2OS clones are further illustrated by a clone with a highly elongated and stable MSC-like shape that depends on microtubule assembly downstream of the transcription factor GATA4. Such changes are consistent with reversion to a more stem-like state upstream of cancerous osteoblastic cells. Migration-induced genomic instability can thus associate with heritable changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Inter-laboratory variation in DNA damage using a standard comet assay protocol.

    Science.gov (United States)

    Forchhammer, Lykke; Ersson, Clara; Loft, Steffen; Möller, Lennart; Godschalk, Roger W L; van Schooten, Frederik J; Jones, George D D; Higgins, Jennifer A; Cooke, Marcus; Mistry, Vilas; Karbaschi, Mahsa; Collins, Andrew R; Azqueta, Amaya; Phillips, David H; Sozeri, Osman; Routledge, Michael N; Nelson-Smith, Kirsty; Riso, Patrizia; Porrini, Marisa; Matullo, Giuseppe; Allione, Alessandra; Stępnik, Maciej; Steepnik, Maciej; Komorowska, Magdalena; Teixeira, João Paulo; Costa, Solange; Corcuera, Laura-Ana; López de Cerain, Adela; Laffon, Blanca; Valdiglesias, Vanessa; Møller, Peter

    2012-11-01

    There are substantial inter-laboratory variations in the levels of DNA damage measured by the comet assay. The aim of this study was to investigate whether adherence to a standard comet assay protocol would reduce inter-laboratory variation in reported values of DNA damage. Fourteen laboratories determined the baseline level of DNA strand breaks (SBs)/alkaline labile sites and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites in coded samples of mononuclear blood cells (MNBCs) from healthy volunteers. There were technical problems in seven laboratories in adopting the standard protocol, which were not related to the level of experience. Therefore, the inter-laboratory variation in DNA damage was only analysed using the results from laboratories that had obtained complete data with the standard comet assay protocol. This analysis showed that the differences between reported levels of DNA SBs/alkaline labile sites in MNBCs were not reduced by applying the standard assay protocol as compared with the laboratory's own protocol. There was large inter-laboratory variation in FPG-sensitive sites by the laboratory-specific protocol and the variation was reduced when the samples were analysed by the standard protocol. The SBs and FPG-sensitive sites were measured in the same experiment, indicating that the large spread in the latter lesions was the main reason for the reduced inter-laboratory variation. However, it remains worrying that half of the participating laboratories obtained poor results using the standard procedure. This study indicates that future comet assay validation trials should take steps to evaluate the implementation of standard procedures in participating laboratories.

  12. Association of DNA damage and dyslipidemia with polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Manikkumar R

    2013-02-01

    Full Text Available Polycystic ovary syndrome (PCOS is associated with hyperinsuli-nemia and insulin resistance which may lead to cardiovascular diseases. Evidence for cardiovascular events in women who were affected by PCOS during fertile age is limited. The pathogenesis is unknown; however, it is a complex multigenetic disorder. The present study was undertaken to evaluate the various cardiovas-cular risk factors and their DNA repair efficiency in women with PCOS by investigating the biochemical, endocrinological and mo-lecular cytogenetic alterations. These investigations were carried out in 116 women in the age group of 15-35 years clinically diag-nosed with PCOS. Data were compared with that of 50 age-matched healthy normal women. Fasting blood sugar (FBS, Lipid profile, Follicle-Stimulating Hormone (FSH and Luteinizing Hor-mone (LH, Prolactin and Estradiol were estimated after getting the informed consent. Mutagen induced chromosome sensitivity analysis was carried out in the lymphocytes of the subjects to as-sess the DNA repair proficiency. Fasting Blood Sugar, total cho-lesterol and LDL cholesterol were found to be elevated whereas HDL cholesterol was found to be lowered in the test subjects. FSH, LH and prolactin were also found to be significantly elevated in the test subjects. Change in the estradiol concentration in the test subjects was not significant. The mutagen sensitivity analysis revealed a significant elevation in break per cell (b/c values indi-cating a deficiency in the DNA repair mechanism / DNA damage in PCOS patients. Modification of life style by changing the dietary habit and sedentary life style will help to reduce the oxidative stress and may increase the ovarian function and a sensible life-style management is recommended for reducing the risk for CVD.

  13. DNA damage in gill cells of Corbicula japonica exposed to natural and anthropogenic stressors

    Directory of Open Access Journals (Sweden)

    Valentina Vladimirovna Slobodskova

    2015-06-01

    The results are presented as the percentage distribution of nuclei in the various damage classes and summarized in an index of DNA integrity or genetic damage index GDI (Cavas, Kohen, 2008: The results from our study showed significant level of DNA damage from the C. japonica which were collected from polluted sites. Unpolluted sites were described as with no or minimal DNA strand breaks. Mollusks collected at polluted areas (estuary Razdolnaya river, lagoon Tihaya showed high levels of DNA damage, GDI is equal to 3.22±0.2 and 3.11±0.7 in gills respectively. C. japonica obtained from a ‘clean’ areas (estuary Artemovka river, estuary Partizanskaya river demonstrate less high level of DNA damage destruction, GDI is equal to 0,6±0,08 and 0,71±0,12 in gills respectively. Lipid peroxidation level was assayed measurement of malondialdehyde (MDA, a decomposition product of polyunsaturated fatty acids hydro peroxides were determined by the TBA reaction. The absorbance was read at 532 nm after removal of substances (TBARS formed was calculated by using an extinction coefficient of 1.56*105 M-1 cm -1 formed per g dry weight. C. japonica sampled at Artemovka estuary, Partizanskaya estuary, Razdolnaya estuary, Tihaya lagoon showed LPX level (3.46±0.59, 5.62±0.82, 12.85±0.52, 15.32±1.13 nmol TBARS/g dry wt in gills respectively. In conclusion, it can be noted that in the course of the experiment we found a clear relationship between the amount of DNA damage and the level of peroxidation products (MDA in the gills of bivalve C. japonica, collected from sites with varying degrees of anthropogenic load. It should be emphasized that the shellfish that live in polluted areas are likely to be in a state of oxidative stress, which is one of the causes the degradation of DNA.

  14. Evaluation of DNA damage in oral precancerous and squamous cell carcinoma patients by single cell gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Sanjit Mukherjee

    2011-01-01

    Materials and Methods: Peripheral blood was collected by venepuncture and comet assay was performed using SCGE. Mean tail length was compared between diagnostic groups and between different oral habit groups using t-tests and analysis of variance (ANOVA. Pearson′s product moment correlation was used to examine the linear association between the extent of DNA damage and oral habit pack-years. Scheffe′s pair-wise test was employed to adjust for multiple comparisons. Results: None of the controls were associated with any oral habits. Mean (±SD tail lengths (in mm for cancer (24.95 ± 5.09 and leukoplakia (12.96 ± 2.68 were significantly greater than in controls (8.54 ± 2.55, P<0.05. After adjustment, well-, moderately, and poorly differentiated carcinomas had significantly greater tail length than controls. Whereas the extent of DNA damage in cancer cases was significantly greater in leukoplakia than in compared to OSMF (11.03 ± 5.92, the DNA damage in latter was not different from controls. DNA damage for people with any oral habit (19.78 ± 7.77 was significantly greater than those with no habits (8.54 ± 2.55; P<0.0001. Conclusions: DNA damage measured by SCGE is greater in leukoplakia and squamous cell carcinoma, but not in OSMF. Deleterious oral habits are also associated with greater DNA damage.

  15. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  16. Visualizing the search for radiation-damaged DNA bases in real time

    Science.gov (United States)

    Lee, Andrea J.; Wallace, Susan S.

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  17. Observation of DNA damage of human hepatoma cells irradiated by heavy ions using comet assay

    Institute of Scientific and Technical Information of China (English)

    Li-Mei Qiu; Wen-Jian Li; Xin-Yue Pang; Qing-Xiang Gao; Yan Feng; Li-Bin Zhou; Gao-Hua Zhang

    2003-01-01

    AIM: Now many countries have developed cancer therapy with heavy ions, especially in GSI (Gesellschaft fur Schwerionenforschung mbH, Darmstadt, Germany),remarkable results have obtained, but due to the complexity of particle track structure, the basic theory still needs further researching. In this paper, the genotoxic effects of heavy ions irradiation on SMMC-7721 cells were measured using the single cell gel electrophoresis (comet assay). The information about the DNA damage made by other radiations such as X-ray, γ-ray, UV and fast neutron irradiation is very plentiful, while little work have been done on the heavy ions so far. Hereby we tried to detect the reaction of liver cancer cells to heavy ion using comet assay, meanwhile to establish a database for clinic therapy of cancer with the heavy ions.METHODS: The human hepatoma cells were chosen as the test cell line irradiated by 80Mev/u 20Ne10+ on HIRFL (China), the radiation-doses were 0, 0.5, 1, 2, 4 and 8 Gy,and then comet assay was used immediately to detect the DNA damages, 100-150 cells per dose-sample (30-50 cells were randomly observed at constant depth of the gel). The tail length and the quantity of the cells with the tail were put down. EXCEL was used for statistical analysis.RESULTS: We obtained clear images by comet assay and found that SMMC-7721 cells were all damaged apparently from the dose 0.5Gy to 8Gy (t-test: P<0.001, vs control).The tail length and tail moment increased as the doses increased, and the number of cells with tails increased with increasing doses. When doses were higher than 2Gy, nearly 100 % cells were damaged. Furthermore, both tail length and tail moment, showed linear equation.CONCLUSION: From the clear comet assay images, our experiment proves comet assay can be used to measure DNA damages by heavy ions. Meanwhile DNA damages have a positive correlation with the dose changes of heavy ions and SMMC-7721 cells have a great radiosensitivity to 20Ne10+.Different reactions

  18. Urinary Concentrations of Parabens and Serum Hormone Levels, Semen Quality Parameters, and Sperm DNA Damage

    Science.gov (United States)

    Meeker, John D.; Yang, Tiffany; Ye, Xiaoyun; Calafat, Antonia M.; Hauser, Russ

    2011-01-01

    Background Parabens are commonly used as antimicrobial preservatives in cosmetics, pharmaceuticals, and food and beverage processing. Widespread human exposure to parabens has been recently documented, and some parabens have demonstrated adverse effects on male reproduction in animal studies. However, human epidemiologic studies are lacking. Objective We investigated relationships between urinary concentrations of parabens and markers of male reproductive health in an ongoing reproductive epidemiology study. Methods Urine samples collected from male partners attending an infertility clinic were analyzed for methyl paraben (MP), propyl paraben (PP), butyl paraben (BP), and bisphenol A (BPA). Associations with serum hormone levels (n = 167), semen quality parameters (n = 190), and sperm DNA damage measures (n = 132) were assessed using multivariable linear regression. Results Detection rates in urine were 100% for MP, 92% for PP, and 32% for BP. We observed no statistically significant associations between MP or PP and the outcome measures. Categories of urinary BP concentration were not associated with hormone levels or conventional semen quality parameters, but they were positively associated with sperm DNA damage (p for trend = 0.03). When urinary BPA quartiles were added to the model, BP and BPA were both positively associated with sperm DNA damage (p for trend = 0.03). Assessment of paraben concentrations measured on repeated urine samples from a subset of the men (n = 78) revealed substantial temporal variability. Conclusions We found no evidence for a relationship between urinary parabens and hormone levels or semen quality, although intraindividual variability in exposure and a modest sample size could have limited our ability to detect subtle relationships. Our observation of a relationship between BP and sperm DNA damage warrants further investigation. PMID:20876036

  19. Aberrant DNA damage response pathways may predict the outcome of platinum chemotherapy in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Dimitra T Stefanou

    Full Text Available Ovarian carcinoma (OC is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780 and one resistant (A2780/C30 to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs from OC patients, sensitive (n = 7 or resistant (n = 4 to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9 were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05. Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03. Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05. We conclude

  20. Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage.

    Science.gov (United States)

    Taylor, John-Stephen

    2015-12-01

    How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.

  1. Oxidative DNA damage after transplantation of the liver and small intestine in pigs

    DEFF Research Database (Denmark)

    Loft, S; Larsen, P N; Rasmussen, A

    1995-01-01

    Oxidative damage is thought to play an important role in ischemia/reperfusion injury, including the outcome of transplantation of the liver and intestine. We have investigated oxidative DNA damage after combined transplantation of the liver and small intestine in 5 pigs. DNA damage was estimated...... to DNA results from reperfusion of transplanted small intestine and liver in pigs, as estimated from the readily excreted repair product 8-oxodG....

  2. Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2)

    OpenAIRE

    Pérez-Caro, M.; Bermejo-Rodríguez, C.; González-Herrero, I; Sánchez-Beato, M; Piris, M. A.; Sánchez-García, I

    2008-01-01

    Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in respon...

  3. Particle fluence measurements by activation technique for radiation damage studies

    CERN Document Server

    León-Florián, E; Furetta, C; Leroy, Claude

    1995-01-01

    High-level radiation environment can produce radiation damage in detectors and their associate electronic components. The establishment of a correlation between damage, irradiation level and absorbed dose requires a precise measurement of the fluence of particles causing the damage. The activation technique is frequently used for performing particle fluence measurements. A review of this technique is presented.

  4. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    Science.gov (United States)

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (Padduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response.

  5. The impact of SF3B1 mutations in CLL on the DNA-damage response

    DEFF Research Database (Denmark)

    Te Raa, G D; Derks, I A M; Navrkalova, V;

    2015-01-01

    Mutations or deletions in TP53 or ATM are well-known determinants of poor prognosis in chronic lymphocytic leukemia (CLL), but only account for approximately 40% of chemo-resistant patients. Genome-wide sequencing has uncovered novel mutations in the splicing factor sf3b1, that were in part...... associated with ATM aberrations, suggesting functional synergy. We first performed detailed genetic analyses in a CLL cohort (n=110) containing ATM, SF3B1 and TP53 gene defects. Next, we applied a newly developed multiplex assay for p53/ATM target gene induction and measured apoptotic responses to DNA damage....... Interestingly, SF3B1 mutated samples without concurrent ATM and TP53 aberrations (sole SF3B1) displayed partially defective ATM/p53 transcriptional and apoptotic responses to various DNA-damaging regimens. In contrast, NOTCH1 or K/N-RAS mutated CLL displayed normal responses in p53/ATM target gene induction...

  6. Anthracyclines Induce DNA Damage Response-Mediated Protection against Severe Sepsis

    Science.gov (United States)

    Figueiredo, Nuno; Chora, Angelo; Raquel, Helena; Pejanovic, Nadja; Pereira, Pedro; Hartleben, Björn; Neves-Costa, Ana; Moita, Catarina; Pedroso, Dora; Pinto, Andreia; Marques, Sofia; Faridi, Hafeez; Costa, Paulo; Gozzelino, Raffaella; Zhao, Jimmy L.; Soares, Miguel P.; Gama-Carvalho, Margarida; Martinez, Jennifer; Zhang, Qingshuo; Döring, Gerd; Grompe, Markus; Simas, J. Pedro; Huber, Tobias B.; Baltimore, David; Gupta, Vineet; Green, Douglas R.; Ferreira, João A.; Moita, Luis F.

