WorldWideScience

Sample records for dna damage acetylcholinesterase

  1. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    Science.gov (United States)

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B.; Sottomayor, M. J.; Borges, Fernanda; Garrido, E. Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode. PMID:24795892

  2. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Sofia Benfeito

    2014-01-01

    Full Text Available Persistent pesticide transformation products (TPs are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode.

  3. Effects of chlorophenoxy herbicides and their main transformation products on DNA damage and acetylcholinesterase activity.

    Science.gov (United States)

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B; Sottomayor, M J; Borges, Fernanda; Garrido, E Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode.

  4. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    OpenAIRE

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visibl...

  5. DNA damage and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely [Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States); Panayiotidis, Mihalis I. [School of Community Health Sciences, University of Nevada, Reno, NV 89557 (United States); Franco, Rodrigo, E-mail: rfrancocruz2@unl.edu [Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583 (United States)

    2011-06-03

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  6. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Orada Chumphukam

    2014-04-01

    Full Text Available We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE. One selected aptamer sequence (R15/19 has a high affinity towards the enzyme (Kd = 157 ± 42 pM. Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM, however significant reduction in affinity occurred at high ionic strength (~1.2 M. In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of the DNA on a streptavidin-coated surface. Subsequent immobilization of AChE by the aptamer results in a 4-fold higher catalytic activity when compared to adsorption directly on to plastic.

  7. 3,4-Methylenedioxymethamphetamine (MDMA) Abuse Markedly Inhibits Acetylcholinesterase Activity and Induces Severe Oxidative Damage and Liperoxidative Damage

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Objective To investigate whether 3,4-methylenedioxymethamphetamine (MDMA) abuse produces another neurotoxicity which may significantly inhibit the acetylcholinesterase activity and result in severe oxidative damage and liperoxidative damage to MDMA abusers. Methods 120 MDMA abusers (MA) and 120 healthy volunteers (HV) were enrolled in an independent sample control design, in which the levels of lipoperoxide (LPO) in plasma and erythrocytes as well as the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and acetylcholinesterase (AChE) in erythrocytes were determined by spectrophotometric methods. Results Compared with the average values of biochemical parameters in the HV group, those of LPO in plasma and erythrocytes in the MA group were significantly increased (P<0.0001), while those of SOD, CAT, GPX and AChE in erythrocytes in the MA group were significantly decreased (P<0.0001). The Pearson product-moment correlation analysis between the values of AChE and biochemical parameters in 120 MDMA abusers showed that significant linear negative correlation was present between the activity of AChE and the levels of LPO in plasma and erythrocytes (P<0.0005-0.0001), while significant linear positive correlation was observed between the activity of AchE and the activities of SOD, CAT and GPX (P<0.0001). The reliability analysis for the above biochemical parameters reflecting oxidative and lipoperoxidative damages in MDMA abusers suggested that the reliability coefficient (alpha) was 0.8124, and that the standardized item alpha was 0.9453. Conclusion The findings in the present study suggest that MDMA abuse can induce another neurotoxicity that significantly inhibits acetylcholinesterase activity and aggravates a series of free radical chain reactions and oxidative stress in the bodies of MDMA abusers, thereby resulting in severe neural, oxidative and lipoperoxidative damages in MDMA abusers.

  8. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail: fabio.coppede@med.unipi.it; Migliore, Lucia, E-mail: lucia.migliore@med.unipi.it

    2015-06-15

    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  9. Mechanism of DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xin; Bi

    2015-01-01

    DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance(DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis(TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching(TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.

  10. DNA damage in neurodegenerative diseases.

    Science.gov (United States)

    Coppedè, Fabio; Migliore, Lucia

    2015-06-01

    Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans.

  11. DNA damage and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Stelow, R B

    1980-01-01

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 10/sup 4/ fold.

  12. Sperm DNA oxidative damage and DNA adducts

    Science.gov (United States)

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  13. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  14. Effects of immature cashew nut-shell liquid (Anacardium occidentale) against oxidative damage in Saccharomyces cerevisiae and inhibition of acetylcholinesterase activity.

    Science.gov (United States)

    De Lima, S G; Feitosa, C M; Citó, A M G L; Moita Neto, J M; Lopes, J A D; Leite, A S; Brito, M C; Dantas, S M M; Cavalcante, A A C Melo

    2008-09-09

    The cashew tree (Anacardium occidentale) represents one of the major cheapest sources of non-isoprenoid phenolic lipids, which have a variety of biological properties: they can act as molluscicides, insecticides, fungicides, have anti-termite properties, have medicinal applications, and demonstrate antioxidant activity in vitro. Immature cashew nut-shell liquid (iCNSL) is a unique natural source of unsaturated long-chain phenols. Their use has stimulated much research in order to prepare drug analogues for application in several fields. The objective of the present study was to determine whether iCNSL has antioxidant properties when used in strains of the yeast Saccharomyces cerevisiae and to measure the inhibitory activity of acetylcholinesterase. The constituents were identified using thin-layer chromatography, gas chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and (1)H and (13)C nuclear magnetic resonance. The iCNSL contains anacardic acid, cardanol, cardol, and 2-methyl cardol. Immature cashew nut oil contains triacylglycerols, fatty acids, alkyl-substituted phenols, and cholesterol. The main constituents of the free fatty acids are palmitic (C(16:0)) and oleic acid (C(18:1)). iCNSL has excellent protective activities in strains of S. cerevisiae against oxidative damage induced by hydrogen peroxide and inhibits acetylcholinesterase activity. iCNSL may have an important role in protecting DNA against damage induced by reactive oxygen species, as well as hydrogen peroxide, generated by intra- and extracellular mechanisms.

  15. Synthesis, characterization, DNA-binding studies and acetylcholinesterase inhibition activity of new 3-formyl chromone derivatives.

    Science.gov (United States)

    Parveen, Mehtab; Malla, Ali Mohammed; Yaseen, Zahid; Ali, Akhtar; Alam, Mahboob

    2014-01-05

    A series of new substituted 3-formyl chromone derivatives (4-6) were synthesized by one step reaction methodology by knoevenagel condensation, structurally similar to known bisintercalators. The new compounds were characterized by IR, (1)H NMR, (13)C NMR, MS and analytical data. The in vitro DNA binding profile of compounds (4-6) was carried out by absorption, fluorescence and viscosity measurements. It was found that synthesized compounds, especially compound 6 (evident from binding constant value) bind strongly with calf thymus DNA, presumably via an intercalation mode. Additionally, molecular docking studies of compounds (4-6) were carried out with B-DNA (PDBID: 1BNA) which revealed that partial intercalative mode of mechanism is operational in synthesized compounds (4-6) with CT-DNA. The binding constants evaluated from fluorescence spectroscopy of compounds with CT-DNA follows the order compound 6>compound 5>compound 4. All the compounds (4-6) were screened for acetylcholinesterase inhibition assay. It can be inferred from data, that compound (6) showed potent AChE inhibition having IC50=0.27μM, almost in vicinity to reference drug Tacrine (IC50=0.19μM). Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The DNA damage response during mitosis

    NARCIS (Netherlands)

    Heijink, Anne Margriet; Krajewska, Malgorzata; van Vugt, Marcel A. T. M.

    2013-01-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance

  17. The DNA damage response during mitosis

    NARCIS (Netherlands)

    Heijink, Anne Margriet; Krajewska, Malgorzata; van Vugt, Marcel A. T. M.

    2013-01-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance

  18. Chromatin structure and DNA damage repair

    Directory of Open Access Journals (Sweden)

    Dinant Christoffel

    2008-11-01

    Full Text Available Abstract The integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks, single strand breaks, oxidative lesions and pyrimidine dimers. The cell has evolved intricate DNA damage response mechanisms to counteract the genotoxic effects of these lesions. The two main features of the DNA damage response mechanisms are cell-cycle checkpoint activation and, at the heart of the response, DNA repair. For both damage signalling and repair, chromatin remodelling is most likely a prerequisite. Here, we discuss current knowledge on chromatin remodelling with respect to the cellular response to DNA damage, with emphasis on the response to lesions resolved by nucleotide excision repair. We will discuss the role of histone modifications as well as their displacement or exchange in nucleotide excision repair and make a comparison with their requirement in transcription and double strand break repair.

  19. Acetylcholinesterase of the sand fly, Phlebotomus papatasi (Scopoli): cDNA sequence, baculovirus expression, and biochemical properties.

    Science.gov (United States)

    Temeyer, Kevin B; Brake, Danett K; Tuckow, Alexander P; Li, Andrew Y; Pérez de León, Adalberto A

    2013-02-04

    Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduce or interrupt Leishmania transmission. Zoonotic cutaneous leishmaniasis caused by L. major is vectored mainly by Phlebotomus papatasi (Scopoli) in Asia and Africa. Organophosphates comprise a class of insecticides used for sand fly control, which act through the inhibition of acetylcholinesterase (AChE) in the central nervous system. Point mutations producing an altered, insensitive AChE are a major mechanism of organophosphate resistance in insects and preliminary evidence for organophosphate-insensitive AChE has been reported in sand flies. This report describes the identification of complementary DNA for an AChE in P. papatasi and the biochemical characterization of recombinant P. papatasi AChE. A P. papatasi Israeli strain laboratory colony was utilized to prepare total RNA utilized as template for RT-PCR amplification and sequencing of cDNA encoding acetylcholinesterase 1 using gene specific primers and 3'-5'-RACE. The cDNA was cloned into pBlueBac4.5/V5-His TOPO, and expressed by baculovirus in Sf21 insect cells in serum-free medium. Recombinant P. papatasi acetylcholinesterase was biochemically characterized using a modified Ellman's assay in microplates. A 2309 nucleotide sequence of PpAChE1 cDNA [GenBank: JQ922267] of P. papatasi from a laboratory colony susceptible to insecticides is reported with 73-83% nucleotide identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85% amino acid identity with acetylcholinesterases of Cx. pipiens, Aedes aegypti, and 92% amino acid identity for L. longipalpis. Recombinant P

  20. Using DNA damage to monitor water environment

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    DNA damage of aquatic organisms living in polluted environments can be used as a biomarker of the genotoxicity of toxic agents to organisms. This technique has been playing an important role in ecotoxicological study and environmental risk assessment. In this article, main types of DNA damage caused by pollutants in water environments were reviewed; methods of detecting DNA damage were also documented for water environmental monitoring.

  1. DNA damage in plant herbarium tissue.

    NARCIS (Netherlands)

    Staats, M.; Cuenca, A.; Richardson, J.E.; Ginkel, R.V.; Petersen, G.; Seberg, O.; Bakker, F.T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplif

  2. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  3. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  4. DNA damage in plant herbarium tissue.

    Directory of Open Access Journals (Sweden)

    Martijn Staats

    Full Text Available Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.

  5. DNA Damage in Plant Herbarium Tissue

    Science.gov (United States)

    Staats, Martijn; Cuenca, Argelia; Richardson, James E.; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4–3.8% of fresh control DNA and 1.0–1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens. PMID:22163018

  6. Apoptosis and DNA damage in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    R John Aitken; Adam J Koppers

    2011-01-01

    DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis,resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.

  7. SIRT participates at DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Yong; Joeng, Jae Min; Lee, Kee Ho [Korea Cancer Center Hospital, Seoul (Korea, Republic of); Park, Gil Hong [College of Medicine, Korea University, Seoul (Korea, Republic of)

    2009-05-15

    Sir2 maintains genomic stability in multiple ways in yeast. As a NAD{sup +}-dependent histone deacetylase, Sir2 has been reported to control chromatin silencing. In both budding yeast and Drosophila, overexpression of Sir2 extends life span. Previous reports have also demonstrated that Sir2 participate at DNA damage repair. A protein complex containing Sir2 has been reported to translocate to DNA double-strand breaks. Following DNA damage response, SIRT1 deacetylates p53 protein and attenuates its ability as a transcription factor. Consequently, SIRT1 over-expression increases cell survival under DNA damage inducing conditions. These previous observations mean a possibility that signals generated during the process of DNA repair are delivered through SIRT1 to acetylated p53. We present herein functional evidence for the involvement of SIRT1 in DNA repair response to radiation. In addition, this modulation of DNA repair activity may be connected to deacetylation of MRN proteins.

  8. The DNA damage response in mammalian oocytes

    Directory of Open Access Journals (Sweden)

    John eCarroll

    2013-06-01

    Full Text Available DNA damage is one of the most common insults that challenge all cells. To cope, an elaborate molecular and cellular response has evolved to sense, respond to and correct the damage. This allows the maintenance of DNA fidelity essential for normal cell viability and the prevention of genomic instability that can lead to tumour formation. In the context of oocytes, the impact of DNA damage is not one of tumour formation but of the maintenance of fertility. Mammalian oocytes are particularly vulnerable to DNA damage because physiologically they may lie dormant in the ovary for many years (>40 in humans until they receive the stimulus to grow and acquire the competence to become fertilized. The implication of this is that in some organisms, such as humans, oocytes face the danger of cumulative genetic damage for decades. Thus, the ability to detect and repair DNA damage is essential to maintain the supply of oocytes necessary for reproduction. Therefore, failure to confront DNA damage in oocytes could cause serious anomalies in the embryo that may be propagated in the form of mutations to the next generation allowing the appearance of hereditary disease. Despite the potential impact of DNA damage on reproductive capacity and genetic fidelity of embryos, the mechanisms available to the oocyte for monitoring and repairing such insults have remained largely unexplored until recently. Here, we review the different aspects of the response to DNA damage in mammalian oocytes. Specifically, we address the oocyte DNA damage response from embryonic life to adulthood and throughout oocyte development.

  9. The DNA damage response during mitosis.

    Science.gov (United States)

    Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M

    2013-10-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  10. The DNA damage response during mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Heijink, Anne Margriet; Krajewska, Małgorzata; Vugt, Marcel A.T.M. van, E-mail: m.vugt@umcg.nl

    2013-10-15

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed.

  11. Damage, DNA Repair, Aging, and Neurodegeneration

    Science.gov (United States)

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2017-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  12. Experimental study of oxidative DNA damage

    DEFF Research Database (Denmark)

    Loft, S; Deng, Xiaohong; Tuo, J

    1998-01-01

    compounds have been studied in animal experiments mainly in rats and mice, and generally with measurement of 8-oxodG with HPLC-EC. A large number of well-known carcinogens induce 8-oxodG formation in liver and/or kidneys. Moreover several animal studies have shown a close relationship between induction...... of the use of 2-nitropropane as a model for oxidative DNA damage relate particularly to formation of 8-aminoguanine derivatives that may interfere with HPLC-EC assays and have unknown consequences. Other model compounds for induction of oxidative DNA damage, such as ferric nitriloacetate, iron dextran......, potassium bromate and paraquat, are less potent and/or more organ specific. Inflammation and activation of an inflammatory response by phorbol esters or E. coli lipopolysaccharide (LPS) induce oxidative DNA damage in many target cells and enhance benzene-induced DNA damage in mouse bone marrow. Experimental...

  13. The RNA Splicing Response to DNA Damage.

    Science.gov (United States)

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  14. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  15. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    Science.gov (United States)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  16. Polyomavirus interaction with the DNA damage response

    Institute of Scientific and Technical Information of China (English)

    Joshua; L.Justice; Brandy; Verhalen; Mengxi; Jiang

    2015-01-01

    Viruses are obligate intracellular parasites that subvert cellular metabolism and pathways to mediate their own replication—normally at the expense of the host cell. Polyomaviruses are a group of small DNA viruses, which have long been studied as a model for eukaryotic DNA replication. Polyomaviruses manipulate host replication proteins, as well as proteins involved in DNA maintenance and repair, to serve as essential cofactors for productive infection. Moreover, evidence suggests that polyomavirus infection poses a unique genotoxic threat to the host cell. In response to any source of DNA damage, cells must initiate an effective DNA damage response(DDR) to maintain genomic integrity, wherein two protein kinases, ataxia telangiectasia mutated(ATM) and ATM- and Rad3-related(ATR), are major regulators of DNA damage recognition and repair. Recent investigation suggests that these essential DDR proteins are required for productive polyomavirus infection. This review will focus on polyomaviruses and their interaction with ATMand ATR-mediated DNA damage responses and the effect of this interaction on host genomic stability.

  17. DNA damage response in adult stem cells.

    Science.gov (United States)

    Insinga, Alessandra; Cicalese, Angelo; Pelicci, Pier Giuseppe

    2014-04-01

    This review discusses the processes of DNA-damage-response and DNA-damage repair in stem and progenitor cells of several tissues. The long life-span of stem cells suggests that they may respond differently to DNA damage than their downstream progeny and, indeed, studies have begun to elucidate the unique stem cell response mechanisms to DNA damage. Because the DNA damage responses in stem cells and progenitor cells are distinctly different, stem and progenitor cells should be considered as two different entities from this point of view. Hematopoietic and mammary stem cells display a unique DNA-damage response, which involves active inhibition of apoptosis, entry into the cell-cycle, symmetric division, partial DNA repair and maintenance of self-renewal. Each of these biological events depends on the up-regulation of the cell-cycle inhibitor p21. Moreover, inhibition of apoptosis and symmetric stem cell division are the consequence of the down-regulation of the tumor suppressor p53, as a direct result of p21 up-regulation. A deeper understanding of these processes is required before these findings can be translated into human anti-aging and anti-cancer therapies. One needs to clarify and dissect the pathways that control p21 regulation in normal and cancer stem cells and define (a) how p21 blocks p53 functions in stem cells and (b) how p21 promotes DNA repair in stem cells. Is this effect dependent on p21s ability to inhibit p53? Such molecular knowledge may pave the way to methods for maintaining short-term tissue reconstitution while retaining long-term cellular and genomic integrity.

  18. Damage and repair of ancient DNA

    DEFF Research Database (Denmark)

    Mitchell, David; Willerslev, Eske; Hansen, Anders

    2005-01-01

    , and extensive degradation. In the course of this review, we will discuss the current aDNA literature describing the importance of aDNA studies as they relate to important biological questions and the difficulties associated with extracting useful information from highly degraded and damaged substrates derived......Under certain conditions small amounts of DNA can survive for long periods of time and can be used as polymerase chain reaction (PCR) substrates for the study of phylogenetic relationships and population genetics of extinct plants and animals, including hominids. Because of extensive DNA...... degradation, these studies are limited to species that lived within the past 10(4)-10(5) years (Late Pleistocene), although DNA sequences from 10(6) years have been reported. Ancient DNA (aDNA) has been used to study phylogenetic relationships of protists, fungi, algae, plants, and higher eukaryotes...

  19. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress

    Science.gov (United States)

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-01-01

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy. PMID:26427872

  20. Vitamin C for DNA damage prevention

    Energy Technology Data Exchange (ETDEWEB)

    Sram, Radim J., E-mail: sram@biomed.cas.cz [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic); Binkova, Blanka; Rossner, Pavel [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4 (Czech Republic)

    2012-05-01

    The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2 Prime -deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels > 50 {mu}mol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with {gamma}-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels > 50 {mu}mol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels > 50 {mu}mol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.

  1. Homologous recombination in DNA repair and DNA damage tolerance

    Institute of Scientific and Technical Information of China (English)

    Xuan Li; Wolf-Dietrich Heyer

    2008-01-01

    Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical sup-port for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modaUties of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.

  2. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    Science.gov (United States)

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  3. DNA damage response inhibition at dysfunctional telomeres by modulation of telomeric DNA damage response RNAs.

    Science.gov (United States)

    Rossiello, Francesca; Aguado, Julio; Sepe, Sara; Iannelli, Fabio; Nguyen, Quan; Pitchiaya, Sethuramasundaram; Carninci, Piero; d'Adda di Fagagna, Fabrizio

    2017-02-27

    The DNA damage response (DDR) is a set of cellular events that follows the generation of DNA damage. Recently, site-specific small non-coding RNAs, also termed DNA damage response RNAs (DDRNAs), have been shown to play a role in DDR signalling and DNA repair. Dysfunctional telomeres activate DDR in ageing, cancer and an increasing number of identified pathological conditions. Here we show that, in mammals, telomere dysfunction induces the transcription of telomeric DDRNAs (tDDRNAs) and their longer precursors from both DNA strands. DDR activation and maintenance at telomeres depend on the biogenesis and functions of tDDRNAs. Their functional inhibition by sequence-specific antisense oligonucleotides allows the unprecedented telomere-specific DDR inactivation in cultured cells and in vivo in mouse tissues. In summary, these results demonstrate that tDDRNAs are induced at dysfunctional telomeres and are necessary for DDR activation and they validate the viability of locus-specific DDR inhibition by targeting DDRNAs.

  4. DNA damage checkpoint recovery and cancer development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiyong [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Zhang, Xiaoshan [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States); Teng, Lisong, E-mail: lsteng@zju.edu.cn [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Legerski, Randy J., E-mail: rlegersk@mdanderson.org [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States)

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  5. Profiling oxidative DNA damage: effects of antioxidants.

    Science.gov (United States)

    Box, Harold C; Patrzyc, Helen B; Budzinski, Edwin E; Dawidzik, Jean B; Freund, Harold G; Zeitouni, Nathalie C; Mahoney, Martin C

    2012-11-01

    The goal of this research was to determine whether antioxidant usage could be correlated with changes in DNA damage levels. Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) was used to simultaneously measure five different oxidatively-induced base modifications in the DNA of WBC. Measurements of the five modifications were made before and after an 8-week trial during which participants took the SU.VI.MAX supplement. Levels of the five DNA modifications were compared among different groupings: users versus non-users of antioxidant supplements, before versus after the supplement intervention and men versus women. The statistical significance of differences between groups was most significant for pyrimidine base modifications and the observed trends reflect trends reported in epidemiological studies of antioxidant usage. A combination of modifications derived from pyrimidine bases is suggested as a superior indicator of oxidative stress.

  6. An immunochemical assay to detect DNA damage in bovine sperm

    NARCIS (Netherlands)

    Schans, G.P. van der; Haring, R.; Dijk- Knijnenburg, H.C.M. van; Bruijnzeel, P.L.B.; Daas, N.H.G. den

    2000-01-01

    An immunochemical assay has been developed to detect oxidative damage in bovine sperm DNA. Sperm DNA contains a large amount of oxidative damage as a result of exposure to exogenous agents, but damage also can caused by normal metabolic processes and the absence of DNA repair in the later stages of

  7. Chromatin remodeling in the UV-induced DNA damage response

    NARCIS (Netherlands)

    Ö.Z. Aydin (Özge)

    2014-01-01

    markdownabstract__Abstract__ DNA damage interferes with transcription and replication, causing cell death, chromosomal aberrations or mutations, eventually leading to aging and tumorigenesis (Hoeijmakers, 2009). The integrity of DNA is protected by a network of DNA repair and associated signalling

  8. ATM and ATR:Sensing DNA damage

    Institute of Scientific and Technical Information of China (English)

    Jun Yang; Zheng-Ping Xu; Yun Huang; Hope E. Hamrick; Penelope J. Duerksen-Hughes; Ying-Nian Yu

    2004-01-01

    Cellular response to genotoxic stress is a very complex process, and it usually starts with the "sensing" or "detection" of the DNA damage, followed by a series of events that include signal transduction and activation of transcription factors. The activated transcription factors induce expressions of many genes which are involved in cellular functions such as DNA repair, cell cycle arrest, and cell death. There have been extensive studies from multiple disciplines exploring the mechanisms of cellular genotoxic responses, which have resulted in the identification of many cellular components involved in this process, including the mitogen-activated protein kinases (MAPKs) cascade. Although the initial activation of protein kinase cascade is not fully understood,human protein kinases ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) are emerging as potential sensors of DNA damage. Current progresses in ATM/ATR research and related signaling pathways are discussed in this review, in an effort to facilitate a better understanding of genotoxic stress response.

  9. Acrylonitrile-induced oxidative DNA damage in rat astrocytes.

    Science.gov (United States)

    Pu, Xinzhu; Kamendulis, Lisa M; Klaunig, James E

    2006-10-01

    Chronic administration of acrylonitrile results in a dose-related increase in astrocytomas in rat brain, but the mechanism of acrylonitrile carcinogenicity is not fully understood. The potential of acrylonitrile or its metabolites to induce direct DNA damage as a mechanism for acrylonitrile carcinogenicity has been questioned, and recent studies indicate that the mechanism involves the induction of oxidative stress in rat brain. The present study examined the ability of acrylonitrile to induce DNA damage in the DI TNC1 rat astrocyte cell line using the alkaline Comet assay. Oxidized DNA damage also was evaluated using formamidopyrimidine DNA glycosylase treatment in the modified Comet assay. No increase in direct DNA damage was seen in astrocytes exposed to sublethal concentrations of acrylonitrile (0-1.0 mM) for 24 hr. However, acrylonitrile treatment resulted in a concentration-related increase in oxidative DNA damage after 24 hr. Antioxidant supplementation in the culture media (alpha-tocopherol, (-)-epigallocathechin-3 gallate, or trolox) reduced acrylonitrile-induced oxidative DNA damage. Depletion of glutathione using 0.1 mM DL-buthionine-[S,R]-sulfoximine increased acrylonitrile-induced oxidative DNA damage (22-46%), while cotreatment of acrylonitrile with 2.5 mM L-2-oxothiazolidine-4-carboxylic acid, a precursor for glutathione biosynthesis, significantly reduced acrylonitrile-induced oxidative DNA damage (7-47%). Cotreatment of acrylonitrile with 0.5 mM 1-aminobenzotriazole, a suicidal inhibitor of cytochrome P450, prevented the oxidative DNA damage produced by acrylonitrile. Cyanide (0.1-0.5 mM) increased oxidative DNA damage (44-160%) in astrocytes. These studies demonstrate that while acrylonitrile does not directly damage astrocyte DNA, it does increase oxidative DNA damage. The oxidative DNA damage following acrylonitrile exposure appears to arise mainly through the P450 metabolic pathway; moreover, glutathione depletion may contribute to the

  10. Protection of DNA damage by radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Lee, Kang Suk; Kim, Kug Chan; Oh, Tae Jung

    1998-12-01

    The SOS response of Escherichia coli is positively regulated by RecA. To examine the effects of polyamines on The SOS response of E. Coli, we investigated the expression of recA gene in polyamine-deficient mutant and wild type carrying recA'::lacZ fusion gene. As a result, recA expression by mitomycin C is higher in wild type than that of polyamine-deficient mutant, but recA expression by UV radiation is higher in wild type than of mutant. We also found that exogenous polyamines restored the recA expression in the polyamine-deficient mutant to the wild type level. These results proposed that polyamines play an important role in mechanism of intracellular DNA protection by DNA damaging agents.

  11. Ion irradiation induced direct damage to DNA

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2008-01-01

    Ion beams have been widely applied in a few biological research fields such as radioactive breeding, health protection, and tumor therapy. Up to now many interesting and impressive achievements in biology and agriculture have been made. Over the past several decades, scientists in biology, physics, and chemistry have pursued investigations focused on understanding the mechanisms of these radiobiological effects of ion beams. From the chemical point of view, these effects are due to the ion irradiation induced biomolecular damage, direct or indirect. In this review, we will present a chemical overview of the direct effects of ion irradiation upon DNA and its components, based on a review of literature combined with recent experimental results. It is suggested that, under ion bombardment, a DNA molecule undergoes a variety of processes, including radical formation, atomic displacement, intramolecular bond-scissions, emission of fragments, fragment recombination and molecular crosslink, which may lead to genetic...

  12. cDNA sequence, gene structure, and in vitro expression of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Arpagaus, M; Fedon, Y; Cousin, X; Chatonnet, A; Bergé, J B; Fournier, D; Toutant, J P

    1994-04-01

    Three genes, ace-1, ace-2, and ace-3, encode three acetylcholinesterase classes (A, B, and C) in the nematode Caenorhabditis elegans. A fragment of genomic DNA was amplified by a polymerase chain reaction (PCR) using degenerate oligonucleotides based on sequences conserved in the cholinesterase family. This fragment mapped to chromosome X at a position that perfectly matched the location of ace-1 previously determined by genetic methods. Comparison of genomic and cDNA sequences showed that the open reading frame was interrupted by eight introns. The product of ace-1 (ACE-1, 620 amino acids) presented 42% identity with Torpedo and human acetylcholinesterases, 41% with human butyrylcholinesterase, and 35% with Drosophila acetylcholinesterase. The overall structure of cholinesterases was conserved in ACE-1 as indicated by the conserved sequence positions of Ser-216, His-468, and Glu-346 (S200, H440, E327 in Torpedo (AChE) as components of the catalytic triad, of the six cysteines which form three intrachain disulfide bonds, and of Trp-99(84), a critical side chain in the choline binding site. Spodoptera Sf9 cells were infected by a recombinant baculovirus containing ace-1 cDNA. The secreted enzyme was active and existed as hydrophilic 5 and 11.5 S molecular forms. It hydrolyzed both acetylthiocholine and butyrylthiocholine and was inhibited by acetylthiocholine above 10 mM.

  13. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Michael Fasullo

    2015-04-01

    Full Text Available Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases.

  14. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  15. Studies on DNA Damage Response in Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Han, Wenyuan

    global reactions known as DNA damage response (DDR). In Bacteria and Eukaryotes, the global reactions include a series of transcription regulations and protein post-translation modifications, which can activate DNA repair machineries, suppress cell division and delay DNA replication, and induce......All living organisms have to keep their genetic information intact. However, environmental stimuli and endogenous factors constantly yield various DNA lesions, which impose serious challenges for cells to maintain the stability of their genetic materials. Upon severe DNA damage, cells initiate...... programmed cell death (PCD) upon lethal DNA damage. However, little is known about DNA damage response in Archaea. To start to address the problem, I investigated the general cellular response of Sulfolobus islandicus, a model organism of Archaea, to DNA damage agents, 4-nitroquinoline 1-oxide (NQO...

  16. Platinum nanoparticles induce damage to DNA and inhibit DNA replication

    Science.gov (United States)

    Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel

    2017-01-01

    Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8–11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent. PMID:28704436

  17. Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity.

    Directory of Open Access Journals (Sweden)

    Shu-Huei Wang

    Full Text Available Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity.

  18. Paraoxonase-1 genetic polymorphisms and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides.

    Science.gov (United States)

    Singh, Satyender; Kumar, Vivek; Thakur, Sachin; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Ichhpujani, Rattan Lal; Rai, Arvind

    2011-04-15

    Human paraoxonase 1 (PON1) is a lipoprotein-associated enzyme involved in the detoxification of organophosphate pesticides (OPs) by hydrolyzing the bioactive oxons. Polymorphisms of the PON1 gene are responsible for variation in the expression and catalytic activity of PON1 enzyme. In the present study, we have determined (a) the prevalence of two common PON1 polymorphisms, (b) the activity of PON1 and acetylcholinesterase enzymes, and (c) the influence of PON1 genotypes and phenotypes variation on DNA damage in workers exposed to OPs. We examined 230 subjects including 115 workers exposed to OPs and an equal number of normal healthy controls. The results revealed that PON1 activity toward paraoxon (179.19±39.36 vs. 241.52±42.32nmol/min/ml in controls) and phenylacetate (112.74±17.37 vs. 134.28±25.49μmol/min/ml in controls) was significantly lower in workers than in control subjects (p0.05). The PON1 activity toward paraoxonase was found to be significantly higher in the R/R (Arg/Arg) genotypes than Q/R (Gln/Arg) and lowest in Q/Q (Gln/Gln) genotypes in both workers and control subjects (p<0.001). For PON1(55)LM (Leu/Met), PON1 activity toward paraoxonase was observed to be higher in individuals with L/L (Leu/Leu) genotypes and lowest in individuals with M/M (Met/Met) genotypes in both groups (p<0.001). No influence of PON1 genotypes and phenotypes was seen on the activity of acetylcholinesterase and arylesterase. The DNA damage was observed to be significantly higher in workers than in control subjects (p<0.05). Further, the individuals who showed least paraoxonase activity i.e., those with (Q/Q [Gln/Gln] and M/M [Met/Met]) genotypes showed significantly higher DNA damage compared to other isoforms in workers exposed to OPs (p<0.05). The results indicate that the individuals with PON1 Q/Q and M/M genotypes are more susceptible toward genotoxicity. In conclusion, the study suggests wide variation in enzyme activities and DNA damage due to polymorphisms in PON1

  19. Aging and oxidatively damaged nuclear DNA in animal organs

    DEFF Research Database (Denmark)

    Møller, Peter; Løhr, Mille; Folkmann, Janne K

    2010-01-01

    Oxidative stress is considered to contribute to aging and is associated with the generation of oxidatively damaged DNA, including 8-oxo-7,8-dihydroguanine. We have identified 69 studies that have measured the level of oxidatively damaged DNA in organs of animals at various ages. In general, organs...... with limited cell proliferation, i.e., liver, kidney, brain, heart, pancreas, and muscle, tended to show accumulation of DNA damage with age, whereas organs with highly proliferating cells, such as intestine, spleen, and testis, showed more equivocal or no effect of age. A restricted analysis of studies...... evidence for aging-associated accumulation of oxidatively damaged DNA in organs with limited cell proliferation....

  20. Single Molecule Scanning of DNA Radiation Oxidative Damage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  1. Natural transformation of bacteria by fragmented, damaged and ancient DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren

    Organisms release DNA both when they live and die. Eventually the DNA disintegrates entirely or it is re-metabolized. There is a constant deposition and decomposition that maintains an environmental pool with large quantities of extracellular DNA, some of which can be thousands of years old...... it by damaged short DNA with abasic sites, crosslinks, and miscoding lesions, which are the most common damages in environmental DNA. This is emphasized by successful natural transformation by 43,000-year-old DNA. We find that the process is a simple variant of natural transformation. On top, we illustrate...... acquire functional genetic signatures of the deeper past. Moreover, not only can old DNA revert microbes to past genotypes, but damaged DNA can also produce new variants of already functional sequences. Besides, DNA fragments carry potential to combine functional domains in new ways. The identified novel...

  2. Natural transformation of bacteria by fragmented, damaged and ancient DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren

    it by damaged short DNA with abasic sites, crosslinks, and miscoding lesions, which are the most common damages in environmental DNA. This is emphasized by successful natural transformation by 43,000-year-old DNA. We find that the process is a simple variant of natural transformation. On top, we illustrate......Organisms release DNA both when they live and die. Eventually the DNA disintegrates entirely or it is re-metabolized. There is a constant deposition and decomposition that maintains an environmental pool with large quantities of extracellular DNA, some of which can be thousands of years old....... The degrading DNA is fragmented and damaged, often to less than one hundred base pairs. Such DNA is only recognized as microbial nutrients and is not considered as direct contributors to bacterial evolutionary processes. The main study shows natural transformation by very short DNA (≥20bp). Further we also show...

  3. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, Steffen; Poulsen, H E

    1996-01-01

    of Brussels sprouts reduced the oxidative DNA damage rate, estimated by the urinary excretion of 8-oxodG, and the intake of vitamin C was a determinant for the level of 8-oxodG in sperm DNA. A low-fat diet reduced another marker of oxidative DNA damage in leukocytes. In patients with diseases associated...... with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion...... of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study...

  4. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  5. Novel DNA damage checkpoint in mitosis: Mitotic DNA damage induces re-replication without cell division in various cancer cells.

    Science.gov (United States)

    Hyun, Sun-Yi; Rosen, Eliot M; Jang, Young-Joo

    2012-07-06

    DNA damage induces multiple checkpoint pathways to arrest cell cycle progression until damage is repaired. In our previous reports, when DNA damage occurred in prometaphase, cells were accumulated in 4 N-DNA G1 phase, and mitosis-specific kinases were inactivated in dependent on ATM/Chk1 after a short incubation for repair. We investigated whether or not mitotic DNA damage causes cells to skip-over late mitotic periods under prolonged incubation in a time-lapse study. 4 N-DNA-damaged cells re-replicated without cell division and accumulated in 8 N-DNA content, and the activities of apoptotic factors were increased. The inhibition of DNA replication reduced the 8 N-DNA cell population dramatically. Induction of replication without cell division was not observed upon depletion of Chk1 or ATM. Finally, mitotic DNA damage induces mitotic slippage and that cells enter G1 phase with 4 N-DNA content and then DNA replication is occurred to 8 N-DNA content before completion of mitosis in the ATM/Chk1-dependent manner, followed by caspase-dependent apoptosis during long-term repair. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension

    Science.gov (United States)

    Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.

    2017-01-01

    Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562

  7. A Microscopic Study of the DNA Damage Response

    NARCIS (Netherlands)

    C. Dinant (Christoffel)

    2008-01-01

    textabstractThe integrity of the genome is continuously challenged by both endogenous and exogenous DNA damaging agents. These damaging agents can induce a wide variety of lesions in the DNA, such as double strand breaks (DSB), single strand breaks (SSB), oxidative lesions and pyrimidine dimers. The

  8. Delineating the DNA damage response using systems biology approaches

    NARCIS (Netherlands)

    Stechow, Louise von

    2013-01-01

    Cellular responses to DNA damage are highly variable and strongly depend on the cellular and organismic context. Studying the DNA damage response is crucial for a better understanding of cancer formation and ageing as well as genotoxic stress-induced cancer therapy. To do justice to the multifaceted

  9. Chromatin modifications and the DNA damage response to ionizing radiation

    Science.gov (United States)

    Kumar, Rakesh; Horikoshi, Nobuo; Singh, Mayank; Gupta, Arun; Misra, Hari S.; Albuquerque, Kevin; Hunt, Clayton R.; Pandita, Tej K.

    2013-01-01

    In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double-strand breaks (DSBs), that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: (1) non-homologous end joining, which re-ligates the broken ends of the DNA and (2) homologous recombination, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but post-translational modification of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modifications by the respective chromatin modifying factors that occur during the DNA damage response. PMID:23346550

  10. Guarding chromosomes from oxidative DNA damage to the very end

    Institute of Scientific and Technical Information of China (English)

    Rong Tan; Li Lan

    2016-01-01

    The ends of each chromosome are capped by the telomere assembly to protect chromosomal integrity from telomere attrition and DNA damage.In response to DNA damage,DNA repair factors are enriched at damage sites by a sophisticated signaling and recruitment cascade.However,DNA damage response at telomeres is different from non-telomeric region of genomic DNA due to specialized sequences and structures of the telomeres.In the course of normal DNA replication or DNA damage repair,both the telomere shelterin protein complex and the condensed telomeric chromatin structure in mammalian cells are modified to protect telomeres from exposing free DNA ends which are subject to both telemere shortening and chromosome end fusion.Initiation of either homologous recombination or non-homologous end joint repair at telomeres requires disassembling andaor post-translational modifications of the shelterin complex and telomeric chromatin.In addition,cancer cells utilize distinct mechanisms to maintain telomere length and cell survival upon damage.In this review,we summarize current studies that focus on telomere end protection and telomere DNA repair using different methodologies to model telomere DNA damage and disruption.These include genetic ablation of sheltering proteins,targeting endonuclease to telomeres,and delivering oxidative damage directly.These different approaches,when combined,offer better understanding of the mechanistic differences in DNA damage response between telomeric and genomic DNA,which will provide new hope to identify potential cancer therapeutic targets to curtail cancer cell proliferation via induction of telomere dysfunctions.

  11. Sunlight-induced DNA damage in human mononuclear cells

    DEFF Research Database (Denmark)

    Møller, Peter; Wallin, Hakan; Holst, Erik

    2002-01-01

    of sunlight was comparable to the interindividual variation, indicating that sunlight exposure and the individual's background were the two most important determinants for the basal level of DNA damage. Influence of other lifestyle factors such as exercise, intake of foods, infections, and age could......In this study of 301 blood samples from 21 subjects, we found markedly higher levels of DNA damage (nonpyrimidine dimer types) in the summer than in the winter detected by single-cell gel electrophoresis. The level of DNA damage was influenced by the average daily influx of sunlight ... to blood sampling. The 3 and 6 day periods before sampling influenced DNA damage the most. The importance of sunlight was further emphasized by a positive association of the DNA damage level to the amount of time the subjects had spent in the sun over a 3 day period prior to the sampling. The effect...

  12. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, S; Poulsen, H E

    1996-01-01

    of damage and the balance between the damage and repair rate, respectively. By means of biomarkers a number of important factors have been studied in humans. Ionizing radiation, a carcinogenic and pure source of ROS, induced both urinary and leukocyte biomarkers of oxidative DNA damage. Tobacco smoking......, another carcinogenic source of ROS, increased the oxidative DNA damage rate by 35-50% estimated from the urinary excretion of 8-oxodG, and the level of 8-oxodG in leukocytes by 20-50%. The main endogenous source of ROS, the oxygen consumption, showed a close correlation with the 8-oxodG excretion rate...... of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study...

  13. DNA damage response and Autophagy: a meaningful partnership

    Directory of Open Access Journals (Sweden)

    ARISTIDES G ELIOPOULOS

    2016-11-01

    Full Text Available Autophagy and the DNA damage response (DDR are biological processes essential for cellular and organismal homeostasis. Herein we summarize and discuss emerging evidence linking DDR to autophagy. We highlight published data suggesting that autophagy is activated by DNA damage and is required for several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death, and cytokine secretion. Uncovering the mechanisms by which autophagy and DDR are intertwined provides novel insight into the pathobiology of conditions associated with accumulation of DNA damage, including cancer and aging, and novel concepts for the development of improved therapeutic strategies against these pathologies.

  14. Reshaping chromatin after DNA damage: the choreography of histone proteins.

    Science.gov (United States)

    Polo, Sophie E

    2015-02-13

    DNA damage signaling and repair machineries operate in a nuclear environment where DNA is wrapped around histone proteins and packaged into chromatin. Understanding how chromatin structure is restored together with the DNA sequence during DNA damage repair has been a topic of intense research. Indeed, chromatin integrity is central to cell functions and identity. However, chromatin shows remarkable plasticity in response to DNA damage. This review presents our current knowledge of chromatin dynamics in the mammalian cell nucleus in response to DNA double strand breaks and UV lesions. I provide an overview of the key players involved in regulating histone dynamics in damaged chromatin regions, focusing on histone chaperones and their concerted action with histone modifiers, chromatin remodelers and repair factors. I also discuss how these dynamics contribute to reshaping chromatin and, by altering the chromatin landscape, may affect the maintenance of epigenetic information.

  15. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  16. Distribution patterns of postmortem damage in human mitochondrial DNA

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske; Hansen, Anders J

    2002-01-01

    The distribution of postmortem damage in mitochondrial DNA retrieved from 37 ancient human DNA samples was analyzed by cloning and was compared with a selection of published animal data. A relative rate of damage (rho(v)) was calculated for nucleotide positions within the human hypervariable region......, such as MT5, have lower in vivo mutation rates and lower postmortem-damage rates. The postmortem data also identify a possible functional subregion of the HVR1, termed "low-diversity 1," through the lack of sequence damage. The amount of postmortem damage observed in mitochondrial coding regions...

  17. Stress-induced DNA damage biomarkers: applications and limitations

    Science.gov (United States)

    Nikitaki, Zacharenia; Hellweg, Christine E.; Georgakilas, Alexandros G.; Ravanat, Jean-Luc

    2015-01-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism's endogenous processes such as replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damage plays a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g., X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e., single, complex DNA lesions etc. that can be used as DNA damage biomarkers. We critically compare DNA damage detection methods and their limitations. In addition, we suggest the use of DNA repair gene products as biomarkes for identification of different types of stresses i.e., radiation, oxidative, or replication stress, based on bioinformatic approaches and meta-analysis of literature data. PMID:26082923

  18. Experimental Investigation of DNA Damage Induced by Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    DNA is considered the critical target for radiobiological effects. It is highly important to study DNAdamage induced by ionizing radiation. Especially DNA double strand breaks have been identified as themost initial damage. In this experiment, DNA double strand breaks induced by heavy ions wereinvestigated with atomic force microscopy (AFM).

  19. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, Steffen; Poulsen, H E

    1996-01-01

    per 10(5) intact nucleosides. The damaged nucleosides accumulate with age in both nuclear and mitochondrial DNA. The products of repair of these lesions are excreted into the urine in amounts corresponding to a damage rate of up to 10(4) modifications in each cell every day. The most abundant...... with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion...... of oxidative DNA damage as an important mutagenic and apparently carcinogenic factor. However, the proof of a causal relationship in humans is still lacking. This could possibly be supported by demonstration of the rate of oxidative DNA damage as an independent risk factor for cancer in a prospective study...

  20. MicroRNAs: new players in the DNA damage response

    Institute of Scientific and Technical Information of China (English)

    Hailiang Hu; Richard A. Gatti

    2011-01-01

    The DNA damage response (DDR) is a signal transduction pathway that decides the cell's fate either to repair DNA damage or to undergo apoptosis if there is too much damage. Post-translational modifications modulate the assembly and activity of protein complexes during the DDR pathways. MicroRNAs (miRNAs) are emerging as a class of endogenous gene modulators that control protein levels, thereby adding a new layer of regulation to the DDR. In this review, we describe a new role for miRNAs in regulating the cellular response to DNA damage with a focus on DNA double-strand break damage. We also discuss the implications of miRNA's role in the DDR to stem cells, including embryonic stem cells and cancer stem cells, stressing the potential applications for miRNAs to be used as sensitizers for cancer radiotherapy and chemotherapy.

  1. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces cell cycle synchronization in different human osteosarcoma cell lines. The UV pulse also has a destabilizing...

  2. Cells Lacking mtDNA Display Increased dNTP Pools upon DNA Damage

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Rasmussen, Lene Juel; Munch-Petersen, Birgitte

    and mitochondrial function we have examined the effect of DNA damage on dNTP pools in cells deficient of mtDNA. We show that DNA damage induced by UV irradiation, in a dose corresponding to LD50, induces an S phase delay in different human osteosarcoma cell lines. The UV pulse also has a destabilizing effect...

  3. Aging of hematopoietic stem cells: DNA damage and mutations?

    Science.gov (United States)

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs.

  4. Imaging the DNA damage response with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Knight, James C.; Koustoulidou, Sofia; Cornelissen, Bart [University of Oxford, CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford (United Kingdom)

    2017-06-15

    DNA integrity is constantly challenged by endogenous and exogenous factors that can alter the DNA sequence, leading to mutagenesis, aberrant transcriptional activity, and cytotoxicity. Left unrepaired, damaged DNA can ultimately lead to the development of cancer. To overcome this threat, a series of complex mechanisms collectively known as the DNA damage response (DDR) are able to detect the various types of DNA damage that can occur and stimulate the appropriate repair process. Each DNA damage repair pathway leads to the recruitment, upregulation, or activation of specific proteins within the nucleus, which, in some cases, can represent attractive targets for molecular imaging. Given the well-established involvement of DDR during tumorigenesis and cancer therapy, the ability to monitor these repair processes non-invasively using nuclear imaging techniques may facilitate the earlier detection of cancer and may also assist in monitoring response to DNA damaging treatment. This review article aims to provide an overview of recent efforts to develop PET and SPECT radiotracers for imaging of DNA damage repair proteins. (orig.)

  5. Chromatin Modifications and the DNA Damage Response to Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Tej K Pandita

    2013-01-01

    Full Text Available In order to survive, cells have evolved highly effective repair mechanisms to deal with the potentially lethal DNA damage produced by exposure to endogenous as well as exogenous agents. Ionizing radiation exposure induces highly lethal DNA damage, especially DNA double strand breaks (DSBs, that is sensed by the cellular machinery and then subsequently repaired by either of two different DSB repair mechanisms: 1 non-homologous end-joining (NHEJ, which re-ligates the broken ends of the DNA and 2 homologous recombination (HR, that employs an undamaged identical DNA sequence as a template, to maintain the fidelity of DNA repair. Repair of DSBs must occur within the natural context of the cellular DNA which, along with specific proteins, is organized to form chromatin, the overall structure of which can impede DNA damage site access by repair proteins. The chromatin complex is a dynamic structure and is known to change as required for ongoing cellular processes such as gene transcription or DNA replication. Similarly, during the process of DNA damage sensing and repair, chromatin needs to undergo several changes in order to facilitate accessibility of the repair machinery. Cells utilize several factors to modify the chromatin in order to locally open up the structure to reveal the underlying DNA sequence but posttranslational modification (PTMs of the histone components is one of the primary mechanisms. In this review, we will summarize chromatin modification by t

  6. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  7. Inducible repair of oxidative DNA damage in Escherichia coli.

