WorldWideScience

Sample records for diverse plant mitochondrial

  1. Mitochondrial Energy and Redox Signaling in Plants

    Science.gov (United States)

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  2. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  3. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Science.gov (United States)

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests

  4. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  5. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  6. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  7. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  8. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  9. MitoSatPlant: mitochondrial microsatellites database of viridiplantae.

    Science.gov (United States)

    Kumar, Manjeet; Kapil, Aditi; Shanker, Asheesh

    2014-11-01

    Microsatellites also known as simple sequence repeats (SSRs) consist of 1-6 nucleotide long repeating units. The importance of mitochondrial SSRs (mtSSRs) in fields like population genetics, plant phylogenetics and genome mapping motivated us to develop MitoSatPlant, a repository of plant mtSSRs. It contains information for perfect, imperfect and compound SSRs mined from 92 mitochondrial genomes of green plants, available at NCBI (as of 1 Feb 2014). A total of 72,798 SSRs were found, of which PCR primers were designed for 72,495 SSRs. Among all sequences, tetranucleotide repeats (26,802) were found to be most abundant whereas hexanucleotide repeats (2751) were detected with least frequency. MitoSatPlant was developed using SQL server 2008 and can be accessed through a front end designed in ASP.Net. It is an easy to use, user-friendly database and will prove to be a useful resource for plant scientists. To the best of our knowledge MitoSatPlant is the only database available for plant mtSSRs and can be freely accessed at http://compubio.in/mitosatplant/. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  10. Mitochondrial genome diversity and population structure of the giant squid Architeuthis

    DEFF Research Database (Denmark)

    Winkelmann, Inger Eleanor Hall; Campos, Paula; Strugnell, Jan

    2013-01-01

    techniques, considerable controversy exists with regard to topics as varied as their taxonomy, biology and even behaviour. In this study, we have characterized the mitochondrial genome (mitogenome) diversity of 43 Architeuthis samples collected from across the range of the species, in order to use genetic...... a recent population expansion or selective sweep, which may explain the low level of genetic diversity....

  11. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae

    DEFF Research Database (Denmark)

    Rønsted, Nina; Symonds, Matthew R. E.; Birkholm, Trine

    2012-01-01

    a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results: We produced a phylogenetic hypothesis......Background: During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer...... for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae) based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated...

  12. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Energy Technology Data Exchange (ETDEWEB)

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  13. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    Science.gov (United States)

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  14. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers.

    Science.gov (United States)

    Sharma, Rekha; Kishore, Amit; Mukesh, Manishi; Ahlawat, Sonika; Maitra, Avishek; Pandey, Ashwni Kumar; Tantia, Madhu Sudan

    2015-06-30

    Indian agriculture is an economic symbiosis of crop and livestock production with cattle as the foundation. Sadly, the population of indigenous cattle (Bos indicus) is declining (8.94% in last decade) and needs immediate scientific management. Genetic characterization is the first step in the development of proper management strategies for preserving genetic diversity and preventing undesirable loss of alleles. Thus, in this study we investigated genetic diversity and relationship among eleven Indian cattle breeds using 21 microsatellite markers and mitochondrial D loop sequence. The analysis of autosomal DNA was performed on 508 cattle which exhibited sufficient genetic diversity across all the breeds. Estimates of mean allele number and observed heterozygosity across all loci and population were 8.784 ± 0.25 and 0.653 ± 0.014, respectively. Differences among breeds accounted for 13.3% of total genetic variability. Despite high genetic diversity, significant inbreeding was also observed within eight populations. Genetic distances and cluster analysis showed a close relationship between breeds according to proximity in geographic distribution. The genetic distance, STRUCTURE and Principal Coordinate Analysis concluded that the Southern Indian Ongole cattle are the most distinct among the investigated cattle populations. Sequencing of hypervariable mitochondrial DNA region on a subset of 170 cattle revealed sixty haplotypes with haplotypic diversity of 0.90240, nucleotide diversity of 0.02688 and average number of nucleotide differences as 6.07407. Two major star clusters for haplotypes indicated population expansion for Indian cattle. Nuclear and mitochondrial genomes show a similar pattern of genetic variability and genetic differentiation. Various analyses concluded that the Southern breed 'Ongole' was distinct from breeds of Northern/ Central India. Overall these results provide basic information about genetic diversity and structure of Indian cattle which

  15. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2018-05-01

    Full Text Available Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.

  16. The uniqueness of the plant mitochondrial potassium channel

    Directory of Open Access Journals (Sweden)

    Donato Pastore

    2013-08-01

    Full Text Available The ATP-inhibited Plant Mitochondrial K+ Channel (PmitoKATPwas discovered about fifteen years ago in Durum WheatMitochondria (DWM. PmitoKATP catalyses the electrophoreticK+ uniport through the inner mitochondrial membrane;moreover, the co-operation between PmitoKATP and K+/H+antiporter allows such a great operation of a K+ cycle tocollapse mitochondrial membrane potential (ΔΨ and ΔpH, thusimpairing protonmotive force (Δp. A possible physiological roleof such ΔΨ control is the restriction of harmful reactive oxygenspecies (ROS production under environmental/oxidative stressconditions. Interestingly, DWM lacking Δp were found to benevertheless fully coupled and able to regularly accomplish ATPsynthesis; this unexpected behaviour makes necessary to recastin some way the classical chemiosmotic model. In the whole,PmitoKATP may oppose to large scale ROS production bylowering ΔΨ under environmental/oxidative stress, but, whenstress is moderate, this occurs without impairing ATP synthesisin a crucial moment for cell and mitochondrial bioenergetics.[BMB Reports 2013; 46(8: 391-397

  17. Increased Mitochondrial Genetic Diversity in Persons Infected With Hepatitis C VirusSummary

    Directory of Open Access Journals (Sweden)

    David S. Campo

    2016-09-01

    Full Text Available Background & Aims: The host genetic environment contributes significantly to the outcomes of hepatitis C virus (HCV infection and therapy response, but little is known about any effects of HCV infection on the host beyond any changes related to adaptive immune responses. HCV persistence is associated strongly with mitochondrial dysfunction, with liver mitochondrial DNA (mtDNA genetic diversity linked to disease progression. Methods: We evaluated the genetic diversity of 2 mtDNA genomic regions (hypervariable segments 1 and 2 obtained from sera of 116 persons using next-generation sequencing. Results: Results were as follows: (1 the average diversity among cases with seronegative acute HCV infection was 4.2 times higher than among uninfected controls; (2 the diversity level among cases with chronic HCV infection was 96.1 times higher than among uninfected controls; and (3 the diversity was 23.1 times higher among chronic than acute cases. In 2 patients who were followed up during combined interferon and ribavirin therapy, mtDNA nucleotide diversity decreased dramatically after the completion of therapy in both patients: by 100% in patient A after 54 days and by 70.51% in patient B after 76 days. Conclusions: HCV infection strongly affects mtDNA genetic diversity. A rapid decrease in mtDNA genetic diversity observed after therapy-induced HCV clearance suggests that the effect is reversible, emphasizing dynamic genetic relationships between HCV and mitochondria. The level of mtDNA nucleotide diversity can be used to discriminate recent from past infections, which should facilitate the detection of recent transmission events and thus help identify modes of transmission. Keywords: Disease Biomarkers, mtDNA, Noninvasive

  18. The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals

    Directory of Open Access Journals (Sweden)

    Galtier Nicolas

    2009-03-01

    Full Text Available Abstract Background During the last ten years, major advances have been made in characterizing and understanding the evolution of mitochondrial DNA, the most popular marker of molecular biodiversity. Several important results were recently reported using mammals as model organisms, including (i the absence of relationship between mitochondrial DNA diversity and life-history or ecological variables, (ii the absence of prominent adaptive selection, contrary to what was found in invertebrates, and (iii the unexpectedly large variation in neutral substitution rate among lineages, revealing a possible link with species maximal longevity. We propose to challenge these results thanks to the bird/mammal comparison. Direct estimates of population size are available in birds, and this group presents striking life-history trait differences with mammals (higher mass-specific metabolic rate and longevity. These properties make birds the ideal model to directly test for population size effects, and to discriminate between competing hypotheses about the causes of substitution rate variation. Results A phylogenetic analysis of cytochrome b third-codon position confirms that the mitochondrial DNA mutation rate is quite variable in birds, passerines being the fastest evolving order. On average, mitochondrial DNA evolves slower in birds than in mammals of similar body size. This result is in agreement with the longevity hypothesis, and contradicts the hypothesis of a metabolic rate-dependent mutation rate. Birds show no footprint of adaptive selection on cytochrome b evolutionary patterns, but no link between direct estimates of population size and cytochrome b diversity. The mutation rate is the best predictor we have of within-species mitochondrial diversity in birds. It partly explains the differences in mitochondrial DNA diversity patterns observed between mammals and birds, previously interpreted as reflecting Hill-Robertson interferences with the W

  19. How does pedogenesis drive plant diversity?

    Science.gov (United States)

    Laliberté, Etienne; Grace, James B.; Huston, Michael A.; Lambers, Hans; Teste, François P.; Turner, Benjamin L.; Wardle, David A.

    2013-01-01

    Some of the most species-rich plant communities occur on ancient, strongly weathered soils, whereas those on recently developed soils tend to be less diverse. Mechanisms underlying this well-known pattern, however, remain unresolved. Here, we present a conceptual model describing alternative mechanisms by which pedogenesis (the process of soil formation) might drive plant diversity. We suggest that long-term soil chronosequences offer great, yet largely untapped, potential as 'natural experiments' to determine edaphic controls over plant diversity. Finally, we discuss how our conceptual model can be evaluated quantitatively using structural equation modeling to advance multivariate theories about the determinants of local plant diversity. This should help us to understand broader-scale diversity patterns, such as the latitudinal gradient of plant diversity.

  20. Mitochondrial Electron Transport and Plant Stress

    DEFF Research Database (Denmark)

    Rasmusson, Allan G; Møller, Ian Max

    2011-01-01

    Due to the sessile nature of plants, it is crucial for their survival and growth that they can handle a constantly changing, and thus stressful, ambient environment by modifying their structure and metabolism. The central metabolism of plants is characterized by many alternative options...... for metabolic pathways, which allow a wide range of adjustments of metabolic processes in response to environmental variations. Many of the metabolic pathways in plants involve the processing of redox compounds and the use of adenylates. They converge at the mitochondrial electron transport chain (ETC) where...... redox compounds from carbon degradation are used for powering ATP synthesis. The standard ETC contains three sites of energy conservation in complexes I, III, and IV, which are in common with most other eukaryotes. However, the complexity of the plant metabolic system is mirrored in the ETC. In addition...