    2014-01-01

    Summary Severe sepsis remains a poorly understood systemic inflammatory condition with high mortality rates and limited therapeutic options in addition to organ support measures. Here we show that the clinically approved group of anthracyclines acts therapeutically at a low dose regimen to confer robust protection against severe sepsis in mice. This salutary effect is strictly dependent on the activation of DNA damage response and autophagy pathways in the lung, as demonstrated by deletion of the ataxia telangiectasia mutated (Atm) or the autophagy-related protein 7 (Atg7) specifically in this organ. The protective effect of anthracyclines occurs irrespectively of pathogen burden, conferring disease tolerance to severe sepsis. These findings demonstrate that DNA damage responses, including the ATM and Fancony Anemia pathways, are important modulators of immune responses and might be exploited to confer protection to inflammation-driven conditions, including severe sepsis. PMID:24184056

  7. Oxidatively damaged DNA and its repair after experimental exposure to wood smoke in healthy humans

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Bräuner, Elvira Vaclavik; Barregard, Lars

    2008-01-01

    Particulate matter from wood smoke may cause health effects through generation of oxidative stress with resulting damage to DNA. We investigated oxidatively damaged DNA and related repair capacity in peripheral blood mononuclear cells (PBMC) and measured the urinary excretion of repair products...... after controlled short-term exposure of human volunteers to wood smoke. Thirteen healthy adults were exposed first to clean air and then to wood smoke in a chamber during 4h sessions, 1 week apart. Blood samples were taken 3h after exposure and on the following morning, and urine was collected after...... chromatography with mass spectrometry. The morning following exposure to wood smoke the PBMC levels of SB were significantly decreased and the mRNA levels of hOGG1 significantly increased. FPG sites, hOGG1 activity, expression of hNUDT1 and hHO1, urinary excretion of 8-oxodG and 8-oxoGua did not change...

  8. Poetry in motion: Increased chromosomal mobility after DNA damage.

    Science.gov (United States)

    Smith, Michael J; Rothstein, Rodney

    2017-08-01

    Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical steps of HR are known, the physical movements of chromosomes that must underlie the pairing of homologous sequence during mitotic DSB repair have remained mysterious. Recently, several groups have begun to use a variety of genetic and cell biological tools to study this important question. These studies reveal that both damaged and undamaged loci increase the volume of the nuclear space that they explore after the formation of DSBs. This DSB-induced increase in chromosomal mobility is regulated by many of the same factors that are important during HR, such as ATR-dependent checkpoint activation and the recombinase Rad51, suggesting that this phenomenon may facilitate the search for homology. In this perspective, we review current research into the mobility of chromosomal loci during HR, as well as possible underlying mechanisms, and discuss the critical questions that remain to be answered. Although we focus primarily on recent studies in the budding yeast, Saccharomyces cerevisiae, examples of experiments performed in higher eukaryotes are also included, which reveal that increased mobility of damaged loci is a process conserved throughout evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Terrestrial gastropods (Helix spp) as sentinels of primary DNA damage for biomonitoring purposes: a validation study.

    Science.gov (United States)

    Angeletti, Dario; Sebbio, Claudia; Carere, Claudio; Cimmaruta, Roberta; Nascetti, Giuseppe; Pepe, Gaetano; Mosesso, Pasquale

    2013-04-01

    We validated the alkaline comet assay in two species of land snail (Helix aspersa and Helix vermiculata) to test their suitability as sentinels for primary DNA damage in polluted environments. The study was conducted under the framework of a biomonitoring program for a power station in Central Italy that had recently been converted from oil to coal-fired plant. After optimizing test conditions, the comet assay was used to measure the % Tail DNA induced by in vitro exposure of hemocytes to different concentrations of a reactive oxygen species (H2 O2 ). The treatment induced significant increases in this parameter with a concentration effect, indicating the effectiveness of the assay in snail hemocytes. After evaluating possible differences between the two species, we sampled them in three field sites at different distances from the power station, and in two reference sites assumed to have low or no levels of pollution. No species differences emerged. Percent Tail DNA values in snails from the sites near the power station were higher than those from control sites. An inverse correlation emerged between % Tail DNA and distance from the power station, suggesting that the primary DNA damage decreased as distance increased away from the pollution source. Detection of a gradient of heavy metal concentration in snail tissues suggests that these pollutants are a potential cause of the observed pattern. The comet assay appears to be a suitable assay and Helix spp. populations suitable sentinels to detect the genotoxic impact of pollutants.

  10. DNA Damage Response and DNA Repair in Skeletal Myocytes From a Mouse Model of Spinal Muscular Atrophy.

    Science.gov (United States)

    Fayzullina, Saniya; Martin, Lee J

    2016-09-01

    We studied DNA damage response (DDR) and DNA repair capacities of skeletal muscle cells from a mouse model of infantile spinal muscular atrophy (SMA) caused by loss-of-function mutation of survival of motor neuron (Smn). Primary myocyte cultures derived from skeletal muscle satellite cells of neonatal control and mutant SMN mice had similar myotube length, myonuclei, satellite cell marker Pax7 and differentiated myotube marker myosin, and acetylcholine receptor clustering. DNA damage was induced in differentiated skeletal myotubes by γ-irradiation, etoposide, and methyl methanesulfonate (MMS). Unexposed control and SMA myotubes had stable genome integrity. After γ-irradiation and etoposide, myotubes repaired most DNA damage equally. Control and mutant myotubes exposed to MMS exhibited equivalent DNA damage without repair. Control and SMA myotube nuclei contained DDR proteins phospho-p53 and phospho-H2AX foci that, with DNA damage, dispersed and then re-formed similarly after recovery. We conclude that mouse primary satellite cell-derived myotubes effectively respond to and repair DNA strand-breaks, while DNA alkylation repair is underrepresented. Morphological differentiation, genome stability, genome sensor, and DNA strand-break repair potential are preserved in mouse SMA myocytes; thus, reduced SMN does not interfere with myocyte differentiation, genome integrity, and DNA repair, and faulty DNA repair is unlikely pathogenic in SMA.

  11. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  12. Effect of low energy electron irradiation on DNA damage by Cu{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Dept. of Physics, Chungnam National University, Daejeon (Korea, Republic of); Park, Yeun Soo [Plasma Technology Research Center, National Fusion Research Institute, Gunsan (Korea, Republic of)

    2017-03-15

    The combined effect of the low energy electron (LEE) irradiation and Cu{sup 2+} ion on DNA damage was investigated. Lyophilized pBR322 plasmid DNA films with various concentrations (1–15 mM) of Cu{sup 2+} ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

  13. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  14. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tangliang Li

    2016-06-01

    Full Text Available Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal and progenitor progenies (differentiation, which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  15. The DNA damage response in viral-induced cellular transformation.

    Science.gov (United States)

    Nikitin, P A; Luftig, M A

    2012-01-31

    The DNA damage response (DDR) has emerged as a critical tumour suppressor pathway responding to cellular DNA replicative stress downstream of aberrant oncogene over-expression. Recent studies have now implicated the DDR as a sensor of oncogenic virus infection. In this review, we discuss the mechanisms by which tumour viruses activate and also suppress the host DDR. The mechanism of tumour virus induction of the DDR is intrinsically linked to the need for these viruses to promote an S-phase environment to replicate their nucleic acid during infection. However, inappropriate expression of viral oncoproteins can also activate the DDR through various mechanisms including replicative stress, direct interaction with DDR components and induction of reactive oxygen species. Given the growth-suppressive consequences of activating the DDR, tumour viruses have also evolved mechanisms to attenuate these pathways. Aberrant expression of viral oncoproteins may therefore promote tumourigenesis through increased somatic mutation and aneuploidy due to DDR inactivation. This review will focus on the interplay between oncogenic viruses and the DDR with respect to cellular checkpoint control and transformation.

  16. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Institute of Scientific and Technical Information of China (English)

    Tangliang Li; Zhong-Wei Zhou; Zhenyu Ju; Zhao-Qi Wang

    2016-01-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employ-ing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically reg-ulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  17. Retinoblastoma loss modulates DNA damage response favoring tumor progression.

    Directory of Open Access Journals (Sweden)

    Marcos Seoane

    Full Text Available Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS, crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.

  18. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Science.gov (United States)

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  19. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Shahverdi, Ahmad Reza [Department of Pharmaceutical Biotechnology and Biotechnology Research Centre, Faculty of Pharmacy, TUMS, Tehran (Iran, Islamic Republic of); Ahmadi, Abbas [Department of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia (Iran, Islamic Republic of); Baeeri, Maryam; Mohammadirad, Azadeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: mohammad.abdollahi@utoronto.ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences (TUMS), Tehran (Iran, Islamic Republic of)

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential. Highlights: ► Cisplatin (CIS) affects spermatozoa as a male reproductive toxicant. ► Effect of Nano-Se on CIS-induced spermatotoxicity was investigated. ► CIS-exposure induces oxidative sperm DNA damage

  20. An electrochemical DNA-sensor developed with the use of methylene blue as a redox indicator for the detection of DNA damage induced by endocrine-disrupting compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiaoyun [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); College of Chemistry, Nanchang University, Nanchang 330031 (China); Ni, Yongnian, E-mail: ynni@ncu.edu.cn [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); College of Chemistry, Nanchang University, Nanchang 330031 (China); Kokot, Serge, E-mail: s.kokot@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4001 (Australia)

    2015-03-31

    Highlights: • A new method for detecting DNA damage was successfully developed. • A novel biosensor, MB/dsDNA/GO-CS/AuNPs/GCE biosensor was constructed. • Loading/release of MB in/out of dsDNA/GO-CS/AuNPs film was investigated. • DNA damage induced by BPA, NP and OP was detected and estimated. - Abstract: An electrochemical biosensor capable of indirect detection of DNA damage induced by any one of the three endocrine-disrupting compounds (EDCs) – bisphenol A (BPA), 4-nonylphenol (NP) and 4-t-octylphenol (OP), has been researched and developed. The methylene blue (MB) dye was used as the redox indicator. The glassy carbon electrode (GCE) was modified by the assembled dsDNA/graphene oxide-chitosan/gold nano-particles to produce a dsDNA/GO-CS/AuNPs/GCE sensor. It was characterized with the use of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and scanning electron microscopy (SEM) techniques. The loading/release of the MB dye by the dsDNA/GO-CS/AuNPs film was investigated, and the results showed that the process was reversible. Based on this, the sensor was used to measure the difference between the loading capabilities of intact and damaged dsDNA in the films. The sensor was then successfully applied to detect DNA damage electrochemically. The differential pulse voltammetry (DPV) peak current ratio for MB, observed before and after DNA damage, increased linearly in the presence the BPA, NP or OP compounds; the treatment range was 10–60 min, and the respective damage rates were 0.0069, 0.0044 and 0.0031 min{sup −1}, respectively. These results were confirmed by the binding constants: 2.09 × 10{sup 6} M{sup −1} (BPA-DNA), 1.28 × 10{sup 6} M{sup −1} (NP-DNA) and 9.33 × 10{sup 5} M{sup −1} (OP-DNA), all of which were obtained with the use of differential pulse stripping voltammetry (DPSV)

  1. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    Science.gov (United States)

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  3. DNA damage by smoke: Protection by turmeric and other inhibitors of ROS

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, L.; Shalini, V.K. (Department of Nutrition and Food Safety, Central Food Technological Research Institute, Mysore (India))

    1991-01-01

    Twigs-dry leaves smoke condensate (TDS), as a source of clastogenic ROS and carcinogenic PAH, was investigated for its in vitro DNA-damaging effect in calf thymus DNA and human peripheral lymphocytes. An aqueous turmeric component--Aq.T--with an established antioxidant activity, was tested as a DNA protectant. TDS induced 13-fold damage to calf thymus DNA as judged by the emergence of a DNA damage specific, fluorescent product (em: 405 nm). Aq.T at 800 ng/microL extended 69% protection to calf thymus DNA and was comparable to the other protectants such as curcumin, BHA, vitamin E, SOD, and CAT. In human peripheral lymphocytes, TDS induced extensive DNA damage in comparison with the tumor promoter TPA, as judged by FADU. Aq.T at 300 ng/microL extended 90% protection to human lymphocyte DNA against TDS-induced damage, and was more effective than the other protectants--DABCO, D-mannitol, sodium benzoate, vitamin E (ROS quenchers), SOD, CAT (antioxidant enzymes), tannic acid, flufenamic acid, BHA, BHT, n-PG, curcumin and quercetin (antioxidants). Aq.T offered 65% protection to human lymphocyte DNA against TPA-induced damage and was comparable to SOD. The above results indicate that TDS induces substantial DNA damage in calf thymus DNA and human lymphocytes and Aq.T is an efficient protectant.

  4. 8-oxoG DNA Glycosylase-1 Inhibition Sensitizes Neuro-2a Cells to Oxidative DNA Base Damage Induced by 900 MHz Radiofrequency Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Xiaoya Wang

    2015-09-01

    Full Text Available Background/Aims: The purpose of this study was to explore the in vitro putative genotoxicity during exposure of Neuro-2a cells to radiofrequency electromagnetic fields (RF-EMFs with or without silencing of 8-oxoG DNA glycosylase-1 (OGG1. Methods: Neuro-2a cells treated with or without OGG1 siRNA were exposed to 900 MHz Global System for Mobile Communication (GSM Talk signals continuously at a specific absorption rate (SAR of 0, 0.5, 1 or 2 W/kg for 24 h. DNA strand breakage and DNA base damage were measured by the alkaline comet assay and a modified comet assay using formamidopyrimidine DNA glycosylase (FPG, respectively. Reactive oxygen species (ROS levels and cell viability were monitored using the non-fluorescent probe 2, 7-dichlorofluorescein diacetate (DCFH-DA and CCK-8 assay. Results: Exposure to 900 MHz RF-EMFs with insufficient energy could induce oxidative DNA base damage in Neuro-2a cells. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS. Without OGG1 siRNA, 2 W/kg RF-EMFs induced oxidative DNA base damage in Neuro-2a cells. Interestingly, with OGG1 siRNA, RF-EMFs could cause DNA base damage in Neuro-2a cells as low as 1 W/kg. However, neither DNA strand breakage nor altered cell viability was observed. Conclusion: Even if further studies remain conducted we support the hypothesis that OGG1 is involved in the process of DNA base repair and may play a pivotal role in protecting DNA bases from RF-EMF induced oxidative damage.

  5. Cancer cells that survive checkpoint adaptation contain micronuclei that harbor damaged DNA.

    Science.gov (United States)

    Lewis, Cody W; Golsteyn, Roy M

    2016-11-16

    We have examined the relationship between checkpoint adaptation (mitosis with damaged DNA) and micronuclei. Micronuclei in cancer cells are linked to genomic change, and may induce chromothripsis (chromosome shattering). We measured the cytotoxicity of the cancer drug cisplatin in M059K (glioma fibroblasts, IC50 15 μM). Nearly 100% of M059K cells were positive for histone γH2AX staining after 48 h treatment with a cytotoxic concentration of cisplatin. The proportion of micronucleated cells, as confirmed by microscopy using DAPI and lamin A/C staining, increased from 24% to 48%, and the total micronuclei in surviving cells accumulated over time. Promoting entry into mitosis with a checkpoint inhibitor increased the number of micronuclei in cells whereas blocking checkpoint adaptation with a Cdk inhibitor reduced the number of micronuclei. Interestingly, some micronuclei underwent asynchronous DNA replication, relative to the main nuclei, as measured by deoxy-bromo-uracil (BrdU) staining. These micronuclei stained positive for histone γH2AX, which was linked to DNA replication, suggesting that micronuclei arise from checkpoint adaptation and that micronuclei may continue to damage DNA. By contrast the normal cell line WI-38 did not undergo checkpoint adaptation when treated with cisplatin and did not show changes in micronuclei number. These data reveal that the production of micronuclei by checkpoint adaptation is part of a process that contributes to genomic change.

