WorldWideScience

Sample records for dna analyzer final

  1. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  2. Dissecting and analyzing key residues in protein-DNA complexes.

    Science.gov (United States)

    Kulandaisamy, A; Srivastava, Ambuj; Nagarajan, R; Gromiha, M Michael

    2018-04-01

    Protein-DNA interactions are involved in various fundamental biological processes such as replication, transcription, DNA repair, and gene regulation. To understand the interaction in protein-DNA complexes, the integrative study of binding and stabilizing residues is important. In the present study, we have identified key residues that play a dual role in both binding and stability from a nonredundant dataset of 319 protein-DNA complexes. We observed that key residues are identified in very less number of complexes (29%) and only about 4% of stabilizing/binding residues are identified as key residues. Specifically, stabilizing residues have higher preference to be key residues than binding residues. These key residues include polar, nonpolar, aliphatic, aromatic, and charged amino acids. Moreover, we have analyzed and discussed the key residues in different protein-DNA complexes, which are classified based on protein structural class, function, DNA strand, and their conformations. Especially, Ser, Thr, Tyr, Arg, and Lys residues are commonly found in most of the subclasses of protein-DNA complexes. Further, we analyzed atomic contacts, which show that polar-nonpolar is more enriched than other types of contacts. In addition, the charged contacts are highly preferred in protein-DNA complexes compared with protein-protein and protein-RNA complexes. Finally, we have discussed the sequence and structural features of key residues such as conservation score, surrounding hydrophobicity, solvent accessibility, secondary structure, and long-range order. This study will be helpful to understand the recognition mechanism and structural and functional aspects of protein-DNA complexes. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Analyzing and Building Nucleic Acid Structures with 3DNA

    OpenAIRE

    Colasanti, Andrew V.; Lu, Xiang-Jun; Olson, Wilma K.

    2013-01-01

    The 3DNA software package is a popular and versatile bioinformatics tool with capabilities to analyze, construct, and visualize three-dimensional nucleic acid structures. This article presents detailed protocols for a subset of new and popular features available in 3DNA, applicable to both individual structures and ensembles of related structures. Protocol 1 lists the set of instructions needed to download and install the software. This is followed, in Protocol 2, by the analysis of a nucleic...

  4. [Study on factors influencing DNA sequencing by automatic genetic analyzer].

    Science.gov (United States)

    Yan, Shaofei; Wang, Wei; Xu, Jin; Bai, Li; Gan, Xin; Li, Fengqin

    2015-05-01

    To acquire accurate and successful DNA sequencing in a cost-effective way by ABI3500xl automatic genetic analyzer. BigDye was diluted to 8, 16 and 32 times in PCR product sequencing. Three different methods including CENTRI-SEP kit, BigDye cleaning beads and ethanol-NaAc-EDTA were used to purify the sequencing PCR products. The results of DNA sequencing were correct when BigDye was diluted up to 16 times. The misreading of nucleic acid bases was found as BigDye was diluted to 32 times. All three purification methods provided acceptable DNA sequencing results. In terms of method for purification of PCR products, the CENTRI-SEP Kit was the most expensive but time-saving (0.5 h), while ethanol-NaAc-EDTA method was the most economical but time-consuming (2 h). The BigDye cleaning beads method was of a suitable purification time (1 h) but not fit for high-throughput DNA sequencing. BigDye should be diluted up to 16 times in DNA sequencing by ABI3500xl DNA analyzer. Although all three purification methods may promise DNA sequencing results with good quality, it is necessary to choose an appropriate one to keep the balance between time and cost on the basis of the lab condition.

  5. Chromatin immunoprecipitation to analyze DNA binding sites of HMGA2.

    Directory of Open Access Journals (Sweden)

    Nina Winter

    Full Text Available BACKGROUND: HMGA2 is an architectonic transcription factor abundantly expressed during embryonic and fetal development and it is associated with the progression of malignant tumors. The protein harbours three basically charged DNA binding domains and an acidic protein binding C-terminal domain. DNA binding induces changes of DNA conformation and hence results in global overall change of gene expression patterns. Recently, using a PCR-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment procedure two consensus sequences for HMGA2 binding have been identified. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation chromatin immunoprecipitation (ChIP experiments and bioinformatic methods were used to analyze if these binding sequences can be verified on chromatin of living cells as well. CONCLUSION: After quantification of HMGA2 protein in different cell lines the colon cancer derived cell line HCT116 was chosen for further ChIP experiments because of its 3.4-fold higher HMGA2 protein level. 49 DNA fragments were obtained by ChIP. These fragments containing HMGA2 binding sites have been analyzed for their AT-content, location in the human genome and similarities to sequences generated by a SELEX study. The sequences show a significantly higher AT-content than the average of the human genome. The artificially generated SELEX sequences and short BLAST alignments (11 and 12 bp of the ChIP fragments from living cells show similarities in their organization. The flanking regions are AT-rich, whereas a lower conservation is present in the center of the sequences.

  6. Development of a low energy neutral analyzer (LENA). Final report

    International Nuclear Information System (INIS)

    Curtis, C.C.; Fan, C.Y.; Hsieh, K.C.; McCullen, J.D.

    1986-05-01

    A low energy neutral particle analyzer (LENA) has been developed at the University of Arizona to detect particles originating in the edge plasma of fusion reactors. LENA was designed to perform energy analysis and measure flux levels of neutrals having energies between 5 and 50 eV (with possible extension to 500 eV neutrals), and do this with 1 to 10 ms time resolution. The instrument uses hot filaments to produce a 10 mA diffusion electron beam which ionizes incoming neutrals in a nearly field free region so that their velocity distribution is nearly undisturbed. The resultant ions are energy analyzed in a hyperbolic electrostatic analyzer, and detected by an MCP detector. LENA has been installed and operated on the ALCATOR C tokamak at the MIT Plasma Fusion Center. Results to date are discussed. At present, the LENA exhibits excessive sensitivity to the extremely high ultraviolet photon flux emanating from the plasma. Measures to correct this are suggested

  7. Final Report for "Analyzing and visualizing next generation climate data"

    Energy Technology Data Exchange (ETDEWEB)

    Pletzer, Alexander

    2012-11-13

    The project "Analyzing and visualizing next generation climate data" adds block-structured (mosaic) grid support, parallel processing, and 2D/3D curvilinear interpolation to the open-source UV-CDAT climate data analysis tool. Block structured grid support complies to the Gridspec extension submitted to the Climate and Forecast metadata conventions. It contains two parts: aggregation of data spread over multiple mosaic tiles (M-SPEC) and aggregation of temporal data stored in different files (F-SPEC). Together, M-SPEC and F-SPEC allow users to interact with data stored in multiple files as if the data were in a single file. For computational expensive tasks, a flexible, multi-dimensional, multi-type distributed array class allows users to process data in parallel using remote memory access. Both nodal and cell based interpolation is supported; users can choose between different interpolation libraries including ESMF and LibCF depending on the their particular needs.

  8. Analyzing mosquito (Diptera: culicidae diversity in Pakistan by DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Muhammad Ashfaq

    Full Text Available Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications.Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection. The genus Aedes (Stegomyia comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments.As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.

  9. Analyzing mosquito (Diptera: culicidae) diversity in Pakistan by DNA barcoding.

    Science.gov (United States)

    Ashfaq, Muhammad; Hebert, Paul D N; Mirza, Jawwad H; Khan, Arif M; Zafar, Yusuf; Mirza, M Sajjad

    2014-01-01

    Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.

  10. Analyzing Mosquito (Diptera: Culicidae) Diversity in Pakistan by DNA Barcoding

    Science.gov (United States)

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, Jawwad H.; Khan, Arif M.; Zafar, Yusuf; Mirza, M. Sajjad

    2014-01-01

    Background Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Methodology/Principal Findings Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010–2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0–2.4%, while congeneric species showed from 2.3–17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. Conclusions As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations. PMID:24827460

  11. Application of a clustering-based peak alignment algorithm to analyze various DNA fingerprinting data.

    Science.gov (United States)

    Ishii, Satoshi; Kadota, Koji; Senoo, Keishi

    2009-09-01

    DNA fingerprinting analysis such as amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic PCR (rep-PCR), ribosomal intergenic spacer analysis (RISA), and denaturing gradient gel electrophoresis (DGGE) are frequently used in various fields of microbiology. The major difficulty in DNA fingerprinting data analysis is the alignment of multiple peak sets. We report here an R program for a clustering-based peak alignment algorithm, and its application to analyze various DNA fingerprinting data, such as ARDRA, rep-PCR, RISA, and DGGE data. The results obtained by our clustering algorithm and by BioNumerics software showed high similarity. Since several R packages have been established to statistically analyze various biological data, the distance matrix obtained by our R program can be used for subsequent statistical analyses, some of which were not previously performed but are useful in DNA fingerprinting studies.

  12. Exact Tandem Repeats Analyzer (E-TRA): A new program for DNA ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Genetics; Volume 84; Issue 1. Exact Tandem Repeats Analyzer (E-TRA): A new program for DNA sequence mining. Mehmet Karaca Mehmet Bilgen A. Naci Onus Ayse Gul Ince Safinaz Y. Elmasulu. Research Article Volume 84 Issue 1 April 2005 ...

  13. Exact method for numerically analyzing a model of local denaturation in superhelically stressed DNA

    International Nuclear Information System (INIS)

    Fye, R.M.; Benham, C.J.

    1999-01-01

    Local denaturation, the separation at specific sites of the two strands comprising the DNA double helix, is one of the most fundamental processes in biology, required to allow the base sequence to be read both in DNA transcription and in replication. In living organisms this process can be mediated by enzymes which regulate the amount of superhelical stress imposed on the DNA. We present a numerically exact technique for analyzing a model of denaturation in superhelically stressed DNA. This approach is capable of predicting the locations and extents of transition in circular superhelical DNA molecules of kilobase lengths and specified base pair sequences. It can also be used for closed loops of DNA which are typically found in vivo to be kilobases long. The analytic method consists of an integration over the DNA twist degrees of freedom followed by the introduction of auxiliary variables to decouple the remaining degrees of freedom, which allows the use of the transfer matrix method. The algorithm implementing our technique requires O(N 2 ) operations and O(N) memory to analyze a DNA domain containing N base pairs. However, to analyze kilobase length DNA molecules it must be implemented in high precision floating point arithmetic. An accelerated algorithm is constructed by imposing an upper bound M on the number of base pairs that can simultaneously denature in a state. This accelerated algorithm requires O(MN) operations, and has an analytically bounded error. Sample calculations show that it achieves high accuracy (greater than 15 decimal digits) with relatively small values of M (M<0.05N) for kilobase length molecules under physiologically relevant conditions. Calculations are performed on the superhelical pBR322 DNA sequence to test the accuracy of the method. With no free parameters in the model, the locations and extents of local denaturation predicted by this analysis are in quantitatively precise agreement with in vitro experimental measurements

  14. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    Energy Technology Data Exchange (ETDEWEB)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier, E-mail: didier.gasparutto@cea.fr

    2014-02-17

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL{sup −1} and 50 μg mL{sup −1} of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair

  15. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    International Nuclear Information System (INIS)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-01-01

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL −1 and 50 μg mL −1 of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities

  16. Detecting the somatic mutations spectrum of Chinese lung cancer by analyzing the whole mitochondrial DNA genomes.

    Science.gov (United States)

    Fang, Yu; Huang, Jie; Zhang, Jing; Wang, Jun; Qiao, Fei; Chen, Hua-Mei; Hong, Zhi-Peng

    2015-02-01

    To detect the somatic mutations and character its spectrum in Chinese lung cancer patients. In this study, we sequenced the whole mitochondrial DNA (mtDNA) genomes for 10 lung cancer patients including the primary cancerous, matched paracancerous normal and distant normal tissues. By analyzing the 30 whole mtDNA genomes, eight somatic mutations were identified from five patients investigated, which were confirmed with the cloning and sequencing of the somatic mutations. Five of the somatic mutations were detected among control region and the rests were found at the coding region. Heterogeneity was the main character of the somatic mutations in Chinese lung cancer patients. Further potential disease-related screening showed that, except the C deletion at position 309 showed AD-weakly associated, most of them were not disease-related. Although the role of aforementioned somatic mutations was unknown, however, considering the relative higher frequency of somatic mutations among the whole mtDNA genomes, it hints that detecting the somatic mutation(s) from the whole mtDNA genomes can serve as a useful tool for the Chinese lung cancer diagnostic to some extent.

  17. Radon-induced DNA damage and apoptosis analyzed by flow cytometry

    International Nuclear Information System (INIS)

    Meenakshi, C.; Mohankumar, Mary N.

    2012-01-01

    Natural radiation is the major source of human exposure to ionizing radiation and its largest contributing component to effective doses arises from inhalation of 222 Rn and its radioactive progeny. 222 Rn, a chemically inert gas produced naturally from radium in rocks and soil is a proven source of lung cancer especially in closed environments such as mines and in poorly ventilated homes. Much of the data on the effect of radon in humans comes from epidemiological studies, often masked by confounding factors such as age, smoking and lifestyle. Radiation carcinogenesis is initiated by DNA damage and flow cytometry is a versatile, fast and accurate technique for the analysis of DNA damage as it offers the analysis of high number of individual cells in few minutes. An attempt was made to detect DNA damage and apoptosis after exposing human blood cells in vitro to radon by flow cytometry. Blood samples were collected from apparently healthy individuals and exposed in vitro to radon ranging between 1-5 mGy using a simple, portable irradiation assembly designed and tested at the Radiological Safety Division of Indira Gandhi Centre for Atomic Research. Cultures were initiated by the addition of phytohemagglutinin and cells were processed stained and analyzed for DNA damage and apoptosis by flow cytometry. CV values indicative of DNA damage were plotted against dose and were observed to increase in a dose dependent manner 3h after of irradiation. However no such response was observed at 24h and 48h. Nevertheless, the percentage of apoptotic cells increased steadily with dose after 24 and 48h post exposure. DNA breaks appear to be rejoined after about 24h of irradiation. However apoptotic cells increased with time and dose, suggesting elimination of highly damaged cells. Further experiments are needed to identify apoptotic cells as a biomarker of radiation exposure and risk. (author)

  18. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liukang [LI-COR Inc., Lincoln, NE (United States); McDermitt, Dayle [LI-COR Inc., Lincoln, NE (United States); Anderson, Tyler [LI-COR Inc., Lincoln, NE (United States); Riensche, Brad [LI-COR Inc., Lincoln, NE (United States); Komissarov, Anatoly [LI-COR Inc., Lincoln, NE (United States); Howe, Julie [LI-COR Inc., Lincoln, NE (United States)

    2012-02-01

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been

  19. Molecular mechanisms in radiation damage to DNA: Final report

    International Nuclear Information System (INIS)

    Osman, R.

    1996-01-01

    The objectives of this work were to elucidate the molecular mechanisms that were responsible for radiation-induced DNA damage. The studies were based on theoretical explorations of possible mechanisms that link initial radiation damage in the form of base and sugar damage to conformational changes in DNA

  20. Repair of damaged DNA in vivo: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, P.C.

    1987-09-01

    This contract was initiated in 1962 with the US Atomic Energy Commission to carry out basic research on the effects of radiation on the process of DNA replication in bacteria. Within the first contract year we discovered repair replication at the same time that Setlow and Carrier discovered pyrimidine dimer excision. These discoveries led to the elucidation of the process of excision-repair, one of the most important mechanisms by which living systems, including humans, respond to structural damage in their genetic material. We improved methodology for distinguishing repair replication from semiconservative replication and instructed others in these techniques. Painter then was the first to demonstrate repair replication in ultraviolet irradiated human cells. He, in turn, instructed James Cleaver who discovered that skin fibroblasts from patients with xeroderma pigmentosum were defective in excision-repair. People with this genetic defect are extremely sensitive to sunlight and they develop carcinomas and melanomas of the skin with high frequency. The existence of this hereditary disease attests to the importance of DNA repair in man. We certainly could not survive in the normal ultraviolet flux from the sun if our DNA were not continuously monitored for damage and repaired. Other hereditary diseases such as ataxia telangiectasia, Cockayne's syndrome, Blooms syndrome and Fanconi's anemia also involve deficiencies in DNA damage processing. The field of DNA repair has developed rapidly as we have learned that most environmental chemical carcinogens as well as radiation produce repairable damage in DNA. 251 refs.

  1. Repair of damaged DNA in vivo: Final technical report

    International Nuclear Information System (INIS)

    Hanawalt, P.C.

    1987-09-01

    This contract was initiated in 1962 with the US Atomic Energy Commission to carry out basic research on the effects of radiation on the process of DNA replication in bacteria. Within the first contract year we discovered repair replication at the same time that Setlow and Carrier discovered pyrimidine dimer excision. These discoveries led to the elucidation of the process of excision-repair, one of the most important mechanisms by which living systems, including humans, respond to structural damage in their genetic material. We improved methodology for distinguishing repair replication from semiconservative replication and instructed others in these techniques. Painter then was the first to demonstrate repair replication in ultraviolet irradiated human cells. He, in turn, instructed James Cleaver who discovered that skin fibroblasts from patients with xeroderma pigmentosum were defective in excision-repair. People with this genetic defect are extremely sensitive to sunlight and they develop carcinomas and melanomas of the skin with high frequency. The existence of this hereditary disease attests to the importance of DNA repair in man. We certainly could not survive in the normal ultraviolet flux from the sun if our DNA were not continuously monitored for damage and repaired. Other hereditary diseases such as ataxia telangiectasia, Cockayne's syndrome, Blooms syndrome and Fanconi's anemia also involve deficiencies in DNA damage processing. The field of DNA repair has developed rapidly as we have learned that most environmental chemical carcinogens as well as radiation produce repairable damage in DNA. 251 refs

  2. Computational method and system for modeling, analyzing, and optimizing DNA amplification and synthesis

    Science.gov (United States)

    Vandersall, Jennifer A.; Gardner, Shea N.; Clague, David S.

    2010-05-04

    A computational method and computer-based system of modeling DNA synthesis for the design and interpretation of PCR amplification, parallel DNA synthesis, and microarray chip analysis. The method and system include modules that address the bioinformatics, kinetics, and thermodynamics of DNA amplification and synthesis. Specifically, the steps of DNA selection, as well as the kinetics and thermodynamics of DNA hybridization and extensions, are addressed, which enable the optimization of the processing and the prediction of the products as a function of DNA sequence, mixing protocol, time, temperature and concentration of species.

  3. Screening and further analyzing differentially expressed genes in acute idiopathic pulmonary fibrosis with DNA microarray.

    Science.gov (United States)

    Min, F; Gao, F; Liu, Z

    2013-10-01

    Acute idiopathic pulmonary fibrosis (IPF) is a serious and progressive form of lung disease, and millions of people suffer from this disease in the world. To provide clues for getting a better understanding of the mechanism of this disease, we identified and further analyzed the differential expressed genes in IPF. In this study, we downloaded the gene expression microarray (GSE10667) from Gene Expression Omnibus (GEO) database. The dataset contained a total of 23 samples, including 15 normal controls and 8 diseases samples (IPF). Then, we identified the differentially expressed genes between normal and disease samples with packages in R language. Consequently, the PPI network was also constructed for the products of these DEGs, and modules in the network were analyzed by Cytoscape's plug-in Mcode and Bingo. Furthermore, enrichment analysis was performed by DAVID to illustrate the altered pathways in IPF. The drug compounds for PLK1 were screened in DrugBank. Atotal of 349 genes were identified as differentially expressed genes between normal and disease samples, and we constructed a protein-protein interaction network which included 200 pairs of proteins. Then three modules were identified in our network. Function of these modules were predicted to be related to protein kinase binding, extracellular matrix structural and structural constituent of cytoskeleton, respectively. Finally, we focused on module A including 18 DEGs. PLK1 (Polo like kinge-1) in this module was predicted as a marker gene in IPF, which was related to cell cycle pathway. Several compounds were found which may be the potential drug for IPF.

  4. Vertically integrated analysis of human DNA. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, M.

    1997-10-01

    This project has been oriented toward improving the vertical integration of the sequential steps associated with the large-scale analysis of human DNA. The central focus has been on an approach to the preparation of {open_quotes}sequence-ready{close_quotes} maps, which is referred to as multiple-complete-digest (MCD) mapping, primarily directed at cosmid clones. MCD mapping relies on simple experimental steps, supported by advanced image-analysis and map-assembly software, to produce extremely accurate restriction-site and clone-overlap maps. We believe that MCD mapping is one of the few high-resolution mapping systems that has the potential for high-level automation. Successful automation of this process would be a landmark event in genome analysis. Once other higher organisms, paving the way for cost-effective sequencing of these genomes. Critically, MCD mapping has the potential to provide built-in quality control for sequencing accuracy and to make possible a highly integrated end product even if there are large numbers of discontinuities in the actual sequence.

  5. diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data.

    Science.gov (United States)

    Lareau, Caleb A; Aryee, Martin J; Berger, Bonnie

    2018-02-15

    The 3D architecture of DNA within the nucleus is a key determinant of interactions between genes, regulatory elements, and transcriptional machinery. As a result, differences in DNA looping structure are associated with variation in gene expression and cell state. To systematically assess changes in DNA looping architecture between samples, we introduce diffloop, an R/Bioconductor package that provides a suite of functions for the quality control, statistical testing, annotation, and visualization of DNA loops. We demonstrate this functionality by detecting differences between ENCODE ChIA-PET samples and relate looping to variability in epigenetic state. Diffloop is implemented as an R/Bioconductor package available at https://bioconductor.org/packages/release/bioc/html/diffloop.html. aryee.martin@mgh.harvard.edu. Supplementary data are available at Bioinformatics online.

  6. Exact Tandem Repeats Analyzer (E-TRA): A new program for DNA ...

    Indian Academy of Sciences (India)

    Unknown

    Exact Tandem Repeats Analyzer 1.0 (E-TRA) combines sequence motif searches with keywords such as 'organs',. 'tissues', 'cell lines' and 'development stages' for finding simple exact tandem repeats as well as non-simple repeats. E-TRA has several advanced repeat search parameters/options compared to other repeat ...

  7. PRIMEGENS-v2: genome-wide primer design for analyzing DNA methylation patterns of CpG islands.

    Science.gov (United States)

    Srivastava, Gyan P; Guo, Juyuan; Shi, Huidong; Xu, Dong

    2008-09-01

    DNA methylation plays important roles in biological processes and human diseases, especially cancers. High-throughput bisulfite genomic sequencing based on new generation of sequencers, such as the 454-sequencing system provides an efficient method for analyzing DNA methylation patterns. The successful implementation of this approach depends on the use of primer design software capable of performing genome-wide scan for optimal primers from in silico bisulfite-treated genome sequences. We have developed a method, which fulfills this requirement and conduct primer design for sequences including regions of given promoter CpG islands. The developed method has been implemented using the C and JAVA programming languages. The primer design results were tested in the PCR experiments of 96 selected human DNA sequences containing CpG islands in the promoter regions. The results indicate that this method is efficient and reliable for designing sequence-specific primers. The sequence-specific primer design for DNA meth-ylated sequences including CpG islands has been integrated into the second version of PRIMEGENS as one of the primer design features. The software is freely available for academic use at http://digbio.missouri.edu/primegens/.

  8. Analyzing RNA and DNA folding using temperature gradient gel electrophoresis (TGGE) with application to in vitro selections.

    Science.gov (United States)

    Chadalavada, Durga M; Bevilacqua, Philip C

    2009-01-01

    Gel electrophoresis is a ubiquitous separation technique in nucleic acid biochemistry. Denaturing gel electrophoresis separates nucleic acids on the basis of length, while native gel electrophoresis separates nucleic acids on the basis of both shape and length. Temperature gradient gel electrophoresis (TGGE), in which a temperature gradient is present across the gel, combines the advantages of denaturing and native gel electrophoresis by having native gel-like properties at low temperatures and denaturing gel-like properties at high temperatures. We describe here the techniques of perpendicular and parallel TGGE and some of their applications. Isolation of stable and unstable RNA and DNA sequences from combinatorial libraries is accomplished with TGGE-SELEX, while thermodynamic characterization of an RNA tertiary motif is performed by perpendicular TGGE-melts. Specific examples are chosen from the literature to illustrate the methods. TGGE provides a powerful biophysical approach for analyzing RNA and DNA that complements more traditional methodologies. Copyright © 2009 Elsevier Inc. All rights reserved.

  9. A quantitative assessment of the Hadoop framework for analyzing massively parallel DNA sequencing data.

    Science.gov (United States)

    Siretskiy, Alexey; Sundqvist, Tore; Voznesenskiy, Mikhail; Spjuth, Ola

    2015-01-01

    New high-throughput technologies, such as massively parallel sequencing, have transformed the life sciences into a data-intensive field. The most common e-infrastructure for analyzing this data consists of batch systems that are based on high-performance computing resources; however, the bioinformatics software that is built on this platform does not scale well in the general case. Recently, the Hadoop platform has emerged as an interesting option to address the challenges of increasingly large datasets with distributed storage, distributed processing, built-in data locality, fault tolerance, and an appealing programming methodology. In this work we introduce metrics and report on a quantitative comparison between Hadoop and a single node of conventional high-performance computing resources for the tasks of short read mapping and variant calling. We calculate efficiency as a function of data size and observe that the Hadoop platform is more efficient for biologically relevant data sizes in terms of computing hours for both split and un-split data files. We also quantify the advantages of the data locality provided by Hadoop for NGS problems, and show that a classical architecture with network-attached storage will not scale when computing resources increase in numbers. Measurements were performed using ten datasets of different sizes, up to 100 gigabases, using the pipeline implemented in Crossbow. To make a fair comparison, we implemented an improved preprocessor for Hadoop with better performance for splittable data files. For improved usability, we implemented a graphical user interface for Crossbow in a private cloud environment using the CloudGene platform. All of the code and data in this study are freely available as open source in public repositories. From our experiments we can conclude that the improved Hadoop pipeline scales better than the same pipeline on high-performance computing resources, we also conclude that Hadoop is an economically viable

  10. A fully automated 384 capillary array for DNA sequencer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbo; Kane, T

    2003-03-20

    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  11. [Real-time quantification to analyze historical Colombian samples detecting a short fragment of hypervariable region II of mitochondrial DNA].

    Science.gov (United States)

    Pérez, Luz Adriana; Rodríguez, Freddy; Langebaek, Carl Henrik; Groot, Helena

    2016-09-01

    Unlike other molecular biology studies, the analysis of ancient DNA (aDNA) requires special infrastructure and methodological conditions to guarantee the quality of the results. One of the main authenticity criteria is DNA quantification, where quantitative real-time PCR is often used given its sensitivity and specificity. Nevertheless, the implementation of these conditions and methodologies to fulfill authenticity criteria imply higher costs. Objective: To develop a simple and less costly method for mitochondrial DNA quantification suitable for highly degraded samples. Materials and methods: The proposed method is based on the use of mini-primers for the specific amplification of short fragments of mitochondrial DNA. The subsequent purification of these amplified fragments allows a standard curve to be constructed with concentrations in accordance to the state of degradation of the samples. Results: The proposed method successfully detected DNA from ancient samples including bone remains and mummified tissue. DNA inhibitory substances were also detected. Conclusion: The proposed method represents a simpler and cost-effective way to detect low amounts of aDNA, and a tool to differentiate DNA-free samples from samples with inhibitory substances.

  12. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy.

    Directory of Open Access Journals (Sweden)

    Yvonne Lorat

    Full Text Available DNA double-strand breaks (DSBs generated by ionizing radiation pose a serious threat to the preservation of genetic and epigenetic information. The known importance of local chromatin configuration in DSB repair raises the question of whether breaks in different chromatin environments are recognized and repaired by the same repair machinery and with similar efficiency. An essential step in DSB processing by non-homologous end joining is the high-affinity binding of Ku70-Ku80 and DNA-PKcs to double-stranded DNA ends that holds the ends in physical proximity for subsequent repair.Using transmission electron microscopy to localize gold-labeled pKu70 and pDNA-PKcs within nuclear ultrastructure, we monitored the formation and repair of actual DSBs within euchromatin (electron-lucent and heterochromatin (electron-dense in cortical neurons of irradiated mouse brain.While DNA lesions in euchromatin (characterized by two pKu70-gold beads, reflecting the Ku70-Ku80 heterodimer are promptly sensed and rejoined, DNA packaging in heterochromatin appears to retard DSB processing, due to the time needed to unravel higher-order chromatin structures. Complex pKu70-clusters formed in heterochromatin (consisting of 4 or ≥ 6 gold beads may represent multiple breaks in close proximity caused by ionizing radiation of highly-compacted DNA. All pKu70-clusters disappeared within 72 hours post-irradiation, indicating efficient DSB rejoining. However, persistent 53BP1 clusters in heterochromatin (comprising ≥ 10 gold beads, occasionally co-localizing with γH2AX, but not pKu70 or pDNA-PKcs, may reflect incomplete or incorrect restoration of chromatin structure rather than persistently unrepaired DNA damage.Higher-order organization of chromatin determines the accessibility of DNA lesions to repair complexes, defining how readily DSBs are detected and processed. DNA lesions in heterochromatin appear to be more complex, with multiple breaks in spatial vicinity inducing

  13. Analyzing the impacts of final demand changes on total output using input-output approach: The case of Japanese ICT sectors

    International Nuclear Information System (INIS)

    Zuhdi, Ubaidillah

    2014-01-01

    The purpose of this study is to analyze the impacts of final demand changes on total output of Japanese Information and Communication Technologies (ICT) sectors in future time. This study employs one of analysis tool in Input-Output (IO) analysis, demand-pull IO quantity model, in achieving the purpose. There are three final demand changes used in this study, namely (1) export, (2) import, and (3) outside households consumption changes. This study focuses on ''pure change'' condition, the condition that final demand changes only appear in analyzed sectors. The results show that export and outside households consumption modifications give positive impact while opposite impact could be seen in import change

  14. Final report : LDRD project 79824 carbon nanotube sorting via DNA-directed self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B; Leung, Kevin; Rempe, Susan B.; Dossa, Paul D.; Frischknecht, Amalie Lucile; Martin, Marcus Gary

    2007-10-01

    Single-wall carbon nanotubes (SWNTs) have shown great promise in novel applications in molecular electronics, biohazard detection, and composite materials. Commercially synthesized nanotubes exhibit a wide dispersion of geometries and conductivities, and tend to aggregate. Hence the key to using these materials is the ability to solubilize and sort carbon nanotubes according to their geometric/electronic properties. One of the most effective dispersants is single-stranded DNA (ssDNA), but there are many outstanding questions regarding the interaction between nucleic acids and SWNTs. In this work we focus on the interactions of SWNTs with single monomers of nucleic acids, as a first step to answering these outstanding questions. We use atomistic molecular dynamics simulations to calculate the binding energy of six different nucleotide monophosphates (NMPs) to a (6,0) single-wall carbon nanotube in aqueous solution. We find that the binding energies are generally favorable, of the order of a few kcal/mol. The binding energies of the different NMPs were very similar in salt solution, whereas we found a range of binding energies for NMPs in pure water. The binding energies are sensitive to the details of the association of the sodium ions with the phosphate groups and also to the average conformations of the nucleotides. We use electronic structure (Density Functional Theory (DFT) and Moller-Plesset second order perturbation to uncorrelated Hartree Fock theory (MP2)) methods to complement the classical force field study. With judicious choices of DFT exchange correlation functionals, we find that DFT, MP2, and classical force field predictions are in qualitative and even quantitative agreement; all three methods should give reliable and valid predictions. However, in one important case, the interactions between ions and metallic carbon nanotubes--the SWNT polarization-induced affinity for ions, neglected in most classical force field studies, is found to be extremely

  15. Side-by-side comparison of techniques for analyzing organic acids, total organic carbon, and anions. Final report

    International Nuclear Information System (INIS)

    Byers, W.A.; Richards, J.; Silva, H.; Miller, M.R.; Palino, G.F.; Wall, P.S.

    1986-09-01

    The objective of this project was to compare the organic acids sampling and analysis methods of Westinghouse and NWT Corporation. Sampling was performed at three sites, chosen to represent units with high, intermediate and low levels of organic contamination. To check the precision of each method, concurrent sampling was employed. To check the accuracy of each method, additions of standard organic solutions were made at one of the sites. Inorganic anions were also analyzed at each site by each contractor. Theoretical values of cation conductivity were calculated from organic and inorganic analytical data and compared to values measured onsite at the time of sampling. Total organic carbon (TOC) analyses were performed to evaluate different instruments and sampling techniques, as well as provide additional information on the relationship between TOC and organic acids concentrations. It was concluded that either of the organic acid sampling/analysis techniques used by the contractors can produce reliable results. TOC samples lose organics content with storage time and should be analyzed no later than one week after they are taken; if at all possible, they should be stored in a refrigerated condition. State-of-the art techniques for TOC sampling and analysis can produce results varying by 20 to 50 ppB for levels in the range of 50 to 120 ppB; any proposed limits for TOC should be reviewed in that light. Results of anion analyses are quite sensitive to sampling and analytical techniques. Reasonable agreement between calculated and measured values of cation conductivity suggests that both contractors had accurately determined all major anionic species

  16. Final Report: The DNA Files: Unraveling the mysteries of genetics, January 1, 1998-March 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bari

    1999-05-01

    The DNA Files is an award-winning radio documentary series on genetics created by SoundVision Productions. The DNA Files was hosted by John Hockenberry and was presented in documentary and discussion format. The programs covered a range of topics from prenatal and predictive gene testing, gene therapy, and commercialization of genetic information to new evolutionary genetic evidence, transgenic vegetables and use of DNA in forensics.

  17. Mechanisms for radiation damage in DNA. Final report, June 1, 1986--August 31, 1996

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1996-08-01

    Over the last 10 years significant advances have been made impacting the understanding of radiation damage to DNA. The principal objective of this work was the elucidation of the fundamental mechanisms of radiation damage to DNA through the direct and indirect effects. Recently the work concentrated on the direct effect of radiation damage on DNA. The objective was to elucidate the ultimate radiation chemical damage to DNA arising from the direct effect. In this effort the focus was on the application of three techniques. ESR spectroscopic measurement of initial radicals formed in DNA and its hydration layer at low temperatures. Ab initio molecular orbital calculations were employed to give highly accurate theoretical predictions of early events such as electron and hole localization sites which serve to test and to clarify the experimental observations. HPLC and GC-mass spectroscopic assays of DNA base products formation provide the ultimate chemical outcome of the initial radiation events. The bridge between the early ion radical species and the non-radical products is made in ESR studies which follow the chemistry of the early species as they react with water and or other DNA bases. The use of these techniques has resulted in a new and fundamental understanding of the radiation damage to DNA on a molecular scale. From this work, a working model for DNA damage from the initial ionization event to the eventual formation of molecular base damage products and strand breaks has been formulated. Results over the past several years which have led to the formulation of this model are described

  18. Development of DNA Pillar Chip Final Report CRADA No. TSB-2035-01

    Energy Technology Data Exchange (ETDEWEB)

    Ness, K. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Long, G. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Tetracore, to demonstrate a proof of principal device for the capture and controlled release of DNA moving within a flow stream.

  19. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  20. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    International Nuclear Information System (INIS)

    NONE

    1999-01-01

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair

  1. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-12

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair.

  2. Characterization of ionizing radiation damage in DNA. Final report, February 1, 1977--September 30, 1977

    International Nuclear Information System (INIS)

    Hawkins, R.B.

    1977-01-01

    An experimental method for the measurement of covalent DNA-protein cross-links in bacteriophage T7 based on phenol-water countercurrent distribution has been developed and a statistical model for quantitative interpretation of these measurements has been devised. It has been found that DNA-protein cross links accumulate linearly with dose in response to exposure to 60 Co gamma radiation at a rate .05 to .20 times the rate of accumulation of double strand breaks if phage are exposed in highly protective medium (tryptone broth). It has been found that fast neutrons also induce DNA-protein cross-linkage. Furthermore, cross-link and double strand break lesions induced by neutrons occur in multiple clusters in randomly chosen phage, in contrast to those induced by gamma radiation, which occur singly in randomly chosen phage. It also appears that neutrons induce double strand breaks in the phage with an efficiency 50 times that of gamma rays. It was found that protein-DNA cross-links occur 30 times more frequently per lethal lesion after exposure to gamma rays than after exposure to ultraviolet light. Investigations of the occurrence of double strand breaks, protein-DNA cross-links and other DNA lesions in eucaryotic cells currently being pursued are also described

  3. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    Science.gov (United States)

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der

  4. [Studies on the repair of damaged DNA in bacteriophage, bacterial and mammalian systems]: Final report

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1987-08-01

    This study sought to exploit the use of uv radiation as a source of genomic damage. We explored the molecular mechanism of the repair of DNA damage at a number of different levels of biological organization, by investigating bacteriophage, bacterial, yeast and mammalian cells. Not only have observations obtained in one biological system suggested specific experimental approaches in others, but we have also learned that some biochemical pathways for DNA repair are unique to specific organisms. Our studies are summarized in terms of 4 major areas of research activity that span the past 16 years. 86 refs

  5. Mass spectrometer for quantification and characterization of DNA damage in mammalian and human systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The instrument grant was used to purchase a Finnigan TSQ 7000 tandem quadruple mass spectrometer with electrospray and atmospheric-pressure chemical-ionization ion sources for the amount of the grant, $371,857. MIT contributed $50,000 in refurbishing costs for the laboratory in which the instrument is used. This mass spectrometer has been in operation since July, 1995 in professor Steven Tannenbaum`s Laboratory in the MIT Division of Toxicology, under the direct supervision of Dr. John S. Wishnok. Its current location is in MIT Building 56, room 747. It is in good operating condition, and is being actively used. Since the original purchase, the instrument has been upgraded by the addition of a (1) dedicated high-performance liquid chromatograph with an autosampler and (2) a nanoelectrospray ion source. The instrument has been used in a number of research projects including the identification of proteins and oligonucleotides, identification of PAH-DNA and PAH-protein adducts, quantitation of food-related carcinogens, and characterization of nitric oxide- and peroxynitrite-related DNA damage.

  6. Radioactively labelled DNA probes for crop improvement. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    2001-11-01

    With the advent of DNA molecular marker technology in the 1980s plant breeding had a new and powerful tool with which to increase its efficacy. Such markers are abundant and directly reveal information about the genotype and therefore are more useful than simple phenotypic markers. In plant breeding applications, molecular markers reveal information about variability and genetic relationships, and enable genetic mapping, which greatly assists the breeder in selection of parents and progeny, as well as in management of breeding strategies. Furthermore, molecular markers linked to phenotypic traits permit very early selection of superior progenies from breeding populations, therefore significantly reducing the need for field testing and greatly increasing efficiency of plant breeding programmes. For this to occur the oligonucleotide probes for labelling genetic markers and/or the primers for polymerase chain reactions to amplify genetic markers needed to be also accessible to scientists in developing Member States. In addition, technical information, training and troubleshooting were needed to support the utilization of DNA markers. In the early 1990s there was a dramatic increase in requests for access to this technology. This co-ordinated research project (CRP) facilitated the transfer of molecular marker technology, in terms of both material and information, from advanced laboratories to assist breeding programmes in developing countries. Two other CRPs were conducted concurrently in order to assist developing Member States to utilise molecular markers - Application of DNA Based Marker Mutations for Improvement of Cereals and other Sexually Reproduced Crop Plants, and Use of Novel DNA Fingerprinting Techniques for the Detection and Characterisation of Genetic Variation in Vegetatively Propagated Crops (IAEA-TECDOC-1010 and IAEA-TECDOC-1047, respectively). The present CRP built upon the success of the former projects by ensuring the availability of probes

  7. Repair of DNA treated with γ-irradiation and chemical carcinogens. Final report, June 1, 1981-May 31, 1984

    International Nuclear Information System (INIS)

    Goldthwait, D.A.

    1984-01-01

    Work done in the past three years has been on DNA repair, on genetic transposition and on the effect of carcinogens on alu sequence transcription. DNA repair work was completed on β-propiolactone DNA adducts, on procaryotic and eucaryotic enzymes capable of removal of 3-methyladenine from DNA, and on in vitro repair of neucleosomal core particle DNA and chromatin DNA. Attempts were made to isolate a human transposable element through the isolation of double stranded RNA and probing of a human library. Experiments were also done to determine whether carcinogens altered the expression of alu sequences in human DNA

  8. Shaping potential of manual NiTi K-File and rotary ProTaper and analyzing the final outcome of shaped canals using CT.

    Science.gov (United States)

    Kakar, Surbhi; Dhingra, Anil; Sharma, Himanshu

    2013-05-01

    To assess and compare the shaping potential of manual NiTi K-files and Rotary ProTaper instruments in narrow canals using CT. To assess the shaping potential of manual NiTi K-files and Rotary ProTaper and analyzing the final outcome of shaped canals using CT and determining different variables, like • Working time • Change in volume • Change in cross-sectional area. From a pool of fifty freshly extracted permanent maxillary molars (1st and 2nd), 30 were selected with curvatures (20 to 40°) (Schneider 1971). Tissue fragments and calcified debries were removed from the teeth by scaling. The teeth were then stored in normal saline until used. All the mesiobuccal canals were scanned by CT to obtain preinstrumented images. Teeth were scaled and stored in normal saline. This study was divided in two groups with 15 samples each. GROUP I (PROTAPER ROTARY): Canals were instrumented with Protaper Rotary instruments using crown down technique according to manufacturer's instructions. GROUP II (NITI K-FILE): Were instrumented by NiTi K-files using step back technique with a quarter turn/pull motion. EVALUATIONS OF WORKING TIME: Comparative evaluations of working time was done for both the experimental groups. CT ANALYSIS AND MEASUREMENTS: The samples were analyzed and evaluated for: • Postinstrumentation change in volume. • Postinstrumentation change in cross-sections area. From the observations and statistical analysis carried out in this study, it was found that: There was a statistically significant difference between all the parameters judged for the present study that is: 1. Instrumentation with ProTaper Rotary system took significantly less time than instrumentation with manual NiTi K-file. 2. Change in the canal volume following instrumentation with ProTaper Rotary was significantly greater than that produced by manual NITi K-file. 3. a. Change in cross-section area at 2 and 3 mm from the apex was significantly greater with manual NiTi K-file as compared to

  9. The implementation of hybrid clustering using fuzzy c-means and divisive algorithm for analyzing DNA human Papillomavirus cause of cervical cancer

    Science.gov (United States)

    Andryani, Diyah Septi; Bustamam, Alhadi; Lestari, Dian

    2017-03-01

    Clustering aims to classify the different patterns into groups called clusters. In this clustering method, we use n-mers frequency to calculate the distance matrix which is considered more accurate than using the DNA alignment. The clustering results could be used to discover biologically important sub-sections and groups of genes. Many clustering methods have been developed, while hard clustering methods considered less accurate than fuzzy clustering methods, especially if it is used for outliers data. Among fuzzy clustering methods, fuzzy c-means is one the best known for its accuracy and simplicity. Fuzzy c-means clustering uses membership function variable, which refers to how likely the data could be members into a cluster. Fuzzy c-means clustering works using the principle of minimizing the objective function. Parameters of membership function in fuzzy are used as a weighting factor which is also called the fuzzier. In this study we implement hybrid clustering using fuzzy c-means and divisive algorithm which could improve the accuracy of cluster membership compare to traditional partitional approach only. In this study fuzzy c-means is used in the first step to find partition results. Furthermore divisive algorithms will run on the second step to find sub-clusters and dendogram of phylogenetic tree. To find the best number of clusters is determined using the minimum value of Davies Bouldin Index (DBI) of the cluster results. In this research, the results show that the methods introduced in this paper is better than other partitioning methods. Finally, we found 3 clusters with DBI value of 1.126628 at first step of clustering. Moreover, DBI values after implementing the second step of clustering are always producing smaller IDB values compare to the results of using first step clustering only. This condition indicates that the hybrid approach in this study produce better performance of the cluster results, in term its DBI values.

  10. Analyzing of DNA behavior in passing through micro-structures based on the Fokker-Planck equation and the entropic barrier model

    Directory of Open Access Journals (Sweden)

    N Maleki-Jirsaraei

    2009-09-01

    Full Text Available We considered the motion of DNA molecules through a hexagonal array under uniform electric fields as a Fokker-Planck process which is affected by the entropic barriers and we have simulated this motion by computer. We solved the Fokker-Planck equation with numerical simulation of the Brownian dynamics by the Euler method. For different DNA molecules, under different physical conditions, the mean value of velocity, variance, and < x2 > have been calculated, and the results have been compared with the Phase Diagram of our previous results. In the light of this comparison we could find the physics of the DNA behavior in different regimes. It is observed that in regime-1 (small DNA molecules under weak Electric force we have a pure diffusion process, in regime-3 (large DNA molecules under high Electric field the entropic barrier model is the dominated physics, and in regime-2 (medium DNA molecules under medium and relative high Electric fields, which is a more complicated regime we have a drifted diffusion phenomenon.

  11. Ionizing radiation-induced DNA damage and its repair in human cells. Final performance report, July 1992--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dizdaroglu, M.

    1995-12-31

    The studies of DNA damage in living cells in vitro and in vivo were continued. A variety of systems including cultured mammalian cells, animals, and human tissues were used to conduct these studies. In addition, enzymatic repair of DNA base damage was studied using several DNA glycosylases. To this end, substrate specificities of these enzymes were examined in terms of a large number of base lesions in DNA. In the first phase of the studies, the author sought to introduce improvements to his methodologies for measurement of DNA damage using the technique of gas chromatography/mass spectrometry (GC/MS). In particular, the quantitative measurement of DNA base damage and DNA-protein crosslinks was improved by incorporation of isotope-dilution mass spectrometry into the methodologies. This is one of the most accurate techniques for quantification of organic compounds. Having improved the measurement technique, studies of DNA damage in living cells and DNA repair by repair enzymes were pursued. This report provides a summary of these studies with references to the original work.