  1. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes

    Science.gov (United States)

    Rurek, Michał; Czołpińska, Magdalena; Pawłowski, Tomasz Andrzej; Krzesiński, Włodzimierz; Spiżewski, Tomasz

    2018-01-01

    Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria. PMID:29547512

  2. Historically low mitochondrial DNA diversity in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Tsangaras, Kyriakos; Ávila-Arcos, María C; Ishida, Yasuko; Helgen, Kristofer M; Roca, Alfred L; Greenwood, Alex D

    2012-10-24

    The koala (Phascolarctos cinereus) is an arboreal marsupial that was historically widespread across eastern Australia until the end of the 19th century when it suffered a steep population decline. Hunting for the fur trade, habitat conversion, and disease contributed to a precipitous reduction in koala population size during the late 1800s and early 1900s. To examine the effects of these reductions in population size on koala genetic diversity, we sequenced part of the hypervariable region of mitochondrial DNA (mtDNA) in koala museum specimens collected in the 19th and 20th centuries, hypothesizing that the historical samples would exhibit greater genetic diversity. The mtDNA haplotypes present in historical museum samples were identical to haplotypes found in modern koala populations, and no novel haplotypes were detected. Rarefaction analyses suggested that the mtDNA genetic diversity present in the museum samples was similar to that of modern koalas. Low mtDNA diversity may have been present in koala populations prior to recent population declines. When considering management strategies, low genetic diversity of the mtDNA hypervariable region may not indicate recent inbreeding or founder events but may reflect an older historical pattern for koalas.

  3. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    DEFF Research Database (Denmark)

    Zhang, Ning; Rao, R Shyama Prasad; Salvato, Fernanda

    2018-01-01

    -sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently......, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino...

  4. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  5. Mitochondrial genetic diversity of Eurasian red squirrels (Sciurus vulgaris) from Denmark

    DEFF Research Database (Denmark)

    Madsen, Corrie Lynne; Mouatt, Julia Thidamarth Vilstrup; Fernandez Garcia, Rut

    2015-01-01

    Melanistic Eurasian red squirrels Sciurus vulgaris are commonly found on the Danish island of Funen. They are thought to represent native Danish squirrel types and are presently under threat from admixture with introduced red squirrels. In response, a conservation program was started in 2009...... that involves the translocation of melanistic squirrels from Funen to the squirrel-free island of Langeland. Using mitochondrial DNA of 101 historical and modern samples from throughout Denmark, we assess for the first time population structure and mitochondrial genetic diversity of Danish squirrels compared...

  6. Historically low mitochondrial DNA diversity in koalas (Phascolarctos cinereus

    Directory of Open Access Journals (Sweden)

    Tsangaras Kyriakos

    2012-10-01

    Full Text Available Abstract Background The koala (Phascolarctos cinereus is an arboreal marsupial that was historically widespread across eastern Australia until the end of the 19th century when it suffered a steep population decline. Hunting for the fur trade, habitat conversion, and disease contributed to a precipitous reduction in koala population size during the late 1800s and early 1900s. To examine the effects of these reductions in population size on koala genetic diversity, we sequenced part of the hypervariable region of mitochondrial DNA (mtDNA in koala museum specimens collected in the 19th and 20th centuries, hypothesizing that the historical samples would exhibit greater genetic diversity. Results The mtDNA haplotypes present in historical museum samples were identical to haplotypes found in modern koala populations, and no novel haplotypes were detected. Rarefaction analyses suggested that the mtDNA genetic diversity present in the museum samples was similar to that of modern koalas. Conclusions Low mtDNA diversity may have been present in koala populations prior to recent population declines. When considering management strategies, low genetic diversity of the mtDNA hypervariable region may not indicate recent inbreeding or founder events but may reflect an older historical pattern for koalas.

  7. PLANT DIVERSITY

    Science.gov (United States)

    Habitat change statistics and species-area curves were used to estimate the effects of alternative future scenarios for agriculture on plant diversity in Iowa farmlands. Study areas were two watersheds in central Iowa of about 50 and 90 square kilometers, respectively. Future s...

  8. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide

    Science.gov (United States)

    Prober, Suzanne M.; Leff, Jonathan W.; Bates, Scott T.; Borer, Elizabeth T.; Firn, Jennifer; Harpole, W. Stanley; Lind, Eric M.; Seabloom, Eric W.; Adler, Peter B.; Bakker, Jonathan D.; Cleland, Elsa E.; DeCrappeo, Nicole; DeLorenze, Elizabeth; Hagenah, Nicole; Hautier, Yann; Hofmockel, Kirsten S.; Kirkman, Kevin P.; Knops, Johannes M. H.; La Pierre, Kimberly J.; MacDougall, Andrew S.; McCulley, Rebecca L.; Mitchell, Charles E.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.; Williams, Ryan J.; Fierer, Noah

    2015-01-01

    Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.

  9. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    OpenAIRE

    Wei Tong; Qiang He; Yong-Jin Park

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucle...

  10. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Science.gov (United States)

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  11. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    Science.gov (United States)

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  12. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    Science.gov (United States)

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.

  13. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity

    Directory of Open Access Journals (Sweden)

    Jonathon eMuller

    2014-10-01

    Full Text Available Buildings structures and surfaces are explicitly being used to grow plants, and these ‘urban plantings’ are typically designed for aesthetic value. Urban plantings also have the potential to contribute significant ‘ecological values’ by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban centre of Brisbane, Australia (subtropical climatic region over two, six week sampling periods characterised by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation, plant CO2 assimilation, soil CO2 efflux, and arthropod diversity.Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly - likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

  14. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  15. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha.

    Directory of Open Access Journals (Sweden)

    Bobbi M Johnson

    Full Text Available The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha. Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed "the four H's": habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins

  16. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution

  17. Relationships between Plant Diversity and Grasshopper Diversity and Abundance in the Little Missouri National Grassland

    Directory of Open Access Journals (Sweden)

    David H. Branson

    2011-01-01

    Full Text Available A continuing challenge in orthopteran ecology is to understand what determines grasshopper species diversity at a given site. In this study, the objective was to determine if variation in grasshopper abundance and diversity between 23 sites in western North Dakota (USA could be explained by variation in plant species richness and diversity. In this system with relatively low plant diversity, grasshopper species richness and abundance were not significantly associated with plant species richness in either year. Although a number of significant associations between plant diversity and grasshopper diversity were found through regression analyses, results differed greatly between years indicating that plant species richness and diversity did not lead to strong effects on grasshopper diversity metrics. Plant species richness appears to be too coarse grained to lead to accurate predictions of grasshopper species richness in this system dominated by generalist grasshopper species.

  18. The drivers of plant diversity

    DEFF Research Database (Denmark)

    Jensen, Kristine Engemann

    dataset consisting of 72,533 vascular plant species in 432 families covering the New World. Eight plant growth forms were defined based on woodiness, structure, and root traits, and species names were standardized to the latest accepted scientific name. The data is used in Paper II and IV In Paper II we....... The study emphasise that using big, collected datasets is not without limitations, and we recommend using rarefaction for species richness estimation from such datasets. Paper IV investigates a well-known macroecological pattern, the latitudinal diversity gradient, for nine vascular plant functional groups......In this thesis we use a “big data” approach to describe and explain large-scale patterns of plant diversity. The botanical data used for the six papers come from three different databases covering the New World, North America, and Europe respectively. The data on plant distributions were combined...

  19. Diversity begets diversity: host expansions and the diversification of plant-feeding insects

    Directory of Open Access Journals (Sweden)

    Nylin Sören

    2006-01-01

    Full Text Available Abstract Background Plant-feeding insects make up a large part of earth's total biodiversity. While it has been shown that herbivory has repeatedly led to increased diversification rates in insects, there has been no compelling explanation for how plant-feeding has promoted speciation rates. There is a growing awareness that ecological factors can lead to rapid diversification and, as one of the most prominent features of most insect-plant interactions, specialization onto a diverse resource has often been assumed to be the main process behind this diversification. However, specialization is mainly a pruning process, and is not able to actually generate diversity by itself. Here we investigate the role of host colonizations in generating insect diversity, by testing if insect speciation rate is correlated with resource diversity. Results By applying a variant of independent contrast analysis, specially tailored for use on questions of species richness (MacroCAIC, we show that species richness is strongly correlated with diversity of host use in the butterfly family Nymphalidae. Furthermore, by comparing the results from reciprocal sister group selection, where sister groups were selected either on the basis of diversity of host use or species richness, we find that it is likely that diversity of host use is driving species richness, rather than vice versa. Conclusion We conclude that resource diversity is correlated with species richness in the Nymphalidae and suggest a scenario based on recurring oscillations between host expansions – the incorporation of new plants into the repertoire – and specialization, as an important driving force behind the diversification of plant-feeding insects.

  20. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of amaryllidaceae

    Directory of Open Access Journals (Sweden)

    Rønsted Nina

    2012-09-01

    Full Text Available Abstract Background During evolution, plants and other organisms have developed a diversity of chemical defences, leading to the evolution of various groups of specialized metabolites selected for their endogenous biological function. A correlation between phylogeny and biosynthetic pathways could offer a predictive approach enabling more efficient selection of plants for the development of traditional medicine and lead discovery. However, this relationship has rarely been rigorously tested and the potential predictive power is consequently unknown. Results We produced a phylogenetic hypothesis for the medicinally important plant subfamily Amaryllidoideae (Amaryllidaceae based on parsimony and Bayesian analysis of nuclear, plastid, and mitochondrial DNA sequences of over 100 species. We tested if alkaloid diversity and activity in bioassays related to the central nervous system are significantly correlated with phylogeny and found evidence for a significant phylogenetic signal in these traits, although the effect is not strong. Conclusions Several genera are non-monophyletic emphasizing the importance of using phylogeny for interpretation of character distribution. Alkaloid diversity and in vitro inhibition of acetylcholinesterase (AChE and binding to the serotonin reuptake transporter (SERT are significantly correlated with phylogeny. This has implications for the use of phylogenies to interpret chemical evolution and biosynthetic pathways, to select candidate taxa for lead discovery, and to make recommendations for policies regarding traditional use and conservation priorities.