  6. Comparison of lymphocyte DNA damage levels and total antioxidant capacity in Korean and American diet

    Science.gov (United States)

    Lee, Min Young; Kim, Hyun A

    2017-01-01

    BACKGROUND/OBJECTIVE This study aims to measure the in vitro antioxidant capacity of Korean diet (KD) with American diet (AD) as a control group and to examine the ex vivo DNA damage reduction effect on human lymphocytes. MATERIALS/METHODS The KD applied in this study is the standard one-week meals for Koreans (2,000 kcal/day) suggested by 2010 Dietary Reference Intakes for Koreans. The AD, which is the control group, is a one-week menu (2,000 kcal/day) that consists of foods that Americans would commonly take in according to the National Health and Nutrition Examination Survey. The antioxidant capacity of each menu was measured by means of the total phenolic assay and 3 in vitro antioxidant activity assays (2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, trolox equivalent antioxidant capacity (TEAC), Oxygen radical absorbance capacity (ORACROO·)), while the extent of ex vivo lymphocyte DNA damage was measured by means of the comet assay. RESULTS When measured by means of TEAC assay, the in vitro antioxidant capacity of the KD of the day was higher than that of the AD (P < 0.05) while there was no significant difference in total phenolic contents and DPPH and ORAC assays. The ex vivo lymphocyte DNA damage protective effect of the KD was significantly higher than that of the AD (P < 0.01). As for the one-week menu combining the menus for 7 days, the total phenolic assay (P < 0.05) and in vitro antioxidant capacity (P < 0.001, DPPH; P < 0.01, TEAC) of the KD menu were significantly higher than those of the AD menu. Likewise, the ex vivo DNA damage reduction rate of the Korean seven-day menu was significantly higher than that of the American menu (P < 0.01). CONCLUSION This study demonstrates that the high antioxidant capacity and DNA damage protective effect of KD, which consists generally of various plant foods, are higher than those of typical AD.

  7. DNA damage in grasshoppers' larvae--comet assay in environmental approach.

    Science.gov (United States)

    Augustyniak, Maria; Orzechowska, Helena; Kędziorski, Andrzej; Sawczyn, Tomasz; Doleżych, Bogdan

    2014-02-01

    The comet assay that provides a quantitative measure of the DNA-strand breaks may be used for assessing the 'genotoxic potential' of the environment. Young adults of Chorthippus brunneus (Orthoptera), collected at three sites in Southern Poland, differing in the level of pollution, particularly with heavy metals: Pilica (reference), Olkusz (moderately polluted) and Szopienice (heavily polluted) - were allowed to mate under laboratory conditions that were free from any pollution. Egg-pods were collected and, after diapause, brain cells from one-day old larvae were used for the comet assay. We compared the level of DNA damage in the larvae originating from these sites and also measured time-dependent DNA repair after single 10min. application of H2O2 (20μM final concentration). The DNA damage was relatively low in larval cells irrespectively of the site pollution their parents came from. However, measured comet parameters - tail DNA content (TDNA), tail length (TL), and olive tail moment (OTM) - were significantly higher in larvae originating from the Szopienice site than in those from the reference site. Incubation of cells with H2O2 resulted in significantly higher values of the comet parameters in the insects from all the study sites with the highest ones observed in the offspring of grasshoppers from Szopienice. Moreover, DNA repair, following the treatment, did not occur in the latter group. These data contribute to almost unexplored subject of genotoxic effects of environmental pollutants in insects. They are discussed in the light of the concept of adaptive strategies in energy allocation depending on the level of biotope pollution.

  8. GENETIC AND MOLECULAR ANALYSIS OF DNA DAMAGE REPAIR AND TOLERANCE PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Radiation can damage cellular components, including DNA. Organisms have developed a panoply of means of dealing with DNA damage. Some repair paths have rather narrow substrate specificity (e.g. photolyases), which act on specific pyrimidine photoproducts in a specific type (e.g., DNA) and conformation (double-stranded B conformation) of nucleic acid. Others, for example, nucleotide excision repair, deal with larger classes of damages, in this case bulky adducts in DNA. A detailed discussion of DNA repair mechanisms is beyond the scope of this article, but one can be found in the excellent book of Friedberg et al. [1] for further detail. However, some DNA damages and paths for repair of those damages important for photobiology will be outlined below as a basis for the specific examples of genetic and molecular analysis that will be presented below.

  9. DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Qiujing Yu

    2015-05-01

    Full Text Available Expression of type I interferons (IFNs can be induced by DNA-damaging agents, but the mechanisms and significance of this regulation are not completely understood. We found that the transcription factor IRF3, activated in an ATM-IKKα/β-dependent manner, stimulates cell-autonomous IFN-β expression in response to double-stranded DNA breaks. Cells and tissues with accumulating DNA damage produce endogenous IFN-β and stimulate IFN signaling in vitro and in vivo. In turn, IFN acts to amplify DNA-damage responses, activate the p53 pathway, promote senescence, and inhibit stem cell function in response to telomere shortening. Inactivation of the IFN pathway abrogates the development of diverse progeric phenotypes and extends the lifespan of Terc knockout mice. These data identify DNA-damage-response-induced IFN signaling as a critical mechanism that links accumulating DNA damage with senescence and premature aging.

  10. Protective effect of Nigella sativa and thymoquinone on serum/glucose deprivation-induced DNA damage in PC12 cells

    Directory of Open Access Journals (Sweden)

    Beheshteh Babazadeh

    2012-06-01

    Full Text Available Objective: The discovery and development of natural products with potent antioxidant properties has been one of the most interesting and promising approaches in the search for treatment of CNS injuries. The most significant consequence of the oxidative stress is thought to be the DNA modifications, which can become permanent via the formation of mutations and other types of genomic instability resulting cellular dysfunction. Serum/glucose deprivation (SGD has served as an excellent in vitro model for the understanding of the molecular mechanisms of neuronal damage during ischemia and for the development of neuroprotective drugs against ischemia-induced brain injury. Nigella sativa (N. sativa seeds and thymoquinone (TQ, its most abundant constituent, have been shown to possess anti-inflammatory, antioxidant, chemopreventive and anti-neoplastic effects both in vitro and in vivo. Therefore, in this study we investigated genoprotective effects of N. sativa and TQ on DNA damage of PC12 cells under SGD condition. Materials and Methods: PC12 cells were cultured in DMEM medium containing 10% (v/v fetal bovine serum, 100 units/ml penicillin, and 100 µg/ml streptomycin. Initially cells were pretreated with different concentrations of N. sativa extract (NSE, (10, 50, 250 µg/ml and TQ (1, 5, 10 µg/ml for 6 h and then deprived of serum/glucose (SGD for 18 h. The alkaline comet assay was used to evaluate the effect of these compounds on DNA damage following ischemic insult. The amount of DNA in the comet tail (% tail DNA was measured as an indicator of DNA damage. Results: A significant increase in the % tail DNA was seen in nuclei of cells following SGD induced  DNA damage (p0.05. NSE and TQ pretreatment resulted in a significant decrease in DNA damage following ischemic insult (p

  11. Application of single-cell gel electrophoresis (comet) assay for assessing levels of DNA damage in canine and feline leukocytes.

    Science.gov (United States)

    Heaton, Paul R; Ransley, Raymond; Charlton, Chris J; Mann, Sarah J; Stevenson, Joy; Smith, Brigitte H E; Rawlings, John M; Harper, E Jean

    2002-06-01

    Increasing evidence suggests involvement of free-radical species in the development of oxidative DNA damage, the consequences of which have been implicated in a number of degenerative disorders associated with the aging process. Here we report the application of a single-cell gel electrophoresis (comet) assay for assessing levels of DNA damage in canine and feline leukocytes. Leukocytes were collected from 24 healthy adult cats and dogs and subjected to DNA damage ex vivo by exposure to a range of hydrogen peroxide (H(2)O(2)) concentrations (0-250 micromol/L). The optimal concentration of H(2)O(2) to induce a significant increase in DNA damage was 100 micromol/L for both canine and feline leukocyte samples. Levels of DNA damage were assessed and quantified by visual and computer image analysis. The results obtained showed high correlations between visual scoring and computer image analysis for feline samples (percentage DNA in tail, R(2) > 0.99; tail moment, R(2) > 0.95; tail length, R(2) > 0.90) and canine samples (percentage DNA in tail, R(2) > 0.97; tail moment, R(2) > 0.95; tail length, R(2) > 0.91). In conclusion, this method provides a way of assessing levels of DNA damage utilizing visual and/or computer image analysis in the feline and canine systems. With the capacity of the comet assay to be able to measure end products of free-radical reactions, it is a useful tool for determining the optimal effects of dietary antioxidants on a reliable biomarker of oxidative stress such as cellular DNA status in cats and dogs.

  12. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism

    Science.gov (United States)

    Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G

    2016-01-01

    Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041

  13. The advance and development of damage measurement technique of rock

    Institute of Scientific and Technical Information of China (English)

    YANG Geng-she(杨更社)

    2003-01-01

    The key problem of rock damage mechanics is that determination of the variable of rock damage and the establishment of damage constitutive relation of rock, which is inevitable involved in the measurement problem of rock. In this paper, the measurement technology and method of rock damage are comprehensively narrated, analyzed and studied. On the basis of the narrating the former study, a new method (Computerized Tomography,CT for short) is introduced, which is applied to rock damage measurement. On the other hand, some newest study results and laws in the field are also introduced, which are from some scholars, the author of this paper.

  14. DNA-damage response associated with occupational exposure, age and chronic inflammation in workers in the automotive industry.

    Science.gov (United States)

    Savina, Natalya V; Smal, Marharyta P; Kuzhir, Tatyana D; Ershova-Pavlova, Alla A; Goncharova, Roza I

    2012-10-09

    The evaluation of genome integrity in populations occupationally exposed to combine industrial factors is of medical importance. In the present study, the DNA-damage response was estimated by means of the alkaline comet assay in a sizeable cohort of volunteers recruited among workers in the automotive industry. For this purpose, freshly collected lymphocytes were treated with hydrogen peroxide (100μM, 1min, 4°C) in vitro, and the levels of basal and H(2)O(2)-induced DNA damage, and the kinetics and efficiency of DNA repair were measured during a 180-min interval after exposure. The parameters studied in the total cohort of workers were in a range of values prescribed for healthy adult residents of Belarus. Based on the 95th percentiles, individuals possessing enhanced cellular sensitivity to DNA damage were present in different groups, but the frequency was significantly higher among elderly persons and among individuals with chronic inflammatory diseases. The results indicate that the inter-individual variations in DNA-damage response should be taken into account to estimate adequately the environmental genotoxic effects and to identify individuals with an enhanced DNA-damage response due to the influence of some external factors or intrinsic properties of the organism. Underling mechanisms need to be further explored. © 2012 Elsevier B.V. All rights reserved.

  15. Bisdemethoxycurcumin induces DNA damage and inhibits DNA repair associated protein expressions in NCI-H460 human lung cancer cells.

    Science.gov (United States)

    Yu, Chien-Chih; Yang, Su-Tso; Huang, Wen-Wen; Peng, Shu-Fen; Huang, An-Cheng; Tang, Nou-Ying; Liu, Hsin-Chung; Yang, Mei-Due; Lai, Kuang-Chi; Chung, Jing-Gung

    2016-12-01

    Nonsmall cell lung carcinoma (NSCLC) is a devastating primary lung tumor resistant to conventional therapies. Bisdemethoxycurcumin (BDMC) is one of curcumin derivate from Turmeric and has been shown to induce NSCLC cell death. Although there is one report to show BDMC induced DNA double strand breaks, however, no available information to show BDMC induced DNA damage action with inhibited DNA repair protein in lung cancer cells in detail. In this study, we tested BDMC-induced DNA damage and condensation in NCI-H460 cells by using Comet assay and DAPI staining examinations, respectively and we found BDMC induced DNA damage and condension. Western blotting was used to examine the effects of BDMC on protein expression associated with DNA damage and repair and results indicated that BDMC suppressed the protein levels associated with DNA damage and repair, such as 14-3-3σ (an important checkpoint keeper of DDR), O6-methylguanine-DNA methyltransferase, DNA repair proteins breast cancer 1, early onset, mediator of DNA damage checkpoint 1 but activate phosphorylated p53 and p-H2A.X (phospho Ser140) in NCI-H460 cells. Confocal laser systems microscopy was used for examining the protein translocation and results show that BDMC increased the translocation of p-p53 and p-H2A.X (phospho Ser140) from cytosol to nuclei in NCI-H460 cells. In conclusion, BDMC induced DNA damage and condension and affect DNA repair proteins in NCI-H460 cells in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1859-1868, 2016. © 2015 Wiley Periodicals, Inc.

  16. Estrogen signalling and the DNA damage response in hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    C Elizabeth Caldon

    2014-05-01

    Full Text Available Estrogen is necessary for the normal growth and development of breast tissue, but high levels of estrogen are a major risk factor for breast cancer. One mechanism by which estrogen could contribute to breast cancer is via the induction of DNA damage. This perspective discusses the mechanisms by which estrogen alters the DNA damage response (DDR and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1, BRCA1 and p53 and the feedback on estrogen receptor signalling from these proteins. We put forward the hypothesis that estrogen receptor signalling converges to suppress effective DNA repair and apoptosis in favour of proliferation. This is important in hormone-dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or altered in estrogen responsive breast cancer which will further change the processing of DNA damage. Finally the action of estrogen signalling on DNA damage is also relevant to the therapeutic setting as the suppression of a DNA damage response by estrogen has the potential to alter the response of cancers to anti-hormone treatment or chemotherapy that induces DNA damage.

  17. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  18. ATP-dependent chromatin remodeling in the DNA-damage response

    Science.gov (United States)

    2012-01-01

    The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways. PMID:22289628

  19. Study of DNA damage with a new system for irradiation of samples in a nuclear reactor.

    Science.gov (United States)

    Gual, Maritza R; Milian, Felix M; Deppman, Airton; Coelho, Paulo R P

    2011-02-01

    In this paper, we report results of a quantitative analysis of the effects of neutrons on DNA, and, specifically, the production of simple and double breaks of plasmid DNA in aqueous solutions with different concentrations of free-radical scavengers. The radiation damage to DNA was evaluated by electrophoresis through agarose gels. The neutron and gamma doses were measured separately with thermoluminescent detectors. In this work, we have also demonstrated usefulness of a new system for positioning and removing samples in channel BH#3 of the IEA-R1 reactor at the Instituto de Pesquisas Energéticas e Nucleares (Brazil) without necessity of interrupting the reactor operation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. LIGNIN-STIMULATED PROTECTION OF POLYPROPYLENE FILMS AND DNA IN CELLS OF MICE AGAINST OXIDATION DAMAGE

    Directory of Open Access Journals (Sweden)

    Božena Košíková

    2009-05-01

    Full Text Available The blending of polypropylene with lignin derived from chemical wood pulp manufacture makes it possible to prepare optically transparent films (thickness 50-60μm with acceptable mechanical properties in the absence of a commercial stabilizer. The lignin preparation in the concentration 1-2 wt% possessed the ability to act as a processing stabilizer and as an antioxidant during thermal aging of polypropylene films. A DNA-protective effect of lignin in mice testicular cells and mice peripheral blood lymphocytes against oxidation stress was examined using in vitro experiments. Hydrogen peroxide and visible light-excited methylene blue (MB were used as DNA damaging agents. The isolated cells were preincubated with lignin before treatment with the oxidative agents. The level of breaks in the DNA was measured by a comet assay. The results showed that preincubation with lignin significantly decreased the level of strand breaks induced by both oxidants in mice lymphocytes and testicular cells.