  12. GRAIL-genQuest: A comprehensive computational system for DNA sequence analysis. Final report, DOE SBIR Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Ruth Ann

    1999-01-05

    Recent advances in DNA sequencing and genome mapping technologies are making it possible, for the first time in history, to find genes in plants and animals and to elucidate their function. This means that diagnostics and therapeutics can be developed for human diseases such as cancer, obesity, hypertension, and cardiovascular problems. Crop and animal strains can be developed that are hardier, resistant to diseases, and produce higher yields. The challenge is to develop tools that will find the nucleotides in the DNA of a living organism that comprise a particular gene. In the human genome alone it is estimated that only about 51% of the approximately 3 billion pairs of nucleotides code for some 100,000 human genes. In this search for nucleotides within a genome which are active in the actual coding of proteins, efficient tools to locate and identify their function can be of significant value to mankind. Software tools such as ApoCom GRAIL{trademark} have assisted in this search. It can be used to analyze genome information, to identify exons (coding regions) and to construct gene models. Using a neural network approach, this software can ''learn'' sequence patterns and refine its ability to recognize a pattern as it is exposed to more and more examples of it. Since 1992 versions of GRAIL{trademark} have been publicly available over the Internet from Oak Ridge National Laboratory. Because of the potential for security and patent compromise, these Internet versions are not available to many researchers in pharmaceutical and biotechnology companies who cannot send proprietary sequences past their data-secure firewalls. ApoCom is making available commercial versions of the GRAIL{trademark} software to run self-contained over local area networks. As part of the commercialization effort, ApoCom has developed a new Java{trademark}-based graphical user interface, the ApoCom Client Tool for Genomics (ACTG){trademark}. Two products, ApoCom GRAIL

  13. In vitro enzymatic studies on the nature and repair of x-ray-induced damages in DNA. Final report

    International Nuclear Information System (INIS)

    Wallace, S.S.

    1981-03-01

    An enzyme has been purified some 4000 fold from Escherichia coli which recognizes alkali stable base damages in x-irradiated DNA. The enzyme has broad specificity incising: DNA damaged by OsO 4 which produces thymine glycols, DNA treated with heat and acid which produces apurinic sites, and DNA uv-irradiated with high fluences which produces a variety of damages including the above. These activities co-chromatograph through Fraction VII the most purified form; however, the optimum reaction parameters differ among the various substrates suggesting the presence of more than one active site. Similar studies have been done with Saccharomyces cerevisiae. Several apurinic activities have been elucidated in this organism, one of which, Endonuclease E, has been purified over 1000 fold. Endonuclease E has been characterized with respect to various reaction parameters as well as by gel electrophoresis. Both the E. coli and yeast enzymes have been used to quantify DNA damage. Apurinic PM2 DNA and OsO 4 -treated PM2 DNA have also been used in a transfection system to estimate the inactivation efficiencies of AP sites and thymine glycols. AP sites have a relatively high inactivation efficiency and contribute about 15% to the inactivation of x-irradiated PM2 phage while thymine glycols contribute significantly less

  14. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    Science.gov (United States)

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Möller, Lennart

    2005-11-15

    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyguanosine (8-oxodG), (32)P-HPLC for measurements of lipophilic DNA-adducts, and the Comet assay to measure a variety of DNA lesions, including oxidative stress. No significant oxidative damage from either isomer was found regarding formation of 8-oxodG analysed using HPLC-EC/UV. However, the Comet assay (with FPG-treatment), which is more sensitive and detects more types of damages compared to HPLC-EC/UV, showed a significant effect from both 3-NBA and 2-NBA. (32)P-HPLC revealed a strong DNA-adduct formation from both 3-NBA and 2-NBA, and also a significant difference between both isomers compared to negative control. These results clearly show that 2-NBA has a genotoxic potential. Even if the DNA-adduct forming capacity and the amount of DNA lesions measured with the (32)P-HPLC and Comet assay is about one third of 3-NBA, the high abundance of 2-NBA in ambient air calls for further investigation and evaluation of its health hazard.

  15. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    David A. Boothman

    1999-08-11

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed.

  16. Carcinogen-DNA interaction study by base sequence footprinting. Final report, July 1, 1983-June 30, 1986

    International Nuclear Information System (INIS)

    Bases, R.

    1986-01-01

    Our previous studies on acetylaminofluorene (AAF) modified DNA demonstrated three kinds of structural changes in DNA of defined base sequence. For example, adduct formation by N-Aco-AAF was found at each guanine. We studied the interaction of IgG specific for AAF guanosine in an in vitro system using AAF modified phi X-174 rf DNA. We had expected to find protection against DNAase I digestion. Instead, when the DNA was immunobound to an inert matrix via the IgG, DNAase I digestion was enhanced 20 fold without changing the base sequence pattern of digestion. DNAase I hypersensitive sites are a necessary but not a sufficient condition for transcription. Moreover, some hypersensitive sites are stably propagated, independent of the continued presence of the inducer. Stability of these hypersensitive sites in the absence of their inducer suggests that they can be propagated. It appeared likely that distortion of DNA by a carcinogen adduct such as AAF, and the interaction of this modified DNA with a specific protein such as IgG or cellular proteins might inappropriately enhance the transcription of specific genes. That hypothesis will be tested; surprisingly, little is known about the early action of carcinogens on expression of specific genes. 34 refs., 2 figs., 1 tab

  17. Structural Effects of Some Relevant Missense Mutations on the MECP2-DNA Binding: A MD Study Analyzed by Rescore+, a Versatile Rescoring Tool of the VEGA ZZ Program.

    Science.gov (United States)

    Pedretti, Alessandro; Granito, Cinzia; Mazzolari, Angelica; Vistoli, Giulio

    2016-09-01

    DNA methylation plays key roles in mammalian cells and is modulated by a set of proteins which recognize symmetrically methylated nucleotides. Among them, the protein MECP2 shows multifunctional roles repressing and/or activating genes by binding to both methylated and unmethylated regions of the genome. The interest for this protein markedly increased from the observation that its mutations are the primary cause of Rett syndrome, a neurodevelopmental disorder which causes mental retardation in young females. Thus, the present study is aimed to investigate the effects of some of these known pathogenic missense mutations (i.e. R106Q, R106W, R111G, R133C and R133H) on the MECP2 folding and DNA binding by molecular dynamics simulations. The effects of the simulated mutations are also parameterized by using a here proposed new tool, named Rescore+, implemented in the VEGA ZZ suite of programs, which calculates a set of scoring functions on all frames of a trajectory or on all complexes contained in a database thus allowing an easy rescoring of results coming from MD or docking simulations. The obtained results revealed that the reported loss of the MECP2 function induced by the simulated mutations can be ascribed to both stabilizing and destabilizing effect on DNA binding. The study confirms that MD simulations are particularly useful to rationalize and predict the mutation effects offering insightful information for diagnostics and drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Transient analyzer

    International Nuclear Information System (INIS)

    Muir, M.D.

    1975-01-01

    The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general

  19. The role of aging and DNA repair in chronic disease. Final progress report, December 1, 1985--September 29, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, L.

    1993-11-01

    We carried out a molecular epidemiological study of the DNA repair of photochemical damage as a risk factor in basal cell carcinoma (BCC). In that clinic-based control study of 88 cases and 135 cancer-free control it was found that DNA repair in the controls declined linearly at a rate of 0.61% per year over a 30-60 year age group. However, repair in younger BCC cases, significantly less than their age-matched controls, did not decline at the same rate so that the repair differences between the cases and the controls disappeared as the cases grew older. Besides this age effect, the odds are high (5:1) that an individual with low repair overexposed to sunlight will have basal cell carcinoma. That these odds increase to 10:1 for females compared to male subjects led to the observation that repair may be sensitive to hormonal control. Because of the ease of BCC diagnosis it is possible to demonstrate significantly that the level of DNA repair directly influences the multiplicity of tumors. Further, both those cases and controls with a family history of BCC invariably have reduced levels of DNA repair (p<0-05).

  20. Droplet digital PCR combined with minisequencing, a new approach to analyze fetal DNA from maternal blood: application to the non-invasive prenatal diagnosis of achondroplasia.

    Science.gov (United States)

    Orhant, Lucie; Anselem, Olivia; Fradin, Mélanie; Becker, Pierre Hadrien; Beugnet, Caroline; Deburgrave, Nathalie; Tafuri, Gilles; Letourneur, Franck; Goffinet, François; Allach El Khattabi, Laïla; Leturcq, France; Bienvenu, Thierry; Tsatsaris, Vassilis; Nectoux, Juliette

    2016-05-01

    Achondroplasia is generally detected by abnormal prenatal ultrasound findings in the third trimester of pregnancy and then confirmed by molecular genetic testing of fetal genomic DNA obtained by aspiration of amniotic fluid. This invasive procedure presents a small but significant risk for both the fetus and mother. Therefore, non-invasive procedures using cell-free fetal DNA in maternal plasma have been developed for the detection of the fetal achondroplasia mutations. To determine whether the fetus carries the de novo mis-sense genetic mutation at nucleotide 1138 in FGFR3 gene involved in >99% of achondroplasia cases, we developed two independent methods: digital-droplet PCR combined with minisequencing, which are very sensitive methods allowing detection of rare alleles. We collected 26 plasmatic samples from women carrying fetus at risk of achondroplasia and diagnosed to date a total of five affected fetuses in maternal blood. The sensitivity and specificity of our test are respectively 100% [95% confidence interval, 56.6-100%] and 100% [95% confidence interval, 84.5-100%]. This novel, original strategy for non-invasive prenatal diagnosis of achondroplasia is suitable for implementation in routine clinical testing and allows considering extending the applications of these technologies in non-invasive prenatal diagnosis of many other monogenic diseases. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  1. Base sequence effects on DNA replication influenced by bulky adducts. Final report, March 1, 1995--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Geacintov, N.E.

    1997-05-31

    Polycyclic aromatic hydrocarbons (PAH) are environmental pollutants that are present in air, food, and water. While PAH compounds are chemically inert and are sparingly soluble in aqueous solutions, in living cells they are metabolized to a variety of oxygenated derivatives, including the high mutagenic and tumorigenic diol epoxide derivatives. The diol epoxides of the sterically hindered fjord region compound benzo[c]phenanthrene (B[c]PhDE) are among the most powerful tumorigenic compounds in animal model test systems. In this project, site-specifically modified oligonucleotides containing single B[c]PhDE-N{sup 6}-dA lesions derived from the reactions of the 1S,2R,3R,4S and 1R,2S,3S,4R diol epoxides of B[c]PhDE with dA residues were synthesized. The replication of DNA catalyzed by a prokaryotic DNA polymerase (the exonuclease-free Klenow fragment E. Coli Po1 I) in the vicinity of the lesion at base-specific sites on B[c]PhDE-modified template strands was investigated in detail. The Michaelis-Menten parameters for the insertion of single deoxynucleotide triphosphates into growing DNA (primer) strands using the modified dA* and the bases just before and after the dA* residue as templates, depend markedly on the stereochemistry of the B[c]PhDE-modified dA residues. These observations provide novel insights into the mechanisms by which bulky PAH-DNA adducts affect normal DNA replication.

  2. Organization of DNA partners and strand exchange mechanisms during Flp site-specific recombination analyzed by difference topology, single molecule FRET and single molecule TPM.

    Science.gov (United States)

    Ma, Chien-Hui; Liu, Yen-Ting; Savva, Christos G; Rowley, Paul A; Cannon, Brian; Fan, Hsiu-Fang; Russell, Rick; Holzenburg, Andreas; Jayaram, Makkuni

    2014-02-20

    Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented "non-homologous" FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases. Copyright © 2013. Published by Elsevier Ltd.

  3. Understanding evolutionary paradigm of knockdown resistance in mosquitoes by analyzing DNA sequence polymorphisms in voltage-gated sodium channel in Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Manas Sarkar

    2011-09-01

    Full Text Available The Voltage Gated Sodium Channel (VGSC is critical for binding of different insecticides and plays a key role in insecticide resistance. The insect sodium channel consists of four homologous domains (I to IV, each containing six transmembrane segments (S1 to S6. An important mechanism of resistance to DDT and pyrethroids is termed knockdown resistance (kdr, caused by a single nucleotide polymorphism in IIS6 domain of sodium channels. We analyzed the polymorphisms, nucleotide diversity, and phylogenies in VGSC-IIS6 gene in Culex quinquefasciatus from India. We analyzed the neutral model / hypothesis to infer if natural selection is acting upon the analyzed vgsc gene. Tajima’s D, Fu and Li’s D* and F* and Fu’s Fs test were performed to determine whether the distribution of nucleotide variation within the samples was consistent with neutral model. We theorized that the evolutionary pattern of intra-population distribution of variability in vgsc gene is consistent with the neutral expectation.

  4. Analysis and Design of a Fiber-optic Probe for DNA Sensors Final Report CRADA No. TSB-1147-95

    Energy Technology Data Exchange (ETDEWEB)

    Molau, Nicole [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vail, Curtis [Accu.Photonics, Inc., Ann Arbor, MI (United States)

    2018-01-24

    In 1995, a challenge in the field of genetics dealt with the acquisition of efficient DNA sequencing techniques for reading the 3 billion base-pairs that comprised the human genome. AccuPhotonics, Inc. proposed to develop and manufacture a state-of-the-art near-field scanning optical microscopy (NSOM) fiber-optic probe that was expected to increase probe efficiency by two orders of magnitude over the existing state-of-the-art and to improve resolution to 10Å. The detailed design calculation and optimization of electrical properties of the fiber-optic probe tip geometry would be performed at LLNL, using existing finite-difference time-domain (FDTD) electromagnetic (EM) codes.

  5. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.).

    Science.gov (United States)

    Luo, Cong; He, Xin-Hua; Hu, Ying; Yu, Hai-xia; Ou, Shi-Jin; Fang, Zhong-Bin

    2014-09-15

    Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Application of DNA based marker mutations for improvement of cereals and other sexually reproduced crop plants. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-03-01

    The Co-ordinated Research Programme (CRP) on the Application of DNA Based Marker Mutations for Improvement of Cereals and Other Sexually Reproduced Crop Plants represents the first of three CRPs dealing with the application of molecular markers to mutations and plant breeding and was implemented between 1992 and 1996. A second companion CRP entitled Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops devoted to the application of molecular markers in vegetatively propagated crops species was implemented between 1993 and 1997. One positive consequence of these two CRPs has been the implementation of a third CRP entitled Radioactively Labeled DNA Probes for Crop Improvement, which began in 1995 and aims to provide enabling technologies, in the form of probes and primers, to laboratories in developing countries. The rapid development of molecular marker technologies has also resulted in a dramatic increase in request from developing Member States for technical co-operation projects utilizing molecular markers to improve local varieties for biotic and abiotic stresses and other traits of relevance. With the intensified use of induced mutations in genetic studies, it will be important to continue the important work of understanding induced mutations at the molecular level. Evidence of the progress made in implementing molecular marker technologies in laboratories around the world is presented in this publication, which contains the results presented by the participants at the fourth and final Research Co-ordination Meeting of the CRP held in Vienna, 4-8 November 1996. The FAO and IAEA wish to express their sincere appreciation to the participants of the meeting for their work during the project period resulting in the summary and scientific reports presented in this publication

  7. Use of novel DNA fingerprinting techniques for the detection and characterization of genetic variation in vegetatively propagated crops. Proceedings of a final research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-10-01

    Vegetative propagated crops, such as banana and platain, sweet potato, yam, sugarcane and cassava, represent important sources of food in the developing countries. Although some of these crops may produce seeds, they must for practical purposes be propagated vegetatively. As normal plant breeding strategies based on genetic hybridization are of limited value or not applicable to such crops, it is necessary to assess the genetic diversity already existing in these crops and to design breeding strategies accordingly. If the existing genetic variation is shown to be too narrow for breeding purposes, one promising possibility for the introduction of genetic variability is the use of mutations induced by radiation or chemical mutagens. This CRP focused on: the detection of genetic diversity induced by mutagenic treatment or in vitro culture; the development of crop-specific markers; and increasing co-operation between molecular biologists in advanced laboratories and plant breeders and molecular biologists in the developing countries. The success of this CRP is evidenced by the introduction and application of new molecular methods by laboratories in developing countries, specially for the analysis of local crop genetic diversity. These exciting preliminary results show the potential for applications in crop improvement but much work remains to be done. Many of the vegetatively propagated species are ''orphan crops'', under-investigated on the international level. The development of new uses of transgenesis for the development of edible vaccines should not be overlooked. The challenge that remains is in the application of these new tools for practical end-user oriented improvements in vegetatively propagated crops. The present publication summarizes the third and final Research Co-ordination Meeting on the Use of Novel DNA Fingerprinting Techniques for the Detection and Characterization of Genetic Variation in Vegetatively Propagated Crops

  8. DNA nanotechnology

    Science.gov (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  9. An exploration of sequence specific DNA-duplex/pyrene interactions for intercalated and surface-associated pyrene species. Final report, May 1, 1993--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, T.L.

    1997-03-01

    The broad objective of this DOE sponsored work on photoinduced electron transfer (ET) within covalently modified DNA was to learn about the rates of Et among various DNA bases and commonly used organic electron donor (D) and acceptor (A) molecules. This hypothesis driven, multidisciplinary project combined skills in modified nucleic acid synthesis and in continuous and time-resolved optical spectroscopies. Covalently modified DNA chemistry as investigated in this program had two specific long term goals. The first was to use experimental and theoretical insights into the mechanisms of electron transfer (ET) reactions to design supramolecular assemblies of redox-active chromophores that function as efficient vectorial ET engines. The second was to construct oligonucleotide probes for real-time monitoring of intracellular processes involving DNA and RNA such as m-RNA expression and translocation. This research project laid the groundwork for studying ET reactions within DNA duplexes by examining the photophysics of uridine nucleosides which are covalently labeled at the 5-position with 1-pyrenyl chromophores.

  10. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  11. [Direct assays of radiation-induced DNA base lesions in mammalian cells.] Final progress report, February 1, 1984-June 30, 1986

    International Nuclear Information System (INIS)

    Wheeler, K.T.

    1986-01-01

    Adenine (Ade), 2'-deoxyadenosine (dAdo) and 5'-deoxyadenosine monophosphate (5'-dAMP) were irradiated with 50 to 15,000 Gy under oxic and hypoxic conditions. HPLC procedures providing satisfactory separation of the adenine damage products formed during irradiation of DNA model compounds were found. Structures of some of the damage products were confirmed to include 8-OHAde, 4,6-diamino-5-formamidopyrimidine, and 8-OH-5'-dAMP. Two damage products of dAdo (8-OHdAdo and the major isomer of 8,5'-cdAdo), the formation of which depends on the presence or absence of oxygen, were determined quantitatively by HPLC. The limit for HPLC detection was estimated as 4 to 50 pmoles for these compounds. This corresponds to a detection limit of about 50 Gy in radiation dose units. These two products were also detected in mixtures of all four nucleosides irradiated with 50 Gy

  12. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  13. Analyzing Peace Pedagogies

    Science.gov (United States)

    Haavelsrud, Magnus; Stenberg, Oddbjorn

    2012-01-01

    Eleven articles on peace education published in the first volume of the Journal of Peace Education are analyzed. This selection comprises peace education programs that have been planned or carried out in different contexts. In analyzing peace pedagogies as proposed in the 11 contributions, we have chosen network analysis as our method--enabling…

  14. Rapid detection and quantification of cell free cytomegalovirus by a high-speed centrifugation-based microculture assay: comparison to longitudinally analyzed viral DNA load and pp67 late transcript during lactation.

    Science.gov (United States)

    Hamprecht, Klaus; Witzel, Simone; Maschmann, Jens; Dietz, Klaus; Baumeister, Andrea; Mikeler, Elfriede; Goelz, Rangmar; Speer, Christian P; Jahn, Gerhard

    2003-12-01

    Human cytomegalovirus (HCMV) is reactivated in nearly every seropositive breastfeeding mother during lactation [Lancet 357 (2001) 513]. Conventional tissue culture (TC) and low-speed centrifugation-enhanced microtiter culture methods are not able to detect HCMV from milk during all stages of lactation. Development of a sensitive and quantitative microculture technique to describe the dynamics of HCMV reactivation in different milk compartments during lactation. Milk samples were collected longitudinally from seropositive breastfeeding mothers of preterm infants. Native milk samples were separated into fraction 1 (aqueous extract of milk fat), fraction 2 (cell and fat free milk whey) and fraction 3 (milk cells). Each of these fractions was screened qualitatively (TC, nPCR, pp67 late mRNA) and quantitatively (high-speed centrifugation-based microculture, quantitative PCR). Prior to low-speed centrifugation-enhanced inoculation, virus particles were concentrated by high-speed centrifugation (60 min at 50,000 x g, 4 degrees C). Using fraction 2 we were able to describe the dynamics of viral reactivation during lactation. We present the course of the quantitative virolactia and DNAlactia and qualitative detection of HCMV pp67 late mRNA in milk whey of four mothers (three transmitters and one non-transmitter). In all these cases virolactia described an unimodal and self limited course. Peak levels of virolactia for transmitters (T1: day 44; T2: day 43; T3: day 50) were closely related the onset of viruria of the corresponding preterm infants (U1: day 39; U2a/U2b: day 44/57; U3: day 60). The courses of viral load coincidence with the courses of DNA load. We present a rapid and highly sensitive microculture method for the quantification of cell free HCMV from milk whey and aqueous extracts from milk fat. Viral reactivation during lactation describes an unimodal course. Our findings have strong implications for quality control of any virus inactivation procedure.

  15. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  16. Analog multivariate counting analyzers

    CERN Document Server

    Nikitin, A V; Armstrong, T P

    2003-01-01

    Characterizing rates of occurrence of various features of a signal is of great importance in numerous types of physical measurements. Such signal features can be defined as certain discrete coincidence events, e.g. crossings of a signal with a given threshold, or occurrence of extrema of a certain amplitude. We describe measuring rates of such events by means of analog multivariate counting analyzers. Given a continuous scalar or multicomponent (vector) input signal, an analog counting analyzer outputs a continuous signal with the instantaneous magnitude equal to the rate of occurrence of certain coincidence events. The analog nature of the proposed analyzers allows us to reformulate many problems of the traditional counting measurements, and cast them in a form which is readily addressed by methods of differential calculus rather than by algebraic or logical means of digital signal processing. Analog counting analyzers can be easily implemented in discrete or integrated electronic circuits, do not suffer fro...

  17. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.

    Science.gov (United States)

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-07-08

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Osorio Deliz, J. F.; Diaz Garcia, A.

    2013-01-01

    This research work was carried out to develop an analyzer for gamma cameras diagnostic. It is composed of an electronic system that includes hardware and software capabilities, and operates from the acquisition of the 4 head position signals of a gamma camera detector. The result is the spectrum of the energy delivered by nuclear radiation coming from the camera detector head. This system includes analog processing of position signals from the camera, digitization and the subsequent processing of the energy signal in a multichannel analyzer, sending data to a computer via a standard USB port and processing of data in a personal computer to obtain the final histogram. The circuits are composed of an analog processing board and a universal kit with micro controller and programmable gate array. (Author)

  19. Biophysics of DNA

    CERN Document Server

    Vologodskii, Alexander

    2015-01-01

    Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

  20. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  1. Analyzing Stereotypes in Media.

    Science.gov (United States)

    Baker, Jackie

    1996-01-01

    A high school film teacher studied how students recognized messages in film, examining how film education could help students identify and analyze racial and gender stereotypes. Comparison of students' attitudes before and after the film course found that the course was successful in raising students' consciousness. (SM)

  2. Centrifugal analyzer development

    International Nuclear Information System (INIS)

    Burtis, C.A.; Bauer, M.L.; Bostick, W.D.

    1976-01-01

    The development of the centrifuge fast analyzer (CFA) is reviewed. The development of a miniature CFA with computer data analysis is reported and applications for automated diagnostic chemical and hematological assays are discussed. A portable CFA system with microprocessor was adapted for field assays of air and water samples for environmental pollutants, including ammonia, nitrates, nitrites, phosphates, sulfates, and silica. 83 references

  3. Americal options analyzed differently

    NARCIS (Netherlands)

    Nieuwenhuis, J.W.

    2003-01-01

    In this note we analyze in a discrete-time context and with a finite outcome space American options starting with the idea that every tradable should be a martingale under a certain measure. We believe that in this way American options become more understandable to people with a good working

  4. Analyzing Flowgraphs with ATL

    Directory of Open Access Journals (Sweden)

    Valerio Cosentino

    2013-11-01

    Full Text Available This paper presents a solution to the Flowgraphs case study for the Transformation Tool Contest 2013 (TTC 2013. Starting from Java source code, we execute a chain of model transformations to derive a simplified model of the program, its control flow graph and its data flow graph. Finally we develop a model transformation that validates the program flow by comparing it with a set of flow specifications written in a domain specific language. The proposed solution has been implemented using ATL.

  5. Analyzed Using Statistical Moments

    International Nuclear Information System (INIS)

    Oltulu, O.

    2004-01-01

    Diffraction enhanced imaging (DEl) technique is a new x-ray imaging method derived from radiography. The method uses a monorheumetten x-ray beam and introduces an analyzer crystal between an object and a detector Narrow angular acceptance of the analyzer crystal generates an improved contrast over the evaluation radiography. While standart radiography can produce an 'absorption image', DEl produces 'apparent absorption' and 'apparent refraction' images with superior quality. Objects with similar absorption properties may not be distinguished with conventional techniques due to close absorption coefficients. This problem becomes more dominant when an object has scattering properties. A simple approach is introduced to utilize scattered radiation to obtain 'pure absorption' and 'pure refraction' images

  6. Charged particle analyzer PLAZMAG

    International Nuclear Information System (INIS)

    Apathy, Istvan; Endroeczy, Gabor; Szemerey, Istvan; Szendroe, Sandor

    1985-01-01

    The scientific task of the charged particle analyzer PLAZMAG, a part of the VEGA space probe, and the physical background of the measurements are described. The sensor of the device face the Sun and the comet Halley measuring the energy and mass spectrum of ion and electron components of energies lower than 25 keV. The tasks of the individual electronic parts, the design aspects and the modes of operation in different phases of the flight are dealt with. (author)

  7. Spectrometric microbiological analyzer

    Science.gov (United States)

    Schlager, Kenneth J.; Meissner, Ken E.

    1996-04-01

    Currently, there are four general approaches to microbiological analysis, i.e., the detection, identification and quantification of micro-organisms: (1) Traditional culturing and staining procedures, metabolic fermentations and visual morphological characteristics; (2) Immunological approaches employing microbe-specific antibodies; (3) Biotechnical techniques employing DNA probes and related genetic engineering methods; and (4) Physical measurement techniques based on the biophysical properties of micro-organisms. This paper describes an instrumentation development in the fourth of the above categories, physical measurement, that uses a combination of fluorometric and light scatter spectra to detect and identify micro-organisms at the species level. A major advantage of this approach is the rapid turnaround possible in medical diagnostic or water testing applications. Fluorometric spectra serve to define the biochemical characteristics of the microbe, and light scatter spectra the size and shape morphology. Together, the two spectra define a 'fingerprint' for each species of microbe for detection, identification and quantification purposes. A prototype instrument has been developed and tested under NASA sponsorship based on fluorometric spectra alone. This instrument demonstrated identification and quantification capabilities at the species level. The paper reports on test results using this instrument, and the benefits of employing a combination of fluorometric and light scatter spectra.

  8. Fractional channel multichannel analyzer

    Science.gov (United States)

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  9. Plutonium solution analyzer

    International Nuclear Information System (INIS)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded)

  10. Ring Image Analyzer

    Science.gov (United States)

    Strekalov, Dmitry V.

    2012-01-01

    Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.

  11. Plutonium solution analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  12. Utilizing DNA analysis to combat the world wide plague of present day slavery – trafficking in persons

    Science.gov (United States)

    Palmbach, Timothy; Blom, Jeffrey; Hoynes, Emily; Primorac, Dragan; Gaboury, Mario

    2014-01-01

    A study was conducted to determine if modern forensic DNA typing methods can be properly employed throughout the world with a final goal of increasing arrests, prosecutions, and convictions of perpetrators of modern day trafficking in persons while concurrently reducing the burden of victim testimony in legal proceedings. Without interruption of investigations, collection of samples containing DNA was conducted in a variety of settings. Evidentiary samples were analyzed on the ANDE Rapid DNA system. Many of the collected swabs yielded informative short tandem repeat profiles with Rapid DNA technology. PMID:24577820

  13. Utilizing DNA analysis to combat the world wide plague of present day slavery--trafficking in persons.

    Science.gov (United States)

    Palmbach, Timothy M; Blom, Jeffrey; Hoynes, Emily; Primorac, Dragan; Gaboury, Mario

    2014-02-01

    A study was conducted to determine if modern forensic DNA typing methods can be properly employed throughout the world with a final goal of increasing arrests, prosecutions, and convictions of perpetrators of modern day trafficking in persons while concurrently reducing the burden of victim testimony in legal proceedings. Without interruption of investigations, collection of samples containing DNA was conducted in a variety of settings. Evidentiary samples were analyzed on the ANDE Rapid DNA system. Many of the collected swabs yielded informative short tandem repeat profiles with Rapid DNA technology.

  14. Analyzing Water's Optical Absorption

    Science.gov (United States)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  15. DNA Nanotechnology for Cancer Therapy.

    Science.gov (United States)

    Kumar, Vinit; Palazzolo, Stefano; Bayda, Samer; Corona, Giuseppe; Toffoli, Giuseppe; Rizzolio, Flavio

    2016-01-01

    DNA nanotechnology is an emerging and exciting field, and represents a forefront frontier for the biomedical field. The specificity of the interactions between complementary base pairs makes DNA an incredible building material for programmable and very versatile two- and three-dimensional nanostructures called DNA origami. Here, we analyze the DNA origami and DNA-based nanostructures as a drug delivery system. Besides their physical-chemical nature, we dissect the critical factors such as stability, loading capability, release and immunocompatibility, which mainly limit in vivo applications. Special attention was dedicated to highlighting the boundaries to be overcome to bring DNA nanostructures closer to the bedside of patients.

  16. DNA Nanotechnology for Cancer Therapy

    Science.gov (United States)

    Kumar, Vinit; Palazzolo, Stefano; Bayda, Samer; Corona, Giuseppe; Toffoli, Giuseppe; Rizzolio, Flavio

    2016-01-01

    DNA nanotechnology is an emerging and exciting field, and represents a forefront frontier for the biomedical field. The specificity of the interactions between complementary base pairs makes DNA an incredible building material for programmable and very versatile two- and three-dimensional nanostructures called DNA origami. Here, we analyze the DNA origami and DNA-based nanostructures as a drug delivery system. Besides their physical-chemical nature, we dissect the critical factors such as stability, loading capability, release and immunocompatibility, which mainly limit in vivo applications. Special attention was dedicated to highlighting the boundaries to be overcome to bring DNA nanostructures closer to the bedside of patients. PMID:27022418

  17. The Ins and Outs of DNA Fingerprinting the Infectious Fungi

    Science.gov (United States)

    Soll, David R.

    2000-01-01

    DNA fingerprinting methods have evolved as major tools in fungal epidemiology. However, no single method has emerged as the method of choice, and some methods perform better than others at different levels of resolution. In this review, requirements for an effective DNA fingerprinting method are proposed and procedures are described for testing the efficacy of a method. In light of the proposed requirements, the most common methods now being used to DNA fingerprint the infectious fungi are described and assessed. These methods include restriction fragment length polymorphisms (RFLP), RFLP with hybridization probes, randomly amplified polymorphic DNA and other PCR-based methods, electrophoretic karyotyping, and sequencing-based methods. Procedures for computing similarity coefficients, generating phylogenetic trees, and testing the stability of clusters are then described. To facilitate the analysis of DNA fingerprinting data, computer-assisted methods are described. Finally, the problems inherent in the collection of test and control isolates are considered, and DNA fingerprinting studies of strain maintenance during persistent or recurrent infections, microevolution in infecting strains, and the origin of nosocomial infections are assessed in light of the preceding discussion of the ins and outs of DNA fingerprinting. The intent of this review is to generate an awareness of the need to verify the efficacy of each DNA fingerprinting method for the level of genetic relatedness necessary to answer the epidemiological question posed, to use quantitative methods to analyze DNA fingerprint data, to use computer-assisted DNA fingerprint analysis systems to analyze data, and to file data in a form that can be used in the future for retrospective and comparative studies. PMID:10756003

  18. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  19. PULSE HEIGHT ANALYZER

    Science.gov (United States)

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  20. Analyzing Spacecraft Telecommunication Systems

    Science.gov (United States)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric

    2004-01-01

    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  1. This paper describes 14 Colombian web based “edu-communicational” projects. The aim is to analyze different types of platforms, different type of use and the elements that facilitate interaction with final users. The study sample is composed of three main

    Directory of Open Access Journals (Sweden)

    Tomás Durán Becerra

    2017-12-01

    Full Text Available This paper describes 14 Colombian web based “edu-communicational” projects. The aim is to analyze different types of platforms, different type of use and the elements that facilitate interaction with final users. The study sample is composed of three main categories of sites: formal education sites, informal education sites and other types of sites that contain some kind of educational content. The research establishes different variables aimed at discovering educommunicative tools. Both the theoretical framework and the conceptual approach to edu-communication, as well as the methodological proposal applied are retrieved from the works of De Oliveira (2009, Freire (2002, Barbas Coslado (2012, Pérez-Tornero (2004, Tejedor (2010, Said and Arcila (2011a and O’Reilly (2009, among others. In conclusion, the article shows similarities and differences among the platforms that shape the online edu-communicational landscape in Colombia.

  2. Information decomposition method to analyze symbolical sequences

    International Nuclear Information System (INIS)

    Korotkov, E.V.; Korotkova, M.A.; Kudryashov, N.A.

    2003-01-01

    The information decomposition (ID) method to analyze symbolical sequences is presented. This method allows us to reveal a latent periodicity of any symbolical sequence. The ID method is shown to have advantages in comparison with application of the Fourier transformation, the wavelet transform and the dynamic programming method to look for latent periodicity. Examples of the latent periods for poetic texts, DNA sequences and amino acids are presented. Possible origin of a latent periodicity for different symbolical sequences is discussed

  3. Monitoring Biodiversity using Environmental DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis

    of mammalian DNA in leech guts is shown to persist for at least 4 months post feeding. Subsequently, it is shown that DNA from wild leeches, collected in tropical rainforest in Vietnam, contains DNA from wild mammals living in the area, representing poorly known, cryptic and threatened species. Finally......, a study tests the applicability of non-destructive DNA extraction from old and ancient insect remains. DNA is successfully retrieved, amplified and equenced from dried museum beetle specimens up to 188 years old, ermafrost-preserved macrofossils up to 26.000 years old and directly from 1800-3000 years old...

  4. Soft Decision Analyzer

    Science.gov (United States)

    Steele, Glen; Lansdowne, Chatwin; Zucha, Joan; Schlensinger, Adam

    2013-01-01

    The Soft Decision Analyzer (SDA) is an instrument that combines hardware, firmware, and software to perform realtime closed-loop end-to-end statistical analysis of single- or dual- channel serial digital RF communications systems operating in very low signal-to-noise conditions. As an innovation, the unique SDA capabilities allow it to perform analysis of situations where the receiving communication system slips bits due to low signal-to-noise conditions or experiences constellation rotations resulting in channel polarity in versions or channel assignment swaps. SDA s closed-loop detection allows it to instrument a live system and correlate observations with frame, codeword, and packet losses, as well as Quality of Service (QoS) and Quality of Experience (QoE) events. The SDA s abilities are not confined to performing analysis in low signal-to-noise conditions. Its analysis provides in-depth insight of a communication system s receiver performance in a variety of operating conditions. The SDA incorporates two techniques for identifying slips. The first is an examination of content of the received data stream s relation to the transmitted data content and the second is a direct examination of the receiver s recovered clock signals relative to a reference. Both techniques provide benefits in different ways and allow the communication engineer evaluating test results increased confidence and understanding of receiver performance. Direct examination of data contents is performed by two different data techniques, power correlation or a modified Massey correlation, and can be applied to soft decision data widths 1 to 12 bits wide over a correlation depth ranging from 16 to 512 samples. The SDA detects receiver bit slips within a 4 bits window and can handle systems with up to four quadrants (QPSK, SQPSK, and BPSK systems). The SDA continuously monitors correlation results to characterize slips and quadrant change and is capable of performing analysis even when the

  5. Electrochemical DNA sensor-based strategy for sensitive detection of DNA demethylation and DNA demethylase activity.

    Science.gov (United States)

    Shen, Qingming; Fan, Mengxing; Yang, Yin; Zhang, Hui

    2016-08-31

    DNA demethylation and demethylase activity play important roles in DNA self-repair, and their detection is key to early diagnosis of fatal diseases. Herein, a facile electrochemical DNA (E-DNA) sensor was developed for the sensitive detection of DNA demethylation and demethylase activity based on an enzyme cleavage strategy. The thiol modified hemi-methylated hairpin probe DNA (pDNA) was self-assembled on a Au electrode surface through the formation of AuS bonds. The hemi-methylated pDNA served as the substrate of DNA demethylase (using methyl-CpG-binding domain protein 2 (MBD2) as an example). Following demethylation, the hairpin stem was then recognized and cleaved by BstUI endonuclease. The ferrocene carboxylic acid (FcA)-tagged pDNA strands were released into the buffer solution from the electrode surface, resulting in a significant decrease of electrochemical signal and providing a means to observe DNA demethylation. The activity of DNA demethylase was analyzed in the concentration ranging from 0.5 to 500 ng mL(-1) with a limit of detection as low as 0.17 ng mL(-1). With high specificity and sensitivity, rapid response, and low cost, this simple E-DNA sensor provides a unique platform for the sensitive detection of DNA demethylation, DNA demethylase activity, and related molecular diagnostics and drug screening. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    DeTar, Carleton [P.I.

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  7. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gurney, Kevin R. [Arizona Univ., Mesa, AZ (United States)

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  8. Mitochondrial DNA.

    Science.gov (United States)

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  9. Ancient DNA from marine mammals

    DEFF Research Database (Denmark)

    Foote, Andrew David; Hofreiter, Michael; Morin, Philip A.

    2012-01-01

    discuss studies recon- structing inter- and intra-specific phylogenies from aDNA sequences and discuss how aDNA sequences could be used to estimate mutation rates. Finally, we highlight some of the problems of aDNA studies on marine mammals, such as obtaining sufficient sample sizes and calibrating...... such as bone, tooth, baleen, skin, fur, whiskers and scrimshaw using ancient DNA (aDNA) approaches provide an oppor- tunity for investigating such changes over evolutionary and ecological timescales. Here, we review the application of aDNA techniques to the study of marine mammals. Most of the studies have...... focused on detecting changes in genetic diversity following periods of exploitation and environmental change. To date, these studies have shown that even small sample sizes can provide useful information on historical genetic diversity. Ancient DNA has also been used in investigations of changes...

  10. Modeling DNA

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  11. Narrative Finality

    Directory of Open Access Journals (Sweden)

    Armine Kotin Mortimer

    1981-01-01

    Full Text Available The cloturai device of narration as salvation represents the lack of finality in three novels. In De Beauvoir's Tous les hommes sont mortels an immortal character turns his story to account, but the novel makes a mockery of the historical sense by which men define themselves. In the closing pages of Butor's La Modification , the hero plans to write a book to save himself. Through the thrice-considered portrayal of the Paris-Rome relationship, the ending shows the reader how to bring about closure, but this collective critique written by readers will always be a future book. Simon's La Bataille de Pharsale , the most radical attempt to destroy finality, is an infinite text. No new text can be written. This extreme of perversion guarantees bliss (jouissance . If the ending of De Beauvoir's novel transfers the burden of non-final world onto a new victim, Butor's non-finality lies in the deferral to a future writing, while Simon's writer is stuck in a writing loop, in which writing has become its own end and hence can have no end. The deconstructive and tragic form of contemporary novels proclaims the loss of belief in a finality inherent in the written text, to the profit of writing itself.

  12. Dna Sequencing

    Science.gov (United States)

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  13. Multichannel analyzer development in CAMAC

    International Nuclear Information System (INIS)

    Nagy, J.Z.; Zarandy, A.

    1988-01-01

    The data acquisition in TOKAMAK experiments some CAMAC modules have been developed. The modules are the following: 64 K analyzer memory, 32 K analyzer memory, 6-channel pulse peak analyzer memory which contains the 32 K analyzer memory and eight AD-converters

  14. Screening for protein-DNA interactions by automatable DNA-protein interaction ELISA.

    Directory of Open Access Journals (Sweden)

    Luise H Brand

    Full Text Available DNA-binding proteins (DBPs, such as transcription factors, constitute about 10% of the protein-coding genes in eukaryotic genomes and play pivotal roles in the regulation of chromatin structure and gene expression by binding to short stretches of DNA. Despite their number and importance, only for a minor portion of DBPs the binding sequence had been disclosed. Methods that allow the de novo identification of DNA-binding motifs of known DBPs, such as protein binding microarray technology or SELEX, are not yet suited for high-throughput and automation. To close this gap, we report an automatable DNA-protein-interaction (DPI-ELISA screen of an optimized double-stranded DNA (dsDNA probe library that allows the high-throughput identification of hexanucleotide DNA-binding motifs. In contrast to other methods, this DPI-ELISA screen can be performed manually or with standard laboratory automation. Furthermore, output evaluation does not require extensive computational analysis to derive a binding consensus. We could show that the DPI-ELISA screen disclosed the full spectrum of binding preferences for a given DBP. As an example, AtWRKY11 was used to demonstrate that the automated DPI-ELISA screen revealed the entire range of in vitro binding preferences. In addition, protein extracts of AtbZIP63 and the DNA-binding domain of AtWRKY33 were analyzed, which led to a refinement of their known DNA-binding consensi. Finally, we performed a DPI-ELISA screen to disclose the DNA-binding consensus of a yet uncharacterized putative DBP, AtTIFY1. A palindromic TGATCA-consensus was uncovered and we could show that the GATC-core is compulsory for AtTIFY1 binding. This specific interaction between AtTIFY1 and its DNA-binding motif was confirmed by in vivo plant one-hybrid assays in protoplasts. Thus, the value and applicability of the DPI-ELISA screen for de novo binding site identification of DBPs, also under automatized conditions, is a promising approach for a

  15. Final Report

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik; Nielsen, Peter V.

    This final report for the Hybrid Ventilation Centre at Aalborg University describes the activities and research achievement in the project period from August 2001 to August 2006. The report summarises the work performed and the results achieved with reference to articles and reports published...

  16. Dynamics of DNA conformations and DNA-protein interaction

    DEFF Research Database (Denmark)

    Metzler, R.; Ambjörnsson, T.; Lomholt, Michael Andersen

    2005-01-01

    denaturation (bubble breathing), deriving its dynamic response to external physical parameters and the DNA sequence in terms of the bubble relaxation time spectrum and the autocorrelation function of bubble breathing. The interaction with binding proteins that selectively bind to the DNA single strand exposed......Optical tweezers, atomic force microscopes, patch clamping, or fluorescence techniques make it possible to study both the equilibrium conformations and dynamics of single DNA molecules as well as their interaction with binding proteins. In this paper we address the dynamics of local DNA...... in a denaturation bubble are shown to involve an interesting competition of time scales, varying between kinetic blocking of protein binding up to full binding protein-induced denaturation of the DNA. We will also address the potential to use DNA physics for the design of nanosensors. Finally, we report recent...

  17. Micromechanical study of protein-DNA interactions and chromosomes

    Science.gov (United States)

    Marko, John

    I will discuss micromechanics experiments that our group has used to analyze protein-DNA interactions and chromosome organization. In single-DNA experiments we have found that a feature of protein-DNA complexes is that their dissociation rates can depend strikingly on bulk solution concentrations of other proteins and DNA segments; I will describe experiments which demonstrate this effect, which can involve tens-fold changes in off-rates with submicromolar changes in solution concentrations. Second, I will discuss experiments aimed at analyzing large-scale human chromosome structure; we isolate metaphase chromosomes, which in their native form behave as remarkably elastic networks of chromatin. Exposure to DNA-cutting restriction enzymes completely eliminates this elasticity, indicating that there is not a mechanically contiguous protein ''scaffold'' from which the chromosome gains its stability. I will show results of siRNA experiments indicating that depletion of condensin proteins leads to destabilization of chromosome mechanics, indicating condensin's role as the major chromatin ''cross-linker'' in metaphase chromosomes. Finally I will discuss similar experiments on human G1 nuclei, where we use genetic and chemical modifications to separate the contributions of the nuclear lamina and chromatin to the mechanical stiffness of the nucleus as a whole. Supported by the NSF (DMR-1206868, MCB-1022117) and the NIH (GM105847, CA193419).

  18. Structural alterations of the DNA in cerebellar neurons after whole-brain irradiation

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Winstein, R.E.; Kaufman, K.; Ritter, P.

    1981-01-01

    Male Sprague-Dawley rats weighing 260 to 280 g were whole-brain-irradiated with x-ray doses of 433, 867, 1083, 1300, 1516, and 1713 rad. Over the next 2.25 years rats were killed at various times, and the state of the DNA in their cerebellar neurons was examined by sedimentation through alkaline sucrose gradients in reorienting zonal rotors. The data were analyzed as the percentage of the sedimenting DNA with sedimentation coefficients greater than 300 S, an arbitrarily selected category of no defined molecular significance. The general pattern at all doses consisted first of a slow return to the unirradiated DNA state that was relatively dose dependent. This was followed by an increase in the amount of DNA sedimenting >300 S; both the extent and time course of this increase appeared to be dose dependent. Finally, the DNA degraded at a relatively dose independent rate. There was little change in the neuronal DNA from unirradiated rats during this study. The data suggest that increases in the amount of fast-sedimenting DNA observed 30 to 80 weeks after low to moderate doses of whole-brain irradiation represent a type of DNA damage rather than repair and that this damage ultimately results in degradation of the neuronal DNA and death of the rat

  19. Forensic DNA phenotyping : Regulatory issues

    NARCIS (Netherlands)

    Koops, E.J.; Schellekens, M.H.M.