    Science.gov (United States)

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  8. DNA intercalator BMH-21 inhibits RNA polymerase I independent of DNA damage response.

    Science.gov (United States)

    Colis, Laureen; Peltonen, Karita; Sirajuddin, Paul; Liu, Hester; Sanders, Sara; Ernst, Glen; Barrow, James C; Laiho, Marikki

    2014-06-30

    DNA intercalation is a major therapeutic modality for cancer therapeutic drugs. The therapeutic activity comes at a cost of normal tissue toxicity and genotoxicity. We have recently described a planar heterocyclic small molecule DNA intercalator, BMH-21, that binds ribosomal DNA and inhibits RNA polymerase I (Pol I) transcription. Despite DNA intercalation, BMH-21 does not cause phosphorylation of H2AX, a key biomarker activated in DNA damage stress. Here we assessed whether BMH-21 activity towards expression and localization of Pol I marker proteins depends on DNA damage signaling and repair pathways. We show that BMH-21 effects on the nucleolar stress response were independent of major DNA damage associated PI3-kinase pathways, ATM, ATR and DNA-PKcs. However, testing a series of BMH-21 derivatives with alterations in its N,N-dimethylaminocarboxamide arm showed that several derivatives had acquired the property to activate ATM- and DNA-PKcs -dependent damage sensing and repair pathways while their ability to cause nucleolar stress and affect cell viability was greatly reduced. The data show that BMH-21 is a chemically unique DNA intercalator that has high bioactivity towards Pol I inhibition without activation or dependence of DNA damage stress. The findings also show that interference with DNA and DNA metabolic processes can be exploited therapeutically without causing DNA damage.

  9. Proteins in the nutrient-sensing and DNA damage checkpoint pathways cooperate to restrain mitotic progression following DNA damage.

    Directory of Open Access Journals (Sweden)

    Jennifer S Searle

    2011-07-01

    Full Text Available Checkpoint pathways regulate genomic integrity in part by blocking anaphase until all chromosomes have been completely replicated, repaired, and correctly aligned on the spindle. In Saccharomyces cerevisiae, DNA damage and mono-oriented or unattached kinetochores trigger checkpoint pathways that bifurcate to regulate both the metaphase to anaphase transition and mitotic exit. The sensor-associated kinase, Mec1, phosphorylates two downstream kinases, Chk1 and Rad53. Activation of Chk1 and Rad53 prevents anaphase and causes inhibition of the mitotic exit network. We have previously shown that the PKA pathway plays a role in blocking securin and Clb2 destruction following DNA damage. Here we show that the Mec1 DNA damage checkpoint regulates phosphorylation of the regulatory (R subunit of PKA following DNA damage and that the phosphorylated R subunit has a role in restraining mitosis following DNA damage. In addition we found that proteins known to regulate PKA in response to nutrients and stress either by phosphorylation of the R subunit or regulating levels of cAMP are required for the role of PKA in the DNA damage checkpoint. Our data indicate that there is cross-talk between the DNA damage checkpoint and the proteins that integrate nutrient and stress signals to regulate PKA.

  10. Proteins in the Nutrient-Sensing and DNA Damage Checkpoint Pathways Cooperate to Restrain Mitotic Progression following DNA Damage

    Science.gov (United States)

    Searle, Jennifer S.; Wood, Matthew D.; Kaur, Mandeep; Tobin, David V.; Sanchez, Yolanda

    2011-01-01

    Checkpoint pathways regulate genomic integrity in part by blocking anaphase until all chromosomes have been completely replicated, repaired, and correctly aligned on the spindle. In Saccharomyces cerevisiae, DNA damage and mono-oriented or unattached kinetochores trigger checkpoint pathways that bifurcate to regulate both the metaphase to anaphase transition and mitotic exit. The sensor-associated kinase, Mec1, phosphorylates two downstream kinases, Chk1 and Rad53. Activation of Chk1 and Rad53 prevents anaphase and causes inhibition of the mitotic exit network. We have previously shown that the PKA pathway plays a role in blocking securin and Clb2 destruction following DNA damage. Here we show that the Mec1 DNA damage checkpoint regulates phosphorylation of the regulatory (R) subunit of PKA following DNA damage and that the phosphorylated R subunit has a role in restraining mitosis following DNA damage. In addition we found that proteins known to regulate PKA in response to nutrients and stress either by phosphorylation of the R subunit or regulating levels of cAMP are required for the role of PKA in the DNA damage checkpoint. Our data indicate that there is cross-talk between the DNA damage checkpoint and the proteins that integrate nutrient and stress signals to regulate PKA. PMID:21779180

  11. Global chromatin fibre compaction in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Charlotte [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Hayward, Richard L. [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Gilbert, Nick, E-mail: Nick.Gilbert@ed.ac.uk [Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom); Breakthrough Research Unit, The University of Edinburgh, Edinburgh EH4 2XR (United Kingdom)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  12. Biomarkers of oxidative damage to DNA and repair

    DEFF Research Database (Denmark)

    Loft, Steffen; Høgh Danielsen, Pernille; Mikkelsen, Lone

    2008-01-01

    Oxidative-stress-induced damage to DNA includes a multitude of lesions, many of which are mutagenic and have multiple roles in cancer and aging. Many lesions have been characterized by MS-based methods after extraction and digestion of DNA. These preparation steps may cause spurious base oxidation...... DNA glycosylase 1), responsible for repair of 8-oxodG, by genotyping. Products of repair in DNA or the nucleotide pool, such as 8-oxodG, excreted into the urine can be assessed by MS-based methods and generally reflects the rate of damage. Experimental and population-based studies indicate that many...

  13. Chromatin Dynamics in Genome Stability: Roles in Suppressing Endogenous DNA Damage and Facilitating DNA Repair

    Directory of Open Access Journals (Sweden)

    Nidhi Nair

    2017-07-01

    Full Text Available Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage.

  14. BACH2: A marker of DNA damage and ageing

    NARCIS (Netherlands)

    L.M. Uittenboogaard (Lieneke); C. Payan-Gomez; J. Pothof (Joris); W.F.J. van IJcken (Wilfred); P.G. Mastroberardino (Pier); I. van der Pluijm (Ingrid); J.H.J. Hoeijmakers (Jan); M. Tresini (Maria)

    2013-01-01

    textabstractDNA damage and ageing share expression changes involving alterations in many aspects of metabolism, suppression of growth and upregulation of defence and genome maintenance systems. "Omics" technologies have permitted large-scale parallel measurements covering global cellular

  15. DNA damage in Wistar Kyoto rats exercised during pregnancy.

    Science.gov (United States)

    Corrêa, Mikaela da Silva; Gelaleti, Rafael Bottaro; Bento, Giovana Fernanda; Damasceno, Débora Cristina; Peraçoli, José Carlos

    2017-05-01

    To evaluate DNA damage levels in pregnant rats undergoing a treadmill exercise program. Wistar Kyoto rats were allocated into two groups (n= 5 animals/group): non-exercise and exercise. The pregnant rats were underwent an exercise protocol on a treadmill throughout pregnancy. Exercise intensity was set at 50% of maximal capacity during maximal exercise testing performed before mating. Body weight, blood pressure and glucose levels, and triglyceride concentration were measured during pregnancy. At day 10 post-natal, the animals were euthanized and maternal blood samples were collected for DNA damage. Blood pressure and glucose levels and biochemical measurements showed no significant differences. Increased DNA damage levels were found in exercise group compared to those of non-exercise group (pprotocol used in the study might have been exhaustive leading to maternal increased DNA damage levels, demonstrating the relevance of an adequate protocol of physical exercise.

  16. Endogenous melatonin and oxidatively damaged guanine in DNA

    DEFF Research Database (Denmark)

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. METHODS: Mother......-father-daughter(s) families (n = 55) were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr) has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua) results from the repair of DNA...... of oxidatively damaged guanine in DNA, thereby possibly increasing the risk of developing cancer. The possible different effects of melatonin in the rates of utilization of pathways for repair of oxidatively damaged guanine in DNA identified between older women and older men are intriguing....

  17. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducibl...... nitrogen oxide synthase (iNOS). NO as well as other ROS are potential DNA damaging agents. The aim was to determine the effect of long-term cytokine exposure on NO formation and DNA damage in epithelial cells....

  18. Typical Cell Signaling Response to Ionizing Radiation:DNA Damage and Extranuclear Damage

    Institute of Scientific and Technical Information of China (English)

    Hui Yu

    2012-01-01

    To treat many types of cancer,ionizing radiation (IR) is primarily used as external-beam radiotherapy,brachytherapy,and targeted radionuclide therapy.Exposure of tumor cells to IR can induce DNA damage as well as generation of reactiveoxygen species (ROS) and reactive nitrogen species (RNS) which can cause non-DNA lesions or extracellular damage like lipid perioxidation.The initial radiation-induced cell responses to DNA damage and ROS like the proteolytic processing,as well as synthesis and releasing ligands (such as growth factors,cytokines,and hormone) can cause the delayed secondary responses in irradiated and unirradiated bystander cells through paracrine and autocrine pathways.

  19. Roles of RNA-Binding Proteins in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Mihoko Kai

    2016-02-01

    Full Text Available Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR, and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP with low complexity domains, called intrinsically disordered proteins (IDPs, and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs in a poly(ADP-ribose (PAR-dependent manner (unpublished data. DNA-dependent PARP1 (poly-(ADP ribose polymerase 1 makes key contributions in the DNA damage response (DDR network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as

  20. Radiation damage to DNA: the effect of LET

    Energy Technology Data Exchange (ETDEWEB)

    Ward, J.F.; Milligan, J.R. [California Univ., San Diego, La Jolla, CA (United States). School of Medicine

    1997-03-01

    Mechanisms whereby ionizing radiation induced damage are introduced into cellular DNA are discussed. The types of lesions induced are summarized and the rationale is presented which supports the statement that radiation induced singly damaged sites are biologically unimportant. The conclusion that multiply damaged sites are critical is discussed and the mechanisms whereby such lesions are formed are presented. Structures of multiply damaged sites are summarized and problems which they present to cellular repair systems are discussed. Lastly the effects of linear energy transfer on the complexity of multiply damaged sites are surveyed and the consequences of this increased complexity are considered in terms of cell survival and mutation. (author)

  1. The Cartography of UV-induced DNA Damage Formation and DNA Repair.

    Science.gov (United States)

    Hu, Jinchuan; Adar, Sheera

    2017-01-01

    DNA damage presents a barrier to DNA-templated biochemical processes, including gene expression and faithful DNA replication. Compromised DNA repair leads to mutations, enhancing the risk for genetic diseases and cancer development. Conventional experimental approaches to study DNA damage required a researcher to choose between measuring bulk damage over the entire genome, with little or no resolution regarding a specific location, and obtaining data specific to a locus of interest, without a global perspective. Recent advances in high-throughput genomic tools overcame these limitations and provide high-resolution measurements simultaneously across the genome. In this review, we discuss the available methods for measuring DNA damage and their repair, focusing on genomewide assays for pyrimidine photodimers, the major types of damage induced by ultraviolet irradiation. These new genomic assays will be a powerful tool in identifying key components of genome stability and carcinogenesis. © 2016 The American Society of Photobiology.

  2. Oxidative Damage to DNA and Its Relationship With Diabetic Complications

    Institute of Scientific and Technical Information of China (English)

    HONG-ZHI PAN; DONG CHANG; LEI-GUANG FENG; FENG-JUAN XU; HONG-YU KUANG; MING-JUN LU

    2007-01-01

    Objective To detect the oxidative DNA damage in diabetic patients and to investigate the relationship of oxidative DNA damage with diabetes and diabetic nephropathy. Methods Single cell gel electrophoresis (SCGE) was used to detect the DNA strand breaks in peripheral blood lymphocytes, and oxidative DNA damage product and serum 8-OHdG were determined by a competitive ELISA in 47 cases, including 25 patients without diabetic complications, 22 patients with diabetic nephropathy and 25 normal control subjects. Results Diabetic patients showed greater oxidative damage to DNA. The percentage of comet cells and the length of DNA migration (comet tail length) of peripheral blood lymphocytes were significantly increased in patients with diabetes, and significantly higher in patients with diabetic nephropathy than in diabetic patients without vascular complications (P<0.05). There was a significant increase in serum 8-OHdG in diabetic patients compared with normal subjects (P<0.05). Moreover, serum 8-OHdG was much higher in patients with diabetic nephropathy than in diabetic patients without vascular complications (P<0.05). Conclusion There is severe oxidative DNA damage in diabetic patients. Enhanced oxidative stress may be associated with diabetes, especially in patients with diabetic nephropathy.

  3. Can cytotoxic activity of anthracyclines be related to DNA damage?

    Science.gov (United States)

    Nishiyama, M; Horichi, N; Mazouzi, Z; Bungo, M; Saijo, N; Tapiero, H

    1990-02-01

    Accumulation, cytotoxicity, and DNA damages produced by doxorubicin (DOX), pirarubicin (THP-DOX), fluoro-doxorubicin (ME2303) or its isolated metabolite M1 have been investigated in human myelogenous leukemia cells, sensitive (K562) and resistant to DOX (K562/DOX). These compounds differed by lipophilicity and/or sugar moiety either with (DOX, THP-DOX) or without (ME2303, M1) amino group. In K562 cells, the cytotoxicity was correlated to DNA single-stranded breaks and the intracellular drug amount of DOX or M1. This was not true when the cells were treated with THP-DOX or ME2303. In addition, THP-DOX produced total DNA protein cross-linking. In K562 cells DNA damage was not repaired, while in K562/DOX repair of DNA damage produced by all drugs could be observed. Although in K562/DOX cells drug accumulation was much reduced, higher intracellular drug concentration was required to induce similar level of cytotoxicity and DNA damage. Thus, cytotoxicity produced by anthracycline is not always associated with DNA damage. Different level of resistance to DOX, THP-DOX, ME2303 or M1 is associated with reduced drug accumulation which varies with the structure.

  4. Single-molecule visualization of ROS-induced DNA damage in large DNA molecules.

    Science.gov (United States)

    Lee, Jinyong; Kim, Yongkyun; Lim, Sangyong; Jo, Kyubong

    2016-02-07

    We present a single molecule visualization approach for the quantitative analysis of reactive oxygen species (ROS) induced DNA damage, such as base oxidation and single stranded breaks in large DNA molecules. We utilized the Fenton reaction to generate DNA damage with subsequent enzymatic treatment using a mixture of three types of glycosylases to remove oxidized bases, and then fluorescent labeling on damaged lesions via nick translation. This single molecule analytical platform provided the capability to count one or two damaged sites per λ DNA molecule (48.5 kb), which were reliably dependent on the concentrations of hydrogen peroxide and ferrous ion at the micromolar level. More importantly, the labeled damaged sites that were visualized under a microscope provided positional information, which offered the capability of comparing DNA damaged sites with the in silico genomic map to reveal sequence specificity that GTGR is more sensitive to oxidative damage. Consequently, single DNA molecule analysis provides a sensitive analytical platform for ROS-induced DNA damage and suggests an interesting biochemical insight that the genome primarily active during the lysogenic cycle may have less probability for oxidative DNA damage.

  5. Oxidatively damaged DNA in animals exposed to particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Jantzen, Kim

    2013-01-01

    Exposure to combustion-derived particles, quartz and asbestos is associated with increased levels of oxidized and mutagenic DNA lesions. The aim of this survey was to critically assess the measurements of oxidatively damaged DNA as marker of particle-induced genotoxicity in animal tissues...

  6. Profiling DNA damage response following mitotic perturbations

    DEFF Research Database (Denmark)

    S Pedersen, Ronni; Karemore, Gopal; Gudjonsson, Thorkell

    2016-01-01

    Genome integrity relies on precise coordination between DNA replication and chromosome segregation. Whereas replication stress attracted much attention, the consequences of mitotic perturbations for genome integrity are less understood. Here, we knockdown 47 validated mitotic regulators to show...... phenotypes. To demonstrate the potential of this resource, we show that DNA breakage after cytokinesis failure is preceded by replication stress, which mounts during consecutive cell cycles and coincides with decreased proliferation. Together, our results provide a resource to gauge the magnitude...

  7. Bacterial natural transformation by highly fragmented and damaged DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations......DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often DNA is recognized as nutrient source...... for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake...

  8. DICER, DROSHA and DNA damage response RNAs are necessary for the secondary recruitment of DNA damage response factors.

    Science.gov (United States)

    Francia, Sofia; Cabrini, Matteo; Matti, Valentina; Oldani, Amanda; d'Adda di Fagagna, Fabrizio

    2016-04-01

    The DNA damage response (DDR) plays a central role in preserving genome integrity. Recently, we reported that the endoribonucleases DICER and DROSHA contribute to DDR activation by generating small non-coding RNAs, termed DNA damage response RNA (DDRNA), carrying the sequence of the damaged locus. It is presently unclear whether DDRNAs act by promoting the primary recognition of DNA lesions or the secondary recruitment of DDR factors into cytologically detectable foci and consequent signal amplification. Here, we demonstrate that DICER and DROSHA are dispensable for primary recruitment of the DDR sensor NBS1 to DNA damage sites. Instead, the accumulation of the DDR mediators MDC1 and 53BP1 (also known as TP53BP1), markers of secondary recruitment, is reduced in DICER- or DROSHA-inactivated cells. In addition, NBS1 (also known as NBN) primary recruitment is resistant to RNA degradation, consistent with the notion that RNA is dispensable for primary recognition of DNA lesions. We propose that DICER, DROSHA and DDRNAs act in the response to DNA damage after primary recognition of DNA lesions and, together with γH2AX, are essential for enabling the secondary recruitment of DDR factors and fuel the amplification of DDR signaling.

  9. mapDamage: testing for damage patterns in ancient DNA sequences.

    Science.gov (United States)

    Ginolhac, Aurelien; Rasmussen, Morten; Gilbert, M Thomas P; Willerslev, Eske; Orlando, Ludovic

    2011-08-01

    Ancient DNA extracts consist of a mixture of contaminant DNA molecules, most often originating from environmental microbes, and endogenous fragments exhibiting substantial levels of DNA damage. The latter introduce specific nucleotide misincorporations and DNA fragmentation signatures in sequencing reads that could be advantageously used to argue for sequence validity. mapDamage is a Perl script that computes nucleotide misincorporation and fragmentation patterns using next-generation sequencing reads mapped against a reference genome. The Perl script outputs are further automatically processed in embedded R script in order to detect typical patterns of genuine ancient DNA sequences. The Perl script mapDamage is freely available with documentation and example files at http://geogenetics.ku.dk/all_literature/mapdamage/. The script requires prior installation of the SAMtools suite and R environment and has been validated on both GNU/Linux and MacOSX operating systems.

  10. Activation of DNA damage response signaling by condensed chromatin.

    Science.gov (United States)

    Burgess, Rebecca C; Burman, Bharat; Kruhlak, Michael J; Misteli, Tom

    2014-12-11

    The DNA damage response (DDR) occurs in the context of chromatin, and architectural features of chromatin have been implicated in DNA damage signaling and repair. Whereas a role of chromatin decondensation in the DDR is well established, we show here that chromatin condensation is integral to DDR signaling. We find that, in response to DNA damage chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin-tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ataxia telangiectasia mutated (ATM)- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Whereas persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.

  11. Synthesis of damaged DNA containing the oxidative lesion 3'-oxothymidine.

    Science.gov (United States)

    Bedi, Mel F; Li, Weiye; Gutwald, Taylor; Bryant-Friedrich, Amanda C

    2017-09-01

    Oxidative events that take place during regular oxygen metabolism can lead to the formation of organic or inorganic radicals. The interaction of these radicals with macromolecules in the organism and with DNA in particular is suspected to lead to apoptosis, DNA lesions and cell damage. Independent generation of DNA lesions resulting from oxidative damage is used to promote the study of their effects on biological systems. An efficient synthesis of oligodeoxyribonucleotides (ODNs) containing the oxidative damage lesion 3'-oxothymidine has been accomplished via incorporation of C3'-hydroxymethyl thymidine as its corresponding 5'-phosphoramidite. Through oxidative cleavage using sodium periodate in aqueous solution, the lesion of interest is easily generated. Due to its inherent instability it cannot be directly isolated, but must be generated in situ. 3'-Oxothymidine is a demonstrated damage product formed upon generation of the C3'-thymidinyl radical in ODN. Copyright © 2017. Published by Elsevier Ltd.

  12. DNA damage to spermatozoa has impacts on fertilization and pregnancy.

    Science.gov (United States)

    Lewis, S E M; Aitken, R J

    2005-10-01

    DNA damage in the male germ line has been associated with poor semen quality, low fertilization rates, impaired preimplantation development, increased abortion and an elevated incidence of disease in the offspring, including childhood cancer. The causes of this DNA damage are still uncertain but the major candidates are oxidative stress and aberrant apoptosis. The weight of evidence currently favours the former and, in keeping with this conclusion, positive results have been reported for antioxidant therapy both in vivo and in vitro. Resolving the causes of DNA damage in the male germ line will be essential if we are to prevent the generation of genetically damaged human embryos, particularly in the context of assisted conception therapy.

  13. DNA damage after intracerebroventricular injection of ouabain in rats.

    Science.gov (United States)

    Jornada, Luciano K; Valvassori, Samira S; Arent, Camila O; Leffa, Daniela; Damiani, Adriani A; Hainzenreder, Giana; Ferreira, Camila L; Moretti, Morgana; Andrade, Vanessa M; Quevedo, João

    2010-02-26

    There is an emerging body of data suggesting that bipolar disorder is associated with DNA damage. Intracerebroventricular (i.c.v.) administration of ouabain in rats results in manic-like alterations. We evaluated DNA damage of peripheral blood, cerebrospinal fluid and hippocampus of rats after i.c.v. ouabain injection. Ouabain-induced hyperlocomotion was examined in an open field. Additionally, we used single cell gel electrophoresis (comet assay) to measure early transient damage in cerebrospinal fluid (CSF), hippocampus and blood; and the micronucleus test to measure persistent damage in total blood samples of rats after ouabain administration. Our findings demonstrated that ouabain induced hyperlocomotion in rats, and this response remained up to 7 days following a single i.c.v. injection. In addition, we observed that the persistent increase in the rat spontaneous locomotion is associated with increased hippocampal and peripheral index of early DNA damage in rats. No significant alterations were observed in the micronucleus frequency in total blood samples of the rats after the ouabain i.c.v. injection. These results suggest that ouabain may induce peripheral and central early DNA damage, but this early damage may be repaired.

  14. DNA Damage Caused By Pesticide-contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    K.KRISHNAMURTHI; S. SARAVANA DEVI; T. CHAKRABARTI

    2006-01-01

    Objective To determine the DNA damaging potential and the genotoxicity of individual compounds in pesticide contaminated soil. Methods In the present study, DNA damaging potential of pesticide-contaminated soil and the genotoxicity of individual compounds present in the soil were assessed using fluorimetric analysis of DNA unwinding assay. Results The contaminated soil sample showed 79% (P<0.001) of DNA strand break, whereas technical grade of major carbaryl and α-naphthol constituents of the contaminated soil showed 64% (P<0.01) and 60% (P<0.02) damage respectively. Conclusion Our results indicate that the toxicity caused by contaminated soil is mainly due to carbaryl and α -napthol, which are the major constituents of the soil sample analyzed by GC-MS.

  15. DNA damage, repair and tanning acceleration

    NARCIS (Netherlands)

    Vink, A.A.; Berg, P.T.M. van den; Roza, L.

    1999-01-01

    Exposure of the skin to solar ultraviolet radiation (UV) leads to various adverse effects, such as the induction of cellular damage and mutations, suppression of the skin's immune system, and the induction of skin cancer. These effects are the consequence of various molecular alterations in the skin

  16. APOBEC3A damages the cellular genome during DNA replication.

    Science.gov (United States)

    Green, Abby M; Landry, Sébastien; Budagyan, Konstantin; Avgousti, Daphne C; Shalhout, Sophia; Bhagwat, Ashok S; Weitzman, Matthew D

    2016-01-01

    The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.

  17. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development.

    Directory of Open Access Journals (Sweden)

    Joanna E Gawecka

    Full Text Available Mouse zygotes do not activate apoptosis in response to DNA damage. We previously reported a unique form of inducible sperm DNA damage termed sperm chromatin fragmentation (SCF. SCF mirrors some aspects of somatic cell apoptosis in that the DNA degradation is mediated by reversible double strand breaks caused by topoisomerase 2B (TOP2B followed by irreversible DNA degradation by a nuclease(s. Here, we created zygotes using spermatozoa induced to undergo SCF (SCF zygotes and tested how they responded to moderate and severe paternal DNA damage during the first cell cycle. We found that the TUNEL assay was not sensitive enough to identify the breaks caused by SCF in zygotes in either case. However, paternal pronuclei in both groups stained positively for γH2AX, a marker for DNA damage, at 5 hrs after fertilization, just before DNA synthesis, while the maternal pronuclei were negative. We also found that both pronuclei in SCF zygotes with moderate DNA damage replicated normally, but paternal pronuclei in the SCF zygotes with severe DNA damage delayed the initiation of DNA replication by up to 12 hrs even though the maternal pronuclei had no discernable delay. Chromosomal analysis of both groups confirmed that the paternal DNA was degraded after S-phase while the maternal pronuclei formed normal chromosomes. The DNA replication delay caused a marked retardation in progression to the 2-cell stage, and a large portion of the embryos arrested at the G2/M border, suggesting that this is an important checkpoint in zygotic development. Those embryos that progressed through the G2/M border died at later stages and none developed to the blastocyst stage. Our data demonstrate that the zygote responds to sperm DNA damage through a non-apoptotic mechanism that acts by slowing paternal DNA replication and ultimately leads to arrest in embryonic development.

  18. DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers

    Directory of Open Access Journals (Sweden)

    Nicole Schupp

    2016-01-01

    Full Text Available Patients with chronic kidney disease (CKD exhibit an increased cancer risk compared to a healthy control population. To be able to estimate the cancer risk of the patients and to assess the impact of interventional therapies thereon, it is of particular interest to measure the patients’ burden of genomic damage. Chromosomal abnormalities, reduced DNA repair, and DNA lesions were found indeed in cells of patients with CKD. Biomarkers for DNA damage measurable in easily accessible cells like peripheral blood lymphocytes are chromosomal aberrations, structural DNA lesions, and oxidatively modified DNA bases. In this review the most common methods quantifying the three parameters mentioned above, the cytokinesis-block micronucleus assay, the comet assay, and the quantification of 8-oxo-7,8-dihydro-2′-deoxyguanosine, are evaluated concerning the feasibility of the analysis and regarding the marker’s potential to predict clinical outcomes.

  19. Damaging the Integrated HIV Proviral DNA with TALENs.

    Directory of Open Access Journals (Sweden)

    Christy L Strong

    Full Text Available HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs to target a highly conserved sequence in the transactivation response element (TAR of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.

  20. Oxidative stress and DNA damages induced by cadmium accumulation

    Institute of Scientific and Technical Information of China (English)

    LIN Ai-jun; ZHANG Xu-hong; CHEN Mei-mei; CAO Qing

    2007-01-01

    Experimental evidence shows that cadmium (Cd) could induce oxidative stress and then causes DNA damage in animal cells, however, whether such effect exists in plants is still unclear. In the present study, Vicia faba plants was exposed to 5 and 10 mg/L Cd for 4 d to investigate the distribution of Cd in plant, the metal effects on the cell lipids, antioxidative enzymes and DNA damages in leaves. Cd induced an increase in Cd concentrations in plants. An enhanced level of lipid peroxidation in leaves and an enhanced concentration of H2O2 in root tissues suggested that Cd caused oxidative stress in Vicia faba. Compared with control, Cd-induced enhancement in superoxide dismutase activity was significant at 5 mg/L than at 10 mg/kg in leaves, by contrast, catalase and peroxidaseactivities were significantly suppressed by Cd addition. DNA damage was detected by neutral/neutral, alkaline/neutral and alkaline/alkaline Comet assay. Increased levels of DNA damages induced by Cd occurred with reference to oxidative stress in leaves, therefore, oxidative stress induced by Cd accumulation in plants contributed to DNA damages and was possibly an important mechanism of Cd-phytotoxicity in Vicia faba plants.

  1. DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice

    DEFF Research Database (Denmark)

    Croteau, Deborah L; de Souza-Pinto, Nadja C; Harboe, Charlotte

    2010-01-01

    Aging is associated with elevated oxidative stress and DNA damage. To achieve healthy aging, we must begin to understand how diet affects cellular processes. We postulated that fruit-enriched diets might initiate a program of enhanced DNA repair and thereby improve genome integrity. C57Bl/6 J mice...... were fed for 14 weeks a control diet or a diet with 8% peach or nectarine extract. The activities of DNA repair enzymes, the level of DNA damage, and gene expression changes were measured. Our study showed that repair of various oxidative DNA lesions was more efficient in liver extracts derived from......-fed mice. Taken together, these results suggest that an increased intake of fruits might modulate the efficiency of DNA repair, resulting in altered levels of DNA damage....

  2. SOS processing of unique oxidative DNA damages in Escherichia coli.

    Science.gov (United States)

    Laspia, M F; Wallace, S S

    1989-05-05

    phi X174 replicative form (RF) I transfecting DNA containing thymine glycols (5,6-dihydroxy-5,6-dihydrothymine), urea glycosides or apurinic (AP) sites was used to study SOS processing of unique DNA damages in Escherichia coli. All three lesions can be found in DNA damaged by chemical oxidants or radiation and are representative of several common structural modifications of DNA bases. When phi X DNA containing thymine glycols was transfected into host cells that were ultraviolet-irradiated to induce the SOS response, a substantial increase in survival was observed compared to transfection into uninduced hosts. Studies with mutants demonstrated that both the activated form of RecA and UmuDC proteins were required for this reactivation. In contrast, no increase in survival was observed when DNA containing urea glycosides or AP sites was transfected into ultraviolet-induced hosts. These data suggest that SOS-induced reactivation does not reflect a generalized repair system for all replication-blocking, lethal lesions but rather that the efficiency of reactivation is damage dependent. Further, we found that a significant fraction of potentially lethal thymine glycols could be ultraviolet-reactivated in an umuC lexA recA-independent manner, suggesting the existence of an as yet uncharacterized damage-inducible SOS-independent mode of thymine glycol repair.

  3. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    NARCIS (Netherlands)

    S. Vives (Sergi); M.T. Gilbert (Thomas); C. Arenas (Conchita); E. Gigli (Elena); O. Lao Grueso (Oscar); C. Lalueza-Fox (Carles)

    2008-01-01

    textabstractBackground. We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis was rest

  4. Parvovirus diversity and DNA damage responses.

    Science.gov (United States)

    Cotmore, Susan F; Tattersall, Peter

    2013-02-01

    Parvoviruses have a linear single-stranded DNA genome, around 5 kb in length, with short imperfect terminal palindromes that fold back on themselves to form duplex hairpin telomeres. These contain most of the cis-acting information required for viral "rolling hairpin" DNA replication, an evolutionary adaptation of rolling-circle synthesis in which the hairpins create duplex replication origins, prime complementary strand synthesis, and act as hinges to reverse the direction of the unidirectional cellular fork. Genomes are packaged vectorially into small, rugged protein capsids ~260 Å in diameter, which mediate their delivery directly into the cell nucleus, where they await their host cell's entry into S phase under its own cell cycle control. Here we focus on genus-specific variations in genome structure and replication, and review host cell responses that modulate the nuclear environment.

  5. Looking for Waldo: a potential thermodynamic signature to DNA damage.

    Science.gov (United States)

    Gold, Barry; Stone, Michael P; Marky, Luis A

    2014-04-15

    DNA in its simplest form is an ensemble of nucleic acids, water, and ions, and the conformation of DNA is dependent on the relative proportions of all three components. When DNA is covalently damaged by endogenous or exogenous reactive species, including those produced by some anticancer drugs, the ensemble undergoes localized changes that affect nucleic acid structure, thermodynamic stability, and the qualitative and quantative arrangement of associated cations and water molecules. Fortunately, the biological effects of low levels of DNA damage are successfully mitigated by a large number of proteins that efficiently recognize and repair DNA damage in the midst of a vast excess of canonical DNA. In this Account, we explore the impact of DNA modifications on the high resolution and dynamic structure of DNA, DNA stability, and the uptake of ions and water and explore how these changes may be sensed by proteins whose function is to initially locate DNA lesions. We discuss modifications on the nucleobases that are located in the major and minor grooves of DNA and include lesions that are observed in vivo, including oxidized bases, as well as some synthetic nucleobases that allow us to probe how the location and nature of different substituents affect the thermodynamics and structure of the DNA ensemble. It is demonstrated that disruption of a cation binding site in the major groove by modification of the N7-position on the purines, which is the major site for DNA alkylation, is enthalpically destabilizing. Accordingly, tethering a cationic charge in the major groove is enthalpically stabilizing. The combined structural and thermodynamic studies provide a detailed picture of how different DNA lesions affect the dynamics of DNA and how modified bases interact with their environment. Our work supports the hypothesis that there is a "thermodynamic signature" to DNA lesions that can be exploited in the initial search that requires differentiation between canonical DNA and

  6. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2016-12-15

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

  7. Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion.

    Science.gov (United States)

    Juvekar, Ashish; Hu, Hai; Yadegarynia, Sina; Lyssiotis, Costas A; Ullas, Soumya; Lien, Evan C; Bellinger, Gary; Son, Jaekyoung; Hok, Rosanna C; Seth, Pankaj; Daly, Michele B; Kim, Baek; Scully, Ralph; Asara, John M; Cantley, Lewis C; Wulf, Gerburg M

    2016-07-26

    We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1(f/f)p53(f/f)), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors.

  8. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisag@pharm.unifi.it; Bellandi, Serena [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Pitozzi, Vanessa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Fabbri, Paolo [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Dolara, Piero [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)

    2004-11-22

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo.

  9. A dual role of Cdk2 in DNA damage response

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2009-05-01

    Full Text Available Abstract Once it was believed that Cdk2 was the master regulator of S phase entry. Gene knockout mouse studies of cell cycle regulators revealed that Cdk2 is dispensable for S phase initiation and progression whereby Cdk1 can compensate for the loss of Cdk2. Nevertheless, recent evidence indicates that Cdk2 is involved in cell cycle independent functions such as DNA damage repair. Whether these properties are unique to Cdk2 or also being compensated by other Cdks in the absence of Cdk2 is under extensive investigation. Here we review the emerging new role of Cdk2 in DNA damage repair and also discuss how the loss of Cdk2 impacts the G1/S phase DNA damage checkpoint.

  10. A dual role of Cdk2 in DNA damage response.

    Science.gov (United States)

    Satyanarayana, Ande; Kaldis, Philipp

    2009-05-18

    Once it was believed that Cdk2 was the master regulator of S phase entry. Gene knockout mouse studies of cell cycle regulators revealed that Cdk2 is dispensable for S phase initiation and progression whereby Cdk1 can compensate for the loss of Cdk2. Nevertheless, recent evidence indicates that Cdk2 is involved in cell cycle independent functions such as DNA damage repair. Whether these properties are unique to Cdk2 or also being compensated by other Cdks in the absence of Cdk2 is under extensive investigation. Here we review the emerging new role of Cdk2 in DNA damage repair and also discuss how the loss of Cdk2 impacts the G1/S phase DNA damage checkpoint.

  11. Increased DNA damage and oxidative stress among silver jewelry workers.

    Science.gov (United States)

    Aktepe, Necmettin; Kocyigit, Abdurrahim; Yukselten, Yunus; Taskin, Abdullah; Keskin, Cumali; Celik, Hakim

    2015-04-01

    Silver has long been valued as a precious metal, and it is used to make ornaments, jewelry, high-value tableware, utensils, and currency coins. Human exposures to silver and silver compounds can occur oral, dermal, or by inhalation. In this study, we investigated genotoxic and oxidative effects of silver exposure among silver jewelry workers. DNA damage in peripheral mononuclear leukocytes was measured by using the comet assay. Serum total antioxidative status (TAS), total oxidative status (TOS), total thiol contents, and ceruloplasmin levels were measured by using colorimetric methods among silver jewelry workers. Moreover, oxidative stress index (OSI) was calculated. Results were compared with non-exposed healthy subjects. The mean values of mononuclear leukocyte DNA damage were significantly higher than control subjects (p jewelry workers caused oxidative stress and accumulation of severe DNA damage.

  12. Increased Mutagen Sensitivity and DNA Damage in Pulmonary Arterial Hypertension

    Science.gov (United States)

    Federici, Chiara; Drake, Kylie M.; Rigelsky, Christina M.; McNelly, Lauren N.; Meade, Sirena L.; Comhair, Suzy A. A.; Erzurum, Serpil C.

    2015-01-01

    Rationale: Pulmonary arterial hypertension (PAH) is a serious lung condition characterized by vascular remodeling in the precapillary pulmonary arterioles. We and others have demonstrated chromosomal abnormalities and increased DNA damage in PAH lung vascular cells, but their timing and role in disease pathogenesis is unknown. Objectives: We hypothesized that if DNA damage predates PAH, it might be an intrinsic cell property that is present outside the diseased lung. Methods: We measured DNA damage, mutagen sensitivity, and reactive oxygen species (ROS) in lung and blood cells from patients with Group 1 PAH, their relatives, and unrelated control subjects. Measurements and Main Results: Baseline DNA damage was significantly elevated in PAH, both in pulmonary artery endothelial cells (P < 0.05) and peripheral blood mononuclear cells (PBMC) (P < 0.001). Remarkably, PBMC from unaffected relatives showed similar increases, indicating this is not related to PAH treatments. ROS levels were also higher (P < 0.01). DNA damage correlated with ROS production and was suppressed by antioxidants (P < 0.001). PBMC from patients and relatives also showed markedly increased sensitivity to two chemotherapeutic drugs, bleomycin and etoposide (P < 0.001). Results were consistent across idiopathic, heritable, and associated PAH groups. Conclusions: Levels of baseline and mutagen-induced DNA damage are intrinsically higher in PAH cells. Similar results in PBMC from unaffected relatives suggest this may be a genetically determined trait that predates disease onset and may act as a risk factor contributing to lung vascular remodeling following endothelial cell injury. Further studies are required to fully characterize mutagen sensitivity, which could have important implications for clinical management. PMID:25918951

  13. DNA damage and oxidative status in PFAPA syndrome.

    Science.gov (United States)

    Tuğrul, Selahattin; Doğan, Remzi; Kocyigit, Abdurrahim; Torun, Emel; Senturk, Erol; Ozturan, Orhan

    2015-10-01

    PFAPA syndrome is a clinical entity of unknown etiology which presents with periodic episodes of fever, aphthous stomatitis, tonsillitis or pharyngitis, and cervical adenitis. In this study we investigated DNA damage and the oxidative stress parameters in patients diagnosed with PFAPA, to elucidate the underlying pathophysiological mechanism of this syndrome. Thirty-one patients diagnosed with PFAPA (Group 1), 22 patients diagnosed with normal tonsillitis or pharyngitis (Group 2), and 20 healthy volunteers (Group 3) were included in our study. Heparinized peripheral blood samples were drawn from all patients and volunteers. DNA damage was assessed by single cell alkaline electrophoresis assay in peripheral mononuclear leukocytes. Plasma levels of total antioxidant status (TAS) and total oxidative status (TOS) were determined by using a novel automated measurement method, and oxidative stress index (OSI) was calculated. DNA damage in the mononuclear leukocytes of Group 1 was significantly higher than that of Group 2 and Group 3. The oxidative stress parameters revealed that the TOS and OSI values of Group 1 were significantly higher than those of Group 2 and Group 3. TAS values of Group 1 were significantly lower than those of Group 2 and Group 3. Correlation analysis of Group 1 demonstrated a significant correlation between TOS, one of the oxidative stress parameters, and DNA damage. Correlations between DNA damage and C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values were also significant. Our study indicated that both the inflammatory and the oxidative stress parameters were significantly increased in patients with PFAPA syndrome, accompanied by a significant positive correlation between DNA damage and oxidative stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Can graphene quantum dots cause DNA damage in cells?

    Science.gov (United States)

    Wang, Dan; Zhu, Lin; Chen, Jian-Feng; Dai, Liming

    2015-05-01

    Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems.Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01734c

  15. Mechanisms and Components of the DNA Damage Checkpoint

    Science.gov (United States)

    2002-09-01

    Saccharomyces cerevisiae DNA damage checkpoint. Molecular Cell 9: 1055-1065. (reprint included as Appendix 2) "* Schwartz, M.F., Duong, J.K., Sun, Z., Pradhan...phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Molecular Cell 9, 1055-1065. 13 Molecular Cell , Vol. 9,1055-1065...Cambridge, Massachusetts 02139. 1999), and mutation of conserved amino acids in the Molecular Cell 1056 A Rad9 B ,•o 0, 1 sitesN NC -T6 RVTQSA o- 0~ --T240

  16. Nuclear DNA damage signalling to mitochondria in ageing.

    Science.gov (United States)

    Fang, Evandro Fei; Scheibye-Knudsen, Morten; Chua, Katrin F; Mattson, Mark P; Croteau, Deborah L; Bohr, Vilhelm A

    2016-05-01

    Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.

  17. Linking abnormal mitosis to the acquisition of DNA damage

    Science.gov (United States)

    Pellman, David

    2012-01-01

    Cellular defects that impair the fidelity of mitosis promote chromosome missegregation and aneuploidy. Increasing evidence reveals that errors in mitosis can also promote the direct and indirect acquisition of DNA damage and chromosome breaks. Consequently, deregulated cell division can devastate the integrity of the normal genome and unleash a variety of oncogenic stimuli that may promote transformation. Recent work has shed light on the mechanisms that link abnormal mitosis with the development of DNA damage, how cells respond to such affronts, and the potential impact on tumorigenesis. PMID:23229895

  18. 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage

    DEFF Research Database (Denmark)

    Loft, S; Fischer-Nielsen, A; Jeding, I B

    1993-01-01

    , rats, and mice. The excretion of 8OHdG decreased with age in rats in parallel with the decline in metabolic rate with advancing age. The excretion of 8OHdG reflects the formation and repair of only one out of approximately 20 described oxidative DNA modifications. So far, methods are not available......Living organisms are continuously exposed to reactive oxygen species as a consequence of biochemical reactions as well as external factors. Oxidative DNA damage has been implicated in aging, carcinogenesis and other degenerative diseases. The urinary excretion of the DNA repair product 8......-hydroxydeoxyguanosine (8OHdG) has been proposed as a noninvasive biomarker of oxidative DNA damage in humans in vivo. We have developed a three-dimensional HPLC analysis with electrochemical detection for the analysis of 8OHdG in urine and studied factors affecting the excretion of this biomarker in 83 healthy humans...

  19. DNA damage response in nephrotoxic and ischemic kidney injury.

    Science.gov (United States)

    Yan, Mingjuan; Tang, Chengyuan; Ma, Zhengwei; Huang, Shuang; Dong, Zheng

    2016-10-27

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.

  20. Are glutathione S transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies

    Energy Technology Data Exchange (ETDEWEB)

    Dusinska, Maria, E-mail: Maria.DUSINSKA@nilu.no [CEE-Health Effects Group, NILU - Norwegian Institute for Air Research, Kjeller (Norway); Staruchova, Marta; Horska, Alexandra [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia); Smolkova, Bozena [Laboratory of Cancer Genetics, Cancer Research Institute of the Slovak Academy of Sciences, Bratislava (Slovakia); Collins, Andrew [Department of Nutrition, Faculty of Medicine, University of Oslo (Norway); Bonassi, Stefano [Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome (Italy); Volkovova, Katarina [Department of Experimental and Applied Genetics, Slovak Medical University, Bratislava (Slovakia)

    2012-08-01

    Glutathione S-transferases (GSTs) are members of a multigene family of isoenzymes that are important in the control of oxidative stress and in phase II metabolism. Acting non-enzymically, GSTs can modulate signalling pathways of cell proliferation, cell differentiation and apoptosis. Using a molecular epidemiology approach, we have investigated a potential involvement of GSTs in DNA damage processing, specifically the modulation of DNA repair in a group of 388 healthy adult volunteers; 239 with at least 5 years of occupational exposure to asbestos, stone wool or glass fibre, and 149 reference subjects. We measured DNA damage in lymphocytes using the comet assay (alkaline single cell gel electrophoresis): strand breaks (SBs) and alkali-labile sites, oxidised pyrimidines with endonuclease III, and oxidised purines with formamidopyrimidine DNA glycosylase. We also measured GST activity in erythrocytes, and the capacity for base excision repair (BER) in a lymphocyte extract. Polymorphisms in genes encoding three GST isoenzymes were determined, namely deletion of GSTM1 and GSTT1 and single nucleotide polymorphism Ile105Val in GSTP1. Consumption of vegetables and wine correlated negatively with DNA damage and modulated BER. GST activity correlated with oxidised bases and with BER capacity, and differed depending on polymorphisms in GSTP1, GSTT1 and GSTM1. A significantly lower BER rate was associated with the homozygous GSTT1 deletion in all asbestos site subjects and in the corresponding reference group. Multifactorial analysis revealed effects of sex and exposure in GSTP1 Ile/Val heterozygotes but not in Ile/Ile homozygotes. These variants affected also SBs levels, mainly by interactions of GSTP1 genotype with exposure, with sex, and with smoking habit; and by an interaction between sex and smoking. Our results show that GST polymorphisms and GST activity can apparently influence DNA stability and repair of oxidised bases, suggesting a potential new role for these

  1. DNA damage mediated transcription arrest: Step back to go forward.

    Science.gov (United States)

    Mullenders, Leon

    2015-12-01

    The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored.

  2. Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2015-01-01

    Full Text Available Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers.

  3. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-10-01

    Full Text Available Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.

  4. No ancient DNA damage in Actinobacteria from the Neanderthal bone.

    Directory of Open Access Journals (Sweden)

    Katarzyna Zaremba-Niedźwiedzka

    Full Text Available BACKGROUND: The Neanderthal genome was recently sequenced using DNA extracted from a 38,000-year-old fossil. At the start of the project, the fraction of mammalian and bacterial DNA in the sample was estimated to be <6% and 9%, respectively. Treatment with restriction enzymes prior to sequencing increased the relative proportion of mammalian DNA to 15%, but the large majority of sequences remain uncharacterized. PRINCIPAL FINDINGS: Our taxonomic profiling of 3.95 Gb of Neanderthal DNA isolated from the Vindija Neanderthal Vi33.16 fossil showed that 90% of about 50,000 rRNA gene sequence reads were of bacterial origin, of which Actinobacteria accounted for more than 75%. Actinobacteria also represented more than 80% of the PCR-amplified 16S rRNA gene sequences from a cave sediment sample taken from the same G layer as the Neanderthal bone. However, phylogenetic analyses did not identify any sediment clones that were closely related to the bone-derived sequences. We analysed the patterns of nucleotide differences in the individual sequence reads compared to the assembled consensus sequences of the rRNA gene sequences. The typical ancient nucleotide substitution pattern with a majority of C to T changes indicative of DNA damage was observed for the Neanderthal rRNA gene sequences, but not for the Streptomyces-like rRNA gene sequences. CONCLUSIONS/SIGNIFICANCE: Our analyses suggest that the Actinobacteria, and especially members of the Streptomycetales, contribute the majority of sequences in the DNA extracted from the Neanderthal fossil Vi33.16. The bacterial DNA showed no signs of damage, and we hypothesize that it was derived from bacteria that have been enriched inside the bone. The bioinformatic approach used here paves the way for future studies of microbial compositions and patterns of DNA damage in bacteria from archaeological bones. Such studies can help identify targeted measures to increase the relative amount of endogenous DNA in the

  5. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    Science.gov (United States)

    Fekete, A.; Kovács, G.; Hegedüs, M.; Módos, K.; Rontó, Gy.; Lammer, H.; Panitz, C.