  1. Quercetin ameliorates polychlorinated biphenyls-induced testicular DNA damage in rats.

    Science.gov (United States)

    Lovato, F L; de Oliveira, C R; Adedara, I A; Barbisan, F; Moreira, K L S; Dalberto, M; da Rocha, M I U M; Marroni, N P; da Cruz, I B; Costabeber, I B

    2016-02-01

    Polychlorinated biphenyls (PCBs) are a group of environmental contaminants widely reported to cause gonadal toxicity in both humans and animals. This study investigated the amelioratory role of quercetin in PCBs-induced DNA damage in male Wistar rats. Polychlorinated biphenyls were administered intraperitoneally at a dose of 2 mg kg(-1) alone or in combination with quercetin (orally) at 50 mg kg(-1) for 25 days. Quercetin modulation of PCBs-induced gonadal toxicity was evaluated using selected oxidative stress indices, comet assay, measurement of DNA concentration and histology of the testes. Administration of PCBs alone caused a significant (P Quercetin cotreatment significantly improved the testicular antioxidant status, decreased DNA fragmentation and restored the testicular histology, thus demonstrating the protective effect of quercetin in PCBs-treated rats.

  2. Ozone depletion and UVB radiation: impact on plant DNA damage in southern South America.

    Science.gov (United States)

    Rousseaux, M C; Ballaré, C L; Giordano, C V; Scopel, A L; Zima, A M; Szwarcberg-Bracchitta, M; Searles, P S; Caldwell, M M; Díaz, S B

    1999-12-21

    The primary motivation behind the considerable effort in studying stratospheric ozone depletion is the potential for biological consequences of increased solar UVB (280-315 nm) radiation. Yet, direct links between ozone depletion and biological impacts have been established only for organisms of Antarctic waters under the influence of the ozone "hole;" no direct evidence exists that ozone-related variations in UVB affect ecosystems of temperate latitudes. Indeed, calculations based on laboratory studies with plants suggest that the biological impact of ozone depletion (measured by the formation of cyclobutane pyrimidine dimers in DNA) is likely to be less marked than previously thought, because UVA quanta (315-400 nm) may also cause significant damage, and UVA is unaffected by ozone depletion. Herein, we show that the temperate ecosystems of southern South America have been subjected to increasingly high levels of ozone depletion during the last decade. We found that in the spring of 1997, despite frequent cloud cover, the passages of the ozone hole over Tierra del Fuego (55 degrees S) caused concomitant increases in solar UV and that the enhanced ground-level UV led to significant increases in DNA damage in the native plant Gunnera magellanica. The fluctuations in solar UV explained a large proportion of the variation in DNA damage (up to 68%), particularly when the solar UV was weighted for biological effectiveness according to action spectra that assume a sharp decline in quantum efficiency with increasing wavelength from the UVB into the UVA regions of the spectrum.

  3. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    Science.gov (United States)

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.

  4. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  5. DNA damage and radical reactions: Mechanistic aspects, formation in cells and repair studies

    Energy Technology Data Exchange (ETDEWEB)

    Cadet, J.; Ravanat, J.L. [CEA Grenoble, Inst Nanosci and Cryogenie, SCIB-UMR-E 3, Lab Les Acides Nucl, UJF, F-38054 Grenoble 9 (France); Carell, T. [Univ Munich, Dept Chem and Biochem, Ctr Integrat Prot Sci, D-81377 Munich (Germany); Cellai, L. [CNR, Ist Cristalog, Monterotondo Stn, I-00016 Rome (Italy); Chatgilialoglu, Ch. [CNR, ISOF, I-40129 Bologna, (Italy); Gimisis, Th. [Univ Athens, Dept Chem, Organ Chem Lab, Athens 15784, (Greece); Miranda, M. [Univ Politecn Valencia, Inst Technol Quim, Dept Quim, Valencia 46022 (Spain); O' Neill, P. [Univ Oxford, Oxford OX3 7DQ (United Kingdom); Robert, M. [Univ Paris 07, CNRS, UMR 7591, Electrochim Mol Lab, F-75251 Paris 05 (France)

    2008-07-01

    Several examples of oxidative and reductive reactions of DNA components that lead to single and tandem modifications are discussed in this review. These include nucleophilic addition reactions of the one-electron oxidation-mediated guanine radical cation and the one-electron reduced intermediate of 8-bromo-purine 2'-de-oxy-ribo-nucleosides that give rise to either an oxidizing guanine radical or related 5',8-cyclo-purine nucleosides. In addition, mechanistic insights into the reductive pathways involved in the photolyase induced reversal of cyclo-buta-cli-pyrimidine and pyrimidine (6-4) pyrimidone photoproducts are provided. Evidence for the occurrence and validation in cellular DNA of (OH){sup {center_dot}} radical degradation pathways of guanine that have been established in model systems has been gained from the accurate measurement of degradation products. Relevant information on biochemical aspects of the repair of single and clustered oxidatively generated damage to DNA has been gained from detailed investigations that rely on the synthesis of suitable modified probes. Thus the preparation of stable carbocyclic derivatives of purine nucleoside containing defined sequence oligonucleotides has allowed detailed crystallographic studies of the recognition step of the base damage by enzymes implicated in the base excision repair (BER) pathway. Detailed insights are provided on the BER processing of non-double strand break bi-stranded clustered damage that may consist of base lesions, a single strand break or abasic sites and represent one of the main deleterious classes of radiation-induced DNA damage. (authors)

  6. Evaluation of DNA damage in a population of bats (Chiroptera) residing in an abandoned monazite mine.

    Science.gov (United States)

    Meehan, Kathleen A; Truter, Ernest J; Slabbert, Jacobus P; Parker, M Iqbal

    2004-02-14

    Ionising radiation has the ability to induce DNA damage. While the effects of high doses of radiation of short duration have been well documented, the biological effects of long-term exposure to low doses are poorly understood. This study evaluated the clastogenic effects of low dose ionising radiation on a population of bats (Chiroptera) residing in an abandoned monazite mine. Bats were sampled from two chambers in the mine, where external radiation levels measured around 20 microSv/h (low dose) and 100 microSv/h (higher dose), respectively. A control group of bats was sampled from a cave with no detectable radiation above normal background levels. The micronucleus assay was used to evaluate residual radiation damage in binucleated lymphocytes and showed that the micronucleus frequency per 500 binucleated lymphocytes was increased in the lower radiation-exposed group (17.7) and the higher radiation-exposed group (27.1) compared to the control group (5.3). This study also showed that bats exposed to radiation presented with an increased number of micronuclei per one thousand reticulocytes (2.88 and 10.75 in the lower and high radiation-exposed groups respectively) when compared to the control group (1.7). The single-cell gel electrophoresis (comet) assay was used as a means of evaluating clastogenecity of exposure to radiation at the level of individual cells. Bats exposed to radiation demonstrated increased DNA damage as shown by the length of the comet tails and showed an increase in cumulative damage. The results of the micronucleus and the comet assays indicated not only a statistically significant difference between test and control groups (P<0.001), but also a dose-dependent increase in DNA damage (P<0.001). These assays may thus be useful in evaluating the potential clastogenecity of exposure to continuous low doses of ionising radiation.

  7. [Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases].

    Science.gov (United States)

    Lucio, Lorena M C; Braz, Mariana G; do Nascimento Junior, Paulo; Braz, José Reinaldo C; Braz, Leandro G

    2017-06-24

    The waste anesthetic gases (WAGs) present in the ambient air of operating rooms (OR), are associated with various occupational hazards. This paper intends to discuss occupational exposure to WAGs and its impact on exposed professionals, with emphasis on genetic damage and oxidative stress. Despite the emergence of safer inhaled anesthetics, occupational exposure to WAGs remains a current concern. Factors related to anesthetic techniques and anesthesia workstations, in addition to the absence of a scavenging system in the OR, contribute to anesthetic pollution. In order to minimize the health risks of exposed professionals, several countries have recommended legislation with maximum exposure limits. However, developing countries still require measurement of WAGs and regulation for occupational exposure to WAGs. WAGs are capable of inducing damage to the genetic material, such as DNA damage assessed using the comet assay and increased frequency of micronucleus in professionals with long-term exposure. Oxidative stress is also associated with WAGs exposure, as it induces lipid peroxidation, oxidative damage in DNA, and impairment of the antioxidant defense system in exposed professionals. The occupational hazards related to WAGs including genotoxicity, mutagenicity and oxidative stress, stand as a public health issue and must be acknowledged by exposed personnel and responsible authorities, especially in developing countries. Thus, it is urgent to stablish maximum safe limits of concentration of WAGs in ORs and educational practices and protocols for exposed professionals. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  8. Simulated microgravity influenced the expression of DNA damage repair genes

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Jiawei, Liu; Wang, Ting

    2016-07-01

    Ionizing radiation and microgravity were considered to be the most important stress factors of space environmental the respective study of the biological effects of the radiation and microgravity carried out earlier, but the interaction of the effects of radiation with microgravity started later, and due to difference of the materials and methods the result of this experiment were not consistent. To further investigate the influence of microgravity on the expression of the radiation damage repair genes, the seed of Arabidopsis (Col) and its gravity-insensitive mutant (PIN2) were exposed to 0.1Gy of the dose of energetic carbon-ion beam radiation (LET = 30KeV / μm), and the germinated seed were than fixed in the 3D random positioning apparatus immediately for a 10-day simulated microgravity. By measuring the deflection angle of root tip and the changes of the expression of Ku70 and RAD51 protein, we investigated the impact of microgravity effect on radiation damage repair systems. The results shown that radiation, microgravity and microgravity with radiation could increase the angle of the root of the Col significantly, but no obvious effect on PIN2 type. The radiation could increase the expression of Ku70 significantly in both Col and PIN2, microgravity does not affect the expression, but the microgravity with radiation could decrease the expression of Ku70. This result shown that the microgravity could influence the radiation damage repair systems in molecular level. Moreover, our findings were important to understand the molecular mechanism of the impact of microgravity effect on radiation damage repair systems in vivo.

  9. Multiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    CERN Document Server

    Surdutovich, E; Solov'yov, A V

    2010-01-01

    We present the latest advances of the multiscale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the most recent advances in the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multiscale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This method can be used for the calculation of irreparable DNA damage. We include thermal spikes, predicted to occur in tissue for a short time after ion's passage in the vicinity of the ions' tracks in our previous work, into modeling of the thermal environment for molecular dynamics analysis of ubiquitin and discuss the first results of these simulations.

  10. Variation in assessment of oxidatively damaged DNA in mononuclear blood cells by the comet assay with visual scoring

    DEFF Research Database (Denmark)

    Forchhammer, Lykke; Bräuner, Elvira Vaclavik; Folkmann, Janne Kjaersgaard;

    2008-01-01

    The comet assay is popular for assessments of genotoxicity, but the comparison of results between studies is challenging because of differences in experimental procedures and reports of DNA damage in different units. We investigated the variation of DNA damage in mononuclear blood cells (MNBCs......) measured by the comet assay with focus on the variation related to alkaline unwinding and electrophoresis time, number of cells scored, as well as the putative benefits of transforming the primary end points to common units by the use of reference standards and calibration curves. Eight experienced......-response relationships of cells exposed to gamma-radiation and it was possible to reduce the variation in oxidized purines in MNBCs from humans by adjusting the level of lesions with protocol-specific calibration curves. However, there was a difference in the level of DNA damage measured by different investigators...

  11. Personal exposure to PM2.5 and biomarkers of DNA damage

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Hertel, Ole

    2003-01-01

    of many sources besides outdoor particle levels, e.g., environmental tobacco smoke and cooking. We measured personal PM(2.5) and black smoke exposure in 50 students four times over 1 year and analyzed for biomarkers of different types of DNA damages. Ambient PM(2.5) concentrations were also measured....... Exposure was measured for 48 h, after which blood samples were collected and analyzed for DNA damage in lymphocytes in terms of 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG), strand breaks, endonuclease III- and fapyguanine glycosylase-sensitive sites, and polyaromatic hydrocarbon adducts. Twenty-four-h urine...... collections were analyzed for 8-oxodG and 1-hydroxypyrene. Personal PM(2.5) exposure was found to be a predictor of 8-oxodG in lymphocyte DNA with an 11% increase in 8-oxodG/10 microg/m(3) increase in personal PM(2.5) exposure (P = 0.007). No other associations between exposure markers and biomarkers could...