    2008-01-01

    Forensic DNA phenotyping is an interesting new investigation method: crime-scene DNA is analyzed to compose a description of the unknown suspect, including external and behavioral features, geographic origin and perhaps surname. This method is allowed in some countries but prohibited in a few

  20. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-07

    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  1. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    Science.gov (United States)

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  2. Conclusiones finales

    OpenAIRE

    Guerrero Gaitán, Manuel

    2016-01-01

    La investigación realizada permite extraer las siguientes conclusiones finales que serán agrupadas según los principales problemas abordados: 1. En relación a las cláusulas que impiden una adecuada transferencia de tecnología, en la presente investigación se demuestra: Primero. Que las cláusulas más frecuentes recogidas en los contratos internacionales de transferencia de tecnología son: la fijación de precios, las restricciones a la investigación y adaptación de la tecnología objeto del cont...

  3. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    R Paul Drake

    2004-01-12

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  4. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  5. DNA Vaccines

    Indian Academy of Sciences (India)

    DNA vaccine, immune response, antibodies, infectious diseases. GENERAL I ARTICLE. DNA Vaccines. P N Rangarajan. History of Vaccine Development. The year 1996 marked the 200th anniversary of the first vaccine developed against smallpox by Edward Jenner. In the now- famous 1796 experiment, Jenner scratched ...

  6. Hyperstretching DNA

    NARCIS (Netherlands)

    Schakenraad, Koen; Biebricher, Andreas S.; Sebregts, Maarten; Ten Bensel, Brian; Peterman, Erwin J.G.; Wuite, Gijs J L; Heller, Iddo; Storm, Cornelis; Van Der Schoot, Paul

    2017-01-01

    The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely

  7. PM 3655 PHILIPS Logic analyzer

    CERN Multimedia

    A logic analyzer is an electronic instrument that captures and displays multiple signals from a digital system or digital circuit. A logic analyzer may convert the captured data into timing diagrams, protocol decodes, state machine traces, assembly language, or may correlate assembly with source-level software. Logic Analyzers have advanced triggering capabilities, and are useful when a user needs to see the timing relationships between many signals in a digital system.

  8. Digital Multi Channel Analyzer Enhancement

    International Nuclear Information System (INIS)

    Gonen, E.; Marcus, E.; Wengrowicz, U.; Beck, A.; Nir, J.; Sheinfeld, M.; Broide, A.; Tirosh, D.

    2002-01-01

    A cement analyzing system based on radiation spectroscopy had been developed [1], using novel digital approach for real-time, high-throughput and low-cost Multi Channel Analyzer. The performance of the developed system had a severe problem: the resulted spectrum suffered from lack of smoothness, it was very noisy and full of spikes and surges, therefore it was impossible to use this spectrum for analyzing the cement substance. This paper describes the work carried out to improve the system performance

  9. The Modular Construction of DNA Double Helix

    Indian Academy of Sciences (India)

    In the annals of science, rarely if ever, has any molecule captured the imagination of mankind as DNA. Within five decades of the discovery, DNA structure has been able to disseminate knowl- edge of key aspects related to life. From grade levels to research studies, DNA is described, examined and analyzed from diverse.

  10. Complementary DNA-amplified fragment length polymorphism ...

    African Journals Online (AJOL)

    owner

    2011-05-09

    May 9, 2011 ... Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology was used to analyze ... that 9 of the studied expressed sequence tags (ESTs) are related to protein modification, 12 ESTs are involved in the .... primers were used during the first strand synthesis of our cDNA synthesis ...

  11. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jarillo-Herrero, Pablo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-02-07

    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TI-based electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulk carriers in most TI compounds as well as degradation during device fabrication.

  12. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  13. Multichannel analyzer type CMA-3

    International Nuclear Information System (INIS)

    Czermak, A.; Jablonski, J.; Ostrowicz, A.

    1978-01-01

    Multichannel analyzer CMA-3 is designed for two-parametric analysis with operator controlled logical windows. It is implemented in CAMAC standard. A single crate contains all required modules and is controlled by the PDP-11/10 minicomputer. Configuration of CMA-3 is shown. CMA-3 is the next version of the multichannel analyzer described in report No 958/E-8. (author)

  14. Comparison of fiber length analyzers

    Science.gov (United States)

    Don Guay; Nancy Ross Sutherland; Walter Rantanen; Nicole Malandri; Aimee Stephens; Kathleen Mattingly; Matt Schneider

    2005-01-01

    In recent years, several fiber new fiber length analyzers have been developed and brought to market. The new instruments provide faster measurements and the capability of both laboratory and on-line analysis. Do the various fiber analyzers provide the same length, coarseness, width, and fines measurements for a given fiber sample? This paper provides a comparison of...

  15. cDNA amplification by SMART-PCR and suppression subtractive hybridization (SSH)-PCR.

    Science.gov (United States)

    Hillmann, Andrew; Dunne, Eimear; Kenny, Dermot

    2009-01-01

    The comparison of two RNA populations that differ from the effects of a single-independent variable, such as a drug treatment or a specific genetic defect, can identify differences in the abundance of specific transcripts that vary in a population-dependent manner. There are a variety of methods for identifying differentially expressed genes, including microarray, SAGE, qRT-PCR, and DDGE. This protocol describes a potentially less sensitive yet relatively easy and cost-effective alternative that does not require prior knowledge of the transcriptomes under investigation and is particularly applicable when minimal levels of starting material, RNA, are available. RNA input can often be a limiting factor when analyzing RNA from, for example, rigorously purified blood cells. This protocol describes the use of SMART-PCR to amplify cDNA from sub-microgram levels of RNA. The amplified cDNA populations under comparison are then subjected to suppression subtractive hybridization (SSH-PCR), a technique that couples subtractive hybridization with suppression PCR to selectively amplify fragments of differentially expressed genes. The final products are cDNA populations enriched for significantly over-represented transcripts in either of the two input RNA preparations. These cDNA populations may then be cloned to make subtracted cDNA libraries and/or used as probes to screen subtracted cDNA, global cDNA, or genomic DNA libraries.

  16. LET-effects in DNA

    International Nuclear Information System (INIS)

    Kraft, G.; Taucher-Scholz, G.; Heilmann, J.

    1994-11-01

    In this contribution, an introductory view on the physical properties of ions is given and the cellular response to high LET radiation is summarized. Then the measurements of strand break induction of DNA in solution and in intracellular DNA are reported and compared to cell survival. The possibility of changes in the quality of the lesions is discussed and finally the present status of model calculations in comparison to the experiments is given. (orig./HSI)

  17. Supramolecular Complexes of DNA

    Science.gov (United States)

    Zuber, G.; Scherman, D.

    Deoxyribose nucleic acid or DNA is a linear polymer in the form of a double strand, synthesised by sequential polymerisation of a large number of units chosen from among the nucleic bases called purines (adenosine A and guanosine G) and pyrimidines (cytosine C and thymidine T). DNA contains all the genetic information required for life. It exists in the form of a limited number (a few dozen) of very big molecules, called chromosomes. This genetic information is first of all transcribed. In this process, a restricted fragment of the DNA called a gene is copied in the form of ribonucleic acid, or RNA. This RNA is itself a polymer, but with a single strand in which the sequence of nucleic acids is schematically analogous to the sequence on one of the two strands of the transcribed DNA. Finally, this RNA is translated into a protein, yet another linear polymer. The proteins make up the main part of the active constituents ensuring the survival of the cell. Any loss of information, either by mutation or by deletion of the DNA, will cause an imbalance in the cell's metabolism that may in turn lead to incurable pathologies. Several strategies have been developed to reduce the consequences of such genetic deficiencies or, more generally, to act, by amplifying or suppressing them, on the mechanisms leading from the reading of the genetic information to the production of proteins: Strategies aiming to introduce synthetic DNA or RNA, which selectively block the expression of certain genes, are now being studied by an increasing number of research scientists and pharmacologists. They use antisense oligodeoxyribonucleotides or interfering oligoribonucleotides and they already have clinical applications. This kind of therapy is often called gene pharmacology. Other, more ambitious strategies aim to repair in situ mutated or incomplete DNA within the chromosomes themselves, by introducing short sequences of DNA or RNA which recognise and take the place of mutations. This is the

  18. DNA data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  19. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  20. Nuclear fuel microsphere gamma analyzer

    International Nuclear Information System (INIS)

    Valentine, K.H.; Long, E.L. Jr.; Willey, M.G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties. 4 claims, 3 figures

  1. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Robert C. [Texas A& M University; Kamon, Teruki [Texas A& M University; Toback, David [Texas A& M University; Safonov, Alexei [Texas A& M University; Dutta, Bhaskar [Texas A& M University; Dimitri, Nanopoulos [Texas A& M University; Pope, Christopher [Texas A& M University; White, James [Texas A& M University

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  2. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Susanne [Columbia Univ., New York, NY (United States)

    2015-02-09

    We participated in a FASTER SCM intercomparison for which we ran our SCM for 3 years at the SGP to analyze statistics of the precipitation field (Song et al., 2013). An important feature of these simulations was the use of relaxation forcing to observed T, q, which decouples the model convection from the forcing and allows precipitation errors to emerge. Because the GISS cumulus parameterization includes a trigger that prevents convection until sufficient lifting is present, and because convection at the SGP is usually triggered by mesoscale motions that are not represented in the forcing when relaxation is applied, the duration of SCM precipitation is shorter than observed (Del Genio and Wolf, 2012) and thus its mean precipitation less than observed. However, its diurnal cycle phase is correct, and it is the only operational cumulus parameterization in the intercomparison that does not produce excessive warm season precipitation under weak large-scale forcing conditions.

  3. Market study: Whole blood analyzer

    Science.gov (United States)

    1977-01-01

    A market survey was conducted to develop findings relative to the commercialization potential and key market factors of the whole blood analyzer which is being developed in conjunction with NASA's Space Shuttle Medical System.

  4. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  5. CSTT Update: Fuel Quality Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lujan, Roger W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockward, Tommy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Christopher J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Stefan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilson, Mahlon S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-06

    These are slides from a presentation. The following topics are covered: project background (scope and approach), developing the prototype (timeline), update on intellectual property, analyzer comparisons (improving humidification, stabilizing the baseline, applying clean-up strategy, impact of ionomer content and improving clean-up), proposed operating mode, considerations for testing in real-world conditions (Gen 1 analyzer electronics development, testing partner identified, field trial planning), summary, and future work.

  6. Nonlinear single-spin spectrum analyzer.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2013-03-15

    Qubits have been used as linear spectrum analyzers of their environments. Here we solve the problem of nonlinear spectral analysis, required for discrete noise induced by a strongly coupled environment. Our nonperturbative analytical model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We develop a noise characterization scheme adapted to this nonlinearity. We then apply it using a single trapped ion as a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. Finally, we experimentally compared the performance of equidistant vs Uhrig modulation schemes for spectral analysis.

  7. Evolution of DNA Methylation across Insects

    Science.gov (United States)

    Vogel, Kevin J.; Moore, Allen J.; Schmitz, Robert J.

    2017-01-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. PMID:28025279

  8. Analyzing Technique of Power Systems Under Deregulation

    Science.gov (United States)

    Miyauchi, Hajime; Kita, Hiroyuki; Ishigame, Atsushi

    Deregulation of the electric utilities has been progressing. Even under the deregulation, the reliability should be the most important problem of power systems. However, according to the deregulation, operation and scheduling of power systems are changing and new techniques to analyze power systems are introducing. To evaluate reliability of power systems, adequacy and security are well employed recently. This paper presents the new analyzing technique which will be realized in near future from the viewpoint of adequacy and security. First, simulation tool to evaluate adequacy is described. As an example of this tool, MARS and other methods are mentioned. Next, to evaluate the security, security constrained unit commitment (SCUC) and security constrained optimal power flow (SCOPF) are mentioned. Finally, some topics concerning ancillary service are described.

  9. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  10. Analyzing randomly occurring voltage breakdowns

    International Nuclear Information System (INIS)

    Wiltshire, C.W.

    1977-01-01

    During acceptance testing of high-vacuum neutron tubes, 40% of the tubes failed after experiencing high-voltage breakdowns during the aging process. Use of a digitizer in place of an oscilloscope revealed two types of breakdowns, only one of which affected acceptance testing. This information allowed redesign of the aging sequence to prevent tube damage and improve yield and quality of the final product

  11. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Callis, Judy [Univ. of California, Davis, CA (United States)

    2016-11-30

    This report summarizes our research activities. In the award period, we have made significant progress on the first aim, with new discoveries reported in one published paper (1) and in one submitted manuscript (2) currently under review. The published manuscript reports on our discovery of plant ribokinase and the metabolic pathway in which it functions; the submitted manuscript is identification and characterization of the plant fructokinase family of enzymes from expression studies, sequence comparisons, subcellular localizations and enzymatic activities of recombinant proteins. Our study of loss-of-function mutants in the fructokinase family members (2) revealed that there were no phenotypic differences observed for the five genes analyzed, so we have adopted the Crispr/Cas9 system to isolate mutants in the two genes for which there are no currently available insertion mutants, and we are generating higher order mutants (double, triples, etc) to discern the relative roles and significance for each fructokinase. These mutants will be an important resource to understand regulation of carbohydrate movement and catabolism in plants. As studies from others indicate, alteration of fructokinases results in changes in cell walls and vasculatures, which have importance relative to biofuel yield and quality. In the second aim, we have characterized the protein-protein interactions for the pkfB proteins FLN1 and FLN2 that are localized to chloroplast transcriptional complexes and have proposed a new model for how chloroplast transcription is regulated. This work has been submitted for publication, been revised and will be re-submitted in December 2016

  12. Construction of DNA nanotubes with controllable diameters and patterns using hierarchical DNA sub-tiles.

    Science.gov (United States)

    Shi, Xiaolong; Wu, Xiaoxu; Song, Tao; Li, Xin

    2016-08-21

    The design of DNA nanotubes is a promising and hot research branch in structural DNA nanotechnology, which is rapidly developing as a versatile method for achieving subtle nanometer scale materials and molecular diagnostic/curative devices. Multifarious methods have been proposed to achieve varied DNA nanotubes, such as using square tiles and single-stranded tiles, but it is still a challenge to develop a bottom-up assembly way to build DNA nanotubes with different diameters and patterns using certain universal DNA nanostructures. This work addresses the challenge by assembling three types of spatial DNA nanotubes with different diameters and patterns from the so-called "basic bricks", i.e., hierarchical DNA sub-tiles. A high processing rate and throughput synthesis of DNA nanotubes are observed and analyzed by atomic force microscopy. Experimental observations and data analysis suggests the stability and controllability of DNA nanotubes assembled by hierarchical DNA sub-tiles.

  13. Compact analyzer: an interactive simulator

    International Nuclear Information System (INIS)

    Ipakchi, A.; Khadem, M.; Colley, R.W.

    1985-01-01

    Compact Analyzer is a computer system that combines dynamic simulation models with interactive and color graphics user interface functions to provide a cost-effective simulator for dynamic analysis and evaluation of power plant operation, with engineering and training applications. Most dynamic simulation packages such as RETRAN and TRAC are designed for a batch-mode operation. With advancements in computer technology and man/machine interface capabilities, it is possible to integrate such codes with interactive and graphic functions into advanced simulators. The US Nuclear Regulatory Commission has sponsored development of plant analyzers with such characteristics. The Compact Analyzer is an Electric Power Research Institute (EPRI)-sponsored project, which currently utilizes the EPRI modular modeling system (MMS) for process simulation, and uses an adaptable color graphic package for dynamic display of the simulation results

  14. On-Demand Urine Analyzer

    Science.gov (United States)

    Farquharson, Stuart; Inscore, Frank; Shende, Chetan

    2010-01-01

    A lab-on-a-chip was developed that is capable of extracting biochemical indicators from urine samples and generating their surface-enhanced Raman spectra (SERS) so that the indicators can be quantified and identified. The development was motivated by the need to monitor and assess the effects of extended weightlessness, which include space motion sickness and loss of bone and muscle mass. The results may lead to developments of effective exercise programs and drug regimes that would maintain astronaut health. The analyzer containing the lab-on-a- chip includes materials to extract 3- methylhistidine (a muscle-loss indicator) and Risedronate (a bone-loss indicator) from the urine sample and detect them at the required concentrations using a Raman analyzer. The lab-on- a-chip has both an extractive material and a SERS-active material. The analyzer could be used to monitor the onset of diseases, such as osteoporosis.

  15. Multichannel analyzer embedded in FPGA

    International Nuclear Information System (INIS)

    Garcia D, A.; Hernandez D, V. M.; Vega C, H. R.; Ordaz G, O. O.; Bravo M, I.

    2017-10-01

    Ionizing radiation has different applications, so it is a very significant and useful tool, which in turn can be dangerous for living beings if they are exposed to uncontrolled doses. However, due to its characteristics, it cannot be perceived by any of the senses of the human being, so that in order to know the presence of it, radiation detectors and additional devices are required to quantify and classify it. A multichannel analyzer is responsible for separating the different pulse heights that are generated in the detectors, in a certain number of channels; according to the number of bits of the analog to digital converter. The objective of the work was to design and implement a multichannel analyzer and its associated virtual instrument, for nuclear spectrometry. The components of the multichannel analyzer were created in VHDL hardware description language and packaged in the Xilinx Vivado design suite, making use of resources such as the ARM processing core that the System on Chip Zynq contains and the virtual instrument was developed on the LabView programming graphics platform. The first phase was to design the hardware architecture to be embedded in the FPGA and for the internal control of the multichannel analyzer the application was generated for the ARM processor in C language. For the second phase, the virtual instrument was developed for the management, control and visualization of the results. The data obtained as a result of the development of the system were observed graphically in a histogram showing the spectrum measured. The design of the multichannel analyzer embedded in FPGA was tested with two different radiation detection systems (hyper-pure germanium and scintillation) which allowed determining that the spectra obtained are similar in comparison with the commercial multichannel analyzers. (Author)

  16. Analyzing Generation Y Workforce Motivation

    Science.gov (United States)

    2011-03-01

    Analyzing Generation Y Workforce Motivation Ian N. Barford n Patrick T. Hester R Defense AT&L: Special Edition: March –April 2011 36 Report...REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Analyzing Generation Y Workforce Motivation 5a. CONTRACT NUMBER 5b...between 1965 and 1979), and Generation Y (born between 1980 and 2000). 37 Defense AT&L: Special Edition: March –April 2011 Defense AT&L: Special

  17. Chromium-induced DNA damge is mutagenic in mammalian systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.; Dixon, K. [Univ. of Cincinnati, OH (United States)

    1994-12-31

    To study the mutagenic mechanism of hexavalent chromium compounds, a SV40 virus-based shuttle vector system was used for mutation analysis. The plasmid pZ189 allowed us to induce mutations in mammalian cells, identify them in a bacterial system, and then sequence them. Naked DNA pZ189 was treated with Cr{sup 6+}, Cr{sup 5+} and Cr{sup 3+} compounds. The studies showed that DNA strand breaks were induced in the reduction process of Cr{sup 6+} by glutathione. On the average, 0.66 {mu}M Cr{sup 6+} induced about one nick/DNA molecule. The treated DNA also showed a decrease of biological activity upon transformation into E. coli cells. Hydroxyl radical (HO{center_dot}) scavengers, Tris and mannitol, suppressed the Cr-induced DNA damage. The DNA damage caused by the co-incubation of Cr{sup 6+} with glutathione was ionic-strength and pH dependent, which supported the hypothesis that Cr{sup 5+}, an intermediate agent, was the critical agent in Cr reduction causing DNA damage through radical species. Further, Cr{sup 5+} induced DNA damage in a kinetic pattern similar to the co-incubation of Cr{sup 6+} and glutathione. In contrast, Cr{sup 3+}, the final product of Cr{sup 6+} reduction, was not shown to be a DNA-damaging agent in phosphate buffer (pH 7.0). To evaluate if the Cr-treated DNA was mutagenic, a mutagenesis assay was carried out in which the chromium-treated plasmid was replicated in CV-1 monkey cells and mutation spectra were analyzed. Mutation frequency increased significantly for both Cr{sup 6+} and Cr{sup 5+} treated DNAs; the frequency was 0.18% and 0.80% for Cr{sup 6+} 1 and 10{mu}M respectively, and 0.14% and 0.21% for Cr{sup 5+} 0.25 and 0.125 {mu}M respectively compared to 0.01% in the untreated vector. The experiments suggested that one mechanism of Cr mutagenesis might be mediated by DNA damage caused by reactive radical species.

  18. The security analyzer: A security analyzer program written in Prolog

    International Nuclear Information System (INIS)

    Zimmerman, B.D.; Densley, P.J.

    1986-09-01

    The Security Analyzer is a software tool capable of analyzing the effectiveness of a facility's security system. It is written in the Prolog logic programming computer language, using entity-relationship data modeling techniques. The program performs the following functions: (1) provides descriptive, locational and operational status information about intrusion detectors and assessment devices (i.e., ''sensors'' and ''cameras'') upon request; (2) provides for storage and retrieval of maintenance history information for various components of the security system (including intrusion detectors), and allows for changing that information as desired; (3) provides a ''search'' mode, wherein all paths are found from any specified physical location to another specified location which satisfy user chosen ''intruder detection'' probability and elapsed time criteria (i.e., the program finds the ''weakest paths'' from a security point of view). The first two of these functions can be provided fairly easily with a conventional database program; the third function could be provided using Fortran or some similar language, though with substantial difficulty. In the Security Analyzer program, all these functions are provided in a simple and straight-forward manner. This simplicity is possible because the program is written in the symbolic (as opposed to numeric) processing language Prolog, and because the knowledge base is structured according to entity-relationship modeling principles. Also, the use of Prolog and the entity-relationship modeling technique allows the capabilities of the Security analyzer program, both for knowledge base interrogation and for searching-type operations, to be easily expanded in ways that would be very difficult for a numeric and more algorithmically deterministic language such as Fortran to duplicate. 4 refs

  19. Historical Thinking: Analyzing Student and Teacher Ability to Analyze Sources

    OpenAIRE

    Cowgill II, Daniel Armond; Waring, Scott M.

    2017-01-01

    The purpose of this study was to partially replicate the Historical Problem Solving: A Study of the Cognitive Process Using Historical Evidence study conducted by Sam Wineburg in 1991. The Historical Problem Solving study conducted by Wineburg (1991) sought to compare the ability of historians and top level students, as they analyzed pictures and written documents centered on the Battle of Lexington Green. In this version of the study, rather than compare historians and students, we sought ...

  20. Pollution Analyzing and Monitoring Instruments.

    Science.gov (United States)

    1972

    Compiled in this book is basic, technical information useful in a systems approach to pollution control. Descriptions and specifications are given of what is available in ready made, on-the-line commercial equipment for sampling, monitoring, measuring and continuously analyzing the multitudinous types of pollutants found in the air, water, soil,…

  1. Methods of analyzing crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Jjunju, Fred Paul Mark; Li, Anyin; Rogan, Iman S.

    2017-08-15

    The invention generally relates to methods of analyzing crude oil. In certain embodiments, methods of the invention involve obtaining a crude oil sample, and subjecting the crude oil sample to mass spectrometry analysis. In certain embodiments, the method is performed without any sample pre-purification steps.

  2. Analyzing Software Piracy in Education.

    Science.gov (United States)

    Lesisko, Lee James

    This study analyzes the controversy of software piracy in education. It begins with a real world scenario that presents the setting and context of the problem. The legalities and background of software piracy are explained and true court cases are briefly examined. Discussion then focuses on explaining why individuals and organizations pirate…

  3. The Convertible Arbitrage Strategy Analyzed

    NARCIS (Netherlands)

    Loncarski, I.; Ter Horst, J.R.; Veld, C.H.

    2006-01-01

    This paper analyzes convertible bond arbitrage on the Canadian market for the period 1998 to 2004.Convertible bond arbitrage is the combination of a long position in convertible bonds and a short position in the underlying stocks. Convertible arbitrage has been one of the most successful strategies

  4. DNA nanotechnology

    OpenAIRE

    Nadrian C Seeman

    2003-01-01

    Since Watson and Crick’s determination of its structure nearly 50 years ago, DNA has come to fill our lives in many areas, from genetic counseling to forensics, from genomics to gene therapy. These, and other ways in which DNA affects human activities, are related to its function as genetic material, not just our genetic material, but the genetic material of all living organisms. Here, we will ignore DNA’s biological role; rather, we will discuss how the properties that make it so successful ...

  5. Recovery of DNA for forensic analysis from lip cosmetics.

    Science.gov (United States)

    Webb, L G; Egan, S E; Turbett, G R

    2001-11-01

    To obtain a reference DNA profile from a missing person, we analyzed a variety of personal effects, including two lip cosmetics, both of which gave full DNA profiles. Further investigations were undertaken to explore this previously unreported source of DNA. We have tested a range of brands and types of lip cosmetics. Our studies have revealed that lip cosmetics are an excellent source of DNA, with almost 80% of samples giving a result. However, artifacts are frequently observed in the DNA profiles when Chelex is used for the DNA extraction and additional DNA purification procedures are required to ensure that an accurate DNA profile is obtained.

  6. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    David W. Mazyck; Angela Lindner; CY Wu, Rick Sheahan, Ashok Jain

    2007-06-30

    Nuchar granular activated carbon, perlite, Osmocote slow release ammonium nitrate pellets, and Agrasoke water crystals in a 4:2:1:1 ratio by volume. The biofilter was inoculated with a bacterial culture collected from a Florida pulp and paperboard plant. A non-inoculated biofilter column was also tested. Use of a biological inoculum enriched from biofilm in the pulp and paper process has the potential to enhance the performance of a GAC biofilter. During testing, packing material was removed from the inlet and oulet of the biofilters and analyzed for genetic diversity using molecular techniques. The biofilter inoculated with specifically-enhanced inoculum showed higher bacterial diversity for methylotrophs and all bacteria, as compared to a non-inoculated biofilter. Mixed methylotrophic cultures, selected as potential biofilter inocula, showed increased methanol removal with highest concentrations of nitrogen provided as nitrate.

  7. DNA damage in preserved specimens and tissue samples: a molecular assessment

    Directory of Open Access Journals (Sweden)

    Cantin Elizabeth

    2008-10-01

    Full Text Available Abstract The extraction of genetic information from preserved tissue samples or museum specimens is a fundamental component of many fields of research, including the Barcode of Life initiative, forensic investigations, biological studies using scat sample analysis, and cancer research utilizing formaldehyde-fixed, paraffin-embedded tissue. Efforts to obtain genetic information from these sources are often hampered by an inability to amplify the desired DNA as a consequence of DNA damage. Previous studies have described techniques for improved DNA extraction from such samples or focused on the effect of damaging agents – such as light, oxygen or formaldehyde – on free nucleotides. We present ongoing work to characterize lesions in DNA samples extracted from preserved specimens. The extracted DNA is digested to single nucleosides with a combination of DNase I, Snake Venom Phosphodiesterase, and Antarctic Phosphatase and then analyzed by HPLC-ESI-TOF-MS. We present data for moth specimens that were preserved dried and pinned with no additional preservative and for frog tissue samples that were preserved in either ethanol, or formaldehyde, or fixed in formaldehyde and then preserved in ethanol. These preservation methods represent the most common methods of preserving animal specimens in museum collections. We observe changes in the nucleoside content of these samples over time, especially a loss of deoxyguanosine. We characterize the fragmentation state of the DNA and aim to identify abundant nucleoside lesions. Finally, simple models are introduced to describe the DNA fragmentation based on nicks and double-strand breaks.

  8. New approach to analyzing vulnerability

    International Nuclear Information System (INIS)

    O'Callaghan, P.B.; Carlson, R.L.; Riedeman, G.W.

    1986-01-01

    The Westinghouse Hanford Company (WHC) has recently completed construction of the Fuel Cycle Plant (FCP) at Richland, Washington. At start-up the facility will fabricate driver fuel for the Fast Flux Test Facility in the Secure Automated Fabrication line. After construction completion, but before facility certification, the Department of Energy (DOE) Richland Operation Office requested that a vulnerability analysis be performed which assumed multiple insiders as a threat to the security system. A unique method of analyzing facility vulnerabilities was developed at the Security Applications Center (SAC), which is managed by WHC for DOE. The method that was developed verifies a previous vulnerability assessment, as well as introducing a modeling technique which analyzes security alarms in relation to delaying factors and possible insider activities. With this information it is possible to assess the relative strength or weakness of various possible routes to and from a target within a facility

  9. Methods for Analyzing Social Media

    DEFF Research Database (Denmark)

    Jensen, Jakob Linaa

    2013-01-01

    Social media is becoming increasingly attractive for users. It is a fast way to communicate ideas and a key source of information. It is therefore one of the most influential mediums of communication of our time and an important area for audience research. The growth of social media invites many...... new questions such as: How can we analyze social media? Can we use traditional audience research methods and apply them to online content? Which new research strategies have been developed? Which ethical research issues and controversies do we have to pay attention to? This book focuses on research...... strategies and methods for analyzing social media and will be of interest to researchers and practitioners using social media, as well as those wanting to keep up to date with the subject....

  10. Kismeth: Analyzer of plant methylation states through bisulfite sequencing

    Directory of Open Access Journals (Sweden)

    Martienssen Robert A

    2008-09-01

    Full Text Available Abstract Background There is great interest in probing the temporal and spatial patterns of cytosine methylation states in genomes of a variety of organisms. It is hoped that this will shed light on the biological roles of DNA methylation in the epigenetic control of gene expression. Bisulfite sequencing refers to the treatment of isolated DNA with sodium bisulfite to convert unmethylated cytosine to uracil, with PCR converting the uracil to thymidine followed by sequencing of the resultant DNA to detect DNA methylation. For the study of DNA methylation, plants provide an excellent model system, since they can tolerate major changes in their DNA methylation patterns and have long been studied for the effects of DNA methylation on transposons and epimutations. However, in contrast to the situation in animals, there aren't many tools that analyze bisulfite data in plants, which can exhibit methylation of cytosines in a variety of sequence contexts (CG, CHG, and CHH. Results Kismeth http://katahdin.mssm.edu/kismeth is a web-based tool for bisulfite sequencing analysis. Kismeth was designed to be used with plants, since it considers potential cytosine methylation in any sequence context (CG, CHG, and CHH. It provides a tool for the design of bisulfite primers as well as several tools for the analysis of the bisulfite sequencing results. Kismeth is not limited to data from plants, as it can be used with data from any species. Conclusion Kismeth simplifies bisulfite sequencing analysis. It is the only publicly available tool for the design of bisulfite primers for plants, and one of the few tools for the analysis of methylation patterns in plants. It facilitates analysis at both global and local scales, demonstrated in the examples cited in the text, allowing dissection of the genetic pathways involved in DNA methylation. Kismeth can also be used to study methylation states in different tissues and disease cells compared to a reference sequence.

  11. Portable Tandem Mass Spectrometer Analyzer

    Science.gov (United States)

    1991-07-01

    FILE : MHCI TUNE TABLE 84 (SCANNING with PARENT) SCAN RANGE 10.9 TO 700.0 TUNE MASS 355.0 (AUTO) >LENS 1-3 -13. 88 0. 2: POFF - 1. 2 9: COFF - 4. 1 3...and 500 ng of caffeine in I uL of chloroform by GC/A?:,,MS using negative ions. Also analyzed were barbiturates, extracted from urine, in the 3-5 Mg

  12. DNA Investigations.

    Science.gov (United States)

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  13. Remote Laser Diffraction PSD Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2000-06-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified "off-the-shelf" classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a "hot cell" (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable - making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  14. Remote Laser Diffraction PSD Analyzer

    International Nuclear Information System (INIS)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2000-01-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified ''off-the-shelf'' classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a ''hot cell'' (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable--making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives

  15. Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, Stephen R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  16. Remote Laser Diffraction PSD Analyzer

    International Nuclear Information System (INIS)

    Batcheller, T.A.; Huestis, G.M.; Bolton, S.M.

    2000-01-01

    Particle size distribution (PSD) analysis of radioactive slurry samples were obtained using a modified off-the-shelf classical laser light scattering particle size analyzer. A Horiba Instruments Inc. Model La-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a hot cell (gamma radiation) environment. The general details of the modifications to this analyzer are presented in this paper. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not achievable - making this technology far superior than the traditional methods used previously. Remote deployment and utilization of this technology is in an exploratory stage. The risk of malfunction in this radiation environment is countered by gaining of this tremendously useful fundamental engineering data. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives

  17. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach.

    Science.gov (United States)

    Cheung, Mike W-L; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists-and probably the most crucial one-is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study.

  18. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach

    Science.gov (United States)

    Cheung, Mike W.-L.; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists—and probably the most crucial one—is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study. PMID:27242639

  19. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach

    Directory of Open Access Journals (Sweden)

    Mike W.-L. Cheung

    2016-05-01

    Full Text Available Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists – and probably the most crucial one – is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study.

  20. Understanding DNA Under Oxidative Stress and Sensitization: The Role of Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Antonio eMonari

    2015-07-01

    Full Text Available DNA is constantly exposed to damaging threats coming from oxidative stress, i.e. from the presence of free radicals and reactive oxygen species. Sensitization from exogenous and endogenous compounds that strongly enhance the frequency of light-induced lesions also plays an important role. The experimental determination of DNA lesions, though a difficult subject, is somehow well established and allows to elucidate even extremely rare DNA lesions. In parallel, molecular modeling has become fundamental to clearly understand the fine mechanisms related to DNA defects induction. Indeed, it offers an unprecedented possibility to get access to an atomistic or even electronic resolution. Ab initio molecular dynamics may also describe the time-evolution of the molecular system and its reactivity. Yet the modeling of DNA (photo-reactions does necessitate elaborate multi-scale methodologies to tackle a damage induction reactivity that takes place in a complex environment. The double-stranded DNA environment is first characterized by a very high flexibility, that dynamical effects are to be taken into account, but also a strongly inhomogeneous electrostatic embedding. Additionally, one aims at capturing more subtle effects, such as the sequence selectivity which is of critical important for DNA damage. The structure and dynamics of the DNA/sensitizers complexes, as well as the photo-induced electron- and energy-transfer phenomena taking place upon sensitization, should be carefully modeled. Finally the factors inducing different repair ratios for different lesions should also be rationalized.In this review we will critically analyze the different computational strategies used to model DNA lesions. A clear picture of the complex interplay between reactivity and structural factors will be sketched. The use of proper multi-scale modeling leads to the in-depth comprehension of DNA lesions mechanism and also to the rational design of new chemo-therapeutic agents.

  1. Molecular mechanisms of DNA photodamage

    Energy Technology Data Exchange (ETDEWEB)

    Starrs, S.M

    2000-05-01

    Photodamage in DNA, caused by ultraviolet (UV) light, can occur by direct excitation of the nucleobases or indirectly via the action of photosensitisers. Such, DNA photodamage can be potentially mutagenic or lethal. Among the methods available for detecting UV-induced DNA damage, gel sequencing protocols, utilising synthetic oligodeoxyribonucleotides as targets for UV radiation, allow photolesions to be mapped at nucleotide resolution. This approach has been applied to investigate both DNA damage mechanisms. Following a general overview of DNA photoreactivity, and a description of the main experimental procedures, Chapter 3 identifies the origin of an anomalous mobility shift observed in purine chemical sequence ladders that can confuse the interpretation of DNA cleavage results; measures to abolish this shift are also described. Chapters 4 and 5 examine the alkali-labile DNA damage photosensitised by representative nonsteroidal antiinflammatory drugs (NSAIDs) and the fluoroquinolone antibiotics. Suprofen was the most photoactive NSAID studied, producing different patterns of guanine-specific damage in single-stranded and duplex DNA. Uniform modification of guanine bases, typifying attack by singlet oxygen, was observed in single-stranded oligodeoxyribonucleotides. In duplex molecules, modification was limited to the 5'-G of GG doublets, which is indicative of an electron transfer. The effect of quenchers and photoproduct analysis substantiated these findings. The quinolone, nalidixic acid, behaves similarly. The random base cleavage photosensitised by the fluoroquinolones, has been attributed to free radicals produced during their photodecomposition. Chapter 6 addresses the photoreactivity of purines within unusual DNA structures formed by the repeat sequences (GGA){sub n} and (GA){sub n}, and a minihairpin. There was no definitive evidence for enhanced purine reactivity caused by direct excitation. Finally, Chapter 7 investigates the mutagenic potential of a

  2. Molecular mechanisms of DNA photodamage

    International Nuclear Information System (INIS)

    Starrs, S.M.

    2000-05-01

    Photodamage in DNA, caused by ultraviolet (UV) light, can occur by direct excitation of the nucleobases or indirectly via the action of photosensitisers. Such, DNA photodamage can be potentially mutagenic or lethal. Among the methods available for detecting UV-induced DNA damage, gel sequencing protocols, utilising synthetic oligodeoxyribonucleotides as targets for UV radiation, allow photolesions to be mapped at nucleotide resolution. This approach has been applied to investigate both DNA damage mechanisms. Following a general overview of DNA photoreactivity, and a description of the main experimental procedures, Chapter 3 identifies the origin of an anomalous mobility shift observed in purine chemical sequence ladders that can confuse the interpretation of DNA cleavage results; measures to abolish this shift are also described. Chapters 4 and 5 examine the alkali-labile DNA damage photosensitised by representative nonsteroidal antiinflammatory drugs (NSAIDs) and the fluoroquinolone antibiotics. Suprofen was the most photoactive NSAID studied, producing different patterns of guanine-specific damage in single-stranded and duplex DNA. Uniform modification of guanine bases, typifying attack by singlet oxygen, was observed in single-stranded oligodeoxyribonucleotides. In duplex molecules, modification was limited to the 5'-G of GG doublets, which is indicative of an electron transfer. The effect of quenchers and photoproduct analysis substantiated these findings. The quinolone, nalidixic acid, behaves similarly. The random base cleavage photosensitised by the fluoroquinolones, has been attributed to free radicals produced during their photodecomposition. Chapter 6 addresses the photoreactivity of purines within unusual DNA structures formed by the repeat sequences (GGA) n and (GA) n , and a minihairpin. There was no definitive evidence for enhanced purine reactivity caused by direct excitation. Finally, Chapter 7 investigates the mutagenic potential of a dimeric

  3. Quantitative analysis of DNA methylation in the promoter region of the methylguanine-O(6) -DNA-methyltransferase gene by COBRA and subsequent native capillary gel electrophoresis.

    Science.gov (United States)

    Goedecke, Simon; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2015-12-01

    Along with histone modifications, RNA interference and delayed replication timing, DNA methylation belongs to the key processes in epigenetic regulation of gene expression. Therefore, reliable information about the methylation level of particular DNA fragments is of major interest. Herein the methylation level at two positions of the promoter region of the gene methylguanine-O(6) -DNA-Methyltransferase (MGMT) was investigated. Previously, it was demonstrated that the epigenetic status of this DNA region correlates with response to alkylating anticancer agents. An automated CGE method with LIF detection was established to separate the six DNA fragments resulting from combined bisulfite restriction analysis of the methylated and non-methylated MGMT promoter. In COBRA, the DNA was treated with bisulfite converting cytosine into uracil. During PCR uracil pairs with adenine, which changes the original recognition site of the restriction enzyme Taql. Artificial probes generated by mixing appropriate amounts of DNA after bisulfite treatment and PCR amplification were used for validation of the method. The methylation levels of these samples could be determined with high accuracy and precision. DNA samples prepared by mixing the corresponding clones first and then performing PCR amplification led to non-linear correlation between the corrected peak areas and the methylation levels. This effect is explained by slightly different PCR amplification of DNA with different sequences present in the mixture. The superiority of CGE over PAGE was clearly demonstrated. Finally, the established method was used to analyze the methylation levels of human brain tumor tissue samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evolutionary dynamics of 5S rDNA location in acridid grasshoppers and its relationship with H3 histone gene and 45S rDNA location.

    Science.gov (United States)

    Cabral-de-Mello, Diogo C; Cabrero, Josefa; López-León, María Dolores; Camacho, Juan Pedro M

    2011-07-01

    We analyze the chromosomal location of 5S rDNA clusters in 29 species of grasshoppers belonging to the family Acrididae. There was extensive variation among species for the number and location of 5S rDNA sites. Out of 148 sites detected, 75% were proximally located, 21.6% were interstitial, and only 3.4% were distal. The number of 5S rDNA sites per species varied from a single chromosome pair (in six species) to all chromosome pairs (in five species), with a range of intermediate situations. Thirteen chromosomes from eight species carried two 5S rDNA clusters. At intraspecific level, differences among populations were detected in Eyprepocnemis plorans, and some heteromorphisms have also been observed in some species. Double FISH for 5S rDNA and H3 histone gene DNA, performed on 17 of these 29 species, revealed that both markers are sometimes placed in a same chromosome but at different location, whereas they appeared to co-localize in five species (Calliptamus barbarus, Heteracris adpersa, Aiolopus strepens, Oedipoda charpentieri and O. coerulescens). Double fiber-FISH in A. strepens and O. coerulescens showed that the two DNAs are closely interspersed with variable relative amounts of both classes of DNA. Finally, no correlation was observed between the number of 5S and 45S rDNA clusters in 23 species where this information was available. These results are discussed in the light of possible mechanisms of spread that led to the extensive variation in the number of clusters observed for both rDNA types in acridid grasshoppers.

  5. Charged particle mobility refrigerant analyzer

    Science.gov (United States)

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  6. Fuel analyzer; Analisador de combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Cozzolino, Roberval [RS Motors, Indaiatuba, SP (Brazil)

    2008-07-01

    The current technology 'COMBUSTIMETRO' aims to examine the fuel through performance of the engine, as the role of the fuel is to produce energy for the combustion engine in the form of which is directly proportional to the quality and type of fuel. The 'COMBUSTIMETRO' has an engine that always keeps the same entry of air, fuel and fixed point of ignition. His operation is monitored by sensors (Sonda Lambda, RPM and Gases Analyzer) connected to a processor that performs calculations and records the information, generate reports and graphs. (author)

  7. Photo-triggered ODN manipulation on DNA chip.

    Science.gov (United States)

    Ogasawara, Shinzi; Fujimoto, Kenzo

    2005-01-01

    DNA microarray is a powerful tool allowing simultaneous detection of many different target molecules present in a sample. We developed the photo-triggered ODN manipulation on DNA chip, and analyzed efficiency and discrimination of surface photoligation.

  8. Historical Thinking: Analyzing Student and Teacher Ability to Analyze Sources

    Directory of Open Access Journals (Sweden)

    Daniel Armond Cowgill II

    2017-05-01

    Full Text Available The purpose of this study was to partially replicate the Historical Problem Solving: A Study of the Cognitive Process Using Historical Evidence study conducted by Sam Wineburg in 1991. The Historical Problem Solving study conducted by Wineburg (1991 sought to compare the ability of historians and top level students, as they analyzed pictures and written documents centered on the Battle of Lexington Green. In this version of the study, rather than compare historians and students, we sought out to compare the analytical skills of teachers and students. The main findings relate to the fact that the participants lacked the ability to engage in the very complex activities associated with historical inquiry and the utilization of primary sources in learning about the past. This lack of ability should be used to improve teacher professional development programs and help them develop the skills needed to not only engage in historical evaluation themselves but to also develop skills that will allow them to instruct students to do the same.

  9. DNA Chip

    Indian Academy of Sciences (India)

    Imagine a world without identity cards; no I-cards for the college or office or bank account or anything! All you are carrying is a small (say, 2cm x 2cm) 'DNA-chip', which has the whole of your genetic profile on it. Your identity cannot get more authentic than that. Imagine a world where marriages are not decided by matching ...

  10. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  11. Stool DNA Test

    Science.gov (United States)

    ... The stool DNA test is a noninvasive laboratory test that identifies DNA changes in the cells of a stool sample. ... the presence of cancer. If a stool DNA test detects abnormal DNA, additional testing may be used to investigate the ...

  12. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  13. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  14. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-01

    Jul 1, 2015 ... may in time accumulate differences in the mitochondrial. DNA but show little difference in the nuclear DNA and finally, maternal inheritance: A further reason for the use of mitochondrial DNA in species testing, and in forensic science, is its mode of inheritance. Mitochondria exist within the cytoplasm of cells, ...

  15. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    Science.gov (United States)

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly

  16. Nanomechanical molecular devices made of DNA origami.

    Science.gov (United States)

    Kuzuya, Akinori; Ohya, Yuichi

    2014-06-17

    different cell lines, open their shell, and bind to their target. An intelligent DNA origami "sheath" can mimic the function of suppressors in a transcription regulation system to control the expression of a loaded gene. DNA origami "rolls" are created to construct precisely arranged plasmonic devices with metal nanoparticles. All of their functions are derived from their nanomechanical movement, which is programmable by designing the DNA sequence or by using the significant repository of technical achievements in nucleic acid chemistry. Finally, some studies on detailed structural parameters of DNA origami or their mechanical properties in nanoscale are discussed, which may be useful and inspiring for readers who intend to design new nanomechanical DNA origami devices.

  17. Analyzing delay causes in Egyptian construction projects.

    Science.gov (United States)

    Marzouk, Mohamed M; El-Rasas, Tarek I

    2014-01-01

    Construction delays are common problems in civil engineering projects in Egypt. These problems occur frequently during project life-time leading to disputes and litigation. Therefore, it is essential to study and analyze causes of construction delays. This research presents a list of construction delay causes retrieved from literature. The feedback of construction experts was obtained through interviews. Subsequently, a questionnaire survey was prepared. The questionnaire survey was distributed to thirty-three construction experts who represent owners, consultants, and contractor's organizations. Frequency Index, Severity Index, and Importance Index are calculated and according to the highest values of them the top ten delay causes of construction projects in Egypt are determined. A case study is analyzed and compared to the most important delay causes in the research. Statistical analysis is carried out using analysis of variance ANOVA method to test delay causes, obtained from the survey. The test results reveal good correlation between groups while there is significant difference between them for some delay causes and finally roadmap for prioritizing delay causes groups is presented.