    The experiment ``Phage and uracil response'' (PUR) will be accommodated in the EXPOSE facility of the ISS aiming to examine and quantify the effect of specific space conditions on bacteriophage T7 and isolated T7 DNA thin films. To achieve this new method was elaborated for the preparation of DNA and nucleoprotein thin films (1). During the EXPOSE Experiment Verification Tests (EVT) the samples were exposed to vacuum (10 -6 Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated, and we also studied the effect of temperature in vacuum as well as the influence of temperature fluctuations. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, DNA-DNA cross-links) accumulate throughout exposure. DNA damage was determined by quantitative PCR using 555 bp and 3826 bp fragments of T7 DNA (2) and by neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of the PCR products have been detected indicating the damage of isolated and intraphage DNA. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target. Fekete et al. J. Luminescence 102-103, 469-475, 2003 Hegedüs et al. Photochem. Photobiol. 78, 213-219, 2003

  6. ATM signaling and genomic stability in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, Martin F. [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia) and Central Clinical Division, University of Queensland, Brisbane (Australia)]. E-mail: martinl@qimr.edu.au; Birrell, Geoff [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Chen, Philip [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Kozlov, Sergei [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Scott, Shaun [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia); Gueven, Nuri [Queensland Cancer Fund Research Unit, Queensland Institute of Medical Research, PO Box Royal Brisbane Hospital, Herston, Brisbane 4029 (Australia)

    2005-01-06

    DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. Mechanisms for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed.

  7. Roles of histone ubiquitylation in DNA damage signaling

    Institute of Scientific and Technical Information of China (English)

    Sui-Sui DONG; Michael S. Y. HUEN

    2011-01-01

    Histone ubiquitylation has emerged as an important chromatin modification associated with DNA damage signaling and repair pathways.These histone marks,laid down by E3 ubiquitin ligases that include RNF8 and RNF168,decorate chromatin domains surrounding DNA double-strand breaks (DSBs).Recent work implicated ubiquitylated histones in orchestrating cell cycle checkpoints,DNA repair and gene transcription.Here we summarize recent advances that contribute to our current knowledge of the highly dynamic nature of DSB-associated histone ubiquitylation,and discuss major challenges ahead in understanding the versatility of ubiquitin conjugation in maintaining genome stability.

  8. Induction of dnaN and dnaQ gene expression in Escherichia coli by alkylation damage to DNA.

    Science.gov (United States)

    Quiñones, A; Kaasch, J; Kaasch, M; Messer, W

    1989-02-01

    The dnaN and dnaQ genes encode the beta-subunit and the epsilon-subunit of the DNA polymerase III holoenzyme. By transcriptional fusions to the galK gene, translational fusions to lacZ and comparative S1 mapping analysis, we investigated the in-vivo regulation of dnaN and dnaQ. We found that DNA damage caused by the alkylating agent methyl methanesulphonate (MMS) leads to a significant induction in dnaN and dnaQ gene expression suggesting a requirement of increased amounts of at least some DNA polymerase III holoenzyme subunits for recovery from DNA damage caused by MMS. These results are first evidences that subunits of the DNA polymerase III holoenzyme are DNA damage inducible. This MMS induction of dnaN and dnaQ gene expression is unrelated to the adaptive response. It was not observed in lexA and recA mutants which abolish the induction of the SOS response.

  9. DNA damage by carbonyl stress in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J.; Wondrak, Georg T.; Laurean, Daniel Cervantes; Jacobson, Myron K.; Jacobson, Elaine L

    2003-01-28

    Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the {alpha}-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N{sup {epsilon}}-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.

  10. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    ; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage....... Urinary excretion of 8-oxodG increased during the first day in altitude hypoxia, and there were more endonuclease III-sensitive sites on day 3 at high altitude. The subjects had more DNA strand breaks in altitude hypoxia than at sea level. The level of DNA strand breaks further increased immediately after...... exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive...

  11. CtIP-dependent DNA resection is required for DNA damage checkpoint maintenance but not initiation

    DEFF Research Database (Denmark)

    Kousholt, Arne Nedergaard; Fugger, Kasper; Hoffmann, Saskia

    2012-01-01

    by camptothecin and ionizing radiation. In contrast, we find that DNA end resection was critically required for sustained ATR-CHK1 checkpoint signaling and for maintaining both the intra-S- and G2-phase checkpoints. Consequently, resection-deficient cells entered mitosis with persistent DNA damage. In conclusion......To prevent accumulation of mutations, cells respond to DNA lesions by blocking cell cycle progression and initiating DNA repair. Homology-directed repair of DNA breaks requires CtIP-dependent resection of the DNA ends, which is thought to play a key role in activation of ATR (ataxia telangiectasia...... mutated and Rad3 related) and CHK1 kinases to induce the cell cycle checkpoint. In this paper, we show that CHK1 was rapidly and robustly activated before detectable end resection. Moreover, we show that the key resection factor CtIP was dispensable for initial ATR-CHK1 activation after DNA damage...

  12. Viruses and the DNA Damage Response: Activation and Antagonism.

    Science.gov (United States)

    Luftig, Micah A

    2014-11-01

    Viruses must interact with their hosts in order to replicate; these interactions often provoke the evolutionarily conserved response to DNA damage, known as the DNA damage response (DDR). The DDR can be activated by incoming viral DNA, during the integration of retroviruses, or in response to the aberrant DNA structures generated upon replication of DNA viruses. Furthermore, DNA and RNA viral proteins can induce the DDR by promoting inappropriate S phase entry, by modifying cellular DDR factors directly, or by unintentionally targeting host DNA. The DDR may be antiviral, although viruses often require proximal DDR activation of repair and recombination factors to facilitate replication as well as downstream DDR signaling suppression to ensure cell survival. An unintended consequence of DDR attenuation during infection is the long-term survival and proliferation of precancerous cells. Therefore, the molecular basis for DDR activation and attenuation by viruses remains an important area of study that will likely provide key insights into how viruses have evolved with their hosts.

  13. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    , signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management....

  14. DETECTION OF DNA DAMAGE USING A FIBEROPTIC BIOSENSOR

    Science.gov (United States)

    A rapid and sensitive fiber optic biosensor assay for radiation-induced DNA damage is reported. For this assay, a biotin-labeled capture oligonucleotide (38 mer) was immobilized to an avidin-coated quartz fiber. Hybridization of a dye-labeled complementary sequence was observed...

  15. UV Radiation Damage and Bacterial DNA Repair Systems

    Science.gov (United States)

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  16. Mechanism study of goldenseal-associated DNA damage.

    Science.gov (United States)

    Chen, Si; Wan, Liqing; Couch, Letha; Lin, Haixia; Li, Yan; Dobrovolsky, Vasily N; Mei, Nan; Guo, Lei

    2013-07-31

    Goldenseal has been used for the treatment of a wide variety of ailments including gastrointestinal disturbances, urinary tract disorders, and inflammation. The five major alkaloid constituents in goldenseal are berberine, palmatine, hydrastine, hydrastinine, and canadine. When goldenseal was evaluated by the National Toxicology Program (NTP) in the standard 2-year bioassay, goldenseal induced an increase in liver tumors in rats and mice; however, the mechanism of goldenseal-associated liver carcinogenicity remains unknown. In this study, the toxicity of the five goldenseal alkaloid constituents was characterized, and their toxic potencies were compared. As measured by the Comet assay and the expression of γ-H2A.X, berberine, followed by palmatine, appeared to be the most potent DNA damage inducer in human hepatoma HepG2 cells. Berberine and palmatine suppressed the activities of both topoisomerase (Topo) I and II. In berberine-treated cells, DNA damage was shown to be directly associated with the inhibitory effect of Topo II, but not Topo I by silencing gene of Topo I or Topo II. In addition, DNA damage was also observed when cells were treated with commercially available goldenseal extracts and the extent of DNA damage was positively correlated to the berberine content. Our findings suggest that the Topo II inhibitory effect may contribute to berberine- and goldenseal-induced genotoxicity and tumorigenicity.

  17. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  18. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  19. Systemic oxidatively generated DNA/RNA damage in clinical depression

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Krogh, Jesper; Miskowiak, Kamilla;

    2013-01-01

    , such as dementia and type 2 diabetes. We hypothesized that increased severity of depression is associated with increased systemic oxidatively generated DNA and RNA damage, and that this increase is attenuated by an effective antidepressant treatment. METHODS: The urinary excretion of markers of systemic......BACKGROUND: Depression has been associated with increased oxidative stress and hypothesized to accelerate aging. Nucleic acid damage from oxidation is a critical part of the aging process, and a suggested early event in age-related somatic morbidities that are also prevalent in depression...... oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, were determined in healthy controls (N=28), moderately depressed, non-medicated patients (N=26) and severely depressed patients eligible for electroconvulsive therapy...

  20. Radiation damage to DNA: The importance of track structure

    CERN Document Server

    Hill, M A

    1999-01-01

    A wide variety of biological effects are induced by ionizing radiation, from cell death to mutations and carcinogenesis. The biological effectiveness is found to vary not only with the absorbed dose but also with the type of radiation and its energy, i.e., with the nature of radiation tracks. An overview is presented of some of the biological experiments using different qualities of radiation, which when compared with Monte Carlo track structure studies, have highlighted the importance of the localized spatial properties of stochastic energy deposition on the nanometer scale at or near DNA. The track structure leads to clustering of damage which may include DNA breaks, base damage etc., the complexity of the cluster and therefore its biological repairability varying with radiation type. The ability of individual tracks to produce clustered damage, and the subsequent biological response are important in the assessment of the risk associated with low-level human exposure. Recent experiments have also shown that...

  1. Regulation of DNA replication by the S-phase DNA damage checkpoint

    Directory of Open Access Journals (Sweden)

    Rhind Nicholas

    2009-07-01

    Full Text Available Abstract Cells slow replication in response to DNA damage. This slowing was the first DNA damage checkpoint response discovered and its study led to the discovery of the central checkpoint kinase, Ataxia Telangiectasia Mutated (ATM. Nonetheless, the manner by which the S-phase DNA damage checkpoint slows replication is still unclear. The checkpoint could slow bulk replication by inhibiting replication origin firing or slowing replication fork progression, and both mechanisms appear to be used. However, assays in various systems using different DNA damaging agents have produced conflicting results as to the relative importance of the two mechanisms. Furthermore, although progress has been made in elucidating the mechanism of origin regulation in vertebrates, the mechanism by which forks are slowed remains unknown. We review both past and present efforts towards determining how cells slow replication in response to damage and try to resolve apparent conflicts and discrepancies within the field. We propose that inhibition of origin firing is a global checkpoint mechanism that reduces overall DNA synthesis whenever the checkpoint is activated, whereas slowing of fork progression reflects a local checkpoint mechanism that only affects replisomes as they encounter DNA damage and therefore only affects overall replication rates in cases of high lesion density.

  2. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage

    DEFF Research Database (Denmark)

    Hendriks, Ivo A; Treffers, Louise W; Verlaan-de Vries, Matty

    2015-01-01

    with the DNA damaging agent methyl methanesulfonate (MMS). We have uncovered a dynamic set of 20 upregulated and 33 downregulated SUMO-2 conjugates, and 755 SUMO-2 sites, of which 362 were dynamic in response to MMS. In contrast to yeast, where a response is centered on homologous recombination, we identified......Small ubiquitin-like modifiers play critical roles in the DNA damage response (DDR). To increase our understanding of SUMOylation in the mammalian DDR, we employed a quantitative proteomics approach in order to identify dynamically regulated SUMO-2 conjugates and modification sites upon treatment...... dynamically SUMOylated interaction networks of chromatin modifiers, transcription factors, DNA repair factors, and nuclear body components. SUMOylated chromatin modifiers include JARID1B/KDM5B, JARID1C/KDM5C, p300, CBP, PARP1, SetDB1, and MBD1. Whereas SUMOylated JARID1B was ubiquitylated by the SUMO...

  3. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...... age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8......-oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased...

  4. DNA damage by reactive species: Mechanisms, mutation and repair.

    Science.gov (United States)

    Jena, N R

    2012-07-01

    DNA is continuously attacked by reactive species that can affect its structure and function severely. Structural modifications to DNA mainly arise from modifications in its bases that primarily occur due to their exposure to different reactive species. Apart from this, DNA strand break, inter- and intra-strand crosslinks and DNA-protein crosslinks can also affect the structure of DNA significantly. These structural modifications are involved in mutation, cancer and many other diseases. As it has the least oxidation potential among all the DNA bases, guanine is frequently attacked by reactive species, producing a plethora of lethal lesions. Fortunately, living cells are evolved with intelligent enzymes that continuously protect DNA from such damages. This review provides an overview of different guanine lesions formed due to reactions of guanine with different reactive species. Involvement of these lesions in inter- and intra-strand crosslinks, DNA-protein crosslinks and mutagenesis are discussed. How certain enzymes recognize and repair different guanine lesions in DNA are also presented.

  5. Sunlight exposure-mediated DNA damage in young adults.

    Science.gov (United States)

    Kato, Masashi; Iida, Machiko; Goto, Yuji; Kondo, Takaaki; Yajima, Ichiro

    2011-08-01

    Previous experimental studies showed that single ultraviolet B (UVB) light irradiation increased levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a well-established biomarker of carcinogenesis and oxidative DNA damage, in epithelial cells in animals and humans. We conducted for the first time an epidemiologic study to investigate the correlations among levels of oxidative DNA damage, skin pigmentation, and sunlight exposure in human daily life. Digitalized skin pigmentation levels and creatinine-adjusted urinary 8-OHdG levels were examined in 127 healthy young adults aged 20 to 24 years and in hairless mice with normal pigmented skin (HL-mice; n = 20) and hyperpigmented skin (HL-HPS-mice; n = 20). Data obtained by a questionnaire were also analyzed for the 127 subjects. Binary logistic regression analysis showed that increased sunlight intensity, but not sunlight-exposed time or sunlight-exposed skin area, was correlated with elevation in creatinine-adjusted urinary 8-OHdG levels. In contrast, increased skin pigmentation level, but not the use of sunscreen, was correlated with reduction in urinary 8-OHdG level in humans. UVB irradiation corresponding to several minutes of sunlight exposure significantly increased urinary 8-OHdG levels in HL-mice but not in HL-HPS-mice. We showed that increase in intensity of sunlight in human daily life increased levels of DNA damage. We also showed a protective effect of skin pigmentation on sunlight exposure-mediated DNA damage. We have provided more reliable evidence of routine sunlight exposure-mediated DNA damage in humans through the combination of epidemiologic and experimental studies. ©2011 AACR.

  6. Analysis of pesticide exposure and DNA damage in immigrant farmworkers.

    Science.gov (United States)

    McCauley, Linda A; Lasarev, Michael; Muniz, Juan; Nazar Stewart, Valle; Kisby, Glen

    2008-01-01

    In the last decade, the Comet assay has been used increasingly in studies of workers potentially exposed to genotoxic substances in the workplace or environment. Significant increases in DNA damage measured with the Comet assay has been reported in lymphocytes of agricultural workers; however, less intrusive means of biomonitoring are needed in epidemiological investigations. This study was designed to use the Comet assay to describe the association of markers of DNA damage in oral leukocytes with biomarkers of pesticide exposure in 134 farmworkers working in berry crops in Oregon compared to control populations. The authors also examined the extent of DNA damage in young workers compared to adults and the effect of work histories, lifestyle factors, and diet on markers of DNA damage. Urinary levels of organophosphate pesticides were low at the time of sampling; however, mean levels of the Captan metabolite tetrahydrophthalimide (THPI) were found to be shifted significantly higher in the farmworkers (0.14 microg/ml) compared to controls (0.078 microg/ml) (one-sided p value=.01). Likewise, the combined molar equivalent of all dialkylphosphate metabolites was marginally higher in farmworkers (p value=.05). The mean tail intensity was significantly greater for agricultural workers compared to controls (one-sided p valuedamage in the oral leukocytes. On average, the mean tail intensity was 10.9 units greater for agricultural workers (95% CI: 6-16 units greater). Tail moment was also significantly greater for agricultural workers compared to nonagricultural workers (one-sided p valuepesticide types on DNA damage and to capture the temporal relationship between exposure to agricultural chemicals and changes in Comet parameters.

  7. Targeting Ongoing DNA Damage in Multiple Myeloma: Effects of DNA Damage Response Inhibitors on Plasma Cell Survival

    Directory of Open Access Journals (Sweden)

    Ana Belén Herrero

    2017-05-01

    Full Text Available Human myeloma cell lines (HMCLs and a subset of myeloma patients with poor prognosis exhibit high levels of replication stress (RS, leading to DNA damage. In this study, we confirmed the presence of DNA double-strand breaks (DSBs in several HMCLs by measuring γH2AX and RAD51 foci and analyzed the effect of various inhibitors of the DNA damage response on MM cell survival. Inhibition of ataxia telangiectasia and Rad3-related protein (ATR, the main kinase mediating the response to RS, using the specific inhibitor VE-821 induced more cell death in HMCLs than in control lymphoblastoid cells and U266, an HMCL with a low level of DNA damage. The absence of ATR was partially compensated by ataxia telangiectasia-mutated protein (ATM, since chemical inhibition of both kinases using VE-821 and KU-55933 significantly increased the death of MM cells with DNA damage. We found that ATM and ATR are involved in DSB repair by homologous recombination (HR in MM. Inhibition of both kinases resulted in a stronger inhibition that may underlie cell death induction, since abolition of HR using two different inhibitors severely reduced survival of HMCLs that exhibit DNA damage. On the other hand, inhibition of the other route involved in DSB repair, non-homologous end joining (NHEJ, using the DNA-PK inhibitor NU7441, did not affect MM cell viability. Interestingly, we found that NHEJ inhibition did not increase cell death when HR was simultaneously inhibited with the RAD51 inhibitor B02, but it clearly increased the level of cell death when HR was inhibited with the MRE11 inhibitor mirin, which interferes with recombination before DNA resection takes place. Taken together, our results demonstrate for the first time that MM cells with ongoing DNA damage rely on an intact HR pathway, which thereby suggests therapeutic opportunities. We also show that inhibition of HR after the initial step of end resection might be more appropriate for inducing MM cell death, since it

  8. DNA Damage: A Main Determinant of Vascular Aging.

    Science.gov (United States)

    Bautista-Niño, Paula K; Portilla-Fernandez, Eliana; Vaughan, Douglas E; Danser, A H Jan; Roks, Anton J M

    2016-05-18

    Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial), of cellular changes (apoptosis, senescence, autophagy), mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1), cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP)/senescence-messaging secretome (SMS), insulin and insulin-like growth factor 1 (IGF-1) signaling), the adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR)-nuclear factor kappa B (NFκB) axis, reactive oxygen species (ROS) vs. endothelial nitric oxide synthase (eNOS)-cyclic guanosine monophosphate (c

  9. DNA Damage: A Main Determinant of Vascular Aging

    Directory of Open Access Journals (Sweden)

    Paula K. Bautista-Niño

    2016-05-01

    Full Text Available Vascular aging plays a central role in health problems and mortality in older people. Apart from the impact of several classical cardiovascular risk factors on the vasculature, chronological aging remains the single most important determinant of cardiovascular problems. The causative mechanisms by which chronological aging mediates its impact, independently from classical risk factors, remain to be elucidated. In recent years evidence has accumulated that unrepaired DNA damage may play an important role. Observations in animal models and in humans indicate that under conditions during which DNA damage accumulates in an accelerated rate, functional decline of the vasculature takes place in a similar but more rapid or more exaggerated way than occurs in the absence of such conditions. Also epidemiological studies suggest a relationship between DNA maintenance and age-related cardiovascular disease. Accordingly, mouse models of defective DNA repair are means to study the mechanisms involved in biological aging of the vasculature. We here review the evidence of the role of DNA damage in vascular aging, and present mechanisms by which genomic instability interferes with regulation of the vascular tone. In addition, we present potential remedies against vascular aging induced by genomic instability. Central to this review is the role of diverse types of DNA damage (telomeric, non-telomeric and mitochondrial, of cellular changes (apoptosis, senescence, autophagy, mediators of senescence and cell growth (plasminogen activator inhibitor-1 (PAI-1, cyclin-dependent kinase inhibitors, senescence-associated secretory phenotype (SASP/senescence-messaging secretome (SMS, insulin and insulin-like growth factor 1 (IGF-1 signaling, the adenosine monophosphate-activated protein kinase (AMPK-mammalian target of rapamycin (mTOR-nuclear factor kappa B (NFκB axis, reactive oxygen species (ROS vs. endothelial nitric oxide synthase (eNOS-cyclic guanosine monophosphate

  10. Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair

    Directory of Open Access Journals (Sweden)

    Devita Surjana

    2010-01-01

    Full Text Available Nicotinamide is a water-soluble amide form of niacin (nicotinic acid or vitamin B3. Both niacin and nicotinamide are widely available in plant and animal foods, and niacin can also be endogenously synthesized in the liver from dietary tryptophan. Nicotinamide is also commercially available in vitamin supplements and in a range of cosmetic, hair, and skin preparations. Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD+, an essential coenzyme in ATP production and the sole substrate of the nuclear enzyme poly-ADP-ribose polymerase-1 (PARP-1. Numerous in vitro and in vivo studies have clearly shown that PARP-1 and NAD+ status influence cellular responses to genotoxicity which can lead to mutagenesis and cancer formation. This paper will examine the role of nicotinamide in the protection from carcinogenesis, DNA repair, and maintenance of genomic stability.

  11. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response

    DEFF Research Database (Denmark)

    Beli, Petra; Lukashchuk, Natalia; Wagner, Sebastian A

    2012-01-01

    The regulatory networks of the DNA damage response (DDR) encompass many proteins and posttranslational modifications. Here, we use mass spectrometry-based proteomics to analyze the systems-wide response to DNA damage by parallel quantification of the DDR-regulated phosphoproteome, acetylome, and ...... cellular hypersensitivity to DNA-damaging agents. Collectively, these data broaden our knowledge of DNA damage signaling networks and highlight an important link between RNA metabolism and DNA repair....

  12. Coal tar residues produce both DNA adducts and oxidative DNA damage in human mammary epithelial cells.

    Science.gov (United States)

    Leadon, S A; Sumerel, J; Minton, T A; Tischler, A

    1995-12-01

    In the present study we compare the metabolic activation of coal tar, as measured by the production of both DNA adducts and oxidative DNA damage, with that of a single carcinogen that is a constituent of this complex mixture in human mammary epithelial cells (HMEC). We find that a significant level of DNA adducts, detected by 32P-postlabeling, are formed in HMEC following exposure to coal tar residues. This treatment also results in the generation of high levels of oxidative DNA damage, as measured by the production of one type of oxidative base modification, thymine glycols. The amounts of both DNA adducts and thymine varied considerably between the various coal tar residues and did not correlate with either the total amount of polycyclic aromatic hydrocarbons (PAH) or the amount of benzo[a]pyrene (B[a]P) present in the residue. Fractionating the residue from one of the sites by sequential extraction with organic solvents indicated that while the ability to produce both types of DNA damage was contained mostly in a hexane-soluble fraction, a benzene-soluble fraction produced high levels of reactive oxygens relative to the number of total DNA adducts. We find that the total amount of PAH or B[a]P present in the coal tars from the various sites was not a predictor of the level of total DNA damage formed.

  13. Measurement of oxidatively generated base damage in cellular DNA.

    Science.gov (United States)

    Cadet, Jean; Douki, Thierry; Ravanat, Jean-Luc

    2011-06-03

    This survey focuses on the critical evaluation of the main methods that are currently available for monitoring single and complex oxidatively generated damage to cellular DNA. Among chromatographic methods, HPLC-ESI-MS/MS and to a lesser extent HPLC-ECD which is restricted to a few electroactive nucleobases and nucleosides are appropriate for measuring the formation of single and clustered DNA lesions. Such methods that require optimized protocols for DNA extraction and digestion are sensitive enough for measuring base lesions formed under conditions of severe oxidative stress including exposure to ionizing radiation, UVA light and high intensity UVC laser pulses. In contrast application of GC-MS and HPLC-MS methods that are subject to major drawbacks have been shown to lead to overestimated values of DNA damage. Enzymatic methods that are based on the use of DNA repair glycosylases in order to convert oxidized bases into strand breaks are suitable, even if they are far less specific than HPLC methods, to deal with low levels of single modifications. Several other methods including immunoassays and (32)P-postlabeling methods that are still used suffer from drawbacks and therefore are not recommended. Another difficult topic is the measurement of oxidatively generated clustered DNA lesions that is currently achieved using enzymatic approaches and that would necessitate further investigations.

  14. Mechanisms and clinical correlates of sperm DNA damage

    Institute of Scientific and Technical Information of China (English)

    Lara Tamburrino; Sara Marchiani; Margarita Montoya; Francesco Elia Marino; Ilaria Natali; Marta Cambi; Gianni Forti; Elisabetta Baldi; Monica Muratori

    2012-01-01

    Among the different DNA anomalies that can be present in the male gamete,DNA fragmentation is the most frequent,particularly in infertile subjects.There is now consistent evidence that a sperm containing fragmented DNA can be alive,motile,morphologically normal and able to fertilize an oocyte.There is also evidence that the oocyte is able to repair DNA damage; however,the extent of this repair depends on the type of DNA damage present in the sperm,as well as on the quality of the oocyte.Thus,it is important to understand the possible consequences of sperm DNA fragmentation (SDF) for embryo development,implantation,pregnancy outcome and the health of progeny conceived,both naturally and by assisted reproductive technology (ART).At present,data on the consequences of SDF for reproduction are scarce and,in many ways,inconsistent.The differences in study conclusions might result from the different methods used to detect SDF,the study design and the inclusion criteria.Consequently,it is difficult to decide whether SDF testing should be carried out in fertility assessment and ART.It is clear that there is an urgent need for the standardisation of the methods and for additional clinical studies on the impact of SDF on ART outcomes.

  15. Endogenous melatonin and oxidatively damaged guanine in DNA

    Directory of Open Access Journals (Sweden)

    Poulsen Henrik E

    2009-10-01

    Full Text Available Abstract Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s families (n = 55 were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight. Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR was associated with significantly higher levels of 8-oxodG (p Conclusion Low levels of endogenous melatonin production among older individuals may lead to

  16. Nanoparticles can cause DNA damage across a cellular barrier

    Science.gov (United States)

    Bhabra, Gevdeep; Sood, Aman; Fisher, Brenton; Cartwright, Laura; Saunders, Margaret; Evans, William Howard; Surprenant, Annmarie; Lopez-Castejon, Gloria; Mann, Stephen; Davis, Sean A.; Hails, Lauren A.; Ingham, Eileen; Verkade, Paul; Lane, Jon; Heesom, Kate; Newson, Roger; Case, Charles Patrick

    2009-12-01

    The increasing use of nanoparticles in medicine has raised concerns over their ability to gain access to privileged sites in the body. Here, we show that cobalt-chromium nanoparticles (29.5 +/- 6.3 nm in diameter) can damage human fibroblast cells across an intact cellular barrier without having to cross the barrier. The damage is mediated by a novel mechanism involving transmission of purine nucleotides (such as ATP) and intercellular signalling within the barrier through connexin gap junctions or hemichannels and pannexin channels. The outcome, which includes DNA damage without significant cell death, is different from that observed in cells subjected to direct exposure to nanoparticles. Our results suggest the importance of indirect effects when evaluating the safety of nanoparticles. The potential damage to tissues located behind cellular barriers needs to be considered when using nanoparticles for targeting diseased states.

  17. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    OpenAIRE

    Vives, Sergi; Gilbert, Thomas; Arenas, Conchita; Gigli, Elena, 1978-; Lao Grueso, Oscar; Lalueza-Fox, Carles

    2008-01-01

    textabstractBackground. We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis was restricted to C → T and G → A miscoding lesions (the predominant manifestation of post mortem damage) that are seen at a frequency of more than one clone among sequences from a single PCR, but do not r...

  18. Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage

    Directory of Open Access Journals (Sweden)

    Robert L. Eoff

    2010-01-01

    Full Text Available DNA is a chemically reactive molecule that is subject to many different covalent modifications from sources that are both endogenous and exogenous in origin. The inherent instability of DNA is a major obstacle to genomic maintenance and contributes in varying degrees to cellular dysfunction and disease in multi-cellular organisms. Investigations into the chemical and biological aspects of DNA damage have identified multi-tiered and overlapping cellular systems that have evolved as a means of stabilizing the genome. One of these pathways supports DNA replication events by in a sense adopting the mantra that one must “make the best of a bad situation” and tolerating covalent modification to DNA through less accurate copying of the damaged region. Part of this so-called DNA damage tolerance pathway involves the recruitment of specialized DNA polymerases to sites of stalled or collapsed replication forks. These enzymes have unique structural and functional attributes that often allow bypass of adducted template DNA and successful completion of genomic replication. What follows is a selective description of the salient structural features and bypass properties of specialized DNA polymerases with an emphasis on Y-family members.

  19. Reduction in oxidatively generated DNA damage following smoking cessation

    Directory of Open Access Journals (Sweden)

    Freund Harold G

    2011-05-01

    Full Text Available Abstract Background Cigarette smoking is a known cause of cancer, and cancer may be in part due to effects of oxidative stress. However, whether smoking cessation reverses oxidatively induced DNA damage unclear. The current study sought to examine the extent to which three DNA lesions showed significant reductions after participants quit smoking. Methods Participants (n = 19 in this study were recruited from an ongoing 16-week smoking cessation clinical trial and provided blood samples from which leukocyte DNA was extracted and assessed for 3 DNA lesions (thymine glycol modification [d(TgpA]; formamide breakdown of pyrimidine bases [d(TgpA]; 8-oxo-7,8-dihydroguanine [d(Gh] via liquid chromatography tandem mass spectrometry (LC-MS/MS. Change in lesions over time was assessed using generalized estimating equations, controlling for gender, age, and treatment condition. Results Overall time effects for the d(TgpA (χ2(3 = 8.068, p fpA (χ2(3 = 8.477, p h (χ2(3 = 37.599, p gpA and d(PfpA lesions show relatively greater rebound at Week 16 compared to the d(Gh lesion (88% of baseline for d(TgpA, 64% of baseline for d(PfpA, vs 46% of baseline for d(Gh. Conclusions Overall, results from this analysis suggest that cigarette smoking contributes to oxidatively induced DNA damage, and that smoking cessation appears to reduce levels of specific damage markers between 30-50 percent in the short term. Future research may shed light on the broader array of oxidative damage influenced by smoking and over longer durations of abstinence, to provide further insights into mechanisms underlying carcinogenesis.

  20. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA).

    Science.gov (United States)

    Fayzullina, Saniya; Martin, Lee J

    2014-01-01

    Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0) exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT)-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

  1. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA.

    Directory of Open Access Journals (Sweden)

    Saniya Fayzullina

    Full Text Available Spinal Muscular Atrophy (SMA is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0 exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

  2. Chromatin compaction protects genomic DNA from radiation damage.

    Directory of Open Access Journals (Sweden)

    Hideaki Takata

    Full Text Available Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs in compact chromatin after ionizing irradiation was 5-50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.

  3. The AID-induced DNA damage response in chromatin

    DEFF Research Database (Denmark)

    Daniel, Jeremy A; Nussenzweig, André

    2013-01-01

    with somatic hypermutation and class switch recombination, chromatin must be made accessible for activation-induced cytidine deaminase (AID)-mediated deamination of cytosines in DNA. These lesions are recognized and removed by various DNA repair pathways but, if not handled properly, can lead to formation......Chemical modifications to the DNA and histone protein components of chromatin can modulate gene expression and genome stability. Understanding the physiological impact of changes in chromatin structure remains an important question in biology. As one example, in order to generate antibody diversity...... of oncogenic chromosomal translocations. In this review, we focus the discussion on how chromatin-modifying activities and -binding proteins contribute to the native chromatin environment in which AID-induced DNA damage is targeted and repaired. Outstanding questions remain regarding the direct roles...

  4. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    DEFF Research Database (Denmark)

    Vives, Sergi; Gilbert, M Thomas; Arenas, Conchita

    2008-01-01

    ABSTRACT: BACKGROUND: We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA) hypervariable region 1 (HVS1). The analysis...... was restricted to C-->T and G-->A miscoding lesions (the predominant manifestation of post mortem damage) that are seen at a frequency of more than one clone among sequences from a single PCR, but do not represent the true endogenous sequence. FINDINGS: The data indicates an extreme bias towards C-->T over G......-->A miscoding lesions (observed ratio of 67:2 compared to an expected ratio of 7:2), implying that the mtDNA Light strand molecule suffers proportionally more damage-derived miscoding lesions than the Heavy strand. CONCLUSION: The clustering of Cs in the Light strand as opposed to the singleton pattern of Cs...

  5. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900MHz radiofrequency fields.

    Science.gov (United States)

    Sun, Yulong; Zong, Lin; Gao, Zhen; Zhu, Shunxing; Tong, Jian; Cao, Yi

    2017-03-01

    HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900MHz radiofrequency fields (RF) at 120μW/cm(2) power intensity for 4h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2'-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    Institute of Scientific and Technical Information of China (English)

    Ramaraj Thirugnanasampandan; Rajarajeswaran Jayakumar

    2011-01-01

    Objective: To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods: The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results: Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions: The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage.

  7. Homologous recombination is required for recovery from oxidative DNA damage.

    Science.gov (United States)

    Hayashi, Michio; Umezu, Keiko

    2017-04-03

    We have been studying the genetic events, including chromosome loss, chromosome rearrangements and intragenic point mutations, that are responsible for the deletion of a URA3 marker in a loss of heterozygosity (LOH) assay in the yeast Saccharomycess cerevisiae. With this assay, we previously showed that homologous recombination plays an important role in genome maintenance in response to DNA lesions that occur spontaneously in normally growing cells. Here, to investigate DNA lesions capable of triggering homologous recombination, we examined the effects of oxidative stress, a prominent cause of endogenous DNA damage, on LOH events. Treatment of log-phase cells with H2O2 first caused growth arrest and then, during the subsequent recovery, chromosome loss and various chromosome rearrangements were induced more than 10-fold. Further analysis of the rearrangements showed that gene conversion was strongly induced, approximately 100 times more frequently than in untreated cells. Consistent with these results, two diploid strains deficient for homologous recombination, rad52Δ/rad52Δ and rad51Δ/rad51Δ, were sensitive to H2O2 treatment. In addition, chromosome DNA breaks were detected in H2O2-treated cells using pulsed-field gel electrophoresis. Altogether, these results suggest that oxidative stress induced recombinogenic lesions on chromosomes, which then triggered homologous recombination leading to chromosome rearrangements, and that this response contributed to the survival of cells afflicted by oxidative DNA damage. We therefore conclude that homologous recombination is required for the recovery of cells from oxidative stress.

  8. X-Ray induced DNA damage – why use plants?

    Directory of Open Access Journals (Sweden)

    John William Einset

    2015-06-01

    Full Text Available The comet assay was used to monitor DNA repair after X-ray exposures caused by 0.2-15 Gy. A clear distinction in the time course of DNA repair after 2 Gy was observed with an early ‘rapid phase’, lasting 20-40 minutes, being followed by a ‘slow phase’ which actually consists of a period of negligible repair and then rapid repair during 140-160 minutes. The fact that homozygous mutants for both ATM and BRCA1 fail to repair DNA completely during 3 hours after 2 Gy exposures indicates that repair processes occurring during the ‘slow phase’ involve ds breaks in DNA. Both BRCA1 and Rad51 expression are strongly upregulated by X-rays in Arabidopsis. Rye grass, Norway spruce and Sawara cypress also have ‘slow phase’ repair similar to Arabidopsis, suggesting that the requisite enzymes have to be induced in these plants as well. To look at the effect of genome size in relation to sensitivity to DNA damage, we exposed isolated nuclei from Norway spruce (19.2 Gbp genome, celery (14.1 Gbp, spinach (12.6 Gbp Sawara cypress (8.9 Gbp, lettuce (2.6 Gbp and Arabidopsis (0.135 Gbp to X-rays. After a 1 Gy exposure, a linear relationship was seen between % tails and genome size, confirming the idea that larger genomes are more sensitive to X-ray damage.

  9. Influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to organophosphate pesticides.

    Science.gov (United States)

    Singh, Satyender; Kumar, Vivek; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2012-01-24

    Previous studies have revealed that organophosphate pesticides (OPs) are primarily metabolized by xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticides-exposed workers. Present study was designed to determine the influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to OPs. We examined 268 subjects including 134 workers occupationally exposed to OPs and an equal number of normal healthy controls. The DNA damage was evaluated using alkaline comet assay and genotyping was done using individual polymerase chain reaction (PCR) or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Acetylcholinesterase and paraoxonase activity were found to be significantly lowered in workers as compared to control subjects which were analyzed as biomarkers of toxicity due to OPs exposure (p<0.001). Workers showed significantly higher DNA tail moment (TM) compared to control subjects (14.32±2.17 vs. 6.24±1.37 tail % DNA, p<0.001). GSTM1 null genotype was found to influence DNA TM in workers (p<0.05). DNA TM was also found to be increased with concomitant presence of NAT2 slow acetylation and CYP2C9*3/*3 or GSTM1 null genotypes (p<0.05). DNA TM was found increased in NAT2 slow acetylators with mild and heavy smoking habits in control subjects and workers, respectively (p<0.05). The results of this study suggest that GSTM1 null genotypes, and an association of NAT2 slow acetylation genotypes with CYP2C9*3/*3 or GSTM1 null genotypes may modulate DNA damage in workers occupationally exposed to OPs.

  10. Decreased repair of gamma damaged DNA in progeria

    Energy Technology Data Exchange (ETDEWEB)

    Rainbow, A.J.; Howes, M.

    1977-01-01

    A sensitive host-cell reactivation technique was used to examine the DNA repair ability of fibroblasts from two patients with classical progeria. Fibroblasts were infected with either non-irradiated or gamma-irradiated adenovirus type 2 and at 48 hrs after infection cells were examined for the presence of viral structural antigens using immunofluorescent staining. The production of viral structural antigens was considerably reduced in the progeria lines as compared to normal fibroblasts when gamma-irradiated virus was used, indicating a defect in the repair of gamma ray damaged DNA in the progeria cells.

  11. Human longevity and variation in DNA damage response and repair

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike

    2014-01-01

    others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning...... and mitochondrial DNA processes. The study population was 1089 long-lived and 736 middle-aged Danes. A self-contained set-based test of all SNPs displayed association with longevity (P-value=9.9 × 10-5), supporting that the overall pathway could affect longevity. Investigation of the nine sub-processes using...

  12. DNA damage by reactive species: Mechanisms, mutation and repair

    Indian Academy of Sciences (India)

    N R Jena

    2012-07-01

    DNA is continuously attacked by reactive species that can affect its structure and function severely. Structural modifications to DNA mainly arise from modifications in its bases that primarily occur due to their exposure to different reactive species. Apart from this, DNA strand break, inter- and intra-strand crosslinks and DNA–protein crosslinks can also affect the structure of DNA significantly. These structural modifications are involved in mutation, cancer and many other diseases. As it has the least oxidation potential among all the DNA bases, guanine is frequently attacked by reactive species, producing a plethora of lethal lesions. Fortunately, living cells are evolved with intelligent enzymes that continuously protect DNA from such damages. This review provides an overview of different guanine lesions formed due to reactions of guanine with different reactive species. Involvement of these lesions in inter- and intra-strand crosslinks, DNA–protein crosslinks and mutagenesis are discussed. How certain enzymes recognize and repair different guanine lesions in DNA are also presented.

  13. Preservation of ancient DNA in thermally damaged archaeological bone

    Science.gov (United States)

    Ottoni, Claudio; Koon, Hannah E. C.; Collins, Matthew J.; Penkman, Kirsty E. H.; Rickards, Olga; Craig, Oliver E.

    2009-02-01

    Evolutionary biologists are increasingly relying on ancient DNA from archaeological animal bones to study processes such as domestication and population dispersals. As many animal bones found on archaeological sites are likely to have been cooked, the potential for DNA preservation must be carefully considered to maximise the chance of amplification success. Here, we assess the preservation of mitochondrial DNA in a medieval cattle bone assemblage from Coppergate, York, UK. These bones have variable degrees of thermal alterations to bone collagen fibrils, indicative of cooking. Our results show that DNA preservation is not reliant on the presence of intact collagen fibrils. In fact, a greater number of template molecules could be extracted from bones with damaged collagen. We conclude that moderate heating of bone may enhance the retention of DNA fragments. Our results also indicate that ancient DNA preservation is highly variable, even within a relatively recent assemblage from contexts conducive to organic preservation, and that diagenetic parameters based on protein diagenesis are not always useful for predicting ancient DNA survival.

  14. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    10), nitrous oxide, nitrogen dioxide, carbon monoxide, and/or number concentration of UFPs at urban background or busy street monitoring stations was not a significant predictor of DNA damage, although personal UFP exposure was correlated with urban background concentrations of CO and NO2......Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable...... instruments in six 18-hr periods in 15 healthy nonsmoking subjects. Exposure contrasts of outdoor pollution were achieved by bicycling in traffic for 5 days and in the laboratory for 1 day. Oxidative DNA damage was assessed as strand breaks and oxidized purines in mononuclear cells isolated from venous blood...

  15. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    -oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased...... correlations between 8-oxodG/8-ocoGuo excretion and 9AM plasma cortisol, but no associations to perceived stress. In an animal study of experimentally induced chronic stress performed in metabolism cages, we found no increase in urinary 8-oxodG/8-oxoGuo or cerebral (hippocampal and frontal cortex) levels...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased...

  16. Regulation of the DNA Damage Response by DNA-PKcs Inhibitory Phosphorylation of ATM.

    Science.gov (United States)

    Zhou, Yi; Lee, Ji-Hoon; Jiang, Wenxia; Crowe, Jennie L; Zha, Shan; Paull, Tanya T

    2017-01-05

    Ataxia-telangiectasia mutated (ATM) regulates the DNA damage response as well as DNA double-strand break repair through homologous recombination. Here we show that ATM is hyperactive when the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is chemically inhibited or when the DNA-PKcs gene is deleted in human cells. Pre-incubation of ATM protein with active DNA-PKcs also significantly reduces ATM activity in vitro. We characterize several phosphorylation sites in ATM that are targets of DNA-PKcs and show that phospho-mimetic mutations at these residues significantly inhibit ATM activity and impair ATM signaling upon DNA damage. In contrast, phospho-blocking mutations at one cluster of sites increase the frequency of apoptosis during normal cell growth. DNA-PKcs, which is integral to the non-homologous end joining pathway, thus negatively regulates ATM activity through phosphorylation of ATM. These observations illuminate an important regulatory mechanism for ATM that also controls DNA repair pathway choice.

  17. Pyrosequencing: applicability for studying DNA damage-induced mutagenesis.

    Science.gov (United States)

    Minko, Irina G; Earley, Lauriel F; Larlee, Kimberly E; Lin, Ying-Chih; Lloyd, R Stephen

    2014-10-01

    Site-specifically modified DNAs are routinely used in the study of DNA damage-induced mutagenesis. These analyses involve the creation of DNA vectors containing a lesion at a pre-determined position, DNA replication, and detection of mutations at the target site. The final step has previously required the isolation of individual DNA clones, hybridization with radioactively labeled probes, and verification of mutations by Sanger sequencing. In the search for an alternative procedure that would allow direct quantification of sequence variants in a mixed population of DNA molecules, we evaluated the applicability of pyrosequencing to site-specific mutagenesis assays. The progeny DNAs were analyzed that originated from replication of N(6) -(deoxy-D-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dG)-containing vectors in primate cells, with the lesion being positioned in the 5'-GCNGG-3' sequence context. Pyrosequencing detected ∼8% G to T transversions and ∼3.5% G to A transitions, a result that was in excellent agreement with frequencies previously measured by the standard procedure (Earley LF et al. [2013]: Chem Res Toxicol 26:1108-1114). However, ∼3.5% G to C transversions and ∼2.0% deletions could not be detected by pyrosequencing. Consistent with these observations, the sensitivity of pyrosequencing for measuring the single deoxynucleotide variants differed depending on the deoxynucleotide identity, and in the given sequence contexts, was determined to be ∼1-2% for A and T and ∼5% for C. Pyrosequencing of other DNA isolates that were obtained following replication of MeFapy-dG-containing vectors in primate cells or Escherichia coli, identified several additional limitations. Collectively, our data demonstrated that pyrosequencing can be used for studying DNA damage-induced mutagenesis as an effective complementary experimental approach to current protocols.

  18. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  19. DNA repair decline during mouse spermiogenesis results in the accumulation of heritable DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wryobek, Andrew J

    2008-02-21

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7- 1 dbf). Analysis of chromosomalaberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  20. DNA Repair Decline During Mouse Spermiogenesis Results in the Accumulation of Heritable DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Marchetti, Francesco; Wyrobek, Andrew J.

    2007-12-01

    The post-meiotic phase of mouse spermatogenesis (spermiogenesis) is very sensitive to the genomic effects of environmental mutagens because as male germ cells form mature sperm they progressively lose the ability to repair DNA damage. We hypothesized that repeated exposures to mutagens during this repair-deficient phase result in the accumulation of heritable genomic damage in mouse sperm that leads to chromosomal aberrations in zygotes after fertilization. We used a combination of single or fractionated exposures to diepoxybutane (DEB), a component of tobacco smoke, to investigate how differential DNA repair efficiencies during the three weeks of spermiogenesis affected the accumulation of DEB-induced heritable damage in early spermatids (21-15 days before fertilization, dbf), late spermatids (14-8 dbf) and sperm (7-1 dbf). Analysis of chromosomal aberrations in zygotic metaphases using PAINT/DAPI showed that late spermatids and sperm are unable to repair DEB-induced DNA damage as demonstrated by significant increases (P<0.001) in the frequencies of zygotes with chromosomal aberrations. Comparisons between single and fractionated exposures suggested that the DNA repair-deficient window during late spermiogenesis may be less than two weeks in the mouse and that during this repair-deficient window there is accumulation of DNA damage in sperm. Finally, the dose-response study in sperm indicated a linear response for both single and repeated exposures. These findings show that the differential DNA repair capacity of post-meioitic male germ cells has a major impact on the risk of paternally transmitted heritable damage and suggest that chronic exposures that may occur in the weeks prior to fertilization because of occupational or lifestyle factors (i.e, smoking) can lead to an accumulation of genetic damage in sperm and result in heritable chromosomal aberrations of paternal origin.

  1. Metformin (dimethyl-biguanide induced DNA damage in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rubem R. Amador

    2012-01-01

    Full Text Available Metformin (dimethyl-biguanide is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays and in mice (micronucleus assays. Concentrations of 114.4 µg/mL and 572 µg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 µg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.

  2. ATM kinase: Much more than a DNA damage responsive protein.

    Science.gov (United States)

    Guleria, Ayushi; Chandna, Sudhir

    2016-03-01

    ATM, mutation of which causes Ataxia telangiectasia, has emerged as a cardinal multifunctional protein kinase during past two decades as evidenced by various studies from around the globe. Further to its well established and predominant role in DNA damage response, ATM has also been understood to help in maintaining overall functional integrity of cells; since its mutation, inactivation or deficiency results in a variety of pathological manifestations besides DNA damage. These include oxidative stress, metabolic syndrome, mitochondrial dysfunction as well as neurodegeneration. Recently, high throughput screening using proteomics, metabolomics and transcriptomic studies revealed several proteins which might be acting as substrates of ATM. Studies that can help in identifying effective regulatory controls within the ATM-mediated pathways/mechanisms can help in developing better therapeutics. In fact, more in-depth understanding of ATM-dependent cellular signals could also help in the treatment of variety of other disease conditions since these pathways seem to control many critical cellular functions. In this review, we have attempted to put together a detailed yet lucid picture of the present-day understanding of ATM's role in various pathophysiological conditions involving DNA damage and beyond.