  12. Chk2 Activation Dependence on Nbs1 after DNA Damage

    Science.gov (United States)

    Buscemi, Giacomo; Savio, Camilla; Zannini, Laura; Miccichè, Francesca; Masnada, Debora; Nakanishi, Makoto; Tauchi, Hiroshi; Komatsu, Kenshi; Mizutani, Shuki; Khanna, KumKum; Chen, Phil; Concannon, Patrick; Chessa, Luciana; Delia, Domenico

    2001-01-01

    The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G1 arrest. Here we show that the ATM-dependent activation of Chk2 by γ- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells. Interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1. Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2. PMID:11438675

  13. DNA damage in leukocytes of workers occupationally exposed to 1-bromopropane.

    Science.gov (United States)

    Toraason, Mark; Lynch, Dennis W; DeBord, D Gayle; Singh, Narendra; Krieg, Edward; Butler, Mary Ann; Toennis, Christine A; Nemhauser, Jeffrey B

    2006-01-31

    1-bromopropane (1-BP; n-propyl bromide) (CAS No. 106-94-5) is an alternative to ozone-depleting chlorofluorocarbons that has a variety of potential applications as a degreasing agent for metals and electronics, and as a solvent vehicle for spray adhesives. Its isomer, 2-brompropane (2-BP; isopropyl bromide) (CAS No. 75-26-3) impairs antioxidant cellular defenses, enhances lipid peroxidation, and causes DNA damage in vitro. The present study had two aims. The first was to assess DNA damage in human leukocytes exposed in vitro to 1- or 2-BP. DNA damage was also assessed in peripheral leukocytes from workers with occupational exposure to 1-BP. In the latter assessment, start-of- and end-of-work week blood and urine samples were collected from 41 and 22 workers at two facilities where 1-BP was used as a solvent for spray adhesives in foam cushion fabrication. Exposure to 1-BP was assessed from personal-breathing zone samples collected for 1-3 days up to 8h per day for calculation of 8h time weighted average (TWA) 1-BP concentrations. Bromide (Br) was measured in blood and urine as a biomarker of exposure. Overall, 1-BP TWA concentrations ranged from 0.2 to 271 parts per million (ppm) at facility A, and from 4 to 27 ppm at facility B. The highest exposures were to workers classified as sprayers. 1-BP TWA concentrations were statistically significantly correlated with blood and urine Br concentrations. The comet assay was used to estimate DNA damage. In vitro, 1- or 2-BP induced a statistically significant increase in DNA damage at 1mM. In 1-BP exposed workers, start-of- and end-of-workweek comet endpoints were stratified based on job classification. There were no significant differences in DNA damage in leukocytes between workers classified as sprayers (high 1-BP exposure) and those classified as non-sprayers (low 1-BP exposure). At the facility with the high exposures, comparison of end-of-week values with start-of-week values using paired analysis revealed non

  14. Neurotoxin-induced DNA damage is persistentin SH-SY5Y cells and LC neurons

    Science.gov (United States)

    Wang, Yan; Musich, Phillip R.; Cui, Kui; Zou, Yue; Zhu, Meng-Yang

    2015-01-01

    Degeneration of the noradrenergic neurons has been reported in the brain of patients suffering from neurodegenerative diseases. However, their pathologic characteristics during the neurodegenerative course and underlying mechanisms remain to be elucidated. In the present study, we used the neurotoxincamptothecin (CPT)to induce the DNA damage response in neuroblastoma SH-SY5Y cells, normal fibroblast cells, and primarily cultured LC and raphe neurons to examine cellular responses and repair capabilities after neurotoxin exposure. To our knowledge, the present study is the first to show that noradrenergic SH-SY5Y cells are more sensitive to CPT-induced DNA damage and deficientin DNA repair, as compared to fibroblast cells. Furthermore, similar to SH-SY5Y cells, primarily cultured LC neurons are more sensitive to CPT-induced DNA damage and show a deficiency in repairing this damage. Moreover, while N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) exposure also results in DNA damage in cultured LC neurons, neither CPT nor DSP4 induce DNA damage in neuronal cultures from the raphe nuclei. Taken together, noradrenergic SH-SY5Y cells and LC neurons are sensitive to CPT-induced DNA damage and exhibit a repair deficiency, providing a mechanistic explanation for the pathologic characteristics of LC degeneration when facing endogenous and environmental DNA-damaging insultsin vivo. PMID:25724887

  15. Uhrf2 is important for DNA damage response in vascular smooth muscle cells.

    Science.gov (United States)

    Luo, Tao; Cui, Shijun; Bian, Chunjing; Yu, Xiaochun

    2013-11-08

    Emerging evidence shows that Uhrf1 plays an important role in DNA damage response for maintaining genomic stability. Interestingly, Uhrf1 has a paralog Uhrf2 in mammals. Uhrf1 and Uhrf2 share similar domain architectures. However, the role of Uhrf2 in DNA damage response has not been studied yet. During the analysis of the expression level of Uhrf2 in different tissues, we found that Uhrf2 is highly expressed in aorta and aortic vascular smooth muscle cells. Thus, we studied the role of Uhrf2 in DNA damage response in aortic vascular smooth muscle cells. Using laser microirradiation, we found that like Uhrf1, Uhrf2 was recruited to the sites of DNA damage. We dissected the functional domains of Uhrf2 and found that the TTD, PHD and SRA domains are important for the relocation of Uhrf2 to the sites of DNA damage. Moreover, depletion of Uhrf2 suppressed DNA damage-induced H2AX phosphorylation and DNA damage repair. Taken together, our results demonstrate the function of Uhrf2 in DNA damage response.

  16. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    Aging is associated with oxidative stress-generated damage to DNA and this could be related to metabolic disturbances. This study investigated the association between levels of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs) and metabolic risk factors in 1,019 subjects, aged...

  17. DNA repair pathways in radiation induced cellular damage: a molecular approach

    NARCIS (Netherlands)

    L.R. van Veelen (Lieneke)

    2005-01-01

    markdownabstract__Abstract__ DNA damage, especially double-strand breaks, can be induced by endogenous or exogenous darnaging agents, such as ionizing radiation. Repair of DNA damage is very important in maintaining genomic stability. Incorrect repair may lead to chromosomal aberrations,

  18. DNA repair pathways in radiation induced cellular damage: a molecular approach

    NARCIS (Netherlands)

    L.R. van Veelen (Lieneke)

    2005-01-01

    markdownabstract__Abstract__ DNA damage, especially double-strand breaks, can be induced by endogenous or exogenous darnaging agents, such as ionizing radiation. Repair of DNA damage is very important in maintaining genomic stability. Incorrect repair may lead to chromosomal aberrations, translocat

  19. p53 activates G₁ checkpoint following DNA damage by doxorubicin during transient mitotic arrest.

    Science.gov (United States)

    Hyun, Sun-Yi; Jang, Young-Joo

    2015-03-10

    Recovery from DNA damage is critical for cell survival. The serious damage is not able to be repaired during checkpoint and finally induces cell death to prevent abnormal cell growth. In this study, we demonstrated that 8N-DNA contents are accumulated via re-replication during prolonged recovery period containing serious DNA damage in mitotic cells. During the incubation for recovery, a mitotic delay and initiation of an abnormal interphase without cytokinesis were detected. Whereas a failure of cytokinesis occurred in cells with no relation with p53/p21, re-replication is an anomalous phenomenon in the mitotic DNA damage response in p53/p21 negative cells. Cells with wild-type p53 are accumulated just prior to the initiation of DNA replication through a G₁ checkpoint after mitotic DNA damage, even though p53 does not interrupt pre-RC assembly. Finally, these cells undergo cell death by apoptosis. These data suggest that p53 activates G₁ checkpoint in response to mitotic DNA damage. Without p53, cells with mitotic DNA damage undergo re-replication leading to accumulation of damage.

  20. DNA-damage response during mitosis induces whole-chromosome missegregation.

    Science.gov (United States)

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  1. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage

    NARCIS (Netherlands)

    M. Tresini (Maria); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2016-01-01

    textabstractIn response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-indep

  2. Black tea extract: a supplementary antioxidant in radiation-induced damage to DNA and normal lymphocytes.

    Science.gov (United States)

    Ghosh, Debjani; Pal, Sandip; Saha, Chabita; Chakrabarti, Amit Kumar; Datta, Salil C; Dey, Subrata Kumar

    2012-01-01

    Myriad research has contributed significantly toward the understanding and identification of health benefits stemming from tea polyphenols and many other naturally occurring flavonoids present in fruits and vegetables. These flavonoids are known to mitigate reactive oxygen species-induced damage by scavenging them. In this study, hot-water black tea extract rich in flavonoids is evaluated as a supplementary antioxidant. The antioxidant efficacy of black tea extract was investigated by evaluating radioprotection conferred to pBR322 DNA, calf thymus DNA, and normal lymphocytes during gamma irradiation. The protection was measured by gel electrophoresis, fluorimetric study, cell viability assay, cytokinesis-blocked micronuclei assay, and comet assay. The 2,2-diphenyl-1-picrylhydrazyl scavenging ability of the tea extract used increased in a dose-dependent manner (IC50: 182.45 µg/mL). Positive correlation of radioprotection with antioxidant activity of black tea extract was observed in all systems. Maximum protection against radiation-induced damage was observed in pBR322 DNA and calf thymus DNA at ≥200 µg/mL of black tea extract. At a dose of black tea extract as low as 5 µg/mL, efficient radioprotection was observed in normal lymphocytes, which is encouraging and can be tested in the future as a natural antioxidant supplement during radiotherapy.

  3. The effect of ancient DNA damage on inferences of demographic histories

    DEFF Research Database (Denmark)

    Axelsson, Erik; Willerslev, Eske; Gilbert, Marcus Thomas Pius

    2008-01-01

    The field of ancient DNA (aDNA) is casting new light on many evolutionary questions. However, problems associated with the postmortem instability of DNA may complicate the interpretation of aDNA data. For example, in population genetic studies, the inclusion of damaged DNA may inflate estimates...... of diversity. In this paper, we examine the effect of DNA damage on population genetic estimates of ancestral population size. We simulate data using standard coalescent simulations that include postmortem damage and show that estimates of effective population sizes are inflated around, or right after......, the sampling time of the ancestral DNA sequences. This bias leads to estimates of increasing, and then decreasing, population sizes, as observed in several recently published studies. We reanalyze a recently published data set of DNA sequences from the Bison (Bison bison/Bison priscus) and show that the signal...

  4. Colorimetric detection of DNA damage by using hemin-graphene nanocomposites

    Science.gov (United States)

    Wei, W.; Zhang, D. M.; Yin, L. H.; Pu, Y. P.; Liu, S. Q.

    2013-04-01

    A colorimetric method for detection of DNA damage was developed by using hemin-graphene nanosheets (H-GNs). H-GNs were skillfully synthesized by adsorping of hemin on graphene through π-π interactions. The as-prepared H-GNs possessed both the ability of graphene to differentiate the damage DNA from intact DNA and the catalytic action of hemin. The damaged DNA made H-GNs coagulated to different degrees from the intact DNA because there were different amount of negative charge exposed on their surface, which made a great impact on the solubility of H-GNs. As a result, the corresponding centrifugal supernatant of H-GNs solution showed different color in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, which could be discriminated by naked eyes or by ultraviolet (UV)-visible spectrometer. Based on this, the damaged effects of styrene oxide (SO), NaAsO2 and UV radiation on DNA were studied. Results showed that SO exerted most serious damage effect on DNA although all of them damaged DNA seriously. The new method for detection of DNA damage showed good prospect in the evaluation of genotoxicity of new compounds, the maximum limit of pesticide residue, food additives, and so on, which is important in the fields of food science, pharmaceutical science and pesticide science.

  5. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage

    Directory of Open Access Journals (Sweden)

    Olsen Birgitte B

    2012-03-01

    Full Text Available Abstract Background The DNA-dependent protein kinase (DNA-PK is a nuclear complex composed of a large catalytic subunit (DNA-PKcs and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the non-homologous end-joining (NHEJ repair mechanism, which is activated in the presence of DNA double-strand breaks induced by ionizing radiation, reactive oxygen species and radiomimetic drugs. We have recently reported that down-regulation of protein kinase CK2 by siRNA interference results in enhanced cell death specifically in DNA-PKcs-proficient human glioblastoma cells, and this event is accompanied by decreased autophosphorylation of DNA-PKcs at S2056 and delayed repair of DNA double-strand breaks. Results In the present study, we show that CK2 co-localizes with phosphorylated histone H2AX to sites of DNA damage and while CK2 gene knockdown is associated with delayed DNA damage repair, its overexpression accelerates this process. We report for the first time evidence that lack of CK2 destabilizes the interaction of DNA-PKcs with DNA and with Ku80 at sites of genetic lesions. Furthermore, we show that CK2 regulates the phosphorylation levels of DNA-PKcs only in response to direct induction of DNA double-strand breaks. Conclusions Taken together, these results strongly indicate that CK2 plays a prominent role in NHEJ by facilitating and/or stabilizing the binding of DNA-PKcs and, possibly other repair proteins, to the DNA ends contributing to efficient DNA damage repair in mammalian cells.

  6. DNA repair in lymphocytes from patients with secondary leukemia as measured by strand rejoining and unscheduled DNA synthesis

    DEFF Research Database (Denmark)

    Bohr, V; Køber, L

    1985-01-01

    deficiencies as measured by their ability to rejoin strand breaks, and 5 out of 7 had increased unscheduled DNA synthesis compared to treated and normal controls. All patients with SL and 4 out of 8 treated controls had inherent strand breaks in their DNA as compared to the normal controls when measured...... in isolated peripheral lymphocytes from the patients by measuring the rejoining of strand breaks following alkylation damage to the lymphocytes or by measuring unscheduled DNA synthesis. Day-to-day variability in the assays was considerable, but findings were that 5 out of 7 SL patients had repair......The ability to repair damage to DNA was compared in 2 groups of patients having undergone treatment for leukemia, one of which developed secondary leukemia (SL), and the other without signs of secondary malignancy (treated controls). Both were related to normal controls. DNA repair was assessed...

  7. Influence of the presence of B chromosomes on DNA damage in Crepis capillaris.

    Directory of Open Access Journals (Sweden)

    Jolanta Kwasniewska

    Full Text Available The sensitivity of different plant species to mutagenic agents is related to the DNA content and organization of the chromatin, which have been described in ABCW and bodyguard hypotheses, respectively. Plant species that have B chromosomes are good models for the study of these hypotheses. This study presents an analysis of the correlation between the occurrence of B chromosomes and the DNA damage that is induced by the chemical mutagen, maleic hydrazide (MH, in Crepis capillaris plants using comet assay. The presence of B chromosomes has a detectable impact on the level of DNA damage. The level of DNA damage after MH treatment was correlated with the number of B chromosomes and it was observed that it increased significantly in plants with 3B chromosomes. We did not find evidence of the protective role from chemical mutagens of the constitutive heterochromatin for euchromatin in relation to DNA damage. The DNA damage involving the 25S rDNA sequences was analyzed using the comet-FISH technique. Fragmentation within or near the 25S rDNA involved the loci on the A and B chromosomes. The presence of B chromosomes in C. capillaris cells had an influence on the level of DNA damage that involves the 25S rDNA region.

  8. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.

    Science.gov (United States)

    Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E; Harper, J Wade; Elledge, Stephen J

    2014-12-30

    The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage.

  9. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency...... was observed for the level of hOGG1-sensitive sites, whereas there was no association with the level of strand breaks. The effect of age on oxidatively damaged DNA in women disappeared in multivariate models, which showed robust positive associations between DNA damage and plasma levels of triglycerides...

  10. BRCA1 in the DNA damage response and at telomeres

    Directory of Open Access Journals (Sweden)

    Eliot Michael Rosen

    2013-06-01

    Full Text Available Abstract. Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1 account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s is (are most important for tumor suppression, nor is it clear why BRCA1 mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR, which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.

  11. Electrochemical measurement for analysis of DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.B.; Hong, J.S.; Pak, J.H. [Korea University, Seoul (Korea); Kim, Y.M. [National Institute of Health, Seoul (Korea)

    2002-02-01

    One of the important roles of a DNA chip is the capability of detecting genetic diseases and mutations by analyzing DNA sequence. For a successful electrochemical genotyping, several aspects should be considered including the chemical treatment of electrode surface, DNA immobilization on electrode, hybridization, choice of an intercalator to be selectively bound to double standed DNA, and an equipment for detecting and analyzing the output singal. Au was used as the electrode material, 2-mercaptoethanol was used for linking DNA to Au electrode, and methylene blue was used as an indicator that can be bound to a double stranded DNA selectively. From the analysis of reductive current of this indicator that was bound to a double stranded DNA on an electrode, a normal double stranded DNA was able to be distinguished from a single stranded DNA in just a few seconds. Also, it was found that the peak reduction current of indicator is proportional to the concentration of target DNA to be hybridized with probe DNA. Therefore, it is possible to realize a simple and cheap DNA sensor using the electrochemical measurement for genotyping. (author). 20 refs., 8 figs., 1 tab.

  12. ShaPINg cell fate upon DNA damage:role of Pin1 isomerase in DNA damage-induced cell death and repair

    Directory of Open Access Journals (Sweden)

    Thomas G Hofmann

    2014-06-01

    Full Text Available The peptidyl-prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphorylation marks and implementing conformational changes in its substrates. Accordingly, Pin1 has been linked to numerous phosphorylation-controlled signaling pathways and cellular processes such as cell cycle progression, proliferation and differentiation. In addition, Pin1 plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA damage is balanced by DNA repair, cells confronted with massive genotoxic stress are eliminated by the induction of programmed cell death or cellular senescence. In this review we summarize and discuss the current knowledge on how Pin1 specifies cell fate through regulating key players of the apoptotic and the repair branch of the DNA damage response.