  18. Analyzing block placement errors in SADP patterning

    Science.gov (United States)

    Kobayashi, Shinji; Okada, Soichiro; Shimura, Satoru; Nafus, Kathleen; Fonseca, Carlos; Demand, Marc; Biesemans, Serge; Versluijs, Janko; Ercken, Monique; Foubert, Philippe; Miyazaki, Shinobu

    2016-03-01

    We discuss edge placement errors (EPE) for multi-patterning of Mx critical layers using ArF lithography. Specific focus is placed on the block formation part of the process. While plenty of literature characterization data exist on spacer formation, only limited published data is available on block processes. We analyze the accuracy of placing blocks relative to narrow spacers. Many publications calculate EPE assuming Gaussian distributions for key process variations contributing to EPE. For practical reasons, each contributor is measured on dedicated test structures. In this work, we complement such analysis and directly measure the EPE in product. We perform high density sampling of blocks using CDSEM images and analyze all feature edges of interest. We find that block placement errors can be very different depending on their local design context. Specifically we report on 2 block populations (further called block A and B) which have a 4x different standard deviation. We attribute this to differences in local topography (spacer shape) and interaction with the plasma-etch process design. Block A (on top of the `core space' S1) has excellent EPE uniformity of ~1 nm while block B (on top of `gap space' S2) has degraded EPE control of ~4 nm. Finally, we suggest that the SOC etch process is at the origin on positioning blocks accurately on slim spacers, helping the manufacturability of spacer-based patterning techniques, and helping its extension toward the 5nm node.

  19. Radiation energy detector and analyzer

    International Nuclear Information System (INIS)

    Roberts, T.G.

    1981-01-01

    A radiation detector array and a method for measuring the spectral content of radiation. The radiation sensor or detector is an array or stack of thin solid-electrolyte batteries. The batteries, arranged in a stack, may be composed of independent battery cells or may be arranged so that adjacent cells share a common terminal surface. This common surface is possible since the polarity of the batteries with respect to an adjacent battery is unrestricted, allowing a reduction in component parts of the assembly and reducing the overall stack length. Additionally, a test jig or chamber for allowing rapid measurement of the voltage across each battery is disclosed. A multichannel recorder and display may be used to indicate the voltage gradient change across the cells, or a small computer may be used for rapidly converting these voltage readings to a graph of radiation intensity versus wavelength or energy. The behavior of the batteries when used as a radiation detector and analyzer are such that the voltage measurements can be made at leisure after the detector array has been exposed to the radiation, and it is not necessary to make rapid measurements as is now done

  20. Thomson parabola ion energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Letzring, Samuel A [Los Alamos National Laboratory; Lopez, Frank E [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory; Oertel, John A [Los Alamos National Laboratory; Mastrosimone, Dino [UNIV OF ROCHESTER

    2010-01-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed and constructed for use at the OMEGA-EP facility. Multi-MeV ions from EP targets are transmitted through a W pinhole into a (5- or 8-kG) magnetic field and subsequently through a parallel electric field of up to 30 kV/cm. The ion drift region may have a user-selected length of 10, 50, or 80 cm. With the highest fields, 500-Me V C{sup 6+} and C{sup 5+} may be resolved. TPIE is TIM-mounted at OMEGA-EP and is qualified in all existing TIMs. The instrument runs on pressure-interlocked 15-VDC power available in EP TIM carts. It may be inserted to within several inches of the target to attain sufficient flux for a measurement. For additional flux control, the user may select a square-aperture W pinhole of 0.004-inch or 0.010-inch. The detector consists of CR-39 backed by an image plate. The fully relativistic design code and design features are discussed. Ion spectral results from first use at OMEGA-EP are expected.

  1. Nuclear plant analyzer desktop workstation

    International Nuclear Information System (INIS)

    Beelman, R.J.

    1990-01-01

    In 1983 the U.S. Nuclear Regulatory Commission (USNRC) commissioned the Idaho National Engineering Laboratory (INEL) to develop a Nuclear Plant Analyzer (NPA). The NPA was envisioned as a graphical aid to assist reactor safety analysts in comprehending the results of thermal-hydraulic code calculations. The development was to proceed in three distinct phases culminating in a desktop reactor safety workstation. The desktop NPA is now complete. The desktop NPA is a microcomputer based reactor transient simulation, visualization and analysis tool developed at INEL to assist an analyst in evaluating the transient behavior of nuclear power plants by means of graphic displays. The NPA desktop workstation integrates advanced reactor simulation codes with online computer graphics allowing reactor plant transient simulation and graphical presentation of results. The graphics software, written exclusively in ANSI standard C and FORTRAN 77 and implemented over the UNIX/X-windows operating environment, is modular and is designed to interface to the NRC's suite of advanced thermal-hydraulic codes to the extent allowed by that code. Currently, full, interactive, desktop NPA capabilities are realized only with RELAP5

  2. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer

    Directory of Open Access Journals (Sweden)

    Anthony J. Berdis

    2017-11-01

    Full Text Available Inhibiting DNA synthesis is an important therapeutic strategy that is widely used to treat a number of hyperproliferative diseases including viral infections, autoimmune disorders, and cancer. This chapter describes two major categories of therapeutic agents used to inhibit DNA synthesis. The first category includes purine and pyrmidine nucleoside analogs that directly inhibit DNA polymerase activity. The second category includes DNA damaging agents including cisplatin and chlorambucil that modify the composition and structure of the nucleic acid substrate to indirectly inhibit DNA synthesis. Special emphasis is placed on describing the molecular mechanisms of these inhibitory effects against chromosomal and mitochondrial DNA polymerases. Discussions are also provided on the mechanisms associated with resistance to these therapeutic agents. A primary focus is toward understanding the roles of specialized DNA polymerases that by-pass DNA lesions produced by DNA damaging agents. Finally, a section is provided that describes emerging areas in developing new therapeutic strategies targeting specialized DNA polymerases.

  3. DNA Microarrays

    Science.gov (United States)

    Nguyen, C.; Gidrol, X.

    Genomics has revolutionised biological and biomedical research. This revolution was predictable on the basis of its two driving forces: the ever increasing availability of genome sequences and the development of new technology able to exploit them. Up until now, technical limitations meant that molecular biology could only analyse one or two parameters per experiment, providing relatively little information compared with the great complexity of the systems under investigation. This gene by gene approach is inadequate to understand biological systems containing several thousand genes. It is essential to have an overall view of the DNA, RNA, and relevant proteins. A simple inventory of the genome is not sufficient to understand the functions of the genes, or indeed the way that cells and organisms work. For this purpose, functional studies based on whole genomes are needed. Among these new large-scale methods of molecular analysis, DNA microarrays provide a way of studying the genome and the transcriptome. The idea of integrating a large amount of data derived from a support with very small area has led biologists to call these chips, borrowing the term from the microelectronics industry. At the beginning of the 1990s, the development of DNA chips on nylon membranes [1, 2], then on glass [3] and silicon [4] supports, made it possible for the first time to carry out simultaneous measurements of the equilibrium concentration of all the messenger RNA (mRNA) or transcribed RNA in a cell. These microarrays offer a wide range of applications, in both fundamental and clinical research, providing a method for genome-wide characterisation of changes occurring within a cell or tissue, as for example in polymorphism studies, detection of mutations, and quantitative assays of gene copies. With regard to the transcriptome, it provides a way of characterising differentially expressed genes, profiling given biological states, and identifying regulatory channels.

  4. Protein-DNA complexation: contact profiles in DNA grooves

    Directory of Open Access Journals (Sweden)

    M. Yu. Zhitnikova

    2017-12-01

    Full Text Available Background: Investigation of the specific protein-DNA complexation mechanisms allows to establish general principles of molecular recognition, which must be taken into account while developing artificial nanostructures based on DNA, and to improve the prediction efficiency of the protein binding sites on DNA. One of the main characteristics of the protein-DNA complexes are the number and type of contacts in the binding sites of DNA and proteins. Conformational changes in the DNA double helix can cause changes in these characteristics. Objectives: The purpose of our study is to establish the features of the interactions between nucleotides and amino acid residues in the binding sites of protein-DNA complexes and their dependence on the conformation of deoxyribose and the angle γ of the polynucleotide chain. Materials and methods: At research of protein-DNA recognition process we have analyzed the contacts between amino acids and nucleotides of the 128 protein-DNA complexes from the structural databases. Conformational parameters of DNA backbone were calculated using the 3DNA/CompDNA program. The number of contacts was determined using a geometric criterion. Two protein and DNA atoms were considered to be in contact if the distance between their centers is less than 4.5 Å. Amino acid residues were arranged according to hydrophobicity scale as hydrophobic or nonpolar and polar. Results: The analysis of contacts between polar and hydrophobic residues and nucleotides with different conformations of the sugar-phosphate backbone showed that nucleotides form more contacts with polar amino acids in both grooves than with hydrophobic ones regardless of nucleotide conformation. But the profile of such contacts differs in minor and major grooves and depends on the conformation of both deoxyribose and γ angle. The contact profiles are characterized by the sequence-specificity or the different propensity of nucleotides to form contacts with the residues in

  5. A novel protein that recognizes DNA strand break

    Energy Technology Data Exchange (ETDEWEB)

    Narumi, Issay; Satoh, Katsuya; Kikuchi, Masahiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    By analyzing a DNA damage-sensitive mutant of the radioresistant bacterium Deinococcus radiodurans, we discovered that a novel protein participates in the extreme radiation resistance of this bacterium. The protein (designated PprA for promoting prominent repair) can recognize DNA strand breaks. PprA could bind to double-stranded DNA (dsDNA) in the open circular form and to linear dsDNA, but could not bind to either dsDNA in the closed circular form or single-stranded DNA (ssDNA). Further, under conditions where a substantial amount of degradation of naked DNA fragments would normally result from the activity of E. coli exonuclease III, no DNA degradation was observed when the DNA fragments were preincubated with PprA. These suggest that PprA would protect irradiation-damaged DNA from exonuclease-mediated degradation and consequent DNA repair processes could function. Beside DNA-binding ability, PprA could promote the activities of DNA repair enzymes such as DNA ligase and RecA, suggesting that PprA functions as a DNA repair-promoting protein to potentiate the effectiveness of DNA repair. These properties enable PprA to use the widespread application in vivo and in vitro. (author)

  6. Mendel Meets CSI: Forensic Genotyping as a Method to Teach Genetics & DNA Science

    Science.gov (United States)

    Kurowski, Scotia; Reiss, Rebecca

    2007-01-01

    This article describes a forensic DNA science laboratory exercise for advanced high school and introductory college level biology courses. Students use a commercial genotyping kit and genetic analyzer or gene sequencer to analyze DNA recovered from a fictitious crime scene. DNA profiling and STR genotyping are outlined. DNA extraction, PCR, and…

  7. DNA Damage and Pulmonary Hypertension

    Science.gov (United States)

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373

  8. DNA testing in homicide investigations.

    Science.gov (United States)

    Prahlow, Joseph A; Cameron, Thomas; Arendt, Alexander; Cornelis, Kenneth; Bontrager, Anthony; Suth, Michael S; Black, Lisa; Tobey, Rebbecca; Pollock, Sharon; Stur, Shawn; Cotter, Kenneth; Gabrielse, Joel

    2017-10-01

    Objectives With the widespread use of DNA testing, police, death investigators, and attorneys need to be aware of the capabilities of this technology. This review provides an overview of scenarios where DNA evidence has played a major role in homicide investigations in order to highlight important educational issues for police, death investigators, forensic pathologists, and attorneys. Methods This was a nonrandom, observational, retrospective study. Data were obtained from the collective files of the authors from casework during a 15-year period, from 2000 through 2014. Results A series of nine scenarios, encompassing 11 deaths, is presented from the standpoint of the police and death investigation, the forensic pathology autopsy performance, the subsequent DNA testing of evidence, and, ultimately, the final adjudication of cases. Details of each case are presented, along with a discussion that focuses on important aspects of sample collection for potential DNA testing, especially at the crime scene and the autopsy. The presentation highlights the diversity of case and evidence types in which DNA testing played a valuable role in the successful prosecution of the case. Conclusions By highlighting homicides where DNA testing contributed to the successful adjudication of cases, police, death investigators, forensic pathologists, and attorneys will be better informed regarding the types of evidence and situations where such testing is of potential value.

  9. Large Variation in the Ratio of Mitochondrial to Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of Mitochondrial DNA as a Molecular Marker.

    Science.gov (United States)

    Allio, Remi; Donega, Stefano; Galtier, Nicolas; Nabholz, Benoit

    2017-11-01

    It is commonly assumed that mitochondrial DNA (mtDNA) evolves at a faster rate than nuclear DNA (nuDNA) in animals. This has contributed to the popularity of mtDNA as a molecular marker in evolutionary studies. Analyzing 121 multilocus data sets and four phylogenomic data sets encompassing 4,676 species of animals, we demonstrate that the ratio of mitochondrial over nuclear mutation rate is highly variable among animal taxa. In nonvertebrates, such as insects and arachnids, the ratio of mtDNA over nuDNA mutation rate varies between 2 and 6, whereas it is above 20, on average, in vertebrates such as scaled reptiles and birds. Interestingly, this variation is sufficient to explain the previous report of a similar level of mitochondrial polymorphism, on average, between vertebrates and nonvertebrates, which was originally interpreted as reflecting the effect of pervasive positive selection. Our analysis rather indicates that the among-phyla homogeneity in within-species mtDNA diversity is due to a negative correlation between mtDNA per-generation mutation rate and effective population size, irrespective of the action of natural selection. Finally, we explore the variation in the absolute per-year mutation rate of both mtDNA and nuDNA using a reduced data set for which fossil calibration is available, and discuss the potential determinants of mutation rate variation across genomes and taxa. This study has important implications regarding DNA-based identification methods in predicting that mtDNA barcoding should be less reliable in nonvertebrates than in vertebrates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Use of Drosophila to study DNA repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Harris, P.V.; Sakaguchi, K.

    1988-01-01

    This paper discusses Drosophila, the premier metazoan organism for analyzing many fundamental features of eukaryotic gene regulation. The authors present adaptations of several approaches for studying DNA repair to an analysis of repair-defective mutants in Drosophila. A current understanding of Drosophila DNA repair is described

  11. DNA evolved to minimize frameshift mutations

    OpenAIRE

    Agoni, Valentina

    2013-01-01

    Point mutations can surely be dangerous but what is worst than to lose the reading frame?! Does DNA evolved a strategy to try to limit frameshift mutations?! Here we investigate if DNA sequences effectively evolved a system to minimize frameshift mutations analyzing the transcripts of proteins with high molecular weights.

  12. The kinetoplast DNA of Trypanosoma equiperdum.

    NARCIS (Netherlands)

    A.C.C. Frasch; S.L. Hajduk; J.H.J. Hoeijmakers (Jan); P. Borst (Piet); F. Brunel; J. Davison

    1980-01-01

    textabstractWe have analyzed the kinetoplast DNA for Trypanosoma equiperdum (American Type Culture Collection 30019) and two dyskinetoplastic strains derived from it. The DNA networks from the kinetoplastic strain are made up of catenated mini-circles and maxi-circles, like the networks from the

  13. Shift-Western Blotting: Separate Analysis of Protein and DNA from Protein-DNA Complexes.

    Science.gov (United States)

    Harbers, Matthias

    2015-01-01

    The electrophoretic mobility shift assay (EMSA) is the most frequently used experiment for studying protein-DNA interactions and to identify DNA-binding proteins. Protein-DNA complexes formed during EMSA experiments can be further analyzed by shift-western blotting, where the protein and DNA components contained in a polyacrylamide gel are transferred to stacked membranes: First a nitrocellulose membrane retains the proteins while double-stranded DNA passes through the nitrocellulose membrane and binds only to a charged membrane placed below. Immobilized proteins can then be stained with specific antibodies while the DNA can be detected by a radioactive label or a nonradioactive detection system. Shift-western blotting can overcome many limitations of supershift experiments and allows for the analysis of complex protein-DNA complexes containing multiple protein factors. Moreover, proteins and/or DNA may be recovered from membranes after the blotting step for further analysis by other means.

  14. AIPM Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Mookken

    2006-06-30

    The final AIPM project report consists of six sections. Each section includes information on the original AIPM project and extension work on the high temperature design. The first section (1) provides an overview of the program and highlights the significant targets to meet at the end of the program. The next section (2) summarizes the significant technical accomplishments by the SEMIKRON AIPM team during the course of the project. Greater technical details are provided in a collection of all the quarterly reports which can be found in the appendix. Section three (3) presents some the more significant technical data collected from technology demonstrators. Section four (4) analyzes the manufacturing cost or economic aspects of producing 100,000 units/yr. Section five (5) describes the commercialization efforts of the AIPM technology into the automotive market. The last section (6) recommends follow on work that will build on the efforts and achievements of the AIPM program.

  15. New tools to study DNA double-strand break repair pathway choice.

    Directory of Open Access Journals (Sweden)

    Daniel Gomez-Cabello

    Full Text Available A broken DNA molecule is difficult to repair, highly mutagenic, and extremely cytotoxic. Such breaks can be repaired by homology-independent or homology-directed mechanisms. Little is known about the network that controls the repair pathway choice except that a licensing step for homology-mediated repair exists, called DNA-end resection. The choice between these two repair pathways is a key event for genomic stability maintenance, and an imbalance of the ratio is directly linked with human diseases, including cancer. Here we present novel reporters to study the balance between both repair options in human cells. In these systems, a double-strand break can be alternatively repaired by homology-independent or -dependent mechanisms, leading to the accumulation of distinct fluorescent proteins. These reporters thus allow the balance between both repair pathways to be analyzed in different experimental setups. We validated the reporters by analyzing the effect of protein downregulation of the DNA end resection and non-homologous end-joining pathways. Finally, we analyzed the role of the DNA damage response on double-strand break (DSB repair mechanism selection. Our reporters could be used in the future to understand the roles of specific factors, whole pathways, or drugs in DSB repair pathway choice, or for genome-wide screening. Moreover, our findings can be applied to increase gene-targeting efficiency, making it a beneficial tool for a broad audience in the biological sciences.

  16. New tools to study DNA double-strand break repair pathway choice.

    Science.gov (United States)

    Gomez-Cabello, Daniel; Jimeno, Sonia; Fernández-Ávila, María Jesús; Huertas, Pablo

    2013-01-01

    A broken DNA molecule is difficult to repair, highly mutagenic, and extremely cytotoxic. Such breaks can be repaired by homology-independent or homology-directed mechanisms. Little is known about the network that controls the repair pathway choice except that a licensing step for homology-mediated repair exists, called DNA-end resection. The choice between these two repair pathways is a key event for genomic stability maintenance, and an imbalance of the ratio is directly linked with human diseases, including cancer. Here we present novel reporters to study the balance between both repair options in human cells. In these systems, a double-strand break can be alternatively repaired by homology-independent or -dependent mechanisms, leading to the accumulation of distinct fluorescent proteins. These reporters thus allow the balance between both repair pathways to be analyzed in different experimental setups. We validated the reporters by analyzing the effect of protein downregulation of the DNA end resection and non-homologous end-joining pathways. Finally, we analyzed the role of the DNA damage response on double-strand break (DSB) repair mechanism selection. Our reporters could be used in the future to understand the roles of specific factors, whole pathways, or drugs in DSB repair pathway choice, or for genome-wide screening. Moreover, our findings can be applied to increase gene-targeting efficiency, making it a beneficial tool for a broad audience in the biological sciences.

  17. Single-nucleotide mutation matrix: a new model for predicting the NF-κB DNA binding sites.

    Science.gov (United States)

    Du, Wenxin; Gao, Jing; Wang, Tingting; Wang, Jinke

    2014-01-01

    In this study, we established a single nucleotide mutation matrix (SNMM) model based on the relative binding affinities of NF-κB p50 homodimer to a wild-type binding site (GGGACTTTCC) and its all single-nucleotide mutants detected with the double-stranded DNA microarray. We evaluated this model by scoring different groups of 10-bp DNA sequences with this model and analyzing the correlations between the scores and the relative binding affinities detected with three wet experiments, including the electrophoresis mobility shift assay (EMSA), the protein-binding microarray (PBM) and the systematic evolution of ligands by exponential enrichment-sequencing (SELEX-Seq). The results revealed that the SNMM scores were strongly correlated with the detected binding affinities. We also scored the DNA sequences with other three models, including the principal coordinate (PC) model, the position weight matrix scoring algorithm (PWMSA) model and the Match model, and analyzed the correlations between the scores and the detected binding affinities. In comparison with these models, the SNMM model achieved reliable results. We finally determined 0.747 as the optimal threshold for predicting the NF-κB DNA-binding sites with the SNMM model. The SNMM model thus provides a new alternative model for scoring the relative binding affinities of NF-κB to the 10-bp DNA sequences and predicting the NF-κB DNA-binding sites.

  18. Targeted deep DNA methylation analysis of circulating cell-free DNA in plasma using massively parallel semiconductor sequencing.

    Science.gov (United States)

    Vaca-Paniagua, Felipe; Oliver, Javier; Nogueira da Costa, Andre; Merle, Philippe; McKay, James; Herceg, Zdenko; Holmila, Reetta

    2015-01-01

    To set up a targeted methylation analysis using semiconductor sequencing and evaluate the potential for studying methylation in circulating cell-free DNA (cfDNA). Methylation of VIM, FBLN1, LTBP2, HINT2, h19 and IGF2 was analyzed in plasma cfDNA and white blood cell DNA obtained from eight hepatocellular carcinoma patients and eight controls using Ion Torrent™ PGM sequencer. h19 and IGF2 showed consistent methylation levels and methylation was detected for VIM and FBLN1, whereas LTBP2 and HINT2 did not show methylation for target regions. VIM gene promoter methylation was higher in HCC cfDNA than in cfDNA of controls or white blood cell DNA. Semiconductor sequencing is a suitable method for analyzing methylation profiles in cfDNA. Furthermore, differences in cfDNA methylation can be detected between controls and hepatocellular carcinoma cases, even though due to the small sample set these results need further validation.

  19. Evolution of DNA Methylation across Insects.

    Science.gov (United States)

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J

    2017-03-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  1. Chiroplasmonic DNA-based nanostructures

    Science.gov (United States)

    Cecconello, Alessandro; Besteiro, Lucas V.; Govorov, Alexander O.; Willner, Itamar

    2017-09-01

    Chiroplasmonic properties of nanoparticles, organized using DNA-based nanostructures, have attracted both theoretical and experimental interest. Theory suggests that the circular dichroism spectra accompanying chiroplasmonic nanoparticle assemblies are controlled by the sizes, shapes, geometries and interparticle distances of the nanoparticles. In this Review, we present different methods to assemble chiroplasmonic nanoparticle or nanorod systems using DNA scaffolds, and we discuss the operations of dynamically reconfigurable chiroplasmonic nanostructures. The chiroplasmonic properties of the different systems are characterized by circular dichroism and further supported by high-resolution transmission electron microscopy or cryo-transmission electron microscopy imaging and theoretical modelling. We also outline the applications of chiroplasmonic assemblies, including their use as DNA-sensing platforms and as functional systems for information processing and storage. Finally, future perspectives in applying chiroplasmonic nanoparticles as waveguides for selective information transfer and their use as ensembles for chiroselective synthesis are discussed. Specifically, we highlight the upscaling of the systems to device-like configurations.

  2. DNA methylation increases throughout Arabidopsis development.

    Science.gov (United States)

    Ruiz-García, L; Cervera, M T; Martínez-Zapater, J M

    2005-10-01

    We used amplified fragment length polymorphisms (AFLP) to analyze the stability of DNA methylation throughout Arabidopsis development. AFLP can detect genome-wide changes in cytosine methylation produced by DNA demethylation agents, such as 5-azacytidine, or specific mutations at the DDM1 locus. In both cases, cytosine demethylation is associated with a general increase in the presence of amplified fragments. Using this approach, we followed DNA methylation at methylation sensitive restriction sites throughout Arabidopsis development. The results show a progressive DNA methylation trend from cotyledons to vegetative organs to reproductive organs.

  3. Update on the USNRC's nuclear plant analyzer

    International Nuclear Information System (INIS)

    Laats, E.T.

    1987-01-01

    The Nuclear Plant Analyzer (NPA) is the U.S. Nuclear Regulatory Commission's (NRC's) state-of-the-art nuclear reactor simulation capability. This computer software package integrates high fidelity nuclear reactor simulation codes such as the TRAC and RELAPS series of codes with color graphics display techniques and advanced workstation hardware. An overview of this program was given at the 1984 Summer Computer Simulation Conference (SCSC), with selected topics discussed at the 1985 and 1986 SCSCs. This paper addresses these activities and related experiences. First, The Class VI computer implementation is discussed. The trade-offs between gaining significantly greater computational speed and central memory, with the loss of performance due to many more simultaneous users is shown. Second, the goal of the super-minicomputer implementation is to produce a very cost-effective system that utilizes advanced (multi-dimensional, two-phase coolant) simulation capabilities at real wall-clock simulation times. Benchmarking of the initial super-minicomputer implementation is discussed. Finally, the technical and economic feasibility is addressed for implementing the super-minicomputer version of the NPA with the RELAPS simulation code onto the Black Fox full scope nuclear power plant simulator

  4. Nuclear plant analyzer development and analysis applications

    International Nuclear Information System (INIS)

    Laats, E.T.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is being developed as the U.S. Nuclear Regulatory Commission's (NRC's) state of the art safety analysis and engineering tool to address key nuclear plant safety issues. The NPA integrates the NRC's computerized reactor behavior simulation codes such as RELAP5 and TRAC-BWR, both of which are well-developed computer graphics programs, and large repositories of reactor design and experimental data. Utilizing the complex reactor behavior codes as well as the experiment data repositories enables simulation applications of the NPA that are generally not possible with more simplistic, less mechanistic reactor behavior codes. These latter codes are used in training simulators or with other NPA-type software packages and are limited to displaying calculated data only. This paper describes four applications of the NPA in assisting reactor safety analyses. Two analyses evaluated reactor operating procedures, during off-normal operation, for a pressurized water reactor (PWR) and a boiling water reactor (BWR), respectively. The third analysis was performed in support of a reactor safety experiment conducted in the Semiscale facility. The final application demonstrated the usefulness of atmospheric dispersion computer codes for site emergency planning purposes. An overview of the NPA and how it supported these analyses are the topics of this paper

  5. High yield and high quality DNA from vegetative and sexual tissues ...

    African Journals Online (AJOL)

    Pines are considered to be difficult for DNA extraction. However, from one species to the other there is variation in phenolic profiles and seed size that might affect final DNA yields and quality. Two DNA extraction protocols (CTAB and SDS based) were compared for their ability to produce DNA on leaves, gametophyte and ...

  6. HPV DNA test

    Science.gov (United States)

    ... HPV testing in women; Cervical cancer - HPV DNA test; Cancer of cervix - HPV DNA test ... The HPV DNA test may be done during a Pap smear . You lie on a table and place your feet in stirrups. The ...

  7. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants

    DEFF Research Database (Denmark)

    van der Graaff, Eric; den Dulk-Ras, A; Hooykaas, P J

    1996-01-01

    We analyzed 29 T-DNA inserts in transgenic Arabidopsis thaliana plants for the junction of the right border sequences and the flanking plant DNA. DNA sequencing showed that in most lines the right border sequences transferred had been preserved during integration, corroborating literature data. S...

  8. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants

    DEFF Research Database (Denmark)

    van der Graaff, Eric; den Dulk-Ras, A; Hooykaas, P J

    1996-01-01

    We analyzed 29 T-DNA inserts in transgenic Arabidopsis thaliana plants for the junction of the right border sequences and the flanking plant DNA. DNA sequencing showed that in most lines the right border sequences transferred had been preserved during integration, corroborating literature data...

  9. Relaxed specificity of prokaryotic DNA methyltransferases results in DNA site-specific modification of RNA/DNA heteroduplexes.

    Science.gov (United States)

    Wons, Ewa; Mruk, Iwona; Kaczorowski, Tadeusz

    2015-11-01

    RNA/DNA hybrid duplexes regularly occur in nature, for example in transcriptional R loops. Their susceptibility to modification by DNA-specific or RNA-specific enzymes is, thus, a biologically relevant question, which, in addition, has possible biotechnological implications. In this study, we investigated the activity of four isospecific DNA methyltransferases (M.EcoVIII, M.LlaCI, M.HindIII, M.BstZ1II) toward an RNA/DNA duplex carrying one 5'-AAGCUU-3'/3'-TTCGAA-5' target sequence. The analyzed enzymes belong to the β-group of adenine N6-methyltransferases and recognize the palindromic DNA sequence 5'-AAGCTT-3'/3'-TTCGAA-5'. Under standard conditions, none of these isospecific enzymes could detectibly methylate the RNA/DNA duplex. However, the addition of agents that generally relax specificity, such as dimethyl sulfoxide (DMSO) and glycerol, resulted in substantial methylation of the RNA/DNA duplex by M.EcoVIII and M.LlaCI. Only the DNA strand of the RNA/DNA duplex was methylated. The same was not observed for M.HindIII or M.BstZ1II. This is, to our knowledge, the first report that demonstrates such activity by prokaryotic DNA methyltransferases. Possible applications of these findings in a laboratory practice are also discussed.

  10. DNA Movies and Panspermia

    Directory of Open Access Journals (Sweden)

    Victor Norris

    2011-10-01

    Full Text Available There are several ways that our species might try to send a message to another species separated from us by space and/or time. Synthetic biology might be used to write an epitaph to our species, or simply “Kilroy was here”, in the genome of a bacterium via the patterns of either (1 the codons to exploit Life's non-equilibrium character or (2 the bases themselves to exploit Life's quasi-equilibrium character. We suggest here how DNA movies might be designed using such patterns. We also suggest that a search for mechanisms to create and preserve such patterns might lead to a better understanding of modern cells. Finally, we argue that the cutting-edge microbiology and synthetic biology needed for the Kilroy project would put origin-of-life studies in the vanguard of research.

  11. Comparison of two commercial DNA extraction kits for the analysis of nasopharyngeal bacterial communities

    Directory of Open Access Journals (Sweden)

    Keith A. Crandall

    2016-04-01

    Full Text Available Characterization of microbial communities via next-generation sequencing (NGS requires an extraction ofmicrobial DNA. Methodological differences in DNA extraction protocols may bias results and complicate inter-study comparisons. Here we compare the effect of two commonly used commercial kits (Norgen and Qiagenfor the extraction of total DNA on estimatingnasopharyngeal microbiome diversity. The nasopharynxis a reservoir for pathogens associated with respiratory illnesses and a key player in understandingairway microbial dynamics. Total DNA from nasal washes corresponding to 30 asthmatic children was extracted using theQiagenQIAamp DNA and NorgenRNA/DNA Purification kits and analyzed via IlluminaMiSeq16S rRNA V4 ampliconsequencing. The Norgen samples included more sequence reads and OTUs per sample than the Qiagen samples, but OTU counts per sample varied proportionallybetween groups (r = 0.732.Microbial profiles varied slightly between sample pairs, but alpha- and beta-diversity indices (PCoAand clustering showed highsimilarity between Norgen and Qiagenmicrobiomes. Moreover, no significant differences in community structure (PERMANOVA and adonis tests and taxa proportions (Kruskal-Wallis test were observed betweenkits. Finally, aProcrustes analysis also showed low dissimilarity (M2 = 0.173; P< 0.001 between the PCoAs of the two DNA extraction kits. Contrary to what has been observed in previous studies comparing DNA extraction methods, our 16S NGS analysis of nasopharyngeal washes did not reveal significant differences in community composition or structure between kits. Our findingssuggest congruence between column-based chromatography kits and supportthe comparison of microbiomeprofilesacross nasopharyngeal metataxonomic studies.

  12. Noninvasive detection of fetal subchromosomal abnormalities by semiconductor sequencing of maternal plasma DNA.

    Science.gov (United States)

    Yin, Ai-hua; Peng, Chun-fang; Zhao, Xin; Caughey, Bennett A; Yang, Jie-xia; Liu, Jian; Huang, Wei-wei; Liu, Chang; Luo, Dong-hong; Liu, Hai-liang; Chen, Yang-yi; Wu, Jing; Hou, Rui; Zhang, Mindy; Ai, Michael; Zheng, Lianghong; Xue, Rachel Q; Mai, Ming-qin; Guo, Fang-fang; Qi, Yi-ming; Wang, Dong-mei; Krawczyk, Michal; Zhang, Daniel; Wang, Yu-nan; Huang, Quan-fei; Karin, Michael; Zhang, Kang

    2015-11-24

    Noninvasive prenatal testing (NIPT) using sequencing of fetal cell-free DNA from maternal plasma has enabled accurate prenatal diagnosis of aneuploidy and become increasingly accepted in clinical practice. We investigated whether NIPT using semiconductor sequencing platform (SSP) could reliably detect subchromosomal deletions/duplications in women carrying high-risk fetuses. We first showed that increasing concentration of abnormal DNA and sequencing depth improved detection. Subsequently, we analyzed plasma from 1,456 pregnant women to develop a method for estimating fetal DNA concentration based on the size distribution of DNA fragments. Finally, we collected plasma from 1,476 pregnant women with fetal structural abnormalities detected on ultrasound who also underwent an invasive diagnostic procedure. We used SSP of maternal plasma DNA to detect subchromosomal abnormalities and validated our results with array comparative genomic hybridization (aCGH). With 3.5 million reads, SSP detected 56 of 78 (71.8%) subchromosomal abnormalities detected by aCGH. With increased sequencing depth up to 10 million reads and restriction of the size of abnormalities to more than 1 Mb, sensitivity improved to 69 of 73 (94.5%). Of 55 false-positive samples, 35 were caused by deletions/duplications present in maternal DNA, indicating the necessity of a validation test to exclude maternal karyotype abnormalities. This study shows that detection of fetal subchromosomal abnormalities is a viable extension of NIPT based on SSP. Although we focused on the application of cell-free DNA sequencing for NIPT, we believe that this method has broader applications for genetic diagnosis, such as analysis of circulating tumor DNA for detection of cancer.

  13. Synthesis of DNA

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  14. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  15. Solution structure and DNA binding of the zinc-finger domain from DNA ligase IIIalpha.

    Science.gov (United States)

    Kulczyk, Arkadiusz W; Yang, Ji-Chun; Neuhaus, David

    2004-08-13

    DNA ligase IIIalpha carries out the final ligation step in the base excision repair (BER) and single strand break repair (SSBR) mechanisms of DNA repair. The enzyme recognises single-strand nicks and other damage features in double-stranded DNA, both through the catalytic domain and an N-terminal domain containing a single zinc finger. The latter is homologous to other zinc fingers that recognise damaged DNA, two in the N terminus of poly(adenosine-ribose)polymerase and three in the N terminus of the Arabidopsis thaliana nick-sensing DNA 3'-phosphoesterase. Here, we present the solution structure of the zinc-finger domain of human DNA ligase IIIalpha, the first structure of a finger from this group. It is related to that of the erythroid transcription factor GATA-1, but has an additional N-terminal beta-strand and C-terminal alpha-helix. Chemical shift mapping using a DNA ligand containing a single-stranded break showed that the DNA-binding surface of the DNA-ligase IIIalpha zinc finger is substantially different from that of GATA-1, consistent with the fact that the two proteins recognise very different features in the DNA. Likely implications for DNA binding are discussed.

  16. Hydration of ds-DNA and ss-DNA by neutron quasielastic scattering.

    Science.gov (United States)

    Bastos, M; Castro, V; Mrevlishvili, G; Teixeira, J

    2004-06-01

    Quasielastic neutron scattering measurements were performed in hydrated samples of ds-DNA and ss-DNA. The samples were hydrated in a high relative humidity atmosphere, and their final water content was 0.559 g H(2)O/g ds-DNA and 0.434 g H(2)O/g ss-DNA. The measurements were performed at 8 and 5.2 A for the ds-DNA sample, and at 5.2 A for the ss-DNA sample. The temperature was in both cases 298 K. Analysis of the obtained data indicates that in the ds-DNA sample we can distinguish two types of protons-those belonging to water molecules strongly attached to the ds-DNA surface and another fraction belonging to water that diffuses isotropically in a sphere of radius 2.8 A, with a local diffusion coefficient of 2.2 x 10(-5) cm(2) s(-1). For ss-DNA, on the other hand, no indication was found of motionally restricted or confined water. Further, the fraction of protons strongly attached to the ds-DNA surface corresponds to 0.16 g H(2)O/g ds-DNA, which equals the amount of water that is released by ds-DNA upon thermal denaturation, as studied by one of us (G.M.) by differential scanning calorimetry. This value also equals the difference between the critical hydration values of ds-DNA and ss-DNA, also determined by DSC. These results represent, thus, a completely independent measurement of water characteristics and behavior in ds- and ss-DNA at critical hydration values, and therefore substantiate the previous suggestions/conclusions of the results obtained by calorimetry.

  17. DNA Methylation Analysis of Free-Circulating DNA in Body Fluids.

    Science.gov (United States)

    Jung, Maria; Kristiansen, Glen; Dietrich, Dimo

    2018-01-01

    Circulating cell-free DNA in body fluids is an analyte of great interest in basic and clinical research. The analyses of DNA methylation and hydroxymethylation patterns in body fluids might allow one to determine the certain state of a disease, in particular of cancer. DNA methylation biomarkers in liquid biopsies, i.e. blood plasma samples, may help optimizing personalized therapy for individual patients. DNA methylation analyses of specific loci usually require a bisulfite conversion of the DNA, which requires a sufficiently high amount of DNA at the appropriate concentration. However, free-circulating DNA is generally low concentrated. Therefore, high volumes of body fluids need to be analyzed. This high volume needs to be reduced in order to facilitate the bisulfite conversion. In addition, disease-related free-circulating DNA is even less abundant than normal DNA in the total amount of free-circulating DNA. Accordingly, analytical and pre-analytical methods are needed, which permit an accurate and sensitive quantification of single methylated DNA copies in the presence of unmethylated DNA in abundance.This protocol describes two methods for DNA enrichment from body fluids: DNA extraction by means of magnetic beads and polymer-mediated enrichment of DNA. Subsequent bisulfite conversion is achieved by means of a high-speed conversion protocol. Adaptions of the workflow required for the analysis of hydroxymethylation via oxidation 5-hydroxymethylcytosines to 5-formylcytosines prior to the bisulfite conversion are introduced. A quantitative real-time PCR based on the methylation-specific and HeavyMethyl PCR methodologies is introduced. This qPCR assay allows for an accurate and sensitive quantification of single copies of the DNA methylation biomarkers SHOX2 and SEPT9 in blood plasma. Specific issues regarding the analysis of body fluids and respective trouble shooting approaches are discussed.

  18. DNA Methylation Modulates Nociceptive Sensitization after Incision.

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    Full Text Available DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT inhibitor 5-Aza-2'-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2'-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision.

  19. Topological friction strongly affects viral DNA ejection.

    Science.gov (United States)

    Marenduzzo, Davide; Micheletti, Cristian; Orlandini, Enzo; Sumners, De Witt

    2013-12-10

    Bacteriophages initiate infection by releasing their double-stranded DNA into the cytosol of their bacterial host. However, what controls and sets the timescales of DNA ejection? Here we provide evidence from stochastic simulations which shows that the topology and organization of DNA packed inside the capsid plays a key role in determining these properties. Even with similar osmotic pressure pushing out the DNA, we find that spatially ordered DNA spools have a much lower effective friction than disordered entangled states. Such spools are only found when the tendency of nearby DNA strands to align locally is accounted for. This topological or conformational friction also depends on DNA knot type in the packing geometry and slows down or arrests the ejection of twist knots and very complex knots. We also find that the family of (2, 2k+1) torus knots unravel gradually by simplifying their topology in a stepwise fashion. Finally, an analysis of DNA trajectories inside the capsid shows that the knots formed throughout the ejection process mirror those found in gel electrophoresis experiments for viral DNA molecules extracted from the capsids.

  20. The (I/Y)XGG motif of adenovirus DNA polymerase affects template DNA binding and the transition from initiation to elongation

    NARCIS (Netherlands)

    Brenkman, AB; Heideman, MR; Truniger, [No Value; Salas, M; van der Vliet, PC

    2001-01-01

    Adenovirus DNA polymerase (Ad poI) is a eukaryotic-type DNA polymerase involved in the catalysis of protein-primed initiation as well as DNA polymerization. The functional significance of the (I/Y)XGG motif, highly conserved among eukaryotic-type DNA polymerases, was analyzed in Ad pol by

  1. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins

    NARCIS (Netherlands)

    Haas, Jan M. de; Hille, Jacques; Kors, Frank; Meer, Bert van der; Kool, Ad J.; Folkerts, Otto; Nijkamp, H. John J.

    1991-01-01

    Four Petunia hybrida mitochondrial (mt) DNA fragments have been isolated, sequenced, localized on the physical map and analyzed for their ability to initiate specific DNA synthesis. When all four mtDNA fragments were tested as templates in an in vitro DNA synthesizing lysate system, developed from

  2. Instructing cells with programmable peptide DNA hybrids

    Science.gov (United States)

    Freeman, Ronit; Stephanopoulos, Nicholas; Álvarez, Zaida; Lewis, Jacob A; Sur, Shantanu; Serrano, Chris M; Boekhoven, Job; Lee, Sungsoo S.; Stupp, Samuel I.

    2017-01-01

    The native extracellular matrix is a space in which signals can be displayed dynamically and reversibly, positioned with nanoscale precision, and combined synergistically to control cell function. Here we describe a molecular system that can be programmed to control these three characteristics. In this approach we immobilize peptide-DNA (P-DNA) molecules on a surface through complementary DNA tethers directing cells to adhere and spread reversibly over multiple cycles. The DNA can also serve as a molecular ruler to control the distance-dependent synergy between two peptides. Finally, we use two orthogonal DNA handles to regulate two different bioactive signals, with the ability to independently up- or downregulate each over time. This enabled us to discover that neural stem cells, derived from the murine spinal cord and organized as neurospheres, can be triggered to migrate out in response to an exogenous signal but then regroup into a neurosphere as the signal is removed. PMID:28691701

  3. JavaScript DNA translator: DNA-aligned protein translations.

    Science.gov (United States)

    Perry, William L

    2002-12-01

    There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).

  4. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  5. SECAD-- a Schema-based Environment for Configuring, Analyzing and Documenting Integrated Fusion Simulations. Final report

    International Nuclear Information System (INIS)

    Shasharina, Svetlana

    2012-01-01

    SECAD is a project that developed a GUI for running integrated fusion simulations as implemented in FACETS and SWIM SciDAC projects. Using the GUI users can submit simulations locally and remotely and visualize the simulation results

  6. Analyzing the reprocessing decision: plutonium recycle and nuclear proliferation. Final report

    International Nuclear Information System (INIS)

    Heising, C.D.; Connolly, T.J.

    1978-11-01

    The United States decision to defer indefinitely the reprocessing of spent nuclear fuel is examined in this thesis. Bayesian decision analysis is applied to develop a rational framework for the assessment of alternatives. Benefits and costs for each alternative are evaluated and compared in dollar terms to determine the optimal decision. A fuel cycle simulation model is constructed to assess the economic value of reprocessing light water reactor (LWR) spent fuel and recycling plutonium. In addition, a dynamic fuel substitution model is used to estimate the economic effects of the reprocessing decision's influence on the introduction date of the liquid metal fast breeder reactor (LMFBR). The analysis of benefits and costs is extended to include the social costs due to technological risks, such as accident risk, nuclear theft and/or sabotage, and international nuclear proliferation. These social costs are expressed in dollar terms for comparison with the conventional economic values. Results of the analysis indicate that the domestic social costs are less than the economic benefits by more than three orders of magnitude, and that the permit option dominates those of delay or prohibit. An examination of proliferation risk indicates a factor of approximately 7 between cost-benefits. Thus, on the basis of this analysis, it appears that to permit reprocessing is optimal over delaying or prohibiting the technology

  7. Update on the USNRC's Nuclear Plant Analyzer

    International Nuclear Information System (INIS)

    Laats, E.T.

    1987-01-01

    The Nuclear Plant Analyzer (NPA) is the US Nuclear Regulatory Commission's (NRC's) state-of-the-art nuclear reactor simulation capability. This computer software package integrates high fidelity nuclear reactor simulation codes such as the TRAC and RELAP5 series of codes with color graphics display techniques and advanced workstation hardware. An overview of this program was given at the 1984 Summer Computer Simulation Conference (SCSC), with selected topics discussed at the 1985 and 1986 SCSCs. Since the 1984 presentation, major redirections of this NRC program have been taken. The original NPA system was developed for operation on a Control Data Corporation CYBER 176 computer, technology that is some 10 to 15 years old. The NPA system has recently been implemented on Class VI computers to gain increased computational capabilities, and is now being implemented on super-minicomputers for use by the scientific community and possibly by the commercial nuclear power plant simulator community. This paper addresses these activities and related experiences. First, the Class VI computer implementation is discussed. The trade-offs between gaining significantly greater computational speed and central memory, with the loss of performance due to many more simultaneous users is shown. Second, the goal of the super-minicomputer implementation is to produce a very cost-effective system that utilizes advanced (multi-dimensional, two-phase coolant) simulation capabilities at real wall-clock simulation times. Benchmarking of the initial super-minicomputer implementation is discussed. Finally, the technical and economic feasibility is addressed for implementing the super-minicomputer version of the NPA with the RELAP5 simulation code onto the Black Fox full scope nuclear power plant simulator

  8. Systems and methods for modeling and analyzing networks

    Science.gov (United States)

    Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W

    2013-10-29

    The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.