  3. Oxidative DNA damage in mouse sperm chromosomes: Size matters.

    Science.gov (United States)

    Kocer, Ayhan; Henry-Berger, Joelle; Noblanc, Anais; Champroux, Alexandre; Pogorelcnik, Romain; Guiton, Rachel; Janny, Laurent; Pons-Rejraji, Hanae; Saez, Fabrice; Johnson, Graham D; Krawetz, Stephen A; Alvarez, Juan G; Aitken, R John; Drevet, Joël R

    2015-12-01

    Normal embryo and foetal development as well as the health of the progeny are mostly dependent on gamete nuclear integrity. In the present study, in order to characterize more precisely oxidative DNA damage in mouse sperm we used two mouse models that display high levels of sperm oxidative DNA damage, a common alteration encountered both in in vivo and in vitro reproduction. Immunoprecipitation of oxidized sperm DNA coupled to deep sequencing showed that mouse chromosomes may be largely affected by oxidative alterations. We show that the vulnerability of chromosomes to oxidative attack inversely correlated with their size and was not linked to their GC richness. It was neither correlated with the chromosome content in persisting nucleosomes nor associated with methylated sequences. A strong correlation was found between oxidized sequences and sequences rich in short interspersed repeat elements (SINEs). Chromosome position in the sperm nucleus as revealed by fluorescent in situ hybridization appears to be a confounder. These data map for the first time fragile mouse sperm chromosomal regions when facing oxidative damage that may challenge the repair mechanisms of the oocyte post-fertilization.

  4. Microvesicles Contribute to the Bystander Effect of DNA Damage.

    Science.gov (United States)

    Lin, Xiaozeng; Wei, Fengxiang; Major, Pierre; Al-Nedawi, Khalid; Al Saleh, Hassan A; Tang, Damu

    2017-04-07

    Genotoxic treatments elicit DNA damage response (DDR) not only in cells that are directly exposed but also in cells that are not in the field of treatment (bystander cells), a phenomenon that is commonly referred to as the bystander effect (BE). However, mechanisms underlying the BE remain elusive. We report here that etoposide and ultraviolet (UV) exposure stimulate the production of microvesicles (MVs) in DU145 prostate cancer cells. MVs isolated from UV-treated DU145 and A431 epidermoid carcinoma cells as well as etoposide-treated DU145 cells induced phosphorylation of ataxia-telangiectasia mutated (ATM) at serine 1981 (indicative of ATM activation) and phosphorylation of histone H2AX at serine 139 (γH2AX) in naïve DU145 cells. Importantly, neutralization of MVs derived from UV-treated cells with annexin V significantly reduced the MV-associated BE activities. Etoposide and UV are known to induce DDR primarily through the ATM and ATM- and Rad3-related (ATR) pathways, respectively. In this regard, MV is likely a common source for the DNA damage-induced bystander effect. However, pre-treatment of DU145 naïve cells with an ATM (KU55933) inhibitor does not affect the BE elicited by MVs isolated from etoposide-treated cells, indicating that the BE is induced upstream of ATM actions. Taken together, we provide evidence supporting that MVs are a source of the DNA damage-induced bystander effect.

  5. Breaking the DNA damage response to improve cervical cancer treatment.

    Science.gov (United States)

    Wieringa, Hylke W; van der Zee, Ate G J; de Vries, Elisabeth G E; van Vugt, Marcel A T M

    2016-01-01

    Every year, cervical cancer affects ∼500,000 women worldwide, and ∼275,000 patients die of this disease. The addition of platin-based chemotherapy to primary radiotherapy has increased 5-year survival of advanced-stage cervical cancer patients, which is, however, still only 66%. One of the factors thought to contribute to treatment failure is the ability of tumor cells to repair chemoradiotherapy-induced DNA damage. Therefore, sensitization of tumor cells for chemoradiotherapy via inhibition of the DNA damage response (DDR) as a novel strategy to improve therapy effect, is currently studied pre-clinically as well as in the clinic. Almost invariably, cervical carcinogenesis involves infection with the human papillomavirus (HPV), which inactivates part of the DNA damage response. This HPV-mediated partial inactivation of the DDR presents therapeutic targeting of the residual DDR as an interesting approach to achieve chemoradio-sensitization for cervical cancer. How the DDR can be most efficiently targeted, however, remains unclear. The fact that cisplatin and radiotherapy activate multiple signaling axes within the DDR further complicates a rational choice of therapeutic targets within the DDR. In this review, we provide an overview of the current preclinical and clinical knowledge about targeting the DDR in cervical cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. DNA damage in workers occupationally exposed to pesticide mixtures.

    Science.gov (United States)

    Simoniello, M F; Kleinsorge, E C; Scagnetti, J A; Grigolato, R A; Poletta, G L; Carballo, M A

    2008-11-01

    Pesticides are used in agriculture to protect crops but represent at the same time a potential risk to farmers and environment. The aim of this work is the evaluation of 54 subjects occupationally exposed to pesticides and 30 subjects as a control group using the quantification of DNA damage level by means of the alkaline Comet assay and the evaluation of repair processes. Damage index Comet assay (DICA) and damage index repair assay (DIRA) were studied in 27 pesticide applicator workers, 27 non-pesticide applicators and controls. Our results show that both exposed groups revealed significant increase in DICA when compared with controls (P pesticides was investigated and no significant differences were observed considering age, gender, smoking and alcohol consumption in relation to DICA and DIRA. Since DNA damage is an important step in events leading from carcinogen exposure to cancer disease, our study highlights the potential health risk associated with agrochemical exposure in developing countries with vast cultivated areas, such as Argentina.

  7. Environmental car exhaust pollution damages human sperm chromatin and DNA.

    Science.gov (United States)

    Calogero, A E; La Vignera, S; Condorelli, R A; Perdichizzi, A; Valenti, D; Asero, P; Carbone, U; Boggia, B; De Rosa, N; Lombardi, G; D'Agata, R; Vicari, L O; Vicari, E; De Rosa, M

    2011-06-01

    The adverse role of traffic pollutants on male fertility is well known. Aim of this study was to evaluate their effects on sperm chromatin/DNA integrity. To accomplish this, 36 men working at motorway tollgates and 32 unexposed healthy men (controls) were enrolled. All of them were interviewed about their lifestyle. Hormone, semen samples, and environmental and biological markers of pollution were evaluated. Sperm chromatin and DNA integrity were evaluated by flow cytometry following propidium iodide staining and TUNEL assay, respectively. LH, FSH, and testosterone serum levels were within the normal range in tollgate workers. Sperm concentration, total sperm count, total and progressive motility, and normal forms were significantly lower in these men compared with controls. Motorway tollgate workers had a significantly higher percentage of spermatozoa with damaged chromatin and DNA fragmentation, a late sign of apoptosis, compared with controls. A significant direct correlation was found between spermatozoa with damaged chromatin or fragmented DNA and the length of occupational exposure, suggesting a time-dependent relationship. This study showed that car exhaust exposure has a genotoxic effect on human spermatozoa. This may be of relevant importance not only for the reproductive performance of the men exposed, but also for the offspring health.

  8. Preparation of next-generation sequencing libraries from damaged DNA.

    Science.gov (United States)

    Briggs, Adrian W; Heyn, Patricia

    2012-01-01

    Next-generation sequencing (NGS) has revolutionized ancient DNA research, especially when combined with high-throughput target enrichment methods. However, attaining high sequencing depth and accuracy from samples often remains problematic due to the damaged state of ancient DNA, in particular the extremely low copy number of ancient DNA and the abundance of uracil residues derived from cytosine deamination that lead to miscoding errors. It is therefore critical to use a highly efficient procedure for conversion of a raw DNA extract into an adaptor-ligated sequencing library, and equally important to reduce errors from uracil residues. We present a protocol for NGS library preparation that allows highly efficient conversion of DNA fragments into an adaptor-ligated form. The protocol incorporates an option to remove the vast majority of uracil miscoding lesions as part of the library preparation process. The procedure requires only two spin column purification steps and no gel purification or bead handling. Starting from an aliquot of DNA extract, a finished, highly amplified library can be generated in 5 h, or under 3 h if uracil removal is not required.

  9. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes.

    Science.gov (United States)

    Karpov, Dmitry S; Spasskaya, Daria S; Tutyaeva, Vera V; Mironov, Alexander S; Karpov, Vadim L

    2013-09-17

    The 26S proteasome is an ATP-dependent multi-subunit protease complex and the major regulator of intracellular protein turnover and quality control. However, its role in the DNA damage response is controversial. We addressed this question in yeast by disrupting the transcriptional regulation of the PRE1 proteasomal gene. The mutant strain has decreased proteasome activity and is hyper-resistant to various DNA-damaging agents. We found that Rpn4-target genes MAG1, RAD23, and RAD52 are overexpressed in this strain due to Rpn4 stabilisation. These genes represent three different pathways of base excision, nucleotide excision and double strand break repair by homologous recombination (DSB-HR). Consistently, the proteasome mutant displays increased DSB-HR activity. Our data imply that the proteasome may have a negative role in DNA damage response.

  10. The impact of impaired DNA damage responses on cells, tissues and organisms

    NARCIS (Netherlands)

    Yi, Xia

    2007-01-01

    Current cancer therapies rely mainly on DNA damaging insults (irradiation, DNA alkylating agents, DNA synthesis inhibitors etc.). The rationale behind these treatments is that rapidly growing cancer cells suffer more from DNA damaging insults. Unfortunately, the majority of current therapies fail to

  11. Mitochondrial DNA damage and animal longevity: insights from comparative studies.

    Science.gov (United States)

    Pamplona, Reinald

    2011-03-02

    Chemical reactions in living cells are under strict enzyme control and conform to a tightly regulated metabolic program. However, uncontrolled and potentially deleterious endogenous reactions occur, even under physiological conditions. Aging, in this chemical context, could be viewed as an entropic process, the result of chemical side reactions that chronically and cumulatively degrade the function of biological systems. Mitochondria are a main source of reactive oxygen species (ROS) and chemical sidereactions in healthy aerobic tissues and are the only known extranuclear cellular organelles in animal cells that contain their own DNA (mtDNA). ROS can modify mtDNA directly at the sugar-phosphate backbone or at the bases, producing many different oxidatively modified purines and pyrimidines, as well as single and double strand breaks and DNA mutations. In this scenario, natural selection tends to decrease the mitochondrial ROS generation, the oxidative damage to mtDNA, and the mitochondrial mutation rate in long-lived species, in agreement with the mitochondrial oxidative stress theory of aging.

  12. Evidence for DNA Damage as a Biological Link Between Diabetes and Cancer

    Institute of Scientific and Technical Information of China (English)

    Shao Chin Lee; Juliana CN Chan

    2015-01-01

    Objective:This review examines the evidence that:Diabetes is a state of DNA damage;pathophysiological factors in diabetes can cause DNA damage;DNA damage can cause mutations;and DNA mutation is linked to carcinogenesis.Data Sources:We retrieved information from the PubMed database up to January,2014,using various search terms and their combinations including DNA damage,diabetes,cancer,high glucose,hyperglycemia,free fatty acids,palmitic acid,advanced glycation end products,mutation and carcinogenesis.Study Selection:We included data from peer-reviewed journals and a textbook printed in English on relationships between DNA damage and diabetes as well as pathophysiological factors in diabetes.Publications on relationships among DNA damage,mutagenesis,and carcinogenesis,were also reviewed.We organized this information into a conceptual framework to explain the possible causal relationship between DNA damage and carcinogenesis in diabetes.Results:There are a large amount of data supporting the view that DNA mutation is a typical feature in carcinogenesis.Patients with type 2 diabetes have increased production of reactive oxygen species,reduced levels of antioxidant capacity,and increased levels of DNA damage.The pathophysiological factors and metabolic milieu in diabetes can cause DNA damage such as DNA strand break and base modification (i.e.,oxidation).Emerging experimental data suggest that signal pathways (i.e.,Akt/tuberin) link diabetes to DNA damage.This collective evidence indicates that diabetes is a pathophysiological state of oxidative stress and DNA damage which can lead to various types of mutation to cause aberration in cells and thereby increased cancer risk.Conclusions:This review highlights the interrelationships amongst diabetes,DNA damage,DNA mutation and carcinogenesis,which suggests that DNA damage can be a biological link between diabetes and cancer.

  13. Radiation track, DNA damage and response—a review

    Science.gov (United States)

    Nikjoo, H.; Emfietzoglou, D.; Liamsuwan, T.; Taleei, R.; Liljequist, D.; Uehara, S.

    2016-11-01

    The purpose of this paper has been to review the current status and progress of the field of radiation biophysics, and draw attention to the fact that physics, in general, and radiation physics in particular, with the aid of mathematical modeling, can help elucidate biological mechanisms and cancer therapies. We hypothesize that concepts of condensed-matter physics along with the new genomic knowledge and technologies and mechanistic mathematical modeling in conjunction with advances in experimental DNA (Deoxyrinonucleic acid molecule) repair and cell signaling have now provided us with unprecedented opportunities in radiation biophysics to address problems in targeted cancer therapy, and genetic risk estimation in humans. Obviously, one is not dealing with ‘low-hanging fruit’, but it will be a major scientific achievement if it becomes possible to state, in another decade or so, that we can link mechanistically the stages between the initial radiation-induced DNA damage; in particular, at doses of radiation less than 2 Gy and with structural changes in genomic DNA as a precursor to cell inactivation and/or mutations leading to genetic diseases. The paper presents recent development in the physics of radiation track structure contained in the computer code system KURBUC, in particular for low-energy electrons in the condensed phase of water for which we provide a comprehensive discussion of the dielectric response function approach. The state-of-the-art in the simulation of proton and carbon ion tracks in the Bragg peak region is also presented. The paper presents a critical discussion of the models used for elastic scattering, and the validity of the trajectory approach in low-electron transport. Brief discussions of mechanistic and quantitative aspects of microdosimetry, DNA damage and DNA repair are also included as developed by the authors’ work.

  14. Effects of DNA damage on oocyte meiotic maturation and early embryonic development

    Directory of Open Access Journals (Sweden)

    Shen YIN,Junyu MA,Wei SHEN

    2014-09-01

    Full Text Available DNA damage is one of the most common threats to meiotic cells. It has the potential to induce infertility and genetic abnormalities that may be passed to the embryo. Here, we reviewed exogenous factors which could induce DNA damage. Specially, we addressed the different effects of DNA damage on mouse oocytes and embryonic development. Complex DNA damage, double-strand breaks, represents a more difficult repair process and involves various repair pathways. Understanding the mechanisms involved in DNA damage responses may improve therapeutic strategies for ovarian cancer and fertility preservation.

  15. Studies on DNA Damage Response in Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Han, Wenyuan

    global reactions known as DNA damage response (DDR). In Bacteria and Eukaryotes, the global reactions include a series of transcription regulations and protein post-translation modifications, which can activate DNA repair machineries, suppress cell division and delay DNA replication, and induce...... scattered light, damaged cell membrane and electron-dense area. During NQO and MMS treatment, degradation of chromatin proteins was coincided with DNA-less cell formation, suggesting their roles in protecting genomic DNA from massive degradation. Further, HU inhibited NQO-induced DSB formation and DNA...... damage response, suggesting the crucial roles of DSB in triggering DNA damage response. Then, NQO-induced DNA-less formation was impaired in the culture with retarded cell cycle, suggesting that DNA replication played an important role in DNA damage response in Sulfolobus. We also investigated the roles...

  16. Sperm DNA damage in men from infertile couples

    Institute of Scientific and Technical Information of China (English)

    Juris Erenpreiss; Saad Elzanaty; Aleksander Giwercman

    2008-01-01

    Aim: To investigate the prevalence of high levels of sperm DNA damage among men from infertile couples with both normal and abnormal standard semen parameters. Methods: A total of 350 men from infertile couples were assessed. Standard semen analysis and sperm chromatin structure assay (SCSA) were carried out. Results: Ninety-seven men (28% of the whole study group) had a DNA fragmentation index (DFI) > 20%, and 43 men (12%) had a DFI > 30%. In the group of men with abnormal semen parameters (n = 224), 35% had a DFI > 20%, and 16% had a DFI > 30%, whereas these numbers were 15% and 5%, respectively, in the group of men with normal semen parameters (n = 126). Men with low sperm motility and abnormal morphology had significantly higher odds ratios (Ors) for having a DFI > 20% (4.0 for motility and 1.9 for morphology) and DFI > 30% (6.2 for motility and 2.8 for morphology) compared with men with normal sperm motility and morphology. Conclusion: In almost one-third of unselected men from infertile couples, the DFI exceeded the level of 20% above which, according to previous studies, the in vivo fertility is reduced. A significant proportion of men with otherwise normal semen parameters also had high sperm DNA damage levels. Thus, the SCSA test could add to explaining causes of infertility in cases where semen analysis has not shown any deviation from the norm. We also recommend running the SCSA test to choose the appropriate assisted reproductive technique (ART).

  17. DNA damage and mutations induced by arachidonic acid peroxidation.

    Science.gov (United States)

    Lim, Punnajit; Sadre-Bazzaz, Kianoush; Shurter, Jesse; Sarasin, Alain; Termini, John

    2003-12-30

    Endogenous cellular oxidation of omega6-polyunsaturated fatty acids (PUFAs) has long been recognized as a contributing factor in the development of various cancers. The accrual of DNA damage as a result of reaction with free radical and electrophilic aldehyde products of lipid peroxidation is believed to be involved; however, the genotoxic and mutation-inducing potential of specific membrane PUFAs remains poorly defined. In the present study we have examined the ability of peroxidizing arachidonic acid (AA, 20:4omega6) to induce DNA strand breaks, base modifications, and mutations. The time-dependent induction of single-strand breaks and oxidative base modifications by AA in genomic DNA was quantified using denaturing glyoxal gel electrophoresis. Mutation spectra were determined in XP-G fibroblasts and a repair-proficient line corrected for this defect by c-DNA complementation (XP-G(+)). Mutation frequencies were elevated from approximately 5- to 30-fold over the background following reaction of DNA with AA for various times. The XPG gene product was found to be involved in the suppression of mutations after extended reaction of DNA with AA. Arachidonic acid-induced base substitutions were consistent with the presence of both oxidized and aldehyde base adducts in DNA. The frequency of multiple-base substitutions induced by AA was significantly reduced upon correction for the XPG defect (14% vs 2%, P = 0.0015). Evidence is also presented which suggests that the induced frequency of multiple mutations is lesion dependent. These results are compared to published data for mutations stimulated by alpha,beta-unsaturated aldehydes identified as products of lipid peroxidation.

  18. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs in Rad9-/- MES and Mdc1-/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9-/- MES. As the exposure to SMG was prolonged, Rad9-/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9-/- MES were due to SMG-induced reactive oxygen species (ROS. Interestingly, Mdc1-/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1-/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR defects.

  19. Attenuation of acridine mutagen ICR-191--DNA interactions and DNA damage by the mutagen interceptor chlorophyllin.

    Science.gov (United States)

    Pietrzak, Monika; Halicka, H Dorota; Wieczorek, Zbigniew; Wieczorek, Jolanta; Darzynkiewicz, Zbigniew

    2008-06-01

    We have investigated the ability of chlorophyllin (CHL) to interact with acridine mutagen ICR-191 (2-methoxy-6-chloro-9-(3-(2-chloroethyl)aminopropylamino)acridine) and also its ability to decrease binding of ICR-191 to DNA in a simple three-component competition system: CHL-ICR-DNA. Our data indicate a strong association of ICR-191 with CHL, stronger even than the association of ICR-191 with DNA. Calculations based on the measured affinity data show that a two- to three-fold excess of CHL reduces by about two-fold the concentration of the mutagen-DNA complex. We also exposed human leukemic HL-60 cells to ICR-191 in the absence and presence of CHL and measured the mutagen-induced DNA damage. The extent of DNA damage was assessed by analysis of histone H2AX phosphorylation. While ICR-191 induced significant increase in expression of phosphorylated H2AX (gammaH2AX), particularly in DNA replicating cells, this increase was totally abolished in the cells treated with ICR-191 in the presence of CHL.

  20. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    Science.gov (United States)

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  1. DNA2—An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein?

    Directory of Open Access Journals (Sweden)

    Elzbieta Pawłowska

    2017-07-01

    Full Text Available The human DNA2 (DNA replication helicase/nuclease 2 protein is expressed in both the nucleus and mitochondria, where it displays ATPase-dependent nuclease and helicase activities. DNA2 plays an important role in the removing of long flaps in DNA replication and long-patch base excision repair (LP-BER, interacting with the replication protein A (RPA and the flap endonuclease 1 (FEN1. DNA2 can promote the restart of arrested replication fork along with Werner syndrome ATP-dependent helicase (WRN and Bloom syndrome protein (BLM. In mitochondria, DNA2 can facilitate primer removal during strand-displacement replication. DNA2 is involved in DNA double strand (DSB repair, in which it is complexed with BLM, RPA and MRN for DNA strand resection required for homologous recombination repair. DNA2 can be a major protein involved in the repair of complex DNA damage containing a DSB and a 5′ adduct resulting from a chemical group bound to DNA 5′ ends, created by ionizing radiation and several anticancer drugs, including etoposide, mitoxantrone and some anthracyclines. The role of DNA2 in telomere end maintenance and cell cycle regulation suggests its more general role in keeping genomic stability, which is impaired in cancer. Therefore DNA2 can be an attractive target in cancer therapy. This is supported by enhanced expression of DNA2 in many cancer cell lines with oncogene activation and premalignant cells. Therefore, DNA2 can be considered as a potential marker, useful in cancer therapy. DNA2, along with PARP1 inhibition, may be considered as a potential target for inducing synthetic lethality, a concept of killing tumor cells by targeting two essential genes.

  2. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    Science.gov (United States)

    2007-04-01

    Li, 2005). Task 2: Establish whether pre-RC reformation , re-initiation or re-elongation induces the DNA damage response. In task 2 of the...300 l of 0.5-mm glass beads (Biospec Products, Bartlesville, OK) and 300 l of SDS-PAGE loading buffer [8% glycerol (vol/vol), 100 mM Tris-HCl, pH

  3. Lymphocyte DNA damage in Turkish asphalt workers detected by the comet assay.

    Science.gov (United States)

    Bacaksiz, Aysegul; Kayaalti, Zeliha; Soylemez, Esma; Tutkun, Engin; Soylemezoglu, Tulin

    2014-01-01

    Asphalt has a highly complex structure and it contains several organic compounds including polycyclic aromatic hydrocarbons and heterocyclic compounds. In this study, comet assay was used to detect the DNA damage in blood lymphocytes of 30 workers exposed to asphalt fumes and 30 nonexposed controls. This is the first report on Turkish asphalt workers' investigated DNA damage using the alkaline single cell gel electrophoresis (SCGE). The DNA damage was evaluated by the percentage of DNA in the comet tail (% tail DNA) for each cell. According to our results, workers exposed to asphalt fumes had higher DNA damage than the control group (p asphalt fumes caused a significant increase in DNA damage and the comet assay is a suitable method for determining DNA damage in asphalt workers.

  4. Senescence of primary amniotic cells via oxidative DNA damage.

    Directory of Open Access Journals (Sweden)

    Ramkumar Menon

    Full Text Available OBJECTIVE: Oxidative stress is a postulated etiology of spontaneous preterm birth (PTB and preterm prelabor rupture of the membranes (pPROM; however, the precise mechanistic role of reactive oxygen species (ROS in these complications is unclear. The objective of this study is to examine impact of a water soluble cigarette smoke extract (wsCSE, a predicted cause of pregnancy complications, on human amnion epithelial cells. METHODS: Amnion cells isolated from fetal membranes were exposed to wsCSE prepared in cell culture medium and changes in ROS levels, DNA base and strand damage was determined by using 2'7'-dichlorodihydro-fluorescein and comet assays as well as Fragment Length Analysis using Repair Enzymes (FLARE assays, respectively. Western blot analyses were used to determine the changes in mass and post-translational modification of apoptosis signal-regulating kinase (ASK1, phospho-p38 (P-p38 MAPK, and p19(arf. Expression of senescence-associated β-galectosidase (SAβ-gal was used to confirm cell ageing in situ. RESULTS: ROS levels in wsCSE-exposed amnion cells increased rapidly (within 2 min and significantly (p<0.01 at all-time points, and DNA strand and base damage was evidenced by comet and FLARE assays. Activation of ASK1, P-p38 MAPK and p19(Arf correlated with percentage of SAβ-gal expressing cells after wsCSE treatment. The antioxidant N-acetyl-L-cysteine (NAC prevented ROS-induced DNA damage and phosphorylation of p38 MAPK, whereas activation of ASK1 and increased expression of p19(Arf were not significantly affected by NAC. CONCLUSIONS: The findings support the hypothesis that compounds in wsCSE induces amnion cell senescence via a mechanism involving ROS and DNA damage. Both pathways may contribute to PTB and pPROM. Our results imply that antioxidant interventions that control ROS may interrupt pathways leading to pPROM and other causes of PTB.

  5. Chk2 Activation Dependence on Nbs1 after DNA Damage

    OpenAIRE

    Buscemi, Giacomo; Savio, Camilla; Zannini, Laura; Miccichè, Francesca; Masnada, Debora; Nakanishi, Makoto; Tauchi, Hiroshi; Komatsu, Kenshi; Mizutani, Shuki; Khanna, KumKum; Chen, Phil; Concannon, Patrick; Chessa, Luciana; Delia, Domenico

    2001-01-01

    The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G1 arrest. Here we show that the ATM-dependent activation of Chk2 by γ- radiation requires Nbs1, the gene product ...

  6. Statistical analysis of post mortem DNA damage-derived miscoding lesions in Neandertal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Gigli Elena

    2008-07-01

    Full Text Available Abstract Background We have analysed the distribution of post mortem DNA damage derived miscoding lesions from the datasets of seven published Neandertal specimens that have extensive cloned sequence coverage over the mitochondrial DNA (mtDNA hypervariable region 1 (HVS1. The analysis was restricted to C→T and G→A miscoding lesions (the predominant manifestation of post mortem damage that are seen at a frequency of more than one clone among sequences from a single PCR, but do not represent the true endogenous sequence. Findings The data indicates an extreme bias towards C→T over G→A miscoding lesions (observed ratio of 67:2 compared to an expected ratio of 7:2, implying that the mtDNA Light strand molecule suffers proportionally more damage-derived miscoding lesions than the Heavy strand. Conclusion The clustering of Cs in the Light strand as opposed to the singleton pattern of Cs in the Heavy strand could explain the observed bias, a phenomenon that could be further tested with non-PCR based approaches. The characterization of the HVS1 hotspots will be of use to future Neandertal mtDNA studies, with specific regards to assessing the authenticity of new positions previously unknown to be polymorphic.

  7. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  8. Simplified qPCR method for detecting excessive mtDNA damage induced by exogenous factors.

    Science.gov (United States)

    Gureev, Artem P; Shaforostova, Ekaterina A; Starkov, Anatoly A; Popov, Vasily N

    2017-05-01

    Damage to mitochondrial DNA (mtDNA) is a meaningful biomarker for evaluating genotoxicity of drugs and environmental toxins. Existing PCR methods utilize long mtDNA fragments (∼8-10kb), which complicates detecting exact sites of mtDNA damage. To identify the mtDNA regions most susceptible to damage, we have developed and validated a set of primers to amplify ∼2kb long fragments, while covering over 95% of mouse mtDNA. We have modified the detection method by greatly increasing the enrichment of mtDNA, which allows us solving the problem of non-specific primer annealing to nuclear DNA. To validate our approach, we have determined the most damage-susceptible mtDNA regions in mice treated in vivo and in vitro with rotenone and H2O2. The GTGR-sequence-enriched mtDNA segments located in the D-loop region were found to be especially susceptible to damage. Further, we demonstrate that H2O2-induced mtDNA damage facilitates the relaxation of mtDNA supercoiled conformation, making the sequences with minimal damage more accessible to DNA polymerase, which, in turn, results in a decrease in threshold cycle value. Overall, our modified PCR method is simpler and more selective to the specific sites of damage in mtDNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Genotoxicity of refinery waste assessed by some DNA damage tests.

    Science.gov (United States)

    Gupta, Amit Kumar; Ahmad, Irshad; Ahmad, Masood

    2015-04-01

    Refinery waste effluent is well known to contain polycyclic aromatic hydrocarbons, phenols and heavy metals as potentially genotoxic substances. The aim of the present study was to assess the genotoxic potential of Mathura refinery wastewater (MRWW) by various in vitro tests including the single cell gel electrophoresis, plasmid nicking assay and S1 nuclease assay. Treatment of human lymphocytes to different MRWW concentrations (0.15×, 0.3×, 0.5× and 0.78×) caused the formation of comets of which the mean tail lengths increased proportionately and differed significantly from those of unexposed controls. The toxic effect of MRWW on DNA was also studied by plasmid nicking assay and S1 nuclease assay. Strand breaks formation in the MRWW treated pBR322 plasmid confirmed its genotoxic effect. Moreover, a dose dependent increase in cleavage of calf thymus DNA in S1 nuclease assay was also suggestive of the DNA damaging potential of MRWW. A higher level of ROS generation in the test water sample was recorded which might be contributing to its genotoxicity. Interaction between the constituents of MRWW and calf thymus DNA was also ascertained by UV-visible spectroscopy.

  10. Voltammetric Detection of Damage to DNA by Arsenic Compounds at a DNA Biosensor

    Directory of Open Access Journals (Sweden)

    R. Wennrich

    2005-11-01

    Full Text Available DNA biosensor can serve as a powerfull tool for simple in vitro tests of chemicaltoxicity. In this paper, damage to DNA attached to the surface of screen-printed carbonelectrode by arsenic compounds in solution is described. Using the Co(III complex with1,10-phenanthroline, [Co(phen3]3+ , as an electrochemical DNA marker and the Ru(IIcomplex with bipyridyne, [Ru(bipy3]2+ , as a DNA oxidation catalyst, the portion of originaldsDNA which survives an incubation of the biosensor in the cleavage medium was evaluated.The model cleavage mixture was composed of an arsenic compound at 10-3 mol/Lconcentration corresponding to real contaminated water, 2x10-4 mol/L Fe(II or Cu(II ions asthe redox catalyst, and 1.5x10-2 mol/L hydrogen peroxide. DNA damage by arsenite,dimethylarsinic acid as the metabolic product of inorganic arsenic and widely used herbicide,as well as phenylarsonic acid and p-arsanilic acid as the representatives of feed additives wasfound in difference to arsenate.

  11. Designing a Single-Molecule Biophysics Tool for Characterising DNA Damage for Techniques that Kill Infectious Pathogens Through DNA Damage Effects.

    Science.gov (United States)

    Miller, Helen; Wollman, Adam J M; Leake, Mark C

    2016-01-01

    Antibiotics such as the quinolones and fluoroquinolones kill bacterial pathogens ultimately through DNA damage. They target the essential type IIA topoisomerases in bacteria by stabilising the normally transient double-strand break state which is created to modify the supercoiling state of the DNA. Here we discuss the development of these antibiotics and their method of action. Existing methods for DNA damage visualisation, such as the comet assay and immunofluorescence imaging can often only be analysed qualitatively and this analysis is subjective. We describe a putative single-molecule fluorescence technique for quantifying DNA damage via the total fluorescence intensity of a DNA origami tile fully saturated with an intercalating dye, along with the optical requirements for how to implement these into a light microscopy imaging system capable of single-molecule millisecond timescale imaging. This system promises significant improvements in reproducibility of the quantification of DNA damage over traditional techniques.

  12. Regulation of HuR by DNA Damage Response Kinases

    Directory of Open Access Journals (Sweden)

    Hyeon Ho Kim

    2010-01-01

    Full Text Available As many DNA-damaging conditions repress transcription, posttranscriptional processes critically influence gene expression during the genotoxic stress response. The RNA-binding protein HuR robustly influences gene expression following DNA damage. HuR function is controlled in two principal ways: (1 by mobilizing HuR from the nucleus to the cytoplasm, where it modulates the stability and translation of target mRNAs and (2 by altering its association with target mRNAs. Here, we review evidence that two main effectors of ataxia-telangiectasia-mutated/ATM- and Rad3-related (ATM/ATR, the checkpoint kinases Chk1 and Chk2, jointly influence HuR function. Chk1 affects HuR localization by phosphorylating (hence inactivating Cdk1, a kinase that phosphorylates HuR and thereby blocks HuR's cytoplasmic export. Chk2 modulates HuR binding to target mRNAs by phosphorylating HuR's RNA-recognition motifs (RRM1 and RRM2. We discuss how HuR phosphorylation by kinases including Chk1/Cdk1 and Chk2 impacts upon gene expression patterns, cell proliferation, and survival following genotoxic injury.

  13. DNA Damage by Radiation in Tradescantia Leaf Cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Hyun, Kyung Man; Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-04-15

    The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Tradescantia tests are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay. The development of comet assay has enabled investigators to detect DNA damage at the levels of cells. To adapt this assay to plant cells, nuclei were directly obtained from Tradescantia leaf samples. A significant dose-dependent increase in the average tail moment values over the negative control was observed. Recently the adaptation of this technique to plant cells opens new possibilities for studies in variety area. The future applications of the comet assay could impact some other important areas, certainly, one of the limiting factors to its utility is the imagination of the investigator.

  14. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  15. Hydroxytyrosol protects against oxidative DNA damage in human breast cells.

    Science.gov (United States)

    Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J

    2011-10-01

    Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol's effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  16. Muscle damage after delivery of naked plasmid DNA into skeletal muscles is batch dependent.

    Science.gov (United States)

    Wooddell, Christine I; Subbotin, Vladimir M; Sebestyén, Magdolna G; Griffin, Jacob B; Zhang, Guofeng; Schleef, Martin; Braun, Serge; Huss, Thierry; Wolff, Jon A

    2011-02-01

    Various plasmids were delivered into rodent limb muscles by hydrodynamic limb vein (HLV) injection of naked plasmid DNA (pDNA). Some of the pDNA preparations caused significant muscle necrosis and associated muscle regeneration 3 to 4 days after the injection whereas others caused no muscle damage. Occurrence of muscle damage was independent of plasmid sequence, size, and encoded genes. It was batch dependent and correlated with the quantity of bacterial genomic DNA (gDNA) that copurified with the pDNA. To determine whether such an effect was due to bacterial DNA or simply to fragmented DNA, mice were treated by HLV injection with sheared bacterial or murine gDNA. As little as 20 μg of the large fragments of bacterial gDNA caused muscle damage that morphologically resembled damage caused by the toxic pDNA preparations, whereas murine gDNA caused no damage even at a 10-fold higher dose. Toxicity from the bacterial gDNA was not due to endotoxin and was eliminated by DNase digestion. We conclude that pDNA itself does not cause muscle damage and that purification methods for the preparation of therapeutic pDNA should be optimized for removal of bacterial gDNA.

  17. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    Science.gov (United States)

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Potentially lethal damage repair by total and quiescent tumor cells following various DNA-damaging treatments

    Energy Technology Data Exchange (ETDEWEB)

    Masunaga, Shin-ichiro; Ono, Koji; Suzuki, Minoru; Kinashi, Yuko; Takagaki, Masao [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Hori, Hitoshi; Kasai, Soko; Nagasawa, Hideko; Uto, Yoshihiro

    1999-08-01

    After continuous labeling of proliferating (P) cells with 5-bromo-2'-deoxyuridine (BrdU) for 5 days, SCC VII tumor-bearing mice received various kinds of DNA-damaging treatments: gamma-ray irradiation, tirapazamine (TPZ, hypoxia-specific cytotoxin) administration, or cisplatin injection. From 0.5 to 72 hr after treatment, tumors were excised, minced, and trypsinized. Single tumor cell suspensions were incubated for 48 hr with a cytokinesis-blocker, cytochalasin-B. Then, the micronucleus (MN) frequency for BrdU-unlabeled cells, quiescent (Q) cells at treatment, was determined using immunofluorescence staining for BrdU. The MN frequency for total (P+Q) cells was obtained from tumors that were not pretreated with BrdU labeling. The sensitivity to each DNA-damaging treatment was evaluated in terms of the frequency of induced micronuclei in binuclear tumor cells (MN frequency). Treatment with gamma-rays or cisplatin resulted in a larger MN frequency in total cells than in Q cells. In contrast, TPZ treatment produced a smaller MN frequency in total cells than in Q cells. Regardless of the treatment used, Q cells showed greater repair capacities than total cells. However, TPZ caused much smaller repair capacity in both total and Q cells, compared with gamma-rays or cisplatin. Gamma-rays and cisplatin produced similar repair patterns. Differences in sensitivity between total and Q cells and repair patterns of the two cell populations were thought to depend on differences between the two cell populations in the toxicity of the DNA-damaging treatment and distribution pattern of the anticancer agent. (author)

  19. A Single-Molecule Study on the Structural Damage of Ultraviolet Radiated DNA

    Directory of Open Access Journals (Sweden)

    Pu Chun Ke

    2008-04-01

    Full Text Available The structural damage of double-stranded DNA under UV radiation was examined using single-molecule fluorescence microscopy. Compared to undamaged DNA, the diffusion coefficient of λ-DNA was significantly increased with 12 min or 20 min of radiation but remained unchanged for 40 min of exposure possibly due to strand crosslinking. The structural damage of DNA was further examined using transmission electron microscopy which revealed kinks and sharp bends along the DNA backbone.

  20. Both Complexity and Location of DNA Damage Contribute to Cellular Senescence Induced by Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Xurui Zhang

    Full Text Available Persistent DNA damage is considered as a main cause of cellular senescence induced by ionizing radiation. However, the molecular bases of the DNA damage and their contribution to cellular senescence are not completely clear. In this study, we found that both heavy ions and X-rays induced senescence in human uveal melanoma 92-1 cells. By measuring senescence associated-β-galactosidase and cell proliferation, we identified that heavy ions were more effective at inducing senescence than X-rays. We observed less efficient repair when DNA damage was induced by heavy ions compared with X-rays and most of the irreparable damage was complex of single strand breaks and double strand breaks, while DNA damage induced by X-rays was mostly repaired in 24 hours and the remained damage was preferentially associated with telomeric DNA. Our results suggest that DNA damage induced by heavy ion is often complex and difficult to repair, thus presents as persistent DNA damage and pushes the cell into senescence. In contrast, persistent DNA damage induced by X-rays is preferentially associated with telomeric DNA and the telomere-favored persistent DNA damage contributes to X-rays induced cellular senescence. These findings provide new insight into the understanding of high relative biological effectiveness of heavy ions relevant to cancer therapy and space radiation research.

  1. Interplay between DNA tumor viruses and the host DNA damage response.

    Science.gov (United States)

    McFadden, Karyn; Luftig, Micah A

    2013-01-01

    Viruses encounter many challenges within host cells in order to replicate their nucleic acid. In the case of DNA viruses, one challenge that must be overcome is recognition of viral DNA structures by the host DNA damage response (DDR) machinery. This is accomplished in elegant and unique ways by different viruses as each has specific needs and sensitivities dependent on its life cycle. In this review, we focus on three DNA tumor viruses and their interactions with the DDR. The viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) account for nearly all of the virus-associated human cancers worldwide. These viruses have also been excellent models for the study of oncogenic virus-mediated cell transformation. In this review, we will discuss how each of these viruses engage and subvert aspects of the host DDR. The first level of DDR engagement is a result of the genetic linkage between the oncogenic potential of these viruses and their ability to replicate. Namely, the promotion of cells from quiescence into the cell cycle to facilitate virus replication can be sensed through aberrant cellular DNA replication structures which activate the DDR and hinder cell transformation. DNA tumor viruses subvert this growth-suppressive DDR through changes in viral oncoprotein expression which ultimately facilitate virus replication. An additional level of DDR engagement is through direct detection of replicating viral DNA. These interactions parallel those observed in other DNA virus systems in that the need to subvert these intrinsic sensors of aberrant DNA structure in order to replicate must be in place. DNA tumor viruses are no exception. This review will cover the molecular features of DNA tumor virus interactions with the host DDR and the consequences for virus replication.

  2. ELF alternating magnetic field decreases reproduction by DNA damage induction.

    Science.gov (United States)

    Panagopoulos, Dimitris J; Karabarbounis, Andreas; Lioliousis, Constantinos

    2013-11-01

    In the present experiments, the effect of 50-Hz alternating magnetic field on Drosophila melanogaster reproduction was studied. Newly eclosed insects were separated into identical groups of ten males and ten females and exposed to three different intensities of the ELF magnetic field (1, 11, and 21 G) continuously during the first 5 days of their adult lives. The reproductive capacity was assessed by the number of F1 pupae according to a well-defined protocol of ours. The magnetic field was found to decrease reproduction by up to 4.3%. The effect increased with increasing field intensities. The decline in reproductive capacity was found to be due to severe DNA damage (DNA fragmentation) and consequent cell death induction in the reproductive cells as determined by the TUNEL assay applied during early and mid-oogenesis (from germarium to stage 10) where physiological apoptosis does not occur. The increase in DNA damage was more significant than the corresponding decrease in reproductive capacity (up to ~7.5%). The TUNEL-positive signal denoting DNA fragmentation was observed exclusively at the two most sensitive developmental stages of oogenesis: the early and mid-oogenesis checkpoints (i.e. region 2a/2b of the germarium and stages 7-8 just before the onset of vitellogenesis)-in contrast to exposure to microwave radiation of earlier work of ours in which the DNA fragmentation was induced at all developmental stages of early and mid-oogenesis. Moreover, the TUNEL-positive signal was observed in all three types of egg chamber cells, mainly in the nurse and follicle cells and also in the oocyte, in agreement with the microwave exposure of our earlier works. According to previous reports, cell death induction in the oocyte was observed only in the case of microwave exposure and not after exposure to other stress factors as toxic chemicals or food deprivation. Now it is also observed for the first time after ELF magnetic field exposure. Finally, in contrast to microwave

  3. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    Science.gov (United States)

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1.

  4. Genotoxicity of formaldehyde: Molecular basis of DNA damage and mutation

    Directory of Open Access Journals (Sweden)

    Masanobu eKawanishi

    2014-09-01

    Full Text Available Formaldehyde is commonly used in the chemical industry and is present in the environment, such as vehicle emissions, some building materials, food and tobacco smoke. It also occurs as a natural product in most organisms, the sources of which include a number of metabolic processes. It causes various acute and chronic adverse effects in humans if they inhale its fumes. Among the chronic effects on human health, we summarize data on genotoxicity and carcinogenicity in this review, and we particularly focus on the molecular mechanisms involved in the formaldehyde mutagenesis. Formaldehyde mainly induces N-hydroxymethyl mono-adducts on guanine, adenine and cytosine, and N-methylene crosslinks between adjacent purines in DNA. These crosslinks are types of DNA damage potentially fatal for cell survival if they are not removed by the nucleotide excision repair pathway. In the previous studies, we showed evidence that formaldehyde causes intra-strand crosslinks between purines in DNA using a unique method (Matsuda et al. Nucleic Acids Res. 26, 1769-1774,1998. Using shuttle vector plasmids, we also showed that formaldehyde as well as acetaldehyde induces tandem base substitutions, mainly at 5’-GG and 5’-GA sequences, which would arise from the intra-strand crosslinks. These mutation features are different from those of other aldehydes such as crotonaldehyde, acrolein, glyoxal and methylglyoxal. These findings provide molecular clues to improve our understanding of the genotoxicity and carcinogenicity of formaldehyde.

  5. Host DNA damage response facilitates African swine fever virus infection.

    Science.gov (United States)

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2013-07-26

    Studies with different viral infection models on virus interactions with the host cell nucleus have opened new perspectives on our understanding of the molecular basis of these interactions in African swine fever virus (ASFV) infection. The present study aims to characterize the host DNA damage response (DDR) occurring upon in vitro infection with the ASFV-Ba71V isolate. We evaluated protein levels during ASFV time-course infection, of several signalling cascade factors belonging to DDR pathways involved in double strand break repair - Ataxia Telangiectasia Mutated (ATM), ATM-Rad 3 related (ATR) and DNA dependent protein kinase catalytic subunit (DNA-PKcs). DDR inhibitory trials using caffeine and wortmannin and ATR inducible-expression cell lines were used to confirm specific pathway activation during viral infection. Our results show that ASFV specifically elicits ATR-mediated pathway activation from the early phase of infection with increased levels of H2AX, RPA32, p53, ATR and Chk1 phosphorylated forms. Viral p72 synthesis was abrogated by ATR kinase inhibitors and also in ATR-kd cells. Furthermore, a reduction of viral progeny was identified in these cells when compared to the outcome of infection in ATR-wt. Overall, our results strongly suggest that the ATR pathway plays an essential role for successful ASFV infection of host cells.

  6. Dynamics of the human nuclear proteome in response to DNA damage

    NARCIS (Netherlands)

    Dirksen, Eef Hubert Cecil

    2006-01-01

    The genome is constantly challenged by factors that can induce DNA damage and thereby threaten the viability of the cell. If DNA damage remains unrepaired it can lead to the development of cancer. Although much is known about the role of proteins and protein complexes in the cellular response to DNA

  7. Role of Rad54, Rad54b and Snm1 in DNA damage repair

    NARCIS (Netherlands)

    J. Wesoly (Joanna)

    2003-01-01

    textabstractThe aim of this thesis is to investigate the function of a number of genes involved in mammalian DNA damage repair, in particular in repair of DNA double-strand breaks (DSBs). Among a large number of different damages that can be introduced to DNA, DSBs are especially toxic. If left unre

  8. Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson's disease

    NARCIS (Netherlands)

    L.H. Sanders (Laurie); J. McCoy (Jennifer); X. Hu (Xiaoping); P.G. Mastroberardino (Pier); B.C. Dickinson (Bryan); C.J. Chang (Christopher); C.T. Chu (Charleen); B. van Houten (Bennett); J.T. Greenamyre (Timothy)

    2014-01-01

    textabstractDNA damage can cause (and result from) oxidative stress and mitochondrial impairment, both of which are implicated in the pathogenesis of Parkinson's disease (PD). We therefore examined the role of mitochondrial DNA (mtDNA) damage in human postmortem brain tissue and in in vivo and in vi

  9. Role of Rad54, Rad54b and Snm1 in DNA damage repair

    NARCIS (Netherlands)

    J. Wesoly (Joanna)

    2003-01-01

    textabstractThe aim of this thesis is to investigate the function of a number of genes involved in mammalian DNA damage repair, in particular in repair of DNA double-strand breaks (DSBs). Among a large number of different damages that can be introduced to DNA, DSBs are especially toxic. If

  10. Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson's disease

    NARCIS (Netherlands)

    L.H. Sanders (Laurie); J. McCoy (Jennifer); X. Hu (Xiaoping); P.G. Mastroberardino (Pier); B.C. Dickinson (Bryan); C.J. Chang (Christopher); C.T. Chu (Charleen); B. van Houten (Bennett); J.T. Greenamyre (Timothy)

    2014-01-01

    textabstractDNA damage can cause (and result from) oxidative stress and mitochondrial impairment, both of which are implicated in the pathogenesis of Parkinson's disease (PD). We therefore examined the role of mitochondrial DNA (mtDNA) damage in human postmortem brain tissue and in in vivo and in

  11. Association of DNA damage and dyslipidemia with polycystic ovarian syndrome

    Directory of Open Access Journals (Sweden)

    Manikkumar R

    2013-02-01

    Full Text Available Polycystic ovary syndrome (PCOS is associated with hyperinsuli-nemia and insulin resistance which may lead to cardiovascular diseases. Evidence for cardiovascular events in women who were affected by PCOS during fertile age is limited. The pathogenesis is unknown; however, it is a complex multigenetic disorder. The present study was undertaken to evaluate the various cardiovas-cular risk factors and their DNA repair efficiency in women with PCOS by investigating the biochemical, endocrinological and mo-lecular cytogenetic alterations. These investigations were carried out in 116 women in the age group of 15-35 years clinically diag-nosed with PCOS. Data were compared with that of 50 age-matched healthy normal women. Fasting blood sugar (FBS, Lipid profile, Follicle-Stimulating Hormone (FSH and Luteinizing Hor-mone (LH, Prolactin and Estradiol were estimated after getting the informed consent. Mutagen induced chromosome sensitivity analysis was carried out in the lymphocytes of the subjects to as-sess the DNA repair proficiency. Fasting Blood Sugar, total cho-lesterol and LDL cholesterol were found to be elevated whereas HDL cholesterol was found to be lowered in the test subjects. FSH, LH and prolactin were also found to be significantly elevated in the test subjects. Change in the estradiol concentration in the test subjects was not significant. The mutagen sensitivity analysis revealed a significant elevation in break per cell (b/c values indi-cating a deficiency in the DNA repair mechanism / DNA damage in PCOS patients. Modification of life style by changing the dietary habit and sedentary life style will help to reduce the oxidative stress and may increase the ovarian function and a sensible life-style management is recommended for reducing the risk for CVD.