  1. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt genome could provide clues for the understanding of the evolution of mt genomes in plant. METHODS: Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method. CONCLUSIONS: This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs cover 71,783 bp (31.0% of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1% of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot

  2. Effect of Plant Diversity on Diversity and Abundance of Arthropods in Winter Wheat Fields

    Directory of Open Access Journals (Sweden)

    A Khodashenas

    2011-02-01

    Full Text Available Abstract Plant biomass and diversity play an important role in enhancing of biodiversity of other trophic levels, specially arthropods in terrestrial ecosystems. In order to determine the effects of plants on diversity and abundance of arthropods, a study was carried out in three regions of Razavi and northern Khorasan provinces, Shirvan, Mashhad and Gonabad. In each region, high and low input fields of winter wheat and a natural system for comparison were selected. In ripening stage of wheat growth (90 stage of Zadoks, sampling was done by use of quadrate in each system with five replications. Plants in each quadrate were counted and species richness of plants was determined. Insect sampling was done by sweep net from surface of plants, then species richness and abundance of collected insects were determined. As a result, agricultural practices decreased plant species richness but diversity and abundance of insects and spiders increased in agricultural systems. Our finding revealed that abundance of insects and spiders were not affected by plant species richness and plant biomass was the main factor affecting on species richness and abundance of insects, spiders and beneficial insects. Therefore, decreasing plant species richness that arose from agricultural practices doesn’t effect on arthropods diversity and abundance and doesn’t decrease sustainability of agricultural systems. Irregular use of chemical inputs, specially pesticides, is the main factor to decreasing of plants and arthropods species richness in agricultural systems. Keywords: Plant diversity, Arthropod diversity, Arthropod abundance, Plant-insect interactions, Agricultural systems

  3. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants.

    Science.gov (United States)

    Liu, Yang; Wang, Bin; Cui, Peng; Li, Libo; Xue, Jia-Yu; Yu, Jun; Qiu, Yin-Long

    2012-01-01

    Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.

  4. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Michał Rurek

    2018-04-01

    Full Text Available Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS. Respiratory (e.g., complex II, IV (CII, CIV and ATP synthase subunits, transporter (including diverse porin isoforms and matrix multifunctional proteins (e.g., components of RNA editing machinery were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation.

  5. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins

    Science.gov (United States)

    Rurek, Michał; Czołpińska, Magdalena; Staszak, Aleksandra Maria; Nowak, Witold; Krzesiński, Włodzimierz; Spiżewski, Tomasz

    2018-01-01

    Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis) cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly) in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Respiratory (e.g., complex II, IV (CII, CIV) and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g., components of RNA editing machinery) were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots) immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX) regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation. PMID:29642585

  6. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    2011-01-01

    Full Text Available One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.

  7. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    Science.gov (United States)

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Island phytophagy: explaining the remarkable diversity of plant-feeding insects.

    Science.gov (United States)

    Joy, Jeffrey B; Crespi, Bernard J

    2012-08-22

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.

  9. Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices

    NARCIS (Netherlands)

    Croll, D.; Wille, L.; Gamper, H.A.; Mathimaran, N.; Lammers, P.J.; Corradi, N.; Sanders, I.R.

    2008-01-01

    Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of

  10. The plant i-AAA protease controls the turnover of an essential mitochondrial protein import component.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Murcha, Monika W; Jańska, Hanna

    2018-01-29

    Mitochondria are multifunctional organelles that play a central role in energy metabolism. Owing to the life-essential functions of these organelles, mitochondrial content, quality and dynamics are tightly controlled. Across the species, highly conserved ATP-dependent proteases prevent malfunction of mitochondria through versatile activities. This study focuses on a molecular function of the plant mitochondrial inner membrane-embedded AAA protease (denoted i -AAA) FTSH4, providing its first bona fide substrate. Here, we report that the abundance of the Tim17-2 protein, an essential component of the TIM17:23 translocase (Tim17-2 together with Tim50 and Tim23), is directly controlled by the proteolytic activity of FTSH4. Plants that are lacking functional FTSH4 protease are characterized by significantly enhanced capacity of preprotein import through the TIM17:23-dependent pathway. Taken together, with the observation that FTSH4 prevents accumulation of Tim17-2, our data point towards the role of this i -AAA protease in the regulation of mitochondrial biogenesis in plants. © 2018. Published by The Company of Biologists Ltd.

  11. Endophytic actinobacteria of medicinal plants: diversity and bioactivity.

    Science.gov (United States)

    Golinska, Patrycja; Wypij, Magdalena; Agarkar, Gauravi; Rathod, Dnyaneshwar; Dahm, Hanna; Rai, Mahendra

    2015-08-01

    Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.

  12. Plant hydraulic diversity buffers forest ecosystem responses to drought

    Science.gov (United States)

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  13. Phylogenetic and Functional Diversity of Fleshy-Fruited Plants Are Positively Associated with Seedling Diversity in a Tropical Montane Forest

    Directory of Open Access Journals (Sweden)

    Marcia C. Muñoz

    2017-08-01

    Full Text Available Mutualistic interactions between plants and animals can affect both plant and animal communities, and potentially leave imprints on plant demography. Yet, no study has simultaneously tested how trait variation in plant resources shapes the diversity of animal consumers, and how these interactions influence seedling recruitment. Here, we analyzed whether (i phylogenetic diversity and functional diversity of fruiting plants were correlated with the corresponding diversity of frugivorous birds, and (ii whether phylogenetic diversity and functional identity of plant and bird communities influenced the corresponding diversity and identity of seedling communities. We recorded mutualistic interactions between fleshy-fruited plants and frugivorous birds and seedling communities in 10 plots along an elevational gradient in the Colombian Andes. We built a phylogeny for plants/seedlings and birds and measured relevant morphological plant and bird traits that influence plant-bird interactions and seedling recruitment. We found that phylogenetic diversity and functional diversity of frugivorous birds were positively associated with the corresponding diversities of fruiting plants, consistent with a bottom-up effect of plants on birds. Moreover, the phylogenetic diversity of seedlings was related to the phylogenetic diversity of plants, but was unrelated to the phylogenetic diversity of frugivorous birds, suggesting that top-down effects of animals on seedlings were weak. Mean seed mass of seedling communities was positively associated with the mean fruit mass of plants, but was not associated with the mean avian body mass in the frugivore communities. Our study shows that variation in the traits of fleshy-fruited plants was associated with the diversity of frugivorous birds and affected the future trajectory of seedling recruitment, whereas the morphological traits of animal seed dispersers were unrelated to the phylogenetic and functional structure of

  14. Population diversity of Diaphorina citri (Hemiptera: Liviidae) in China based on whole mitochondrial genome sequences.

    Science.gov (United States)

    Wu, Fengnian; Jiang, Hongyan; Beattie, G Andrew C; Holford, Paul; Chen, Jianchi; Wallis, Christopher M; Zheng, Zheng; Deng, Xiaoling; Cen, Yijing

    2018-04-24

    Diaphorina citri (Asian citrus psyllid; ACP) transmits 'Candidatus Liberibacter asiaticus' associated with citrus Huanglongbing (HLB). ACP has been reported in 11 provinces/regions in China, yet its population diversity remains unclear. In this study, we evaluated ACP population diversity in China using representative whole mitochondrial genome (mitogenome) sequences. Additional mitogenome sequences outside China were also acquired and evaluated. The sizes of the 27 ACP mitogenome sequences ranged from 14 986 to 15 030 bp. Along with three previously published mitogenome sequences, the 30 sequences formed three major mitochondrial groups (MGs): MG1, present in southwestern China and occurring at elevations above 1000 m; MG2, present in southeastern China and Southeast Asia (Cambodia, Indonesia, Malaysia, and Vietnam) and occurring at elevations below 180 m; and MG3, present in the USA and Pakistan. Single nucleotide polymorphisms in five genes (cox2, atp8, nad3, nad1 and rrnL) contributed mostly in the ACP diversity. Among these genes, rrnL had the most variation. Mitogenome sequences analyses revealed two major phylogenetic groups of ACP present in China as well as a possible unique group present currently in Pakistan and the USA. The information could have significant implications for current ACP control and HLB management. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Mosaic origins of a complex chimeric mitochondrial gene in Silene vulgaris.

    Directory of Open Access Journals (Sweden)

    Helena Storchova

    Full Text Available Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1. We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species.

  16. Expression of kenaf mitochondrial chimeric genes HM184 causes male sterility in transgenic tobacco plants.

    Science.gov (United States)

    Zhao, Yanhong; Liao, Xiaofang; Huang, Zhipeng; Chen, Peng; Zhou, Bujin; Liu, Dongmei; Kong, Xiangjun; Zhou, Ruiyang

    2015-08-01

    Chimeric genes resulting from the rearrangement of a mitochondrial genome were generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). In the study, earlier we reported that identifying a 47 bp deletion at 3'- flanking of atp9 that was linked to male sterile cytoplasm in kenaf. The truncated fragment was fused with atp9, a mitochondrial transit signal (MTS) and/or GFP, comprised two chimeric genes MTS-HM184-GFP and MTS-HM184. The plant expression vector pBI121 containing chimeric genes were then introduced to tobacco plants by Agrobacterium-mediated T-DNA transformation. The result showed that certain transgenic plants were male sterility or semi-sterility, while some were not. The expression analysis further demonstrated that higher level of expression were showed in the sterility plants, while no expression or less expression in fertility plants, the levels of expression of semi-sterility were in between. And the sterile plant (containing MTS-HM184-GFP) had abnormal anther produced malformed/shriveled pollen grains stained negative that failed to germinate (0%), the corresponding fruits was shrunken, the semi-sterile plants having normal anther shape produced about 10-50% normal pollen grains, the corresponding fruits were not full, and the germination rate was 58%. Meanwhile these transgenic plants which altered on fertility were further analyzed in phenotype. As a result, the metamorphosis leaves were observed in the seedling stage, the plant height of transgenic plants was shorter than wild type. The growth duration of transgenic tobacco was delayed 30-45 days compared to the wild type. The copy numbers of target genes of transgenic tobacco were analyzed using the real-time quantitative method. The results showed that these transgenic plants targeting-expression in mitochondrial containing MTS-HM184-GFP had 1 copy and 2 copies, the other two plants containing MTS-HM184 both had 3 copies, but 0 copy in wild type. In

  17. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Buma, D.S; De Boer, W.; Klinkhamer, P.G.L.; Van Veen, J.A.