  9. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Held, Isaac [Princeton Univ., NJ (United States); Balaji, V. [Princeton Univ., NJ (United States); Fueglistaler, Stephan [Princeton Univ., NJ (United States)

    2016-09-19

    We have constructed and analyzed a series of idealized models of tropical convection interacting with large-scale circulations, with 25-50km resolution and with 1-2km cloud resolving resolution to set the stage for rigorous tests of convection closure schemes in high resolution global climate models. Much of the focus has been on the climatology of tropical cyclogenesis in rotating systems and the related problem of the spontaneous aggregation of convection in non-rotating systems. The PI (Held) will be delivering the honorary Bjerknes lecture at the Fall 2016 AGU meeting in December on this work. We have also provided new analyses of long-standing issues related to the interaction between convection and the large-scale circulation: Kelvin waves in the upper troposphere and lower stratosphere, water vapor transport into the stratosphere, and upper tropospheric temperature trends. The results of these analyses help to improve our understanding of processes, and provide tests for future high resolution global modeling. Our final goal of testing new convections schemes in next-generation global atmospheric models at GFDL has been left for future work due to the complexity of the idealized model results meant as tests for these models uncovered in this work and to computational resource limitations. 11 papers have been published with support from this grant, 2 are in review, and another major summary paper is in preparation.

  10. Evolution of DNA sequencing.

    Science.gov (United States)

    Tipu, Hamid Nawaz; Shabbir, Ambreen

    2015-03-01

    Sanger and coworkers introduced DNA sequencing in 1970s for the first time. It principally relied on termination of growing nucleotide chain when a dideoxythymidine triphosphate (ddTTP) was inserted in it. Detection of terminated sequences was done radiographically on Polyacrylamide Gel Electrophoresis (PAGE). Improvements that have evolved over time in original Sanger sequencing include replacement of radiography with fluorescence, use of separate fluorescent markers for each nucleotide, use of capillary electrophoresis instead of polyacrylamide gel electrophoresis and then introduction of capillary array electrophoresis. However, this technique suffered from few inherent limitations like decreased sensitivity for low level mutant alleles, complexities in analyzing highly polymorphic regions like Major Histocompatibility Complex (MHC) and high DNA concentrations required. Several Next Generation Sequencing (NGS) technologies have been introduced by Roche, Illumina and other commercial manufacturers that tend to overcome Sanger sequencing limitations and have been reviewed. Introduction of NGS in clinical research and medical diagnostics is expected to change entire diagnostic approach. These include study of cancer variants, detection of minimal residual disease, exome sequencing, detection of Single Nucleotide Polymorphisms (SNPs) and their disease association, epigenetic regulation of gene expression and sequencing of microorganisms genome.

  11. New non detrimental DNA binding mutants of the Escherichia coli initiator protein DnaA

    DEFF Research Database (Denmark)

    Asklund, Marlene; Atlung, Tove

    2004-01-01

    The initiator protein DnaA has several unique DNA-binding features. It binds with high affinity as a monomer to the nonamer DnaA box. In the ATP form, DnaA binds cooperatively to the low-affinity ATP-DnaA boxes, and to single-stranded DNA in the 13mer region of the origin. We have carried out...... an extensive mutational analysis of the DNA-binding domain of the Escherichia coli DnaA protein using mutagenic PCR. We analyzed mutants exhibiting more or less partial activity by selecting for complementation of a dnaA(Ts) mutant strain at different expression levels of the new mutant proteins. The selection...... gave rise to 30 single amino acid substitutions and, including double substitutions, more than 100 mutants functional in initiation of chromosome replication were characterized. The analysis indicated that all regions of the DNA-binding domain are involved in DNA binding, but the most important amino...

  12. Nonlinear analysis for the electrostatic analyzers with lie algebraic methods

    International Nuclear Information System (INIS)

    Li Jinhai; Lv Jianqin

    2005-01-01

    With the Lie algebraic methods, the charged particle trajectories in electrostatic analyzers are analyzed and the third order solutions obtained. The authors briefly describe the Lie algebraic methods and the procedures of calculating the nonlinear orbits. The procedures are: first, set up the Hamiltonian; then expand the Hamiltonian into a sum of homogeneous polynomials of different degrees; next, calculate the Lie map associating to the Hamiltonian; finally, apply the Lie map on the particle initial coordinates in the phase space, and obtain the particle nonlinear trajectories of the first order, the second order, and the third order approximations respectively. Higher orders solutions could be obtained if needed. (author)

  13. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schuur, Edward [Northern Arizona Univ., Flagstaff, AZ (United States); Luo, Yiqi [Univ. of Oklahoma, Norman, OK (United States)

    2016-12-01

    This final grant report is a continuation of the final grant report submitted for DE-SC0006982 as the Principle Investigator (Schuur) relocated from the University of Florida to Northern Arizona University. This report summarizes the original project goals, as well as includes new project activities that were completed in the final period of the project.

  14. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss.

    Science.gov (United States)

    Milagro, Fermin I; Campión, Javier; Cordero, Paúl; Goyenechea, Estíbaliz; Gómez-Uriz, Ana M; Abete, Itziar; Zulet, Maria A; Martínez, J Alfredo

    2011-04-01

    Epigenetics could help to explain individual differences in weight loss after an energy-restriction intervention. Here, we identify novel potential epigenetic biomarkers of weight loss, comparing DNA methylation patterns of high and low responders to a hypocaloric diet. Twenty-five overweight or obese men participated in an 8-wk caloric restriction intervention. DNA was isolated from peripheral blood mononuclear cells and treated with bisulfite. The basal and endpoint epigenetic differences between high and low responders were analyzed by methylation microarray, which was also useful in comparing epigenetic changes due to the nutrition intervention. Subsequently, MALDI-TOF mass spectrometry was used to validate several relevant CpGs and the surrounding regions. DNA methylation levels in several CpGs located in the ATP10A and CD44 genes showed statistical baseline differences depending on the weight-loss outcome. At the treatment endpoint, DNA methylation levels of several CpGs on the WT1 promoter were statistically more methylated in the high than in the low responders. Finally, different CpG sites from WT1 and ATP10A were significantly modified as a result of the intervention. In summary, hypocaloric-diet-induced weight loss in humans could alter DNA methylation status of specific genes. Moreover, baseline DNA methylation patterns may be used as epigenetic markers that could help to predict weight loss.

  15. Bleach gel: a simple agarose gel for analyzing RNA quality.

    Science.gov (United States)

    Aranda, Patrick S; LaJoie, Dollie M; Jorcyk, Cheryl L

    2012-01-01

    RNA-based applications requiring high-quality, non-degraded RNA are a foundational element of many research studies. As such, it is paramount that the integrity of experimental RNA is validated prior to cDNA synthesis or other downstream applications. In the absence of expensive equipment such as microfluidic electrophoretic devices, and as an alternative to the costly and time-consuming standard formaldehyde gel, RNA quality can be quickly analyzed by adding small amounts of commercial bleach to TAE buffer-based agarose gels prior to electrophoresis. In the presence of low concentrations of bleach, the secondary structure of RNA is denatured and potential contaminating RNases are destroyed. Because of this, the 'bleach gel' is a functional approach that addresses the need for an inexpensive and safe way to evaluate RNA integrity and will improve the ability of researchers to rapidly analyze RNA quality. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Portable Programmable Multifunction Body Fluids Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Liquid Logic proposes to develop a very capable analyzer based on its digital microfluidic technology. Such an analyzer would be:  Capable of both...

  17. Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine.

    Science.gov (United States)

    Mpountoukas, Panagiotis; Pantazaki, Anastasia; Kostareli, Efterpi; Christodoulou, Pantelitsa; Kareli, Dimitra; Poliliou, Stamatia; Mourelatos, Costas; Lambropoulou, Vasso; Lialiaris, Theodore

    2010-10-01

    Food coloring agents, amaranth, erythrosine and tartrazine have been tested at 0.02-8mM in human peripheral blood cells in vitro, in order to investigate their genotoxic, cytotoxic and cytostatic potential. Amaranth at the highest concentration (8mM) demonstrates high genotoxicity, cytostaticity and cytotoxicity. The frequency of SCEs/cell was increased 1.7 times over the control level. Additionally, erythrosine at 8, 4 and 2mM shows a high cytotoxicity and cytostaticity. Finally, tartrazine seems to be toxic at 8 and 4mM. No signs of genotoxicity were observed. Reversely, tartrazine showed cytotoxicity at 1 and 2mM. Furthermore, spectroscopic titration studies for the interaction of these food additives with DNA showed that these dyes bind to calf thymus DNA and distinct isosbestic points are observed clearly suggesting binding of the dyes to DNA. Additionally DNA electrophoretic mobility experiments showed that these colorants are obviously capable for strong binding to linear dsDNA causing its degradation. PCR amplification of all DNA fragments (which previously were pre-treated with three different concentrations of the colorants, extracted from agarose gel after separation and then purified), seems to be attenuated with a manner dye concentration-dependent reflecting in a delayed electrophoretic mobility due to the possible binding of some molecules of the dyes. Evaluation of the data and curves were obtained after quantitative and qualitative analysis of the lanes of the gel by an analyzer computer program. Our results indicate that these food colorants had a toxic potential to human lymphocytes in vitro and it seems that they bind directly to DNA. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Image analysis for DNA sequencing

    International Nuclear Information System (INIS)

    Palaniappan, K.; Huang, T.S.

    1991-01-01

    This paper reports that there is a great deal of interest in automating the process of DNA (deoxyribonucleic acid) sequencing to support the analysis of genomic DNA such as the Human and Mouse Genome projects. In one class of gel-based sequencing protocols autoradiograph images are generated in the final step and usually require manual interpretation to reconstruct the DNA sequence represented by the image. The need to handle a large volume of sequence information necessitates automation of the manual autoradiograph reading step through image analysis in order to reduce the length of time required to obtain sequence data and reduce transcription errors. Various adaptive image enhancement, segmentation and alignment methods were applied to autoradiograph images. The methods are adaptive to the local characteristics of the image such as noise, background signal, or presence of edges. Once the two-dimensional data is converted to a set of aligned one-dimensional profiles waveform analysis is used to determine the location of each band which represents one nucleotide in the sequence. Different classification strategies including a rule-based approach are investigated to map the profile signals, augmented with the original two-dimensional image data as necessary, to textual DNA sequence information

  19. Final Focus Test Stand final report

    CERN Document Server

    Jeremie, A; Burrows, P

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line and especially at the Final Focus section. A dedicated Final Focus test stand has been used for this study and is comprised of several sub-parts. First there is the Stabilisation/Isolation system with sensors and actuators stabilizing down to sub-nanometre level. Then the Magnet itself needs to comply with very specific design constraints. In addition to the mechanical items, the beam can be stabilized acting on the trajectory directly and Beam-based controls have been developed and tested on different accelerator facilities.

  20. DNA Damage, DNA Repair, Aging, and Neurodegeneration

    Science.gov (United States)

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L.; Bohr, Vilhelm A.

    2015-01-01

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span. PMID:26385091

  1. Bicycle: a bioinformatics pipeline to analyze bisulfite sequencing data.

    Science.gov (United States)

    Graña, Osvaldo; López-Fernández, Hugo; Fdez-Riverola, Florentino; González Pisano, David; Glez-Peña, Daniel

    2018-04-15

    High-throughput sequencing of bisulfite-converted DNA is a technique used to measure DNA methylation levels. Although a considerable number of computational pipelines have been developed to analyze such data, none of them tackles all the peculiarities of the analysis together, revealing limitations that can force the user to manually perform additional steps needed for a complete processing of the data. This article presents bicycle, an integrated, flexible analysis pipeline for bisulfite sequencing data. Bicycle analyzes whole genome bisulfite sequencing data, targeted bisulfite sequencing data and hydroxymethylation data. To show how bicycle overtakes other available pipelines, we compared them on a defined number of features that are summarized in a table. We also tested bicycle with both simulated and real datasets, to show its level of performance, and compared it to different state-of-the-art methylation analysis pipelines. Bicycle is publicly available under GNU LGPL v3.0 license at http://www.sing-group.org/bicycle. Users can also download a customized Ubuntu LiveCD including bicycle and other bisulfite sequencing data pipelines compared here. In addition, a docker image with bicycle and its dependencies, which allows a straightforward use of bicycle in any platform (e.g. Linux, OS X or Windows), is also available. ograna@cnio.es or dgpena@uvigo.es. Supplementary data are available at Bioinformatics online.

  2. DNA methylation alterations in Alzheimer's disease.

    Science.gov (United States)

    Yokoyama, Amy S; Rutledge, John C; Medici, Valentina

    2017-05-01

    The observation that Alzheimer's disease (AD) patients with similar and even identical genetic backgrounds often present with heterogeneous pathologies has prompted the hypothesis that epigenetics may contribute to AD. While the study of epigenetics encompasses a variety of modifications including histone modifications and non-coding RNAs, much of the research on how epigenetics might impact AD pathology has been focused on DNA methylation. To this end, several studies have characterized DNA methylation alterations in various brain regions of individuals with AD, with conflicting results. This review examines the results of studies analyzing both global and gene-specific DNA methylation changes in AD and also assesses the results of studies analyzing DNA hydroxymethylation in patients with AD.

  3. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.

    Science.gov (United States)

    Agarwal, Nayan P; Matthies, Michael; Joffroy, Bastian; Schmidt, Thorsten L

    2018-03-27

    The programmability of DNA enables constructing nanostructures with almost any arbitrary shape, which can be decorated with many functional materials. Moreover, dynamic structures can be realized such as molecular motors and walkers. In this work, we have explored the possibility to synthesize the complementary sequences to single-stranded gap regions in the DNA origami scaffold cost effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. This reduced the number of staple strands needed to determine the shape and size of the final structure after gap filling. For this, several DNA polymerases and single-stranded binding (SSB) proteins were tested, with T4 DNA polymerase being the best fit. The structures could be folded in as little as 6 min, and the subsequent optimized gap-filling reaction was completed in less than 3 min. The introduction of flexible gap regions results in fully collapsed or partially bent structures due to entropic spring effects. Finally, we demonstrated structural transformations of such deformed wireframe DNA origami structures with DNA polymerases including the expansion of collapsed structures and the straightening of curved tubes. We anticipate that this approach will become a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified, or mechanically switched. Mechanical force generation and structural transitions will enable applications in structural DNA nanotechnology, plasmonics, or single-molecule biophysics.

  4. DNA Microarrays in Comparative Genomics and Transcriptomics

    DEFF Research Database (Denmark)

    Willenbrock, Hanni

    2007-01-01

    analysis, analysis of chromosomal aberrations and DNA sequence dependent gene expression. First, this thesis contains a description of how the gene expression profiles from children with acute lymphoblastic leukemia may be used to improve the diagnosis of these patients and potentially improve......During the past few years, innovations in the DNA sequencing technology has led to an explosion in available DNA sequence information. This has revolutionized biological research and promoted the development of high throughput analysis methods that can take advantage of the vast amount of sequence...... of each method’s ability to analyze DNA copy number data. Moreover, our study shows that analysis methods developed for cancer research may also successfully be applied to DNA copy number profiles from bacterial genomes. However, here the purpose is to characterize variations in the gene content...

  5. Enhanced base excision repair capacity in carotid atherosclerosis may protect nuclear DNA but not mitochondrial DNA

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; B. Dahl, Tuva; Skjelland, Mona

    2016-01-01

    Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER...... and accumulation of DNA base lesions in clinical atherosclerosis is scarce. Here, we evaluated the transcriptional profile of a wide spectrum of BER components as well as DNA damage accumulation in atherosclerotic and non-atherosclerotic arteries. BER gene expression levels were analyzed in 162 carotid plaques, 8...... genes in atherosclerosis may contribute to lesional nuclear DNA stability but appears insufficient to maintain mtDNA integrity, potentially influencing mitochondrial function in cells within the atherosclerotic lesion....

  6. Characterization of a Dairy Gyr herd with respect to its mitochondrial DNA (mt DNA origin

    Directory of Open Access Journals (Sweden)

    Anibal Eugênio Vercesi Filho

    2010-01-01

    Full Text Available The Zebu breeds were introduced in Brazil mainly in the last century by imports from the Indian subcontinent. When the Zebu cattle arrived, the national herd suffered a significative change by backcrossing the national cows of taurine origin with Zebu sires. These processes created a polymorphism in the mitochondrial DNA (mtDNA in the Zebu animals with are in a major part derived from backcrossing and sharing mtDNA of taurine origin. To verify the maternal origin of cows belonging to the Dairy Gyr herd of APTA, Mococa 60 females were analyzed and 33 presented mtDNA from Bos taurus origin and 27 presented mtDNA from Bos indicus origin. None of these animals presented patterns of both mtDNA origins, indicating absence of heteroplasmy for these mitochondrial genotypes.

  7. A robust method to analyze copy number alterations of less than 100 kb in single cells using oligonucleotide array CGH.

    Directory of Open Access Journals (Sweden)

    Birte Möhlendick

    Full Text Available Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH of single cells. The protocol is based on an established adapter-linker PCR (WGAM and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost- effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.

  8. Dynamic heterogeneity and DNA methylation in embryonic stem cells.

    KAUST Repository

    Singer, Zakary S

    2014-07-01

    Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.

  9. Digital PCR for direct quantification of viruses without DNA extraction

    OpenAIRE

    Pav?i?, Jernej; ?el, Jana; Milavec, Mojca

    2015-01-01

    DNA extraction before amplification is considered an essential step for quantification of viral DNA using real-time PCR (qPCR). However, this can directly affect the final measurements due to variable DNA yields and removal of inhibitors, which leads to increased inter-laboratory variability of qPCR measurements and reduced agreement on viral loads. Digital PCR (dPCR) might be an advantageous methodology for the measurement of virus concentrations, as it does not depend on any calibration mat...

  10. ex vivo DNA assembly

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2013-10-01

    Full Text Available Even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. Advances in cloning techniques have resulted in powerful in vitro and in vivo assembly of DNA. However, monetary and time costs have limited these approaches. Here, we report an ex vivo DNA assembly method that uses cellular lysates derived from a commonly used laboratory strain of Escherichia coli for joining double-stranded DNA with short end homologies embedded within inexpensive primers. This method concurrently shortens the time and decreases costs associated with current DNA assembly methods.

  11. Detection the human mitochondrial DNA 4977 bp deletion induced by 60Co γ-rays in vitro by nest-PCR

    International Nuclear Information System (INIS)

    Feng Jiangbing; Lu Xue; Chen Deqing; Liu Qingjie; Chen Xiaosui

    2004-01-01

    Objective: To establish a method for detecting the mitochondrial DNA 4977 bp deletion (mtDNA 4977) induced by different doses of ionizing radiation. Methods: A nest-PCR method was established with 3 primer pairs for detecting the human peripheral mtDNA 4977. The final PCR products were sequenced after purified and the sequence was BLASTed with the standard genome information of human mitochondrion. The mtDNA 4977 level induced by 0-5 Gy 60 Co γ-rays of 5 healthy individuals was analyzed with the established nest-PCR. Results: The mtDNA 4977 could be detected by the established nest-PCR method. The mtDNA 4977 was observed on samples after exposed to 1-5 Gy 60 Co γ-rays, but it was not observed before (0 Gy) exposure. Conclusion: The nest-PCR method established in this study could be used to detect the mtDNA 4977 induced by ionizing radiation. (authors)

  12. Aging and photo-aging DNA repair phenotype of skin cells-Evidence toward an effect of chronic sun-exposure

    Energy Technology Data Exchange (ETDEWEB)

    Prunier, Chloe; Masson-Genteuil, Gwenaeelle [Laboratoire Lesions des Acides Nucleiques, CEA, DSM, INAC, SCIB, UMR-E CEA/UJF-Grenoble 1, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9 (France); Ugolin, Nicolas [Laboratoire de Cancerologie Experimentale, CEA, DSV, IRCM, SREIT, BP6, Fontenay-aux-Roses Cedex F-92265 (France); Sarrazy, Fanny [Laboratoire Lesions des Acides Nucleiques, CEA, DSM, INAC, SCIB, UMR-E CEA/UJF-Grenoble 1, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9 (France); Sauvaigo, Sylvie, E-mail: sylvie.sauvaigo@cea.fr [Laboratoire Lesions des Acides Nucleiques, CEA, DSM, INAC, SCIB, UMR-E CEA/UJF-Grenoble 1, 17 Rue des Martyrs, F-38054 Grenoble Cedex 9 (France)

    2012-08-01

    Several studies have demonstrated the deleterious effect of aging on the capacity of cells to repair their DNA. However, current existing assays aimed at measuring DNA repair address only a specific repair step dedicated to the correction of a specific DNA lesion type. Consequently they provide no information regarding the repair pathways that handle other types of lesions. In addition to aging, consequences of photo-exposure on these repair processes remain elusive. In this study we evaluated the consequence of aging and of chronic and/or acute photo-exposure on DNA repair in human skin fibroblasts using a multiplexed approach, which provided detailed information on several repair pathways at the same time. The resulting data were analyzed with adapted statistics/bioinformatics tools. We showed that, irrespective of the repair pathway considered, excision/synthesis was less efficient in non-exposed cells from elderly compared to cells from young adults and that photo-exposure disrupted this very clear pattern. Moreover, it was evidenced that chronic sun-exposure induced changes in DNA repair properties. Finally, the identification of a specific signature at the level of the NER pathway in cells repeatedly exposed to sun revealed a cumulative effect of UVB exposure and chronic sun irradiation. The uses of bioinformatics tools in this study was essential to fully take advantage of the large sum of data obtained with our multiplexed DNA repair assay and unravel the effects of environmental exposure on DNA repair pathways.

  13. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    Science.gov (United States)

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  14. Chronic hepatitis B infection and HBV DNA-containing capsids: Modeling and analysis

    Science.gov (United States)

    Manna, Kalyan; Chakrabarty, Siddhartha P.

    2015-05-01

    We analyze the dynamics of chronic HBV infection taking into account both uninfected and infected hepatocytes along with the intracellular HBV DNA-containing capsids and the virions. While previous HBV models have included either the uninfected hepatocytes or the intracellular HBV DNA-containing capsids, our model accounts for both these two populations. We prove the conditions for local and global stability of both the uninfected and infected steady states in terms of the basic reproduction number. Further, we incorporate a time lag in the model to encompass the intracellular delay in the production of the infected hepatocytes and find that this delay does not affect the overall dynamics of the system. The results for the model and the delay model are finally numerically illustrated.

  15. Vet Centers. Final rule.

    Science.gov (United States)

    2016-03-02

    The Department of Veterans Affairs (VA) adopts as final an interim final rule that amends its medical regulation that governs Vet Center services. The National Defense Authorization Act for Fiscal Year 2013 (the 2013 Act) requires Vet Centers to provide readjustment counseling services to broader groups of veterans, members of the Armed Forces, including a member of a reserve component of the Armed Forces, and family members of such veterans and members. This final rule adopts as final the regulatory criteria to conform to the 2013 Act, to include new and revised definitions.

  16. Supramolecular gel electrophoresis of large DNA fragments.

    Science.gov (United States)

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Subcloning of DNA fragments.

    Science.gov (United States)

    Struhl, K

    2001-05-01

    The essence of recombinant DNA technology is the joining of two or more separate segments of DNA to generate a single DNA molecule that is capable of autonomous replication in a given host. The simplest constructions of hybrid DNA molecules involve the cloning of insert sequences into plasmid or bacteriophage cloning vectors. The insert sequences can derive from essentially any organism, and they may be isolated directly from the genome, from mRNA, or from previously cloned DNA segments (in which case, the procedure is termed subcloning). Alternatively, insert DNAs can be created directly by DNA synthesis. This unit provides protocols for the subcloning of DNA fragments and ligation of DNA fragments in gels.

  18. DNA tagged microparticles

    Science.gov (United States)

    Farquar, George Roy; Leif, Roald N; Wheeler, Elizabeth

    2015-05-05

    A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.

  19. DNA computing models

    CERN Document Server

    Ignatova, Zoya; Zimmermann, Karl-Heinz

    2008-01-01

    In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines.

  20. DNA Repair Systems

    Indian Academy of Sciences (India)

    exogenous damage). Endogenous damage ... of spontaneous DNA-damage due to endogenous factors. He es- timated that around 10,000 potentially mutagenic .... 3 –5 direction is defined as. 'upstream'. A single DNA strand is synthesized in a.

  1. RAPD analysis of alfalfa DNA mutation via N+ implantation

    International Nuclear Information System (INIS)

    Li Yufeng; Huang Qunce; Yu Zengliang; Liang Yunzhang

    2003-01-01

    Germination capacity of alfalfa seeds under low energy N + implantation manifests oscillations going down with dose strength. From analyzing alfalfa genome DNA under low energy N + implantation by RAPD (Random Amplified Polymorphous DNA), it is recommended that 30 polymorphic DNA fragments be amplified with 8 primers in total 100 primers, and fluorescence intensity of the identical DNA fragment amplified by RAPD is different between CK and treatments. Number of different polymorphic DNA fragments between treatment and CK via N + implantation manifests going up with dose strength

  2. 800,000 year old mammoth DNA, modern elephant DNA or PCR artefact?

    DEFF Research Database (Denmark)

    Binladen, Jonas; Gilbert, M Thomas P; Willerslev, Eske

    2007-01-01

    Poulakakis and colleagues (Poulakakis et al. 2006: Biol. Lett. 2, 451-454), report the recovery of 'authentic' mammoth DNA from an 800,000-year-old fragment of bone excavated on the island of Crete. In light of results from other ancient DNA studies that indicate how DNA survival is unlikely in s...... polymorphisms. Finally, we demonstrate using a simple BLAST search in GenBank that the claimed 'uniquely derived character state' for mammoths is in fact also found within modern elephants. Udgivelsesdato: 2007-Feb-22...

  3. Physical manipulation of single-molecule DNA using microbead and its application to analysis of DNA-protein interaction

    International Nuclear Information System (INIS)

    Kurita, Hirofumi; Yasuda, Hachiro; Takashima, Kazunori; Katsura, Shinji; Mizuno, Akira

    2009-01-01

    We carried out an individual DNA manipulation using an optical trapping for a microbead. This manipulation system is based on a fluorescent microscopy equipped with an IR laser. Both ends of linear DNA molecule were labeled with a biotin and a thiol group, respectively. Then the biotinylated end was attached to a microbead, and the other was immobilized on a thiol-linkable glass surface. We controlled the form of an individual DNA molecule by moving the focal point of IR laser, which trapped the microbead. In addition, we applied single-molecule approach to analyze DNA hydrolysis. We also used microchannel for single-molecule observation of DNA hydrolysis. The shortening of DNA in length caused by enzymatic hydrolysis was observed in real-time. The single-molecule DNA manipulation should contribute to elucidate detailed mechanisms of DNA-protein interactions

  4. Using expert systems to analyze ATE data

    Science.gov (United States)

    Harrington, Jim

    1994-01-01

    The proliferation of automatic test equipment (ATE) is resulting in the generation of large amounts of component data. Some of this component data is not accurate due to the presence of noise. Analyzing this data requires the use of new techniques. This paper describes the process of developing an expert system to analyze ATE data and provides an example rule in the CLIPS language for analyzing trip thresholds for high gain/high speed comparators.

  5. Electrical spectrum & network analyzers a practical approach

    CERN Document Server

    Helfrick, Albert D

    1991-01-01

    This book presents fundamentals and the latest techniques of electrical spectrum analysis. It focuses on instruments and techniques used on spectrum and network analysis, rather than theory. The book covers the use of spectrum analyzers, tracking generators, and network analyzers. Filled with practical examples, the book presents techniques that are widely used in signal processing and communications applications, yet are difficult to find in most literature.Key Features* Presents numerous practical examples, including actual spectrum analyzer circuits* Instruction on how to us

  6. ADAM: Analyzer for Dialectal Arabic Morphology

    Directory of Open Access Journals (Sweden)

    Wael Salloum

    2014-12-01

    Full Text Available While Modern Standard Arabic (MSA has many resources, Arabic Dialects, the primarily spoken local varieties of Arabic, are quite impoverished in this regard. In this article, we present ADAM (Analyzer for Dialectal Arabic Morphology. ADAM is a poor man’s solution to quickly develop morphological analyzers for dialectal Arabic. ADAM has roughly half the out-of-vocabulary rate of a state-of-the-art MSA analyzer and is comparable in its recall performance to an Egyptian dialectal morphological analyzer that took years and expensive resources to build.

  7. Circular Mitochondrial DNA: A Geant4-DNA User Application for Evaluating Radiation-induced Damage in Circular Mitochondrial DNA.

    Science.gov (United States)

    Tavakoli, Mohammad Bagher; Moradi, Habiballah; Khanahmad, Hossein; Hosseini, Mohsen

    2017-01-01

    The aim of this study was to develop a nucleotide geometrical model of the circular mitochondrial DNA (mt-DNA) structure using Geant4-DNA toolkit to predict the radiation-induced damages such as single-strand breaks (SSB), double-strand breaks (DSB), and some other physical parameters. Our model covers the organization of a circular human mt genetic system. The current model includes all 16,659 base pairs of human mt-DNA. This new mt-DNA model has been preliminarily tested in this work by determining SSB and DSB DNA damage yields and site-hit probabilities due to the impact of proton particles. The accuracy of the geometry was determined by three-dimensional visualization in various ring element numbers. The hit locations were determined with respect to a reference coordinate system, and the corresponding base pairs were stored in the ROOT output file. The coordinate determination according to the algorithm was consistent with the expected results. The output results contain the information about the energy transfers in the backbone region of the DNA double helix. The output file was analyzed by root analyzing tools. Estimation of SSBs and DSBs yielded similar results with the increment of incident particle linear energy transfer. In addition, these values seem to be consistent with the corresponding experimental determinations. This model can be used in numerical simulations of mt-DNA radiation interactions to perform realistic evaluations of DNA-free radical reactions. This work will be extended to supercoiled conformation in the near future.

  8. The relationship between mitochondrial DNA copy number and stallion sperm function.

    Science.gov (United States)

    Darr, Christa R; Moraes, Luis E; Connon, Richard E; Love, Charles C; Teague, Sheila; Varner, Dickson D; Meyers, Stuart A

    2017-05-01

    Mitochondrial DNA (mtDNA) copy number has been utilized as a measure of sperm quality in several species including mice, dogs, and humans, and has been suggested as a potential biomarker of fertility in stallion sperm. The results of the present study extend this recent discovery using sperm samples from American Quarter Horse stallions of varying age. By determining copy number of three mitochondrial genes, cytochrome b (CYTB), NADH dehydrogenase 1 (ND1) and NADH dehydrogenase 4 (ND4), instead of a single gene, we demonstrate an improved understanding of mtDNA fate in stallion sperm mitochondria following spermatogenesis. Sperm samples from 37 stallions ranging from 3 to 24 years old were collected at four breeding ranches in north and central Texas during the 2015 breeding season. Samples were analyzed for sperm motion characteristics, nuclear DNA denaturability and mtDNA copy number. Mitochondrial DNA content in individual sperm was determined by real-time qPCR and normalized with a single copy nuclear gene, Beta actin. Exploratory correlation analysis revealed that total motility was negatively correlated with CYTB copy number and sperm chromatin structure. Stallion age did not have a significant effect on copy number for any of the genes. Copy number differences existed between the three genes with CYTB having the greatest number of copies (20.6 ± 1.2 copies, range: 6.0 to 41.1) followed by ND4 (15.5 ± 0.8 copies, range: 6.7 to 27.8) and finally ND1 (12.0 ± 1.0 copies, range: 0.4 to 26.6) (P sperm mtDNA occurs during spermatogenesis and may be important for normal sperm function. Beta regression analysis suggested that for every unit increase in mtDNA copy number of CYTB, there was a 4% decrease in the odds of sperm movement (P = 0.001). Influential analysis suggested that results are robust and not highly influenced by data from individual stallions despite the low number of stallions sampled with low sperm motility. Further genome sequencing is

  9. Development of biometric DNA ink for authentication security.

    Science.gov (United States)

    Hashiyada, Masaki

    2004-10-01

    Among the various types of biometric personal identification systems, DNA provides the most reliable personal identification. It is intrinsically digital and unchangeable while the person is alive, and even after his/her death. Increasing the number of DNA loci examined can enhance the power of discrimination. This report describes the development of DNA ink, which contains synthetic DNA mixed with printing inks. Single-stranded DNA fragments encoding a personalized set of short tandem repeats (STR) were synthesized. The sequence was defined as follows. First, a decimal DNA personal identification (DNA-ID) was established based on the number of STRs in the locus. Next, this DNA-ID was encrypted using a binary, 160-bit algorithm, using a hashing function to protect privacy. Since this function is irreversible, no one can recover the original information from the encrypted code. Finally, the bit series generated above is transformed into base sequences, and double-stranded DNA fragments are amplified by the polymerase chain reaction (PCR) to protect against physical attacks. Synthesized DNA was detected successfully after samples printed in DNA ink were subjected to several resistance tests used to assess the stability of printing inks. Endurance test results showed that this DNA ink would be suitable for practical use as a printing ink and was resistant to 40 hours of ultraviolet exposure, performance commensurate with that of photogravure ink. Copyright 2004 Tohoku University Medical Press

  10. The future of human DNA vaccines

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-01-01

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including “epigenetics” and “omics” approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans PMID:22981627

  11. Programmable motion of DNA origami mechanisms.

    Science.gov (United States)

    Marras, Alexander E; Zhou, Lifeng; Su, Hai-Jun; Castro, Carlos E

    2015-01-20

    DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank-slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼ minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.

  12. Animal Mitochondrial DNA Replication

    Science.gov (United States)

    Ciesielski, Grzegorz L.; Oliveira, Marcos T.; Kaguni, Laurie S.

    2016-01-01

    Recent advances in the field of mitochondrial DNA (mtDNA) replication highlight the diversity of both the mechanisms utilized and the structural and functional organization of the proteins at mtDNA replication fork, despite the simplicity of the animal mtDNA genome. DNA polymerase γ, mtDNA helicase and mitochondrial single-stranded DNA-binding protein- the key replisome proteins, have evolved distinct structural features and biochemical properties. These appear to be correlated with mtDNA genomic features in different metazoan taxa and with their modes of DNA replication, although a substantial integrative research is warranted to establish firmly these links. To date, several modes of mtDNA replication have been described for animals: rolling circle, theta, strand-displacement, and RITOLS/bootlace. Resolution of a continuing controversy relevant to mtDNA replication in mammals/vertebrates will have a direct impact on the mechanistic interpretation of mtDNA-related human diseases. Here we review these subjects, integrating earlier and recent data to provide a perspective on the major challenges for future research. PMID:27241933

  13. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  14. Assessing the Utility of Soil DNA Extraction Kits for Increasing DNA Yields and Eliminating PCR Inhibitors from Buried Skeletal Remains.

    Science.gov (United States)

    Hebda, Lisa M; Foran, David R

    2015-09-01

    DNA identification of human remains is often necessary when decedents are skeletonized; however, poor DNA recovery and polymerase chain reaction (PCR) inhibition are frequently encountered, a situation exacerbated by burial. In this research, the utility of integrating soil DNA isolation kits into buried skeletal DNA analysis was evaluated and compared to a standard human DNA extraction kit and organic extraction. The soil kits successfully extracted skeletal DNA at quantities similar to standard methods, although the two kits tested, which differ mechanistically, were not equivalent. Further, the PCR inhibitors calcium and humic acid were effectively removed using the soil kits, whereas collagen was less so. Finally, concordant control region sequences were obtained from human skeletal remains using all four methods. Based on these comparisons, soil DNA isolation kits, which quickened the extraction process, proved to be a viable extraction technique for skeletal remains that resulted in positive identification of a decedent. © 2015 American Academy of Forensic Sciences.

  15. Self-assembling of calcium salt of the new DNA base 5-carboxylcytosine

    Energy Technology Data Exchange (ETDEWEB)

    Irrera, Simona [Department of Chemistry, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185 Rome (Italy); Department of Chemistry, University College London, 20 Grodon Street, WC1H0AJ London (United Kingdom); Ruiz-Hernandez, Sergio E. [School of Chemistry, Cardiff University Main Building, Park Place, CF103AT Cardiff (United Kingdom); Reggente, Melania [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Passeri, Daniele, E-mail: daniele.passeri@uniroma1.it [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Natali, Marco [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Gala, Fabrizio [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Department of Medical-Surgical, Techno-Biomedical Sciences and Translational Medicine of SAPIENZA University of Rome, Sant’Andrea Hospital, Rome (Italy); Zollo, Giuseppe [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Rossi, Marco [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Research Center for Nanotechnology applied to Engineering of SAPIENZA University of Rome (CNIS), Piazzale A. Moro 5, 00185 Rome (Italy); Portalone, Gustavo, E-mail: gustavo.portalone@uniroma1.it [Department of Chemistry, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185 Rome (Italy)

    2017-06-15

    Highlights: • Ca salt of 5-carboxylcytosine has been deposited on HOPG substrate. • Molecules self-assembled in monolayers and filaments. • Height of the features were measured by atomic force microscopy. • Ab-initio calculations confirmed the AFM results. - Abstract: Supramolecular architectures involving DNA bases can have a strong impact in several fields such as nanomedicine and nanodevice manufacturing. To date, in addition to the four canonical nucleobases (adenine, thymine, guanine and cytosine), four other forms of cytosine modified at the 5 position have been identified in DNA. Among these four new cytosine derivatives, 5-carboxylcytosine has been recently discovered in mammalian stem cell DNA, and proposed as the final product of the oxidative epigenetic demethylation pathway on the 5 position of cytosine. In this work, a calcium salt of 5-carboxylcytosine has been synthesized and deposited on graphite surface, where it forms self-assembled features as long range monolayers and up to one micron long filaments. These structures have been analyzed in details combining different theoretical and experimental approaches: X-ray single-crystal diffraction data were used to simulate the molecule-graphite interaction, first using molecular dynamics and then refining the results using density functional theory (DFT); finally, data obtained with DFT were used to rationalize atomic force microscopy (AFM) results.

  16. Self-assembling of calcium salt of the new DNA base 5-carboxylcytosine

    Science.gov (United States)

    Irrera, Simona; Ruiz-Hernandez, Sergio E.; Reggente, Melania; Passeri, Daniele; Natali, Marco; Gala, Fabrizio; Zollo, Giuseppe; Rossi, Marco; Portalone, Gustavo

    2017-06-01

    Supramolecular architectures involving DNA bases can have a strong impact in several fields such as nanomedicine and nanodevice manufacturing. To date, in addition to the four canonical nucleobases (adenine, thymine, guanine and cytosine), four other forms of cytosine modified at the 5 position have been identified in DNA. Among these four new cytosine derivatives, 5-carboxylcytosine has been recently discovered in mammalian stem cell DNA, and proposed as the final product of the oxidative epigenetic demethylation pathway on the 5 position of cytosine. In this work, a calcium salt of 5-carboxylcytosine has been synthesized and deposited on graphite surface, where it forms self-assembled features as long range monolayers and up to one micron long filaments. These structures have been analyzed in details combining different theoretical and experimental approaches: X-ray single-crystal diffraction data were used to simulate the molecule-graphite interaction, first using molecular dynamics and then refining the results using density functional theory (DFT); finally, data obtained with DFT were used to rationalize atomic force microscopy (AFM) results.

  17. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, Alan H. [Fusion Theory and Computation Inc., Kingston, WA (United States)

    2018-02-02

    Final technical report on DE-SC0016106. This is the final technical report for a portion of the multi-institutional CEMM project. This report is centered around 3 publications and a seminar presentation, which have been submitted to E-Link.

  18. DNA extraction in Echinococcus granulosus and Taenia spp. eggs in dogs stool samples applying thermal shock.

    Science.gov (United States)

    Hidalgo, Alejandro; Melo, Angélica; Romero, Fernando; Hidalgo, Víctor; Villanueva, José; Fonseca-Salamanca, Flery

    2018-03-01

    finally yielded PCR amplifications in 100%. It was concluded that thermal shock facilitates the DNA extraction for molecular analysis in taeniid eggs. The technique is effective extracting DNA even from a single egg and also to analyze natural infections samples with a relatively simple implementation. Published by Elsevier Inc.

  19. Analyzing metabolomics-based challenge test

    NARCIS (Netherlands)

    Vis, D.J.; Westerhuis, J.A.; Jacobs, D.M.; van Duynhoven, J.P.M.; Wopereis, S.; van Ommen, B.; Hendriks, M.M.W.B.; Smilde, A.K.

    2015-01-01

    Challenge tests are used to assess the resilience of human beings to perturbations by analyzing responses to detect functional abnormalities. Well known examples are allergy tests and glucose tolerance tests. Increasingly, metabolomics analysis of blood or serum samples is used to analyze the

  20. Novel DNA damage checkpoint in mitosis: Mitotic DNA damage induces re-replication without cell division in various cancer cells.

    Science.gov (United States)

    Hyun, Sun-Yi; Rosen, Eliot M; Jang, Young-Joo

    2012-07-06

    DNA damage induces multiple checkpoint pathways to arrest cell cycle progression until damage is repaired. In our previous reports, when DNA damage occurred in prometaphase, cells were accumulated in 4 N-DNA G1 phase, and mitosis-specific kinases were inactivated in dependent on ATM/Chk1 after a short incubation for repair. We investigated whether or not mitotic DNA damage causes cells to skip-over late mitotic periods under prolonged incubation in a time-lapse study. 4 N-DNA-damaged cells re-replicated without cell division and accumulated in 8 N-DNA content, and the activities of apoptotic factors were increased. The inhibition of DNA replication reduced the 8 N-DNA cell population dramatically. Induction of replication without cell division was not observed upon depletion of Chk1 or ATM. Finally, mitotic DNA damage induces mitotic slippage and that cells enter G1 phase with 4 N-DNA content and then DNA replication is occurred to 8 N-DNA content before completion of mitosis in the ATM/Chk1-dependent manner, followed by caspase-dependent apoptosis during long-term repair. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Lipopolyamine-mediated single nanoparticle formation of calf thymus DNA analyzed by fluorescence correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Adjimatera, N.; Kral, Teresa; Hof, Martin; Blagbrough, I. S.

    2006-01-01

    Roč. 23, č. 7 (2006), s. 1564-1573 ISSN 0724-8741 R&D Projects: GA AV ČR IAA400400621; GA ČR GA203/05/2308 Institutional research plan: CEZ:AV0Z40400503 Keywords : N1-cholesteryl spermine carbamate * N4, N9-dioleoyl spermine * fluorescence correlation spectroscopy * lipopolyamines Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.848, year: 2006

  2. The karyotype of the Iberian imperial eagle (Aquila adalberti) analyzed by classical and DNA replication banding.

    Science.gov (United States)

    Padilla, J A; Martinez-Trancón, M; Rabasco, A; Fernández-García, J L

    1999-01-01

    We report here for the first time the karyotype of the Iberian imperial eagle (Aquila adalberti). All eagles examined had a diploid number of 82 chromosomes and a greater number of microchromosomes (12 pairs) than has been found in all other species of the Accipitridae family. This karyotypic evidence corroborates the recent separation of A. adalberti from A. heliaca on the basis of molecular data. RB-FPG banding induced a specific banding pattern that allowed us to identify homologous chromosome pairs and revealed features about late and early replicating regions. Several chromosome banding techniques (C-, CMA3-, and restriction endonuclease banding and silver staining) were used to characterize the karyotype more accurately. Two GC-rich, late-replicating heterochromatin regions were found in the W chromosome. These regions are AluI resistant and can be used for sex determination in this species. All microchromosomes were heterochromatic, GC rich, and late replicating. Silver staining revealed active nucleolus organizing regions on a pair of microchromosomes that were entirely heterochromatic and stained intensely after CMA3-banding. Different chromosome rearrangements are discussed in order to establish the phylogenetic relationship between A. adalberti and its most closely related species, A. heliaca.

  3. DNA: Structure and function

    DEFF Research Database (Denmark)

    Sinden, Richard R.; E. Pearson, Christopher; N. Potaman, Vladimir

    1998-01-01

    This chapter discusses the structure and function of DNA. DNA occupies a critical role in cells, because it is the source of all intrinsic genetic information. Chemically, DNA is a very stable molecule, a characteristic important for a macromolecule that may have to persist in an intact form...... for a long period of time before its information is accessed by the cell. Although DNA plays a critical role as an informational storage molecule, it is by no means as unexciting as a computer tape or disk drive. The structure of the DNA described by Watson and Crick in 1953 is a right handed helix of two...

  4. Fast phylogenetic DNA barcoding

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Willerslev, Eske

    2008-01-01

    We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences using constrained neighbour joining and non-parametric bootstrapping. We show that this method performs as well as the more computationally intensive full Bayesian approach in an analysis of 500 insect...... DNA sequences obtained from GenBank. We also analyse a previously published dataset of environmental DNA sequences from soil from New Zealand and Siberia, and use these data to illustrate the fact that statistical approaches to the DNA assignment problem allow for more appropriate criteria...... for determining the taxonomic level at which a particular DNA sequence can be assigned....

  5. DNA Sequencing apparatus

    Science.gov (United States)

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  6. Influence of LET on repair of DNA damages in Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Tanaka, A.; Kikuchi, M.; Shimizu, T.; Watanabe, H. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Cao, J.P.; Taucher-Scholz, G.

    1997-03-01

    Inactivation caused by heavy ions was studied in dry cells of radioresistant bacterium Deinococcus radiodurans. All survival curves were characterized by a large shoulder of the curves. No final slopes of the exponential part of survival curves for heavy ion irradiation were steeper than that for 2.0 MeV electron irradiation. The plots of RBE versus LET showed no obvious peaks, suggesting that this bacterium can repair not only DNA double strand breaks (DSBs) but also clustered damage in DNA which may be induced by heavy ions. The genomic DNA of D. radiodurans was cleaved into large fragments with restriction enzyme Not I after post-irradiation incubation and the fragments were separated using pulsed-field gel electrophoresis (PFGE). DSBs induction and rejoining process were analyzed by detection of the reappearance of ladder pattern of DNA fragments. The required repair time after heavy ions irradiation was longer than the repair time for electrons at the same dose of irradiation, however, the rate of repair enzyme induction was almost similar to each other between electrons and heavy ions, suggesting that the same repair system is likely to be used after both low and high LET irradiations. (author)

  7. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis

    Science.gov (United States)

    Lucena-Aguilar, Gema; Sánchez-López, Ana María; Barberán-Aceituno, Cristina; Carrillo-Ávila, José Antonio; López-Guerrero, José Antonio

    2016-01-01

    High-quality human DNA samples and associated information of individuals are necessary for biomedical research. Biobanks act as a support infrastructure for the scientific community by providing a large number of high-quality biological samples for specific downstream applications. For this purpose, biobank methods for sample preparation must ensure the usefulness and long-term functionality of the products obtained. Quality indicators are the tool to measure these parameters, the purity and integrity determination being those specifically used for DNA. This study analyzes the quality indicators in DNA samples derived from 118 frozen human tissues in optimal cutting temperature (OCT) reactive, 68 formalin-fixed paraffin-embedded (FFPE) tissues, 119 frozen blood samples, and 26 saliva samples. The results obtained for DNA quality are discussed in association with the usefulness for downstream applications and availability of the DNA source in the target study. In brief, if any material is valid, blood is the most approachable option of prospective collection of samples providing high-quality DNA. However, if diseased tissue is a requisite or samples are available, the recommended source of DNA would be frozen tissue. These conclusions will determine the best source of DNA, according to the planned downstream application. Furthermore our results support the conclusion that a complete procedure of DNA quantification and qualification is necessary to guarantee the appropriate management of the samples, avoiding low confidence results, high costs, and a waste of samples. PMID:27158753

  8. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis.