  13. Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage.

    Science.gov (United States)

    Wang, Chun-Rong; Nguyen, Jenny; Lu, Qing-Bin

    2009-08-19

    DNA damage is a central mechanism in the pathogenesis and treatment of human diseases, notably cancer. Little is known about reductive DNA damage in causing genetic mutations during oncogenesis and killing cancer cells during radiotherapy. The prehydrated electron (e(-)(pre)) has the highest yield among all the radicals generated in cells during ionizing radiation and has subpicosecond lifetimes (10(-13) s) and energies below 0 eV, but its role in DNA damage is unknown. In this work, our real-time measurements by femtosecond time-resolved laser spectroscopy have revealed that while adenine and cytosine can effectively trap an e(-)(pre) to form stable anions, thymidine and especially guanine are highly susceptible to dissociative electron transfer of e(-)(pre), leading to bond dissociation in DNA. Our finding demonstrates a dissociative electron transfer pathway for reductive DNA damage that might be related to various diseases such as cancer and stroke. Moreover, this finding challenges the conventional notion that damage to the genome is mainly induced by the oxidizing OH* radical and might eventually lead to improved radiotherapy of cancer and radioprotection of humans.

  14. Protective effects of mate tea (Ilex paraguariensis) on H2O2-induced DNA damage and DNA repair in mice

    National Research Council Canada - National Science Library

    Miranda, Daniel D. C; Arçari, Demétrius P; Pedrazzoli, José; Carvalho, Patrícia de O; Cerutti, Suzete M; Bastos, Deborah H. M; Ribeiro, Marcelo L

    2008-01-01

    .... Since oxidative DNA damage is involved in various pathological states such as cancer, the aim of this study was to evaluate the antioxidant activity of mate tea as well as the ability to influence...

  15. Cytotoxicity and DNA damage associated with pyrazoloacridine in MCF-7 breast cancer cells.

    Science.gov (United States)

    Grem, J L; Politi, P M; Berg, S L; Benchekroun, N M; Patel, M; Balis, F M; Sinha, B K; Dahut, W; Allegra, C J

    1996-06-28

    We examined the effects of pyrazoloacridine (PZA), an investigational anticancer agent in clinical trials, on cytotoxicity, DNA synthesis, and DNA damage in MCF-7 human breast carcinoma cells. With PZA concentrations ranging from 0.5 to 50 microM for durations of 3-72 hr, cytotoxicity increased in proportion to the total PZA exposure (concentration x time). Inhibition of DNA and RNA syntheses increased with increasing PZA concentration x time (microM.hr). A 24-hr exposure to 1 and 10 microM PZA reduced DNA synthesis to 62 and 5% of control, respectively, decreased the proportion of cells in S phase with accumulation of cells in G2 + M phase, and inhibited cell growth at 72 hr by 68 and 100%. Newly synthesized DNA was more susceptible to damage during PZA exposure, with subsequent induction of parental DNA damage. Significant damage to newly synthesized DNA as monitored by alkaline elution was evident after a 3-hr exposure to > or = 5 microM PZA. Longer PZA exposures (> or = 10 microM for 16 hr) were required to elicit damage to parental DNA. Induction of single-strand breaks in parental DNA correlated closely with induction of double-strand breaks and detachment of cells from the monolayer. PZA-mediated DNA fragmentation was not accompanied by the generation of oligonucleosomal laddering in MCF-7 cells, but induction of very high molecular weight DNA fragmentation (0.5 to 1 Mb) was detected by pulsed-field gel electrophoresis. In vitro binding of PZA to linear duplex DNA (1 kb DNA ladder) and closed, circular plasmid DNA was demonstrated by a shift in migration during agarose electrophoresis. PZA interfered with topoisomerase I- and II-mediated relaxation of plasmid DNA in a cell-free system, but the cytotoxic effects of PZA did not appear to involve a direct interaction with topoisomerase I or II (stabilization of the topoisomerase I- or II-DNA cleavable complex). PZA-mediated cytotoxicity correlated strongly with inhibition of DNA and RNA syntheses, and damage to

  16. Dissociation of DNA damage and mitochondrial injury caused by hydrogen peroxide in SV-40 transformed lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2002-11-01

    Full Text Available Abstract Background Since lung epithelial cells are constantly being exposed to reactive oxygen intermediates (ROIs, the alveolar surface is a major site of oxidative stress, and each cell type may respond differently to oxidative stress. We compared the extent of oxidative DNA damage with that of mitochondrial injury in lung epithelial cells at the single cell level. Result DNA damage and mitochondrial injury were measured after oxidative stress in the SV-40 transformed lung epithelial cell line challenged with hydrogen peroxide (H2O2. Single cell analysis of DNA damage was determined by assessing the number of 8-oxo-2-deoxyguanosine (8-oxo-dG positive cells, a marker of DNA modification, and the length of a comet tail. Mitochondrial membrane potential, ΔΨm, was determined using JC-1. A 1 h pulse of H2O2 induced small amounts of apoptosis (3%. 8-oxo-dG-positive cells and the length of the comet tail increased within 1 h of exposure to H2O2. The number of cells with reduced ΔΨm increased after the addition of H2O2 in a concentration-dependent manner. In spite of a continual loss of ΔΨm, DNA fragmentation was reduced 2 h after exposure to H2O2. Conclusion The data suggest that SV-40 transformed lung epithelial cells are resistant to oxidative stress, showing that DNA damage can be dissociated from mitochondrial injury.

  17. Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage.

    Science.gov (United States)

    Mahl, Camila Donato; Behling, Camile Saul; Hackenhaar, Fernanda S; de Carvalho e Silva, Mélany Natuane; Putti, Jordana; Salomon, Tiago B; Alves, Sydney Hartz; Fuentefria, Alexandre; Benfato, Mara S

    2015-07-01

    In this study, we assessed the generation of reactive oxygen species (ROS) induced by subinhibitory concentration of fluconazole in susceptible and resistant Candida glabrata strains at stationary growth phase and measured their oxidative responses parameters: glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione-S-transferase (GST), consumption of hydrogen peroxide, and total glutathione, as well as oxidative damage in lipids, proteins, and DNA. Data showed that fluconazole increased generation of ROS and GPx and SOD enzymatic activity in treated cells; however, these enzymatic activities did not differ between resistant and susceptible strains. Susceptible strains exhibited higher GST activity than resistant, and when susceptible cells were treated with fluconazole, GST activity decreased. Fluconazole treatment cause oxidative damage only in DNA. There are a possible participation of ROS, as organic peroxides and O2(•-), in antifungal mechanism of fluconazole, which results in higher GPx and SOD enzymatic activities and oxidative DNA damage in C. glabrata.

  18. Evaluating experimental molecular physics studies of radiation damage in DNA*

    Science.gov (United States)

    Śmiałek, Małgorzata A.

    2016-11-01

    The field of Atomic and Molecular Physics (AMP) is a mature field exploring the spectroscopy, excitation, ionisation of atoms and molecules in all three phases. Understanding of the spectroscopy and collisional dynamics of AMP has been fundamental to the development and application of quantum mechanics and is applied across a broad range of disparate disciplines including atmospheric sciences, astrochemistry, combustion and environmental science, and in central to core technologies such as semiconductor fabrications, nanotechnology and plasma processing. In recent years the molecular physics also started significantly contributing to the area of the radiation damage at molecular level and thus cancer therapy improvement through both experimental and theoretical advances, developing new damage measurement and analysis techniques. It is therefore worth to summarise and highlight the most prominent findings from the AMP community that contribute towards better understanding of the fundamental processes in biologically-relevant systems as well as to comment on the experimental challenges that were met for more complex investigation targets. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  19. Metformin does not prevent DNA damage in lymphocytes despite its antioxidant properties against cumene hydroperoxide-induced oxidative stress.

    Science.gov (United States)

    Onaran, Ilhan; Guven, Gulgun S; Ozdaş, Sule Beyhan; Kanigur, Gonul; Vehid, Suphi

    2006-12-10

    Metformin (1-(diaminomethylidene)-3,3-dimethyl-guanidine), which is the most commonly prescribed oral antihyperglycaemic drug in the world, was reported to have several antioxidant properties such as the inhibition of advanced glycation end-products. In addition to its use in the treatment of diabetes, it has been suggested that metformin may be a promising anti-aging agent. The present work was aimed at assessing the possible protective effects of metformin against DNA-damage induction by oxidative stress in vitro. The effects of metformin were compared with those of N-acetylcysteine (NAC). For this purpose, peripheral blood lymphocytes from aged (n=10) and young (n=10) individuals were pre-incubated with various concentrations of metformin (10-50microM), followed by incubation with 15microM cumene hydroperoxide (CumOOH) for 48h, under conditions of low oxidant level, which do not induce cell death. Protection against oxidative DNA damage was evaluated by use of the Comet assay and the cytokinesis-block micronucleus technique. Changes in the levels of malondialdehyde+4-hydroxy-alkenals, an index of oxidative stress, were also measured in lymphocytes. At concentrations ranging from 10microM to 50microM, metformin did not protect the lymphocytes from DNA damage, while 50microM NAC possessed an effective protective effect against CumOOH-induced DNA damage. Furthermore, NAC, but not metformin, inhibited DNA fragmentation induced by CumOOH. In contrast to the lack of protection against oxidative damage in lymphocyte cultures, metformin significantly protected the cells from lipid peroxidation in both age groups, although not as effective as NAC in preventing the peroxidative damage at the highest doses. Within the limitations of this study, the results indicate that pharmacological concentrations of metformin are unable to protect against DNA damage induced by a pro-oxidant stimulus in cultured human lymphocytes, despite its antioxidant properties.

  20. Prostate cancer risk and DNA damage: translational significance of selenium supplementation in a canine model.

    Science.gov (United States)

    Waters, David J; Shen, Shuren; Glickman, Lawrence T; Cooley, Dawn M; Bostwick, David G; Qian, Junqi; Combs, Gerald F; Morris, J Steven

    2005-07-01

    Daily supplementation with the essential trace mineral selenium significantly reduced prostate cancer risk in men in the Nutritional Prevention of Cancer Trial. However, the optimal intake of selenium for prostate cancer prevention is unknown. We hypothesized that selenium significantly regulates the extent of genotoxic damage within the aging prostate and that the relationship between dietary selenium intake and DNA damage is non-linear, i.e. more selenium is not necessarily better. To test this hypothesis, we conducted a randomized feeding trial in which 49 elderly beagle dogs (physiologically equivalent to 62-69-year-old men) received nutritionally adequate or supranutritional levels of selenium for 7 months, in order to mimic the range of dietary selenium intake of men in the United States. Our results demonstrate an intriguing U-shaped dose-response relationship between selenium status (toenail selenium concentration) and the extent of DNA damage (alkaline Comet assay) within the prostate. Further, we demonstrate that the concentration of selenium that minimizes DNA damage in the aging dog prostate remarkably parallels the selenium concentration in men that minimizes prostate cancer risk. By studying elderly dogs, the only non-human animal model of spontaneous prostate cancer, we have established a new approach to bridge the gap between laboratory and human studies that can be used to select the appropriate dose of anticancer agents for large-scale human cancer prevention trials. From the U-shaped dose-response, it follows that not all men will necessarily benefit from increasing their selenium intake and that measurement of baseline nutrient status should be required for all individuals in prevention trials to avoid oversupplementation.

  1. Micropatterned comet assay enables high throughput and sensitive DNA damage quantification.

    Science.gov (United States)

    Ge, Jing; Chow, Danielle N; Fessler, Jessica L; Weingeist, David M; Wood, David K; Engelward, Bevin P

    2015-01-01

    The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies.

  2. Arabidopsis RecQl4A suppresses homologous recombination and modulates DNA damage responses

    NARCIS (Netherlands)

    Bagherieh-Najjar, MB; de Vries, OMH; Hille, J; Dijkwel, PP; Bagherieh-Najjar, Mohammad B.

    2005-01-01

    The DNA damage response and DNA recombination are two interrelated mechanisms involved in maintaining the integrity of the genome, but in plants they are poorly understood. RecO is a family of genes with conserved roles in the regulation of DNA recombination in eukaryotes; there are seven members in

  3. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Rezaei, Nousin; Liontos, Michalis

    2006-01-01

    and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage...

  4. ATP-dependent chromatin remodeling in the DNA-damage response

    NARCIS (Netherlands)

    H. Lans (Hannes); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2012-01-01

    textabstractThe integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired prope

  5. ATP-dependent chromatin remodeling in the DNA-damage response

    NARCIS (Netherlands)

    H. Lans (Hannes); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2012-01-01

    textabstractThe integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired prope

  6. DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing.

    Science.gov (United States)

    Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming

    2016-07-22

    The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress.

  7. Relation between serum xenobiotic induced receptor activities and sperm DNA damage and sperm apoptotic markers in European and Inuit populations

    DEFF Research Database (Denmark)

    Long, Manhai; Stronati, Alessanda; Bizzaro, Davide;

    2007-01-01

    -mediated luciferase reporter gene expression. Sperm DNA damage was measured using terminal deoxynucleotidyl transferase-driven dUTP nick labeling assay (TUNEL) and pro- (Fas) and anti-apoptotic (Bcl-xL) markers were determined by immune methods. Different features of xenobiotic-induced receptor activity in serum...

  8. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  9. Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance

    Directory of Open Access Journals (Sweden)

    Huilin Zhou

    2012-10-01

    Full Text Available In order to preserve genome integrity, extrinsic or intrinsic DNA damages must be repaired before they accumulate in cells and trigger other mutations and genome rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well as to single DNA double strand breaks (DSBs, suggesting highly sensitive and robust mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, controls the DNA damage response (DDR. Furthermore, cells must be able to distinguish natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many genes that have a role in this pathway have been identified, including MRC1, MEC3, RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the genetic basis of the DNA damage checkpoint and uncovered its different functions in cell cycle regulation, DNA replication and repair, and telomere maintenance. However, major questions concerning the regulation and functions of the DNA damage checkpoint remain to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? In this review we will examine primarily studies performed using Saccharomyces cerevisiae as a model system.