    2002-01-01

    A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive

  18. Multifunctional Mitochondrial AAA Proteases.

    Science.gov (United States)

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  19. plant diversity, vegetation structure and relationship between plant

    African Journals Online (AJOL)

    Preferred Customer

    patterns of plant diversity were evaluated on the basis of species richness as the total number ... threatened due to habitat conversion, loss, and ... the conservation of highland forest bird species .... the economic and social welfare of the rural.

  20. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    Directory of Open Access Journals (Sweden)

    Magdalena Opalińska

    2017-11-01

    Full Text Available Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4’s physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4 and Pam18-2 and known (Tim17-2 substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  1. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Jańska, Hanna

    2017-11-18

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i -AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4's in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4's physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  2. High-resolution mitochondrial DNA analysis sheds light on human diversity, cultural interactions, and population mobility in Northwestern Amazonia.

    Science.gov (United States)

    Arias, Leonardo; Barbieri, Chiara; Barreto, Guillermo; Stoneking, Mark; Pakendorf, Brigitte

    2018-02-01

    Northwestern Amazonia (NWA) is a center of high linguistic and cultural diversity. Several language families and linguistic isolates occur in this region, as well as different subsistence patterns, with some groups being foragers and others agriculturalists. In addition, speakers of Eastern Tukanoan languages are known for practicing linguistic exogamy, a marriage system in which partners are taken from different language groups. In this study, we use high-resolution mitochondrial DNA sequencing to investigate the impact of this linguistic and cultural diversity on the genetic relationships and population structure of NWA groups. We collected saliva samples from individuals representing 40 different NWA ethnolinguistic groups and sequenced 439 complete mitochondrial genomes to an average coverage of 1,030×. The mtDNA data revealed that NWA populations have high genetic diversity with extensive sharing of haplotypes among groups. Moreover, groups who practice linguistic exogamy have higher genetic diversity, while the foraging Nukak have lower genetic diversity. We also find that rivers play a more important role than either geography or language affiliation in structuring the genetic relationships of populations. Contrary to the view of NWA as a pristine area inhabited by small human populations living in isolation, our data support a view of high diversity and contact among different ethnolinguistic groups, with movement along rivers probably facilitating this contact. Additionally, we provide evidence for the impact of cultural practices, such as linguistic exogamy, on patterns of genetic variation. Overall, this study provides new data and insights into a remote and little-studied region of the world. © 2017 Wiley Periodicals, Inc.

  3. Diverse role of CBL-interacting protein kinases in plant

    Indian Academy of Sciences (India)

    admin

    Diverse role of CBL-interacting protein kinases in plant. Most of the extracellular and ... to their role in stress signalling. Their role in transport of plant hormone auxin and mechanism of action in stress response shed new light on diverse role of.

  4. Mitochondrial Recombination and Introgression during Speciation by Hybridization.

    Science.gov (United States)

    Leducq, Jean-Baptiste; Henault, Mathieu; Charron, Guillaume; Nielly-Thibault, Lou; Terrat, Yves; Fiumera, Heather L; Shapiro, B Jesse; Landry, Christian R

    2017-08-01

    Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  6. Mitochondrial Band-7 family proteins: scaffolds for respiratory chain assembly?

    Directory of Open Access Journals (Sweden)

    Bernadette eGehl

    2014-04-01

    Full Text Available The band-7 protein family comprises a diverse set of membrane-bound proteins characterised by the presence of a conserved domain. The exact function of this band-7 domain remains elusive, but examples from animal and bacterial stomatin-type proteins demonstrate binding to lipids and the ability to assemble into membrane-bound oligomers that form putative scaffolds. Some members, such as prohibitins and human stomatin-like protein 2 (HsSLP2, localise to the mitochondrial inner membrane where they function in cristae formation and hyperfusion. In Arabidopsis, the band-7 protein family has diversified and includes plant-specific members. Mitochondrial-localised members include prohibitins (AtPHBs and two stomatin-like proteins (AtSLP1 and -2. Studies into PHB function in plants have demonstrated an involvement in root meristem proliferation and putative scaffold formation for mAAA proteases, but it remains unknown how these roles are achieved at the molecular level. In this minireview we summarise the current status of band-7 protein functions in Arabidopsis, and speculate how the mitochondrial members might recruit specific lipids to form microdomains that could shape the organisation and functioning of the respiratory chain.

  7. Genetic diversity and population genetic structure analysis of Echinococcus granulosus sensu stricto complex based on mitochondrial DNA signature.

    Directory of Open Access Journals (Sweden)

    Monika Sharma

    Full Text Available The genetic diversity and population genetics of the Echinococcus granulosus sensu stricto complex were investigated based on sequencing of mitochondrial DNA (mtDNA. Total 81 isolates of hydatid cyst collected from ungulate animals from different geographical areas of North India were identified by sequencing of cytochrome c oxidase subunit1 (coxi gene. Three genotypes belonging to E. granulosus sensu stricto complex were identified (G1, G2 and G3 genotypes. Further the nucleotide sequences (retrieved from GenBank for the coxi gene from seven populations of E. granulosus sensu stricto complex covering 6 continents, were compared with sequences of isolates analysed in this study. Molecular diversity indices represent overall high mitochondrial DNA diversity for these populations, but low nucleotide diversity between haplotypes. The neutrality tests were used to analyze signatures of historical demographic events. The Tajima's D test and Fu's FS test showed negative value, indicating deviations from neutrality and both suggested recent population expansion for the populations. Pairwise fixation index was significant for pairwise comparison of different populations (except between South America and East Asia, Middle East and Europe, South America and Europe, Africa and Australia, indicating genetic differentiation among populations. Based on the findings of the present study and those from earlier studies, we hypothesize that demographic expansion occurred in E. granulosus after the introduction of founder haplotype particular by anthropogenic movements.

  8. Plant genotypic diversity reduces the rate of consumer resource utilization.

    Science.gov (United States)

    McArt, Scott H; Thaler, Jennifer S

    2013-07-07

    While plant species diversity can reduce herbivore densities and herbivory, little is known regarding how plant genotypic diversity alters resource utilization by herbivores. Here, we show that an invasive folivore--the Japanese beetle (Popillia japonica)--increases 28 per cent in abundance, but consumes 24 per cent less foliage in genotypic polycultures compared with monocultures of the common evening primrose (Oenothera biennis). We found strong complementarity for reduced herbivore damage among plant genotypes growing in polycultures and a weak dominance effect of particularly resistant genotypes. Sequential feeding by P. japonica on different genotypes from polycultures resulted in reduced consumption compared with feeding on different plants of the same genotype from monocultures. Thus, diet mixing among plant genotypes reduced herbivore consumption efficiency. Despite positive complementarity driving an increase in fruit production in polycultures, we observed a trade-off between complementarity for increased plant productivity and resistance to herbivory, suggesting costs in the complementary use of resources by plant genotypes may manifest across trophic levels. These results elucidate mechanisms for how plant genotypic diversity simultaneously alters resource utilization by both producers and consumers, and show that population genotypic diversity can increase the resistance of a native plant to an invasive herbivore.

  9. Mitochondrial DNA diversity of honey bees (Apis mellifera) from unmanaged colonies and swarms in the United States.

    Science.gov (United States)

    Magnus, Roxane M; Tripodi, Amber D; Szalanski, Allen L

    2014-06-01

    To study the genetic diversity of honey bees (Apis mellifera L.) from unmanaged colonies in the United States, we sequenced a portion of the mitochondrial DNA COI-COII region. From the 530 to 1,230 bp amplicon, we observed 23 haplotypes from 247 samples collected from 12 states, representing three of the four A. mellifera lineages known to have been imported into the United States (C, M, and O). Six of the 13 C lineage haplotypes were not found in previous queen breeder studies in the United States. The O lineage accounted for 9% of unmanaged colonies which have not yet been reported in queen breeder studies. The M lineage accounted for a larger portion of unmanaged samples (7%) than queen breeder samples (3%). Based on our mitochondrial DNA data, the genetic diversity of unmanaged honey bees in the United States differs significantly from that of queen breeder populations (p < 0.00001). The detection of genetically distinct maternal lineages of unmanaged honey bees suggests that these haplotypes may have existed outside the managed honey bee population for a long period.

  10. Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage.

    Science.gov (United States)

    Bustos-Segura, Carlos; Poelman, Erik H; Reichelt, Michael; Gershenzon, Jonathan; Gols, Rieta

    2017-01-01

    Intraspecific plant diversity can modify the properties of associated arthropod communities and plant fitness. However, it is not well understood which plant traits determine these ecological effects. We explored the effect of intraspecific chemical diversity among neighbouring plants on the associated invertebrate community and plant traits. In a common garden experiment, intraspecific diversity among neighbouring plants was manipulated using three plant populations of wild cabbage that differ in foliar glucosinolates. Plants were larger, harboured more herbivores, but were less damaged when plant diversity was increased. Glucosinolate concentration differentially correlated with generalist and specialist herbivore abundance. Glucosinolate composition correlated with plant damage, while in polycultures, variation in glucosinolate concentrations among neighbouring plants correlated positively with herbivore diversity and negatively with plant damage levels. The results suggest that intraspecific variation in secondary chemistry among neighbouring plants is important in determining the structure of the associated insect community and positively affects plant performance. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  11. Literature study of plants diversity in Sempu Island Nature Reserve, East Java

    Directory of Open Access Journals (Sweden)

    RONY IRAWANTO

    2017-03-01

    Full Text Available Abstract. Irawanto R, Abywijaya IK, Mudiana D. 2017. Literature study of plants diversity in Sempu Island Nature Reserve, East Java. Pros Sem Nas Masy Biodiv Indon 3: 138-146. Purwodadi Botanic Garden have the task of plant conservation through inventories, exploration, collection and maintenance of plants, especially on dry lowland plants. Exploration activities and plants collection aim to conserve and save the plants from extinction, as well as conduct research and documentation of plant diversity in a region. It's related of the global strategy for plant conservation (GSPC target is known and documentation of plants diversity, especially in threatened habitats could be a priority. Sempu island's status as a nature reserve has a diversity of ecosystem and biodiversity of flora and fauna that are endemic and unique. This study aims to determine the plant's diversity in Island Sempu Nature Reserve based on a literature review of various studies that have been done. This study is a database for planning exploration activities, collecting, and documenting the plant's diversity in Sempu Island - East Java. Based on the literature review there are 282 species of plant diversity in Sempu Island, included in 80 families, contained in 10 blocks/location areas, namely Telaga Lele, Telaga Sat, Telaga Dowo, Gladakan, Baru-baru, Gua Macan, Teluk Ra’as, Teluk Semut, Air Tawar, dan Waru-Waru.Tenth blocks represent plants vegetation of mangrove forest, coastal forest, lowland tropical forests, and meadows.