    Science.gov (United States)

    Lucena-Aguilar, Gema; Sánchez-López, Ana María; Barberán-Aceituno, Cristina; Carrillo-Ávila, José Antonio; López-Guerrero, José Antonio; Aguilar-Quesada, Rocío

    2016-08-01

    High-quality human DNA samples and associated information of individuals are necessary for biomedical research. Biobanks act as a support infrastructure for the scientific community by providing a large number of high-quality biological samples for specific downstream applications. For this purpose, biobank methods for sample preparation must ensure the usefulness and long-term functionality of the products obtained. Quality indicators are the tool to measure these parameters, the purity and integrity determination being those specifically used for DNA. This study analyzes the quality indicators in DNA samples derived from 118 frozen human tissues in optimal cutting temperature (OCT) reactive, 68 formalin-fixed paraffin-embedded (FFPE) tissues, 119 frozen blood samples, and 26 saliva samples. The results obtained for DNA quality are discussed in association with the usefulness for downstream applications and availability of the DNA source in the target study. In brief, if any material is valid, blood is the most approachable option of prospective collection of samples providing high-quality DNA. However, if diseased tissue is a requisite or samples are available, the recommended source of DNA would be frozen tissue. These conclusions will determine the best source of DNA, according to the planned downstream application. Furthermore our results support the conclusion that a complete procedure of DNA quantification and qualification is necessary to guarantee the appropriate management of the samples, avoiding low confidence results, high costs, and a waste of samples.

  9. DNA fragmentation in spermatozoa

    DEFF Research Database (Denmark)

    Rex, A S; Aagaard, J.; Fedder, J

    2017-01-01

    Sperm DNA Fragmentation has been extensively studied for more than a decade. In the 1940s the uniqueness of the spermatozoa protein complex which stabilizes the DNA was discovered. In the fifties and sixties, the association between unstable chromatin structure and subfertility was investigated....... In the seventies, the impact of induced DNA damage was investigated. In the 1980s the concept of sperm DNA fragmentation as related to infertility was introduced as well as the first DNA fragmentation test: the Sperm Chromatin Structure Assay (SCSA). The terminal deoxynucleotidyl transferase nick end labelling...... (TUNEL) test followed by others was introduced in the nineties. The association between DNA fragmentation in spermatozoa and pregnancy loss has been extensively investigated spurring the need for a therapeutic tool for these patients. This gave rise to an increased interest in the aetiology of DNA damage...

  10. Time-delay analyzer with continuous discretization

    International Nuclear Information System (INIS)

    Bayatyan, G.L.; Darbinyan, K.T.; Mkrtchyan, K.K.; Stepanyan, S.S.

    1988-01-01

    A time-delay analyzer is described which when triggered by a start pulse of adjustable duration performs continuous discretization of the analyzed signal within nearly 22 ns time intervals, the recording in a memory unit with following slow read-out of the information to the computer and its processing. The time-delay analyzer consists of four CAMAC-VECTOR systems of unit width. With its help one can separate comparatively short, small-amplitude rare signals against the background of quasistationary noise processes. 4 refs.; 3 figs

  11. Systems Analyze Water Quality in Real Time

    Science.gov (United States)

    2010-01-01

    A water analyzer developed under Small Business Innovation Research (SBIR) contracts with Kennedy Space Center now monitors treatment processes at water and wastewater facilities around the world. Originally designed to provide real-time detection of nutrient levels in hydroponic solutions for growing plants in space, the ChemScan analyzer, produced by ASA Analytics Inc., of Waukesha, Wisconsin, utilizes spectrometry and chemometric algorithms to automatically analyze multiple parameters in the water treatment process with little need for maintenance, calibration, or operator intervention. The company has experienced a compound annual growth rate of 40 percent over its 15-year history as a direct result of the technology's success.

  12. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair

    Science.gov (United States)

    Nimonkar, Amitabh V.; Özsoy, A. Zeynep; Genschel, Jochen; Modrich, Paul; Kowalczykowski, Stephen C.

    2008-01-01

    The error-free repair of double-stranded DNA breaks by homologous recombination requires processing of broken ends. These processed ends are substrates for assembly of DNA strand exchange proteins that mediate DNA strand invasion. Here, we establish that human BLM helicase, a member of the RecQ family, stimulates the nucleolytic activity of human exonuclease 1 (hExo1), a 5′→3′ double-stranded DNA exonuclease. The stimulation is specific because other RecQ homologs fail to stimulate hExo1. Stimulation of DNA resection by hExo1 is independent of BLM helicase activity and is, instead, mediated by an interaction between the 2 proteins. Finally, we show that DNA ends resected by hExo1 and BLM are used by human Rad51, but not its yeast or bacterial counterparts, to promote homologous DNA pairing. This in vitro system recapitulates initial steps of homologous recombination and provides biochemical evidence for a role of BLM and Exo1 in the initiation of recombinational DNA repair. PMID:18971343

  13. Direct nanomaterial-DNA contact effects on DNA and mutation induction.

    Science.gov (United States)

    Thongkumkoon, P; Sangwijit, K; Chaiwong, C; Thongtem, S; Singjai, P; Yu, L D

    2014-04-07

    The toxicity of nanomaterials has been well known, but mechanisms involved have been little known. This study was aimed at looking at direct interaction between nanomaterials and naked DNA for some fundamental understanding. Two different types of nanomaterials, carbon nanotubes (CNTs) and tungsten trioxide (WO₃) nanoplates, were simply mixed with naked DNA plasmid, respectively, in two different contact modes, dry or wet (in solution), for varied time periods. DNA topological forms were analyzed for changes using gel electrophoresis and fluoro-spectrometry. The nanomaterial-contacted DNA was transferred into bacteria Escherichia coli (E. coli) cells for mutation observation. Certain types and degrees of DNA damage were observed, such as single strand break and double strand break, and bacterial mutation was confirmed. The DNA damage increased with the contacting time in an exponential manner and increased more rapidly in the initial stage for the wet contact. The nanomaterials-contacted DNA transferred bacteria had about less than 10% survival but almost 100% mutation for the surviving cells. The CNTs were more offensive than the metal oxide nanomaterials. The mutation spectrum from the DNA sequencing analysis showed that DNA point mutation was dominated by transversion, which was dominated by guanine changes in the wet contact condition while by cytosine changes in the dry contact condition. The point mutation occurrence in the wet contact was more than in the dry contact, confirming the wet contact more active and thus dangerous than dry contact. This experiment, although as a model study, revealed that direct simple contacts between nanomaterials and DNA could cause DNA changes and thus induce mutations which might potentially lead to cancers, diseases and genetic changes. This could be a mechanism for nanomaterial genotoxicity to the cells and also provided a caution to applications in using nanomaterials for DNA delivery. Copyright © 2014 Elsevier Ireland

  14. DNA vaccines: safety aspect assessment and regulation.

    Science.gov (United States)

    Medjitna, T D E; Stadler, C; Bruckner, L; Griot, C; Ottiger, H P

    2006-01-01

    For licensing purposes, besides the immunogenic aspects, deoxyribonucleic acid (DNA) vaccines present safety considerations that must be critically assessed during preclinical or/and clinical safety studies. The major concerns with regard to safety are integration of the plasmid DNA into the host genome, adverse immunopathological effects, the formation of anti-DNA antibodies resulting in auto-immune disease and the use of novel molecular adjuvants. Moreover, for veterinary vaccines intended to be used in husbandry animals, food safety aspects will become an important issue. All new vaccine candidates should therefore be thoroughly tested in target animals, keeping in mind that for food producing animals, the products will be consumed. Finally, a further safety aspect of interest concerns the possible spread of genetic material to the environment, by the potential transformation of the environmental microflora with only a few copies of complete or fragmented plasmid. These are issues that need to be considered in the final scientific decisions underpinning the registration of vaccines. Thus, to establish criteria for guidance and regulations for industry and licensing authorities, a project has been initiated to assess such risks of plasmid DNA vaccinations. Major emphasis will be placed on aspects such as the biodistribution of plasmid in vaccinated animals. This paper is intended as a contribution to the debate on the use of biotechnology in the future and should facilitate further discussions on the various safety aspects of DNA-based immunisations.

  15. An Automated Analyzer System to Strengthen Teaching and Research Infrastructure at West Virginia State University

    Science.gov (United States)

    2015-08-18

    Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: An Automated Analyzer System to Strengthen Teaching and Research...journals: Number of Papers published in non peer-reviewed journals: Final Report: An Automated Analyzer System to Strengthen Teaching and Research...students are using the equipment for the directed student research to fulfill their requirements for honors program in the Department of Biology

  16. Low Gravity Drug Stability Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this proposed program through Phase III is to build a space-worthy Drug Stability Analyzer that can determine the extent of drug degradation. It will be...

  17. On-Demand Urine Analyzer, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this program (through Phase III) is to develop an analyzer that can be integrated into International Space Station (ISS) toilets to measure key...

  18. Low Gravity Drug Stability Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this proposed program (through Phase III) is to build a space-worthy Drug Stability Analyzer that can determine the extent of drug degradation....

  19. Analyzing the economic impacts of transportation projects.

    Science.gov (United States)

    2013-09-01

    The main goal of the study is to explore methods, approaches and : analytical software tools for analyzing economic activity that results from largescale : transportation investments in Connecticut. The primary conclusion is that the : transportation...

  20. Low Gravity Drug Stability Analyzer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of this proposed program (through Phase III) is to build a space-worthy Drug Stability Analyzer that can determine the extent of drug degradation....

  1. Guide to analyzing investment options using TWIGS.

    Science.gov (United States)

    Charles R Blinn; Dietmar W. Rose; Monique L. Belli

    1988-01-01

    Describes methods for analyzing economic return of simulated stand management alternatives in TWIGS. Defines and discusses net present value, equivalent annual income, soil expectation value, and real vs. nominal analyses. Discusses risk and sensitivity analysis when comparing alternatives.

  2. Ultrasensitive Atmospheric Analyzer for Miniature UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR Phase I effort, Los Gatos Research (LGR) proposes to develop a highly-accurate, lightweight, low-power gas analyzer for quantification of water vapor...

  3. Analyzing Protein Dynamics Using Dimensionality Reduction

    OpenAIRE

    Eryol, Atahan

    2015-01-01

    This thesis investigates dimensionality reduction for analyzing the dynamics ofprotein simulations, particularly disordered proteins which do not fold into a xedshape but are thought to perform their functions through their movements. Ratherthan analyze the movement of the proteins in 3D space, we use dimensionalityreduction to project the molecular structure of the proteins into a target space inwhich each structure is represented as a point. All that is needed to do this arethe pairwise dis...

  4. Digital dynamic amplitude-frequency spectra analyzer

    International Nuclear Information System (INIS)

    Kalinnikov, V.A.; )

    2006-01-01

    The spectra analyzer is intended for the dynamic spectral analysis of signals physical installations and noise filtering. The recurrence Fourier transformation algorithm is used in the digital dynamic analyzer. It is realized on the basis of the fast logic FPGA matrix and the special signal ADSP microprocessor. The discretization frequency is 2 kHz-10 MHz. The number of calculated spectral coefficients is not less 512. The functional fast-action is 20 ns [ru

  5. Two-dimensional strandness-dependent electrophoresis: a method to characterize single-stranded DNA, double-stranded DNA, and RNA-DNA hybrids in complex samples.

    Science.gov (United States)

    Gunnarsson, Gudmundur H; Gudmundsson, Bjarki; Thormar, Hans G; Alfredsson, Arni; Jonsson, Jon J

    2006-03-01

    We describe two-dimensional strandness-dependent electrophoresis (2D-SDE) for quantification and length distribution analysis of single-stranded (ss) DNA fragments, double-stranded (ds) DNA fragments, RNA-DNA hybrids, and nicked DNA fragments in complex samples. In the first dimension nucleic acid molecules are separated based on strandness and length in the presence of 7 M urea. After the first-dimension electrophoresis all nucleic acid fragments are heat denatured in the gel. During the second-dimension electrophoresis all nucleic acid fragments are single-stranded and migrate according to length. 2D-SDE takes about 90 min and requires only basic skills and equipment. We show that 2D-SDE has many applications in analyzing complex nucleic acid samples including (1) estimation of renaturation efficiency and kinetics, (2) monitoring cDNA synthesis, (3) detection of nicked DNA fragments, and (4) estimation of quality and in vitro damage of nucleic acid samples. Results from 2D-SDE should be useful to validate techniques such as complex polymerase chain reaction, subtractive hybridization, cDNA synthesis, cDNA normalization, and microarray analysis. 2D-SDE could also be used, e.g., to characterize biological nucleic acid samples. Information obtained with 2D-SDE cannot be readily obtained with other methods. 2D-SDE can be used for preparative isolation of ssDNA fragments, dsDNA fragments, and RNA-DNA hybrids.

  6. Visual characterization and quantitative measurement of artemisinin-induced DNA breakage

    Energy Technology Data Exchange (ETDEWEB)

    Cai Huaihong [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Yang Peihui [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: typh@jnu.edu.cn; Chen Jianan [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Liang Zhihong [Experiment and Technology Center, Jinan University, Guangzhou 510632 (China); Chen Qiongyu [Institute of Genetic Engineering, Jinan University, Guangzhou 510632 (China); Cai Jiye [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: tjycai@jnu.edu.cn

    2009-05-01

    DNA conformational change and breakage induced by artemisinin, a traditional Chinese herbal medicine, have been visually characterized and quantitatively measured by the multiple tools of electrochemistry, UV-vis absorption spectroscopy, atomic force microscopy (AFM), and DNA electrophoresis. Electrochemical and spectroscopic results confirm that artemisinin can intercalate into DNA double helix, which causes DNA conformational changes. AFM imaging vividly demonstrates uneven DNA strand breaking induced by QHS interaction. To assess these DNA breakages, quantitative analysis of the extent of DNA breakage has been performed by analyzing AFM images. Basing on the statistical analysis, the occurrence of DNA breaks is found to depend on the concentration of artemisinin. DNA electrophoresis further validates that the intact DNA molecules are unwound due to the breakages occur at the single strands. A reliable scheme is proposed to explain the process of artemisinin-induced DNA cleavage. These results can provide further information for better understanding the anticancer activity of artemisinin.

  7. Mechanosensing of DNA bending in a single specific protein-DNA complex

    Science.gov (United States)

    Le, Shimin; Chen, Hu; Cong, Peiwen; Lin, Jie; Dröge, Peter; Yan, Jie

    2013-12-01

    Many crucial biological processes are regulated by mechanical stimuli. Here, we report new findings that pico-Newton forces can drastically affect the stability of the site-specific DNA binding of a single transcription factor, the E. coli integration host factor (IHF), by stretching a short ~150 nm DNA containing a single IHF binding site. Dynamic binding and unbinding of single IHF were recorded and analyzed for the force-dependent stability of the IHF-DNA complex. Our results demonstrate that the IHF-DNA interaction is fine tuned by force in different salt concentration and temperature over physiological ranges, indicating that, besides other physiological factors, force may play equally important role in transcription regulation. These findings have broad implications with regard to general mechanosensitivity of site-specific DNA bending proteins.

  8. Transacsys PLC - Final Results

    CERN Multimedia

    2002-01-01

    Final results from Transacsys PLC. A subsidary of this company was set up to develop the CERN EDH system into a commercial product but incurred too much financial loss so the project was cancelled (1/2 page).

  9. Final focus nomenclature

    International Nuclear Information System (INIS)

    Erickson, R.

    1986-01-01

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number

  10. Final focus test beam

    International Nuclear Information System (INIS)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration

  11. Perforated monolayers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Regen. Steven L.

    2000-06-01

    This STI is a final report for a DOE-supported program, ''Perforated Monolayers,'' which focused on the fabrication of ultrathin membranes for gas separations based on Langmuir-Blodgett chemistry.

  12. WMO Marine Final Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Final reports of the World Meteorological Organization (WMO) Commission for Marine Meteorology, Commission for Synoptic Meteorology, and Commission for Basic...

  13. Final focus nomenclature

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R.

    1986-08-08

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number. (LEW)

  14. Using Pulsed-Field Gel Electrophoresis to AnalyzeSchizosaccharomyces pombeChromosomes and Chromosomal Elements.

    Science.gov (United States)

    Pai, Chen-Chun; Walker, Carol; Humphrey, Timothy C

    2018-04-02

    Pulsed field gel electrophoresis (PFGE) uses alternatively oriented pulsed electrical fields to separate large DNA molecules. Here, we describe PFGE protocols and conditions for separating and visualizing chromosomes between 0.5 and 6 Mb (optimal for analyzing the endogenous fission yeast chromosomes of 5.7, 4.6, and 3.5 Mb), and for shorter chromosomal elements of between 50 and 600 kb, such as the 530 kb Ch 16 minichromosome. In addition to determining chromosome size, this technique has a wide range of applications, including determining whether DNA replication or repair is complete, defining the molecular karyotype of cells, analyzing chromosomal rearrangements, assigning genes or constructs to particular chromosomes, and isolating DNA from specific chromosomes. © 2018 Cold Spring Harbor Laboratory Press.

  15. Detection of Transgenes on DNA Fibers.

    Science.gov (United States)

    Shibata, Fukashi

    2016-01-01

    Fluorescence in situ hybridization (FISH) was developed for detecting specific DNA sequences directly on mitotic or meiotic chromosomes. However, the resolution of FISH on chromosomes is limited by condensed structure of chromatin, and it is difficult to differentiate two target sites close to each other. To overcome this issue, the objects was changed to stretched DNA fibers, and this fiber FISH technique has now been used for revealing genome structure at molecular level. Hybridization and detection procedures of fiber FISH are common with FISH on chromosomes. Therefore, application of fiber FISH is not difficult for the researchers of some experience in ordinary FISH. DNA fibers can be released from nuclei fixed on glass slides using a detergent. The DNA fibers were shred in FISH procedure, and the resultant fragments became small bead-like shape. This makes FISH signals on DNA fibers a series of dots. The size of DNA in the dot is estimated to be approximately 1 kb, it corresponding to the resolution of fiber FISH. This makes it possible to analyze structures of transgenes on DNA fibers in detail.

  16. Optical biosensing strategies for DNA methylation analysis.

    Science.gov (United States)

    Nazmul Islam, Md; Yadav, Sharda; Hakimul Haque, Md; Munaz, Ahmed; Islam, Farhadul; Al Hossain, Md Shahriar; Gopalan, Vinod; Lam, Alfred K; Nguyen, Nam-Trung; Shiddiky, Muhammad J A

    2017-06-15

    DNA methylation is an epigenetic modification of DNA, where a methyl group is added at the fifth carbon of the cytosine base to form 5 methyl cytosine (5mC) without altering the DNA sequences. It plays important roles in regulating many cellular processes by modulating key genes expression. Alteration in DNA methylation patterns becomes particularly important in the aetiology of different diseases including cancers. Abnormal methylation pattern could contribute to the pathogenesis of cancer either by silencing key tumor suppressor genes or by activating oncogenes. Thus, DNA methylation biosensing can help in the better understanding of cancer prognosis and diagnosis and aid the development of therapies. Over the last few decades, a plethora of optical detection techniques have been developed for analyzing DNA methylation using fluorescence, Raman spectroscopy, surface plasmon resonance (SPR), electrochemiluminescence and colorimetric readouts. This paper aims to comprehensively review the optical strategies for DNA methylation detection. We also present an overview of the remaining challenges of optical strategies that still need to be focused along with the lesson learnt while working with these techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. DNA fragmentation by charged particle tracks

    Science.gov (United States)

    Stenerlöw, B.; Höglund, E.; Carlsson, J.

    High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons ( 60Co) or 125 keV/μm nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome.

  18. Nuclear DNA sequences from late Pleistocene megafauna.

    Science.gov (United States)

    Greenwood, A D; Capelli, C; Possnert, G; Pääbo, S

    1999-11-01

    We report the retrieval and characterization of multi- and single-copy nuclear DNA sequences from Alaskan and Siberian mammoths (Mammuthus primigenius). In addition, a nuclear copy of a mitochondrial gene was recovered. Furthermore, a 13,000-year-old ground sloth and a 33,000-year-old cave bear yielded multicopy nuclear DNA sequences. Thus, multicopy and single-copy genes can be analyzed from Pleistocene faunal remains. The results also show that under some circumstances, nucleotide sequence differences between alleles found within one individual can be distinguished from DNA sequence variation caused by postmortem DNA damage. The nuclear sequences retrieved from the mammoths suggest that mammoths were more similar to Asian elephants than to African elephants.

  19. Choreography of the DNA damage response

    DEFF Research Database (Denmark)

    Lisby, Michael; Barlow, Jacqueline H; Burgess, Rebecca C

    2004-01-01

    recombination machinery assembles at the site. Unlike the response to DSBs, Mre11 and recombination proteins are not recruited to hydroxyurea-stalled replication forks unless the forks collapse. The cellular response to DSBs and DNA replication stress is likely directed by the Mre11 complex detecting......DNA repair is an essential process for preserving genome integrity in all organisms. In eukaryotes, recombinational repair is choreographed by multiprotein complexes that are organized into centers (foci). Here, we analyze the cellular response to DNA double-strand breaks (DSBs) and replication...... stress in Saccharomyces cerevisiae. The Mre11 nuclease and the ATM-related Tel1 kinase are the first proteins detected at DSBs. Next, the Rfa1 single-strand DNA binding protein relocalizes to the break and recruits other key checkpoint proteins. Later and only in S and G2 phase, the homologous...

  20. Polymorphism and mutation analysis of genomic DNA on cancer

    International Nuclear Information System (INIS)

    Ohta, Tsutomu

    2003-01-01

    DNA repair is a universal process in living cells that maintains the structural integrity of chromosomal DNA molecules in face of damage. A deficiency in DNA damage repair is associated with an increased cancer risk by increasing a mutation frequency of cancer-related genes. Variation in DNA repair capacity may be genetically determined. Therefore, we searched single-nucleotide polymorphisms (SNPs) in major DNA repair genes. This led to the finding of 600 SNPs and mutations including many novel SNPs in Japanese population. Case-control studies to explore the contribution of the SNPs in DNA repair genes to the risk of lung cancer revealed that five SNPs are associated with lung carcinogenesis. One of these SNPs is found in RAD54L gene, which is involved in double-strand DNA repair. We analyzed and reported activities of Rad54L protein with SNP and mutations. (authors)

  1. [Integrated Development of Full-automatic Fluorescence Analyzer].

    Science.gov (United States)

    Zhang, Mei; Lin, Zhibo; Yuan, Peng; Yao, Zhifeng; Hu, Yueming

    2015-10-01

    In view of the fact that medical inspection equipment sold in the domestic market is mainly imported from abroad and very expensive, we developed a full-automatic fluorescence analyzer in our center, presented in this paper. The present paper introduces the hardware architecture design of FPGA/DSP motion controlling card+PC+ STM32 embedded micro processing unit, software system based on C# multi thread, design and implementation of double-unit communication in detail. By simplifying the hardware structure, selecting hardware legitimately and adopting control system software to object-oriented technology, we have improved the precision and velocity of the control system significantly. Finally, the performance test showed that the control system could meet the needs of automated fluorescence analyzer on the functionality, performance and cost.

  2. Photosensitized oxidation of DNA and its components

    International Nuclear Information System (INIS)

    Decarroz, Chantal.

    1982-09-01

    Chemical changes in DNA components during the photodynamic effect are responsible for Mutagenic and carcinogenic phenomena. Basically two competitive mechanisns involving respectively a charge transfer (type I) and singlet oxygen (type II) are implicated in reactions photo-sensitized by different agents (acridines, phenothiazines, porphyrins, flavins, psoralenes...). A study of the photosensitized oxidation of DNA itself was approached through characterization of the main final products in the case of purine nucleosides. Methyl-2 naphthoquinone - 1,4 (vitamin K 3 ) displays a special photosensitization mechanism involving a cation radical type of intermediary [fr

  3. Study on construction of cDNA library of the treated changliver cell and quality analysis

    OpenAIRE

    Juntang, Lin; Pramanik, Jogenananda; Congrui, Wang; Huiyong, Zhang; Huigen, Feng; Baosheng, Yang; Yuchang, Li; Cunshuan, Xu

    2004-01-01

    The study aims to construct cDNA library of Changliver cell by SMART (switching mechanism at 5′ end of RNA transcript) technique and analyze its quality. cDNA of Changliver cell was made with RT-PCR and LD-PCR (long-distance PCR), the cDNA library was constructed with SMART cDNA library construction kit. Through testing, the high quality cDNA library containing whole long cDNA of Changliver cell had been constructed. The titer of the amplified cDNA library was 4.5 × 1010 pfu/ml and the averag...

  4. Beyond DNA repair: DNA-PK function in cancer

    OpenAIRE

    Goodwin, Jonathan F.; Knudsen, Karen E.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, furthe...

  5. Multiple strand displacement amplification of mitochondrial DNA from clinical samples

    Directory of Open Access Journals (Sweden)

    Sidransky David

    2008-02-01

    Full Text Available Abstract Background Whole genome amplification (WGA methods allow diagnostic laboratories to overcome the common problem of insufficient DNA in patient specimens. Further, body fluid samples useful for cancer early detection are often difficult to amplify with traditional PCR methods. In this first application of WGA on the entire human mitochondrial genome, we compared the accuracy of mitochondrial DNA (mtDNA sequence analysis after WGA to that performed without genome amplification. We applied the method to a small group of cancer cases and controls and demonstrated that WGA is capable of increasing the yield of starting DNA material with identical genetic sequence. Methods DNA was isolated from clinical samples and sent to NIST. Samples were amplified by PCR and those with no visible amplification were re-amplified using the Multiple Displacement Amplificaiton technique of whole genome amplification. All samples were analyzed by mitochip for mitochondrial DNA sequence to compare sequence concordance of the WGA samples with respect to native DNA. Real-Time PCR analysis was conducted to determine the level of WGA amplification for both nuclear and mtDNA. Results In total, 19 samples were compared and the concordance rate between WGA and native mtDNA sequences was 99.995%. All of the cancer associated mutations in the native mtDNA were detected in the WGA amplified material and heteroplasmies in the native mtDNA were detected with high fidelity in the WGA material. In addition to the native mtDNA sequence present in the sample, 13 new heteroplasmies were detected in the WGA material. Conclusion Genetic screening of mtDNA amplified by WGA is applicable for the detection of cancer associated mutations. Our results show the feasibility of this method for: 1 increasing the amount of DNA available for analysis, 2 recovering the identical mtDNA sequence, 3 accurately detecting mtDNA point mutations associated with cancer.

  6. Use of DNA quantification to measure growth and autolysis of Lactococcus and Propionibacterium spp. in mixed populations.

    Science.gov (United States)

    Treimo, Janneke; Vegarud, Gerd; Langsrud, Thor; Rudi, Knut

    2006-09-01

    Autolysis is self-degradation of the bacterial cell wall that results in the release of enzymes and DNA. Autolysis of starter bacteria, such as lactococci and propionibacteria, is essential for cheese ripening, but our understanding of this important process is limited. This is mainly because the current tools for measuring autolysis cannot readily be used for analysis of bacteria in mixed populations. We have now addressed this problem by species-specific detection and quantification of free DNA released during autolysis. This was done by use of 16S rRNA gene single-nucleotide extension probes in combination with competitive PCR. We analyzed pure and mixed populations of Lactococcus lactis subsp. lactis and three different species of Propionibacterium. Results showed that L. lactis subsp. lactis INF L2 autolyzed first, followed by Propionibacterium acidipropionici ATCC 4965, Propionibacterium freudenreichii ISU P59, and then Propionibacterium jensenii INF P303. We also investigated the autolytic effect of rennet (commonly used in cheese production). We found that the effect was highly strain specific, with all the strains responding differently. Finally, autolysis of L. lactis subsp. lactis INF L2 and P. freudenreichii ISU P59 was analyzed in a liquid cheese model. Autolysis was detected later in this cheese model system than in broth media. A challenge with DNA, however, is DNA degradation. We addressed this challenge by using a DNA degradation marker. We obtained a good correlation between the degradation of the marker and the target in a model experiment. We conclude that our DNA approach will be a valuable tool for use in future analyses and for understanding autolysis in mixed bacterial populations.

  7. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    Science.gov (United States)

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Electrochemical DNA probe for Hg(2+) detection based on a triple-helix DNA and Multistage Signal Amplification Strategy.

    Science.gov (United States)

    Wang, Huan; Zhang, Yihe; Ma, Hongmin; Ren, Xiang; Wang, Yaoguang; Zhang, Yong; Wei, Qin

    2016-12-15

    In this work, an ultrasensitive electrochemical sensor was developed for detection of Hg(2+). Gold nanoparticles decorated bovine serum albumin reduction of graphene oxide (AuNP-BSA-rGO) were used as subsurface material for the immobilization of triple-helix DNA. The triple-helix DNA containing a thiol labelled single-stranded DNA (sDNA) and a thymine-rich DNA (T-rich DNA), which could be unwinded in the present of Hg(2+) to form more stable thymine-Hg(2+)-thymine (T-Hg(2+)-T) complex. T-Hg(2+)-T complex was then removed and the sDNA was left on the electrode. At this time, gold nanoparticle carrying thiol labelled cytosine-rich complementary DNA (cDNA-AuNP) could bind with the free sDNA. Meanwhile, the other free cDNA on AuNP could bind with each other in the present of Ag(+) to form the stable cytosine-Ag(+)-cytosine (C-Ag(+)-C) complex and circle amplification. Plenty of C-Ag(+)-C could form silver nanoclusters by electrochemical reduction and the striping signal of Ag could be measured for purpose of the final electrochemical detection of Hg(2+). This sensor could detect Hg(2+) over a wide concentration range from 0.1 to 130nM with a detection limit of 0.03nM. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mitochondrial DNA hypomethylation in chrome plating workers.

    Science.gov (United States)

    Yang, Linqing; Xia, Bo; Yang, Xueqin; Ding, Hong; Wu, Desheng; Zhang, Huimin; Jiang, Gaofeng; Liu, Jianjun; Zhuang, Zhixiong

    2016-01-22

    A matched case-control study was conducted to examine the relationship between chromium (Cr) exposure and variation in mitochondrial (mt) DNA methylation. We enrolled 29 pairs of subjects in this study; Cr exposure was confirmed in the cases by detecting blood Cr and other metal ion concentrations. DNA damage caused by Cr exposure was determined in terms of binucleated micronucleus frequency (BNMN) and mtDNA copy number. Finally, a Sequenom MassARRAY platform was applied to inspect the DNA methylation levels of mitochondrially encoded tRNA phenylalanine (MT-TF), mitochondrially encoded 12S RNA (MT-RNR1), and long interspersed nucleotide element-1 (LINE-1) genes. The blood Cr ion concentration and micronucleus frequency of the Cr-exposed group were higher than those of the control group, whereas the mtDNA copy number remained unchanged. The methylation levels of MT-TF and MT-RNR1 but not LINE-1 were significantly lower in Cr-exposed workers. Pearson correlation analysis showed that workers with higher blood Cr ion concentrations exhibited lower MT-TF and MT-RNR1 gene methylation, and multiple linear regression analysis indicated that CpG sites 1 and 2 in MT-TF and CpG site 6 in MT-RNR1 were affected. These results suggested that methylation level of mtDNA has the possibility of acting as an alternative effect biomarker for Cr exposure. Copyright © 2015. Published by Elsevier Ireland Ltd.

  10. Plasma Cell-Free DNA in Paediatric Lymphomas

    Science.gov (United States)

    Mussolin, Lara; Burnelli, Roberta; Pillon, Marta; Carraro, Elisa; Farruggia, Piero; Todesco, Alessandra; Mascarin, Maurizio; Rosolen, Angelo

    2013-01-01

    Background: Extracellular circulating DNA (cfDNA) can be found in small amounts in plasma of healthy individuals. Increased levels of cfDNA have been reported in patients with cancer of breast, cervix, colon, liver and it was shown that cfDNA can originate from both tumour and non-tumour cells. Objectives: Levels of cfDNA of a large series of children with lymphoma were evaluated and analyzed in relation with clinical characteristics. Methods: plasma cfDNA levels obtained at diagnosis in 201 paediatric lymphoma patients [43 Hodgkin lymphomas (HL), 45 anaplastic large cell lymphomas (ALCL), 88 Burkitt lymphomas (BL), 17 lymphoblastic (LBL), 8 diffuse large B cell lymphoma (DLBCL)] and 15 healthy individuals were determined using a quantitative PCR assay for POLR2 gene and, in addition, for NPM-ALK fusion gene in ALCL patients. Wilcoxon rank sum test was used to compare plasma levels among different patient subgroups and controls and to analyze relationship between levels of cfDNA and clinical characteristics. Results: Levels of cfDNA in lymphoma patients were significantly higher compared with controls (p<0.0001). CfDNA was associated with median age (p=0.01) in HL, and with stage in ALCL (p=0.01). In HL patients high cfDNA levels were correlated with poor prognosis (p=0.03). In ALCL we found that most of the cfDNA (77%) was non-tumor DNA. Conclusion: level of plasma cfDNA might constitute an important non-invasive tool at diagnosis in lymphoma patients' management; in particular in patients with HL, cfDNA seems to be a promising prognostic biomarker. PMID:23678368

  11. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    Science.gov (United States)

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  12. Comparative analysis of protocols for DNA extraction from soybean caterpillars.

    Science.gov (United States)

    Palma, J; Valmorbida, I; da Costa, I F D; Guedes, J V C

    2016-04-07

    Genomic DNA extraction is crucial for molecular research, including diagnostic and genome characterization of different organisms. The aim of this study was to comparatively analyze protocols of DNA extraction based on cell lysis by sarcosyl, cetyltrimethylammonium bromide, and sodium dodecyl sulfate, and to determine the most efficient method applicable to soybean caterpillars. DNA was extracted from specimens of Chrysodeixis includens and Spodoptera eridania using the aforementioned three methods. DNA quantification was performed using spectrophotometry and high molecular weight DNA ladders. The purity of the extracted DNA was determined by calculating the A260/A280 ratio. Cost and time for each DNA extraction method were estimated and analyzed statistically. The amount of DNA extracted by these three methods was sufficient for PCR amplification. The sarcosyl method yielded DNA of higher purity, because it generated a clearer pellet without viscosity, and yielded high quality amplification products of the COI gene I. The sarcosyl method showed lower cost per extraction and did not differ from the other methods with respect to preparation times. Cell lysis by sarcosyl represents the best method for DNA extraction in terms of yield, quality, and cost effectiveness.

  13. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  14. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  15. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  16. MITOCHONDRIAL DNA- REVOLUTIONARY EVOLUTION

    Directory of Open Access Journals (Sweden)

    Vaidhehi Narayan Nayak

    2017-07-01

    Full Text Available BACKGROUND Mitochondrion, the sausage-shaped organelle residing in the cytoplasm of all eukaryotic cells, apart from being the power house, represents endosymbiotic evolution of a free living organism to intracellular structure. Anthropologically, mitochondrial DNA is the fossilised source to trace the human ancestry particularly of maternal lineage. This article attempts to highlight the various biological functions of mitochondrial DNA (mtDNA with a note on its forensic application.

  17. Nucleosomal DNA fragments in autoimmune diseases

    NARCIS (Netherlands)

    Holdenrieder, Stefan; Eichhorn, Peter; Beuers, Ulrich; Samtleben, Walter; Schoenermarck, Ulf; Zachoval, Reinhart; Nagel, Dorothea; Stieber, Petra

    2006-01-01

    The inadequate response of immune cells to circulating apoptotic products, such as nucleosomal DNA fragments, is assumed to be a potent stimulus for the production of autoantibodies during the pathogenesis and progression of systemic lupus erythematosus (SLE). Here, we analyzed the levels of

  18. The second hit of DNA methylation.

    Science.gov (United States)

    Di Ruscio, Annalisa; Welner, Robert S; Tenen, Daniel G; Amabile, Giovanni

    2016-05-01

    Gene expression programs are tightly regulated by heritable "epigenetic" information, which is stored as chemical modifications of histones and DNA. With the recent development of sequencing-based epigenome mapping technologies and cancer cellular reprogramming, the tools are now in hand to analyze the epigenetic contribution to human cancer.

  19. DNA repair related to radiation therapy

    International Nuclear Information System (INIS)

    Klein, W.

    1979-01-01

    The DNA excision repair capacity of peripheral human lymphocytes after radiation therapy has been analyzed. Different forms of application of the radiation during the therapy have been taken into account. No inhibition of repair was found if cells were allowed a certain amount of accomodation to radiation, either by using lower doses or longer application times. (G.G.)

  20. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.

    Science.gov (United States)

    Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun

    2018-04-04

    Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery. Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  1. Analyzing Log Files using Data-Mining

    Directory of Open Access Journals (Sweden)

    Marius Mihut

    2008-01-01

    Full Text Available Information systems (i.e. servers, applications and communication devices create a large amount of monitoring data that are saved as log files. For analyzing them, a data-mining approach is helpful. This article presents the steps which are necessary for creating an ‘analyzing instrument’, based on an open source software called Waikato Environment for Knowledge Analysis (Weka [1]. For exemplification, a system log file created by a Windows-based operating system, is used as input file.

  2. A Novel Architecture For Multichannel Analyzer

    International Nuclear Information System (INIS)

    Marcus, E.; Elhanani, I.; Nir, J.; Ellenbogen, M.; Kadmon, Y.; Tirosh, D.

    1999-01-01

    A novel digital approach to real-time, high-throughput, low-cost Multichannel Analyzer (MCA) for radiation spectroscopy is being presented. The MCA input is a shaped nuclear pulse sampled at a high rate, using an Analog-to-Digital Converter (ADC) chip. The digital samples are analyzed by a state-of-the-art Field Programmable Gate Away (FPGA). A customized algorithm is utilized to estimate the peak of the pulse, to reject pile-up and to eliminate processing dead time. The valid pulses estimated peaks are transferred to a micro controller system that creates the histogram and controls the Human Machine Interface (HMI)

  3. Advances on CT analyzing urolithiasis constituents

    International Nuclear Information System (INIS)

    Feng Qiang; Ma Zhijun

    2009-01-01

    Urolithiasis is common and frequently-occurring diseases of urology. The treatment of lithiasis is not only relevant with the size, location, brittle and infection of calculi, but also affected by urolithiasis constituents. Knowing the urolithiasis constituents in advance is no doubt to guide treatment. But so far an reliable inspection method was not found to analyze accurately urolithiasis constituents in vivo. CT judge precisely the size, location of calculi and analyze roughly the urolithiasis constituents in vivo, especially the appear of dual soure CT, which provide a new method for studying urolithiasis constituents. It may be helpful to find the cause, prevention and therapy of calculi. (authors)

  4. Empirical mode decomposition for analyzing acoustical signals

    Science.gov (United States)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  5. Electrical aerosol analyzer: calibration and performance

    Energy Technology Data Exchange (ETDEWEB)

    Pui, D.Y.H.; Liu, B.Y.H.

    1976-01-01

    The Electrical Aerosol Analyzer (EAA) was calibrated by means of monodisperse aerosols generated by two independent techniques. In the 0.02 to 1 ..mu..m diameter range, the aerosol was generated by electrostatic classification. In the range between 0.007 and 0.03 ..mu..m, the aerosols were generated by the photo-oxidation of SO/sub 2/ in a smog chamber. Calibration data are presented showing the performance of the EAA as an aerosol detector and as a size distribution analyzer.

  6. BWR plant analyzer development at BNL

    International Nuclear Information System (INIS)

    Cheng, H.S.; Wulff, W.; Mallen, A.N.; Lekach, S.V.; Stritar, A.; Cerbone, R.J.

    1985-01-01

    Advanced technology for high-speed interactive nuclear power plant simulations is of great value for timely resolution of safety issues, for plant monitoring, and for computer-aided emergency responses to an accident. Presented is the methodology employed at BNL to develop a BWR plant analyzer capable of simulating severe plant transients at much faster than real-time process speeds. Five modeling principles are established and a criterion is given for selecting numerical procedures and efficient computers to achieve the very high simulation speeds. Typical results are shown to demonstrate the modeling fidelity of the BWR plant analyzer

  7. Nonisotopic DNA probe techniques

    National Research Council Canada - National Science Library

    Kricka, Larry J

    1992-01-01

    The objective of this book is to bring together descriptions of the principal nonisotopic methods for DNA hybridization assays, together with experimental details of the methods, including labelling...

  8. DNA ELECTROPHORESIS AT SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  9. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    Science.gov (United States)

    Wang, Sheng-Yu; Lee, Alan Yueh-Luen; Lee, Yueh-Luen; Lai, Yi-Hua; Chen, Jeremy J W; Wu, Wen-Lin; Yuann, Jeu-Ming P; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  10. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Wang

    Full Text Available The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone (MGBG enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  11. Low-Dose Formaldehyde Delays DNA Damage Recognition and DNA Excision Repair in Human Cells

    Science.gov (United States)

    Luch, Andreas; Frey, Flurina C. Clement; Meier, Regula; Fei, Jia; Naegeli, Hanspeter

    2014-01-01

    Objective Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recognition and excision processes that remove some of the most frequently inflicted DNA lesions. Methodology/Principal Findings The overall mobility of the DNA damage sensors UV-DDB (ultraviolet-damaged DNA-binding) and XPC (xeroderma pigmentosum group C) was analyzed by assessing real-time protein dynamics in the nucleus of cultured human cells exposed to non-cytotoxic (formaldehyde concentrations. The DNA lesion-specific recruitment of these damage sensors was tested by monitoring their accumulation at local irradiation spots. DNA repair activity was determined in host-cell reactivation assays and, more directly, by measuring the excision of DNA lesions from chromosomes. Taken together, these assays demonstrated that formaldehyde obstructs the rapid nuclear trafficking of DNA damage sensors and, consequently, slows down their relocation to DNA damage sites thus delaying the excision repair of target lesions. A concentration-dependent effect relationship established a threshold concentration of as low as 25 micromolar for the inhibition of DNA excision repair. Conclusions/Significance A main implication of the retarded repair activity is that low-dose formaldehyde may exert an adjuvant role in carcinogenesis by impeding the excision of multiple mutagenic base lesions. In view of this generally disruptive effect on DNA repair, we propose that formaldehyde exposures in the general population should be further decreased to help reducing cancer risks. PMID:24722772

  12. Environmental applications of the centrifugal fast analyzer

    International Nuclear Information System (INIS)

    Goldstein, G.; Strain, J.E.; Bowling, J.L.

    1975-12-01

    The centrifugal fast analyzer (GeMSAEC Fast Analyzer) was applied to the analysis of pollutants in air and water. Since data acquisition and processing are computer controlled, considerable effort went into devising appropriate software. A modified version of the standard FOCAL interpreter was developed which includes special machine language functions for data timing, acquisition, and storage, and also permits chaining together of programs stored on a disk. Programs were written and experimental procedures developed to implement spectrophotometric, turbidimetric, kinetic (including initial-rate, fixed-time, and variable-time techniques), and chemiluminescence methods of analysis. Analytical methods were developed for the following elements and compounds: SO 2 , O 3 , Ca, Cr, Cu, Fe, Mg, Se(IV), Zn, Cl - , I - , NO 2 - , PO 4 -3 , S -2 , and SO 4 -2 . In many cases, standard methods could be adapted to the centrifugal analyzer, in others new methods were employed. In general, analyses performed with the centrifugal fast analyzer were faster, more precise, and more accurate than with conventional instrumentation

  13. Fluidization quality analyzer for fluidized beds

    Science.gov (United States)

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  14. How to Analyze Company Using Social Network?

    Science.gov (United States)

    Palus, Sebastian; Bródka, Piotr; Kazienko, Przemysław

    Every single company or institution wants to utilize its resources in the most efficient way. In order to do so they have to be have good structure. The new way to analyze company structure by utilizing existing within company natural social network and example of its usage on Enron company are presented in this paper.

  15. Analyzing Vessel Behavior Using Process Mining

    NARCIS (Netherlands)

    Maggi, F.M.; Mooij, A.J.; Aalst, W.M.P. van der

    2013-01-01

    In the maritime domain, electronic sensors such as AIS receivers and radars collect large amounts of data about the vessels in a certain geographical area. We investigate the use of process mining techniques for analyzing the behavior of the vessels based on these data. In the context of maritime

  16. Images & Issues: How to Analyze Election Rhetoric.

    Science.gov (United States)

    Rank, Hugh

    Although it is impossible to know in advance the credibility of political messages, such persuasive discourse can be analyzed in a non-partisan, common sense way using predictable patterns in content and form. The content of a candidate's message can be summarized as "I am competent and trustworthy; from me, you'll get 'more good' and 'less…

  17. Thermal and Evolved-Gas Analyzer Illustration

    Science.gov (United States)

    2008-01-01

    This is a computer-aided drawing of the Thermal and Evolved-Gas Analyzer, or TEGA, on NASA's Phoenix Mars Lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs...... has much to offer in analyzing the policy process....