  12. Visualizing the search for radiation-damaged DNA bases in real time

    Science.gov (United States)

    Lee, Andrea J.; Wallace, Susan S.

    2016-11-01

    The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.

  13. Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage.

    Science.gov (United States)

    Taylor, John-Stephen

    2015-12-01

    How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.

  14. Oxidative DNA damage after transplantation of the liver and small intestine in pigs

    DEFF Research Database (Denmark)

    Loft, S; Larsen, P N; Rasmussen, A

    1995-01-01

    Oxidative damage is thought to play an important role in ischemia/reperfusion injury, including the outcome of transplantation of the liver and intestine. We have investigated oxidative DNA damage after combined transplantation of the liver and small intestine in 5 pigs. DNA damage was estimated...... to DNA results from reperfusion of transplanted small intestine and liver in pigs, as estimated from the readily excreted repair product 8-oxodG....

  15. Transcriptomal profiling of the cellular response to DNA damage mediated by Slug (Snai2)

    OpenAIRE

    Pérez-Caro, M.; Bermejo-Rodríguez, C.; González-Herrero, I; Sánchez-Beato, M; Piris, M. A.; Sánchez-García, I

    2008-01-01

    Snai2-deficient cells are radiosensitive to DNA damage. The function of Snai2 in response to DNA damage seems to be critical for its function in normal development and cancer. Here, we applied a functional genomics approach that combined gene-expression profiling and computational molecular network analysis to obtain global dissection of the Snai2-dependent transcriptional response to DNA damage in primary mouse embryonic fibroblasts (MEFs), which undergo p53-dependent growth arrest in respon...

  16. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    Science.gov (United States)

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (Padduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response.

  17. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  18. Poetry in motion: Increased chromosomal mobility after DNA damage.

    Science.gov (United States)

    Smith, Michael J; Rothstein, Rodney

    2017-08-01

    Double-strand breaks (DSBs) are among the most lethal DNA lesions, and a variety of pathways have evolved to manage their repair in a timely fashion. One such pathway is homologous recombination (HR), in which information from an undamaged donor site is used as a template for repair. Although many of the biochemical steps of HR are known, the physical movements of chromosomes that must underlie the pairing of homologous sequence during mitotic DSB repair have remained mysterious. Recently, several groups have begun to use a variety of genetic and cell biological tools to study this important question. These studies reveal that both damaged and undamaged loci increase the volume of the nuclear space that they explore after the formation of DSBs. This DSB-induced increase in chromosomal mobility is regulated by many of the same factors that are important during HR, such as ATR-dependent checkpoint activation and the recombinase Rad51, suggesting that this phenomenon may facilitate the search for homology. In this perspective, we review current research into the mobility of chromosomal loci during HR, as well as possible underlying mechanisms, and discuss the critical questions that remain to be answered. Although we focus primarily on recent studies in the budding yeast, Saccharomyces cerevisiae, examples of experiments performed in higher eukaryotes are also included, which reveal that increased mobility of damaged loci is a process conserved throughout evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. DNA Damage Response and DNA Repair in Skeletal Myocytes From a Mouse Model of Spinal Muscular Atrophy.

    Science.gov (United States)

    Fayzullina, Saniya; Martin, Lee J

    2016-09-01

    We studied DNA damage response (DDR) and DNA repair capacities of skeletal muscle cells from a mouse model of infantile spinal muscular atrophy (SMA) caused by loss-of-function mutation of survival of motor neuron (Smn). Primary myocyte cultures derived from skeletal muscle satellite cells of neonatal control and mutant SMN mice had similar myotube length, myonuclei, satellite cell marker Pax7 and differentiated myotube marker myosin, and acetylcholine receptor clustering. DNA damage was induced in differentiated skeletal myotubes by γ-irradiation, etoposide, and methyl methanesulfonate (MMS). Unexposed control and SMA myotubes had stable genome integrity. After γ-irradiation and etoposide, myotubes repaired most DNA damage equally. Control and mutant myotubes exposed to MMS exhibited equivalent DNA damage without repair. Control and SMA myotube nuclei contained DDR proteins phospho-p53 and phospho-H2AX foci that, with DNA damage, dispersed and then re-formed similarly after recovery. We conclude that mouse primary satellite cell-derived myotubes effectively respond to and repair DNA strand-breaks, while DNA alkylation repair is underrepresented. Morphological differentiation, genome stability, genome sensor, and DNA strand-break repair potential are preserved in mouse SMA myocytes; thus, reduced SMN does not interfere with myocyte differentiation, genome integrity, and DNA repair, and faulty DNA repair is unlikely pathogenic in SMA.

  20. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  1. Effect of low energy electron irradiation on DNA damage by Cu{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Dept. of Physics, Chungnam National University, Daejeon (Korea, Republic of); Park, Yeun Soo [Plasma Technology Research Center, National Fusion Research Institute, Gunsan (Korea, Republic of)

    2017-03-15

    The combined effect of the low energy electron (LEE) irradiation and Cu{sup 2+} ion on DNA damage was investigated. Lyophilized pBR322 plasmid DNA films with various concentrations (1–15 mM) of Cu{sup 2+} ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

  2. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  3. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tangliang Li

    2016-06-01

    Full Text Available Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal and progenitor progenies (differentiation, which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  4. The DNA damage response in viral-induced cellular transformation.

    Science.gov (United States)

    Nikitin, P A; Luftig, M A

    2012-01-31

    The DNA damage response (DDR) has emerged as a critical tumour suppressor pathway responding to cellular DNA replicative stress downstream of aberrant oncogene over-expression. Recent studies have now implicated the DDR as a sensor of oncogenic virus infection. In this review, we discuss the mechanisms by which tumour viruses activate and also suppress the host DDR. The mechanism of tumour virus induction of the DDR is intrinsically linked to the need for these viruses to promote an S-phase environment to replicate their nucleic acid during infection. However, inappropriate expression of viral oncoproteins can also activate the DDR through various mechanisms including replicative stress, direct interaction with DDR components and induction of reactive oxygen species. Given the growth-suppressive consequences of activating the DDR, tumour viruses have also evolved mechanisms to attenuate these pathways. Aberrant expression of viral oncoproteins may therefore promote tumourigenesis through increased somatic mutation and aneuploidy due to DDR inactivation. This review will focus on the interplay between oncogenic viruses and the DDR with respect to cellular checkpoint control and transformation.

  5. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Institute of Scientific and Technical Information of China (English)

    Tangliang Li; Zhong-Wei Zhou; Zhenyu Ju; Zhao-Qi Wang

    2016-01-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employ-ing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically reg-ulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  6. Retinoblastoma loss modulates DNA damage response favoring tumor progression.

    Directory of Open Access Journals (Sweden)

    Marcos Seoane

    Full Text Available Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS, crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.

  7. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Science.gov (United States)

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  8. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    Science.gov (United States)

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  10. DNA damage by smoke: Protection by turmeric and other inhibitors of ROS

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, L.; Shalini, V.K. (Department of Nutrition and Food Safety, Central Food Technological Research Institute, Mysore (India))

    1991-01-01

    Twigs-dry leaves smoke condensate (TDS), as a source of clastogenic ROS and carcinogenic PAH, was investigated for its in vitro DNA-damaging effect in calf thymus DNA and human peripheral lymphocytes. An aqueous turmeric component--Aq.T--with an established antioxidant activity, was tested as a DNA protectant. TDS induced 13-fold damage to calf thymus DNA as judged by the emergence of a DNA damage specific, fluorescent product (em: 405 nm). Aq.T at 800 ng/microL extended 69% protection to calf thymus DNA and was comparable to the other protectants such as curcumin, BHA, vitamin E, SOD, and CAT. In human peripheral lymphocytes, TDS induced extensive DNA damage in comparison with the tumor promoter TPA, as judged by FADU. Aq.T at 300 ng/microL extended 90% protection to human lymphocyte DNA against TDS-induced damage, and was more effective than the other protectants--DABCO, D-mannitol, sodium benzoate, vitamin E (ROS quenchers), SOD, CAT (antioxidant enzymes), tannic acid, flufenamic acid, BHA, BHT, n-PG, curcumin and quercetin (antioxidants). Aq.T offered 65% protection to human lymphocyte DNA against TPA-induced damage and was comparable to SOD. The above results indicate that TDS induces substantial DNA damage in calf thymus DNA and human lymphocytes and Aq.T is an efficient protectant.

  11. Antioxidant Activity and Acetylcholinesterase Inhibition of Grape Skin Anthocyanin (GSA

    Directory of Open Access Journals (Sweden)

    Mehnaz Pervin

    2014-07-01

    Full Text Available We aimed to investigate the antioxidant and acetylcholinesterase inhibitory activities of the anthocyanin rich extract of grape skin. Grape skin anthocyanin (GSA neutralized free radicals in different test systems, such as 2,-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH assays, to form complexes with Fe2+ preventing 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH-induced erythrocyte hemolysis and oxidative DNA damage. Moreover, GSA decreased reactive oxygen species (ROS generation in isolated mitochondria thus inhibiting 2',-7'-dichlorofluorescin (DCFH oxidation. In an in vivo study, female BALB/c mice were administered GSA, at 12.5, 25, and 50 mg per kg per day orally for 30 consecutive days. Herein, we demonstrate that GSA administration significantly elevated the level of antioxidant enzymes in mice sera, livers, and brains. Furthermore, GSA inhibited acetylcholinesterase (AChE in the in vitro assay with an IC50 value of 363.61 µg/mL. Therefore, GSA could be an excellent source of antioxidants and its inhibition of cholinesterase is of interest with regard to neurodegenerative disorders such as Alzheimer’s disease.

  12. GENETIC AND MOLECULAR ANALYSIS OF DNA DAMAGE REPAIR AND TOLERANCE PATHWAYS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, B.M.

    2001-07-26

    Radiation can damage cellular components, including DNA. Organisms have developed a panoply of means of dealing with DNA damage. Some repair paths have rather narrow substrate specificity (e.g. photolyases), which act on specific pyrimidine photoproducts in a specific type (e.g., DNA) and conformation (double-stranded B conformation) of nucleic acid. Others, for example, nucleotide excision repair, deal with larger classes of damages, in this case bulky adducts in DNA. A detailed discussion of DNA repair mechanisms is beyond the scope of this article, but one can be found in the excellent book of Friedberg et al. [1] for further detail. However, some DNA damages and paths for repair of those damages important for photobiology will be outlined below as a basis for the specific examples of genetic and molecular analysis that will be presented below.

  13. DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Qiujing Yu

    2015-05-01

    Full Text Available Expression of type I interferons (IFNs can be induced by DNA-damaging agents, but the mechanisms and significance of this regulation are not completely understood. We found that the transcription factor IRF3, activated in an ATM-IKKα/β-dependent manner, stimulates cell-autonomous IFN-β expression in response to double-stranded DNA breaks. Cells and tissues with accumulating DNA damage produce endogenous IFN-β and stimulate IFN signaling in vitro and in vivo. In turn, IFN acts to amplify DNA-damage responses, activate the p53 pathway, promote senescence, and inhibit stem cell function in response to telomere shortening. Inactivation of the IFN pathway abrogates the development of diverse progeric phenotypes and extends the lifespan of Terc knockout mice. These data identify DNA-damage-response-induced IFN signaling as a critical mechanism that links accumulating DNA damage with senescence and premature aging.

  14. HIPK2 restricts SIRT1 activity upon severe DNA damage by a phosphorylation-controlled mechanism

    Science.gov (United States)

    Conrad, E; Polonio-Vallon, T; Meister, M; Matt, S; Bitomsky, N; Herbel, C; Liebl, M; Greiner, V; Kriznik, B; Schumacher, S; Krieghoff-Henning, E; Hofmann, T G

    2016-01-01

    Upon severe DNA damage a cellular signalling network initiates a cell death response through activating tumour suppressor p53 in association with promyelocytic leukaemia (PML) nuclear bodies. The deacetylase Sirtuin 1 (SIRT1) suppresses cell death after DNA damage by antagonizing p53 acetylation. To facilitate efficient p53 acetylation, SIRT1 function needs to be restricted. How SIRT1 activity is regulated under these conditions remains largely unclear. Here we provide evidence that SIRT1 activity is limited upon severe DNA damage through phosphorylation by the DNA damage-responsive kinase HIPK2. We found that DNA damage provokes interaction of SIRT1 and HIPK2, which phosphorylates SIRT1 at Serine 682 upon lethal damage. Furthermore, upon DNA damage SIRT1 and HIPK2 colocalize at PML nuclear bodies, and PML depletion abrogates DNA damage-induced SIRT1 Ser682 phosphorylation. We show that Ser682 phosphorylation inhibits SIRT1 activity and impacts on p53 acetylation, apoptotic p53 target gene expression and cell death. Mechanistically, we found that DNA damage-induced SIRT1 Ser682 phosphorylation provokes disruption of the complex between SIRT1 and its activator AROS. Our findings indicate that phosphorylation-dependent restriction of SIRT1 activity by HIPK2 shapes the p53 response. PMID:26113041

  15. Bisdemethoxycurcumin induces DNA damage and inhibits DNA repair associated protein expressions in NCI-H460 human lung cancer cells.

    Science.gov (United States)

    Yu, Chien-Chih; Yang, Su-Tso; Huang, Wen-Wen; Peng, Shu-Fen; Huang, An-Cheng; Tang, Nou-Ying; Liu, Hsin-Chung; Yang, Mei-Due; Lai, Kuang-Chi; Chung, Jing-Gung

    2016-12-01

    Nonsmall cell lung carcinoma (NSCLC) is a devastating primary lung tumor resistant to conventional therapies. Bisdemethoxycurcumin (BDMC) is one of curcumin derivate from Turmeric and has been shown to induce NSCLC cell death. Although there is one report to show BDMC induced DNA double strand breaks, however, no available information to show BDMC induced DNA damage action with inhibited DNA repair protein in lung cancer cells in detail. In this study, we tested BDMC-induced DNA damage and condensation in NCI-H460 cells by using Comet assay and DAPI staining examinations, respectively and we found BDMC induced DNA damage and condension. Western blotting was used to examine the effects of BDMC on protein expression associated with DNA damage and repair and results indicated that BDMC suppressed the protein levels associated with DNA damage and repair, such as 14-3-3σ (an important checkpoint keeper of DDR), O6-methylguanine-DNA methyltransferase, DNA repair proteins breast cancer 1, early onset, mediator of DNA damage checkpoint 1 but activate phosphorylated p53 and p-H2A.X (phospho Ser140) in NCI-H460 cells. Confocal laser systems microscopy was used for examining the protein translocation and results show that BDMC increased the translocation of p-p53 and p-H2A.X (phospho Ser140) from cytosol to nuclei in NCI-H460 cells. In conclusion, BDMC induced DNA damage and condension and affect DNA repair proteins in NCI-H460 cells in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1859-1868, 2016. © 2015 Wiley Periodicals, Inc.

  16. Estrogen signalling and the DNA damage response in hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    C Elizabeth Caldon

    2014-05-01

    Full Text Available Estrogen is necessary for the normal growth and development of breast tissue, but high levels of estrogen are a major risk factor for breast cancer. One mechanism by which estrogen could contribute to breast cancer is via the induction of DNA damage. This perspective discusses the mechanisms by which estrogen alters the DNA damage response (DDR and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1, BRCA1 and p53 and the feedback on estrogen receptor signalling from these proteins. We put forward the hypothesis that estrogen receptor signalling converges to suppress effective DNA repair and apoptosis in favour of proliferation. This is important in hormone-dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or altered in estrogen responsive breast cancer which will further change the processing of DNA damage. Finally the action of estrogen signalling on DNA damage is also relevant to the therapeutic setting as the suppression of a DNA damage response by estrogen has the potential to alter the response of cancers to anti-hormone treatment or chemotherapy that induces DNA damage.

  17. ATP-dependent chromatin remodeling in the DNA-damage response

    Directory of Open Access Journals (Sweden)

    Lans Hannes

    2012-01-01

    Full Text Available Abstract The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.

  18. ATP-dependent chromatin remodeling in the DNA-damage response

    Science.gov (United States)

    2012-01-01

    The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways. PMID:22289628

  19. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    Science.gov (United States)

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.

  20. Sperm DNA damage has a negative association with live-birth rates after IVF.

    Science.gov (United States)

    Simon, L; Proutski, I; Stevenson, M; Jennings, D; McManus, J; Lutton, D; Lewis, S E M

    2013-01-01

    Sperm DNA damage has a negative impact on pregnancy rates following assisted reproduction treatment (ART). The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage. Following IVF, couples with rate of 33%; in contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13%. Following ICSI, no significant differences in sperm DNA damage were found between any groups of patients. Sperm DNA damage was also associated with low live-birth rates following IVF in both men and couples with idiopathic infertility: 39% of couples and 41% of men with idiopathic infertility have high sperm DNA damage. Sperm DNA damage assessed by the Comet assay has a close inverse relationship with live-birth rates after IVF. Sperm DNA damage has a negative impact on assisted reproduction treatment outcome, in particular, on pregnancy rates. The aim of the present study was to examine the relationship between sperm DNA fragmentation and live-birth rates after IVF and intracytoplasmic sperm injection (ICSI). The alkaline Comet assay was employed to measure sperm DNA fragmentation in native semen and in spermatozoa following density-gradient centrifugation in semen samples from 203 couples undergoing IVF and 136 couples undergoing ICSI. Men were divided into groups according to sperm DNA damage and treatment outcome. Following IVF, couples with rate of 33%. In contrast, couples with >50% sperm DNA fragmentation had a much lower live-birth rate of 13% following IVF. Following ICSI, there were no significant differences in levels of sperm DNA damage between any groups of

  1. Multiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes

    CERN Document Server

    Surdutovich, E; Solov'yov, A V

    2010-01-01

    We present the latest advances of the multiscale approach to radiation damage caused by irradiation of a tissue with energetic ions and report the most recent advances in the calculations of complex DNA damage and the effects of thermal spikes on biomolecules. The multiscale approach aims to quantify the most important physical, chemical, and biological phenomena taking place during and following irradiation with ions and provide a better means for clinically-necessary calculations with adequate accuracy. We suggest a way of quantifying the complex clustered damage, one of the most important features of the radiation damage caused by ions. This method can be used for the calculation of irreparable DNA damage. We include thermal spikes, predicted to occur in tissue for a short time after ion's passage in the vicinity of the ions' tracks in our previous work, into modeling of the thermal environment for molecular dynamics analysis of ubiquitin and discuss the first results of these simulations.

  2. Protective effect of antioxidants on DNA damage in leukocytes from X-linked adrenoleukodystrophy patients.

    Science.gov (United States)

    Marchetti, Desirèe P; Donida, Bruna; da Rosa, Helen T; Manini, Paula R; Moura, Dinara J; Saffi, Jenifer; Deon, Marion; Mescka, Caroline P; Coelho, Daniella M; Jardim, Laura B; Vargas, Carmen R

    2015-06-01

    Toxic metabolites accumulation and oxidative stress have been associated to the pathophysiology of X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisome metabolism. Parameters of oxidative damage to proteins and lipids in X-ALD patients were already described in literature; however, DNA injuries were not studied yet. Considering that, the aims were to investigate DNA damage by comet assay in heterozygotes and symptomatic X-ALD patients, to look for associations between DNA damage and lipid peroxidation as measured by urinary 15-F2t-isoprostane; and to evaluate the in vitro effect of N-acetyl-l-cysteine (NAC), trolox (TRO) and rosuvastatin (RSV) on DNA damage in leukocytes from symptomatic patients. Symptomatic patients presented higher DNA damage levels than those found in heterozygotes and controls; heterozygotes and controls showed similar results. In order to investigate the in vitro antioxidant effect on DNA damage, whole blood cells from symptomatic patients were incubated with NAC (1 and 2.5mM), TRO (25 and 75 μM) and RSV (0.5, 2 and 5 μM) before DNA damage analysis. NAC, TRO and RSV, at all tested concentrations, were all capable to reduce DNA damage in symptomatic X-ALD patients until control levels. Finally, DNA damage correlated with urinary isoprostanes and plasmatic levels of TBA-RS and DCFH-DA, allowing to hypothesize that DNA damage might be induced by lipid peroxidation in symptomatic patients. The present work yields experimental evidence that NAC, TRO and RSV reduce the in vitro DNA injury in symptomatic X-ALD patients, what may suggest that the administration of these antioxidants might be considered as an adjuvant therapy for X-ALD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chk2 Activation Dependence on Nbs1 after DNA Damage

    Science.gov (United States)

    Buscemi, Giacomo; Savio, Camilla; Zannini, Laura; Miccichè, Francesca; Masnada, Debora; Nakanishi, Makoto; Tauchi, Hiroshi; Komatsu, Kenshi; Mizutani, Shuki; Khanna, KumKum; Chen, Phil; Concannon, Patrick; Chessa, Luciana; Delia, Domenico

    2001-01-01

    The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)-dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G1 arrest. Here we show that the ATM-dependent activation of Chk2 by γ- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells. Interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1. Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2. PMID:11438675

  4. Neurotoxin-induced DNA damage is persistentin SH-SY5Y cells and LC neurons

    Science.gov (United States)

    Wang, Yan; Musich, Phillip R.; Cui, Kui; Zou, Yue; Zhu, Meng-Yang

    2015-01-01

    Degeneration of the noradrenergic neurons has been reported in the brain of patients suffering from neurodegenerative diseases. However, their pathologic characteristics during the neurodegenerative course and underlying mechanisms remain to be elucidated. In the present study, we used the neurotoxincamptothecin (CPT)to induce the DNA damage response in neuroblastoma SH-SY5Y cells, normal fibroblast cells, and primarily cultured LC and raphe neurons to examine cellular responses and repair capabilities after neurotoxin exposure. To our knowledge, the present study is the first to show that noradrenergic SH-SY5Y cells are more sensitive to CPT-induced DNA damage and deficientin DNA repair, as compared to fibroblast cells. Furthermore, similar to SH-SY5Y cells, primarily cultured LC neurons are more sensitive to CPT-induced DNA damage and show a deficiency in repairing this damage. Moreover, while N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) exposure also results in DNA damage in cultured LC neurons, neither CPT nor DSP4 induce DNA damage in neuronal cultures from the raphe nuclei. Taken together, noradrenergic SH-SY5Y cells and LC neurons are sensitive to CPT-induced DNA damage and exhibit a repair deficiency, providing a mechanistic explanation for the pathologic characteristics of LC degeneration when facing endogenous and environmental DNA-damaging insultsin vivo. PMID:25724887

  5. Uhrf2 is important for DNA damage response in vascular smooth muscle cells.

    Science.gov (United States)

    Luo, Tao; Cui, Shijun; Bian, Chunjing; Yu, Xiaochun

    2013-11-08

    Emerging evidence shows that Uhrf1 plays an important role in DNA damage response for maintaining genomic stability. Interestingly, Uhrf1 has a paralog Uhrf2 in mammals. Uhrf1 and Uhrf2 share similar domain architectures. However, the role of Uhrf2 in DNA damage response has not been studied yet. During the analysis of the expression level of Uhrf2 in different tissues, we found that Uhrf2 is highly expressed in aorta and aortic vascular smooth muscle cells. Thus, we studied the role of Uhrf2 in DNA damage response in aortic vascular smooth muscle cells. Using laser microirradiation, we found that like Uhrf1, Uhrf2 was recruited to the sites of DNA damage. We dissected the functional domains of Uhrf2 and found that the TTD, PHD and SRA domains are important for the relocation of Uhrf2 to the sites of DNA damage. Moreover, depletion of Uhrf2 suppressed DNA damage-induced H2AX phosphorylation and DNA damage repair. Taken together, our results demonstrate the function of Uhrf2 in DNA damage response.

  6. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    Aging is associated with oxidative stress-generated damage to DNA and this could be related to metabolic disturbances. This study investigated the association between levels of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs) and metabolic risk factors in 1,019 subjects, aged...

  7. DNA repair pathways in radiation induced cellular damage: a molecular approach

    NARCIS (Netherlands)

    L.R. van Veelen (Lieneke)

    2005-01-01

    markdownabstract__Abstract__ DNA damage, especially double-strand breaks, can be induced by endogenous or exogenous darnaging agents, such as ionizing radiation. Repair of DNA damage is very important in maintaining genomic stability. Incorrect repair may lead to chromosomal aberrations,

  8. DNA repair pathways in radiation induced cellular damage: a molecular approach

    NARCIS (Netherlands)

    L.R. van Veelen (Lieneke)

    2005-01-01

    markdownabstract__Abstract__ DNA damage, especially double-strand breaks, can be induced by endogenous or exogenous darnaging agents, such as ionizing radiation. Repair of DNA damage is very important in maintaining genomic stability. Incorrect repair may lead to chromosomal aberrations, translocat

  9. DNA damage induction and tumour cell radiosensitivity : PFGE and halo measurements

    NARCIS (Netherlands)

    Woudstra, EC; Driessen, C; Konings, AWT; Kampinga, HH

    1998-01-01

    Purpose: To test whether induction of DNA damage is correlated with tumour-cell radiosensitivity. Materials and methods: Initial DNA damage caused by X-irradiation was measured in ten human tumour cell lines, which largely differed in radiosensitivity, using either the pulsed-field gel electrophores

  10. p53 activates G₁ checkpoint following DNA damage by doxorubicin during transient mitotic arrest.

    Science.gov (United States)

    Hyun, Sun-Yi; Jang, Young-Joo

    2015-03-10

    Recovery from DNA damage is critical for cell survival. The serious damage is not able to be repaired during checkpoint and finally induces cell death to prevent abnormal cell growth. In this study, we demonstrated that 8N-DNA contents are accumulated via re-replication during prolonged recovery period containing serious DNA damage in mitotic cells. During the incubation for recovery, a mitotic delay and initiation of an abnormal interphase without cytokinesis were detected. Whereas a failure of cytokinesis occurred in cells with no relation with p53/p21, re-replication is an anomalous phenomenon in the mitotic DNA damage response in p53/p21 negative cells. Cells with wild-type p53 are accumulated just prior to the initiation of DNA replication through a G₁ checkpoint after mitotic DNA damage, even though p53 does not interrupt pre-RC assembly. Finally, these cells undergo cell death by apoptosis. These data suggest that p53 activates G₁ checkpoint in response to mitotic DNA damage. Without p53, cells with mitotic DNA damage undergo re-replication leading to accumulation of damage.

  11. DNA-damage response during mitosis induces whole-chromosome missegregation.

    Science.gov (United States)

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  12. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage

    NARCIS (Netherlands)

    M. Tresini (Maria); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2016-01-01

    textabstractIn response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-indep

  13. Inter-laboratory variation in DNA damage using a standard comet assay protocol

    DEFF Research Database (Denmark)

    Forchhammer, Lykke; Ersson, Clara; Loft, Steffen

    2012-01-01

    There are substantial inter-laboratory variations in the levels of DNA damage measured by the comet assay. The aim of this study was to investigate whether adherence to a standard comet assay protocol would reduce inter-laboratory variation in reported values of DNA damage. Fourteen laboratories ...

  14. The effect of ancient DNA damage on inferences of demographic histories

    DEFF Research Database (Denmark)

    Axelsson, Erik; Willerslev, Eske; Gilbert, Marcus Thomas Pius

    2008-01-01

    The field of ancient DNA (aDNA) is casting new light on many evolutionary questions. However, problems associated with the postmortem instability of DNA may complicate the interpretation of aDNA data. For example, in population genetic studies, the inclusion of damaged DNA may inflate estimates...... of diversity. In this paper, we examine the effect of DNA damage on population genetic estimates of ancestral population size. We simulate data using standard coalescent simulations that include postmortem damage and show that estimates of effective population sizes are inflated around, or right after......, the sampling time of the ancestral DNA sequences. This bias leads to estimates of increasing, and then decreasing, population sizes, as observed in several recently published studies. We reanalyze a recently published data set of DNA sequences from the Bison (Bison bison/Bison priscus) and show that the signal...

  15. Pesticide residues, heavy metals, and DNA damage in sentinel oysters Crassostrea gigas from Sinaloa and Sonora, Mexico.

    Science.gov (United States)

    Vázquez-Boucard, Celia; Anguiano-Vega, Gerardo; Mercier, Laurence; Rojas del Castillo, Emilio

    2014-01-01

    Pesticides and heavy metals were analyzed in sentinel Crassostrea gigas oysters placed in six aquaculture sites close to a contaminated agricultural region. Each site was sampled twice. Tests revealed the presence of organochlorine (OC) pesticides in the oysters at concentrations varying from 31.8 to 72.5 μg/kg for gamma-hexachlorocyclohexane (γ-HCH); from 1.2 to 3.1 μg/kg for dichlorodiphenyldichloroethylene (4,4-DDE); from 1.6 to 2.3 μg/kg for endosulfan I; and from 1.4 to 41.2 μg/kg for endosulfan II, as well as heavy metals in concentrations that exceeded Mexican tolerance levels (405.5 to 987.8 μg/g for zinc; 4.2 to 7.3 μg/g for cadmium; and 7.2 to 9.9 μg/g for lead). Significant levels of DNA damage in oyster hemocytes were also detected. There was a significant, positive correlation between genotoxic damage and concentration of nickel or the presence of endosulfan II. Cellular viability evaluated by cytotoxic analyses was found to be high at 80%. Marked inhibition in activity of acetylcholinesterase (AChE ) and induction of glutathione S-transferase (GST) activity was noted. Data demonstrated a significant relation between AChE activity inhibition and presence of endosulfan II, γ-HCH, copper, lead, and 4,4-DDE, as well as between AChE and GST activity at different sites.

  16. Colorimetric detection of DNA damage by using hemin-graphene nanocomposites

    Science.gov (United States)

    Wei, W.; Zhang, D. M.; Yin, L. H.; Pu, Y. P.; Liu, S. Q.

    2013-04-01

    A colorimetric method for detection of DNA damage was developed by using hemin-graphene nanosheets (H-GNs). H-GNs were skillfully synthesized by adsorping of hemin on graphene through π-π interactions. The as-prepared H-GNs possessed both the ability of graphene to differentiate the damage DNA from intact DNA and the catalytic action of hemin. The damaged DNA made H-GNs coagulated to different degrees from the intact DNA because there were different amount of negative charge exposed on their surface, which made a great impact on the solubility of H-GNs. As a result, the corresponding centrifugal supernatant of H-GNs solution showed different color in the presence of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, which could be discriminated by naked eyes or by ultraviolet (UV)-visible spectrometer. Based on this, the damaged effects of styrene oxide (SO), NaAsO2 and UV radiation on DNA were studied. Results showed that SO exerted most serious damage effect on DNA although all of them damaged DNA seriously. The new method for detection of DNA damage showed good prospect in the evaluation of genotoxicity of new compounds, the maximum limit of pesticide residue, food additives, and so on, which is important in the fields of food science, pharmaceutical science and pesticide science.

  17. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage

    Directory of Open Access Journals (Sweden)

    Olsen Birgitte B

    2012-03-01

    Full Text Available Abstract Background The DNA-dependent protein kinase (DNA-PK is a nuclear complex composed of a large catalytic subunit (DNA-PKcs and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the non-homologous end-joining (NHEJ repair mechanism, which is activated in the presence of DNA double-strand breaks induced by ionizing radiation, reactive oxygen species and radiomimetic drugs. We have recently reported that down-regulation of protein kinase CK2 by siRNA interference results in enhanced cell death specifically in DNA-PKcs-proficient human glioblastoma cells, and this event is accompanied by decreased autophosphorylation of DNA-PKcs at S2056 and delayed repair of DNA double-strand breaks. Results In the present study, we show that CK2 co-localizes with phosphorylated histone H2AX to sites of DNA damage and while CK2 gene knockdown is associated with delayed DNA damage repair, its overexpression accelerates this process. We report for the first time evidence that lack of CK2 destabilizes the interaction of DNA-PKcs with DNA and with Ku80 at sites of genetic lesions. Furthermore, we show that CK2 regulates the phosphorylation levels of DNA-PKcs only in response to direct induction of DNA double-strand breaks. Conclusions Taken together, these results strongly indicate that CK2 plays a prominent role in NHEJ by facilitating and/or stabilizing the binding of DNA-PKcs and, possibly other repair proteins, to the DNA ends contributing to efficient DNA damage repair in mammalian cells.

  18. Influence of the presence of B chromosomes on DNA damage in Crepis capillaris.

    Directory of Open Access Journals (Sweden)

    Jolanta Kwasniewska

    Full Text Available The sensitivity of different plant species to mutagenic agents is related to the DNA content and organization of the chromatin, which have been described in ABCW and bodyguard hypotheses, respectively. Plant species that have B chromosomes are good models for the study of these hypotheses. This study presents an analysis of the correlation between the occurrence of B chromosomes and the DNA damage that is induced by the chemical mutagen, maleic hydrazide (MH, in Crepis capillaris plants using comet assay. The presence of B chromosomes has a detectable impact on the level of DNA damage. The level of DNA damage after MH treatment was correlated with the number of B chromosomes and it was observed that it increased significantly in plants with 3B chromosomes. We did not find evidence of the protective role from chemical mutagens of the constitutive heterochromatin for euchromatin in relation to DNA damage. The DNA damage involving the 25S rDNA sequences was analyzed using the comet-FISH technique. Fragmentation within or near the 25S rDNA involved the loci on the A and B chromosomes. The presence of B chromosomes in C. capillaris cells had an influence on the level of DNA damage that involves the 25S rDNA region.

  19. Treacher Collins syndrome TCOF1 protein cooperates with NBS1 in the DNA damage response.

    Science.gov (United States)

    Ciccia, Alberto; Huang, Jen-Wei; Izhar, Lior; Sowa, Mathew E; Harper, J Wade; Elledge, Stephen J

    2014-12-30

    The signal transduction pathway of the DNA damage response (DDR) is activated to maintain genomic integrity following DNA damage. The DDR promotes genomic integrity by regulating a large network of cellular activities that range from DNA replication and repair to transcription, RNA splicing, and metabolism. In this study we define an interaction between the DDR factor NBS1 and TCOF1, a nucleolar protein that regulates ribosomal DNA (rDNA) transcription and is mutated in Treacher Collins syndrome. We show that NBS1 relocalizes to nucleoli after DNA damage in a manner dependent on TCOF1 and on casein kinase II and ATM, which are known to modify TCOF1 by phosphorylation. Moreover, we identify a putative ATM phosphorylation site that is required for NBS1 relocalization to nucleoli in response to DNA damage. Last, we report that TCOF1 promotes cellular resistance to DNA damaging agents. Collectively, our findings identify TCOF1 as a DDR factor that could cooperate with ATM and NBS1 to suppress inappropriate rDNA transcription and maintain genomic integrity after DNA damage.

  20. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency...... was observed for the level of hOGG1-sensitive sites, whereas there was no association with the level of strand breaks. The effect of age on oxidatively damaged DNA in women disappeared in multivariate models, which showed robust positive associations between DNA damage and plasma levels of triglycerides...

  1. BRCA1 in the DNA damage response and at telomeres

    Directory of Open Access Journals (Sweden)

    Eliot Michael Rosen

    2013-06-01

    Full Text Available Abstract. Mutations of the breast and ovarian cancer susceptibility gene 1 (BRCA1 account for about 40-45% of hereditary breast cancer cases. Moreover, a significant fraction of sporadic (non-hereditary breast and ovarian cancers exhibit reduced or absent expression of the BRCA1 protein, suggesting an additional role for BRCA1 in sporadic cancers. BRCA1 follows the classic pattern of a highly penetrant Knudsen-type tumor suppressor gene in which one allele is inactivated through a germ-line mutation and the other is mutated or deleted within the tumor. BRCA1 is a multi-functional protein but it is not fully understood which function(s is (are most important for tumor suppression, nor is it clear why BRCA1 mutations confer a high risk for breast and ovarian cancers and not a broad spectrum of tumor types. Here, we will review BRCA1 functions in the DNA damage response (DDR, which are likely to contribute to tumor suppression. In the process, we will highlight some of the controversies and unresolved issues in the field. We will also describe a recently identified and under-investigated role for BRCA1 in the regulation of telomeres and the implications of this role in the DDR and cancer suppression.

  2. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Nikita A Kuznetsov

    Full Text Available Human 8-oxoguanine DNA glycosylase (hOGG1 is a key enzyme responsible for initiating the base excision repair of 7,8-dihydro-8-oxoguanosine (oxoG. In this study a thermodynamic analysis of the interaction of hOGG1 with specific and non-specific DNA-substrates is performed based on stopped-flow kinetic data. The standard Gibbs energies, enthalpies and entropies of specific stages of the repair process were determined via kinetic measurements over a temperature range using the van't Hoff approach. The three steps which are accompanied with changes in the DNA conformations were detected via 2-aminopurine fluorescence in the process of binding and recognition of damaged oxoG base by hOGG1. The thermodynamic analysis has demonstrated that the initial step of the DNA substrates binding is mainly governed by energy due to favorable interactions in the process of formation of the recognition contacts, which results in negative enthalpy change, as well as due to partial desolvation of the surface between the DNA and enzyme, which results in positive entropy change. Discrimination of non-specific G base versus specific oxoG base is occurring in the second step of the oxoG-substrate binding. This step requires energy consumption which is compensated by the positive entropy contribution. The third binding step is the final adjustment of the enzyme/substrate complex to achieve the catalytically competent state which is characterized by large endothermicity compensated by a significant increase of entropy originated from the dehydration of the DNA grooves.

  3. An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay

    DEFF Research Database (Denmark)

    Johansson, Clara; Møller, Peter; Forchhammer, Lykke;

    2010-01-01

    The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due...... assay end points to number of lesions/10(6) bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA...... to differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet...

  4. Seasonal variations of DNA damage in human lymphocytes: Correlation with different environmental variables

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisa.giovannelli@unifi.it; Pitozzi, Vanessa [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Florence (Italy); Boddi, Vieri [Department of Public Health, University of Florence, Florence (Italy); Dolara, Piero [Dipartimento di Farmacologia Preclinica e Clinica, Universita di Firenze, Viale Pieraccini 6, 50139 Florence (Italy)

    2006-01-29

    Several types of DNA damage, including DNA breaks and DNA base oxidation, display a seasonal trend. In the present work, a sample of 79 healthy subjects living in the city of Florence, Italy, was used to analyse this effect. Three possible causative agents were taken into consideration: solar radiation, air temperature and air ozone level. DNA damage was measured in isolated human lymphocytes at different times during the year and the observed damage was correlated with the levels of these three agents in the days preceding blood sampling. Three time windows were chosen: 3, 7 and 30 days before blood sampling. DNA strand breaks and the oxidized purinic bases cleaved by the formamidopyrimidine glycosylase (FPG sites) were measured by means of the comet assay. The results of multivariate regression analysis showed a positive correlation between lymphocyte DNA damage and air temperature, and a less strong correlation with global solar radiation and air ozone levels.

  5. ShaPINg cell fate upon DNA damage:role of Pin1 isomerase in DNA damage-induced cell death and repair

    Directory of Open Access Journals (Sweden)

    Thomas G Hofmann

    2014-06-01

    Full Text Available The peptidyl-prolyl cis/trans isomerase Pin1 acts as a molecular timer in proline-directed Ser/Thr kinase signaling and shapes cellular responses based on recognition of phosphorylation marks and implementing conformational changes in its substrates. Accordingly, Pin1 has been linked to numerous phosphorylation-controlled signaling pathways and cellular processes such as cell cycle progression, proliferation and differentiation. In addition, Pin1 plays a pivotal role in DNA damage-triggered cell fate decisions. Whereas moderate DNA damage is balanced by DNA repair, cells confronted with massive genotoxic stress are eliminated by the induction of programmed cell death or cellular senescence. In this review we summarize and discuss the current knowledge on how Pin1 specifies cell fate through regulating key players of the apoptotic and the repair branch of the DNA damage response.

  6. Protective effects of mate tea (Ilex paraguariensis) on H2O2-induced DNA damage and DNA repair in mice

    National Research Council Canada - National Science Library

    Miranda, Daniel D. C; Arçari, Demétrius P; Pedrazzoli, José; Carvalho, Patrícia de O; Cerutti, Suzete M; Bastos, Deborah H. M; Ribeiro, Marcelo L

    2008-01-01

    .... Since oxidative DNA damage is involved in various pathological states such as cancer, the aim of this study was to evaluate the antioxidant activity of mate tea as well as the ability to influence...

  7. Cytotoxicity and DNA damage associated with pyrazoloacridine in MCF-7 breast cancer cells.

    Science.gov (United States)

    Grem, J L; Politi, P M; Berg, S L; Benchekroun, N M; Patel, M; Balis, F M; Sinha, B K; Dahut, W; Allegra, C J

    1996-06-28

    We examined the effects of pyrazoloacridine (PZA), an investigational anticancer agent in clinical trials, on cytotoxicity, DNA synthesis, and DNA damage in MCF-7 human breast carcinoma cells. With PZA concentrations ranging from 0.5 to 50 microM for durations of 3-72 hr, cytotoxicity increased in proportion to the total PZA exposure (concentration x time). Inhibition of DNA and RNA syntheses increased with increasing PZA concentration x time (microM.hr). A 24-hr exposure to 1 and 10 microM PZA reduced DNA synthesis to 62 and 5% of control, respectively, decreased the proportion of cells in S phase with accumulation of cells in G2 + M phase, and inhibited cell growth at 72 hr by 68 and 100%. Newly synthesized DNA was more susceptible to damage during PZA exposure, with subsequent induction of parental DNA damage. Significant damage to newly synthesized DNA as monitored by alkaline elution was evident after a 3-hr exposure to > or = 5 microM PZA. Longer PZA exposures (> or = 10 microM for 16 hr) were required to elicit damage to parental DNA. Induction of single-strand breaks in parental DNA correlated closely with induction of double-strand breaks and detachment of cells from the monolayer. PZA-mediated DNA fragmentation was not accompanied by the generation of oligonucleosomal laddering in MCF-7 cells, but induction of very high molecular weight DNA fragmentation (0.5 to 1 Mb) was detected by pulsed-field gel electrophoresis. In vitro binding of PZA to linear duplex DNA (1 kb DNA ladder) and closed, circular plasmid DNA was demonstrated by a shift in migration during agarose electrophoresis. PZA interfered with topoisomerase I- and II-mediated relaxation of plasmid DNA in a cell-free system, but the cytotoxic effects of PZA did not appear to involve a direct interaction with topoisomerase I or II (stabilization of the topoisomerase I- or II-DNA cleavable complex). PZA-mediated cytotoxicity correlated strongly with inhibition of DNA and RNA syntheses, and damage to

  8. Arabidopsis RecQl4A suppresses homologous recombination and modulates DNA damage responses

    NARCIS (Netherlands)

    Bagherieh-Najjar, MB; de Vries, OMH; Hille, J; Dijkwel, PP; Bagherieh-Najjar, Mohammad B.

    2005-01-01

    The DNA damage response and DNA recombination are two interrelated mechanisms involved in maintaining the integrity of the genome, but in plants they are poorly understood. RecO is a family of genes with conserved roles in the regulation of DNA recombination in eukaryotes; there are seven members in

  9. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Rezaei, Nousin; Liontos, Michalis

    2006-01-01

    and DNA double-strand breaks. Inhibiting the DNA double-strand break response kinase ataxia telangiectasia mutated (ATM) suppressed the induction of senescence and in a mouse model led to increased tumour size and invasiveness. Analysis of human precancerous lesions further indicated that DNA damage...

  10. ATP-dependent chromatin remodeling in the DNA-damage response

    NARCIS (Netherlands)

    H. Lans (Hannes); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2012-01-01

    textabstractThe integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired prope

  11. DNA damage in human cells. Progress report, August 1983-August 1984

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, L.A.

    1986-08-01

    Studies reported center on the relationship between DNA damage and mutagenesis. The mutagenic potential of apurinic sites was documented in a variety of systems. Studies on the enhancement of depurination by metal ions was continued. Recombiant DNA techniques were used for measuring nucleotide substitution in human mitochondrial DNA.

  12. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    Science.gov (United States)

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  13. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    Science.gov (United States)

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  14. ATP-dependent chromatin remodeling in the DNA-damage response

    NARCIS (Netherlands)

    H. Lans (Hannes); J.A. Marteijn (Jurgen); W. Vermeulen (Wim)

    2012-01-01

    textabstractThe integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired prope

  15. DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing.

    Science.gov (United States)

    Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming

    2016-07-22

    The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress.

  16. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  17. Preserving Yeast Genetic Heritage through DNA Damage Checkpoint Regulation and Telomere Maintenance

    Directory of Open Access Journals (Sweden)

    Huilin Zhou

    2012-10-01

    Full Text Available In order to preserve genome integrity, extrinsic or intrinsic DNA damages must be repaired before they accumulate in cells and trigger other mutations and genome rearrangements. Eukaryotic cells are able to respond to different genotoxic stresses as well as to single DNA double strand breaks (DSBs, suggesting highly sensitive and robust mechanisms to detect lesions that trigger a signal transduction cascade which, in turn, controls the DNA damage response (DDR. Furthermore, cells must be able to distinguish natural chromosomal ends from DNA DSBs in order to prevent inappropriate checkpoint activation, DDR and chromosomal rearrangements. Since the original discovery of RAD9, the first DNA damage checkpoint gene identified in Saccharomyces cerevisiae, many genes that have a role in this pathway have been identified, including MRC1, MEC3, RAD24, RAD53, DUN1, MEC1 and TEL1. Extensive studies have established most of the genetic basis of the DNA damage checkpoint and uncovered its different functions in cell cycle regulation, DNA replication and repair, and telomere maintenance. However, major questions concerning the regulation and functions of the DNA damage checkpoint remain to be answered. First, how is the checkpoint activity coupled to DNA replication and repair? Second, how do cells distinguish natural chromosome ends from deleterious DNA DSBs? In this review we will examine primarily studies performed using Saccharomyces cerevisiae as a model system.