  12. Plant parasite control and soil fauna diversity.

    Science.gov (United States)

    Lavelle, Patrick; Blouin, Manuel; Boyer, Johnny; Cadet, Patrice; Laffray, Daniel; Pham-Thi, Anh-Thu; Reversat, Georges; Settle, William; Zuily, Yasmine

    2004-07-01

    The use of pesticides to control plant parasites and diseases has generated serious problems of public health and environmental quality, leading to the promotion of alternative Integrated Pest Management strategies that tend to rely more on natural processes and the active participation of farmers as observers and experimenters in their own fields. We present three case studies that point at different options provided by locally available populations of soil organisms, the maintenance of diverse populations of pests or increased resistance of plants to pest attacks by their interactions with earthworms and other useful soil organisms. These examples demonstrate the diversity of options offered by the non-planned agro-ecosystem diversity in pest control and the need to identify management options that maintain this biodiversity.

  13. Genetic diversity and variation of mitochondrial DNA in native and introduced bighead carp

    Science.gov (United States)

    Li, Si-Fa; Yang, Qin-Ling; Xu, Jia-Wei; Wang, Cheng-Hui; Chapman, Duane C.; Lu, Guoping

    2010-01-01

    The bighead carp Hypophthalmichthys nobilis is native to China but has been introduced to over 70 countries and is established in many large river systems. Genetic diversity and variation in introduced bighead carp have not previously been evaluated, and a systematic comparison among fish from different river systems was unavailable. In this study, 190 bighead carp specimens were sampled from five river systems in three countries (Yangtze, Pearl, and Amur rivers, China; Danube River, Hungary; Mississippi River basin, USA) and their mitochondrial 16S ribosomal RNA gene and D-loop region were sequenced (around 1,345 base pairs). Moderate genetic diversity was found in bighead carp, ranging from 0.0014 to 0.0043 for nucleotide diversity and from 0.6879 to 0.9333 for haplotype diversity. Haplotype analysis provided evidence that (1) multiple haplotype groups might be present among bighead carp, (2) bighead carp probably originated from the Yangtze River, and (3) bighead carp in the Mississippi River basin may have some genetic ancestry in the Danube River. The analysis of molecular variance showed significant genetic differentiation among these five populations but also revealed limited differentiation between the Yangtze and Amur River bighead carp. This large-scale study of bighead carp genetic diversity and variation provides the first global perspective of bighead carp in the context of biodiversity conservation as well as invasive species control and management.

  14. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  15. Mitochondrial genome diversity in dagger and needle nematodes (Nematoda: Longidoridae).

    Science.gov (United States)

    Palomares-Rius, J E; Cantalapiedra-Navarrete, C; Archidona-Yuste, A; Blok, V C; Castillo, P

    2017-02-02

    Dagger and needle nematodes included in the family Longidoridae (viz. Longidorus, Paralongidorus, and Xiphinema) are highly polyphagous plant-parasitic nematodes in wild and cultivated plants and some of them are plant-virus vectors (nepovirus). The mitochondrial (mt) genomes of the dagger and needle nematodes, Xiphinema rivesi, Xiphinema pachtaicum, Longidorus vineacola and Paralongidorus litoralis were sequenced in this study. The four circular mt genomes have an estimated size of 12.6, 12.5, 13.5 and 12.7 kb, respectively. Up to date, the mt genome of X. pachtaicum is the smallest genome found in Nematoda. The four mt genomes contain 12 protein-coding genes (viz. cox1-3, nad1-6, nad4L, atp6 and cob) and two ribosomal RNA genes (rrnL and rrnS), but the atp8 gene was not detected. These mt genomes showed a gene arrangement very different within the Longidoridae species sequenced, with the exception of very closely related species (X. americanum and X. rivesi). The sizes of non-coding regions in the Longidoridae nematodes were very small and were present in a few places in the mt genome. Phylogenetic analysis of all coding genes showed a closer relationship between Longidorus and Paralongidorus and different phylogenetic possibilities for the three Xiphinema species.

  16. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    Directory of Open Access Journals (Sweden)

    Lippold Sebastian

    2011-11-01

    Full Text Available Abstract Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73% already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the

  17. Effects of plant diversity on the concentration of secondary plant metabolites and the density of arthropods on focal plants in the field

    NARCIS (Netherlands)

    Kostenko, O.; Mulder, Patrick P. J.; Courbois, Matthijs; Bezemer, T. Martijn

    2017-01-01

    1.The diversity of the surrounding plant community can directly affect the abundance of insects on a focal plant as well as the size and quality of that focal plant. However, to what extent the effects of plant diversity on the arthropod community on a focal plant are mediated by host plant quality

  18. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    Science.gov (United States)

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  19. Plant functional diversity affects climate-vegetation interaction

    Science.gov (United States)

    Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin

    2018-04-01

    We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the green Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.

  20. Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients.

    Science.gov (United States)

    Pellissier, Loïc; Ndiribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Salamin, Nicolas; Guisan, Antoine; Rasmann, Sergio

    2013-05-01

    Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. © 2013 Blackwell Publishing Ltd/CNRS.

  1. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  2. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    Science.gov (United States)

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements

    Science.gov (United States)

    Welchen, Elina; García, Lucila; Mansilla, Natanael; Gonzalez, Daniel H.

    2014-01-01

    Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number, and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light–dark cycles, and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands. PMID:24409193

  4. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements.

    Directory of Open Access Journals (Sweden)

    Elina eWelchen

    2014-01-01

    Full Text Available Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light-dark cycles and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.

  5. Mitochondrial D-loop analysis for uncovering the population structure and genetic diversity among the indigenous duck (Anas platyrhynchos) populations of India.

    Science.gov (United States)

    Gaur, Uma; Tantia, Madhu Sudan; Mishra, Bina; Bharani Kumar, Settypalli Tirumala; Vijh, Ramesh Kumar; Chaudhury, Ashok

    2018-03-01

    The indigenous domestic duck (Anas platyrhynchos domestica) which is domesticated from Mallard (Anas platyrhynchos) contributes significantly to poor farming community in coastal and North Eastern regions of India. For conservation and maintenance of indigenous duck populations it is very important to know the existing genetic diversity and population structure. To unravel the population structure and genetic diversity among the five indigenous duck populations of India, the mitochondrial D-loop sequences of 120 ducks were analyzed. The sequence analysis by comparison of mtDNA D-loop region (470 bp) of five Indian duck populations revealed 25 mitochondrial haplotypes. Pairwise F ST value among populations was 0.4243 (p land birds revealed introgression of the out group breed Khaki Campbell, which is used for breed improvement programs in India. The observations revealed very less selection and a single matrilineal lineage of indigenous domestic ducks.

  6. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    Directory of Open Access Journals (Sweden)

    Andrew J Alverson

    2011-01-01

    Full Text Available The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean, and show that despite its unexceptional size (401,262 nt, the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.

  7. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  8. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3

    DEFF Research Database (Denmark)

    Sol, E-ri Maria; Wagner, Sebastian A; Weinert, Brian T

    2012-01-01

    Lysine acetylation is a posttranslational modification that is dynamically regulated by the activity of acetyltransferases and deacetylases. The human and mouse genomes encode 18 different lysine deacetylases (KDACs) which are key regulators of many cellular processes. Identifying substrates...... of KDACs and pinpointing the regulated acetylation sites on target proteins may provide important information about the molecular basis of their functions. Here we apply quantitative proteomics to identify endogenous substrates of the mitochondrial deacetylase Sirtuin 3 (Sirt3) by comparing site...... by modulating acetylation on diverse substrates. The experimental strategy described here is generic and can be applied to identify endogenous substrates of other lysine deacetylases....

  9. Analysis of Africanized honey bee mitochondrial DNA reveals further diversity of origin

    Directory of Open Access Journals (Sweden)

    Walter S. Sheppard

    1999-03-01

    Full Text Available Within the past 40 years, Africanized honey bees spread from Brazil and now occupy most areas habitable by the species Apis mellifera, from Argentina to the southwestern United States. The primary genetic source for Africanized honey bees is believed to be the sub-Saharan honey bee subspecies A. m. scutellata. Mitochondrial markers common in A. m. scutellata have been used to classify Africanized honey bees in population genetic and physiological studies. Assessment of composite mitochondrial haplotypes from Africanized honey bees, using 4 base recognizing restriction enzymes and COI-COII intergenic spacer length polymorphism, provided evidence for a more diverse mitochondrial heritage. Over 25% of the "African" mtDNA found in Africanized populations in Argentina are derived from non-A. m. scutellata sources.Nos últimos 40 anos, abelhas africanizadas se espalharam a partir do Brasil e agora ocupam a maioria das áreas habitáveis pela espécie Apis mellifera, da Argentina ao sudoeste dos Estados Unidos. Acredita-se que a fonte genética primária das abelhas africanizadas seja a subespécie subsaariana de abelha A. m. scutellata. Marcadores mitocondriais comuns em A. m. scutellata têm sido usados para classificar abelhas africanizadas em estudos de fisiologia e genética de população. A avaliação de haplótipos mitocondriais compostos em abelhas africanizadas, usando 3 enzimas de restrição e um polimorfismo de comprimento no espaçador intergênico "COI-COII", evidenciou uma herança mitocondrial mais diversa. Mais de 25% do mtDNA "africano" encontrado em populações africanizadas na Argentina são derivados de fontes não relacionadas a A. m. scutellata.

  10. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability......Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits......). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline...

  11. Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets

    Directory of Open Access Journals (Sweden)

    Quagliariello Carla

    2008-03-01

    Full Text Available Abstract Background In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters. To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations. Results Based on our simulation study we suggest that the editing ‘noise’ in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (rps3, matR and atp1 no differences in the comparison between inferred genomic and cDNA topologies could be detected. Conclusions Our findings by the here reported in silico and in vivo computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0% and reduced in length (shorter than 500 bp. In the current lack of direct experimental evidence the results

  12. Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

    Science.gov (United States)

    Cui, Jian; Liu, Jinghua; Li, Yuhua; Shi, Tieliu

    2011-01-01

    Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome. PMID:21297957

  13. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.