  10. Resveratrol affects DNA damage induced by ionizing radiation in human lymphocytes in vitro.

    Science.gov (United States)

    Basso, Emiliano; Regazzo, Giulia; Fiore, Mario; Palma, Valentina; Traversi, Gianandrea; Testa, Antonella; Degrassi, Francesca; Cozzi, Renata

    2016-08-01

    Resveratrol (3,4',5-trihydroxystilbene; RSV) acts on cancer cells in several ways, inducing cell cycle delay and apoptotic death, and enhancing ionizing radiation (IR)-mediated responses. However, fewer studies have examined RSV effects on normal cells. We have treated human lymphocytes in vitro with RSV, either alone or combined with IR, to evaluate its potential use as a radioprotector. We measured the effects of RSV on induction of DNA damage, repair kinetics, and modulation of histone deacetylase activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Association Between Polymorphisms of DNA Repair Gene XRCC1 and DNA Damage in Asbestos-Exposed Workers

    Institute of Scientific and Technical Information of China (English)

    XIAO-HONG ZHAO; GUANG JIA; YONG-QUAN LIU; SHAO-WEI LIU; LEI YAN; YU JIN; NIAN LIU

    2006-01-01

    Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestos exposed workers and 101 control workers in Qingdao City of China and to investigate the possible association between polymorphisms in codon 399 of XRCC1 and susceptibility to asbestosis. Methods DNA damage levels in peripheral bloodlymphocytes were determined by comet assay, and XRCC 1 genetic polymorphisms of DNA samples from 51 asbestosis cases and 53 non-asbestosis workers with a similar asbestos exposure history were analyzed by PCR/RFLP. Results The basal comet scores (3.95±2.95) were significantly higher in asbestos-exposed workers than in control workers (0.10±0.28). After 1 h H2O2 stimulation, DNA damage of lymphocytes exhibited different increases. After a 4 h repair period, the comet scores were 50.98±19.53 in asbestos-exposed workers and 18.32±12.04 in controls. The residual DNA damage (RD) was significantly greater (P<0.01) in asbestos-exposed workers (35.62%) than in controls (27.75%). XRCC1 genetic polymorphism in 104 asbestos-exposed workers was not associated with increased risk of asbestosis. But compared with polymorphisms in the DNA repair gene XRCC1 (polymorphisms in codon 399) and the DNA damage induced by asbestos, the comet scores in asbestosis cases with Gln/Gln, Gln/Arg, and Arg/Arg were 40.26±18.94, 38.03±28.22, and 32.01±11.65, respectively, which were higher than those in non-asbestosis workers with the same genotypes (25.58±11.08, 37.08±14.74, and 29.38±10.15). There were significant differences in the comet scores between asbestosis cases and non-asbestosis workers with Gln/Gln by Student's t-test (P<0.05 or 0.01). The comet scores were higher in asbestosis workers with Gln/Gln than in those with Arg/Arg and in non-asbestosis workers exposed to asbestos, but without statistically significant difference. Conclusions Exposure to asbestos may be related to DNA damage or the capacity of cells to repair H2O2-induced

  12. Ciliogenesis and the DNA damage response: a stressful relationship.

    Science.gov (United States)

    Johnson, Colin A; Collis, Spencer J

    2016-01-01

    Both inherited and sporadic mutations can give rise to a plethora of human diseases. Through myriad diverse cellular processes, sporadic mutations can arise through a failure to accurately replicate the genetic code or by inaccurate separation of duplicated chromosomes into daughter cells. The human genome has therefore evolved to encode a large number of proteins that work together with regulators of the cell cycle to ensure that it remains error-free. This is collectively known as the DNA damage response (DDR), and genome stability mechanisms involve a complex network of signalling and processing factors that ensure redundancy and adaptability of these systems. The importance of genome stability mechanisms is best illustrated by the dramatic increased risk of cancer in individuals with underlying disruption to genome maintenance mechanisms. Cilia are microtubule-based sensory organelles present on most vertebrate cells, where they facilitate transduction of external signals into the cell. When not embedded within the specialised ciliary membrane, components of the primary cilium's basal body help form the microtubule organising centre that controls cellular trafficking and the mitotic segregation of chromosomes. Ciliopathies are a collection of diseases associated with functional disruption to cilia function through a variety of different mechanisms. Ciliopathy phenotypes can vary widely, and although some cellular overgrowth phenotypes are prevalent in a subset of ciliopathies, an increased risk of cancer is not noted as a clinical feature. However, recent studies have identified surprising genetic and functional links between cilia-associated proteins and genome maintenance factors. The purpose of this mini-review is to therefore highlight some of these discoveries and discuss their implications with regards to functional crosstalk between the DDR and ciliogenesis pathways, and how this may impact on the development of human disease.

  13. Photoelectrochemical Sensors for the Rapid Detection of DNA Damage Induced by Some Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Jamaluddin Ahmed

    2010-06-01

    Full Text Available Photoelectrochemcal sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy2 (dppz2+ [bpy=2, 2′ -bipyridine, dppz=dipyrido( 3, 2-a: 2′ 3′-c phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy2 (dppz2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time – dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polysterene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals.

  14. HBV cccDNA in patients′ sera as an indicator for HBV reactivation and an early signal of liver damage

    Institute of Scientific and Technical Information of China (English)

    Ying Chen; Johnny Sze; Ming-Liang He

    2004-01-01

    AIM: To evaluate the covalently closed circle DNA (cccDNA)level of hepatitis B virus (HBV) in patients′ liver and sera.METHODS: HBV DNA was isolated from patients′liver biopsies and sera. A sensitive real-time PCR method, which is capable of differentiation of HBV viral genomic DNA and cccDNA, was used to quantify the total HBV cccDNA. The total HBV viral DNA was quantitated by real-time PCR using a HBV diagnostic kit (PG Biotech, LTD, Shenzhen, China)described previously.RESULTS: For the first time, we measured the level of HBV DNA and cccDNA isolated from ten HBV patients′liver biopsies and sera. In the liver biopsies, cccDNA was detected from all the biopsy samples. The copy number of cccDNA ranged from from 0.03 to 173.1 per cell, the copy number of total HBV DNA ranged from 0.08 to 3 717 per cell. The ratio of total HBV DNA to cccDNA ranged from 1 to 3 406. In the sera,cccDNA was only detected from six samples whereas HBV viral DNA was detected from all ten samples. The ratio of cccDNA to total HBV DNA ranged from 0 to 1.77%. To further investigate the reason why cccDNA could only be detected in some patients′sera, we performed longitudinal studies. The cccDNA was detected from the patients′sera with HBV reactivation but not from the patients′sera without HBV reactivation. The level of cccDNA in the sera was correlated with ALT and viral load in the HBV reactivation patients.CONCLUSION: HBV cccDNA is actively transcribed and replicated in some patients′hepatocytes, which is reflected by a high ratio of HBV total DNA vs cccDNA. Detection of cccDNA in the liver biopsy will provide an end-point for the anti-HBV therapy. The occurrence of cccDNA in the sera is an early signal of liver damage, which may be another important clinical parameter.

  15. Monitoring of DNA damage in individuals exposed to petroleum hydrocarbons in Ecuador.

    Science.gov (United States)

    Paz-y-Miño, César; López-Cortés, Andrés; Arévalo, Melissa; Sánchez, María Eugenia

    2008-10-01

    Currently, it is known that several chemical agents used or generated by the oil industry are classified as mutagens and/or carcinogens. Among these we have gasoline, diesel, butane gas, styrene, benzene, chloroform, and others. Studies have verified that these chemicals have effects in fertility (abortions, sterility); produce various upheavals, such as dizziness, nausea, muscular pain; and produce chromosomal damage at the DNA level, which in the long or medium run, can develop into cancer and leukemia. The genetic damage in exposed individuals was measured by means of the comet test, chromosomal alterations test, and the study of the CYP 1A1 and MSH2 genes. These methods were applied to determine the genotoxicity of hydrocarbons and their residue in human beings. When conducting these tests on the blood samples of individuals exposed to hydrocarbons (workers of oil companies) and of a control population of the area of study and Quito, it was found that, in effect, the exposed individuals presented a greater amount of damage at the DNA level as well as at the chromosomal level than the individuals from the control populations (Poil impact has been greater.

  16. Effect of ATM and HDAC Inhibition on Etoposide-Induced DNA Damage in Porcine Early Preimplantation Embryos: e0142561

    National Research Council Canada - National Science Library

    HaiYang Wang; YiBo Luo; ZiLi Lin; In-Won Lee; Jeongwoo Kwon; Xiang-Shun Cui; Nam-Hyung Kim

    2015-01-01

      Oocyte maturation and embryonic development are sensitive to DNA damage. Compared with somatic cells or oocytes, little is known about the response to DNA damage in early preimplantation embryos...

  17. The DNA damage response pathways: at the crossroad of protein modifications

    Institute of Scientific and Technical Information of China (English)

    Michael SY Huen; Junjie Chen

    2008-01-01

    Post-translational modifications play a crucial role in coordinating cellular response to DNA damage. Recent evidence suggests an interplay between multiple protein modifications, including phosphorylation, ubiquitylation, acetylation and sumoylation, that combine to propagate the DNA damage signal to elicit cell cycle arrest, DNA repair, apoptosis and senescence. Utility of specific post-translational modifiers allows temporal and spatial control over protein relo-calization and interactions, and may represent a means for trans-regulatory activation of protein activities. The abil-ity to recognize these specific modifiers also underscores the capacity for signal amplification, a crucial step for the maintenance of genomic stability and tumor prevention. Here we have summarized recent findings that highlight the complexity of post-translational modifications in coordinating the DNA damage response, with emphasis on the DNA damage signaling cascade.

  18. EFFECT OF GLYCYRRHETINIC ACID ON DNA DAMAGE AND UNSCHEDULED DNA SYNTHESIS INDUCED BY BENZO (α) PYRENE

    Institute of Scientific and Technical Information of China (English)

    陈晓光; 韩锐

    1995-01-01

    Glycyrrhetinic acid (GA) is an active component of Glycyrrhiza uraleusis fisch. In this study, GA was found to inhibit ear edema and ornithine decarboxykase (ODC)activity induced by croton oil in mice. GA could also protect rapid DNA damage and decrease the unscheduled DNA synthesis induced by benzo(α)pyrene, The results demonstrate that GA has a potential cancer chemopreventive activity.

  19. Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli.

    Science.gov (United States)

    Schalow, Brandy J; Courcelle, Charmain T; Courcelle, Justin

    2012-05-01

    Transcription-coupled repair (TCR) is a cellular process by which some forms of DNA damage are repaired more rapidly from transcribed strands of active genes than from nontranscribed strands or the overall genome. In humans, the TCR coupling factor, CSB, plays a critical role in restoring transcription following both UV-induced and oxidative DNA damage. It also contributes indirectly to the global repair of some forms of oxidative DNA damage. The Escherichia coli homolog, Mfd, is similarly required for TCR of UV-induced lesions. However, its contribution to the restoration of transcription and to global repair of oxidative damage has not been examined. Here, we report the first direct study of transcriptional recovery following UV-induced and oxidative DNA damage in E. coli. We observed that mutations in mfd or uvrA reduced the rate that transcription recovered following UV-induced damage. In contrast, no difference was detected in the rate of transcription recovery in mfd, uvrA, fpg, nth, or polB dinB umuDC mutants relative to wild-type cells following oxidative damage. mfd mutants were also fully resistant to hydrogen peroxide (H(2)O(2)) and removed oxidative lesions from the genome at rates comparable to wild-type cells. The results demonstrate that Mfd promotes the rapid recovery of gene expression following UV-induced damage in E. coli. In addition, these findings imply that Mfd may be functionally distinct from its human CSB homolog in that it does not detectably contribute to the recovery of gene expression or global repair following oxidative damage.

  20. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution

    DEFF Research Database (Denmark)

    Møller, Peter; Loft, Steffen

    2010-01-01

    of each of the biomarkers, for total and stratified formal meta-analyses. DATA SYNTHESIS: In the meta-analysis, the standardized mean differences (95% confidence interval) between exposed and unexposed subjects for oxidized DNA and lipids were 0.53 (0.29-0.76) and 0.73 (0.18-1.28) in blood and 0.52 (0......BACKGROUND: Air pollution is thought to exert health effects through oxidative stress, which causes damage to DNA and lipids. OBJECTIVE: We determined whether levels of oxidatively damaged DNA and lipid peroxidation products in cells or bodily fluids from humans are useful biomarkers.......22-0.82) and 0.49 (0.01-0.97) in urine, respectively. The standardized mean difference for oxidized lipids was 0.64 (0.07-1.21) in the airways. Restricting analyses to studies unlikely to have substantial biomarker or exposure measurement error, studies likely to have biomarker and/or exposure error, or studies...

  1. Synergic Effect of Genistein and Daidzein on UVB-Induced DNA Damage: An Effective Photoprotective Combination

    Directory of Open Access Journals (Sweden)

    Barbara Iovine

    2011-01-01

    Full Text Available The anti-inflammatory effects and antioxidant activities of individual isoflavones are well established although little is known about the photoprotective effect of their combination. The aim of this study was to investigate the photoprotective effects of different concentrations of genistein and daidzein individually or combined. We measured the expression levels of the cyclo-oxygenase-2 (COX-2 and growth arrest and DNA-damage inducible (Gadd45 genes, which are involved in inflammation and DNA repair, respectively, in BJ-5ta human skin fibroblasts irradiated with 60 mJ/cm2 UVB. We also determined the cellular response to UVB-induced DNA damage by Comet assay. We report that genistein and daidzein when administered combined, and at a specific concentration and ratio, exerted a synergistic photoprotective effect that was greater than the effect obtained with each isoflavone alone. The results reported herein suggest that low concentrations of genistein and daidzein combined may be good candidate ingredients for protective agents against UV-induced photodamage.

  2. Aqueous extract of Pinus caribaea inhibits the damage induced by ultraviolet radiations, in plasmid DNA

    Directory of Open Access Journals (Sweden)

    Marioly Vernhes Tamayo

    2017-08-01

    Full Text Available Context: The incidence of solar ultraviolet radiation (UV on Earth has increased due to diminish of the ozone layer. This enviromental agent is highly genotoxic causing numerous damage in DNA molecule. Nowadays there is a growing interest in the search of compounds capable to minimize these effects. In particular, phytocompounds have been tested as excelent candidates for their antigenotoxic properties. Aims: To evaluate the protective effect of the aqueous extract of Pinus caribaea (EPC against the damage induced by the UVB and UVC radiation. Methods: The cell-free plasmid DNA assay was employed. The forms of plasmid were separated electrophoretically in agarose gel. For genotoxic and photoprotective evaluation of P. caribaea, different concentrations of the extract (0.1 – 2.0 mg/mL and exposure times were evaluated. The CPD lesions were detected enzymatically. Additionally, the transmittance of the aqueous extract against 254 nm and 312 nm was measured. Results: None of the concentrations were genotoxic in 30 min of treatment, for superior times a clastogenic effect was observed. The EPC despite inhibiting the activity of the enzyme T4 endo V, impedes photolesions formation in DNA at concentrations ≥ 0.1 mg/mL. Conclusions: The EPC has photoprotective properties, this effect could be related with its antioxidants and absorptives capacities.

  3. DNA damage inhibitory effect and phytochemicals of fermented red brown rice extract

    Directory of Open Access Journals (Sweden)

    Ee-Ling Kong

    2015-09-01

    Full Text Available Objective: To determine the polyphenol compounds (phenolic and flavonoid compounds, antioxidant activity [1,1-diphenylpicryl-2-picrylhydrazyl (DPPH radical scavenging activity] and DNA damage inhibitory effect of fermented local red brown rice. Methods: DNA nicking assay was employed to determine the antioxidant activity of the fermented rice extract. Phytochemical screening was completed using standard methods and DPPH radical assays were used to confirm the antioxidant properties of the extracts. Results: After four days of fermentation, fermented red brown rice had more polyphenol compounds compared to unfermented counterpart. Fermented red brown rice showed greater antioxidant properties with EC50 value of DPPH radical scavenging of 43.00 mg extract/mL or 8 mg quercetin equivalent antioxidant activity. In addition, fermented rice extract showed DNA damage inhibitory effect to a certain extent. It protected DNA from reactive oxygen species; however, at high concentration it might induce reductive damage to DNA, whereas, unfermented red brown rice showed weak DNA damage inhibitory effect. Conclusions: Fermented red brown rice could protect DNA from oxidative damage but might induce reductive damage to DNA at high concentrations.