  18. Association Between Polymorphisms of DNA Repair Gene XRCC1 and DNA Damage in Asbestos-Exposed Workers

    Institute of Scientific and Technical Information of China (English)

    XIAO-HONG ZHAO; GUANG JIA; YONG-QUAN LIU; SHAO-WEI LIU; LEI YAN; YU JIN; NIAN LIU

    2006-01-01

    Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestos exposed workers and 101 control workers in Qingdao City of China and to investigate the possible association between polymorphisms in codon 399 of XRCC1 and susceptibility to asbestosis. Methods DNA damage levels in peripheral bloodlymphocytes were determined by comet assay, and XRCC 1 genetic polymorphisms of DNA samples from 51 asbestosis cases and 53 non-asbestosis workers with a similar asbestos exposure history were analyzed by PCR/RFLP. Results The basal comet scores (3.95±2.95) were significantly higher in asbestos-exposed workers than in control workers (0.10±0.28). After 1 h H2O2 stimulation, DNA damage of lymphocytes exhibited different increases. After a 4 h repair period, the comet scores were 50.98±19.53 in asbestos-exposed workers and 18.32±12.04 in controls. The residual DNA damage (RD) was significantly greater (P<0.01) in asbestos-exposed workers (35.62%) than in controls (27.75%). XRCC1 genetic polymorphism in 104 asbestos-exposed workers was not associated with increased risk of asbestosis. But compared with polymorphisms in the DNA repair gene XRCC1 (polymorphisms in codon 399) and the DNA damage induced by asbestos, the comet scores in asbestosis cases with Gln/Gln, Gln/Arg, and Arg/Arg were 40.26±18.94, 38.03±28.22, and 32.01±11.65, respectively, which were higher than those in non-asbestosis workers with the same genotypes (25.58±11.08, 37.08±14.74, and 29.38±10.15). There were significant differences in the comet scores between asbestosis cases and non-asbestosis workers with Gln/Gln by Student's t-test (P<0.05 or 0.01). The comet scores were higher in asbestosis workers with Gln/Gln than in those with Arg/Arg and in non-asbestosis workers exposed to asbestos, but without statistically significant difference. Conclusions Exposure to asbestos may be related to DNA damage or the capacity of cells to repair H2O2-induced

  19. Ciliogenesis and the DNA damage response: a stressful relationship.

    Science.gov (United States)

    Johnson, Colin A; Collis, Spencer J

    2016-01-01

    Both inherited and sporadic mutations can give rise to a plethora of human diseases. Through myriad diverse cellular processes, sporadic mutations can arise through a failure to accurately replicate the genetic code or by inaccurate separation of duplicated chromosomes into daughter cells. The human genome has therefore evolved to encode a large number of proteins that work together with regulators of the cell cycle to ensure that it remains error-free. This is collectively known as the DNA damage response (DDR), and genome stability mechanisms involve a complex network of signalling and processing factors that ensure redundancy and adaptability of these systems. The importance of genome stability mechanisms is best illustrated by the dramatic increased risk of cancer in individuals with underlying disruption to genome maintenance mechanisms. Cilia are microtubule-based sensory organelles present on most vertebrate cells, where they facilitate transduction of external signals into the cell. When not embedded within the specialised ciliary membrane, components of the primary cilium's basal body help form the microtubule organising centre that controls cellular trafficking and the mitotic segregation of chromosomes. Ciliopathies are a collection of diseases associated with functional disruption to cilia function through a variety of different mechanisms. Ciliopathy phenotypes can vary widely, and although some cellular overgrowth phenotypes are prevalent in a subset of ciliopathies, an increased risk of cancer is not noted as a clinical feature. However, recent studies have identified surprising genetic and functional links between cilia-associated proteins and genome maintenance factors. The purpose of this mini-review is to therefore highlight some of these discoveries and discuss their implications with regards to functional crosstalk between the DDR and ciliogenesis pathways, and how this may impact on the development of human disease.

  20. Photoelectrochemical Sensors for the Rapid Detection of DNA Damage Induced by Some Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Jamaluddin Ahmed

    2010-06-01

    Full Text Available Photoelectrochemcal sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy2 (dppz2+ [bpy=2, 2′ -bipyridine, dppz=dipyrido( 3, 2-a: 2′ 3′-c phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy2 (dppz2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time – dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polysterene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals.

  1. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

    Science.gov (United States)

    Wada, S.; Natsuhori, M.; Ito, N.; Funayama, T.; Kobayashi, Y.

    2003-05-01

    Investigating the biological effects of high-LET heavy ion irradiation at low fluence is important to evaluate the risk of charged particles. Especially it is important to detect radiation damage induced by the precise number of heavy ions in the individual cells. Thus we studied the relationship between the number of ions traversing the cell and DNA damage produced by the ion irradiation. We applied comet assay to measure the DNA damage in the individual cells. Cells attached on the ion track detector CR-39 were irradiated with ion beams at TIARA, JAERI-Takasaki. After irradiation, the cells were stained with ethidium bromide and the opposite side of the CR-39 was etched. We observed that the heavy ions with higher LET values induced the heavier DNA damage. The result indicated that the amount of DNA damage induced by one particle increased with the LET values of the heavy ions.

  2. Effect of ATM and HDAC Inhibition on Etoposide-Induced DNA Damage in Porcine Early Preimplantation Embryos: e0142561

    National Research Council Canada - National Science Library

    HaiYang Wang; YiBo Luo; ZiLi Lin; In-Won Lee; Jeongwoo Kwon; Xiang-Shun Cui; Nam-Hyung Kim

    2015-01-01

      Oocyte maturation and embryonic development are sensitive to DNA damage. Compared with somatic cells or oocytes, little is known about the response to DNA damage in early preimplantation embryos...

  3. The DNA damage response pathways: at the crossroad of protein modifications

    Institute of Scientific and Technical Information of China (English)

    Michael SY Huen; Junjie Chen

    2008-01-01

    Post-translational modifications play a crucial role in coordinating cellular response to DNA damage. Recent evidence suggests an interplay between multiple protein modifications, including phosphorylation, ubiquitylation, acetylation and sumoylation, that combine to propagate the DNA damage signal to elicit cell cycle arrest, DNA repair, apoptosis and senescence. Utility of specific post-translational modifiers allows temporal and spatial control over protein relo-calization and interactions, and may represent a means for trans-regulatory activation of protein activities. The abil-ity to recognize these specific modifiers also underscores the capacity for signal amplification, a crucial step for the maintenance of genomic stability and tumor prevention. Here we have summarized recent findings that highlight the complexity of post-translational modifications in coordinating the DNA damage response, with emphasis on the DNA damage signaling cascade.

  4. Increased DNA damage in blood cells of rat treated with lead as assessed by comet assay

    Directory of Open Access Journals (Sweden)

    Mohammad Arif

    2008-06-01

    Full Text Available A growing body of evidence suggests that oxidative stress is the key player in the pathogenesis of lead-induced toxicity. The present study investigated lead induced oxidative DNA damage, if any in rat blood cells by alkaline comet assay. Lead was administered intraperitoneally to rats at doses of 25, 50 and 100 mg/kg body weight for 5 days consecutively. Blood collected on day six from sacrificed lead-treated rats was used to assess the extent of DNA damage by comet assay which entailed measurement of comet length, olive tail moment, tail DNA (% and tail length. The results showed that treatment with lead significantly increased DNA damage in a dose-dependent manner. Therefore, our data suggests that lead treatment is associated with oxidative stress-induced DNA damage in rat blood cells which could be used as an early bio-marker of lead-toxicity.

  5. EFFECT OF GLYCYRRHETINIC ACID ON DNA DAMAGE AND UNSCHEDULED DNA SYNTHESIS INDUCED BY BENZO (α) PYRENE

    Institute of Scientific and Technical Information of China (English)

    陈晓光; 韩锐

    1995-01-01

    Glycyrrhetinic acid (GA) is an active component of Glycyrrhiza uraleusis fisch. In this study, GA was found to inhibit ear edema and ornithine decarboxykase (ODC)activity induced by croton oil in mice. GA could also protect rapid DNA damage and decrease the unscheduled DNA synthesis induced by benzo(α)pyrene, The results demonstrate that GA has a potential cancer chemopreventive activity.

  6. Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli.

    Science.gov (United States)

    Schalow, Brandy J; Courcelle, Charmain T; Courcelle, Justin

    2012-05-01

    Transcription-coupled repair (TCR) is a cellular process by which some forms of DNA damage are repaired more rapidly from transcribed strands of active genes than from nontranscribed strands or the overall genome. In humans, the TCR coupling factor, CSB, plays a critical role in restoring transcription following both UV-induced and oxidative DNA damage. It also contributes indirectly to the global repair of some forms of oxidative DNA damage. The Escherichia coli homolog, Mfd, is similarly required for TCR of UV-induced lesions. However, its contribution to the restoration of transcription and to global repair of oxidative damage has not been examined. Here, we report the first direct study of transcriptional recovery following UV-induced and oxidative DNA damage in E. coli. We observed that mutations in mfd or uvrA reduced the rate that transcription recovered following UV-induced damage. In contrast, no difference was detected in the rate of transcription recovery in mfd, uvrA, fpg, nth, or polB dinB umuDC mutants relative to wild-type cells following oxidative damage. mfd mutants were also fully resistant to hydrogen peroxide (H(2)O(2)) and removed oxidative lesions from the genome at rates comparable to wild-type cells. The results demonstrate that Mfd promotes the rapid recovery of gene expression following UV-induced damage in E. coli. In addition, these findings imply that Mfd may be functionally distinct from its human CSB homolog in that it does not detectably contribute to the recovery of gene expression or global repair following oxidative damage.

  7. DNA damage inhibitory effect and phytochemicals of fermented red brown rice extract

    Directory of Open Access Journals (Sweden)

    Ee-Ling Kong

    2015-09-01

    Full Text Available Objective: To determine the polyphenol compounds (phenolic and flavonoid compounds, antioxidant activity [1,1-diphenylpicryl-2-picrylhydrazyl (DPPH radical scavenging activity] and DNA damage inhibitory effect of fermented local red brown rice. Methods: DNA nicking assay was employed to determine the antioxidant activity of the fermented rice extract. Phytochemical screening was completed using standard methods and DPPH radical assays were used to confirm the antioxidant properties of the extracts. Results: After four days of fermentation, fermented red brown rice had more polyphenol compounds compared to unfermented counterpart. Fermented red brown rice showed greater antioxidant properties with EC50 value of DPPH radical scavenging of 43.00 mg extract/mL or 8 mg quercetin equivalent antioxidant activity. In addition, fermented rice extract showed DNA damage inhibitory effect to a certain extent. It protected DNA from reactive oxygen species; however, at high concentration it might induce reductive damage to DNA, whereas, unfermented red brown rice showed weak DNA damage inhibitory effect. Conclusions: Fermented red brown rice could protect DNA from oxidative damage but might induce reductive damage to DNA at high concentrations.

  8. Response to DNA damage: why do we need to focus on protein phosphatases?

    Directory of Open Access Journals (Sweden)

    Midori eShimada

    2013-01-01

    Full Text Available Eukaryotic cells are continuously threatened by unavoidable errors during normal DNA replication or various sources of genotoxic stresses that cause DNA damage or stalled replication. To maintain genomic integrity, cells have developed a coordinated signaling network, known as the DNA damage response (DDR. Following DNA damage, sensor molecules detect the presence of DNA damage and transmit signals to downstream transducer molecules. This in turn conveys the signals to numerous effectors, which initiate a large number of specific biological responses, including transient cell cycle arrest mediated by checkpoints, DNA repair, and apoptosis. It is recently becoming clear that dephosphorylation events are involved in keeping DDR factors inactive during normal cell growth. Moreover, dephosphorylation is required to shut off checkpoint arrest following DNA damage and has been implicated in the activation of the DDR. Spatial and temporal regulation of phosphorylation events is essential for the DDR, and fine-tuning of phosphorylation is partly mediated by protein phosphatases. While the role of kinases in the DDR has been well documented, the complex roles of protein dephosphorylation have only recently begun to be investigated. Therefore, it is important to focus on the role of phosphatases and to determine how their activity is regulated upon DNA damage. In this work, we summarize current knowledge on the involvement of serine/threonine phosphatases, especially the protein phosphatase 1, protein phosphatase 2A, and protein phosphatase Mg2+/Mn2+-dependent families, in the DDR.

  9. The ability of sperm selection techniques to remove single-or double-strand DNA damage

    Institute of Scientific and Technical Information of China (English)

    Maria Enciso; Miriam Iglesias; Isabel Galin; Jonas Sarasa; Antonio Gosalvez; Jaime Gosalvez

    2011-01-01

    @@ A wide variety of techniques for the preparation of sperm are currently available,of which the most commonly employed are densitygradient centrifugation (DGC) and swim-up (SUP).To date,these methods appear to be effective in selecting functional sperm for assisted reproduction techniques (ART),but they may have negative effects on sperm DNA.In this study,the ability of these semen processing techniques to eliminate spermatozoa containing single- and double-strand DNA damage was assessed by the two-tailed comet assay and the sperm chromatin dispersion test in 1[57]semen samples from patients seeking assisted reproduction treatment.Our results indicated that SUP and DGC are equally efficient in eliminating spermatozoa containing double-strand DNA damage and sperm with highly damaged (degraded) DNA,as characterized by the presence of both single- and double-strand DNA breaks.However,DGC is more efficient than SUP in selecting spermatozoa that are free from single-strand DNA damage.Future studies should characterise the importance of the various types of DNA damage and examine the sperm processing protocols used in each laboratory to determine their ability to eliminate DNA damage and hence,prevent the potential transmission of genetic mutations via ART.

  10. International congress on DNA damage and repair: Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This document contains the abstracts of 105 papers presented at the Congress. Topics covered include the Escherichia coli nucleotide excision repair system, DNA repair in malignant transformations, defective DNA repair, and gene regulation. (TEM)

  11. Inhibition of the mitochondrial respiratory chain function abrogates quartz induced DNA damage in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Hui [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Haberzettl, Petra [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Albrecht, Catrin [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Hoehr, Doris [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Knaapen, Ad M. [Department of Health Risk Analysis and Toxicology, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), University of Maastricht (Netherlands); Borm, Paul J.A. [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany); Hogeschool Zuyd Heerlen (Netherlands); Schins, Roel P.F. [Institut fuer umweltmedizinische Forschung (IUF) at the Heinrich-Heine-University, Auf' m Hennekamp 50, D-40225 Duesseldorf (Germany)]. E-mail: roel.schins@uni-duesseldorf.de

    2007-04-01

    Respirable quartz dust has been classified as a human carcinogen by the International Agency for Research on Cancer. The aim of our study was to investigate the mechanisms of DNA damage by DQ12 quartz in RLE-6TN rat lung epithelial type II cells (RLE). Transmission electron microscopy and flow-cytometry analysis showed a rapid particle uptake (30 min to 4 h) of quartz by the RLE cells, but particles were not found within the cell nuclei. This suggests that DNA strand breakage and induction of 8-hydroxydeoxyguanosine - as also observed in these cells during these treatment intervals - did not result from direct physical interactions between particles and DNA, or from short-lived particle surface-derived reactive oxygen species. DNA damage by quartz was significantly reduced in the presence of the mitochondrial inhibitors rotenone and antimycin-A. In the absence of quartz, these inhibitors did not affect DNA damage, but they reduced cellular oxygen consumption. No signs of apoptosis were observed by quartz. Flow-cytometry analysis indicated that the reduced DNA damage by rotenone was not due to a possible mitochondria-mediated reduction of particle uptake by the RLE cells. Further proof of concept for the role of mitochondria was shown by the failure of quartz to elicit DNA damage in mitochondria-depleted 143B (rho-0) osteosarcoma cells, at concentrations where it elicited DNA damage in the parental 143B cell line. In conclusion, our data show that respirable quartz particles can elicit oxidative DNA damage in vitro without entering the nuclei of type II cells, which are considered to be important target cells in quartz carcinogenesis. Furthermore, our observations indicate that such indirect DNA damage involves the mitochondrial electron transport chain function, by an as-yet-to-be elucidated mechanism.

  12. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  13. DNA damage-induced cell death: lessons from the central nervous system

    Institute of Scientific and Technical Information of China (English)

    Helena Lobo Borges; Rafael Linden; Jean YJ Wang

    2008-01-01

    DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.

  14. Cadmium and copper toxicity in three marine macroalgae: evaluation of the biochemical responses and DNA damage.

    Science.gov (United States)

    Babu, M Yokesh; Palanikumar, L; Nagarani, N; Devi, V Janaki; Kumar, S Ramesh; Ramakritinan, C M; Kumaraguru, A K

    2014-01-01

    Marine macroalgae have evolved a different mechanism to maintain physiological concentrations of essential metal ions and non-essential metals. The objective of the present work was to evaluate the antioxidant response and DNA damage of copper and cadmium ions in three halophytes, namely, Acanthophora spicifera, Chaetomorpha antennina, and Ulva reticulata. Accumulation of copper was significantly higher (P  A. spicifera > C. antennina. DNA damage index analysis supported that copper was significantly (P < 0.05) more toxic than cadmium. Bioaccumulation, biochemical responses, and DNA damage observed in the here analyzed marine macroalgae after exposure to selected metals indicate that these marine organisms represent useful bioindicators of marine pollution.

  15. RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response

    DEFF Research Database (Denmark)

    Poulsen, Sara L; Hansen, Rebecca K; Wagner, Sebastian A

    2013-01-01

    )-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response....... nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV...

  16. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sandip; Mukherjee, Ananda; Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in

    2014-12-15

    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair.

  17. Endothelial IL-33 Expression Is Augmented by Adenoviral Activation of the DNA Damage Machinery.

    Science.gov (United States)

    Stav-Noraas, Tor Espen; Edelmann, Reidunn J; Poulsen, Lars La Cour; Sundnes, Olav; Phung, Danh; Küchler, Axel M; Müller, Fredrik; Kamen, Amine A; Haraldsen, Guttorm; Kaarbø, Mari; Hol, Johanna

    2017-04-15

    IL-33, required for viral clearance by cytotoxic T cells, is generally expressed in vascular endothelial cells in healthy human tissues. We discovered that endothelial IL-33 expression was stimulated as a response to adenoviral transduction. This response was dependent on MRE11, a sensor of DNA damage that can also be activated by adenoviral DNA, and on IRF1, a transcriptional regulator of cellular responses to viral invasion and DNA damage. Accordingly, we observed that endothelial cells responded to adenoviral DNA by phosphorylation of ATM and CHK2 and that depletion or inhibition of MRE11, but not depletion of ATM, abrogated IL-33 stimulation. In conclusion, we show that adenoviral transduction stimulates IL-33 expression in endothelial cells in a manner that is dependent on the DNA-binding protein MRE11 and the antiviral factor IRF1 but not on downstream DNA damage response signaling. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. Compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones

    Institute of Scientific and Technical Information of China (English)

    Ting ZHANG; Jun-ling LI; Jian XIN; Xiao-chao MA; Zeng-hong TU

    2004-01-01

    AIM: To compare two methods of measuring DNA damage induced by photogenotoxicity of fluoroquinolones (FQ). METHODS: Lomefloxacin (LFLX), sparfloxacin (SPFX), ciprofloxacin (CPFX), and levofloxacin (LELX)were tested by comet assay and photodynamic DNA strand breaking activity under the different conditions of UVA irradiation. RESULTS: In comet assay, photogenotoxicity was evident at SPFX 1 mg/L, LFLX 5 mg/L, and CPFX 5 mg/L, and LELX 10 mg/L. In photodynamic DNA srand-breaking activity, SPFX and LFLX induced the conversion of the supercoiled form into the nicked relaxed form at 10-50 μmol/L, while CPFX at 25 μmol/L and LELX at 50 μmol/L. CONCLUSION: There were good correlations between the two methods to detect DNA damage induced by phototoxicity of fluoroquinolones. Photodynamic DNA strand breaking activity was a good method to detect DNA damage induced by photogenotoxicity of fluoroquinolones as well as comet assay.

  19. Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Hickson, Ian D

    2006-01-01

    Mutation of TOP3 in Saccharomyces cerevisiae causes poor growth, hyperrecombination, and a failure to fully activate DNA damage checkpoints in S phase. Here, we report that overexpression of a dominant-negative allele of TOP3, TOP3(Y356F), which lacks the catalytic (decatenation) activity of Top3......, causes impaired S-phase progression and the persistence of abnormal DNA structures (X-shaped DNA molecules) after exposure to methylmethanesulfonate. The impaired S-phase progression is due to a persistent checkpoint-mediated cell cycle delay and can be overridden by addition of caffeine. Hence......, the catalytic activity of Top3 is not required for DNA damage checkpoint activation, but it is required for normal S-phase progression after DNA damage. We also present evidence that the checkpoint-mediated cell cycle delay and persistence of X-shaped DNA molecules resulting from overexpression of TOP3(Y356F...

  20. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    Science.gov (United States)

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis.

  1. Investigation of DNA Damage Induced by 7Li and 12C Ions

    Institute of Scientific and Technical Information of China (English)

    SUILi; ZHAOKui; NIMei-nan; GUOJi-yu; LUOHong-bing; MEIJun-ping; KONGFu-quan; LUXiu-qin; ZHOUPing

    2003-01-01

    Deoxyribonucleic acid(DNA) is an important biomacromolecule. It is a carrier of genetic information and a critical target for radiobiological effects. Numerous lesions have been identified in irradiated DNA.DNA double strand breaks (DSBs) are considered as the most important initial damage of all biological effects induced by ionizing radiation. The goal of this experiment is to investigate DNA DSBs induced by heavy ions with atomic force microscopy (AFM).

  2. Human POLD1 modulates cell cycle progression and DNA damage repair

    OpenAIRE

    Song, Jing; Hong, Ping; Liu, Chengeng; Zhang, Yueqi; Wang, Jinling; Wang, Peichang

    2015-01-01

    Background The activity of eukaryotic DNA polymerase delta (Pol ?) plays an essential role in genome stability through its effects on DNA replication and repair. The p125 catalytic subunit of Pol ? is encoded by POLD1 gene in human cells. To clarify biological functions of POLD1, we investigated the effects of POLD1 overexpression or downregulation on cell proliferation, cell cycle progression, DNA synthesis and oxidative DNA damage induced by H2O2. Methods HEK293 cells were transfected with ...

  3. A DNA2 Homolog Is Required for DNA Damage Repair, Cell Cycle Regulation, and Meristem Maintenance in Plants.

    Science.gov (United States)

    Jia, Ning; Liu, Xiaomin; Gao, Hongbo

    2016-05-01

    Plant meristem cells divide and differentiate in a spatially and temporally regulated manner, ultimately giving rise to organs. In this study, we isolated the Arabidopsis jing he sheng 1 (jhs1) mutant, which exhibited retarded growth, an abnormal pattern of meristem cell division and differentiation, and morphological defects such as fasciation, an irregular arrangement of siliques, and short roots. We identified JHS1 as a homolog of human and yeast DNA Replication Helicase/Nuclease2, which is known to be involved in DNA replication and damage repair. JHS1 is strongly expressed in the meristem of Arabidopsis. The jhs1 mutant was sensitive to DNA damage stress and had an increased DNA damage response, including increased expression of genes involved in DNA damage repair and cell cycle regulation, and a higher frequency of homologous recombination. In the meristem of the mutant plants, cell cycle progression was delayed at the G2 or late S phase and genes essential for meristem maintenance were misregulated. These results suggest that JHS1 plays an important role in DNA replication and damage repair, meristem maintenance, and development in plants. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Systematic analysis of DNA damage induction and DNA repair pathway activation by continuous wave visible light laser micro-irradiation

    Directory of Open Access Journals (Sweden)

    Britta Muster

    2017-02-01

    Full Text Available Laser micro-irradiation can be used to induce DNA damage with high spatial and temporal resolution, representing a powerful tool to analyze DNA repair in vivo in the context of chromatin. However, most lasers induce a mixture of DNA damage leading to the activation of multiple DNA repair pathways and making it impossible to study individual repair processes. Hence, we aimed to establish and validate micro-irradiation conditions together with inhibition of several key proteins to discriminate different types of DNA damage and repair pathways using lasers commonly available in confocal microscopes. Using time-lapse analysis of cells expressing fluorescently tagged repair proteins and also validation of the DNA damage generated by micro-irradiation using several key damage markers, we show that irradiation with a 405 nm continuous wave laser lead to the activation of all repair pathways even in the absence of exogenous sensitization. In contrast, we found that irradiation with 488 nm laser lead to the selective activation of non-processive short-patch base excision and single strand break repair, which were further validated by PARP inhibition and metoxyamine treatment. We conclude that these low energy conditions discriminated against processive long-patch base excision repair, nucleotide excision repair as well as double strand break repair pathways.

  5. Nfkb1 is a haploinsufficient DNA damage-specific tumor suppressor

    OpenAIRE

    Voce, David J; Schmitt, Adam M.; Uppal, Abhineet; McNerney, Megan E.; Bernal, Giovanna M; Cahill, Kirk E.; Wahlstrom, Joshua S.; Nassiri, Ashley; Yu, Xiaohong; Crawley, Clayton D.; White, Kevin P.; Onel, Kenan; Weichselbaum, Ralph R.; Yamini, Bakhtiar

    2014-01-01

    NF-κB proteins play a central and subunit-specific role in the response to DNA damage. Previous work identified p50/NF-κB1 as being necessary for cytotoxicity in response to DNA alkylation damage. Given the importance of damage-induced cell death for maintenance of genomic stability, we examined whether Nfkb1 acts as a tumor suppressor in the setting of alkylation damage. Hprt mutation analysis demonstrates that Nfkb1−/− cells accumulate more alkylator-induced, but not ionizing radiation (IR)...

  6. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells.

    Science.gov (United States)

    Kwasniewska, Jolanta; Grabowska, Marta; Kwasniewski, Miroslaw; Kolano, Bozena

    2012-06-01

    We used comet-fluorescence in situ hybridization (FISH) in the model plant species Crepis capillaris following exposure of seedlings to maleic hydrazide (MH). FISH with 5S and 25S rDNA probes was applied to comets obtained under alkaline conditions to establish whether these DNA regions were preferentially involved in comet tail formation. MH treatment induced significant fragmentation of nuclear DNA and of rDNA loci. A 24-h post-treatment recovery period allowed a partial reversibility of MH-induced damage on nuclear and rDNA regions. Analyses of FISH signals demonstrated that rDNA sequences were always involved in tail formation and that 5S rDNA was more frequently present in the tail than 25S rDNA, regardless of treatment. The involvement of 25S rDNA in nucleolus formation and differences in chromatin structure between the two loci may explain the different susceptibility of the 25S and 5S rDNA regions to migrate into the tail. This work is the first report on the application of FISH to comet preparations from plants to analyze the distribution and repair of DNA damage within specific genomic regions after mutagenic treatment. Moreover, our work suggests that comet-FISH in plants may be a useful tool for environmental monitoring assessment.

  7. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  8. Experimental and theoretical investigation effect of flavonols antioxidants on DNA damage.

    Science.gov (United States)

    Ensafi, Ali A; Heydari-Soureshjani, E; Jafari-Asl, M; Rezaei, B; Ghasemi, Jahan B; Aghaee, Elham

    2015-08-01

    A new electrochemical biosensor was developed to demonstrate the effect of Acridine Orange (AO) on DNA damage. Then, the biosensor was used to check the inhibitors effect of three flavonols antioxidants (myricetin, fisetin and kaempferol) on DNA damage. Acridine Orange (AO) was used as a damaging agent because it shows a high affinity to nucleic acid and stretch of the double helical structure of DNA. Decreasing on the oxidation signals of adenine and guanine (in the DNA) in the presence of AO were used as probes to study the antioxidants power, using DNA-modified screen printed graphene electrode (DNA/SPGE). The results of our study showed that the DNA-biosensor could be suitable biosensor to investigate the inhibitors ability of the flavonols antioxidants on the DNA damage. The linear dependency was detected in the two regions in the ranges of 1.0-15.0 and 15.0-500.0 pmol L(-1). The detection limit was found 0.5 pmol L(-1) and 0.6 pmol L(-1) for guanine and adenine, respectively. To confirm the electrochemical results, Uv-Vis and fluorescence spectroscopic methods were used too. Finally molecular dynamic (MD) simulation was performed on the structure of DNA in a water box to study any interaction between the antioxidant, AO and DNA.

  9. The DNA-binding box of human SPARTAN contributes to the targeting of Polη to DNA damage sites.

    Science.gov (United States)

    Toth, Agnes; Hegedus, Lili; Juhasz, Szilvia; Haracska, Lajos; Burkovics, Peter

    2017-01-01

    Inappropriate repair of UV-induced DNA damage results in human diseases such as Xeroderma pigmentosum (XP), which is associated with an extremely high risk of skin cancer. A variant form of XP is caused by the absence of Polη, which is normally able to bypass UV-induced DNA lesions in an error-free manner. However, Polη is highly error prone when replicating undamaged DNA and, thus, the regulation of the proper targeting of Polη is crucial for the prevention of mutagenesis and UV-induced cancer formation. Spartan is a novel regulator of the damage tolerance pathway, and its association with Ub-PCNA has a role in Polη targeting; however, our knowledge about its function is only rudimentary. Here, we describe a new biochemical property of purified human SPARTAN by showing that it is a DNA-binding protein. Using a DNA binding mutant, we provide in vivo evidence that DNA binding by SPARTAN regulates the targeting of Polη to damage sites after UV exposure, and this function contributes highly to its DNA-damage tolerance function. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Capability of Vitamin E as a Radioprotector in Suppressing DNA Damage Determined with Comet Assay

    Directory of Open Access Journals (Sweden)

    Darlina Darlina

    2017-07-01

    Full Text Available Radiation has a potent to damage cells. Radiation may act directly or indirectly on deoxyribonucleic acid (DNA that results in the degeneration of tissues and necrotic, and thereby it needs a potent radioprotector to prevent these damages. Vitamin E is natural product known as an antioxidant which has potential as radioprotector. This research aimed to determine the capability of vitamin E with emphasized on the searching for its optimal concentration as radioprotector of DNA damage. This study used blood samples of healthy person irradiated with gamma rays at a dose of 6 Gy as the lethal dose to lymphocytes. The cocentrations of vitamin E from 0 to 0.8 mM was added into blood 15 minutes before irradiation. Isolation of lymphocytes was done using gradient centrifugation method. Evaluation on the capability of this compound in suppressing DNA damage was done by using alkaline Comet assay and data analysis was done using CaspLab program. The results show that addition of vitamin E could suppres these DNA damages and 0.8 mM of vitamin could reduce DNA damage up to 94.2%. We conclude that vitamin E effectively suppresed DNA damages induced by radiation. This information may benefit to the patient from negative impacts of radiotherapy.

  11. LEM-3 - A LEM domain containing nuclease involved in the DNA damage response in C. elegans.

    Directory of Open Access Journals (Sweden)

    Christina M Dittrich

    Full Text Available The small nematode Caenorhabditis elegans displays a spectrum of DNA damage responses similar to humans. In order to identify new DNA damage response genes, we isolated in a forward genetic screen 14 new mutations conferring hypersensitivity to ionizing radiation. We present here our characterization of lem-3, one of the genes identified in this screen. LEM-3 contains a LEM domain and a GIY nuclease domain. We confirm that LEM-3 has DNase activity in vitro. lem-3(lf mutants are hypersensitive to various types of DNA damage, including ionizing radiation, UV-C light and crosslinking agents. Embryos from irradiated lem-3 hermaphrodites displayed severe defects during cell division, including chromosome mis-segregation and anaphase bridges. The mitotic defects observed in irradiated lem-3 mutant embryos are similar to those found in baf-1 (barrier-to-autointegration factor mutants. The baf-1 gene codes for an essential and highly conserved protein known to interact with the other two C. elegans LEM domain proteins, LEM-2 and EMR-1. We show that baf-1, lem-2, and emr-1 mutants are also hypersensitive to DNA damage and that loss of lem-3 sensitizes baf-1 mutants even in the absence of DNA damage. Our data suggest that BAF-1, together with the LEM domain proteins, plays an important role following DNA damage - possibly by promoting the reorganization of damaged chromatin.

  12. Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair.

    Science.gov (United States)

    Czornak, Kamila; Chughtai, Sanaullah; Chrzanowska, Krystyna H

    2008-01-01

    Genomes are subject to a number of exogenous or endogenous DNA-damaging agents that cause DNA double-strand breaks (DSBs). These critical DNA lesions can result in cell death or a wide variety of genetic alterations, including deletions, translocations, loss of heterozygosity, chromosome loss, or chromosome fusions, which enhance genome instability and can trigger carcinogenesis. The cells have developed an efficient mechanism to cope with DNA damages by evolving the DNA repair machinery. There are 2 major DSB repair mechanisms: nonhomologous end joining (NHEJ) and homologous recombination (HR). One element of the repair machinery is the MRN complex, consisting of MRE11, RAD50 and NBN (previously described as NBS1), which is involved in DNA replication, DNA repair, and signaling to the cell cycle checkpoints. A number of kinases, like ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad-3-related), and DNA PKcs (DNA protein kinase catalytic subunit), phosphorylate various protein targets in order to repair the damage. If the damage cannot be repaired, they direct the cell to apoptosis. The MRN complex as well as repair kinases are also involved in telomere maintenance and genome stability. The dysfunction of particular elements involved in the repair mechanisms leads to genome instability disorders, like ataxia telangiectasia (A-T), A-T-like disorder (ATLD) and Nijmegen breakage syndrome (NBS). The mutated genes responsible for these disorders code for proteins that play key roles in the process of DNA repair. Here we present a detailed review of current knowledge on the MRN complex, kinases engaged in DNA repair, and genome instability disorders.

  13. The effect of a DNA damaging agent on embryonic cell cycles of the cnidarian Hydractinia echinata.

    Directory of Open Access Journals (Sweden)

    Tin Tin Su

    Full Text Available The onset of gastrulation at the Mid-Blastula Transition can accompany profound changes in embryonic cell cycles including the introduction of gap phases and the transition from maternal to zygotic control. Studies in Xenopus and Drosophila embryos have also found that cell cycles respond to DNA damage differently before and after MBT (or its equivalent, MZT, in Drosophila. DNA checkpoints are absent in Xenopus cleavage cycles but are acquired during MBT. Drosophila cleavage nuclei enter an abortive mitosis in the presence of DNA damage whereas post-MZT cells delay the entry into mitosis. Despite attributes that render them workhorses of embryonic cell cycle studies, Xenopus and Drosophila are hardly representative of diverse animal forms that exist. To investigate developmental changes in DNA damage responses in a distant phylum, I studied the effect of an alkylating agent, Methyl Methanesulfonate (MMS, on embryos of Hydractinia echinata. Hydractinia embryos are found to differ from Xenopus embryos in the ability to respond to a DNA damaging agent in early cleavage but are similar to Xenopus and Drosophila embryos in acquiring stronger DNA damage responses and greater resistance to killing by MMS after the onset of gastrulation. This represents the first study of DNA damage responses in the phylum Cnidaria.

  14. Trypanosomal histone γH2A and the DNA damage response.

    Science.gov (United States)

    Glover, Lucy; Horn, David

    2012-05-01

    DNA damage and repair in trypanosomatids impacts virulence, drug resistance and antigenic variation but, currently, little is known about DNA damage responses or cell cycle checkpoints in these divergent protozoa. One of the earliest markers of DNA damage in eukaryotes is γH2A(X), a serine phosphorylated histone H2A (variant). Here, we report the identification and initial characterization of γH2A in Trypanosoma brucei. We identified Thr(130) within the replication-dependent histone H2A as a candidate phosphorylation site and found that the abundance of this trypanosomal γH2A increased in vivo in response to DNA damage. Nuclear γH2A foci mark the sites of putative natural replication fork stalling, sites of meganuclease-induced DNA double strand breaks and sites of methyl methanesulphonate-induced DNA damage. Naturally occurring and meganuclease-induced γH2A and RAD51 double-positive repair foci are typically found in S-phase or G(2) nuclei. The results link trypanosomal γH2A, with an unusual histone modification motif, to DNA damage sensing and mitotic checkpoint signaling.

  15. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase.

    Science.gov (United States)

    Kolas, Nadine K; Chapman, J Ross; Nakada, Shinichiro; Ylanko, Jarkko; Chahwan, Richard; Sweeney, Frédéric D; Panier, Stephanie; Mendez, Megan; Wildenhain, Jan; Thomson, Timothy M; Pelletier, Laurence; Jackson, Stephen P; Durocher, Daniel

    2007-12-07

    Cells respond to DNA double-strand breaks by recruiting factors such as the DNA-damage mediator protein MDC1, the p53-binding protein 1 (53BP1), and the breast cancer susceptibility protein BRCA1 to sites of damaged DNA. Here, we reveal that the ubiquitin ligase RNF8 mediates ubiquitin conjugation and 53BP1 and BRCA1 focal accumulation at sites of DNA lesions. Moreover, we establish that MDC1 recruits RNF8 through phosphodependent interactions between the RNF8 forkhead-associated domain and motifs in MDC1 that are phosphorylated by the DNA-damage activated protein kinase ataxia telangiectasia mutated (ATM). We also show that depletion of the E2 enzyme UBC13 impairs 53BP1 recruitment to sites of damage, which suggests that it cooperates with RNF8. Finally, we reveal that RNF8 promotes the G2/M DNA damage checkpoint and resistance to ionizing radiation. These results demonstrate how the DNA-damage response is orchestrated by ATM-dependent phosphorylation of MDC1 and RNF8-mediated ubiquitination.

  16. The CXXC finger 5 protein is required for DNA damage-induced p53 activation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The tumor suppressor p53 is a critical component of the DNA damage response pathway that induces a set of genes responsible for cell cycle arrest,senescence,apoptosis,and DNA repair.The ataxia te-langiectasia mutated protein kinase(ATM) responds to DNA-damage stimuli and signals p53 stabiliza-tion and activation,thereby facilitating transactivation of p53 inducible genes and maintainence of genome integrity.In this study,we identified a CXXC zinc finger domain containing protein termed CF5 as a critical component in the DNA damage signaling pathway.CF5 induces p53 transcriptional activity and apoptosis in cells expressing wild type p53 but not in p53-deficient cells.Knockdown of CF5 in-hibits DNA damage-induced p53 activation as well as cell cycle arrest.Furthermore,CF5 physically interacts with ATM and is required for DNA damage-induced ATM phosphorylation but not its recruitment to chromatin.These findings suggest that CF5 plays a crucial role in ATM-p53 signaling in response to DNA damage.

  17. Measurement of DNA damage in individual cells using the Single Cell Gel Electrophoresis (Comet) assay.

    Science.gov (United States)

    Hartley, Janet M; Spanswick, Victoria J; Hartley, John A

    2011-01-01

    The Single Cell Gel Electrophoresis (Comet) assay is a simple, versatile and sensitive method for measuring DNA damage in individual cells, allowing the determination of heterogeneity of response within a cell population. The basic alkaline technique described is for the determination of DNA strand break damage and its repair at a single cell level. Specific modifications to the method use a lower pH ('neutral' assay), or allow the measurement of DNA interstrand cross-links. It can be further adapted to, for example, study specific DNA repair mechanisms, be combined with fluorescent in situ hybridisation, or incorporate lesion specific enzymes.

  18. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles

    DEFF Research Database (Denmark)

    Møller, Peter; Folkmann, J K; Danielsen, P H

    2012-01-01

    There is growing concern that gastrointestinal exposure to particles is associated with increased risk of toxicity to internal organs and carcinogenicity. The mechanism of action is related to particle-induced oxidative stress and oxidation of DNA. Observations from animal models indicate...... level of lipid peroxidation derived exocyclic DNA adducts in the liver, suggesting multiple pathways of oxidative stress for particle-generated damage to DNA. At equal dose, diesel exhaust particles (SRM2975) generated larger levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in rat liver than carbon black...... to particulate matter is associated with oxidative damage to DNA and this might be associated with increased risk of cancer....

  19. Apoptotic markers and DNA damage are related to late phase of stroke: Involvement of dyslipidemia and inflammation.

    Science.gov (United States)

    Pascotini, Eduardo Tanuri; Flores, Ariane Ethur; Kegler, Aline; Gabbi, Patricia; Bochi, Guilherme Vargas; Algarve, Thais Doeler; Prado, Ana Lucia Cervi; Duarte, Marta M M F; da Cruz, Ivana B M; Moresco, Rafael Noal; Royes, Luiz Fernando Freire; Fighera, Michele Rechia

    2015-11-01

    Oxidative stress and brain inflammation are thought to contribute to the pathophysiology of cerebral injury in acute stroke, leading to apoptosis and cell death. Lipid accumulation may lead to progression of carotid plaques and inflammation, contributing to increased acute stroke risk. However, little is known about these events and markers in the late stroke (>6 months) and if dyslipidemia could contribute to disease's pathophysiology in a later phase. In this case-control study, we recruited patients in the late stroke phase (n=40) and health subjects (control group; n = 40). Dichlorodihydrofluorescein (DCFH), nitrite/nitrate (NOx), Tumor necrosis factor-alpha (TNF-α), Acetylcholinesterase (AChE), Caspase 8 (CASP 8), Caspase 3 (CASP 3) and Picogreen (PG) were measured in periphery blood samples. Furthermore, a correlation among all measured markers (DCFH, NOx, TNF-α, AChE, CASP 8, CASP 3 and PG) was realized. The marker levels were also compared to triglycerides (TG), total (CHO), LDL and HDL cholesterol levels and medications used. Statistical analyses showed that stroke patients presented an increase of DCFH, NOx, TNF-α and AChE levels when compared to control subjects. In addition, we observed that stroke patients had significantly higher CASP 8, CASP 3 and PG levels than control group. A significant correlation between TNF-α with CASP 8 (r = 0.4) and CASP 3 (r = 0.4) levels was observed, but not with oxidative/nitrosative markers. Moreover, we observed that stroke patients with dyslipidemia had significantly higher TNF-α, CASP 8 and CASP 3 levels than stroke without dyslipidemia and control groups. Our findings suggest that oxidative and inflammatory markers may be still increased and lead to caspase activation and DNA damage even after 6 months to cerebral injury. Furthermore, it is plausible to propose that dyslipidemia may contribute to worsen proinflammatory state in a later phase of stroke and an increased risk to new neurovascular events.

  20. The effects of male age on sperm DNA damage in healthy non-smokers

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, T; Eskenazi, B; Baumgartner, A; Marchetti, F; Young, S; Weldon, R; Anderson, D; Wyrobek, A

    2006-03-08

    The trend for men to have children at older ages raises concerns that advancing age may increase the production of genetically defective sperm, increasing the risks of transmitting germ-line mutations. We investigated the associations between male age and sperm DNA damage and the influence of several lifestyle factors in a healthy non-clinical group of 80 non-smokers (age: 22-80) with no known fertility problems using the sperm Comet analyses. The average percent of DNA that migrated out of the sperm nucleus under alkaline electrophoresis increased with age (0.18% per year, p=0.006); but there was no age association for damage measured under neutral conditions (p=0.7). Men who consumed >3 cups coffee per day had {approx}20% higher % tail DNA under neutral but not alkaline conditions compared to men who consumed no caffeine (p=0.005). Our findings indicate that (a) older men have increased sperm DNA damage associated with alkali-labile sites or single-strand DNA breaks, and (b) independent of age, men with substantial daily caffeine consumption have increased sperm DNA damage associated with double-strand DNA breaks. DNA damage in sperm can be converted to chromosomal aberrations and gene mutations after fertilization increasing the risks for developmental defects and genetic diseases among offspring.

  1. Gypenosides causes DNA damage and inhibits expression of DNA repair genes of human oral cancer SAS cells.

    Science.gov (United States)

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Tang, Nou-Ying; Lu, Pei-Jung; Weng, Jing-Ru; Chung, Jing-Gung

    2010-01-01

    Gypenosides (Gyp) are the major components of Gynostemma pentaphyllum Makino, a Chinese medical plant. Recently, Gyp has been shown to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information to address the effects of Gyp on DNA damage and DNA repair-associated gene expression in human oral cancer cells. Therefore, we investigated whether Gyp induced DNA damage and DNA repair gene expression in human oral cancer SAS cells. The results from flow cytometric assay indicated that Gyp-induced cytotoxic effects led to a decrease in the percentage of viable SAS cells. The results from comet assay revealed that the incubation of SAS cells with Gyp led to a longer DNA migration smear (comet tail) when compared with control and this effect was dose-dependent. The results from real-time PCR analysis indicated that treatment of SAS cells with 180 mug/ml of Gyp for 24 h led to a decrease in 14-3-3sigma, DNA-dependent serine/threonine protein kinase (DNAPK), p53, ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and breast cancer gene 1 (BRCA1) mRNA expression. These observations may explain the cell death caused by Gyp in SAS cells. Taken together, Gyp induced DNA damage and inhibited DNA repair-associated gene expressions in human oral cancer SAS cells in vitro.

  2. DNA damage in male gonad cells of Green mussel (Perna viridis) upon exposure to tobacco products

    Digital Repository Service at National Institute of Oceanography (India)

    Nagarajappa; Ganguly, A.; Goswami, U.

    ) (Phillips, 1983) and reduced reproductive competence (Zenzes, 2000). In marine organisms such effects may lead to the disturbance of population and community dynamics thus affecting the marine trophic balance (Bayne,1976). DNA damage in somatic cell...

  3. Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay

    Science.gov (United States)

    Kameya, Hiromi; Miyanoshita, Akihiro; Imamura, Taro; Todoriki, Setsuko

    2012-03-01

    We attempted a DNA comet assay under alkaline conditions to verify the irradiation treatment of pests. Lasioderma serricorne (Fabricius) were chosen as test insects and irradiated with gamma rays from a 60Co source at 1 kGy. We conducted the comet assay immediately after irradiation and over time for 7 day. Severe DNA fragmentation in L. serricorne cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. The parameters of the comet image analysis were calculated, and the degree of DNA damage and repair were evaluated. Values for the Ratio (a percentage determined by fluorescence in the damaged area to overall luminance, including intact DNA and the damaged area of a comet image) of individual cells showed that no cells in the irradiated group were included in the Ratiocomet assay under alkaline conditions, combined with comet image analysis, can be used to identify irradiation history.

  4. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    Science.gov (United States)

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITINABSTRACT Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  5. Unrepaired DNA damage facilitates elimination of uniparental chromosomes in interspecific hybrid cells.

    Science.gov (United States)

    Wang, Zheng; Yin, Hao; Lv, Lei; Feng, Yingying; Chen, Shaopeng; Liang, Junting; Huang, Yun; Jiang, Xiaohua; Jiang, Hanwei; Bukhari, Ihtisham; Wu, Lijun; Cooke, Howard J; Shi, Qinghua

    2014-01-01

    Elimination of uniparental chromosomes occurs frequently in interspecific hybrid cells. For example, human chromosomes are always eliminated during clone formation when human cells are fused with mouse cells. However, the underlying mechanisms are still elusive. Here, we show that the elimination of human chromosomes in human-mouse hybrid cells is accompanied by continued cell division at the presence of DNA damage on human chromosomes. Deficiency in DNA damage repair on human chromosomes occurs after cell fusion. Furthermore, increasing the level of DNA damage on human chromosomes by irradiation accelerates human chromosome loss in hybrid cells. Our results indicate that the elimination of human chromosomes in human-mouse hybrid cells results from unrepaired DNA damage on human chromosomes. We therefore provide a novel mechanism underlying chromosome instability which may facilitate the understanding of carcinogenesis.

  6. Correlation between helium atmospheric pressure plasma jet (APPJ) variables and plasma induced DNA damage

    Science.gov (United States)

    Adhikari, Ek R.; Ptasinska, Sylwia

    2016-09-01

    A helium atmospheric pressure plasma jet (APPJ) source with a dielectric capillary and two tubular electrodes was used to induce damage in aqueous plasmid DNA. The fraction of different types of DNA damage (i.e., intact or undamaged, double strand breaks (DSBs), and single strand breaks (SSBs)) that occurred as the result of plasma irradiation was quantified through analysis of agarose gel electrophoresis images. The total DNA damage increased with an increase in both flow rate and duration of irradiation, but decreased with an increase in distance between the APPJ and sample. The average power of the plasma was calculated and the length of APPJ was measured for various flow rates and voltages applied. The possible effects of plasma power and reactive species on DNA damage are discussed.

  7. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology.

    Science.gov (United States)

    Cheung-Ong, Kahlin; Giaever, Guri; Nislow, Corey

    2013-05-23

    DNA-damaging agents have a long history of use in cancer chemotherapy. The full extent of their cellular mechanisms, which is essential to balance efficacy and toxicity, is often unclear. In addition, the use of many anticancer drugs is limited by dose-limiting toxicities as well as the development of drug resistance. Novel anticancer compounds are continually being developed in the hopes of addressing these limitations; however, it is essential to be able to evaluate these compounds for their mechanisms of action. This review covers the current DNA-damaging agents used in the clinic, discusses their limitations, and describes the use of chemical genomics to uncover new information about the DNA damage response network and to evaluate novel DNA-damaging compounds.