    Science.gov (United States)

    Miki, Takeshi; Ushio, Masayuki; Fukui, Shin; Kondoh, Michio

    2010-08-10

    Theory and empirical evidence suggest that plant-soil feedback (PSF) determines the structure of a plant community and nutrient cycling in terrestrial ecosystems. The plant community alters the nutrient pool size in soil by affecting litter decomposition processes, which in turn shapes the plant community, forming a PSF system. However, the role of microbial decomposers in PSF function is often overlooked, and it remains unclear whether decomposers reinforce or weaken litter-mediated plant control over nutrient cycling. Here, we present a theoretical model incorporating the functional diversity of both plants and microbial decomposers. Two fundamental microbial processes are included that control nutrient mineralization from plant litter: (i) assimilation of mineralized nutrient into the microbial biomass (microbial immobilization), and (ii) release of the microbial nutrients into the inorganic nutrient pool (net mineralization). With this model, we show that microbial diversity may act as a buffer that weakens plant control over the soil nutrient pool, reversing the sign of PSF from positive to negative and facilitating plant coexistence. This is explained by the decoupling of litter decomposability and nutrient pool size arising from a flexible change in the microbial community composition and decomposition processes in response to variations in plant litter decomposability. Our results suggest that the microbial community plays a central role in PSF function and the plant community structure. Furthermore, the results strongly imply that the plant-centered view of nutrient cycling should be changed to a plant-microbe-soil feedback system, by incorporating the community ecology of microbial decomposers and their functional diversity.

  14. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    Science.gov (United States)

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  15. Environmental conditions influence the plant functional diversity effect on potential denitrification.

    Directory of Open Access Journals (Sweden)

    Ariana E Sutton-Grier

    2011-02-01

    Full Text Available Global biodiversity loss has prompted research on the relationship between species diversity and ecosystem functioning. Few studies have examined how plant diversity impacts belowground processes; even fewer have examined how varying resource levels can influence the effect of plant diversity on microbial activity. In a field experiment in a restored wetland, we examined the role of plant trait diversity (or functional diversity, (FD and its interactions with natural levels of variability of soil properties, on a microbial process, denitrification potential (DNP. We demonstrated that FD significantly affected microbial DNP through its interactions with soil conditions; increasing FD led to increased DNP but mainly at higher levels of soil resources. Our results suggest that the effect of species diversity on ecosystem functioning may depend on environmental factors such as resource availability. Future biodiversity experiments should examine how natural levels of environmental variability impact the importance of biodiversity to ecosystem functioning.

  16. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    OpenAIRE

    Magdalena Opalińska; Katarzyna Parys; Hanna Jańska

    2017-01-01

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we...

  17. Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards.

    Science.gov (United States)

    Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A

    2016-02-01

    Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Genetic diversity and population genetic analysis of Donax vittatus (Mollusca: Bivalvia) and phylogeny of the genus with mitochondrial and nuclear markers

    Science.gov (United States)

    Fernández-Pérez, Jenyfer; Froufe, Elsa; Nantón, Ana; Gaspar, Miguel B.; Méndez, Josefina

    2017-10-01

    In this study, the genetic diversity of Donax vittatus across the Iberian Peninsula was investigated using four mitochondrial (COI, Cytb, 16S F and M types) and three nuclear (H3, 18S and 28S) genes. These same molecular markers were also sequenced in D. semistriatus and D variegatus to address the phylogenetic relationships of the species of the genus Donax common along the European coasts. Our results showed high haplotype diversity in combination with a low nucleotide diversity and a star-shaped network with a predominant haplotype, indicating a recent population expansion for the examined sampling sites of D. vittatus. Furthermore, analyses of population differentiation performed with COI mitochondrial marker, including global FST estimation and pairwise FST values, indicated the non-existence of significant genetic structure in D. vittatus of Northwest Iberian populations. Because these localities show a high genetic similarity, we suggest that D. vittatus could be a potentially alternative exploitable resource, as complement to the D. trunculus fisheries, whose natural stocks have decreased dramatically in some areas. Furthermore, we present for the first time, evidence of DUI in the clams D. vittatus and D. semistriatus.

  19. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  20. Functional diversity in plant communities: Theory and analysis ...

    African Journals Online (AJOL)

    Plant functional diversity in community has become a key point in ecology studies recently. The development of species functional diversity was reviewed in the present work. Based on the former original research papers and reviews, we discussed the concept and connotation and put forward a new definition of functional ...

  1. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions.

    Science.gov (United States)

    Martínez-Reyes, Inmaculada; Diebold, Lauren P; Kong, Hyewon; Schieber, Michael; Huang, He; Hensley, Christopher T; Mehta, Manan M; Wang, Tianyuan; Santos, Janine H; Woychik, Richard; Dufour, Eric; Spelbrink, Johannes N; Weinberg, Samuel E; Zhao, Yingming; DeBerardinis, Ralph J; Chandel, Navdeep S

    2016-01-21

    Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks. Genetic reconstitution only of the oxidative TCA cycle function specifically in these inducible ρ(ο) cells restored metabolites, resulting in re-establishment of histone acetylation. In contrast, genetic reconstitution of the mitochondrial membrane potential restored ROS, which were necessary for hypoxic activation of HIF-1 and cell proliferation. These results indicate that distinct mitochondrial functions associated with respiration are necessary for cell proliferation, epigenetics, and HIF-1 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma

    2015-08-28

    Background: Aridification is a worldwide serious threat directly affecting agriculture and crop production. In arid and desert areas, it has been found that microbial diversity is huge, built of microorganisms able to cope with the environmental harsh conditions by developing adaptation strategies. Plants growing in arid lands or regions facing prolonged abiotic stresses such as water limitation and salt accumulation have also developed specific physiological and molecular stress responses allowing them to thrive under normally unfavorable conditions. Scope: Under such extreme selection pressures, special root-associated bacterial assemblages, endowed with capabilities of plant growth promotion (PGP) and extremophile traits, are selected by the plants. In this review, we provide a general overview on the microbial diversity in arid lands and deserts versus specific microbial assemblages associated with plants. The ecological drivers that shape this diversity, how plant-associated microbiomes are selected, and their biotechnological potential are discussed. Conclusions: Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  3. Diversity and Plant Growth Promoting Proerties of Rhizobacteria ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate and assess the plant growth promoting characteristics and diversity of major tef rhizosphere isolates from central Ethiopia. A total of 162 bacteria were isolated from rhizosphere of tef [Eragrostis tef (Zucc.) Trotter] and characterized. While screening using some plant growth ...

  4. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  5. Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity.

    Directory of Open Access Journals (Sweden)

    Tamila Garbuz

    Full Text Available The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma

  6. Genome Size Diversity and Its Impact on the Evolution of Land Plants

    Directory of Open Access Journals (Sweden)

    Jaume Pellicer

    2018-02-01

    Full Text Available Genome size is a biodiversity trait that shows staggering diversity across eukaryotes, varying over 64,000-fold. Of all major taxonomic groups, land plants stand out due to their staggering genome size diversity, ranging ca. 2400-fold. As our understanding of the implications and significance of this remarkable genome size diversity in land plants grows, it is becoming increasingly evident that this trait plays not only an important role in shaping the evolution of plant genomes, but also in influencing plant community assemblages at the ecosystem level. Recent advances and improvements in novel sequencing technologies, as well as analytical tools, make it possible to gain critical insights into the genomic and epigenetic mechanisms underpinning genome size changes. In this review we provide an overview of our current understanding of genome size diversity across the different land plant groups, its implications on the biology of the genome and what future directions need to be addressed to fill key knowledge gaps.

  7. Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats.

    Science.gov (United States)

    Karadjian, Gregory; Hassanin, Alexandre; Saintpierre, Benjamin; Gembu Tungaluna, Guy-Crispin; Ariey, Frederic; Ayala, Francisco J; Landau, Irene; Duval, Linda

    2016-08-30

    Haemosporidia parasites have mostly and abundantly been described using mitochondrial genes, and in particular cytochrome b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria parasites isolated from Nycteridae bats has been recently reported. Bats are hosts to a diverse and profuse array of Haemosporidia parasites that remain largely unstudied. There is a need to obtain more molecular data from chiropteran parasites. Such data would help to better understand the evolutionary history of Haemosporidia, which notably include the Plasmodium parasites, malaria's agents. We use next-generation sequencing to obtain the complete mitochondrial genome of Nycteria parasites from African Nycteris grandis (Nycteridae) and Rhinolophus alcyone (Rhinolophidae) and Asian Megaderma spasma (Megadermatidae). We report four complete mitochondrial genomes, including two rearranged mitochondrial genomes within Haemosporidia. Our results open outlooks into potentially undiscovered Haemosporidian diversity.

  8. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants

    Science.gov (United States)

    Mansilla, Natanael; Racca, Sofia; Gras, Diana E.; Gonzalez, Daniel H.

    2018-01-01

    Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O2 to H2O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a3), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution. PMID:29495437

  9. Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress.

    Science.gov (United States)

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2015-05-01

    To understand the mechanism of biophoton emission, ROS and mitochondrial proteins were analyzed in soybean plants under flooding stress. Enzyme activity and biophoton emission were increased in the flooding stress samples when assayed in reaction mixes specific for antioxidant enzymes and reactive oxygen species; although the level of the hydroxyl radicals was increased at day 4 (2 days of flooding) compared to nonflooding at day 4, the emission of biophotons did not change. Mitochondria were isolated and purified from the roots of soybean plants grown under flooding stress by using a Percoll gradient, and proteins were analyzed by a gel-free proteomic technique. Out of the 98 mitochondrial proteins that significantly changed abundance under flooding stress, 47 increased and 51 decreased at day 4. The mitochondrial enzymes fumarase, glutathione-S-transferase, and aldehyde dehydrogenase increased at day 4 in protein abundance and enzyme activity. Enzyme activity and biophoton emission decreased at day 4 by the assay of lipoxygenase under stress. Aconitase, acyl CoA oxidase, succinate dehydrogenase, and NADH ubiquinone dehydrogenase were up-regulated at the transcription level. These results indicate that oxidation and peroxide scavenging might lead to biophoton emission and oxidative damage in the roots of soybean plants under flooding stress.

  10. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap.