  19. Consideration Regarding Diagnosis Analyze of Corporate Management

    Directory of Open Access Journals (Sweden)

    Mihaela Ciopi OPREA

    2009-01-01

    Full Text Available Diagnosis management aims to identify critical situations and positive aspectsof corporate management. An effective diagnosis made by a team with thestatus of independence from the organization’s management is for managers auseful feedback necessary to improve performance. The work presented focuseson the methodology to achieve effective diagnosis, considering multitudecriteria and variables to be analyzed.

  20. Analyzing and Interpreting Research in Health Education ...

    African Journals Online (AJOL)

    While qualitative research is used when little or nothing is known about the subject, quantitative research is required when there are quantifiable variables to be measured. By implication, health education research is based on phenomenological, ethnographical and/or grounded theoretical approaches that are analyzable ...

  1. Analyzing Languages for Specific Purposes Discourse

    Science.gov (United States)

    Bowles, Hugo

    2012-01-01

    In the last 20 years, technological advancement and increased multidisciplinarity has expanded the range of data regarded as within the scope of languages for specific purposes (LSP) research and the means by which they can be analyzed. As a result, the analytical work of LSP researchers has developed from a narrow focus on specialist terminology…

  2. Automatic radioxenon analyzer for CTBT monitoring

    International Nuclear Information System (INIS)

    Bowyer, T.W.; Abel, K.H.; Hensley, W.K.

    1996-12-01

    Over the past 3 years, with support from US DOE's NN-20 Comprehensive Test Ban Treaty (CTBT) R ampersand D program, PNNL has developed and demonstrated a fully automatic analyzer for collecting and measuring the four Xe radionuclides, 131m Xe(11.9 d), 133m Xe(2.19 d), 133 Xe (5.24 d), and 135 Xe(9.10 h), in the atmosphere. These radionuclides are important signatures in monitoring for compliance to a CTBT. Activity ratios permit discriminating radioxenon from nuclear detonation and that from nuclear reactor operations, nuclear fuel reprocessing, or medical isotope production and usage. In the analyzer, Xe is continuously and automatically separated from the atmosphere at flow rates of about 7 m 3 /h on sorption bed. Aliquots collected for 6-12 h are automatically analyzed by electron-photon coincidence spectrometry to produce sensitivities in the range of 20-100 μBq/m 3 of air, about 100-fold better than with reported laboratory-based procedures for short time collection intervals. Spectral data are automatically analyzed and the calculated radioxenon concentrations and raw gamma- ray spectra automatically transmitted to data centers

  3. Performance optimization of spectroscopic process analyzers

    NARCIS (Netherlands)

    Boelens, Hans F. M.; Kok, Wim Th; de Noord, Onno E.; Smilde, Age K.

    2004-01-01

    To increase the power and the robustness of spectroscopic process analyzers, methods are needed that suppress the spectral variation that is not related to the property of interest in the process stream. An approach for the selection of a suitable method is presented. The approach uses the net

  4. ITK and ANALYZE: a synergistic integration

    Science.gov (United States)

    Augustine, Kurt E.; Holmes, David R., III; Robb, Richard A.

    2004-05-01

    The Insight Toolkit (ITK) is a C++ open-source software toolkit developed under sponsorship of the National Library of Medicine. It provides advanced algorithms for performing image registration and segmentation, but does not provide support for visualization and analysis, nor does it offer any graphical user interface (GUI). The purpose of this integration project is to make ITK readily accessible to end-users with little or no programming skills, and provide interactive processing, visualization and measurement capabilities. This is achieved through the integration of ITK with ANALYZE, a multi-dimension image visualization/analysis application installed in over 300 institutions around the world, with a user-base in excess of 4000. This integration is carried out at both the software foundation and GUI levels. The foundation technology upon which ANALYZE is built is a comprehensive C-function library called AVW. A new set of AVW-ITK functions have been developed and integrated into the AVW library, and four new ITK modules have been added to the ANALYZE interface. Since ITK is a software developer"s toolkit, the only way to access its intrinsic power is to write programs that incorporate it. Integrating ITK with ANALYZE opens the ITK algorithms to end-users who otherwise might never be able to take advantage of the toolkit"s advanced functionality. In addition, this integration provides end-to-end interactive problem solving capabilities which allow all users, including programmers, an integrated system to readily display and quantitatively evaluate the results from the segmentation and registration routines in ITK, regardless of the type or format of input images, which are comprehensively supported in ANALYZE.

  5. Plant DNA banks for genetic resources conservation (review

    Directory of Open Access Journals (Sweden)

    Н. Е. Волкова

    2016-12-01

    Full Text Available Purpose. Literature review of DNA banks creation as the current strategy of plant genetic resources conservation. Results. The current state of plant genetic resources conservation was analyzed in the context of the threat of gene­tic erosion. The importance of DNA banks was shown which function is to store DNA samples and associated products and disseminate them for research purposes. The main DNA banks in the world were described, including the Republican DNA Bank of Human, Animals, Plants and Microorganisms at the Institute of Genetics and Cytology of the National Academy of Sciences of Belarus. Stages of DNA banking were considered: tissue sampling (usually from leaves, cell destruction, DNA extraction, DNA storage. Different methods of tissue sampling, extraction and DNA storage were compared. The need for Plant DNA Bank creation in Ukraine was highlighted. Conclusions. DNA collections is an important resource in the global effort to overcome the crisis in biodiversity, for managing world genetic resources and maximi­zing their potential.

  6. Laser mass spectrometry for DNA fingerprinting for forensic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.H.; Tang, K.; Taranenko, N.I.; Allman, S.L.; Chang, L.Y.

    1994-12-31

    The application of DNA fingerprinting has become very broad in forensic analysis, patient identification, diagnostic medicine, and wildlife poaching, since every individual`s DNA structure is identical within all tissues of their body. DNA fingerprinting was initiated by the use of restriction fragment length polymorphisms (RFLP). In 1987, Nakamura et al. found that a variable number of tandem repeats (VNTR) often occurred in the alleles. The probability of different individuals having the same number of tandem repeats in several different alleles is very low. Thus, the identification of VNTR from genomic DNA became a very reliable method for identification of individuals. DNA fingerprinting is a reliable tool for forensic analysis. In DNA fingerprinting, knowledge of the sequence of tandem repeats and restriction endonuclease sites can provide the basis for identification. The major steps for conventional DNA fingerprinting include (1) specimen processing (2) amplification of selected DNA segments by PCR, and (3) gel electrophoresis to do the final DNA analysis. In this work we propose to use laser desorption mass spectrometry for fast DNA fingerprinting. The process and advantages are discussed.

  7. Design and Assembly of DNA Nano-Objects and 2D DNA Origami Arrays

    Science.gov (United States)

    Liu, Wenyan

    DNA, which plays a central role in biology as the carrier of genetic information, is also an excellent candidate for structural nanotechnology. Researches have proven that a variety of complicated DNA assemblies, such as objects, 2D & 3D crystals, and nanomechanical devices, can be fabricated through the combination of robust branched DNA motifs and sticky ends. This dissertation focuses on the design and construction of DNA nano--objects and 2D DNA origami arrays. In this dissertation, we first describe the formation of a triangular species that has four strands per edge, held together by PX interactions. We demonstrate by nondenaturing gel electrophoresis and by atomic force microscopy (AFM) that we can combine a partial triangle with other strands to form a robust four--stranded molecule. By combining them with a novel three--domain molecule, we also demonstrate by AFM that these triangles can be self--assembled into a linear array. Second, we demonstrate our attempts to design and self--assemble 2D DNA origami arrays using several different strategies. Specifically, we introduce the self--assembly of 2D DNA origami lattices using a symmetric cross--like design. This design strategy resulted in a well--ordered woven latticework array with edge dimensions of 2--3 mum. This size is likely to be large enough to connect bottom-up methods of patterning with top--down approaches. Third, we illustrate the design and construction of DNA nano--objects for exploring the substrate preferences of topoisomerase (topo) II. We designed and fabricated four double rhombus--like DNA molecules, each of which contains a different conformation of crossover in the middle, as possible substrates to establish the structural preferences for topo II. We characterized the formation of each substrate molecule by gel electrophoresis. Finally, we study the effect of M13 DNA knotting on the formation of the DNA origami tiles. We demonstrate by atomic force microscopy (AFM) that knotted M13

  8. IR analyzer spots heavy water leaks

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    A correlation spectrometer developed by Barringer Research Ltd. (in collaboration with Atomic Energy of Canada and Ontario Hydro) is used to measure HDO concentrations in DTO in the final (distillation) stage of heavy-water production. A unit has been installed at Bruce Heavy Water Plant. Previously, such spectrometers had been installed to detect heavy-water leaks in CANDU reactors. The principle on which the instrument works is explained, with illustrations. It works by comparing the absorption at 2.9 μm, due to HDO, with that at 2.6 μm, due to both HDO and D 2 O. (N.D.H.)

  9. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...... capturing the characteristics of hierarchical networks and describe the behavior of protocols on such networks. We then develop a static analysis to automate the validation. Finally we demonstrate how the technique can benefit the protocol development and the design of network systems by presenting a series...

  10. Stock jumps: Analyzing traditional and behavioral perspectives

    Directory of Open Access Journals (Sweden)

    Francesco Corea

    2015-07-01

    Full Text Available Our aim is to define the concept of stock jumps from a practitioner’s perspective and to give an insightful overview of the topic. We provide different technical and practical definitions from distinct points of view: mathematical, risk managerial, trading and investing. We verify the robustness of some common stylised facts for three major stock indices, and we derive an approximated jumps distribution. We finally provide some innovative insights from a behavioral perspective, and how to account for behavioral biases in this context.

  11. Extraction of Chromosomal DNA from Schizosaccharomyces pombe.

    Science.gov (United States)

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-05-02

    Extraction of DNA from Schizosaccharomyces pombe cells is required for various uses, including templating polymerase chain reactions (PCRs), Southern blotting, library construction, and high-throughput sequencing. To purify high-quality DNA, the cell wall is removed by digestion with Zymolyase or Lyticase and the resulting spheroplasts lysed using sodium dodecyl sulfate (SDS). Cell debris, SDS, and SDS-protein complexes are subsequently precipitated by the addition of potassium acetate and removed by centrifugation. Finally, DNA is precipitated using isopropanol. At this stage, purity is usually sufficient for PCR. However, for more sensitive procedures, such as restriction enzyme digestion, additional purification steps, including proteinase K digestion and phenol-chloroform extraction, are recommended. All of these steps are described in detail here. © 2016 Cold Spring Harbor Laboratory Press.

  12. Development of DNA vaccines for fish

    DEFF Research Database (Denmark)

    Heppell, Joël; Lorenzen, Niels; Armstrong, Neil K.

    1998-01-01

    Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated...... no permanent tissue damage. To further investigate the ability of DNA-based vaccines to induce protective immunity in fish, viral haemorrhagic septicaemia virus G and N genes were cloned individually into an expression plasmid. Both G and N proteins produced in transfected fish cells appeared identical...... protein, killing the transfected host cells and ablating further expression of G protein and luciferase. Finally, young rainbow trout injected with the G construct, alone or together with the N construct, were strongly protected against challenge with live virus. These results suggest that DNA vaccines...

  13. Methodology for analyzing risk at nuclear facilities

    International Nuclear Information System (INIS)

    Yoo, Hosik; Lee, Nayoung; Ham, Taekyu; Seo, Janghoon

    2015-01-01

    Highlights: • A new methodology for evaluating the risk at nuclear facilities was developed. • Five measures reflecting all factors that should be concerned to assess risk were developed. • The attributes on NMAC and nuclear security culture are included as attributes for analyzing. • The newly developed methodology can be used to evaluate risk of both existing facility and future nuclear system. - Abstract: A methodology for evaluating risks at nuclear facilities is developed in this work. A series of measures is drawn from the analysis of factors that determine risks. Five measures are created to evaluate risks at nuclear facilities. These include the legal and institutional framework, material control, physical protection system effectiveness, human resources, and consequences. Evaluation attributes are developed for each measure and specific values are given in order to calculate the risk value quantitatively. Questionnaires are drawn up on whether or not a state has properly established a legal and regulatory framework (based on international standards). These questionnaires can be a useful measure for comparing the status of the physical protection regime between two countries. Analyzing an insider threat is not an easy task and no methodology has been developed for this purpose. In this study, attributes that could quantitatively evaluate an insider threat, in the case of an unauthorized removal of nuclear materials, are developed by adopting the Nuclear Material Accounting & Control (NMAC) system. The effectiveness of a physical protection system, P(E), could be analyzed by calculating the probability of interruption, P(I), and the probability of neutralization, P(N). In this study, the Tool for Evaluating Security System (TESS) code developed by KINAC is used to calculate P(I) and P(N). Consequence is an important measure used to analyze risks at nuclear facilities. This measure comprises radiological, economic, and social damage. Social and

  14. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    John Ross

    2003-04-30

    The Final Technical Report summarizes research accomplishments and Publications in the period of 5/1/99 to 4/30/03 done on the grant. Extensive progress was made in the period covered by this report in the areas of chemical kinetics of non-linear systems; spatial structures, reaction - diffusion systems, and thermodynamic and stochastic theory of electrochemical and general systems.

  15. Regional final energy consumptions

    International Nuclear Information System (INIS)

    2011-01-01

    This report comments the differences observed between the French regions and also between these regions and national data in terms of final energy consumption per inhabitant, per GDP unit, and per sector (housing and office building, transport, industry, agriculture). It also comments the evolutions during the last decades, identifies the most recent trends

  16. Deep inelastic final states

    International Nuclear Information System (INIS)

    Girardi, G.

    1980-11-01

    In these lectures we attempt to describe the final states of deep inelastic scattering as given by QCD. In the first section we shall briefly comment on the parton model and give the main properties of decay functions which are of interest for the study of semi-inclusive leptoproduction. The second section is devoted to the QCD approach to single hadron leptoproduction. First we recall basic facts on QCD log's and derive after that the evolution equations for the fragmentation functions. For this purpose we make a short detour in e + e - annihilation. The rest of the section is a study of the factorization of long distance effects associated with the initial and final states. We then show how when one includes next to leading QCD corrections one induces factorization breaking and describe the double moments useful for testing such effects. The next section contains a review on the QCD jets in the hadronic final state. We begin by introducing the notion of infrared safe variable and defining a few useful examples. Distributions in these variables are studied to first order in QCD, with some comments on the resummation of logs encountered in higher orders. Finally the last section is a 'gaullimaufry' of jet studies

  17. The 'final order' problem

    NARCIS (Netherlands)

    Teunter, RH; Haneveld, WKK

    1998-01-01

    When the service department of a company selling machines stops producing and supplying spare parts for certain machines, customers are offered an opportunity to place a so-called final order for these spare parts. We focus on one customer with one machine. The customer plans to use this machine up

  18. Rosetta: The Final Furlong

    Science.gov (United States)

    Wright, I. P.; Andrews, D. J.; Barber, S. J.; Sheridan, S.; Morgan, G. H.; Morse, A. D.

    2014-09-01

    By the time of the meeting, the Rosetta spacecraft will have formally arrived at its target comet, and final landing site selection will be in progress. One of the instruments that will be sent down to the surface of the comet is Ptolemy (a GC-MS).

  19. CAFE Project : final report

    NARCIS (Netherlands)

    A. Weber; R. Carter; C.J. Stanford; A. Weber

    2003-01-01

    textabstract[MAS E-0302] This is the final public report of the CAFE project (ESPRIT 7023). CAFE developed a secure conditional access architecture and implemented a multi-currency electronic purse system based on smart cards and infrared wallets. The electronic purse was tested in user trials at

  20. DNA Repair Systems

    Indian Academy of Sciences (India)

    Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial ...

  1. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  2. DNA Repair Systems

    Indian Academy of Sciences (India)

    D N Rao is a professor at the. Department of Biochemistry,. Indian Institute of Science,. Bengaluru. His research work primarily focuses on. DNA interacting proteins in prokaryotes. This includes restriction-modification systems, DNA repair proteins from pathogenic bacteria and and proteins involved in horizontal gene ...

  3. Human Mitochondrial DNA Replication

    Science.gov (United States)

    Holt, Ian J.; Reyes, Aurelio

    2012-01-01

    Elucidation of the process of DNA replication in mitochondria is in its infancy. For many years, maintenance of the mitochondrial genome was regarded as greatly simplified compared to the nucleus. Mammalian mitochondria were reported to lack all DNA repair systems, to eschew DNA recombination, and to possess but a single DNA polymerase, polymerase γ. Polγ was said to replicate mitochondrial DNA exclusively via one mechanism, involving only two priming events and a handful of proteins. In this “strand-displacement model,” leading strand DNA synthesis begins at a specific site and advances approximately two-thirds of the way around the molecule before DNA synthesis is initiated on the “lagging” strand. Although the displaced strand was long-held to be coated with protein, RNA has more recently been proposed in its place. Furthermore, mitochondrial DNA molecules with all the features of products of conventional bidirectional replication have been documented, suggesting that the process and regulation of replication in mitochondria is complex, as befits a genome that is a core factor in human health and longevity. PMID:23143808

  4. Dna fingerprinting - review paper

    OpenAIRE

    Blundell, Renald

    2006-01-01

    Before the Polymerase Chain Reaction (PCR) was established, DNA fingerprinting technology has relied for years on Restriction Fragment Length Polymorphism (RFLP) and Variable Number of Tandom Repeats (VNTR) analysis, a very efficient technique but quite laborious and not suitable for high throughput mapping. Since its, development, PCR has provided a new and powerful tool for DNA fingerprinting.

  5. Characterization of muntjac DNA

    International Nuclear Information System (INIS)

    Davis, R.C.

    1981-01-01

    Sister chromatid exchange (SCE) in muntjac chromosomes is generally proportional to the chromosomal DNA content, but the SCE frequency is reduced in the heterochromatic neck region of the X chromosome. The physical properties of muntjac DNA and the kinetics of repair of UV damage in muntjac heterochromatin and euchromatin were examined and compared with the distribution of sister chromatid exchange

  6. Characterization of muntjac DNA

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.C.

    1981-05-27

    Sister chromatid exchange (SCE) in muntjac chromosomes is generally proportional to the chromosomal DNA content, but the SCE frequency is reduced in the heterochromatic neck region of the X chromosome. The physical properties of muntjac DNA and the kinetics of repair of UV damage in muntjac heterochromatin and euchromatin were examined and compared with the distribution of sister chromatid exchange.

  7. DNA Microarray Technology

    Science.gov (United States)

    ... this page. En Español: Tecnología de micromatriz de ADN DNA Microarray Technology What is a DNA microarray? ... this page. En Español: Tecnología de micromatriz de ADN Get Email Updates Privacy Copyright Contact Accessibility Plug- ...

  8. Genomic organization and transcription of satellite DNA in the ant Aphaenogaster subterranea (Hymenoptera, Formicidae).

    Science.gov (United States)

    Lorite, P; Renault, S; Rouleux-Bonnin, F; Bigot, S; Periquet, G; Palomeque, T

    2002-08-01

    A satellite DNA family (APSU) was isolated and characterized in the ant Aphaenogaster subterranea. This satellite DNA is organized in tandem repeats of 162 bp and is relatively AT rich (51.9%). Sequence analysis showed a high level of homogeneity between monomers. Loss of satellite DNA has been detected in queens in relation to workers, because the amount of satellite DNA in queens is about 25% of the amount found in workers. Restriction analysis of the total DNA with methylation-sensitive enzymes suggests that this DNA is not methylated. Analysis of the electrophoretic mobility of satellite DNA on non-denaturing polyacrylamide showed that this satellite DNA is only very lightly curved. Their possible transcription was analyzed using reverse transcription and polymerase chain reaction (RT-PCR). The satellite DNA is transcribed on the two DNA strands at the same level in worker and queen pupae, as well as in worker adults.

  9. Involvement of DNA polymerase δ in DNA repair synthesis in human fibroblasts at late times after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Dresler, S.L.; Gowans, B.J.; Robinson-Hill, R.M.; Hunting, D.J.

    1988-01-01

    DNA repair synthesis following UV irradiation of confluent human fibroblasts has a biphasic time course with an early phase of rapid nucleotide incorporation and a late phase of much slower nucleotide incorporation. The biphasic nature of this curve suggests that two distinct DNA repair systems may be operative. Previous studies have specifically implicated DNA polymerase δ as the enzyme involved in DNA repair synthesis occurring immediately after UV damage. In this paper, the authors describe studies of DNA polymerase involvement in DNA repair synthesis in confluent human fibroblasts at late times after UV irradiation. Late UV-induced DNA repair synthesis in both intact and permeable cells was found to be inhibited by aphidicolin, indicating the involvement of one of the aphidicolin-sensitive DNA polymerases, α or δ. In permeable cells, the process was further analyzed by using the nucleotide analogue (butylphenyl)-2'-deoxyguanosine 5'-triphosphate, which inhibits DNA polymerase α several hundred times more strongly than it inhibits DNA polymerase δ. The (butylphenyl)-2'-deoxyguanosine 5'-triphosphate inhibition curve for late UV-induced repair synthesis was very similar to that for polymerase δ. It appears that repair synthesis at late time after UV irradiation, like repair synthesis at early times, is mediated by DNA polymerase δ

  10. Modeling extreme ultraviolet suppression of electrostatic analyzers

    International Nuclear Information System (INIS)

    Gershman, Daniel J.; Zurbuchen, Thomas H.

    2010-01-01

    In addition to analyzing energy-per-charge ratios of incident ions, electrostatic analyzers (ESAs) for spaceborne time-of-flight mass spectrometers must also protect detectors from extreme ultraviolet (EUV) photons from the Sun. The required suppression rate often exceeds 1:10 7 and is generally established in tests upon instrument design and integration. This paper describes a novel technique to model the EUV suppression of ESAs using photon ray tracing integrated into SIMION, the most commonly used ion optics design software for such instruments. The paper compares simulation results with measurements taken from the ESA of the Mass instrument flying onboard the Wind spacecraft. This novel technique enables an active inclusion of EUV suppression requirements in the ESA design process. Furthermore, the simulation results also motivate design rules for such instruments.

  11. Real-time airborne particle analyzer

    Science.gov (United States)

    Reilly, Peter T.A.

    2012-10-16

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  12. Development of a nuclear plant analyzer (NPA)

    International Nuclear Information System (INIS)

    De Vlaminck, M.; Mampaey, L.; Vanhoenacker, L.; Bastenaire, F.

    1990-01-01

    A Nuclear Plant Analyzer has been developed by TRACTABEL. Three distinct functional units make up the Nuclear Plant Analyser, a model builder, a run time unit and an analysis unit. The model builder is intended to build simulation models which describe on the one hand the geometric structure and initial conditions of a given plant and on the other hand command control logics and reactor protection systems. The run time unit carries out dialog between the user and the thermal-hydraulic code. The analysis unit is aimed at deep analyzing of the transient results. The model builder is being tested in the framework of the International Standard Problem ISP-26, which is the simulation of a LOCA on the Japanese ROSA facility

  13. Computer-based radionuclide analyzer system

    International Nuclear Information System (INIS)

    Ohba, Kengo; Ishizuka, Akira; Kobayashi, Akira; Ohhashi, Hideaki; Tsuruoka, Kimitoshi.

    1978-01-01

    The radionuclide analysis in nuclear power plants, practiced for the purpose of monitoring the quality of the primary loop water, the confirmation of the performance of reactor cleanup system and monitoring the radioactive waste effluent, is an important job. Important as it is, it requires considerable labor of experts, because the samples to be analyzed are multifarious and very large in number, and in addition, this job depends much on manual work. With a view of saving the labor, simplifying and standardizing the work, reducing radiation exposure, and automatizing the work of analysis, the computerized analyzer system has been worked out. The results of its performance test at the operating power plant have proved that the development has fairly accomplished the objects and that the system is well useful. The developmental work was carried out by the cooperation between The Tokyo Electric Power Co. and Toshiba in about 4 years from 1974 to this year. (auth.)

  14. A passive physical model for DnaK chaperoning

    Science.gov (United States)

    Uhl, Lionel; Dumont, Audrey; Dukan, Sam

    2018-03-01

    Almost all living organisms use protein chaperones with a view to preventing proteins from misfolding or aggregation either spontaneously or during cellular stress. This work uses a reaction-diffusion stochastic model to describe the dynamic localization of the Hsp70 chaperone DnaK in Escherichia coli cells during transient proteotoxic collapse characterized by the accumulation of insoluble proteins. In the model, misfolded (‘abnormal’) proteins are produced during alcoholic stress and have the propensity to aggregate with a polymerization-like kinetics. When aggregates diffuse more slowly they grow larger. According to Michaelis-Menten-type kinetics, DnaK has the propensity to bind with misfolded proteins or aggregates in order to catalyse refolding. To match experimental fluorescence microscopy data showing clusters of DnaK-GFP localized in multiple foci, the model includes spatial zones with local reduced diffusion rates to generate spontaneous assemblies of DnaK called ‘foci’. Numerical simulations of our model succeed in reproducing the kinetics of DnaK localization experimentally observed. DnaK starts from foci, moves to large aggregates during acute stress, resolves those aggregates during recovery and finally returns to its initial punctate localization pattern. Finally, we compare real biological events with hypothetical repartitions of the protein aggregates or DnaK. We then notice that DnaK action is more efficient on protein aggregates than on protein homogeneously distributed.

  15. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  16. Whose DNA is this?

    DEFF Research Database (Denmark)

    Taroni, Franco; Biedermann, Alex; Vuille, Joëlle

    2013-01-01

    This communication seeks to draw the attention of researchers and practitioners dealing with forensic DNA profiling analyses to the following question: is a scientist's report, offering support to a hypothesis according to which a particular individual is the source of DNA detected during...... evoked during the international conference "The hidden side of DNA profiles. Artifacts, errors and uncertain evidence" held in Rome (April 27th to 28th, 2012). Indeed, despite the fact that this conference brought together some of the world's leading forensic DNA specialists, it appeared clearly...... talk considerably different languages. It thus is fundamental to address this issue of communication about results of forensic DNA analyses, and open a dialogue with practicing non-scientists at large who need to make meaningful use of scientific results to approach and help solve judicial cases...

  17. Racemic DNA crystallography.

    Science.gov (United States)

    Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan

    2014-12-22

    Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Analyzing the Existing Undergraduate Engineering Leadership Skills

    OpenAIRE

    Hamed M. Almalki; Luis Rabelo; Charles Davis; Hammad Usmani; Debra Hollister; Alfonso Sarmiento

    2016-01-01

    Purpose: Studying and analyzing the undergraduate engineering students' leadership skills to discover their potential leadership strengths and weaknesses. This study will unveil potential ways to enhance the ways we teach engineering leadership. The research has great insights that might assist engineering programs to improve curricula for the purpose of better engineering preparation to meet industry's demands. Methodology and Findings: 441 undergraduate engineering students have been s...

  19. Analyzing negative ties in social networks

    Directory of Open Access Journals (Sweden)

    Mankirat Kaur

    2016-03-01

    Full Text Available Online social networks are a source of sharing information and maintaining personal contacts with other people through social interactions and thus forming virtual communities online. Social networks are crowded with positive and negative relations. Positive relations are formed by support, endorsement and friendship and thus, create a network of well-connected users whereas negative relations are a result of opposition, distrust and avoidance creating disconnected networks. Due to increase in illegal activities such as masquerading, conspiring and creating fake profiles on online social networks, exploring and analyzing these negative activities becomes the need of hour. Usually negative ties are treated in same way as positive ties in many theories such as balance theory and blockmodeling analysis. But the standard concepts of social network analysis do not yield same results in respect of each tie. This paper presents a survey on analyzing negative ties in social networks through various types of network analysis techniques that are used for examining ties such as status, centrality and power measures. Due to the difference in characteristics of flow in positive and negative tie networks some of these measures are not applicable on negative ties. This paper also discusses new methods that have been developed specifically for analyzing negative ties such as negative degree, and h∗ measure along with the measures based on mixture of positive and negative ties. The different types of social network analysis approaches have been reviewed and compared to determine the best approach that can appropriately identify the negative ties in online networks. It has been analyzed that only few measures such as Degree and PN centrality are applicable for identifying outsiders in network. For applicability in online networks, the performance of PN measure needs to be verified and further, new measures should be developed based upon negative clique concept.

  20. Analyzing Architecture of Mithraism Rock Temples

    OpenAIRE

    Zohre AliJabbari

    2017-01-01

    This analyzes the architecture of rock temples of West and Northwest of Iran, as well as factors influencing their formation. The creation of rock architecture in this area of Iran is influenced by the religious, geographical and political atmosphere of their time. Most of these structures are formed by dominated empires in the first millennium BC. And in some works we are observing their continuity in later periods and change in their functions. One of the reasons that have attracted man to ...

  1. General methods for analyzing bounded proportion data

    OpenAIRE

    Hossain, Abu

    2017-01-01

    This thesis introduces two general classes of models for analyzing proportion response variable when the response variable Y can take values between zero and one, inclusive of zero and/or one. The models are inflated GAMLSS model and generalized Tobit GAMLSS model. The inflated GAMLSS model extends the flexibility of beta inflated models by allowing the distribution on (0,1) of the continuous component of the dependent variable to come from any explicit or transformed (i.e. logit or truncated...

  2. Development of a Portable Water Quality Analyzer

    OpenAIRE

    Germán COMINA; Martin NISSFOLK; José Luís SOLÍS

    2010-01-01

    A portable water analyzer based on a voltammetric electronic tongue has been developed. The system uses an electrochemical cell with two working electrodes as sensors, a computer controlled potentiostat, and software based on multivariate data analysis for pattern recognition. The system is suitable to differentiate laboratory made and real in-situ river water samples contaminated with different amounts of Escherichia coli. This bacteria is not only one of the main indicators for water qualit...

  3. Moving Block Bootstrap for Analyzing Longitudinal Data.

    Science.gov (United States)

    Ju, Hyunsu

    In a longitudinal study subjects are followed over time. I focus on a case where the number of replications over time is large relative to the number of subjects in the study. I investigate the use of moving block bootstrap methods for analyzing such data. Asymptotic properties of the bootstrap methods in this setting are derived. The effectiveness of these resampling methods is also demonstrated through a simulation study.

  4. A chemical analyzer for charged ultrafine particles

    OpenAIRE

    S. G. Gonser; A. Held

    2013-01-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable...

  5. A chemical analyzer for charged ultrafine particles

    OpenAIRE

    S. G. Gonser; A. Held

    2013-01-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the Earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of ana...

  6. A seal analyzer for testing container integrity

    International Nuclear Information System (INIS)

    McDaniel, P.; Jenkins, C.

    1988-01-01

    This paper reports on the development of laboratory and production seal analyzer that offers a rapid, nondestructive method of assuring the seal integrity of virtually any type of single or double sealed container. The system can test a broad range of metal cans, drums and trays, membrane-lidded vessels, flexible pouches, aerosol containers, and glass or metal containers with twist-top lids that are used in the chemical/pesticide (hazardous materials/waste), beverage, food, medical and pharmaceutical industries

  7. Neutral Particle Analyzer Diagnostic on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; A.L. Roquemore

    2004-03-16

    The Neutral Particle Analyzer (NPA) diagnostic on the National Spherical Torus Experiment (NSTX) utilizes a PPPL-designed E||B spectrometer that measures the energy spectra of minority hydrogen and bulk deuterium species simultaneously with 39 energy channels per mass specie and a time resolution of 1 ms. The calibrated energy range is E = 0.5-150 keV and the energy resolution varies from AE/E = 3-7% over the surface of the microchannel plate detector.

  8. Neutral Particle Analyzer Diagnostic on NSTX

    International Nuclear Information System (INIS)

    Medley, S.S.; Roquemore, A.L.

    2004-01-01

    The Neutral Particle Analyzer (NPA) diagnostic on the National Spherical Torus Experiment (NSTX) utilizes a PPPL-designed E||B spectrometer that measures the energy spectra of minority hydrogen and bulk deuterium species simultaneously with 39 energy channels per mass specie and a time resolution of 1 ms. The calibrated energy range is E = 0.5-150 keV and the energy resolution varies from AE/E = 3-7% over the surface of the microchannel plate detector

  9. A Raman-Based Portable Fuel Analyzer

    Science.gov (United States)

    Farquharson, Stuart

    2010-08-01

    Fuel is the single most import supply during war. Consider that the US Military is employing over 25,000 vehicles in Iraq and Afghanistan. Most fuel is obtained locally, and must be characterized to ensure proper operation of these vehicles. Fuel properties are currently determined using a deployed chemical laboratory. Unfortunately, each sample requires in excess of 6 hours to characterize. To overcome this limitation, we have developed a portable fuel analyzer capable of determine 7 fuel properties that allow determining fuel usage. The analyzer uses Raman spectroscopy to measure the fuel samples without preparation in 2 minutes. The challenge, however, is that as distilled fractions of crude oil, all fuels are composed of hundreds of hydrocarbon components that boil at similar temperatures, and performance properties can not be simply correlated to a single component, and certainly not to specific Raman peaks. To meet this challenge, we measured over 800 diesel and jet fuels from around the world and used chemometrics to correlate the Raman spectra to fuel properties. Critical to the success of this approach is laser excitation at 1064 nm to avoid fluorescence interference (many fuels fluoresce) and a rugged interferometer that provides 0.1 cm-1 wavenumber (x-axis) accuracy to guarantee accurate correlations. Here we describe the portable fuel analyzer, the chemometric models, and the successful determination of these 7 fuel properties for over 100 unknown samples provided by the US Marine Corps, US Navy, and US Army.

  10. Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. BNL has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  11. Visual analyzer as anticipatory system (functional organization)

    Science.gov (United States)

    Kirvelis, Dobilas

    2000-05-01

    Hypothetical functional organization of the visual analyzer is presented. The interpretation of visual perception, anatomic and morphological structure of visual systems of animals, neuro-physiological, psychological and psycho-physiological data in the light of a number of the theoretical solutions of image recognition and visual processes simulation enable active information processing. The activities in special areas of cortex are as follows: focused attention, prediction with analysis of visual scenes and synthesis, predictive mental images. In the projection zone of visual cortex Area Streata or V1 a "sensory" screen (SS) and "reconstruction" screen (RS) are supposed to exist. The functional structure of visual analyzer consist of: analysis of visual scenes projected onto SS; "tracing" of images; preliminary recognition; reversive image reconstruction onto RS; comparison of images projected onto SS with images reconstructed onto RS; and "correction" of preliminary recognition. Special attention is paid to the quasiholographical principles of the neuronal organization within the brain, of the image "tracing," and of reverse image reconstruction. Tachistoscopic experiments revealed that the duration of one such hypothesis-testing cycle of the human visual analyzers is about 8-10 milliseconds.

  12. Quality Analysis of DNA from Cord Blood Buffy Coat: The Best Neonatal DNA Source for Epidemiological Studies?

    Science.gov (United States)

    Zhou, Guangdi; Li, Qin; Huang, Lisu; Wu, Yuhang; Wu, Meiqin; Wang, Weiye C

    2016-04-01

    Umbilical cord blood is an economical and easy to obtain source of high-quality neonatal genomic DNA. However, although large numbers of cord blood samples have been collected, information on the yield and quality of the DNA extracted from cord blood is scarce. Moreover, considerable doubt still exists on the utility of the buffy coat instead of whole blood as a DNA source. We compared the sample storage and DNA extraction costs for whole blood, buffy coat, and all-cell pellet. We evaluated three different DNA purification kits and selected the most suitable one to purify 1011 buffy coat samples. We determined the DNA yield and optical density (OD) ratios and analyzed 48 single-nucleotide polymorphisms using time-of-flight mass spectrometry (TOF MS). We also analyzed eight possible preanalytical variables that may correlate with DNA yield or quality. Buffy coat was the most economical and least labor-intensive source for sample storage and DNA extraction. The average yield of genomic DNA from 200 μL of buffy coat sample was 16.01 ± 8.00 μg, which is sufficient for analytic experiments. The mean A260/A280 ratio and the mean A260/A230 ratio were 1.89 ± 0.09 and 1.95 ± 0.66, respectively. More than 99.5% of DNA samples passed the TOF MS test. Only hemolysis showed a strong correlation with OD ratios of DNA, but not with yield. Our findings show that cord blood buffy coat yields high-quality DNA in sufficient quantities to meet the requirements of experiments. Buffy coat was also found to be the most economic, efficient, and stable source of genomic DNA.

  13. ANALYZING CONSUMER BEHAVIOR IN BANKING SECTOR OF KOSOVO

    Directory of Open Access Journals (Sweden)

    Vjosa Fejza

    2017-12-01

    Full Text Available Considering the importance of understanding, analyzing and studying consumer behavior and behavior model, it was deemed necessary to conduct a research on this issue. As part of this research, consumer behavior models in the banking system of Kosovo were studied and analyzed. The first part of the study is characterized by a review of various literature, publications and scientific journals related to understanding the role and importance of consumer behavior in enterprises. Whereas the second part of the study includes a survey questionnaire, with a 500 individual client sample base, randomly selected from commercial banks in Kosovo. This survey was done with the purpose to collect data to determine behavior models of existing consumers in the banking sector and analyze various internal and external factors which influence such behaviors. Finally, data obtained from questionnaire surveys were used to draw conclusions on issues central to this research and issue recommendations which may be useful to commercial banks currently operating in Kosovo, as well as other financial institutions interested in this field.

  14. First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes

    KAUST Repository

    Chen, X.

    2012-03-26

    Rapid and cost-effective DNA sequencing at the single nucleotide level might be achieved by measuring a transverse electronic current as single-stranded DNA is pulled through a nanometer-sized pore. In order to enhance the electronic coupling between the nucleotides and the electrodes and hence the current signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes (CNTs) as electrodes. We then investigate the electron transport properties of nucleotides sandwiched between such electrodes by using first-principles quantum transport theory. In particular, we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap of the CNT can strongly couple with the nucleobases and therefore it can both reduce conformational fluctuations and significantly improve the conductance. As such, when the electrodes are closely spaced, the nucleobases can pass through only with their base plane parallel to the plane of CNT end caps. The optimal molecular configurations, at which the nucleotides strongly couple to the CNTs, and which yield the largest transmission, are first identified. These correspond approximately to the lowest energy configurations. Then the electronic structures and the electron transport of these optimal configurations are analyzed. The typical tunneling currents are of the order of 50 nA for voltages up to 1 V. At higher bias, where resonant transport through the molecular states is possible, the current is of the order of several μA. Below 1 V, the currents associated to the different nucleotides are consistently distinguishable, with adenine having the largest current, guanine the second largest, cytosine the third and, finally, thymine the smallest. We further calculate the transmission coefficient profiles as the nucleotides are dragged along the DNA translocation path and investigate the effects of configurational variations

  15. New Trends of Digital Data Storage in DNA.

    Science.gov (United States)

    De Silva, Pavani Yashodha; Ganegoda, Gamage Upeksha

    With the exponential growth in the capacity of information generated and the emerging need for data to be stored for prolonged period of time, there emerges a need for a storage medium with high capacity, high storage density, and possibility to withstand extreme environmental conditions. DNA emerges as the prospective medium for data storage with its striking features. Diverse encoding models for reading and writing data onto DNA, codes for encrypting data which addresses issues of error generation, and approaches for developing codons and storage styles have been developed over the recent past. DNA has been identified as a potential medium for secret writing, which achieves the way towards DNA cryptography and stenography. DNA utilized as an organic memory device along with big data storage and analytics in DNA has paved the way towards DNA computing for solving computational problems. This paper critically analyzes the various methods used for encoding and encrypting data onto DNA while identifying the advantages and capability of every scheme to overcome the drawbacks identified priorly. Cryptography and stenography techniques have been analyzed in a critical approach while identifying the limitations of each method. This paper also identifies the advantages and limitations of DNA as a memory device and memory applications.

  16. Developing DNA nanotechnology using single-molecule fluorescence.

    Science.gov (United States)

    Tsukanov, Roman; Tomov, Toma E; Liber, Miran; Berger, Yaron; Nir, Eyal

    2014-06-17

    CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and

  17. PH- and salt-dependent molecular combing of DNA: experiments and phenomenological model

    International Nuclear Information System (INIS)

    Benke, Annegret; Pompe, Wolfgang; Mertig, Michael

    2011-01-01

    λ-DNA as well as plasmids can be successfully deposited by molecular combing on hydrophobic surfaces, for pH values ranging from 4 to 10. On polydimethylsiloxane (PDMS) substrates, the deposited DNA molecules are overstretched by about 60-100%. There is a significant influence of sodium ions (NaCl) on the surface density of the deposited DNA, with a maximum near to 100 mM NaCl for a DNA solution (28 ng μl -1 ) at pH 8. The combing process can be described by a micromechanical model including: (i) the adsorption of free moving coiled DNA at the substrate; (ii) the stretching of the coiled DNA by the preceding meniscus; (iii) the relaxation of the deposited DNA to the final length. The sticky ends of λ-DNA cause an adhesion force in the range of about 400 pN which allows a stable overstretching of the DNA by the preceding meniscus. The exposing of hidden hydrophobic bonds of the overstretched DNA leads to a stable deposition on the hydrophobic substrate. The pH-dependent density of deposited DNA as well as the observed influence of sodium ions can be explained by their screening of the negatively charged DNA backbone and sticky ends, respectively. The final DNA length can be derived from a balance of the stored elastic energy of the overstretched molecules and the energy of adhesion.

  18. DNA in the Criminal Justice System: The DNA Success Story in Perspective.

    Science.gov (United States)

    Mapes, Anna A; Kloosterman, Ate D; de Poot, Christianne J

    2015-07-01

    Current figures on the efficiency of DNA as an investigative tool in criminal investigations only tell part of the story. To get the DNA success story in the right perspective, we examined all forensic reports from serious (N = 116) and high-volume crime cases (N = 2791) over the year 2011 from one police region in the Netherlands. These data show that 38% of analyzed serious crime traces (N = 384) and 17% of analyzed high-volume crime traces (N = 386) did not result in a DNA profile. Turnaround times (from crime scene to DNA report) were 66 days for traces from serious crimes and 44 days for traces from high-volume crimes. Suspects were truly identified through a match with the Offender DNA database of the Netherlands in 3% of the serious crime cases and in 1% of the high-volume crime cases. These data are important for both the forensic laboratory and the professionals in the criminal justice system to further optimize forensic DNA testing as an investigative tool. © 2015 American Academy of Forensic Sciences.

  19. The effects of reciprocal cross on inheritance of DNA methylation in ...

    African Journals Online (AJOL)

    DNA methylation plays an important role for regulation of gene expression. To study the inheritance of DNA methylation, we selected two F1 plant population by reciprocal cross with two cotton lines Zongcaixuan No.1 and HY428, and analyzed the variations of DNA methylation levels and patterns in F1 generations by ...

  20. Heterology of mitochondrial DNA from mammals detected by electron microscopic heteroduplex analyses

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C

    1983-01-01

    Heteroduplex analysis of mitochondrial DNA (mtDNA) from evolutionary closely related mammals (rat vs. mouse, man vs. monkey) are analyzed and compared to heteroduplex analysis of mt-DNA from more distantly related mammals (rat vs. man, rat vs. monkey, mouse vs. man, mouse vs. monkey and man vs. cow...

  1. Detection of novel polymorphisms in the mitochondrial DNA D-Loop ...

    African Journals Online (AJOL)

    the degree of variation characteristic of a fragment. FTA® Technology (FTA™ paper DNA extraction) was utilized to extract DNA. PCR products were purified by EZ-10 spin column then sequenced and detected by using the ABI 3730xL DNA Analyzer. Novel polymorphisms discovered at positions 16037, 16075, 16104 and ...

  2. Over-expression of Arabidopsis DnaJ (Hsp40) contributes to NaCl ...

    African Journals Online (AJOL)

    Over-expression of Arabidopsis DnaJ (Hsp40) contributes to NaCl-stress tolerance. Z Zhichang, Z Wanrong, Y Jinping, Z Jianjun, LZL Xufeng, Y Yang. Abstract. DnaJ (Hsp40), a heat shock protein, is a molecular chaperones responsive to various environmental stress. To analyze the protective role of DnaJ, we obtained ...

  3. The NPT Review Conference: Analyzing the Outcome

    International Nuclear Information System (INIS)

    Maitre, Emmanuelle

    2015-01-01

    The 2015 Nonproliferation Treaty Review Conference failed to produce a final document and has been unanimously held as a failure because of major disagreements on nuclear disarmament, the humanitarian consequences movement and the WMD-free zone in the Middle east. This note argues that this lack of success is as detrimental to non-nuclear weapon states as to nuclear-weapon states, and that both groups will need to adopt a more conciliatory attitude if they want to address the rising challenges to the nuclear global order. The positive developments recorded in the Review Conference Main Committee III, dedicated to peaceful uses, are an indication that concrete compromises and trade-off between the various groups are achievable in the opening review cycle, despite strong political tensions. (author)

  4. Isolation and enrichment of Cryptosporidium DNA and verification of DNA purity for whole-genome sequencing.

    Science.gov (United States)

    Guo, Yaqiong; Li, Na; Lysén, Colleen; Frace, Michael; Tang, Kevin; Sammons, Scott; Roellig, Dawn M; Feng, Yaoyu; Xiao, Lihua

    2015-02-01

    Whole-genome sequencing of Cryptosporidium spp. is hampered by difficulties in obtaining sufficient, highly pure genomic DNA from clinical specimens. In this study, we developed procedures for the isolation and enrichment of Cryptosporidium genomic DNA from fecal specimens and verification of DNA purity for whole-genome sequencing. The isolation and enrichment of genomic DNA were achieved by a combination of three oocyst purification steps and whole-genome amplification (WGA) of DNA from purified oocysts. Quantitative PCR (qPCR) analysis of WGA products was used as an initial quality assessment of amplified genomic DNA. The purity of WGA products was assessed by Sanger sequencing of cloned products. Next-generation sequencing tools were used in final evaluations of genome coverage and of the extent of contamination. Altogether, 24 fecal specimens of Cryptosporidium parvum, C. hominis, C. andersoni, C. ubiquitum, C. tyzzeri, and Cryptosporidium chipmunk genotype I were processed with the procedures. As expected, WGA products with low (sequences in Sanger sequencing. The cloning-sequencing analysis, however, showed significant contamination in 5 WGA products (proportion of positive colonies derived from Cryptosporidium genomic DNA, ≤25%). Following this strategy, 20 WGA products from six Cryptosporidium species or genotypes with low (mostly sequencing, generating sequence data covering 94.5% to 99.7% of Cryptosporidium genomes, with mostly minor contamination from bacterial, fungal, and host DNA. These results suggest that the described strategy can be used effectively for the isolation and enrichment of Cryptosporidium DNA from fecal specimens for whole-genome sequencing. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Geolocation Technologies Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Magnoli, D E

    2003-06-02

    This paper is the final report for LL998 In Situ Sensing Subtask 7 (Geo-location) undertaken for NNSA NA-22 enabling technologies R&D for Counterproliferation Detection. A few state-of-the-art resolution parameters are presented for accelerometers, indoor and outdoor GPS (Global Positioning Satellite) systems, and INSs (Inertial Navigation Systems). New technologies are described, including one which has demonstrated the ability to track within a building to a resolution of under a foot.