  4. Response to DNA damage: why do we need to focus on protein phosphatases?

    Directory of Open Access Journals (Sweden)

    Midori eShimada

    2013-01-01

    Full Text Available Eukaryotic cells are continuously threatened by unavoidable errors during normal DNA replication or various sources of genotoxic stresses that cause DNA damage or stalled replication. To maintain genomic integrity, cells have developed a coordinated signaling network, known as the DNA damage response (DDR. Following DNA damage, sensor molecules detect the presence of DNA damage and transmit signals to downstream transducer molecules. This in turn conveys the signals to numerous effectors, which initiate a large number of specific biological responses, including transient cell cycle arrest mediated by checkpoints, DNA repair, and apoptosis. It is recently becoming clear that dephosphorylation events are involved in keeping DDR factors inactive during normal cell growth. Moreover, dephosphorylation is required to shut off checkpoint arrest following DNA damage and has been implicated in the activation of the DDR. Spatial and temporal regulation of phosphorylation events is essential for the DDR, and fine-tuning of phosphorylation is partly mediated by protein phosphatases. While the role of kinases in the DDR has been well documented, the complex roles of protein dephosphorylation have only recently begun to be investigated. Therefore, it is important to focus on the role of phosphatases and to determine how their activity is regulated upon DNA damage. In this work, we summarize current knowledge on the involvement of serine/threonine phosphatases, especially the protein phosphatase 1, protein phosphatase 2A, and protein phosphatase Mg2+/Mn2+-dependent families, in the DDR.

  5. The ability of sperm selection techniques to remove single-or double-strand DNA damage

    Institute of Scientific and Technical Information of China (English)

    Maria Enciso; Miriam Iglesias; Isabel Galin; Jonas Sarasa; Antonio Gosalvez; Jaime Gosalvez

    2011-01-01

    @@ A wide variety of techniques for the preparation of sperm are currently available,of which the most commonly employed are densitygradient centrifugation (DGC) and swim-up (SUP).To date,these methods appear to be effective in selecting functional sperm for assisted reproduction techniques (ART),but they may have negative effects on sperm DNA.In this study,the ability of these semen processing techniques to eliminate spermatozoa containing single- and double-strand DNA damage was assessed by the two-tailed comet assay and the sperm chromatin dispersion test in 1[57]semen samples from patients seeking assisted reproduction treatment.Our results indicated that SUP and DGC are equally efficient in eliminating spermatozoa containing double-strand DNA damage and sperm with highly damaged (degraded) DNA,as characterized by the presence of both single- and double-strand DNA breaks.However,DGC is more efficient than SUP in selecting spermatozoa that are free from single-strand DNA damage.Future studies should characterise the importance of the various types of DNA damage and examine the sperm processing protocols used in each laboratory to determine their ability to eliminate DNA damage and hence,prevent the potential transmission of genetic mutations via ART.

  6. International congress on DNA damage and repair: Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  7. Study of genetic damage in the Japanese oyster induced by an environmentally-relevant exposure to diuron: evidence of vertical transmission of DNA damage.

    Science.gov (United States)

    Barranger, A; Akcha, F; Rouxel, J; Brizard, R; Maurouard, E; Pallud, M; Menard, D; Tapie, N; Budzinski, H; Burgeot, T; Benabdelmouna, A

    2014-01-01

    Pesticides represent a major proportion of the chemical pollutants detected in French coastal waters and hence a significant environmental risk with regards to marine organisms. Commercially-raised bivalves are particularly exposed to pollutants, among them pesticides, as shellfish farming zones are subject to considerable pressure from agricultural activities on the mainland. The aims of this study were to determine (1) the genotoxic effects of diuron exposure on oyster genitors and (2) the possible transmission of damaged DNA to offspring and its repercussions on oyster fitness. To investigate these points, oysters were exposed to concentrations of diuron close to those detected in the Marennes-Oleron Basin (two 7-day exposure pulses at 0.4 and 0.6 μg L(-1)) during the gametogenesis period. Genomic abnormalities were characterized using two complementary approaches. The Comet assay was applied for the measurement of early and reversible primary DNA damage, whereas flow cytometry was used to assess the clastogenic and aneugenic effect of diuron exposure. Polar Organic Chemical Integrative Samplers (POCIS) were used in exposed and assay tanks to confirm the waterborne concentration of diuron reached during the experiment. The results obtained by the Comet assay clearly showed a higher level of DNA strand breaks in both the hemocytes and spermatozoa of diuron-exposed genitors. The transmission of damaged genetic material to gamete cells could be responsible for the genetic damage measured in offspring. Indeed, flow cytometry analyses showed the presence of DNA breakage and a significant decrease in DNA content in spat from diuron-exposed genitors. The transmission of DNA damage to the offspring could be involved in the negative effects observed on offspring development (decrease in hatching rate, higher level of larval abnormalities, delay in metamorphosis) and growth. In this study, the vertical transmission of DNA damage was so highlighted by subjecting oyster

  8. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles.

    Science.gov (United States)

    Rezvanfar, Mohammad Amin; Rezvanfar, Mohammad Ali; Shahverdi, Ahmad Reza; Ahmadi, Abbas; Baeeri, Maryam; Mohammadirad, Azadeh; Abdollahi, Mohammad

    2013-02-01

    Cisplatin (CIS), an anticancer alkylating agent, induces DNA adducts and effectively cross links the DNA strands and so affects spermatozoa as a male reproductive toxicant. The present study investigated the cellular/biochemical mechanisms underlying possible protective effect of selenium nano-particles (Nano-Se) as an established strong antioxidant with more bioavailability and less toxicity, on reproductive toxicity of CIS by assessment of sperm characteristics, sperm DNA integrity, chromatin quality and spermatogenic disorders. To determine the role of oxidative stress (OS) in the pathogenesis of CIS gonadotoxicity, the level of lipid peroxidation (LPO), antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and peroxynitrite (ONOO) as a marker of nitrosative stress (NS) and testosterone (T) concentration as a biomarker of testicular function were measured in the blood and testes. Thirty-two male Wistar rats were equally divided into four groups. A single IP dose of CIS (7 mg/kg) and protective dose of Nano-Se (2 mg/kg/day) were administered alone or in combination. The CIS-exposed rats showed a significant increase in testicular and serum LPO and ONOO level, along with a significant decrease in enzymatic antioxidants levels, diminished serum T concentration and abnormal histologic findings with impaired sperm quality associated with increased DNA damage and decreased chromatin quality. Coadministration of Nano-Se significantly improved the serum T, sperm quality, and spermatogenesis and reduced CIS-induced free radical toxic stress and spermatic DNA damage. In conclusion, the current study demonstrated that Nano-Se may be useful to prevent CIS-induced gonadotoxicity through its antioxidant potential.

  9. EdU induces DNA damage response and cell death in mESC in culture.

    Science.gov (United States)

    Kohlmeier, Fanni; Maya-Mendoza, Apolinar; Jackson, Dean A

    2013-03-01

    Recently, a novel DNA replication precursor analogue called 5-ethynyl-2'-deoxyuridine (EdU) has been widely used to monitor DNA synthesis as an alternative to bromodeoxyuridine. Use of EdU benefits from simplicity and reproducibility and the simple chemical detection systems allows excellent preservation of nuclear structure. However, the alkyne moiety is highly reactive, raising the possibility that incorporation might compromise genome stability. To assess the extent of possible DNA damage, we have analysed the effect of EdU incorporation into DNA during short- and long-term cell culture using a variety of cell lines. We show that EdU incorporation has no measurable impact on the rate of elongation of replication forks during synthesis. However, using different cell lines we find that during long-term cell culture variable responses to EdU incorporation are seen, which range from delayed cell cycle progression to complete cell cycle arrest. The most profound phenotypes were seen in mouse embryonic stem cells, which following incorporation of EdU accumulated in the G2/M-phase of the cell cycle before undergoing apoptosis. In long-term cell culture, EdU incorporation also triggered a DNA damage response in all cell types analysed. Our study shows that while EdU is extremely useful to tag sites of on-going replication, for long-term studies (i.e. beyond the cell cycle in which labelling is performed), a careful analysis of cell cycle perturbations must be performed in order to ensure that any conclusions made after EdU treatment are not a direct consequence of EdU-dependent activation of cell stress responses.

  10. Common genomic signaling among initial DNA damage and radiation-induced apoptosis in peripheral blood lymphocytes from locally advanced breast cancer patients

    DEFF Research Database (Denmark)

    Henríquez-Hernández, Luis Alberto; Pinar, Beatriz; Carmona-Vigo, Ruth

    2013-01-01

    suffering from locally advanced breast cancer and treated with high-dose hyperfractionated radiotherapy were recruited. Initial DNA damage was measured by pulsed-field gel electrophoresis and radiation-induced apoptosis was measured by flow cytometry. Gene expression was assessed by DNA microarray. RESULTS...

  11. Increased systemic oxidatively generated DNA and RNA damage in schizophrenia

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Broedbaek, Kasper; Fink-Jensen, Anders;

    2013-01-01

    such as cardiovascular disease, type 2 diabetes and dementia. We determined the urinary excretion of markers of systemic Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine, respectively, in 40 schizophrenia patients and 40 age- and sex......Schizophrenia is associated with a substantially increased somatic morbidity and mortality, which may partly be caused by accelerated cellular aging. Oxidative stress is an established mediator of aging and a suggested aetiological mechanism in both schizophrenia and age-related medical disorders......-matched controls, using ultra-performance liquid chromatography with tandem mass spectrometry. Measures of psychopathology, perceived stress and cortisol secretion were collected. Patients were re-examined after four months. We found a 20% increase in the median excretion of both markers in schizophrenia patients...

  12. Increased systemic oxidatively generated DNA and RNA damage in schizophrenia

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Brødbæk, Kasper; Fink-Jensen, Anders;

    2013-01-01

    Schizophrenia is associated with a substantially increased somatic morbidity and mortality, which may partly be caused by accelerated cellular aging. Oxidative stress is an established mediator of aging and a suggested aetiological mechanism in both schizophrenia and age-related medical disorders...... such as cardiovascular disease, type 2 diabetes and dementia. We determined the urinary excretion of markers of systemic Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine, respectively, in 40 schizophrenia patients and 40 age- and sex......-matched controls, using ultra-performance liquid chromatography with tandem mass spectrometry. Measures of psychopathology, perceived stress and cortisol secretion were collected. Patients were re-examined after four months. We found a 20% increase in the median excretion of both markers in schizophrenia patients...

  13. Inhibition of the mitochondrial respiratory chain function abrogates quartz induced DNA damage in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Hui [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Haberzettl, Petra [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Albrecht, Catrin [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Hoehr, Doris [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Knaapen, Ad M. [Department of Health Risk Analysis and Toxicology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), University of Maastricht (Netherlands); Borm, Paul J.A. [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Hogeschool Zuyd Heerlen (Netherlands); Schins, Roel P.F. [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany)]. E-mail: roel.schins@uni-duesseldorf.de

    2007-04-01

    Respirable quartz dust has been classified as a human carcinogen by the International Agency for Research on Cancer. The aim of our study was to investigate the mechanisms of DNA damage by DQ12 quartz in RLE-6TN rat lung epithelial type II cells (RLE). Transmission electron microscopy and flow-cytometry analysis showed a rapid particle uptake (30 min to 4 h) of quartz by the RLE cells, but particles were not found within the cell nuclei. This suggests that DNA strand breakage and induction of 8-hydroxydeoxyguanosine - as also observed in these cells during these treatment intervals - did not result from direct physical interactions between particles and DNA, or from short-lived particle surface-derived reactive oxygen species. DNA damage by quartz was significantly reduced in the presence of the mitochondrial inhibitors rotenone and antimycin-A. In the absence of quartz, these inhibitors did not affect DNA damage, but they reduced cellular oxygen consumption. No signs of apoptosis were observed by quartz. Flow-cytometry analysis indicated that the reduced DNA damage by rotenone was not due to a possible mitochondria-mediated reduction of particle uptake by the RLE cells. Further proof of concept for the role of mitochondria was shown by the failure of quartz to elicit DNA damage in mitochondria-depleted 143B (rho-0) osteosarcoma cells, at concentrations where it elicited DNA damage in the parental 143B cell line. In conclusion, our data show that respirable quartz particles can elicit oxidative DNA damage in vitro without entering the nuclei of type II cells, which are considered to be important target cells in quartz carcinogenesis. Furthermore, our observations indicate that such indirect DNA damage involves the mitochondrial electron transport chain function, by an as-yet-to-be elucidated mechanism.

  14. DNA Damages and White Blood Cell Death Processes in Victims with Severe Injury

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2014-01-01

     pase3, caspase9, superoxide dismutase, and sAPO1/FAS were measured by enzyme immunoassay using test systems(Bender MedSystems, Austria.Results. There were significantly higher plasma levels of free DNA in the victims than in the controls throughout the followup, which is due to its exit from the cells damaged from tissue injury. In the first two weeks after injury, there were increases in DNA damages and white blood cell alteration processes by a necrotic and apoptotic mechanism in the victims with different types of injury, which may be associated with the active participation of leuko cytes in the processes of cellular breakdown product removal in the tissues damaged during injury and the in those of prevention of infectious complications. In the victims, white blood cell alteration in the necrotic pathway does not depend on BLV and hypoxia degree while that in the apoptotic pathway showed a relationship of leukocyte alteration to hypoxia in these patients. The sum of the values of necrotic DNA comets, apoptotic DNA comets, and single and doublestrand breaks on day 3 postinjury may serve as a predictor of the likely development of infectious complications in victims with injury, blood loss, and marked hypoxia. There were differences in the levels of DNA damages and white blood cell apoptosis and necrosis in the victims with BI and SSI. The injury victims showed a threefold decrease in plasma 8hydroxy2 deoxyguanosine concentrations, which was accompanied and, possibly, caused by an increase in the amount of superoxide dismutase.Conclusion. There was a relationship between the degree of DNA damages, apoptosis, and necrosis in the white blood cells of victims with injury and hypoxiainduced blood loss.

  15. DNA damage-induced cell death: lessons from the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Helena Lobo Borges; Rafael Linden; Jean YJ Wang

    2008-01-01

    DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.

  16. Cadmium and copper toxicity in three marine macroalgae: evaluation of the biochemical responses and DNA damage.

    Science.gov (United States)

    Babu, M Yokesh; Palanikumar, L; Nagarani, N; Devi, V Janaki; Kumar, S Ramesh; Ramakritinan, C M; Kumaraguru, A K

    2014-01-01

    Marine macroalgae have evolved a different mechanism to maintain physiological concentrations of essential metal ions and non-essential metals. The objective of the present work was to evaluate the antioxidant response and DNA damage of copper and cadmium ions in three halophytes, namely, Acanthophora spicifera, Chaetomorpha antennina, and Ulva reticulata. Accumulation of copper was significantly higher (P  A. spicifera > C. antennina. DNA damage index analysis supported that copper was significantly (P < 0.05) more toxic than cadmium. Bioaccumulation, biochemical responses, and DNA damage observed in the here analyzed marine macroalgae after exposure to selected metals indicate that these marine organisms represent useful bioindicators of marine p