    Science.gov (United States)

    Gomes, Sofia I F; Merckx, Vincent S F T; Saavedra, Serguei

    2017-05-01

    The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal-host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal-host diversity may be additionally modulated by plant-plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.

  11. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  12. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  13. Small mammals as indicators of cryptic plant species diversity in the central Chilean plant endemicity hotspot

    Directory of Open Access Journals (Sweden)

    Meredith Root-Bernstein

    2014-12-01

    Full Text Available Indicator species could help to compensate for a shortfall of knowledge about the diversity and distributions of undersampled and cryptic species. This paper provides background knowledge about the ecological interactions that affect and are affected by herbaceous diversity in central Chile, as part of the indicator species selection process. We focus on the ecosystem engineering role of small mammals, primarily the degu Octodon degus. We also consider the interacting effects of shrubs, trees, avian activity, livestock, slope, and soil quality on herbaceous communities in central Chile. We sampled herbaceous diversity on a private landholding characterized by a mosaic of savanna, grassland and matorral, across a range of degu disturbance intensities. We find that the strongest factors affecting endemic herbaceous diversity are density of degu runways, shrub cover and avian activity. Our results show that the degu, a charismatic and easily identifiable and countable species, could be used as an indicator species to aid potential conservation actions such as private protected area uptake. We map areas in central Chile where degus may indicate endemic plant diversity. This area is larger than expected, and suggests that significant areas of endemic plant communities may still exist, and should be identified and protected. Keywords: Cryptic species, Diversity, Endemic, Indicator species, Octodon degus, Plant

  14. Diversity dynamics of silurian-early carboniferous land plants in South china.

    Directory of Open Access Journals (Sweden)

    Conghui Xiong

    Full Text Available New megafossil and microfossil data indicate four episodes in the diversification of Silurian-Early Carboniferous land plants of South China, a relatively continuous regional record. Plant diversity increased throughout, but the rising curve was punctuated by three major falls. There were peaks of origination in the Ludlow-Pragian, Givetian, late Famennian and Visean and peaks of extinction in the Pragian-Emsian, Givetian and early Tournaisian. Speciation and extinction rates were highest in the Lochkovian-Pragian and became progressively lower in subsequent stages. High correlation coefficients indicate that these events are associated with the availability of land habitat contingent on eustatic variations and increasing numbers of cosmopolitan genera. Meanwhile, proportions of endemic genera declined gradually. Due to less endemism and more migrations, both speciation and species extinction rates reduced. The changes of diversity and the timing of the three extinctions of land plants in South China are similar to those known already from Laurussia. However, the largest events in the Lochkovian-Pragian and subsequent smaller ones have not been seen in the global pattern of plant evolution. These land plant events do not correspond well temporally with those affecting land vertebrates or marine invertebrates. In South China, the diversity curve of land plants is generally opposite to that of marine faunas, showing a strong effect of eustatic variations. The increasing diversity of both land vertebrates and plants was punctuated above the Devonian-Carboniferous boundary, known as Romer's Gap, implying common underlying constraints on macroevolution of land animals and plants.

  15. Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness

    Directory of Open Access Journals (Sweden)

    Mark A. Genung

    2014-03-01

    Full Text Available The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus. We found that plant biomass (a measurement of ecosystem function sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

  16. FRIENDLY regulates mitochondrial distribution, fusion, and quality control in Arabidopsis.

    Science.gov (United States)

    El Zawily, Amr M; Schwarzländer, Markus; Finkemeier, Iris; Johnston, Iain G; Benamar, Abdelilah; Cao, Yongguo; Gissot, Clémence; Meyer, Andreas J; Wilson, Ken; Datla, Raju; Macherel, David; Jones, Nick S; Logan, David C

    2014-10-01

    Mitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell. We sought to understand how disruption of FRIENDLY function in Arabidopsis (Arabidopsis thaliana) leads to mitochondrial clustering and the effects of this aberrant chondriome on cell and whole-plant physiology. We present evidence for a role of FRIENDLY in mediating intermitochondrial association, which is a necessary prelude to mitochondrial fusion. We demonstrate that disruption of mitochondrial association, motility, and chondriome structure in friendly affects mitochondrial quality control and leads to mitochondrial stress, cell death, and strong growth phenotypes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  17. Mitochondrial DNA reveals unexpected diversity of chubs (genus Squalius; Cypriniformes, Actinopterygii in the Adriatic basin

    Directory of Open Access Journals (Sweden)

    Ivana Buj

    2015-12-01

    Full Text Available The genus Squalius comprises more than 40 species inhabiting various freshwater habitats. They are distributed in Europe and Asia, with particularly high diversity recorded in the Mediterranean area. The taxonomic status of many populations is still matter of debate. With this investigation we aimed to help in resolving taxonomic uncertainties of the chubs distributed in the Adriatic basin in Croatia and Bosnia and Herzegovina. Phylogenetic reconstruction based on mitochondrial gene for cytochrome b revealed high diversity of chubs in the investigated area. Two evolutionary independent lineages are revealed: the first one comprising species Sq. svallize, Sq. tenellus, Sq. illyricus and Sq. zrmanjae; whereas the second lineage corresponds with Sq. squalus. High intraspecific structuring of Sq. squalus was detected, implying necessity of taxonomic revision of that species. Based on the obtained results, most important aspects of the evolutionary history of the genus Squalius in the Adriatic basin will be discussed and evolutionary significant units identified.

  18. Species composition, plant cover and diversity of recently reforested ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... Deforestation, over-cultivation and rural growth have severely ... over-cultivation, plant populations changed, and biolo- ... Restoring community structure (e.g. species composi-tion ... plant diversity at all spatial scales are the criteria that should ..... taxonomic groups in recovering and restored forests.

  19. Diversity of medicinal plants and anthropogenic threats in the ...

    African Journals Online (AJOL)

    Diversity of medicinal plants and anthropogenic threats in the Samburu Central Sub-County of Kenya. ... Biodiversity of medicinal plants and effects of human activities on availability of traditional ... There is, therefore need to adopt management strategies that enhance the conservation of these valuable natural resources.

  20. Why we shouldn't underestimate the impact of plant functional diversity

    Science.gov (United States)

    Groner, V.; Raddatz, T.; Reick, C. H.; Claussen, M.

    2017-12-01

    We present a series of coupled land-atmosphere simulations with different combinations of plant functional types (PFTs) from mid-Holocene to preindustrial to show how plant functional diversity affects simulated climate-vegetation interaction under changing environmental conditions in subtropical Africa. Scientists nowadays agree that the establishment of the ``green'' Sahara was triggered by external changes in the Earth's orbit and amplified by internal feedback mechanisms. The timing and abruptness of the transition to the ``desert'' state are in turn still under debate. While some previous studies indicated an abrupt collapse of vegetation implying a strong climate-vegetation feedback, others suggested a gradual vegetation decline thereby questioning the existence of a strong climate-vegetation feedback. However, none of these studies explicitly accounted for the role of plant diversity. We show that the introduction or removal of a single PFT can bring about significant impacts on the simulated climate-vegetation system response to changing orbital forcing. While simulations with the standard set of PFTs show a gradual decrease of precipitation and vegetation cover over time, the reduction of plant functional diversity can cause either an abrupt decline of both variables or an even slower response to the external forcing. PFT composition seems to be the decisive factor for the system response to external forcing, and an increase in plant functional diversity does not necessarily increase the stability of the climate-vegetation system. From this we conclude that accounting for plant functional diversity in future studies - not only on palaeo climates - could significantly improve the understanding of climate-vegetation interaction in semi-arid regions, the predictability of the vegetation response to changing climate, and respectively, of the resulting feedback on precipitation.

  1. Diversity of vascular plants of Piestany and surroundings

    International Nuclear Information System (INIS)

    Penzesova, A.; Galusova, T.

    2013-01-01

    In the present work is a summary of the results of floristic research aimed at determining diversity of vascular plants of Piestany and its surroundings. Plant taxa we determined using the designation keys. We have compiled a list of plant species occurring in the monitored area, we evaluated the selected botanical-phytogeographical characteristics of flora, we've put together a list of local protected, endangered and rare species and a list of local invasive and expansive species according to sources. (Authors)

  2. Plant diversity and plant identity influence Fusarium communities in soil.

    Science.gov (United States)

    LeBlanc, Nicholas; Kinkel, Linda; Kistler, H Corby

    2017-01-01

    Fusarium communities play important functional roles in soil and in plants as pathogens, endophytes, and saprotrophs. This study tests how rhizosphere Fusarium communities may vary with plant species, changes in the diversity of the surrounding plant community, and soil physiochemical characteristics. Fusarium communities in soil associated with the roots of two perennial prairie plant species maintained as monocultures or growing within polyculture plant communities were characterized using targeted metagenomics. Amplicon libraries targeting the RPB2 locus were generated from rhizosphere soil DNAs and sequenced using pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) and assigned a taxonomy using the Evolutionary Placement Algorithm. Fusarium community composition was differentiated between monoculture and polyculture plant communities, and by plant species in monoculture, but not in polyculture. Taxonomic classification of the Fusarium OTUs showed a predominance of F. tricinctum and F. oxysporum as well of the presence of a clade previously only found in the Southern Hemisphere. Total Fusarium richness was not affected by changes in plant community richness or correlated with soil physiochemical characteristics. However, OTU richness within two predominant phylogenetic lineages within the genus was positively or negatively correlated with soil physiochemical characteristics among samples within each lineage. This work shows that plant species, plant community richness, and soil physiochemical characteristics may all influence the composition and richness of Fusarium communities in soil.