  8. Radioprotection against DNA damage by an extract of Indian green mussel, Perna viridis (L.)

    Digital Repository Service at National Institute of Oceanography (India)

    Kumaran, S.P.; Kutty, B.C.; Chatterji, A.; Parameswaran, P.S.; Mishra, K.P.

    This study describes the radioprotective ability of a hydrolysate prepared using an enzymeacid hydrolysis method from the green mussel Perna viridis in terms of its ability to prevent radiation-induced damage in plasmid DNA, cell death, reactive...

  9. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase

    Directory of Open Access Journals (Sweden)

    Eric Aeby

    2016-12-01

    Full Text Available Oxidative damage of telomeres can promote cancer, cardiac failure, and muscular dystrophy. Specific mechanisms protecting telomeres from oxidative damage have not been described. We analyzed telomeric chromatin composition during the cell cycle and show that the antioxidant enzyme peroxiredoxin 1 (PRDX1 is enriched at telomeres during S phase. Deletion of the PRDX1 gene leads to damage of telomeric DNA upon oxidative stress, revealing a protective function of PRDX1 against oxidative damage at telomeres. We also show that the oxidized nucleotide 8-oxo-2′deoxyguanosine-5′-triphosphate (8oxodGTP causes premature chain termination when incorporated by telomerase and that some DNA substrates terminating in 8oxoG prevent extension by telomerase. Thus, PRDX1 safeguards telomeres from oxygen radicals to counteract telomere damage and preserve telomeric DNA for elongation by telomerase.

  10. Effects of different levels of vitamin C on UV radiation-induced DNA damage

    Institute of Scientific and Technical Information of China (English)

    Dianfeng Zhou; Hang Heng; Kang Ji; Weizhong Ke

    2005-01-01

    The Raman spectra of DNA in different levels of vitamin C with 10- and 30-min ultraviolet (UV) radiations were reported. The intensity of UV radiation was 18.68 W/m2. The experimental results proved that vitamin C could alone prevent UV radiation from damaging DNA, but the effects depended on the concentration of vitamin C. When the concentration of vitamin C was about 0.08-0.4 mmol/L, vitamin C decreased UV radiation-induced DNA's damage. When the concentration of vitamin C exceeded 0.4 mmol/L, vitamin C accelerated DNA's damage instead. Maybe the reason is that when DNA in aqueous solution is radiated by UV, free radicals come into being, and vitamin C can scavenge free radicals, so vitamin C in lower concentration can protect DNA. The quantity of free radicals is finite, when vitamin C is superfluous, free radicals have been scavenged absolutely and vitamin C is residual. Vitamin C is a strong reductant. When the mixture of DNA and residual vitamin C is radiated by UV, vitamin C reacts with DNA. The more residual vitamin C and the longer time of UV radiation, the more DNA is damaged.

  11. Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons.

    Science.gov (United States)

    Xu, Shangcheng; Zhou, Zhou; Zhang, Lei; Yu, Zhengping; Zhang, Wei; Wang, Yuan; Wang, Xubu; Li, Maoquan; Chen, Yang; Chen, Chunhai; He, Mindi; Zhang, Guangbin; Zhong, Min

    2010-01-22

    Increasing evidence indicates that oxidative stress may be involved in the adverse effects of radiofrequency (RF) radiation on the brain. Because mitochondrial DNA (mtDNA) defects are closely associated with various nervous system diseases and mtDNA is particularly susceptible to oxidative stress, the purpose of this study was to determine whether radiofrequency radiation can cause oxidative damage to mtDNA. In this study, we exposed primary cultured cortical neurons to pulsed RF electromagnetic fields at a frequency of 1800 MHz modulated by 217 Hz at an average special absorption rate (SAR) of 2 W/kg. At 24 h after exposure, we found that RF radiation induced a significant increase in the levels of 8-hydroxyguanine (8-OHdG), a common biomarker of DNA oxidative damage, in the mitochondria of neurons. Concomitant with this finding, the copy number of mtDNA and the levels of mitochondrial RNA (mtRNA) transcripts showed an obvious reduction after RF exposure. Each of these mtDNA disturbances could be reversed by pretreatment with melatonin, which is known to be an efficient antioxidant in the brain. Together, these results suggested that 1800 MHz RF radiation could cause oxidative damage to mtDNA in primary cultured neurons. Oxidative damage to mtDNA may account for the neurotoxicity of RF radiation in the brain.

  12. Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA.

    OpenAIRE

    Loft, Steffen; Danielsen, Pernille; Løhr, Mille; Jantzen, Kim; Hemmingsen, Jette G.; Roursgaard, Martin; Karotki, Dorina Gabriela; Møller, Peter

    2012-01-01

    Oxidatively damaged DNA may be important in carcinogenesis. 8-Oxo-7,8-dihydroguanine (8-oxoGua) is an abundant and mutagenic lesion excised by oxoguanine DNA glycosylase 1 (OGG1) and measurable in urine or plasma by chromatographic methods with electrochemical or mass spectrometric detectors, reflecting the rate of damage in steady state. A common genetic OGG1 variant may affect the activity and was associated with increased levels of oxidized purines in leukocytes without apparent effect on ...

  13. Evaluation of sperm DNA damage in bulls by TUNEL assay as a parameter of semen quality

    OpenAIRE

    TAKEDA, Kumiko; UCHIYAMA, Kyoko; KINUKAWA, Masashi; Tagami, Takahiro; Kaneda, Masahiro; Watanabe, Shinya

    2015-01-01

    Sperm DNA damage affects the conception rate resulting from human assisted reproduction technology. The objective of this study was to adapt the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay to provide a quality parameter for bull semen based on the detection of sperm DNA damage. Fresh semen was collected from two Japanese Black bulls (A, B) several times over the course of a year, and the percentage of TUNEL-positive spermatozoa (sperm TUNEL index) was d...

  14. Induction of Cullin 7 by DNA damage attenuates p53 function

    OpenAIRE

    2007-01-01

    The p53 tumor suppressor gene encodes a transcription factor, which is translationally and posttranslationally activated after DNA damage. In a proteomic screen for p53 interactors, we found that the cullin protein Cul7 efficiently associates with p53. After DNA damage, the level of Cul7 protein increased in a caffeine-sensitive, but p53-independent, manner. Down-regulation of Cul7 by conditional microRNA expression augmented p53-mediated inhibition of cell cycle progression. Ectopic expressi...

  15. Effects of seven chemicals on DNA damage in the rat urinary bladder: a comet assay study.

    Science.gov (United States)

    Wada, Kunio; Yoshida, Toshinori; Takahashi, Naofumi; Matsumoto, Kyomu

    2014-07-15

    The in vivo comet assay has been used for the evaluation of DNA damage and repair in various tissues of rodents. However, it can give false-positive results due to non-specific DNA damage associated with cell death. In this study, we examined whether the in vivo comet assay can distinguish between genotoxic and non-genotoxic DNA damage in urinary bladder cells, by using the following seven chemicals related to urinary bladder carcinogenesis in rodents: N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), glycidol, 2,2-bis(bromomethyl)-1,3-propanediol (BMP), 2-nitroanisole (2-NA), benzyl isothiocyanate (BITC), uracil, and melamine. BBN, glycidol, BMP, and 2-NA are known to be Ames test-positive and they are expected to produce DNA damage in the absence of cytotoxicity. BITC, uracil, and melamine are Ames test-negative with metabolic activation but have the potential to induce non-specific DNA damage due to cytotoxicity. The test chemicals were administered orally to male Sprague-Dawley rats (five per group) for each of two consecutive days. Urinary bladders were sampled 3h after the second administration and urothelial cells were analyzed by the comet assay and subjected to histopathological examination to evaluate cytotoxicity. In the urinary bladders of rats treated with BBN, glycidol, and BMP, DNA damage was detected. In contrast, 2-NA induced neither DNA damage nor cytotoxicity. The non-genotoxic chemicals (BITC, uracil, and melamine) did not induce DNA damage in the urinary bladders under conditions where some histopathological changes were observed. The results indicate that the comet assay could distinguish between genotoxic and non-genotoxic chemicals and that no false-positive responses were obtained.

  16. Intersex in Littorina littorea and DNA damage in Mytilus edulis as indicators of harbour polllution

    DEFF Research Database (Denmark)

    Rank, Jette

    2009-01-01

    Intersex in snails (Littorina littorea) and DNA damage in blue mussels (Mytilus edulis) were analysed to assess how these bio-indicators reflected the level of chemical contamination at two sites in a highly contaminated harbour in Denmark. The comet assay using mussel gill cells was an indicator...... effects were found to reflect the levels of the chemicals, and it was concluded that intersex in L. littorea and DNA damage in M. edulis can be used as bio-indicators of harbour pollution...

  17. Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways

    OpenAIRE

    Ichijima, Yosuke; Sin, Ho-Su; Satoshi H Namekawa

    2012-01-01

    Sex chromosome inactivation in male germ cells is a paradigm of epigenetic programming during sexual reproduction. Recent progress has revealed the underlying mechanisms of sex chromosome inactivation in male meiosis. The trigger of chromosome-wide silencing is activation of the DNA damage response (DDR) pathway, which is centered on the mediator of DNA damage checkpoint 1 (MDC1), a binding partner of phosphorylated histone H2AX (γH2AX). This DDR pathway shares features with the somatic DDR p...

  18. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage

    OpenAIRE

    Chen, Lihong; Gilkes, Daniele M.; Pan, Yu; Lane, William S; Chen, Jiandong

    2005-01-01

    The p53 tumor suppressor is activated after DNA damage to maintain genomic stability and prevent transformation. Rapid activation of p53 by ionizing radiation is dependent on signaling by the ATM kinase. MDM2 and MDMX are important p53 regulators and logical targets for stress signals. We found that DNA damage induces ATM-dependent phosphorylation and degradation of MDMX. Phosphorylated MDMX is selectively bound and degraded by MDM2 preceding p53 accumulation and activation. Reduction of MDMX...

  19. DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos

    OpenAIRE

    2016-01-01

    DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of γ...

  20. 14-3-3 Proteins, FHA Domains and BRCT Domains in the DNA Damage Response

    OpenAIRE

    Mohammad, Duaa H.; Yaffe, Michael B.

    2009-01-01

    The DNA damage response depends on the concerted activity of protein serine/threonine kinases and modular phosphoserine/threonine binding domains to relay the damage signal and recruit repair proteins. The PIKK family of protein kinases, which includes ATM/ATR/DNA-PK, preferentially phosphorylate Ser-Gln sites, while their basophilic downstream effecter kinases, Chk1/Chk2/MK2 preferentially phosphorylate hydrophobic-X-Arg-X-X-Ser/Thr-hydrophobic sites. A subset of tandem BRCT domains act as p...

  1. Multidrug Resistance 1 Gene Variants, Pesticide Exposure, and Increased Risk of DNA Damage

    OpenAIRE

    Chun-Chieh Chen; Chun-Huang Huang; Man-Tzu Marcie Wu; Chia-Hsuan Chou; Chia-Chen Huang; Tzu-Yen Tseng; Fang-Yu Chang; Ying-Ti Li; Chun-Cheng Tsai; Tsung-Shing Wang; Ruey-Hong Wong

    2014-01-01

    The P-glycoprotein, encoded by the multidrug resistance (MDR)1 gene, extrudes fat-soluble compounds to the extracellular environment. However, the DNA damage of pesticides in subjects with genetic variation in MDR1 has not been investigated. In this study, the comet assay was applied to examine the extent of DNA damage in the peripheral blood of 195 fruit growers who had been exposed to pesticides and 141 unexposed controls. The MDR1 polymorphisms were identified. Questionnaires were administ...

  2. Histone H3 lysine 56 acetylation and the response to DNA replication fork damage

    DEFF Research Database (Denmark)

    Wurtele, Hugo; Kaiser, Gitte Schalck; Bacal, Julien;

    2012-01-01

    but are only mildly affected by hydroxyurea. We demonstrate that, after exposure to MMS, H3K56ac-deficient cells cannot complete DNA replication and eventually segregate chromosomes with intranuclear foci containing the recombination protein Rad52. In addition, we provide evidence that these phenotypes......In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) occurs in newly synthesized histones that are deposited throughout the genome during DNA replication. Defects in H3K56ac sensitize cells to genotoxic agents, suggesting that this modification plays an important role in the DNA...... damage response. However, the links between histone acetylation, the nascent chromatin structure, and the DNA damage response are poorly understood. Here we report that cells devoid of H3K56ac are sensitive to DNA damage sustained during transient exposure to methyl methanesulfonate (MMS) or camptothecin...

  3. Sperm DNA damage and its clinical relevance in assessing reproductive outcome

    Institute of Scientific and Technical Information of China (English)

    R.K.Sharma; T.Said; A.Agarwal

    2004-01-01

    The routine examination of semen, which assesses sperm concentration, percentage motility and morphology,does not identify subtle defects in sperm chromatin architecture. The focus on the genomic integrity of the male gamete has intensified recently due to the growing concern that genetic diseases may be transmitted via assisted reproductive techniques (ART). Accordingly, the intent of this review is to describe the details of the informationpertaining to mitochondfial/nuclear sperm DNA damage with an emphasis on its clinical significance and its relationship with male infertility. Assessment of sperm DNA damage appears to be a potential tool for evaluating semen samples prior to their use in ART. Testing DNA integrity may help select spermatozoa with intact DNA or with the least amount of DNA damage for use in assisted conception. In turn, this may alleviate the financial, social and emotional problems associated with failed ART attempts.

  4. Toxic DNA Damage by Hydrogen Peroxide through the Fenton Reaction in vivo and in vitro

    Science.gov (United States)

    Imlay, James A.; Chin, Sherman M.; Linn, Stuart

    1988-04-01

    Exposure of Escherichia coli to low concentrations of hydrogen peroxide results in DNA damage that causes mutagenesis and kills the bacteria, whereas higher concentrations of peroxide reduce the amount of such damage. Earlier studies indicated that the direct DNA oxidant is a derivative of hydrogen peroxide whose formation is dependent on cell metabolism. The generation of this oxidant depends on the availability of both reducing equivalents and an iron species, which together mediate a Fenton reaction in which ferrous iron reduces hydrogen peroxide to a reactive radical. An in vitro Fenton system was established that generates DNA strand breaks and inactivates bacteriophage and that also reproduces the suppression of DNA damage by high concentrations of peroxide. The direct DNA oxidant both in vivo and in this in vitro system exhibits reactivity unlike that of a free hydroxyl radical and may instead be a ferryl radical.

  5. DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Mankgopo Magdeline Kgatle

    2017-01-01

    Full Text Available Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV, hepatitis B virus (HBV, and Epstein-Barr virus (EBV. Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.

  6. Mechanisms for radiation damage in DNA. Final report, June 1, 1986--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sevilla, M.D.

    1996-08-01

    Over the last 10 years significant advances have been made impacting the understanding of radiation damage to DNA. The principal objective of this work was the elucidation of the fundamental mechanisms of radiation damage to DNA through the direct and indirect effects. Recently the work concentrated on the direct effect of radiation damage on DNA. The objective was to elucidate the ultimate radiation chemical damage to DNA arising from the direct effect. In this effort the focus was on the application of three techniques. ESR spectroscopic measurement of initial radicals formed in DNA and its hydration layer at low temperatures. Ab initio molecular orbital calculations were employed to give highly accurate theoretical predictions of early events such as electron and hole localization sites which serve to test and to clarify the experimental observations. HPLC and GC-mass spectroscopic assays of DNA base products formation provide the ultimate chemical outcome of the initial radiation events. The bridge between the early ion radical species and the non-radical products is made in ESR studies which follow the chemistry of the early species as they react with water and or other DNA bases. The use of these techniques has resulted in a new and fundamental understanding of the radiation damage to DNA on a molecular scale. From this work, a working model for DNA damage from the initial ionization event to the eventual formation of molecular base damage products and strand breaks has been formulated. Results over the past several years which have led to the formulation of this model are described.

  7. Atrazine Triggers DNA Damage Response and Induces DNA Double-Strand Breaks in MCF-10A Cells.

    Science.gov (United States)

    Huang, Peixin; Yang, John; Ning, Jie; Wang, Michael; Song, Qisheng

    2015-06-24

    Atrazine, a pre-emergent herbicide in the chloro-s-triazine family, has been widely used in crop lands and often detected in agriculture watersheds, which is considered as a potential threat to human health. Although atrazine and its metabolites showed an elevated incidence of mammary tumors in female Sprague-Dawley (SD) rats, no molecular evidence was found relevant to its carcinogenesis in humans. This study aims to determine whether atrazine could induce the expression of DNA damage response-related proteins in normal human breast epithelial cells (MCF-10A) and to examine the cytotoxicity of atrazine at a molecular level. Our results indicate that a short-term exposure of MCF-10A to an environmentally-detectable concentration of atrazine (0.1 µg/mL) significantly increased the expression of tumor necrosis factor receptor-1 (TNFR1) and phosphorylated Rad17 in the cells. Atrazine treatment increased H2AX phosphorylation (γH2AX) and the formation of γH2AX foci in the nuclei of MCF-10A cells. Atrazine also sequentially elevated DNA damage checkpoint proteins of ATM- and RAD3-related (ATR), ATRIP and phospho-Chk1, suggesting that atrazine could induce DNA double-strand breaks and trigger the DNA damage response ATR-Chk1 pathway in MCF-10A cells. Further investigations are needed to determine whether atrazine-triggered DNA double-strand breaks and DNA damage response ATR-Chk1 pathway occur in vivo.

  8. Studying S-phase DNA Damage Checkpoints using the Fission Yeast Schizosaccharomyces pombe

    Science.gov (United States)

    Willis, Nicholas; Rhind, Nicholas

    2016-01-01

    Slowing of replication in response to DNA damage is a universal response to DNA damage during S-phase. Originally discovered to be defective in checkpoint mutant cells in metazoans, this S-phase DNA damage checkpoint response has been extensively studied in yeast. Unlike other checkpoints that completely arrest cell cycle, the S-phase DNA damage checkpoint slows but does not completely halt replication in response to DNA damage. An analysis of mutants defective in the slowing response requires a sensitive assay to measure this quantitative effect. The use of centrifugal elutriation to synchronize cells and improved techniques in preparing cells for flow cytometry allow for more sensitive and accurate measurement of cells’ ability to slow replication in the presence of DNA damage. This chapter describes the use of transient cdc10-M17 temperature sensitive allele arrest and release combined with centrifugal elutriation to synchronize cells in G1. The S-phase progression of these cells is then assayed by flow cytometry of isolated nuclei, which allows sensitive determination of replication kinetics. PMID:21870281

  9. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Joshua W Modell

    2014-10-01

    Full Text Available Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.

  10. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    Science.gov (United States)

    Modell, Joshua W; Kambara, Tracy K; Perchuk, Barrett S; Laub, Michael T

    2014-10-01

    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.

  11. A DNA Damage-Induced, SOS-Independent Checkpoint Regulates Cell Division in Caulobacter crescentus

    Science.gov (United States)

    Modell, Joshua W.; Kambara, Tracy K.; Perchuk, Barrett S.; Laub, Michael T.

    2014-01-01

    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage. PMID:25350732

  12. Evaluation of the DNA damaging effects of amitraz on human lymphocytes in the Comet assay.

    Science.gov (United States)

    Radakovic, Milena; Stevanovic, Jevrosima; Djelic, Ninoslav; Lakic, Nada; Knezevic-Vukcevic, Jelena; Vukovic-Gacic, Branka; Stanimirovic, Zoran

    2013-03-01

    Amitraz is formamidine pesticide widely used as insecticide and acaricide. In veterinary medicine, amitraz has important uses against ticks, mites and lice on animals. Also, amitraz is used in apiculture to control Varroa destructor. It this study, the alkaline Comet assay was used to evaluate DNA damaging effects of amitraz in human lymphocytes. Isolated human lymphocytes were incubated with varying concentrations of amitraz (0.035, 0.35, 3.5, 35 and 350 mu g/mL). The Comet assay demonstrated that all concentrations of amitraz caused statistically significant increase in the level of DNA damage, thus indicating that amitraz possesses genotoxic potential. The concentration of amitraz that produced the highest DNA damage (3.5 mu g/mL) was chosen for further analysis with the antioxidant catalase. The obtained results showed that co-treatment with antioxidant catalase (100 IU/mL or 500 IU/mL) significantly reduced the level of DNA damage, indicating the possible involvement of reactive oxygen species in DNA damaging effects of amitraz. Flow cytometric analysis revealed increase of the apoptotic index following treatment with amitraz. However, co-treatment with catalase reduced the apoptotic index, while treatment with catalase alone reduced the percentage of apoptotoc cells even in comparison with the negative control. Therefore, catalase had protective effects against ROS-mediated DNA damage and apoptosis.

  13. ATM-dependent phosphorylation of MEF2D promotes neuronal survival after DNA damage.

    Science.gov (United States)

    Chan, Shing Fai; Sances, Sam; Brill, Laurence M; Okamoto, Shu-Ichi; Zaidi, Rameez; McKercher, Scott R; Akhtar, Mohd W; Nakanishi, Nobuki; Lipton, Stuart A

    2014-03-26

    Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM-MEF2D pathway may contribute to neurodegeneration in AT.

  14. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage.

    Science.gov (United States)

    Bot, Christopher; Pfeiffer, Annika; Giordano, Fosco; Manjeera, Dharani E; Dantuma, Nico P; Ström, Lena

    2017-03-15

    NIPBL is required to load the cohesin complex on to DNA. While the canonical role of cohesin is to couple replicated sister chromatids together until the onset of mitosis, it also promotes tolerance to DNA damage. Here, we show that NIPBL is recruited to DNA damage throughout the cell cycle via independent mechanisms, influenced by type of damage. First, the heterochromatin protein HP1γ (also known as CBX3) recruits NIPBL to DNA double-strand breaks (DSBs) through the corresponding HP1-binding motif within the N-terminus. By contrast, the C-terminal HEAT repeat domain is unable to recruit NIPBL to DSBs but independently targets NIPBL to laser microirradiation-induced DNA damage. Each mechanism is dependent on the RNF8 and RNF168 ubiquitylation pathway, while the recruitment of the HEAT repeat domain requires further ATM or ATR activity. Thus, NIPBL has evolved a sophisticated response to damaged DNA that is influenced by the form of damage, suggesting a highly dynamic role for NIPBL in maintaining genomic stability.

  15. Evaluation of the DNA damaging effects of amitraz on human lymphocytes in the Comet assay

    Indian Academy of Sciences (India)

    Milena Radakovic; Jevrosima Stevanovic; Ninoslav Djelic; Nada Lakic; Jelena Knezevic-Vukcevic; Branka Vukovic-Gacic; Zoran Stanimirovic

    2013-03-01

    Amitraz is formamidine pesticide widely used as insecticide and acaricide. In veterinary medicine, amitraz has important uses against ticks, mites and lice on animals. Also, amitraz is used in apiculture to control Varroa destructor. It this study, the alkaline Comet assay was used to evaluate DNA damaging effects of amitraz in human lymphocytes. Isolated human lymphocytes were incubated with varying concentrations of amitraz (0.035, 0.35, 3.5, 35 and 350 g/mL). The Comet assay demonstrated that all concentrations of amitraz caused statistically significant increase in the level of DNA damage, thus indicating that amitraz possesses genotoxic potential. The concentration of amitraz that produced the highest DNA damage (3.5 g/mL) was chosen for further analysis with the antioxidant catalase. The obtained results showed that co-treatment with antioxidant catalase (100 IU/mL or 500 IU/mL) significantly reduced the level of DNA damage, indicating the possible involvement of reactive oxygen species in DNA damaging effects of amitraz. Flow cytometric analysis revealed increase of the apoptotic index following treatment with amitraz. However, co-treatment with catalase reduced the apoptotic index, while treatment with catalase alone reduced the percentage of apoptotoc cells even in comparison with the negative control. Therefore, catalase had protective effects against ROS-mediated DNA damage and apoptosis.

  16. MOF and H4 K16 Acetylation Play Important Roles in DNA Damage Repair by Modulating Recruitment of DNA Damage Repair Protein Mdc1 ▿

    Science.gov (United States)

    Li, Xiangzhi; Corsa, Callie Ann Sprunger; Pan, Patricia W.; Wu, Lipeng; Ferguson, David; Yu, Xiaochun; Min, Jinrong; Dou, Yali

    2010-01-01

    MOF (MYST1) is the major enzyme to catalyze acetylation of histone H4 lysine 16 (K16) and is highly conserved through evolution. Using a conditional knockout mouse model and the derived mouse embryonic fibroblast cell lines, we showed that loss of Mof led to a global reduction of H4 K16 acetylation, severe G2/M cell cycle arrest, massive chromosome aberration, and defects in ionizing radiation-induced DNA damage repair. We further showed that although early DNA damage sensing and signaling by ATM were normal in Mof-null cells, the recruitment of repair mediator protein Mdc1 and its downstream signaling proteins 53bp1 and Brca1 to DNA damage foci was completely abolished. Mechanistic studies suggested that Mof-mediated H4 K16 acetylation and an intact acidic pocket on H2A.X were essential for the recruitment of Mdc1. Removal of Mof and its associated proteins phenocopied a charge-neutralizing mutant of H2A.X. Given the well-characterized H4-H2A trans interactions in regulating higher-order chromatin structure, our study revealed a novel chromatin-based mechanism that regulates the DNA damage repair process. PMID:20837706

  17. DNA damage in blood cells exposed to low-level lasers.

    Science.gov (United States)

    Sergio, Luiz Philippe da Silva; Silva, Ana Paula Almeida da; Amorim, Philipi Freitas; Campos, Vera Maria Araújo; Magalhães, Luis Alexandre Gonçalves; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2015-04-01

    In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers. © 2015 Wiley Periodicals, Inc.

  18. DNA Damage of Lymphocytes in Volunteers after 4 hours Use of Mobile Phone.

    Science.gov (United States)

    Ji, Seonmi; Oh, Eunha; Sul, Donggeun; Choi, Jae Wook; Park, Heechan; Lee, Eunil

    2004-11-01

    There has been gradually increasing concern about the adverse health effects of electromagnetic radiation originating from cell phones which are widely used in modern life. Cell phone radiation may affect human health by increasing free radicals of human blood cells. This study has been designed to identify DNA damage of blood cells by electromagnetic radiation caused by cell phone use. This study investigated the health effect of acute exposure to commercially available cell phones on certain parameters such as an indicator of DNA damage for 14 healthy adult volunteers. Each volunteer during the experiment talked over the cell phone with the keypad facing the right side of the face for 4 hours. The single cell gel electrophoresis assay (Comet assay), which is very sensitive in detecting the presence of DNA strand-breaks and alkali-labile damage in individual cells, was used to assess peripheral blood cells (T-cells, B-cells, granulocytes) from volunteers before and after exposure to cell phone radiation. The parameters of Comet assay measured were Olive Tail Moment and Tail DNA %. The Olive Tail Moment of B-cells and granulocytes and Tail DNA % of B-cells and granulocytes were increased by a statistically significant extent after 4- hour use of a cell phone compared with controls. It is concluded that cell phone radiation caused the DNA damage during the 4 hours of experimental condition. Nonetheless, this study suggested that cell phone use may increase DNA damage by electromagnetic radiation and other contributing factors.

  19. Occupational exposure to polycyclic aromatic hydrocarbons and DNA damage by industry: a nationwide study in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski, Boleslaw; Pesch, Beate; Rabstein, Sylvia; Raulf-Heimsoth, Monika; Rihs, Hans-Peter; Erkes, Anja; Engelhardt, Beate; Kaefferlein, Heiko Udo; Angerer, Juergen; Bruening, Thomas [BGFA - Research Institute of Occupational Medicine, German Social Accident Insurance, Ruhr-University Bochum, Bochum (Germany); Wilhelm, Michael [Ruhr-University Bochum, Institute of Hygiene, Social and Environmental Medicine, Bochum (Germany); Rossbach, Bernd [Johannes Gutenberg-University Mainz, Institute of Occupational, Social and Environmental Medicine, Mainz (Germany); Preuss, Ralf [Friedrich-Alexander-University Erlangen/Nuernberg, Institute and Outpatient Clinic of Occupational, Social- and Environmental Medicine, Erlangen (Germany); Hahn, Jens-Uwe [BGIA - Institute for Occupational Health and Safety, German Social Accident Insurance, Sankt Augustin (Germany); Seidel, Albrecht [Biochemical Institute for Environmental Carcinogens, Grosshansdorf (Germany); Adams, Ansgar [BAD Health Prevention and Technical Safety GmbH, Koblenz (Germany); Scherenberg, Michael [Occupational Medical Center Oberhausen, German Social Accident Insurance of the Construction Industry, Oberhausen (Germany); Straif, Kurt [International Agency for Research on Cancer (IARC), World Health Organisation, Lyon Cedex 08 (France)

    2009-10-15

    Exposure to polycyclic aromatic hydrocarbons (PAH) and DNA damage were analyzed in coke oven (n = 37), refractory (n = 96), graphite electrode (n = 26), and converter workers (n = 12), whereas construction workers (n = 48) served as referents. PAH exposure was assessed by personal air sampling during shift and biological monitoring in urine post shift (1-hydroxypyrene, 1-OHP and 1-, 2 + 9-, 3-, 4-hydroxyphenanthrenes, {sigma}OHPHE). DNA damage was measured by 8-oxo-7,8-dihydro-2{sup '}-deoxyguanosine (8-oxodGuo) and DNA strand breaks in blood post shift. Median 1-OHP and {sigma}OHPHE were highest in converter workers (13.5 and 37.2 {mu}g/g crea). The industrial setting contributed to the metabolite concentrations rather than the air-borne concentration alone. Other routes of uptake, probably dermal, influenced associations between air-borne concentrations and levels of PAH metabolites in urine making biomonitoring results preferred parameters to assess exposure to PAH. DNA damage in terms of 8-oxo-dGuo and DNA strand breaks was higher in exposed workers compared to referents ranking highest for graphite-electrode production. The type of industry contributed to genotoxic DNA damage and DNA damage was not unequivocally associated to PAH on the individual level most likely due to potential contributions of co-exposures. (orig.)

  20. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells.

    Science.gov (United States)

    Walter, Dagmar; Lier, Amelie; Geiselhart, Anja; Thalheimer, Frederic B; Huntscha, Sina; Sobotta, Mirko C; Moehrle, Bettina; Brocks, David; Bayindir, Irem; Kaschutnig, Paul; Muedder, Katja; Klein, Corinna; Jauch, Anna; Schroeder, Timm; Geiger, Hartmut; Dick, Tobias P; Holland-Letz, Tim; Schmezer, Peter; Lane, Steven W; Rieger, Michael A; Essers, Marieke A G; Williams, David A; Trumpp, Andreas; Milsom, Michael D

    2015-04-23

    Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia. However, the physiological source of DNA damage in HSCs from both normal and diseased individuals remains unclear. Here we show in mice that DNA damage is a direct consequence of inducing HSCs to exit their homeostatic quiescent state in response to conditions that model physiological stress, such as infection or chronic blood loss. Repeated activation of HSCs out of their dormant state provoked the attrition of normal HSCs and, in the case of mice with a non-functional Fanconi anaemia DNA repair pathway, led to a complete collapse of the haematopoietic system, which phenocopied the highly penetrant bone marrow failure seen in Fanconi anaemia patients. Our findings establish a novel link between physiological stress and DNA damage in normal HSCs and provide a mechanistic explanation for the universal accumulation of DNA damage in HSCs during ageing and the accelerated failure of the haematopoietic system in Fanconi anaemia patients.

  1. Magnesium Supplementation Diminishes Peripheral Blood Lymphocyte DNA Oxidative Damage in Athletes and Sedentary Young Man

    Directory of Open Access Journals (Sweden)

    Jelena Petrović

    2016-01-01

    Full Text Available Sedentary lifestyle is highly associated with increased risk of cardiovascular disease, obesity, and type 2 diabetes. It is known that regular physical activity has positive effects on health; however several studies have shown that acute and strenuous exercise can induce oxidative stress and lead to DNA damage. As magnesium is essential in maintaining DNA integrity, the aim of this study was to determine whether four-week-long magnesium supplementation in students with sedentary lifestyle and rugby players could prevent or diminish impairment of DNA. By using the comet assay, our study demonstrated that the number of peripheral blood lymphocytes (PBL with basal endogenous DNA damage is significantly higher in rugby players compared to students with sedentary lifestyle. On the other hand, magnesium supplementation significantly decreased the number of cells with high DNA damage, in the presence of exogenous H2O2, in PBL from both students and rugby players, and markedly reduced the number of cells with medium DNA damage in rugby players compared to corresponding control nonsupplemented group. Accordingly, the results of our study suggest that four-week-long magnesium supplementation has marked effects in protecting the DNA from oxidative damage in both rugby players and in young men with sedentary lifestyle. Clinical trial is registered at ANZCTR Trial Id: ACTRN12615001237572.

  2. The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Toledo Lazaro, Luis Ignacio; Gudjonsson, Thorkell

    2013-01-01

    the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly...

  3. Antioxidant vitamins and cancer risk: is oxidative damage to DNA a relevant biomarker?

    DEFF Research Database (Denmark)

    Loft, Steffen; Møller, Peter; Cooke, Marcus S;

    2008-01-01

    Oxidative damage to DNA is regarded as an important step in carcinogenesis. These lesions may arise as a consequence of exposure to xenobiotics, but are also generated as a consequence of endogenous generation of oxidizing compounds. Measurements of oxidative damage to guanines, such as 8-oxo-7, ...

  4. Potential importance of transition metals in the induction of DNA damage by sperm preparation media.

    Science.gov (United States)

    Aitken, R J; Finnie, J M; Muscio, L; Whiting, S; Connaughton, H S; Kuczera, L; Rothkirch, T B; De Iuliis, G N

    2014-10-10

    What are the mechanisms by which the preparation of spermatozoa on discontinuous density gradients leads to an increase in oxidative DNA damage? The colloidal silicon solutions that are commonly used to prepare human spermatozoa for assisted reproduction technology (ART) purposes contain metals in concentrations that promote free radical-mediated DNA damage. Sporadic reports have already appeared indicating that the use of colloidal silicon-based discontinuous density gradients for sperm preparation is occasionally associated with the induction of oxidative DNA damage. The cause of this damage is however unknown. This study comprised a series of experiments designed to: (i) confirm the induction of oxidative DNA damage in spermatozoa prepared on commercially available colloidal silicon gradients, (ii) compare the levels of damage observed with alterative sperm preparation techniques including an electrophoretic approach and (iii) determine the cause of the oxidative DNA damage and develop strategies for its prevention. The semen samples employed for this analysis involved a cohort of >50 unselected donors and at least three independent samples were used for each component of the analysis. The setting was a University biomedical science laboratory. The major techniques employed were: (i) flow cytometry to study reactive oxygen species generation, lipid peroxidation and DNA damage, (ii) computer-aided sperm analysis to measure sperm movement and (iii) inductively coupled mass spectrometry to determine the elemental composition of sperm preparation media. Oxidative DNA damage is induced in spermatozoa prepared on PureSperm(®) discontinuous colloidal silicon gradients (P media revealed that metal contamination is a relatively constant feature of such products. While the presence of metals, particularly transition metals, may exacerbate the levels of oxidative DNA damage seen in human spermatozoa, the significance of such damage has not yet been tested in suitably

  5. A Computational Study of Hadron Radiation Damage to DNA Nucleobases

    DEFF Research Database (Denmark)

    Milhøj, Birgitte Olai

    Radiation damage of biomolecules is a signicant contributor to both the onset and also possible curing of cancer. Such damage is largely the result of free radicals that can be created by the interaction of high-energetic photons or ions with water within cells. Understanding the details of this ......Radiation damage of biomolecules is a signicant contributor to both the onset and also possible curing of cancer. Such damage is largely the result of free radicals that can be created by the interaction of high-energetic photons or ions with water within cells. Understanding the details...... of this interaction is therefore of vital importance to the medical community, but even after decades of thorough investigation the breakdown pattern of radiation damage has not yet been completely deciphered. This thesis represents a very comprehensive attempt at drawing conclusions on the initial step....... Considering this there is much novelty in the results drawn from the present study, as conclusions based also on the kinetics of the system imply that the hydrogen abstraction pathways are of equal importance for the possible reactions preceding the radiation damage. The purine nucleobases are found to favour...

  6. CUPRAC colorimetric and electroanalytical methods determining antioxidant activity based on prevention of oxidative DNA damage.

    Science.gov (United States)

    Uzunboy, Seda; Çekiç, Sema Demirci; Eksin, Ece; Erdem, Arzum; Apak, Reşat

    2017-02-01

    An unbalanced excess of oxygen/nitrogen species (ROS/RNS) can give oxidative hazard to DNA and other biomacromolecules under oxidative stress conditions. While the 'comet' assay for measuring DNA damage is neither specific nor practical, monitoring oxidative changes on individual DNA bases and other oxidation products needs highly specialized equipment and operators. Thus, we developed a modified CUPRAC (cupric ion reducing antioxidant capacity) colorimetric method to determine the average total damage on DNA produced by Fenton oxidation, taking advantage of the fact that the degradation products of DNA but not the original macromolecule is CUPRAC-responsive. The DNA-protective effects of water-soluble antioxidants were used to devise a novel antioxidant activity assay, considered to be physiologically more realistic than those using artificial probes. Our method, based on the measurement of DNA oxidative products with CUPRAC colorimetry proved to be 2 orders-of-magnitude more sensitive than the widely used TBARS (thiobarbituric acid-reactive substances) colorimetric assay used as reference. Additionally, the DNA damage was electrochemically investigated using pencil graphite electrodes (PGEs) as DNA sensor platform in combination with differential pulse voltammetry (DPV). The interaction of the radical species with DNA in the absence/presence of antioxidants was detected according to the changes in guanine oxidation signal.

  7. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    OpenAIRE

    Čolović, Mirjana B.; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are appl...

  8. The regulation of DNA damage tolerance by Ubiquitin and Ubiquitin-like modifiers

    Directory of Open Access Journals (Sweden)

    Lina Cipolla

    2016-06-01

    Full Text Available DNA replication is an extremely complex process that needs to be executed in a highly accurate manner in order to propagate the genome. This task requires the coordination of a number of enzymatic activities and it is incredibly fragile and prone to arrest after DNA damage. DNA damage tolerance provides a last line of defense that allows completion of DNA replication in presence of an unrepaired template. One of such mechanisms is called Post Replication Repair (PRR and it is used by the cells to bypass highly distorted templates caused by damaged bases. PRR is extremely important for the cellular life and performs the bypass of the damage both in an error free and in an error prone manner. In light of these two possible outcomes, PRR needs to be tightly regulated and controlled in order to prevent accumulation of mutations leading ultimately to genome instability. Post-translational modifications provide the framework for this regulation and Ubiquitylation and SUMOylation of PRR proteins play a pivotal role in choosing which pathway to activate, controlling the different outcomes of damage bypass. PCNA (Proliferating Cell Nuclear Antigen, the DNA clamp for replicative polymerases, plays a central role in the regulation of damage tolerance and its modification by Ubiquitin and SUMO controls both the error free and error prone branches of PRR. Furthermore, a significant number of polymerases involved in the bypass of DNA damage possess domains that can bind post-translational modifications and they are themselves target for ubiquitylation. In this review, we will focus on how Ubiquitin and Ubiquitin-like modifications can regulate the DNA damage tolerance systems and how they are capable of controlling the recruitment of different proteins to the replication fork.

  9. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Ishai, R.; Scharf, R.; Sharon, R.; Kapten, I. (Technion-Israel Institute of Technology, Haifa (Israel))

    1990-08-01

    Xeroderma pigmentosum cells, which are deficient in the repair of UV light-induced DNA damage, have been used to clone DNA-damage-inducible transcripts in human cells. The cDNA clone designated pC-5 hybridizes on RNA gel blots to a 1-kilobase transcript, which is moderately abundant in nontreated cells and whose synthesis is enhanced in human cells following UV irradiation or treatment with several other DNA-damaging agents. UV-enhanced transcription of C-5 RNA is transient and occurs at lower fluences and to a greater extent in DNA-repair-deficient than in DNA-repair-proficient cells. Southern blot analysis indicates that the C-5 gene belongs to a multigene family. A cDNA clone containing the complete coding sequence of C-5 was isolated. Sequence analysis revealed that it is homologous to a human cellular sequence encoding the amino-terminal activating sequence of the trk-2h chimeric oncogene. The presence of DNA-damage-responsive sequences at the 5' end of a chimeric oncogene could result in enhanced expression of the oncogene in response to carcinogens.

  10. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest

    2015-01-01

    Increased levels of oxidatively damaged DNA have been documented in studies of metal, metal oxide, carbon-based and ceramic engineered nanomaterials (ENMs). In particular, 8-oxo-7,8-dihydroguanine-2'-deoxyguanosine (8-oxodG) is widely assessed as a DNA nucleobase oxidation product, measured...

  11. Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxiants

    Institute of Scientific and Technical Information of China (English)

    赵健

    2014-01-01

    Objective The aim of this study was to investigate the use of the lesion-specific endonucleases-modifiedcomet assay for analysis of DNA,oxidation in cell lines.Methods DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNAglycosylase(FPG)modified comet assays.Cytotoxicity was assessed by MTT method.The human bronchial epi-

  12. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise;

    2015-01-01

    18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency...

  13. Non coding RNA: sequence-specific guide for chromatin modification and DNA damage signaling

    Directory of Open Access Journals (Sweden)

    Sofia eFrancia

    2015-11-01

    Full Text Available Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports suggest that ncRNAs are involved in DDR signaling and homology-mediated DNA repair. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.

  14. Cellular target of UVB-induced DNA damage resulting in local suppression of contact hypersensitivity

    NARCIS (Netherlands)

    Vink, A.A.; Shreedhar, V.; Roza, L.; Krutmann, J.; Kripke, M.L.

    1998-01-01

    Experimental data are reviewed that lend support to the hypothesis that formation of DNA damage is the initiation event of local suppression of contact hypersensitivity (CHS) after exposure to ultraviolet (UV) radiaton and that the antigen-presenting cell (APC) is an important traget for this DNA da

  15. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage.

    NARCIS (Netherlands)

    J. Essers (Jeroen); A.B. Houtsmuller (Adriaan); L.R. van Veelen (Lieneke); C. Paulusma (Coen); A.L. Nigg (Alex); A. Pastink (Albert); W. Vermeulen (Wim); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland)

    2002-01-01

    textabstractRecombination between homologous DNA molecules is essential for the proper maintenance and duplication of the genome, and for the repair of exogenously induced DNA damage such as double-strand breaks. Homologous recombination requires the RAD52 group proteins, including Rad51, Rad52 and

  16. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis.

    NARCIS (Netherlands)

    J. Wesoly (Joanna); S. Agarwal (Sheba); S. Sigurdsson (Stefan); W. Bussen (Wendy); S. Komen (Stephen); J. Qin (Jian); H. van Steeg (Harry); J. van Benthem (Jan); E. Wassenaar (Evelyne); W.M. Baarends (Willy); M. Ghazvini (Mehrnaz); A. Tafel (Agnieszka); H. Heath (Helen); N.J. Galjart (Niels); J. Essers (Jeroen); J.A. Grootegoed (Anton); N. Arnheim (Norman); O.Y. Bezzubova (Olga); J-M. Buerstedde; P. Sung (Patrick); R. Kanaar (Roland)

    2006-01-01

    textabstractHomologous recombination is a versatile DNA damage repair pathway requiring Rad51 and Rad54. Here we show that a mammalian Rad54 paralog, Rad54B, displays physical and functional interactions with Rad51 and DNA that are similar to those of Rad54. While ablation of Rad54 in mouse embryoni

  17. The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle

    NARCIS (Netherlands)

    Shaltiel, Indra A.; Krenning, Lenno; Bruinsma, Wytse; Medema, René H.

    2015-01-01

    Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cyc

  18. Association between Urinary Excretion of Cortisol and Markers of Oxidatively Damaged DNA and RNA in Humans

    DEFF Research Database (Denmark)

    Joergensen, Anders; Broedbaek, Kasper; Weimann, Allan

    2011-01-01

    to cellular constituents such as DNA and RNA, a phenomenon which has been implicated in aging processes. We investigated the relationship between 24 h excretion of urinary cortisol and markers of oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine...

  19. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    Energy Technology Data Exchange (ETDEWEB)

    Swindall, Amanda F.; Stanley, Jennifer A. [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Yang, Eddy S., E-mail: eyang@uab.edu [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States)

    2013-07-26

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation.

  20. Characterization of hepatic DNA damage induced in rats by the pyrrolizidine alkaloid monocrotaline

    Energy Technology Data Exchange (ETDEWEB)

    Petry, T.W.; Bowden, G.T.; Huxtable, R.J.; Sipes, I.G.

    1984-04-01

    Hepatic DNA damage induced by the pyrrolizidine alkaloid monocrotaline was evaluated following i.p. administration to adult male Sprague-Dawley rats. Animals were treated with various doses ranging upward from 5 mg/kg, and hepatic nuclei were isolated 4 hr later. Hepatic nuclei were used as the DNA source in all experiments. DNA damage was characterized by the alkaline elution technique. A mixture of DNA-DNA interstrand cross-links and DNA-protein cross-links was induced. Following an injection of monocrotaline, 30 mg/kg i.p., DNA-DNA interstrand cross-linking reached a maximum within 12 hr or less and thereafter decreased over a protracted period of time. By 96 hr postadministration, the calculated cross-linking factor was no longer statistically different from zero. No evidence for the induction of DNA single-strand breaks was observed, although the presence of small numbers of DNA single-strand breaks could have been masked by the overwhelming predominance of DNA cross-links. These DNA cross-links may be related to the hepatocarcinogenic, hepatotoxic, and/or antimitotic effects of monocrotaline.

  1. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yongnian, E-mail: ynni@ncu.edu.cn [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Wang, Pingping; Song, Haiyan [Department of Chemistry, Nanchang University, Nanchang 330031 (China); Lin, Xiaoyun [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Kokot, Serge, E-mail: s.kokot@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001 (Australia)

    2014-04-01

    Graphical abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed to quantitatively study the DNA damage induced by the metabolite of benzo(a)pyrene in the presence of H{sub 2}O{sub 2}. - Highlights: • Construction of a novel DNA/hemin/nafion-graphene/GCE biosensor. • DNA damage induced by the benzo(a)pyrene metabolite was detected. • DPV analysis of benzo(a)pyrene provided a quantitative estimate of DNA damage. • Hemin/H{sub 2}O{sub 2} system could mimic the cytochrome P450 to metabolize benzo(a)pyrene. - Abstract: A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H{sub 2}O{sub 2}) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H{sub 2}O{sub 2}. Such experiments indicated that in the presence of H{sub 2}O{sub 2}, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.

  2. Oxidative damage to cellular and isolated DNA by metabolites of a fungicide ortho-phenylphenol.

    Science.gov (United States)

    Murata, M; Moriya, K; Inoue, S; Kawanishi, S

    1999-05-01

    ortho-Phenylphenol (OPP) and its sodium salt, which are used as fungicides and antibacterial agents, have been found to cause carcinomas in the urinary tract of rats. To clarify the carcinogenic mechanism of OPP, we compared the DNA damage inducing ability of an OPP metabolite, phenyl-1,4-benzoquinone (PBQ) with that of another metabolite, phenylhydroquinone (PHQ). Pulsed field gel electrophoresis showed that PBQ and PHQ induced DNA strand breakage in cultured human cells, but PBQ did it more efficiently than PHQ. Significant increases in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were observed in cells treated with PBQ and PHQ, and the increase of 8-oxodG induced by PBQ was significantly higher than that induced by PHQ. Using 32P-5'-end-labeled DNA fragments obtained from human p53 tumor suppressor gene and c-Ha-ras-1 protooncogene, we showed that PBQ plus NADH, and also PHQ, induced DNA damage frequently at thymine residues, in the presence of Cu(II). The intensity of DNA damage by PBQ was stronger than that by PHQ, showing higher importance of PBQ than other OPP metabolites. Catalase and bathocuproine inhibited Cu(II)-mediated DNA damage by PBQ plus NADH and PHQ, suggesting that H2O2 reacts with Cu(I) to produce active species causing DNA damage. Electron spin resonance and UV-visible spectroscopic studies have demonstrated generation of semiquinone radical and superoxide from the reaction of PBQ with NADH or the Cu(II)-mediated autoxidation of PHQ. The present results suggest that these OPP metabolites cause oxidative DNA damage through H2O2 generation in cells, and the damage may lead to mutation and carcinogenesis. It is concluded that PBQ may play a more important role in the expression of OPP carcinogenicity than other OPP metabolites.