  6. CMS Is Finally Completed

    CERN Multimedia

    2008-01-01

    Yet another step in the completion of the Large Hadron Collider was taken yesterday morning, as the final element of the Compact Muon Solenoid was lowered nearly 100 meters bellow ground. After more than eight years of work at the world's most powerful particle accelerator, scientists hope that they will be able to start initial experiments with the LHC until the end of this year.

  7. A new structural framework for integrating replication protein A into DNA processing machinery

    Energy Technology Data Exchange (ETDEWEB)

    Brosey, Chris; Yan, Chunli; Tsutakawa, Susan; Heller, William; Rambo, Robert; Tainer, John; Ivanov, Ivaylo; Chazin, Walter

    2013-01-17

    By coupling the protection and organization of single-stranded DNA (ssDNA) with recruitment and alignment of DNA processing factors, replication protein A (RPA) lies at the heart of dynamic multi-protein DNA processing machinery. Nevertheless, how RPA coordinates biochemical functions of its eight domains remains unknown. We examined the structural biochemistry of RPA's DNA-binding activity, combining small-angle X-ray and neutron scattering with all-atom molecular dynamics simulations to investigate the architecture of RPA's DNA-binding core. The scattering data reveal compaction promoted by DNA binding; DNA-free RPA exists in an ensemble of states with inter-domain mobility and becomes progressively more condensed and less dynamic on binding ssDNA. Our results contrast with previous models proposing RPA initially binds ssDNA in a condensed state and becomes more extended as it fully engages the substrate. Moreover, the consensus view that RPA engages ssDNA in initial, intermediate and final stages conflicts with our data revealing that RPA undergoes two (not three) transitions as it binds ssDNA with no evidence for a discrete intermediate state. These results form a framework for understanding how RPA integrates the ssDNA substrate into DNA processing machinery, provides substrate access to its binding partners and promotes the progression and selection of DNA processing pathways.

  8. IRISpy: Analyzing IRIS Data in Python

    Science.gov (United States)

    Ryan, Daniel; Christe, Steven; Mumford, Stuart; Baruah, Ankit; Timothy, Shelbe; Pereira, Tiago; De Pontieu, Bart

    2017-08-01

    IRISpy is a new community-developed open-source software library for analysing IRIS level 2 data. It is written in Python, a free, cross-platform, general-purpose, high-level programming language. A wide array of scientific computing software packages have already been developed in Python, from numerical computation (NumPy, SciPy, etc.), to visualization and plotting (matplotlib), to solar-physics-specific data analysis (SunPy). IRISpy is currently under development as a SunPy-affiliated package which means it depends on the SunPy library, follows similar standards and conventions, and is developed with the support of of the SunPy development team. IRISpy’s has two primary data objects, one for analyzing slit-jaw imager data and another for analyzing spectrograph data. Both objects contain basic slicing, indexing, plotting, and animating functionality to allow users to easily inspect, reduce and analyze the data. As part of this functionality the objects can output SunPy Maps, TimeSeries, Spectra, etc. of relevant data slices for easier inspection and analysis. Work is also ongoing to provide additional data analysis functionality including derivation of systematic measurement errors (e.g. readout noise), exposure time correction, residual wavelength calibration, radiometric calibration, and fine scale pointing corrections. IRISpy’s code base is publicly available through github.com and can be contributed to by anyone. In this poster we demonstrate IRISpy’s functionality and future goals of the project. We also encourage interested users to become involved in further developing IRISpy.

  9. Air sampling unit for breath analyzers

    Science.gov (United States)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  10. A chemical analyzer for charged ultrafine particles

    Science.gov (United States)

    Gonser, S. G.; Held, A.

    2013-09-01

    New particle formation is a frequent phenomenon in the atmosphere and of major significance for the Earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP) capable of analyzing particles with diameters below 30 nm. A bulk of size-separated particles is collected electrostatically on a metal filament, resistively desorbed and subsequently analyzed for its molecular composition in a time of flight mass spectrometer. We report on technical details as well as characterization experiments performed with the CAChUP. Our instrument was tested in the laboratory for its detection performance as well as for its collection and desorption capabilities. The manual application of defined masses of camphene (C10H16) to the desorption filament resulted in a detection limit between 0.5 and 5 ng, and showed a linear response of the mass spectrometer. Flow tube experiments of 25 nm diameter secondary organic aerosol from ozonolysis of alpha-pinene also showed a linear relation between collection time and the mass spectrometer's signal intensity. The resulting mass spectra from the collection experiments are in good agreement with published work on particles generated by the ozonolysis of alpha-pinene. A sensitivity study shows that the current setup of CAChUP is ready for laboratory measurements and for the observation of new particle formation events in the field.

  11. A computer program for analyzing channel geometry

    Science.gov (United States)

    Regan, R.S.; Schaffranek, R.W.

    1985-01-01

    The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)

  12. Remote Laser Diffraction Particle Size Distribution Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas; Huestis, Gary Michael; Bolton, Steven Michael

    2001-03-01

    In support of a radioactive slurry sampling and physical characterization task, an “off-the-shelf” laser diffraction (classical light scattering) particle size analyzer was utilized for remote particle size distribution (PSD) analysis. Spent nuclear fuel was previously reprocessed at the Idaho Nuclear Technology and Engineering Center (INTEC—formerly recognized as the Idaho Chemical Processing Plant) which is on DOE’s INEEL site. The acidic, radioactive aqueous raffinate streams from these processes were transferred to 300,000 gallon stainless steel storage vessels located in the INTEC Tank Farm area. Due to the transfer piping configuration in these vessels, complete removal of the liquid can not be achieved. Consequently, a “heel” slurry remains at the bottom of an “emptied” vessel. Particle size distribution characterization of the settled solids in this remaining heel slurry, as well as suspended solids in the tank liquid, is the goal of this remote PSD analyzer task. A Horiba Instruments Inc. Model LA-300 PSD analyzer, which has a 0.1 to 600 micron measurement range, was modified for remote application in a “hot cell” (gamma radiation) environment. This technology provides rapid and simple PSD analysis, especially down in the fine and microscopic particle size regime. Particle size analysis of these radioactive slurries down in this smaller range was not previously achievable—making this technology far superior than the traditional methods used. Successful acquisition of this data, in conjunction with other characterization analyses, provides important information that can be used in the myriad of potential radioactive waste management alternatives.

  13. A Real Time PCR Platform for the Simultaneous Quantification of Total and Extrachromosomal HIV DNA Forms in Blood of HIV-1 Infected Patients

    Science.gov (United States)

    Canovari, Benedetta; Scotti, Maddalena; Acetoso, Marcello; Valentini, Massimo; Petrelli, Enzo; Magnani, Mauro

    2014-01-01

    Background The quantitative measurement of various HIV-1 DNA forms including total, unintegrated and integrated provirus play an increasingly important role in HIV-1 infection monitoring and treatment-related research. We report the development and validation of a SYBR Green real time PCR (TotUFsys platform) for the simultaneous quantification of total and extrachromosomal HIV-1 DNA forms in patients. This innovative technique makes it possible to obtain both measurements in a single PCR run starting from frozen blood employing the same primers and standard curve. Moreover, due to identical amplification efficiency, it allows indirect estimation of integrated level. To specifically detect 2-LTR a qPCR method was also developed. Methodology/Findings Primers used for total HIV-1 DNA quantification spanning a highly conserved region were selected and found to detect all HIV-1 clades of group M and the unintegrated forms of the same. A total of 195 samples from HIV-1 patients in a wide range of clinical conditions were analyzed with a 100% success rate, even in patients with suppressed plasma viremia, regardless of CD4+ or therapy. No significant correlation was observed between the two current prognostic markers, CD4+ and plasma viremia, while a moderate or high inverse correlation was found between CD4+ and total HIV DNA, with strong values for unintegrated HIV DNA. Conclusions/Significance Taken together, the results support the use of HIV DNA as another tool, in addition to traditional assays, which can be used to estimate the state of viral infection, the risk of disease progression and to monitor the effects of ART. The TotUFsys platform allowed us to obtain a final result, expressed as the total and unintegrated HIV DNA copy number per microgram of DNA or 104 CD4+, for 12 patients within two working days. PMID:25364909

  14. Purification of crime scene DNA extracts using centrifugal filter devices.

    Science.gov (United States)

    Norén, Lina; Hedell, Ronny; Ansell, Ricky; Hedman, Johannes

    2013-04-24

    The success of forensic DNA analysis is limited by the size, quality and purity of biological evidence found at crime scenes. Sample impurities can inhibit PCR, resulting in partial or negative DNA profiles. Various DNA purification methods are applied to remove impurities, for example, employing centrifugal filter devices. However, irrespective of method, DNA purification leads to DNA loss. Here we evaluate the filter devices Amicon Ultra 30 K and Microsep 30 K with respect to recovery rate and general performance for various types of PCR-inhibitory crime scene samples. Recovery rates for DNA purification using Amicon Ultra 30 K and Microsep 30 K were gathered using quantitative PCR. Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the general performance and inhibitor-removal properties of the two filter devices. Additionally, the outcome of long-term routine casework DNA analysis applying each of the devices was evaluated. Applying Microsep 30 K, 14 to 32% of the input DNA was recovered, whereas Amicon Ultra 30 K retained 62 to 70% of the DNA. The improved purity following filter purification counteracted some of this DNA loss, leading to slightly increased electropherogram peak heights for blood on denim (Amicon Ultra 30 K and Microsep 30 K) and saliva on envelope (Amicon Ultra 30 K). Comparing Amicon Ultra 30 K and Microsep 30 K for purification of DNA extracts from mock crime scene samples, the former generated significantly higher peak heights for rape case samples (P-values crime scene samples and for consistency between different PCR-based analysis systems, such as quantification and STR analysis. In order to maximize the possibility to obtain complete STR DNA profiles and to create an efficient workflow, the level of DNA purification applied should be correlated to the inhibitor-tolerance of the STR analysis system used.

  15. MOBE: Final Report

    DEFF Research Database (Denmark)

    Trangbæk, K; Elmegaard, Brian

    model but this should be developed further to better understand the evaporator process and its coupling to the rest of the plant, particularly reheat. The models developed in the project are based on several simplified assumptions. These assumptions will have to be evaluated in future work by more focus...... simulation code DNA and Matlab. Other possible tools are suggested. The modelling work in the project has resulted in preliminary studies of time constants of evaporator tubes, an analysis that shows that Ledinegg-instabilities do not occur in modern boilers even at low load, development of a validated...... evaporator model that can be coupled to tools for control system development, and an analysis of two different configurations af the low load system of Benson boilers. Based in a validated power plant model different control strategies have been studied. Because constraints on control signals and temperature...

  16. Analyzing Argumentation In Rich, Natural Contexts

    Directory of Open Access Journals (Sweden)

    Anita Reznitskaya

    2008-02-01

    Full Text Available The paper presents the theoretical and methodological aspects of research on the development of argument- ation in elementary school children. It presents a theoretical framework detailing psychological mechanisms responsible for the acquisition and transfer of argumentative discourse and demonstrates several applications of the framework, described in sufficient detail to guide future empirical investigations of oral, written, individual, or group argumentation performance. Software programs capable of facilitating data analysis are identified and their uses illustrated. The analytic schemes can be used to analyze large amounts of verbal data with reasonable precision and efficiency. The conclusion addresses more generally the challenges for and possibilities of empirical study of the development of argumentation.

  17. Thermo Scientific Ozone Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The primary measurement output from the Thermo Scientific Ozone Analyzer is the concentration of the analyte (O3) reported at 1-s resolution in units of ppbv in ambient air. Note that because of internal pneumatic switching limitations the instrument only makes an independent measurement every 4 seconds. Thus, the same concentration number is repeated roughly 4 times at the uniform, monotonic 1-s time base used in the AOS systems. Accompanying instrument outputs include sample temperatures, flows, chamber pressure, lamp intensities and a multiplicity of housekeeping information. There is also a field for operator comments made at any time while data is being collected.

  18. Grid and Data Analyzing and Security

    Directory of Open Access Journals (Sweden)

    Fatemeh SHOKRI

    2012-12-01

    Full Text Available This paper examines the importance of secure structures in the process of analyzing and distributing information with aid of Grid-based technologies. The advent of distributed network has provided many practical opportunities for detecting and recording the time of events, and made efforts to identify the events and solve problems of storing information such as being up-to-date and documented. In this regard, the data distribution systems in a network environment should be accurate. As a consequence, a series of continuous and updated data must be at hand. In this case, Grid is the best answer to use data and resource of organizations by common processing.

  19. Development of a Portable Water Quality Analyzer

    Directory of Open Access Journals (Sweden)

    Germán COMINA

    2010-08-01

    Full Text Available A portable water analyzer based on a voltammetric electronic tongue has been developed. The system uses an electrochemical cell with two working electrodes as sensors, a computer controlled potentiostat, and software based on multivariate data analysis for pattern recognition. The system is suitable to differentiate laboratory made and real in-situ river water samples contaminated with different amounts of Escherichia coli. This bacteria is not only one of the main indicators for water quality, but also a main concern for public health, affecting especially people living in high-burden, resource-limiting settings.

  20. Light-weight analyzer for odor recognition

    Energy Technology Data Exchange (ETDEWEB)

    Vass, Arpad A; Wise, Marcus B

    2014-05-20

    The invention provides a light weight analyzer, e.g., detector, capable of locating clandestine graves. The detector utilizes the very specific and unique chemicals identified in the database of human decompositional odor. This detector, based on specific chemical compounds found relevant to human decomposition, is the next step forward in clandestine grave detection and will take the guess-work out of current methods using canines and ground-penetrating radar, which have historically been unreliable. The detector is self contained, portable and built for field use. Both visual and auditory cues are provided to the operator.

  1. Catarse e Final Feliz

    Directory of Open Access Journals (Sweden)

    Myriam Ávila

    2001-12-01

    Full Text Available Resumo: É a certeza de que nada mais – ou nada importante – pode acontecer após o final de um conto que permite o acontecimento da catarse. Se na maioria das narrativas existe algum tipo de dénouement, em algumas delas isso acontece de maneira especialmente satisfatória e afirmativa. O conto de fadas é uma dessas formas narrativas onde o efeito catártico é extremo e preenche objetivos específicos, de acordo com Bruno Bettelheim. Hollywood mimetizou essa forma como estratégia de sedução, iniciando a tradição do final feliz no cinema. A partir do conto de fadas Cinderela, em diferentes versões, juntamente com a animação homônima da Disney e ainda duas versões do filme Sabrina, será traçada aqui uma relação entre a catarse e o final feliz nos contos de fada, bem como seu uso pela indústria cultural. Palavras-chave: catarse, contos de fada, Hollywood

  2. Quantitive DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  3. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultra-low background DNA cloning system.

    Directory of Open Access Journals (Sweden)

    Kenta Goto

    Full Text Available Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an "ultra-low background DNA cloning system" on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Amp(r. First, we constructed a conversion cassette containing the DNA sequences in the following order: an Amp(r 5' UTR (untranslated region and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Amp(r 3' UTR. This cassette allowed conversion of the Amp(r-containing vector into the yeast/E. coli shuttle vector through use of the Amp(r sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific "origins of replication" to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.

  5. DNA Bending elasticity

    Science.gov (United States)

    Sivak, David Alexander

    DNA bending elasticity on length scales of tens of basepairs is of critical importance in numerous biological contexts. Even the simplest models of DNA bending admit of few simple analytic results, thus there is a need for numerical methods to calculate experimental observables, such as distance distributions, forces, FRET efficiencies, and timescales of particular large-scale motions. We have implemented and helped develop a coarse-grained representation of DNA and various other covalently-linked groups that allows simple calculation of such observables for varied experimental systems. The simple freely-jointed chain (FJC) model and extremely coarse resolution proved useful in understanding DNA threading through nanopores, identifying steric occlusion by other parts of the chain as a prime culprit for slower capture as distance to the pore decreased. Enhanced sampling techniques of a finer resolution discrete wormlike chain (WLC) model permitted calculation of cyclization rates for small chains and identified the ramifications of a thermodynamically-sound treatment of thermal melts. Adding treatment of double-stranded DNA's helical nature and single-stranded DNA provided a model system that helped demonstrate the importance of statistical fluctuations in even highly-stressed DNA mini-loops, and allowed us to verify that even these constructs show no evidence of excitation-induced softening. Additional incorporation of salt-sensitivity to the model allowed us to calculate forces and FRET efficiencies for such mini-loops and their uncircularized precursors, thereby furthering the understanding of the nature of IHF binding and bending of its recognition sequence. Adding large volume-excluding spheres linked to the ends of the dsDNA permits calculation of distance distributions and thus small-angle X-ray scattering, whereby we demonstrated the validity of the WLC in describing bending fluctuations in DNA chains as short as 42 bp. We also make important connections

  6. DNA-PK assay

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Carl W.; Connelly, Margery A.

    2004-10-12

    The present invention provides a method for detecting DNA-activated protein kinase (DNA-PK) activity in a biological sample. The method includes contacting a biological sample with a detectably-labeled phosphate donor and a synthetic peptide substrate defined by the following features to provide specific recognition and phosphorylation by DNA-PK: (1) a phosphate-accepting amino acid pair which may include serine-glutamine (Ser-Gln) (SQ), threonine-glutamine (Thr-Gln) (TQ), glutamine-serine (Gln-Ser) (QS), or glutamine-threonine (Gln-Thr) (QT); (2) enhancer amino acids which may include glutamic acid or glutamine immediately adjacent at the amino- or carboxyl- side of the amino acid pair and forming an amino acid pair-enhancer unit; (3) a first spacer sequence at the amino terminus of the amino acid pair-enhancer unit; (4) a second spacer sequence at the carboxyl terminus of the amino acid pair-enhancer unit, which spacer sequences may include any combination of amino acids that does not provide a phosphorylation site consensus sequence motif; and, (5) a tag moiety, which may be an amino acid sequence or another chemical entity that permits separating the synthetic peptide from the phosphate donor. A compostion and a kit for the detection of DNA-PK activity are also provided. Methods for detecting DNA, protein phosphatases and substances that alter the activity of DNA-PK are also provided. The present invention also provides a method of monitoring protein kinase and DNA-PK activity in living cells. -A composition and a kit for monitoring protein kinase activity in vitro and a composition and a kit for monitoring DNA-PK activities in living cells are also provided. A method for identifying agents that alter protein kinase activity in vitro and a method for identifying agents that alter DNA-PK activity in living cells are also provided.

  7. Synesteer Final Report

    International Nuclear Information System (INIS)

    Stoltz, Peter; Dechow, Douglas R.; Kruger, Scott; Granger, Brian

    2007-01-01

    The goal accomplished in this project was to improve the Synergia code by improving the integration of the Impact space charge algorithms into Synergia and improving the graphical user interface for analyzing results. We accomplished five tasks along these lines: (i) a refactoring of the Impact space charge algorithm to make it more accessible by other codes, (ii) development of the Forthon interface between Impact and Python, (iii) implementation of a Python-MPI interface to allow parallel space charge calculation, (iv) a new user-friendly interface for analyzing Synergia results, and (v) a toolkit for doing parallel analysis of Synergia results.

  8. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  9. Plutonium solution analyzer. Revised February 1995

    International Nuclear Information System (INIS)

    Burns, D.A.

    1995-02-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%--0.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40--240 g/l: and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4--4.0 g/y. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 ml of each sample and standard, and generates waste at the rate of about 1.5 ml per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded)

  10. Mango: combining and analyzing heterogeneous biological networks.

    Science.gov (United States)

    Chang, Jennifer; Cho, Hyejin; Chou, Hui-Hsien

    2016-01-01

    Heterogeneous biological data such as sequence matches, gene expression correlations, protein-protein interactions, and biochemical pathways can be merged and analyzed via graphs, or networks. Existing software for network analysis has limited scalability to large data sets or is only accessible to software developers as libraries. In addition, the polymorphic nature of the data sets requires a more standardized method for integration and exploration. Mango facilitates large network analyses with its Graph Exploration Language, automatic graph attribute handling, and real-time 3-dimensional visualization. On a personal computer Mango can load, merge, and analyze networks with millions of links and can connect to online databases to fetch and merge biological pathways. Mango is written in C++ and runs on Mac OS, Windows, and Linux. The stand-alone distributions, including the Graph Exploration Language integrated development environment, are freely available for download from http://www.complex.iastate.edu/download/Mango. The Mango User Guide listing all features can be found at http://www.gitbook.com/book/j23414/mango-user-guide.

  11. Analyzing endocrine system conservation and evolution.

    Science.gov (United States)

    Bonett, Ronald M

    2016-08-01

    Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Analyzing rare diseases terms in biomedical terminologies

    Directory of Open Access Journals (Sweden)

    Erika Pasceri

    2012-03-01

    Full Text Available Rare disease patients too often face common problems, including the lack of access to correct diagnosis, lack of quality information on the disease, lack of scientific knowledge of the disease, inequities and difficulties in access to treatment and care. These things could be changed by implementing a comprehensive approach to rare diseases, increasing international cooperation in scientific research, by gaining and sharing scientific knowledge about and by developing tools for extracting and sharing knowledge. A significant aspect to analyze is the organization of knowledge in the biomedical field for the proper management and recovery of health information. For these purposes, the sources needed have been acquired from the Office of Rare Diseases Research, the National Organization of Rare Disorders and Orphanet, organizations that provide information to patients and physicians and facilitate the exchange of information among different actors involved in this field. The present paper shows the representation of rare diseases terms in biomedical terminologies such as MeSH, ICD-10, SNOMED CT and OMIM, leveraging the fact that these terminologies are integrated in the UMLS. At the first level, it was analyzed the overlap among sources and at a second level, the presence of rare diseases terms in target sources included in UMLS, working at the term and concept level. We found that MeSH has the best representation of rare diseases terms.

  13. CALIBRATION OF ONLINE ANALYZERS USING NEURAL NETWORKS

    Energy Technology Data Exchange (ETDEWEB)

    Rajive Ganguli; Daniel E. Walsh; Shaohai Yu

    2003-12-05

    Neural networks were used to calibrate an online ash analyzer at the Usibelli Coal Mine, Healy, Alaska, by relating the Americium and Cesium counts to the ash content. A total of 104 samples were collected from the mine, with 47 being from screened coal, and the rest being from unscreened coal. Each sample corresponded to 20 seconds of coal on the running conveyor belt. Neural network modeling used the quick stop training procedure. Therefore, the samples were split into training, calibration and prediction subsets. Special techniques, using genetic algorithms, were developed to representatively split the sample into the three subsets. Two separate approaches were tried. In one approach, the screened and unscreened coal was modeled separately. In another, a single model was developed for the entire dataset. No advantage was seen from modeling the two subsets separately. The neural network method performed very well on average but not individually, i.e. though each prediction was unreliable, the average of a few predictions was close to the true average. Thus, the method demonstrated that the analyzers were accurate at 2-3 minutes intervals (average of 6-9 samples), but not at 20 seconds (each prediction).

  14. Analyzing Virtual Physics Simulations with Tracker

    Science.gov (United States)

    Claessens, Tom

    2017-12-01

    In the physics teaching community, Tracker is well known as a user-friendly open source video analysis software, authored by Douglas Brown. With this tool, the user can trace markers indicated on a video or on stroboscopic photos and perform kinematic analyses. Tracker also includes a data modeling tool that allows one to fit some theoretical equations of motion onto experimentally obtained data. In the field of particle mechanics, Tracker has been effectively used for learning and teaching about projectile motion, "toss up" and free-fall vertical motion, and to explain the principle of mechanical energy conservation. Also, Tracker has been successfully used in rigid body mechanics to interpret the results of experiments with rolling/slipping cylinders and moving rods. In this work, I propose an original method in which Tracker is used to analyze virtual computer simulations created with a physics-based motion solver, instead of analyzing video recording or stroboscopic photos. This could be an interesting approach to study kinematics and dynamics problems in physics education, in particular when there is no or limited access to physical labs. I demonstrate the working method with a typical (but quite challenging) problem in classical mechanics: a slipping/rolling cylinder on a rough surface.

  15. Calibration of the portable wear metal analyzer

    Science.gov (United States)

    Quinn, Michael J.

    1987-12-01

    The Portable Wear Metal Analyzer (PWMA), a graphite furnace atomic absorption (AA) spectrometer, developed under a contract for this laboratory, was evaluated using powdered metal particles suspended in oil. The PWMA is a microprocessor controlled automatic sequential multielement AA spectrometer designed to support the deployed aircraft requirement for spectrometric oil analysis. The PWMA will analyze for nine elements (Ni, Fe, Cu, Cr, Ag, Mg, Si, Ti, Al) at a rate of 4 min per sample. The graphite tube and modified sample introduction system increase the detection of particles in oil when compared to the currently used techniques of flame AA or spark atomic emission (AE) spectroscopy. The PWMA shows good-to-excellent response for particles in sizes of 0 to 5 and 5 to 10 micrometers and fair response to particles of 10 to 20 and 20 to 30 micrometers. All trends in statistical variations are easily explained by system considerations. Correction factors to the calibration curves are necessary to correlate the analytical capability of the PWMA to the performance of existing spectrometric oil analysis (SOA) instruments.

  16. Solar Probe ANalyzer for Ions - Laboratory Performance

    Science.gov (United States)

    Livi, R.; Larson, D. E.; Kasper, J. C.; Korreck, K. E.; Whittlesey, P. L.

    2017-12-01

    The Parker Solar Probe (PSP) mission is a heliospheric satellite that will orbit the Sun closer than any prior mission to date with a perihelion of 35 solar radii (RS) and an aphelion of 10 RS. PSP includes the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite, which in turn consists of four instruments: the Solar Probe Cup (SPC) and three Solar Probe ANalyzers (SPAN) for ions and electrons. Together, this suite will take local measurements of particles and electromagnetic fields within the Sun's corona. SPAN-Ai has completed flight calibration and spacecraft integration and is set to be launched in July of 2018. The main mode of operation consists of an electrostatic analyzer (ESA) at its aperture followed by a Time-of-Flight section to measure the energy and mass per charge (m/q) of the ambient ions. SPAN-Ai's main objective is to measure solar wind ions within an energy range of 5 eV - 20 keV, a mass/q between 1-60 [amu/q] and a field of view of 2400x1200. Here we will show flight calibration results and performance.

  17. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  18. DNA Mismatch Repair

    Science.gov (United States)

    MARINUS, M. G.

    2014-01-01

    DNA mismatch repair functions to correct replication errors in newly synthesized DNA and to prevent recombination between related, but not identical (homeologous), DNA sequences. The mechanism of mismatch repair is best understood in Escherichia coli and is the main focus of this review. The early genetic studies of mismatch repair are described as a basis for the subsequent biochemical characterization of the system. The effects of mismatch repair on homologous and homeologous recombination are described. The relationship of mismatch repair to cell toxicity induced by various drugs is included. The VSP (Very Short Patch) repair system is described in detail. PMID:26442827

  19. "Artifactual" arsenate DNA

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2012-01-01

    The recent claim by Wolfe-Simon et al. that the Halomonas bacterial strain GFAJ-1 when grown in arsenate-containing medium with limiting phosphate is able to substitute phosphate with arsenate in biomolecules including nucleic acids and in particular DNA(1) arose much skepticism, primarily due...... to the very limited chemical stability of arsenate esters (see ref. 2 and references therein). A major part of the criticisms was concerned with the insufficient (bio)chemical evidence in the Wolfe-Simon study for the actual chemical incorporation of arsenate in DNA (and/or RNA). Redfield et al. now present...... evidence that the identification of arsenate DNA was artifactual....

  20. Apoptosis and DNA Methylation

    International Nuclear Information System (INIS)

    Meng, Huan X.; Hackett, James A.; Nestor, Colm; Dunican, Donncha S.; Madej, Monika; Reddington, James P.; Pennings, Sari; Harrison, David J.; Meehan, Richard R.

    2011-01-01

    Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG

  1. Construction and analysis of SSH cDNA library of human vascular endothelial cells related to gastrocarcinoma

    OpenAIRE

    Liu, Yong-Bo; Wei, Zhao-Xia; Li, Li; Li, Hang-Sheng; Chen, Hui; Li, Xiao-Wen

    2003-01-01

    AIM: To construct subtracted cDNA libraries of human vascular endothelial cells (VECs) related to gastrocarcinoma using suppression substractive hybridization (SSH) and to analyze cDNA libraries of gastrocarcinoma and VECs in Cancer Gene Anatomy Project (CGAP) database.

  2. The Cloning of the Human Tumor Supressor Gene INGI: DNA Cloning into Plasmid Vector and DNA Analysis by Restriction Enzymes

    Directory of Open Access Journals (Sweden)

    Elza Ibrahim Auerkari

    2015-11-01

    Full Text Available DNA cloning is one of the most important techniques In the field of molecular biology, with a critical role in analyzing the structure and function of genes and their adjacent regulatory regions. DNA cloning is helpful in learning fundamental molecular biological techniques, since DNA cloning involves a series of them, such as polymerase chain reaction (PCR, DNA ligation, bacterial transformation, bacterial culture, plasmid DNA extraction, DNA digestion with restriction enzymes and agarose gel electrophoresis. In this paper the cloning of the human tumor suppressor gene INGI has been used to illustrate the methodology. The gene was amplified by PCR, cloned into a TA-cloning vectore, and restriction enzyme mapping was used to distinguish the sense INGI construct from the antisense INGI construct.

  3. Schedulability Analysis for Java Finalizers

    DEFF Research Database (Denmark)

    Bøgholm, Thomas; Hansen, Rene Rydhof; Ravn, Anders P.

    2010-01-01

    Java finalizers perform clean-up and finalisation of objects at garbage collection time. In real-time Java profiles the use of finalizers is either discouraged (RTSJ, Ravenscar Java) or even disallowed (JSR-302), mainly because of the unpredictability of finalizers and in particular their impact ...... programs. Finally, we extend the SARTS tool for automated schedulability analysis of Java bytecode programs to handle finalizers in a fully automated way.......Java finalizers perform clean-up and finalisation of objects at garbage collection time. In real-time Java profiles the use of finalizers is either discouraged (RTSJ, Ravenscar Java) or even disallowed (JSR-302), mainly because of the unpredictability of finalizers and in particular their impact...... on the schedulability analysis. In this paper we show that a controlled scoped memory model results in a structured and predictable execution of finalizers, more reminiscent of C++ destructors than Java finalizers. Furthermore, we incorporate finalizers into a (conservative) schedulability analysis for Predictable Java...

  4. Analyzing surface coatings in situ: High-temperature surface film analyzer developed

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Scientists at Argonne National Laboratory (ANL) have devised a new instrument that can analyze surface coatings under operating conditions. The High-Temperature Surface Film Analyzer is the first such instrument to analyze the molecular composition and structure of surface coatings on metals and solids under conditions of high temperature and pressure in liquid environments. Corrosion layers, oxide coatings, polymers or paint films, or adsorbed molecules are examples of conditions that can be analyzed using this instrument. Film thicknesses may vary from a few molecular layers to several microns or thicker. The instrument was originally developed to study metal corrosion in aqueous solutions similar to the cooling water systems of light-water nuclear reactors. The instrument may have use for the nuclear power industry where coolant pipes degrade due to stress corrosion cracking, which often leads to plant shutdown. Key determinants in the occurrence of stress corrosion cracking are the properties and composition of corrosion scales that form inside pipes. The High-Temperature Surface Analyzer can analyze these coatings under laboratory conditions that simulate the same hostile environment of high temperature, pressure, and solution that exist during plant operations. The ability to analyze these scales in hostile liquid environments is unique to the instrument. Other applications include analyzing paint composition, corrosion of materials in geothermal power systems, integrity of canisters for radioactive waste storage, corrosion inhibitor films on piping and drilling systems, and surface scales on condenser tubes in industrial hot water heat exchangers. The device is not patented

  5. Analyzing abundance of mRNA molecules with a near-infrared fluorescence technique.

    Science.gov (United States)

    Chen, Ying; Pan, Yan; Zhang, Beibei; Wang, Jinke

    2014-01-01

    This study describes a simple method for analyzing the abundance of mRNA molecules in a total DNA sample. Due to the dependence on the near-infrared fluorescence technique, this method is named near-infrared fluorescence gene expression detection (NIRF-GED). The procedure has three steps: (1) isolating total RNA from detected samples and reverse-transcription into cDNA with a biotin-labeled oligo dT; (2) hybridizing cDNA to oligonucleotide probes coupled to a 96-well microplate; and (3) detecting biotins with NIRF-labeled streptavidin. The method was evaluated by performing proof-in-concept detections of absolute and relative expressions of housekeeping and NF-κB target genes in HeLa cells. As a result, the absolute expression of three genes, Ccl20, Cxcl2, and Gapdh, in TNF-α-uninduced HeLa cells was determined with a standard curve constructed on the same microplate, and the relative expression of five genes, Ccl20, Cxcl2, Il-6, STAT5A, and Gapdh, in TNF-α-induced and -uninduced HeLa cells was measured by using NIRF-GED. The results were verified by quantitative PCR (qPCR) and DNA microarray detections. The biggest advantage of NIRF-GED over the current techniques lies in its independence of exponential or linear amplification of nucleic acids. Moreover, NIRF-GED also has several other benefits, including high sensitivity as low as several fmols, absolute quantification in the range of 9 to 147 fmols, low cDNA consumption similar to qPCR template, and the current medium throughput in 96-well microplate format and future high throughput in DNA microarray format. NIRF-GED thus provides a new tool for analyzing gene transcripts and other nucleic acid molecules.

  6. Non-destructive sampling of ancient insect DNA.

    Directory of Open Access Journals (Sweden)

    Philip Francis Thomsen

    Full Text Available BACKGROUND: A major challenge for ancient DNA (aDNA studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago -- an alternative approach that also does not involve destruction of valuable material. METHODOLOGY/PRINCIPAL FINDINGS: The success of the methodological approaches are tested by PCR and sequencing of COI and 16S mitochondrial DNA (mtDNA fragments of 77-204 base pairs (-bp in size using species-specific and general insect primers. CONCLUSION/SIGNIFICANCE: The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient biodiversity.

  7. Non-destructive sampling of ancient insect DNA.

    Science.gov (United States)

    Thomsen, Philip Francis; Elias, Scott; Gilbert, M Thomas P; Haile, James; Munch, Kasper; Kuzmina, Svetlana; Froese, Duane G; Sher, Andrei; Holdaway, Richard N; Willerslev, Eske

    2009-01-01

    A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago -- an alternative approach that also does not involve destruction of valuable material. The success of the methodological approaches are tested by PCR and sequencing of COI and 16S mitochondrial DNA (mtDNA) fragments of 77-204 base pairs (-bp) in size using species-specific and general insect primers. The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient biodiversity.

  8. The influence of gibberellic acid on reassociation kinetics of DNA of Daucus carota L.

    Science.gov (United States)

    Schäfer, A; Neumann, K H

    1978-01-01

    Carrot DNA, extracted from the tap root of untreated and gibberellic acid (GA3)-treated plants and of different varieties, was analyzed by reassociation kinetics. Differences due to GA3 treatment appear mainly in the intermediate repeated DNA region. Differences in approximately the same region are found using carrot DNA of different varieties, which also show differences in the slow reassociating sequences. By hybridizing a "family" of the "unique" DNA range with DNA obtained from GA3-treated plants and the controls, respectively, it could be shown that changes in the composition of total DNA are the result of GA3 treatment.

  9. A 16-detector alpha spectrometer using 1 multichannel analyzer

    International Nuclear Information System (INIS)

    Phillips, W.G.

    1978-01-01

    An alpha spectrometer containing 16 independent detectors and utilizing one 4096-channel multichannel analyzer (MCA) was constructed from commerically available modules. The spectrometer was designed specifically for the counting of low levels of radioactivity in environmental samples. Gated analog routing allows spectral data acquisition into 256 channel regions of the MCA memory as if each region were an independent 256-channel MCA. External live-time clocks and 50-Mhz analog-to-digital converters control timing and acquisition on each unit of eight detectors. Spectral data output is to magnetic tape in units of 256 channels each with a unique tagword. These tapes are then read and processed, and final reports are generated, by a large Control Data 6000 series computer

  10. ACTIVITY-BASED COST ALLOCATION AND FUNCTION ANALYZES IN TRADE

    Directory of Open Access Journals (Sweden)

    TÜNDE VERES

    2011-01-01

    Full Text Available In this paper the author is thinking about the efficiency analyzes of trading. The most important evaluation factors of trade are the sales value, volume and the margin. Of course the easiest and fastest way is to follow the market situation by the turnover but for long term thinking the sales companies need to concentrate also for efficiency. Trading activity has some functions which can deeply effect for the final result and this is the reason to calculate their clear and reliable costs is an important condition of the decision making. The author reviews the cost categories and the basic functions in trading activity to find possible ways getting reliable information.

  11. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  12. Artificial intelligence for analyzing orthopedic trauma radiographs.

    Science.gov (United States)

    Olczak, Jakub; Fahlberg, Niklas; Maki, Atsuto; Razavian, Ali Sharif; Jilert, Anthony; Stark, André; Sköldenberg, Olof; Gordon, Max

    2017-12-01

    Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.

  13. Analyzing microarray data using quantitative association rules.

    Science.gov (United States)

    Georgii, Elisabeth; Richter, Lothar; Rückert, Ulrich; Kramer, Stefan

    2005-09-01

    We tackle the problem of finding regularities in microarray data. Various data mining tools, such as clustering, classification, Bayesian networks and association rules, have been applied so far to gain insight into gene-expression data. Association rule mining techniques used so far work on discretizations of the data and cannot account for cumulative effects. In this paper, we investigate the use of quantitative association rules that can operate directly on numeric data and represent cumulative effects of variables. Technically speaking, this type of quantitative association rules based on half-spaces can find non-axis-parallel regularities. We performed a variety of experiments testing the utility of quantitative association rules for microarray data. First of all, the results should be statistically significant and robust against fluctuations in the data. Next, the approach should be scalable in the number of variables, which is important for such high-dimensional data. Finally, the rules should make sense biologically and be sufficiently different from rules found in regular association rule mining working with discretizations. In all of these dimensions, the proposed approach performed satisfactorily. Therefore, quantitative association rules based on half-spaces should be considered as a tool for the analysis of microarray gene-expression data. The code is available from the authors on request.

  14. Analyzing large datasets with bootstrap penalization.

    Science.gov (United States)

    Fang, Kuangnan; Ma, Shuangge

    2017-03-01

    Data with a large p (number of covariates) and/or a large n (sample size) are now commonly encountered. For many problems, regularization especially penalization is adopted for estimation and variable selection. The straightforward application of penalization to large datasets demands a "big computer" with high computational power. To improve computational feasibility, we develop bootstrap penalization, which dissects a big penalized estimation into a set of small ones, which can be executed in a highly parallel manner and each only demands a "small computer". The proposed approach takes different strategies for data with different characteristics. For data with a large p but a small to moderate n, covariates are first clustered into relatively homogeneous blocks. The proposed approach consists of two sequential steps. In each step and for each bootstrap sample, we select blocks of covariates and run penalization. The results from multiple bootstrap samples are pooled to generate the final estimate. For data with a large n but a small to moderate p, we bootstrap a small number of subjects, apply penalized estimation, and then conduct a weighted average over multiple bootstrap samples. For data with a large p and a large n, the natural marriage of the previous two methods is applied. Numerical studies, including simulations and data analysis, show that the proposed approach has computational and numerical advantages over the straightforward application of penalization. An R package has been developed to implement the proposed methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Analyzing and reducing plagiarism at university

    Directory of Open Access Journals (Sweden)

    Jorge López Puga

    2014-12-01

    Full Text Available Plagiarism is one of the less desirable practises in the academic context. This paper presents an experience of massive plagiarism detection at university and the steps taken to prevent its subsequent occurrence. Plagiarism was detected in the first assessment phase of a research project practise. As a result, students were required to arrange ethical group discussions with the professor to prevent plagiarism in the future. A substantial reduction in the rate of plagiarism was observed from the first practical assessment to the second one, t(16=2.5, p=.02, d=0.83, 1-?=.63, unilateral contrast. Additionally, a survey was developed to analyse students’ opinions and attitudes about plagiarism. A sample of 64 students (15 boys and 49 girls with an average age of 22.69 (SD=2.8 filled in an electronic questionnaire. More than a half of the sample (56.92% admitted that they had plagiarised before but most of the students (83.08% agreed they would not like someone else plagiarising their reports. A preliminary short scale to measure attitude towards plagiarism in undergraduate students at university is provided. Finally, a set of recommendations are given based on this experience to prevent and to reduce the level of plagiarism in the university contex.

  16. Analyzing and forecasting the European social climate

    Directory of Open Access Journals (Sweden)

    Liliana DUGULEANĂ

    2015-06-01

    Full Text Available The paper uses the results of the sample survey Eurobarometer, which has been requested by the European Commission. The social climate index is used to measure the level of perceptions of population by taking into account their personal situation and their perspective at national level. The paper makes an analysis of the evolution of social climate indices for the countries of European Union and offers information about the expectations of population of analyzed countries. The obtained results can be compared with the forecasting of Eurobarometer, on short term of one year and medium term of five years. Modelling the social climate index and its influence factors offers useful information about the efficiency of social protection and inclusion policies.

  17. Analyzer of neutron flux in real time

    International Nuclear Information System (INIS)

    Rojas S, A.S.; Carrillo M, R.A.; Balderas, E.G.

    1999-01-01

    With base in the study of the real signals of neutron flux of instability events occurred in the Laguna Verde nuclear power plant where the nucleus oscillation phenomena of the reactor are in the 0 to 2.5 Hz range, it has been seen the possibility about the development a surveillance and diagnostic equipment capable to analyze in real time the behavior of nucleus in this frequencies range. An important method for surveillance the stability of the reactor nucleus is the use of the Power spectral density which allows to determine the frequencies and amplitudes contained in the signals. It is used an instrument carried out by LabVIEW graphic programming with a data acquisition card of 16 channels which works at Windows 95/98 environment. (Author)

  18. Analyzing the Control Structure of PEPA

    DEFF Research Database (Denmark)

    Yang, Fan; Nielson, Hanne Riis

    expressed in PEPA. The analysis technique we adopted is Data Flow Analysis. We begin the analysis by defining an appropriate transfer function, then with the classical worklist algorithm we construct a finite automaton that captures all possible interactions among processes. By annotating labels and layers...... to PEPA programs, the approximating result is very precise. Based on the analysis, we also develop algorithms for validating the deadlock property of PEPA programs. The techniques have been implemented in a tool which is able to analyze processes with a control structure that more than one thousand states.......The Performance Evaluation Process Algebra, PEPA, is introduced by Jane Hillston as a stochastic process algebra for modelling distributed systems and especially suitable for performance evaluation. We present a static analysis that very precisely approximates the control structure of processes...

  19. Buccal microbiology analyzed by infrared spectroscopy

    Science.gov (United States)

    de Abreu, Geraldo Magno Alves; da Silva, Gislene Rodrigues; Khouri, Sônia; Favero, Priscila Pereira; Raniero, Leandro; Martin, Airton Abrahão

    2012-01-01

    Rapid microbiological identification and characterization are very important in dentistry and medicine. In addition to dental diseases, pathogens are directly linked to cases of endocarditis, premature delivery, low birth weight, and loss of organ transplants. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze oral pathogens Aggregatibacter actinomycetemcomitans ATCC 29523, Aggregatibacter actinomycetemcomitans-JP2, and Aggregatibacter actinomycetemcomitans which was clinically isolated from the human blood-CI. Significant spectra differences were found among each organism allowing the identification and characterization of each bacterial species. Vibrational modes in the regions of 3500-2800 cm-1, the 1484-1420 cm-1, and 1000-750 cm-1 were used in this differentiation. The identification and classification of each strain were performed by cluster analysis achieving 100% separation of strains. This study demonstrated that FTIR can be used to decrease the identification time, compared to the traditional methods, of fastidious buccal microorganisms associated with the etiology of the manifestation of periodontitis.

  20. Nuclear Plant Analyzer: Installation manual. Volume 1

    International Nuclear Information System (INIS)

    Snider, D.M.; Wagner, K.L.; Grush, W.H.; Jones, K.R.

    1995-01-01

    This report contains the installation instructions for the Nuclear Plant Analyzer (NPA) System. The NPA System consists of the Computer Visual System (CVS) program, the NPA libraries, the associated utility programs. The NPA was developed at the Idaho National Engineering Laboratory under the sponsorship of the US Nuclear Regulatory Commission to provide a highly flexible graphical user interface for displaying the results of these analysis codes. The NPA also provides the user with a convenient means of interactively controlling the host program through user-defined pop-up menus. The NPA was designed to serve primarily as an analysis tool. After a brief introduction to the Computer Visual System and the NPA, an analyst can quickly create a simple picture or set of pictures to aide in the study of a particular phenomenon. These pictures can range from simple collections of square boxes and straight lines to complex representations of emergency response information displays