  3. 99mTc-Labeled HYNIC-DAPI Causes Plasmid DNA Damage with High Efficiency

    OpenAIRE

    Joerg Kotzerke; Robert Punzet; Roswitha Runge; Sandra Ferl; Liane Oehme; Gerd Wunderlich; Robert Freudenberg

    2014-01-01

    (99m)Tc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, (99m)Tc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments ca...

  4. XPS STUDY ON DNA DAMAGE BY LOW-ENERGY ELECTRON IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Chungnam National University, Physics Department, Daejeon (Korea, Republic of)

    2011-12-15

    After the first report that electrons with sub-ionization energy of DNA could cause single strand breaks or double strand breaks to DNA, there have been various studies to investigate the mechanisms of DNA damage by low-energy electrons. In this paper, we examined the possibility of using X-ray photoelectron spectroscopy (XPS) to analyze the dissociation patterns of the molecular bonds by electron irradiation on DNA thin films and tried to establish the method as a general tool for studying the radiation damage of biomolecules by low energy electrons. For the experiment, pBR322 plasmid DNA solution was formed into the films on tantalum plates by lyophilization and was irradiated by 5-eV electrons. Un-irradiated and irradiated DNA films were compared and analyzed using the XPS technique.

  5. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes.

    Science.gov (United States)

    Thompson, Benjamin C; Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2014-07-01

    Cutaneous melanoma is a significant cause of morbidity and mortality. Nicotinamide is a safe, widely available vitamin that reduces the immune suppressive effects of UV, enhances DNA repair in keratinocytes and has shown promise in the chemoprevention of non-melanoma skin cancer. Here, we report the effect of nicotinamide on DNA damage and repair in primary human melanocytes. Nicotinamide significantly enhanced the repair of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine) and cyclobutane pyrimidine dimers induced by UV exposure. It also enhanced the repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine induced by the culture conditions in unirradiated melanocytes. A significant increase in the percentage of melanocytes undergoing unscheduled but not scheduled DNA synthesis was observed, confirming that nicotinamide enhances DNA repair in human melanocytes. In summary, nicotinamide, by enhancing DNA repair in melanocytes, is a potential agent for the chemoprevention of cutaneous melanoma.

  6. Arsenic Biotransformation as a Cancer Promoting Factor by Inducing DNA Damage and Disruption of Repair Mechanisms

    Directory of Open Access Journals (Sweden)

    Victor D. Martinez

    2011-01-01

    Full Text Available Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates. Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM. Metabolism of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and repair, will be discussed here.

  7. Sperm DNA damage-the effect of stress and everyday life factors.

    Science.gov (United States)

    Radwan, M; Jurewicz, J; Merecz-Kot, D; Sobala, W; Radwan, P; Bochenek, M; Hanke, W

    2016-07-01

    The clinical significance of sperm DNA damage lies in its association with natural conception rates and also might have a serious consequence on developmental outcome of the newborn. The aim of the present study is to determine whether stress and everyday life factors are associated with sperm DNA damage in adult men. The study population consisted of 286 men who attended the infertility clinic for diagnostic purposes and who had normal semen concentration of 20-300 m ml(-1) or with slight oligozoospermia (semen concentration of 15-20 m ml(-1)) (WHO, 1999). Participants were interviewed and provided a semen sample. The sperm chromatin structure assay was assessed using flow cytometry. In the present study, we found evidence for a relationship between sperm DNA damage parameters and everyday life factors. High and medium level of occupational stress and age increase DNA fragmentation index (P=0.03, P=0.004 and P=0.03, respectively). Other lifestyle factors that were positively associated with percentage of immature sperms (high DNA stainability index) included: obesity and cell phone use for more than 10 years (P=0.02 and P=0.04, respectively). Our findings indicate that stress and lifestyle factor may affect sperm DNA damage. Data from the present study showed a significant effect of age, obesity, mobile phone radiation and occupational stress on sperm DNA damage. As DNA fragmentation represents an extremely important parameter indicative of infertility and potential outcome of assisted reproduction treatment, and most of the lifestyle factors are easily modifiable, the information about factors that may affect DNA damage are important.

  8. DNA damage among thyroid cancer and multiple cancer cases, controls, and long-lived individuals

    Energy Technology Data Exchange (ETDEWEB)

    Sigurdson, A J; Hauptmann, M; Alexander, B J; Doody, M M; Thomas, C B; Struewing, J P; Jones, I M

    2004-08-24

    Variation in the detection, signaling, and repair of DNA damage contributes to human cancer risk. To assess capacity to modulate endogenous DNA damage among radiologic technologists who had been diagnosed with breast cancer and another malignancy (breast-other; n=42), early-onset breast cancer (early-onset, age {<=} 35; n=38), thyroid cancer (n=68), long-lived cancer-free individuals (hyper-normals; n=20) and cancer-free controls (n=49) we quantified DNA damage (single strand breaks and abasic sites) in untreated lymphoblastoid cell lines using the alkaline comet assay. Komet{trademark} software provided comet tail length, % DNA in tail (tail DNA), comet distributed moment (CDM), and Olive tail moment (OTM) summarized as the geometric mean of 100 cells. Category cut-points (median and 75th percentile) were determined from the distribution among controls. Tail length (for {>=} 75% vs. below the median, age adjusted) was most consistently associated with the highest odds ratios in the breast-other, early-onset, and thyroid cancer groups (with risk increased 10-, 5- or 19-fold, respectively, with wide confidence intervals) and decreased risk among the hyper-normal group. For the other three Comet measures, risk of breast-other was elevated approximately three-fold. Risk of early-onset breast cancer was mixed and risk of thyroid cancer ranged from null to a two-fold increase. The hyper-normal group showed decreased odds ratios for tail DNA and OTM, but not CDM. DNA damage, as estimated by all Comet measures, was relatively unaffected by survival time, reproductive factors, and prior radiation treatment. We detected a continuum of endogenous DNA damage that was highest among cancer cases, less in controls, and suggestively lowest in hyper-normal individuals. Measuring this DNA damage phenotype may contribute to the identification of susceptible sub-groups. Our observations require replication in a prospective study with a large number of pre-diagnostic samples.

  9. DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age

    DEFF Research Database (Denmark)

    Waaijer, Mariëtte E C; Croco, Eleonora; Westendorp, Rudi G J

    2016-01-01

    The aging process is accompanied by an accumulation of cellular damage, which compromises the viability and function of cells and tissues. We aim to further explore the association between in vitro DNA damage markers and the chronological age of the donor, as well as long-lived family membership...... markers and long-lived family membership or cardiovascular disease. Results were comparable when fibroblasts were stressed in vitro with rotenone. In conclusion, we found that DNA damage foci of cultured fibroblasts are significantly associated with the chronological age, but not biological age...

  10. Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats.

    Science.gov (United States)

    Walter, Patrick B; Knutson, Mitchell D; Paler-Martinez, Andres; Lee, Sonia; Xu, Yu; Viteri, Fernando E; Ames, Bruce N

    2002-02-19

    Approximately two billion people, mainly women and children, are iron deficient. Two studies examined the effects of iron deficiency and supplementation on rats. In study 1, mitochondrial functional parameters and mitochondrial DNA (mtDNA) damage were assayed in iron-deficient (mitochondrial respiratory control ratios and increased levels of oxidants in polymorphonuclear-leukocytes, as assayed by dichlorofluorescein (P mitochondrial malfunction. Although excess iron has been known to cause oxidative damage, the observation of oxidant-induced damage to mitochondria from iron deficiency has been unrecognized previously. Untreated iron deficiency, as well as excessive-iron supplementation, are deleterious and emphasize the importance of maintaining optimal iron intake.

  11. Deregulated Ras signaling compromises DNA damage checkpoint recovery in S. cerevisiae

    OpenAIRE

    Wood, Matthew D; Sanchez, Yolanda

    2010-01-01

    The DNA damage checkpoint maintains genome stability by arresting the cell cycle and promoting DNA repair under genotoxic stress. Cells must downregulate the checkpoint signaling pathways in order to resume cell division after completing DNA repair. While the mechanisms of checkpoint activation have been well-characterized, the process of checkpoint recovery, and the signals regulating it, has only recently been investigated. We have identified a new role for the Ras signaling pathway as a re...

  12. Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage.

    Directory of Open Access Journals (Sweden)

    Wendy Cousin

    Full Text Available The performance of adult stem cells is crucial for tissue homeostasis but their regenerative capacity declines with age, leading to failure of multiple organs. In skeletal muscle this failure is manifested by the loss of functional tissue, the accumulation of fibrosis, and reduced satellite cell-mediated myogenesis in response to injury. While recent studies have shown that changes in the composition of the satellite cell niche are at least in part responsible for the impaired function observed with aging, little is known about the effects of aging on the intrinsic properties of satellite cells. For instance, their ability to repair DNA damage and the effects of a potential accumulation of DNA double strand breaks (DSBs on their regenerative performance remain unclear. This work demonstrates that old muscle stem cells display no significant accumulation of DNA DSBs when compared to those of young, as assayed after cell isolation and in tissue sections, either in uninjured muscle or at multiple time points after injury. Additionally, there is no significant difference in the expression of DNA DSB repair proteins or globally assayed DNA damage response genes, suggesting that not only DNA DSBs, but also other types of DNA damage, do not significantly mark aged muscle stem cells. Satellite cells from DNA DSB-repair-deficient SCID mice do have an unsurprisingly higher level of innate DNA DSBs and a weakened recovery from gamma-radiation-induced DNA damage. Interestingly, they are as myogenic in vitro and in vivo as satellite cells from young wild type mice, suggesting that the inefficiency in DNA DSB repair does not directly correlate with the ability to regenerate muscle after injury. Overall, our findings suggest that a DNA DSB-repair deficiency is unlikely to be a key factor in the decline in muscle regeneration observed upon aging.

  13. Synthesis and study of antiproliferative, antitopoisomerase II, DNA-intercalating and DNA-damaging activities of arylnaphthalimides.

    Science.gov (United States)

    Quintana-Espinoza, Patricia; García-Luis, Jonay; Amesty, Angel; Martín-Rodríguez, Patricia; Lorenzo-Castrillejo, Isabel; Ravelo, Angel G; Fernández-Pérez, Leandro; Machín, Félix; Estévez-Braun, Ana

    2013-11-01

    A series of arylnaphthalimides were designed and synthesized to overcome the dose-limiting cytotoxicity of N-acetylated metabolites arising from amonafide, the prototypical antitumour naphthalimide whose biomedical properties have been related to its ability to intercalate the DNA and poison the enzyme Topoisomerase II. Thus, these arylnaphthalimides were first evaluated for their antiproliferative activity against two tumour cell lines and for their antitopoisomerase II in vitro activities, together with their ability to intercalate the DNA in vitro and also through docking modelization. Then, the well-known DNA damage response in Saccharomyces cerevisiae was employed to critically evaluate whether these novel compounds can damage the DNA in vivo. By performing all these assays we conclude that the 5-arylsubstituted naphthalimides not only keep but also improve amonafide's biological activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Telomeric DNA quantity, DNA damage, and heat shock protein gene expression as physiological stress markers in chickens.

    Science.gov (United States)

    Sohn, S H; Subramani, V K; Moon, Y S; Jang, I S

    2012-04-01

    In this longitudinal study with Single Comb White Leghorn chickens, we investigated the effects of stress conditions in birds that were subjected to a high stocking density with feed restrictions on the quantity of telomeric DNA, the rate of DNA damage, and the expression levels of heat shock proteins (HSP) and hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) genes. The telomere length and telomere-shortening rates were analyzed by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes. The DNA damage rate of lymphocytes was quantified by the comet assay. The expression levels of HSP70, HSP90, and HMGCR genes were measured by quantitative real-time PCR in lymphocytes. The telomere-shortening rate of the lymphocytes was significantly higher in the stress group than in the control. The DNA damage also increased in birds raised under stress conditions, as compared with the control group. The stress conditions had a significant effect on the expressions of HMGCR and HSP90α in lymphocytes but had no significance on HSP70 and HSP90β in blood. We conclude that the telomere length, especially the telomere-shortening rates, the quantification of total DNA damage, and the expression levels of the HMGCR and HSP90α genes can be used as sensitive physiological stress markers in chickens.

  15. To spread or not to spread - chromatin modifications in response to DNA damage

    DEFF Research Database (Denmark)

    Altmeyer, M.; Lukas, J.

    2013-01-01

    Chromatin modifications in response to DNA damage are vital for genome integrity. Multiple proteins and pathways required to generate specialized chromatin domains around DNA lesions have been identified and the increasing amount of information calls for unifying concepts that would allow us...... to grasp the ever-increasing complexity. This review aims at contributing to this trend by focusing on feed-forward and feedback mechanisms, which in mammalian cells determine the extent of chromatin modifications after DNA damage. We highlight the emerging notion that the nodal points of these highly...

  16. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    Science.gov (United States)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  17. DNA damage and cytotoxicity in pathology laboratory technicians exposed to organic solvents

    Directory of Open Access Journals (Sweden)

    TATIANE DE AQUINO

    2016-03-01

    Full Text Available The aim of this study was to evaluate potential DNA damage and cytotoxicity in pathology laboratory technicians exposed to organic solvents, mainly xylene. Peripheral blood and buccal cells samples were collected from 18 technicians occupationally exposed to organic solvents and 11 non-exposed individuals. The technicians were sampled at two moments: Monday and Friday. DNA damage and cytotoxicity were evaluated using the Comet Assay and the Buccal Micronucleus Cytome assay. Fifteen subjects (83.5% of the exposed group to solvents complained about some symptom probably related to contact with vapours of organic solvents. DNA damage in the exposed group to solvents was nearly 2-fold higher on Friday than on Monday, and in both moments the individuals of this group showed higher levels of DNA damage in relation to controls. No statistical difference was detected in buccal cell micronucleus frequency between the laboratory technicians and the control group. However, in the analysis performed on Friday, technicians presented higher frequency (about 3-fold of karyolytic and apoptotic-like cells (karyorrhectic and pyknotic in relation to control group. Considering the damage frequency and the working time, a positive correlation was found in the exposed group to solvents (r=0.468; p=0.05. The results suggest that pathology laboratory workers inappropriately exposed to organic solvents have increased levels of DNA damage.

  18. Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila

    Directory of Open Access Journals (Sweden)

    Nancy Díaz-Valdés

    2010-01-01

    Full Text Available The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308- conditions, the ethylating agent diethyl sulfate (DES was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system.

  19. Role of swi7H4 mutant allele of DNA polymerase α in the DNA damage checkpoint response.

    Science.gov (United States)

    Khan, Saman; Ahmed, Shakil

    2015-01-01

    Besides being a mediator of initiation of DNA replication, DNA polymerase α plays a key role in chromosome maintenance. Swi7H4, a novel temperature sensitive mutant of DNA polymerase α was shown to be defective in transcriptional silencing at the mating type centromere and telomere loci. It is also required for the establishment of chromatin state that can recruit the components of the heterochromatin machinery at these regions. Recently the role of DNA polymerase α in the S-phase alkylation damage response in S. pombe has also been studied. Here we investigate whether defects generated by swi7H4, a mutant allele of DNA polymerase α can activate a checkpoint response. We show that swi7H4 exhibit conditional synthetic lethality with chk1 null mutant and the double mutant of swi7H4 with chk1 deletion aggravate the chromosome segregation defects. More importantly swi7H4 mutant cells delay the mitotic progression at non permissive temperature that is mediated by checkpoint protein kinase Chk1. In addition we show that, in the swi7H4 mutant background, cells accumulate DNA damage at non permissive temperature activating the checkpoint kinase protein Chk1. Further, we observed synthetic lethality between swi7H4 and a number of genes involved in DNA repair pathway at semi permissive temperature. We summarize that defects in swi7H4 mutant results in DNA damage that delay mitosis in a Chk1 dependent manner that also require the damage repair pathway for proper recovery.

  20. Role of swi7H4 mutant allele of DNA polymerase α in the DNA damage checkpoint response.

    Directory of Open Access Journals (Sweden)

    Saman Khan

    Full Text Available Besides being a mediator of initiation of DNA replication, DNA polymerase α plays a key role in chromosome maintenance. Swi7H4, a novel temperature sensitive mutant of DNA polymerase α was shown to be defective in transcriptional silencing at the mating type centromere and telomere loci. It is also required for the establishment of chromatin state that can recruit the components of the heterochromatin machinery at these regions. Recently the role of DNA polymerase α in the S-phase alkylation damage response in S. pombe has also been studied. Here we investigate whether defects generated by swi7H4, a mutant allele of DNA polymerase α can activate a checkpoint response. We show that swi7H4 exhibit conditional synthetic lethality with chk1 null mutant and the double mutant of swi7H4 with chk1 deletion aggravate the chromosome segregation defects. More importantly swi7H4 mutant cells delay the mitotic progression at non permissive temperature that is mediated by checkpoint protein kinase Chk1. In addition we show that, in the swi7H4 mutant background, cells accumulate DNA damage at non permissive temperature activating the checkpoint kinase protein Chk1. Further, we observed synthetic lethality between swi7H4 and a number of genes involved in DNA repair pathway at semi permissive temperature. We summarize that defects in swi7H4 mutant results in DNA damage that delay mitosis in a Chk1 dependent manner that also require the damage repair pathway for proper recovery.

  1. Oxidative DNA damage background estimated by a system model of base excision repair.

    Science.gov (United States)

    Sokhansanj, Bahrad A; Wilson, David M

    2004-08-01

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level, based on measuring 8-oxoguanine lesions as a biomarker, have led to estimates that vary over three to four orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our findings show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  2. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates.

    Science.gov (United States)

    Lonkar, Pallavi; Dedon, Peter C

    2011-05-01

    Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that infiltrate sites of inflammation. Although pathologically high levels of these reactive species cause damage to biological molecules, including DNA, nitric oxide at lower levels plays important physiological roles in cell signaling and apoptosis. This raises the question of inflammation-induced imbalances in physiological and pathological pathways mediated by chemical mediators of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that DNA damage products could serve as biomarkers of inflammation and oxidative stress in clinically accessible compartments such as blood and urine. However, recent studies of the biotransformation of DNA damage products before excretion point to a weakness in our understanding of the biological fates of the DNA lesions and thus to a limitation in the use of DNA lesions as biomarkers. This review will address these and other issues surrounding inflammation-mediated DNA damage on the road to cancer.

  3. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control.

    Science.gov (United States)

    Fenech, Michael F

    2014-01-01

    DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer.

  4. DNA damage in male gonad cells of Green mussel (Perna viridis) upon exposure to tobacco products.

    Science.gov (United States)

    Nagarajappa; Ganguly, Anutosh; Goswami, Usha

    2006-05-01

    DNA damage (determined by the Comet Assay) and the occurrence of deformed nuclei were measured as endpoints of genotoxicity in male gonad cells of the marine mussel (Perna viridis). Upon exposure of the organism to varying concentrations of extracts of smoked and non-smoked cigar tobacco over a period of 16 days, DNA damage was found to be highest in marine mussels exposed to extracts of smoked cigar tobacco. Conversely, more deformed nuclei were detected in marine mussels exposed to extracts of non-smoked cigar tobacco. The level of DNA damage and the number of deformed nuclei reach a maximum at day 12 of exposure to both extracts but decrease thereafter. This phenomenon is attributed to the organism's capacity to maintain the integrity of its genetic material upon exposure to potential genotoxicants present in the tobacco extracts. A dose response in DNA damage and deformed nuclei was also detected in isolated gonad cells upon in vitro exposure to hydrogen peroxide a known DNA strand breaking agent. The results of this study indicate that the DNA in male gonad cells of the marine mussel is damaged upon exposure to genotoxicants, and suggests the suitability of the organism for future investigations into the effect of such agents on its reproductive capacities.

  5. Radioprotection against DNA damage by an extract of Indian green mussel, Perna viridis (L).

    Science.gov (United States)

    Kumaran, Sreekumar P; Kutty, Binoj C; Chatterji, Anil; Subrayan, Parameswaran P; Mishra, Kaushala Prasad

    2007-01-01

    This study describes the radioprotective ability of a hydrolysate prepared using an enzyme-acid hydrolysis method from the green mussel Perna viridis in terms of its ability to prevent radiation-induced damage in plasmid DNA, cell death, reactive oxygen species (ROS) formation, and DNA damage in mice lymphocytes. The mussel hydrolysate (MH) present during irradiation showed significant protection from gamma-radiation-induced strand breaks in plasmid DNA as evaluated by gel electrophoresis. Viability studies by trypan blue dye exclusion and MTT assay showed that preincubation of mice splenic lymphocytes with MH protected them from gamma-radiation-mediated killing. Moreover, the presence of MH during irradiation of isolated mice lymphocytes significantly decreased the DNA damage, as measured by comet assay. Measurement of intracellular ROS by dichlorofluorescein fluorescence revealed that the presence of MH effectively reduced the ROS generated in lymphocytes by both chemical method and gamma-irradiation. Prevention of DNA damage both in plasmid and lymphocytes and cell death in lymphocytes appears correlated with reduction of oxidatively generated free radicals. It is concluded that protection against radiation-induced cell death and DNA damage by MH was attributable to reduction of reactive free radical species generated by gamma-radiation.

  6. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Monika Podhorecka

    2010-01-01

    Full Text Available Double-strand breaks (DSBs are the most deleterious DNA lesions, which, if left unrepaired, may have severe consequences for cell survival, as they lead to chromosome aberrations, genomic instability, or cell death. Various physical, chemical, and biological factors are involved in DSB induction. Cells respond to DNA damage by activating the so-called DNA damage response (DDR, a complex molecular mechanism developed to detect and repair DNA damage. The formation of DSBs triggers activation of many factors, including phosphorylation of the histone variant H2AX, producing γH2AX. Phosphorylation of H2AX plays a key role in DDR and is required for the assembly of DNA repair proteins at the sites containing damaged chromatin as well as for activation of checkpoints proteins which arrest the cell cycle progression. In general, analysis of γH2AX expression can be used to detect the genotoxic effect of different toxic substances. When applied to clinical samples from cancer patients, evaluation of γH2AX levels may allow not only to monitor the efficiency of anticancer treatment but also to predict of tumor cell sensitivity to DNA damaging anticancer agents and toxicity of anticancer treatment toward normal cells.

  7. Oxidative DNA damage background estimated by a system model of base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, B A; Wilson, III, D M

    2004-05-13

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parameters from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.

  8. ERCC2/XPD Lys751Gln alter DNA repair efficiency of platinum-induced DNA damage through P53 pathway.

    Science.gov (United States)

    Zhang, Guopei; Guan, Yangyang; Zhao, Yuejiao; van der Straaten, Tahar; Xiao, Sha; Xue, Ping; Zhu, Guolian; Liu, Qiufang; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo

    2017-02-01

    Platinum-based treatment causes Pt-DNA adducts which lead to cell death. The platinum-induced DNA damage is recognized and repaired by the nucleotide excision repair (NER) system of which ERCC2/XPD is a critical enzyme. Single nucleotide polymorphisms in ERCC2/XPD have been found to be associated with platinum resistance. The aim of the present study was to investigate whether ERCC2/XPD Lys751Gln (rs13181) polymorphism is causally related to DNA repair capacity of platinum-induced DNA damage. First, cDNA clones expressing different genotypes of the polymorphism was transfected to an ERCC2/XPD defective CHO cell line (UV5). Second, all cells were treated with cisplatin. Cellular survival rate were investigated by MTT growth inhibition assay, DNA damage levels were investigated by comet assay and RAD51 staining. The distribution of cell cycle and the change of apoptosis rates were detected by a flow cytometric method (FCM). Finally, P53mRNA and phospho-P53 protein levels were further investigated in order to explore a possible explanation. As expected, there was a significantly increased in viability of UV5(ERCC2 (AA)) as compared to UV5(ERCC2 (CC)) after cisplatin treatment. The DNA damage level of UV5(ERCC2 (AA)) was significant decreased compared to UV5(ERCC2 (CC)) at 24 h of treatment. Mutation of ERCC2rs13181 AA to CC causes a prolonged S phase in cell cycle. UV5(ERCC2 (AA)) alleviated the apoptosis compared to UV5(ERCC2 (CC)), meanwhile P53mRNA levels in UV(ERCC2 (AA)) was also lower when compared UV5(ERCC2 (CC)). It co-incides with a prolonged high expression of phospho-P53, which is relevant for cell cycle regulation, apoptosis, and the DNA damage response (DDR). We concluded that ERCC2/XPD rs13181 polymorphism is possibly related to the DNA repair capacity of platinum-induced DNA damage. This functional study provides some clues to clarify the relationship between cisplatin resistance and ERCC2/XPDrs13181 polymorphism.

  9. Detection of DNA damage in individual cells by flow cytometric analysis using anti-DNA monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Frankfurt, O.S. (Roswell Park Memorial Institute, Buffalo, NY (USA))

    1987-06-01

    A new method for the measurement of DNA damage in individual cells treated with alkylating agents is described. The method is based on the binding of anti-DNA monoclonal antibody to DNA in situ. Binding of antibody was evaluated by flow cytometry with indirect immunofluorescence. No binding of antibody to DNA in non-treated HeLa S3 cells was detected. Treatment of cells with HN2 or L-phenylalanine mustard induced binding of antibody to DNA in situ. Binding of antibody was observed after treating cells with doses of drugs which reduced the surviving fraction below 20%. Intensity of binding increased in proportion to the drug dose. In HN2-treated cells a cell subset with the lowest antibody binding was observed among cells in G1 phase. Binding of antibody to DNA in HN2-treated cells was eliminated by single-strand (ss) specific S1 nuclease. In competition assay, antibody was inhibited by thermally denatured DNA, but not by native double-stranded (ds) DNA, RNA, nucleosides and deoxyribohomopolymers. Immunoreactivity of cells with the monoclonal antibody F7-26 may be a useful probe for the assessment of cell damage induced by alkylating agents, especially in heterogeneous cell populations.

  10. Radiation induced DNA damage and damage repair in three human tumour cell lines

    NARCIS (Netherlands)

    Woudstra, EC; Brunsting, JF; Roesink, JM; Konings, AWT; Kampinga, HH

    1996-01-01

    Three human tumour cell lines (HX142, RT112 and MGH-U1) with different radiosensitivities were tested for differences in the rate and/or extent of DNA unwinding in alkali as well as for differences in the induction of DNA double strand breaks by means of the pulsed field gel electrophoresis, after

  11. DNA-damage response control of E2F7 and E2F8

    OpenAIRE

    Panagiotis Zalmas, L.; Zhao, Xiujie; Graham, Anne L; FISHER Rebecca; Reilly, Carmel; Coutts, Amanda S; La Thangue, Nicholas B

    2008-01-01

    Here, we report that the two recently identified E2F subunits, E2F7 and E2F8, are induced in cells treated with DNA-damaging agents where they have an important role in dictating the outcome of the DNA-damage response. The DNA-damage-dependent induction coincides with the binding of E2F7 and E2F8 to the promoters of certain E2F-responsive genes, most notably that of the E2F1 gene, in which E2F7 and E2F8 coexist in a DNA-binding complex. As a consequence, E2F7 and E2F8 repress E2F target genes...

  12. DNA damage and repair in plants under ultraviolet and ionizing radiations.

    Science.gov (United States)

    Gill, Sarvajeet S; Anjum, Naser A; Gill, Ritu; Jha, Manoranjan; Tuteja, Narendra

    2015-01-01

    Being sessile, plants are continuously exposed to DNA-damaging agents present in the environment such as ultraviolet (UV) and ionizing radiations (IR). Sunlight acts as an energy source for photosynthetic plants; hence, avoidance of UV radiations (namely, UV-A, 315-400 nm; UV-B, 280-315 nm; and UV-C, exposure, plants make use of several DNA repair mechanisms. In the light of recent breakthrough, the current minireview (a) introduces UV/IR and overviews UV/IR-mediated DNA damage products and (b) critically discusses the biochemistry and genetics of major pathways responsible for the repair of UV/IR-accrued DNA damage. The outcome of the discussion may be helpful in devising future research in the current context.

  13. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed...... replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling....... knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  14. Modulating the DNA Damage Response to Improve Treatment Response in Cervical Cancer.

    Science.gov (United States)

    Cossar, L H; Schache, A G; Risk, J M; Sacco, J J; Jones, N J; Lord, R

    2017-09-01

    Cervical cancer is the fourth most common cause of cancer-related death in women worldwide and new therapeutic approaches are needed to improve clinical outcomes for this group of patients. Current treatment protocols for locally advanced and metastatic disease consist of ionising radiation and chemotherapy. Chemoradiation induces cytotoxic levels of DNA double-strand breaks, which activates programmed cell death via the DNA damage response (DDR). Cervical cancers are unique given an almost exclusive association with human papillomavirus (HPV) infection; a potent manipulator of the DDR, with the potential to alter tumour sensitivity to DNA-damaging agents and influence treatment response. This review highlights the wide range of therapeutic strategies in development that have the potential to modulate DDR and sensitise cervical tumours to DNA-damaging agents in the context of HPV oncogenesis. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reilly, Michelle S; Grogan, Dennis W

    2002-02-19

    To investigate the generality of efficient double-strand break repair and damage-induced mutagenesis in hyperthermophilic archaea, we systematically measured the effects of five DNA-damaging agents on Sulfolobus acidocaldarius and compared the results to those obtained for Escherichia coli under corresponding conditions. The observed lethality of gamma-radiation was very similar for S. acidocaldarius and E. coli, arguing against unusually efficient double-strand break repair in S. acidocaldarius. In addition, DNA-strand-breaking agents (gamma-radiation or bleomycin), as well as DNA-cross-linking agents (mechlorethamine, butadiene diepoxide or cisplatin) stimulated forward mutation, reverse mutation, and formation of recombinants via conjugation in Sulfolobus cells. Although two of the five DNA-damaging agents failed to revert the E. coli auxotrophs under these conditions, all five reverted S. acidocaldarius auxotrophs.

  16. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes

    NARCIS (Netherlands)

    Wilms, L.C.; Hollman, P.C.H.; Boots, A.W.; Kleinjans, J.C.S.

    2005-01-01

    Flavonoids are claimed to protect against cardiovascular disease, certain forms of cancer and ageing, possibly by preventing initial DNA damage. Therefore, we investigated the protective effects of the flavonoid quercetin against the formation of oxidative DNA damage and bulky DNA adducts in human l

  17. Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes

    NARCIS (Netherlands)

    Wilms, L.C.; Hollman, P.C.H.; Boots, A.W.; Kleinjans, J.C.S.

    2005-01-01

    Flavonoids are claimed to protect against cardiovascular disease, certain forms of cancer and ageing, possibly by preventing initial DNA damage. Therefore, we investigated the protective effects of the flavonoid quercetin against the formation of oxidative DNA damage and bulky DNA adducts in human

  18. The Role of Mms22p in DNA Damage Response in Candida albicans.

    Science.gov (United States)

    Yan, Lan; Xiong, Juan; Lu, Hui; Lv, Quan-zhen; Ma, Qian-yao; Côte, Pierre; Whiteway, Malcolm; Jiang, Yuan-ying

    2015-12-01

    To ensure correct DNA replication, eukaryotes have signaling pathways that respond to replication-associated DNA damage and trigger repair. In both Saccharomyces cerevisiae and Schizosaccharomyces pombe, a complex of proteins, including the cullin protein Rtt101p and two adapter proteins Mms22p and Mms1p, is important for proper response to replication stress. We have investigated this system in Candida albicans. In this pathogen, Mms22p is important for recovery from DNA replication damage induced by agents including methylmethane sulfonate, camptothecin, and ionizing radiation. Although no clear ortholog of Mms1p has been identified in C. albicans, loss of either Mms22p or Rtt101p generates similar damage sensitivity, consistent with a common function. In S. cerevisiae, the Mrc1p-Csm3p-Tof1p complex stabilizes stalled replication forks and activates a replication checkpoint and interacts with Mms22p. A similar complex in S. pombe, consisting of the Tof1p and Csm3p orthologs Swi1p and Swi3p, along with the fission yeast Mrc1p, genetically also interacts with Mms22p. Intriguingly in C. albicans only Mrc1p and Csm3p appear involved in damage repair, and Mms22p is required for responding to DNA damage agents in MRC1 or CSM3 conditional mutants. In C. albicans, although the loss of RAD57 greatly impairs response in the pathogen to many DNA-damaging agents, lethality due to camptothecin damage requires concomitant loss of Rad57p and Mms22p, suggesting that Mms22p is only essential for homologous recombination induced by camptothecin. These results establish that although C. albicans uses conserved cellular modules to respond to DNA damage and replication blocks, the specific details of these modules differ significantly from the S. cerevisiae model.

  19. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-08-28

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75{+-}1.55 {mu}m versus after supplementation: 70.25{+-}1.31 {mu}m; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels.

  20. DNA damage in Populus tremuloides clones exposed to elevated O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Helen H., E-mail: helen.tai@agr.gc.c [Agriculture and Agri-Food Canada, Potato Research Centre, P.O. Box 20280, Fredericton, New Brunswick, E3B 4Z7 (Canada); Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, 1350 Regent Street S., Fredericton, New Brunswick, E3B 5P7 (Canada); Percy, Kevin E. [Natural Resources Canada, Canadian Forest Service - Atlantic Forestry Centre, 1350 Regent Street S., Fredericton, New Brunswick, E3B 5P7 (Canada); Karnosky, David F. [School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-04-15

    The effects of elevated concentrations of atmospheric tropospheric ozone (O{sub 3}) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO{sub 2}) were examined. Growing season mean hourly O{sub 3} concentrations were 36.3 and 47.3 ppb for ambient and elevated O{sub 3} plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O{sub 3} concentrations were 79 and 89 ppb, respectively. Elevated CO{sub 2} averaged 524 ppm (+150 ppm) over the growing season. Exposure to O{sub 3} and CO{sub 2} in combination with O{sub 3} increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O{sub 3} compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O{sub 3} and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O{sub 3} tolerance or sensitivity. - Ozone tolerant clones and sensitive Populus tremuloides clones show differences in DNA damage and repair.

  1. The alkaline comet assay: towards validation in biomonitoring of DNA damaging exposures.

    Science.gov (United States)

    Møller, Peter

    2006-04-01

    Generation of DNA damage is considered to be an important initial event in carcinogenesis. The single cell gel electrophoresis (comet) assay is a technically simple and fast method that detects genotoxicity in virtually any mammalian cell type without requirement for cell culture. This review discusses the strength of the comet assay in biomonitoring at its present state of validation. The simple version of the alkaline comet assay detects DNA migration caused by strand breaks, alkaline labile sites, and transient repair sites. By incubation with bacterial glycosylase/endonuclease enzymes, broad classes of oxidative DNA damage, alkylations, and ultraviolet light-induced photoproducts are detected as additional DNA migration. The most widely measured enzyme sensitive sites have been those detected by formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (ENDOIII). Reports from biomonitoring studies show that the basal level of DNA damage in leukocytes is influenced be a variety of lifestyle and environmental exposures, including exercise, air pollution, sunlight, and diet. Although not all types of carcinogenic exposures should be expected to damage DNA in leukocytes, the comet assay is a valuable method for detection of genotoxic exposure in humans. However, the predictive value of the comet assay is unknown because it has not been investigated in prospective cohort studies. Also, it is important that the performance of the assay is investigated in multi-laboratory validation trials. As a tool in risk assessment the comet assay can be used in characterization of hazards.

  2. Harnessing the p53-PUMA Axis to Overcome DNA Damage Resistance in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhou

    2014-12-01

    Full Text Available Resistance to DNA damage–induced apoptosis is a hallmark of cancer and a major cause of treatment failure and lethal disease outcome. A tumor entity that is largely resistant to DNA-damaging therapies including chemo- or radiotherapy is renal cell carcinoma (RCC. This study was designed to explore the underlying molecular mechanisms of DNA damage resistance in RCC to develop strategies to resensitize tumor cells to DNA damage–induced apoptosis. Here, we show that apoptosis-resistant RCC cells have a disconnect between activation of p53 and upregulation of the downstream proapoptotic protein p53 upregulated modulator of apoptosis (PUMA. We demonstrate that this disconnect is not caused by gene-specific repression through CCCTC-binding factor (CTCF but instead by aberrant chromatin compaction. Treatment with an HDAC inhibitor was found to effectively reactivate PUMA expression on the mRNA and protein level and to revert resistance to DNA damage–induced cell death. Ectopic expression of PUMA was found to resensitize a panel of RCC cell lines to four different DNA-damaging agents tested. Remarkably, all RCC cell lines analyzed were wild-type for p53, and a knockdown was likewise able to sensitize RCC cells to acute genotoxic stress. Taken together, our results indicate that DNA damage resistance in RCC is reversible, involves the p53-PUMA axis, and is potentially targetable to improve the oncological outcomes of RCC patients.

  3. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    Directory of Open Access Journals (Sweden)

    Elisa eFerrando-May

    2013-07-01

    Full Text Available Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly nonlinear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to nonlinear photoperturbation experiments.

  4. Non-Coding RNA: Sequence-Specific Guide for Chromatin Modification and DNA Damage Signaling.

    Science.gov (United States)

    Francia, Sofia

    2015-01-01

    Chromatin conformation shapes the environment in which our genome is transcribed into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly to DNA damage signaling. Growing amounts of evidence suggest that different types of RNAs can, independently from their protein-coding properties, directly affect chromatin conformation, transcription and splicing, as well as promote the activation of the DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically functions to both threaten and safeguard genome integrity. On the other hand, DNA damage signaling is known to modulate chromatin to suppress transcription of the surrounding genetic unit. It is thus intriguing to understand how transcription can modulate DDR signaling while, in turn, DDR signaling represses transcription of chromatin around the DNA lesion. An unexpected player in this field is the RNA interference (RNAi) machinery, which play roles in transcription, splicing and chromatin modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein factors involved in the RNAi pathway are well known master regulators of chromatin while only recent reports show their involvement in DDR. Here, we discuss the experimental evidence supporting the idea that ncRNAs act at the genomic loci from which they are transcribed to modulate chromatin, DDR signaling and DNA repair.

  5. DNA Damage and Its Cellular Response in Mother and Fetus Exposed to Hyperglycemic Environment

    Directory of Open Access Journals (Sweden)

    Jusciele Brogin Moreli

    2014-01-01

    Full Text Available The increased production of reactive oxygen species (ROS plays a key role in pathogenesis of diabetic complications. ROS are generated by exogenous and endogenous factors such as during hyperglycemia. When ROS production exceeds the detoxification and scavenging capacity of the cell, oxidative stress ensues. Oxidative stress induces DNA damage and when DNA damage exceeds the cellular capacity to repair it, the accumulation of errors can overwhelm the cell resulting in cell death or fixation of genome mutations that can be transmitted to future cell generations. These mutations can lead to and/or play a role in cancer development. This review aims at (i understanding the types and consequences of DNA damage during hyperglycemic pregnancy; (ii identifying the biological role of DNA repair during pregnancy, and (iii proposing clinical interventions to maintain genome integrity. While hyperglycemia can damage the maternal genetic material, the impact of hyperglycemia on fetal cells is still unclear. DNA repair mechanisms may be important to prevent the deleterious effects of hyperglycemia both in mother and in fetus DNA and, as such, prevent the development of diseases in adulthood. Hence, in clinical practice, maternal glycemic control may represent an important point of intervention to prevent the deleterious effects of maternal hyperglycemia to DNA.

  6. Mitochondrial DNA damage induces apoptosis in senescent cells

    NARCIS (Netherlands)

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-01-01

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associate

  7. Choreography of recombination proteins during the DNA damage response.

    Science.gov (United States)

    Lisby, Michael; Rothstein, Rodney

    2009-09-02

    Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly. Such genetic alterations are the main causes of cancer and other genetic diseases. Consequently, DNA double-strand break repair (DSBR) is an important process in all living organisms. DSBR is also the driving mechanism in most strategies of gene targeting, which has applications in both genetic and clinical research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells.

  8. Choreography of recombination proteins during the DNA damage response

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2009-01-01

    Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly....... Such genetic alterations are the main causes of cancer and other genetic diseases. Consequently, DNA double-strand break repair (DSBR) is an important process in all living organisms. DSBR is also the driving mechanism in most strategies of gene targeting, which has applications in both genetic and clinical...... research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells....

  9. Benzoyl peroxide-induced damage to DNA and its components

    DEFF Research Database (Denmark)

    Hazlewood, C; Davies, Michael Jonathan

    1996-01-01

    , sugars, nucleosides, nucleotides, RNA, and DNA have been examined and the intermediate species have been identified in many cases. Comparison of these data with those obtained with Ph. alone has allowed the reactions of PhCO2. and Ph. to be distinguished. Evidence has been obtained which is consistent...... with both the addition of these radicals to the C5-C6 double bond of the pyrimidines to give adduct species, and hydrogen abstraction from the sugar rings. The former process is the major reaction for nucleosides and nucleotides. Studies with RNA and DNA also provide strong evidence for the formation...

  10. Hypochlorite-induced damage to DNA, RNA, and polynucleotides

    DEFF Research Database (Denmark)

    Hawkins, Clare L; Davies, Michael Jonathan

    2002-01-01

    on the nature of the nucleobase on which they are formed, with chloramines formed from ring heterocyclic amine groups being less stable than those formed on exocyclic amines (RNH2 groups). Evidence is presented for chlorine transfer from the former, kinetically favored, sites to the more thermodynamically...... favored exocyclic amines. EPR experiments have also provided evidence for the rapid addition of pyrimidine-derived nitrogen-centered radicals to other nucleobases to give dimers and the oxidation of DNA by radicals derived from preformed nucleoside chloramines. Direct reaction of HOCl with plasmid DNA...

  11. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: Evidence for oxidatively DNA damage generation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A. Viviana, E-mail: alicia.pinto@incqs.fiocruz.br [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Deodato, Elder L. [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Cardoso, Janine S. [Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Oliveira, Eliza F.; Machado, Sergio L.; Toma, Helena K. [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Leitao, Alvaro C. [Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Padula, Marcelo de [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil)

    2010-06-01

    Although titanium dioxide (TiO{sub 2}) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO{sub 2} is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO{sub 2}-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO{sub 2} associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO{sub 2} plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO{sub 2} protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO{sub 2} plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO{sub 2} plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine.

  12. Dynamic in vivo interaction of DDB2 E3 ubiquitin ligase with UV-damaged DNA is independent of damage-recognition protein XPC

    NARCIS (Netherlands)

    Luijsterburg, Martijn S.; Goedhart, Joachim; Moser, Jill; Kool, Hanneke; Geverts, Bart; Houtsmuller, Adriaan B.; Mullenders, Leon H. F.; Vermeulen, Wim; van Driel, Roel

    2007-01-01

    Damage DNA binding protein 2 ( DDB2) has a high affinity for UV-damaged DNA and has been implicated in the initial steps of global genome nucleotide excision repair (NER) in mammals. DDB2 binds to CUL4A and forms an E3 ubiquitin ligase. In this study, we have analyzed the properties of DDB2 and

  13. Dynamic in vivo interaction of DDB2 E3 ubiquitin ligase with UV-damaged DNA is independent of damage-recognition protein XPC.

    NARCIS (Netherlands)

    Luijsterburg, M.S.; Goedhart, J.; Moser, J.; Kool, H.; Geverts, B.; Houtsmuller, A.B.; Mullenders, L.H.; Vermeulen, W.; van Driel, R.

    2007-01-01

    Damage DNA binding protein 2 (DDB2) has a high affinity for UV-damaged DNA and has been implicated in the initial steps of global genome nucleotide excision repair (NER) in mammals. DDB2 binds to CUL4A and forms an E3 ubiquitin ligase. In this study, we have analyzed the properties of DDB2 and CUL4A

  14. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats

    Directory of Open Access Journals (Sweden)

    Neuli M. Tenorio

    2013-01-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. METHOD: Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group. The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. RESULTS: Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. CONCLUSION: Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.

  15. Spatiotemporal kinetics of γ-H2AX protein on charged particles induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Niu, H., E-mail: hniu@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Chang, H.C. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Cho, I.C. [Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chen, C.H. [Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, C.S. [Cancer Center of Taipei Veterans General Hospital, Taipei, Taiwan (China); Chou, W.T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-08-15

    Highlights: • Charged particles can induce more complex DNA damages, and these complex damages have higher ability to cause the cell death or cell carcinogenesis. • In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in particle irradiated HeLa cells. • The HeLa cells were irradiated by 400 keV alpha-particles in four different dosages. • The result shows that a good linear relationship can be observed between foci number and radiation dose. • The data shows that the dissolution rate of γ-H2AX foci agree with the two components DNA repairing model, and it was decreasing as the radiation dose increased. • These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA repair. - Abstract: In several researches, it has been demonstrated that charged particles can induce more complex DNA damages. These complex damages have higher ability to cause the cell death or cell carcinogenesis. For this reason, clarifying the DNA repair mechanism after charged particle irradiation plays an important role in the development of charged particle therapy and space exploration. Unfortunately, the detail spatiotemporal kinetic of DNA damage repair is still unclear. In this study, we used γ-H2AX protein to investigate the spatiotemporal kinetics of DNA double strand breaks in alpha-particle irradiated HeLa cells. The result shows that the intensity of γ-H2AX foci increased gradually, and reached to its maximum at 30 min after irradiation. A good linear relationship can be observed between foci intensity and radiation dose. After 30 min, the γ-H2AX foci intensity was decreased with time passed, but remained a large portion (∼50%) at 48 h passed. The data show that the dissolution rate of γ-H2AX foci agreed with two components DNA repairing model. These results suggest that charged particles can induce more complex DNA damages and causing the retardation of DNA

  16. Anti-oxidative effects of Phellinus linteus and red ginseng extracts on oxidative stress-induced DNA damage.

    Science.gov (United States)

    Park, Byung-Jae; Lim, Yeong-Seok; Lee, Hee-Jung; Eum, Won Sik; Park, Jinseu; Han, Kyu Hyung; Choi, Soo Young; Lee, Kil Soo

    2009-08-31

    Anti-oxidative effect of Phellinus linteus (P. linteus) and red ginseng extracts on DNA damage induced by reactive oxygen species (ROS) were investigated in this study. P. linteus (PLE) and red ginseng extracts (RGE) inhibited the breaking of E. coli ColE1 plasmid DNA strands as well as nuclear DNA of rat hepatocytes damaged by oxidative stress. In addition, a reaction mixture of PLE and RGE showed synergistic inhibitory effect against DNA damage. These results suggest that PLE and RGE have a cellular defensive effect against DNA damage induced by ROS.

  17. DNA damage in peripheral blood lymphocytes in patients during combined chemotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Suarez, Patricia [Oncological Research Unit, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtemoc 330, Col. Doctores, 06725 Mexico, D.F. (Mexico); Ostrosky-Wegman, Patricia [Biomedical Research Institute, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); Gallegos-Hernandez, Francisco [Department of Clinical Oncology, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City (Mexico); Penarroja-Flores, Rubicelia; Toledo-Garcia, Jorge [Oncological Research Unit, Oncology Hospital, National Medical Center S-XXI, Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtemoc 330, Col. Doctores, 06725 Mexico, D.F. (Mexico); Bravo, Jose Luis [Atmospheric Sciences Institute, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); Rojas del Castillo, Emilio [Biomedical Research Institute, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico); Benitez-Bribiesca, Luis [Oncological Research Unit, Oncology Hospital, National Medical Center S-XXI, Insti