  3. Soil stabilization linked to plant diversity and environmental context in coastal wetlands.

    Science.gov (United States)

    Ford, Hilary; Garbutt, Angus; Ladd, Cai; Malarkey, Jonathan; Skov, Martin W

    2016-03-01

    Plants play a pivotal role in soil stabilization, with above-ground vegetation and roots combining to physically protect soil against erosion. It is possible that diverse plant communities boost root biomass, with knock-on positive effects for soil stability, but these relationships are yet to be disentangled. We hypothesize that soil erosion rates fall with increased plant species richness, and test explicitly how closely root biomass is associated with plant diversity. We tested this hypothesis in salt marsh grasslands, dynamic ecosystems with a key role in flood protection. Using step-wise regression, the influences of biotic (e.g. plant diversity) and abiotic variables on root biomass and soil stability were determined for salt marshes with two contrasting soil types: erosion-resistant clay (Essex, southeast UK) and erosion-prone sand (Morecambe Bay, northwest UK). A total of 132 (30-cm depth) cores of natural marsh were extracted and exposed to lateral erosion by water in a re-circulating flume. Soil erosion rates fell with increased plant species richness ( R 2  = 0.55), when richness was modelled as a single explanatory variable, but was more important in erosion-prone ( R 2  = 0.44) than erosion-resistant ( R 2  = 0.18) regions. As plant species richness increased from two to nine species·m -2 , the coefficient of variation in soil erosion rate decreased significantly ( R 2  = 0.92). Plant species richness was a significant predictor of root biomass ( R 2  = 0.22). Step-wise regression showed that five key variables accounted for 80% of variation in soil erosion rate across regions. Clay-silt fraction and soil carbon stock were linked to lower rates, contributing 24% and 31%, respectively, to variation in erosion rate. In regional analysis, abiotic factors declined in importance, with root biomass explaining 25% of variation. Plant diversity explained 12% of variation in the erosion-prone sandy region. Our study indicates that soil stabilization

  4. A Brief Review of Molecular Techniques to Assess Plant Diversity

    Directory of Open Access Journals (Sweden)

    Ibrahim A. Arif

    2010-05-01

    Full Text Available Massive loss of valuable plant species in the past centuries and its adverse impact on environmental and socioeconomic values has triggered the conservation of plant resources. Appropriate identification and characterization of plant materials is essential for the successful conservation of plant resources and to ensure their sustainable use. Molecular tools developed in the past few years provide easy, less laborious means for assigning known and unknown plant taxa. These techniques answer many new evolutionary and taxonomic questions, which were not previously possible with only phenotypic methods. Molecular techniques such as DNA barcoding, random amplified polymorphic DNA (RAPD, amplified fragment length polymorphism (AFLP, microsatellites and single nucleotide polymorphisms (SNP have recently been used for plant diversity studies. Each technique has its own advantages and limitations. These techniques differ in their resolving power to detect genetic differences, type of data they generate and their applicability to particular taxonomic levels. This review presents a basic description of different molecular techniques that can be utilized for DNA fingerprinting and molecular diversity analysis of plant species.

  5. A Brief Review of Molecular Techniques to Assess Plant Diversity

    Science.gov (United States)

    Arif, Ibrahim A.; Bakir, Mohammad A.; Khan, Haseeb A.; Al Farhan, Ahmad H.; Al Homaidan, Ali A.; Bahkali, Ali H.; Sadoon, Mohammad Al; Shobrak, Mohammad

    2010-01-01

    Massive loss of valuable plant species in the past centuries and its adverse impact on environmental and socioeconomic values has triggered the conservation of plant resources. Appropriate identification and characterization of plant materials is essential for the successful conservation of plant resources and to ensure their sustainable use. Molecular tools developed in the past few years provide easy, less laborious means for assigning known and unknown plant taxa. These techniques answer many new evolutionary and taxonomic questions, which were not previously possible with only phenotypic methods. Molecular techniques such as DNA barcoding, random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), microsatellites and single nucleotide polymorphisms (SNP) have recently been used for plant diversity studies. Each technique has its own advantages and limitations. These techniques differ in their resolving power to detect genetic differences, type of data they generate and their applicability to particular taxonomic levels. This review presents a basic description of different molecular techniques that can be utilized for DNA fingerprinting and molecular diversity analysis of plant species. PMID:20559503

  6. Patterns of plant species diversity during succession under different disturbance regimes.

    Science.gov (United States)

    Denslow, Julie Sloan

    1980-07-01

    I suggest that between-community variations in diversity patterns during succession in plant communities are due to the effects of selection on life history strategies under different disturbance regimes. Natural disturbances to plant communities are simultaneously a source of mortality for some individuals and a source of establishment sites for others. The plant community consists of a mosaic of disturbance patches (gaps) of different environmental conditions. The composition of the mosaic is described by the size-frequency distribution of the gaps and is dependent on the rates and scales of disturbance. The life-history strategies of plant species dependent on some form of disturbance for establishment of propagules should reflect this size-frequency distribution of disturbance patches. An extension of island biogeographic theory to encompass relative habitat area predicts that a community should be most rich in species adapted to growth and establishment in the spatially most common patch types. Changes in species diversity during succession following large scale disturbance reflect the prevalent life history patterns under historically common disturbance regimes. Communities in which the greatest patch area is in large-scale clearings (e.g. following fire) are most diverse in species establishing seedlings in xeric, high light conditions. Species diversity decreases during succession. Communities in which such large patches are rare are characterized by a large number of species that reach the canopy through small gaps and realtively few which regenerate in the large clearings. Diversity increases during succession following a large scale disturbance.Evidence from communities characterized by different disturbance regimes is summarized from the literature. This hypothesis provides an evolutionary mechanism with which to examine the changes in plant community structure during succession. Diversity peaks occurring at "intermediate levels" of disturbance as

  7. Mitochondrial diversity patterns and the Magdalenian resettlement of Europe: new insights from the edge of the Franco-Cantabrian refuge.

    Science.gov (United States)

    Pardiñas, Antonio F; Roca, Agustín; Garcia-Vazquez, Eva; Lopez, Belen

    2012-11-26

    Phylogeography of the mitochondrial lineages commonly found in Western Europe can be interpreted in the light of a postglacial resettlement of the continent. The center of this proposal lies in the Franco-Cantabrian glacial refuge, located in the northern Iberian Peninsula and Southwestern France. Recently, this interpretation has been confronted by the unexpected patterns of diversity found in some European haplogroups. To shed new lights on this issue, research on Iberian populations is crucial if events behind the actual genetics of the European continent are to be untangled. In this regard, the region of Asturias has not been extensively studied, despite its convoluted history with prolonged periods of isolation. As mitochondrial DNA is a kind of data that has been commonly used in human population genetics, we conducted a thorough regional study in which we collected buccal swabs from 429 individuals with confirmed Asturian ancestry. The joint analysis of these sequences with a large continent-wide database and previously published diversity patterns allowed us to discuss a new explanation for the population dynamics inside the Franco-Cantabrian area, based on range expansion theory. This approximation to previously contradictory findings has made them compatible with most proposals about the postglacial resettlement of Western Europe.

  8. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Herbivores and nutrients control grassland plant diversity via light limitation

    Science.gov (United States)

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  10. Mitochondrial genomes of Australian chicken Eimeria support the presence of ten species with low genetic diversity among strains.

    Science.gov (United States)

    Morgan, Jess A T; Godwin, Rosamond M

    2017-08-30

    Modern molecular approaches have vastly improved diagnostic capabilities for differentiating among species of chicken infecting Eimeria. Consolidating information from multiple genetic markers, adding additional poultry Eimeria species and increasing the size of available data-sets is improving the resolving power of the DNA, and consequently our understanding of the genus. This study adds information from 25 complete mitochondrial DNA genomes from Australian chicken Eimeria isolates representing all 10 species known to occur in Australia, including OTU-X, -Y and -Z. The resulting phylogeny provides a comprehensive view of species relatedness highlighting where the OTUs align with respect to others members of the genus. All three OTUs fall within the Eimeria clade that contains only chicken-infecting species with close affinities to E. maxima, E. brunetti and E. mitis. Mitochondrial genetic diversity was low among Australian isolates likely reflecting their recent introduction to the country post-European settlement. The lack of observed genetic diversity is a promising outcome as it suggests that the currently used live vaccines should continue to offer widespread protection against Eimeria outbreaks in all states and territories. Flocks were frequently found to host multiple strains of the same species, a factor that should be considered when studying disease epidemiology in the field. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus and humans

    Directory of Open Access Journals (Sweden)

    Zsurka Gábor

    2010-09-01

    Full Text Available Abstract Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee individuals to assess the detailed mitochondrial DNA (mtDNA phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii A comparison of the ratios of non-synonymous to synonymous changes (dN/dS among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.

  12. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  13. Assessment of plant species diversity based on hyperspectral indices at a fine scale.

    Science.gov (United States)

    Peng, Yu; Fan, Min; Song, Jingyi; Cui, Tiantian; Li, Rui

    2018-03-19

    Fast and nondestructive approaches of measuring plant species diversity have been a subject of excessive scientific curiosity and disquiet to environmentalists and field ecologists worldwide. In this study, we measured the hyperspectral reflectances and plant species diversity indices at a fine scale (0.8 meter) in central Hunshandak Sandland of Inner Mongolia, China. The first-order derivative value (FD) at each waveband and 37 hyperspectral indices were used to assess plant species diversity. Results demonstrated that the stepwise linear regression of FD can accurately estimate the Simpson (R 2  = 0.83), Pielou (R 2  = 0.87) and Shannon-Wiener index (R 2  = 0.88). Stepwise linear regression of FD (R 2  = 0.81, R 2  = 0.82) and spectral vegetation indices (R 2  = 0.51, R 2  = 0.58) significantly predicted the Margalef and Gleason index. It was proposed that the Simpson, Pielou and Shannon-Wiener indices, which are widely used as plant species diversity indicators, can be precisely estimated through hyperspectral indices at a fine scale. This research promotes the development of methods for assessment of plant diversity using hyperspectral data.

  14. Diverse and Tissue Specific Mitochondrial Respiratory Response in A Mouse Model of Sepsis-Induced Multiple Organ Failure

    DEFF Research Database (Denmark)

    Karlsson, Michael; Hara, Naomi; Morata, Saori

    2016-01-01

    control ratio was also significantly increased. Maximal Protonophore-induced respiratory (uncoupled) capacity was similar between the two treatment groups.The present study suggests a diverse and tissue specific mitochondrial respiratory response to sepsis. The brain displayed an early impaired...... C57BL/6 mice were analyzed at either 6 hours or 24 hours. ROS-production was simultaneously measured in brain samples using fluorometry.Septic brain tissue exhibited an early increased uncoupling of respiration. Temporal changes between the two time points were diminutive and no difference in ROS...

  15. Effects of diversity and identity of the neighbouring plant community on the abundance of arthropods on individual ragwort (Jacobaea vulgaris) plants

    NARCIS (Netherlands)

    Kostenko, O.; Grootemaat, Saskia S.; Van der Putten, W.H.; Bezemer, T.M.

    2012-01-01

    The diversity of plant community can greatly affect the abundance and diversity of arthropods associated to that community, but can also influence the composition or abundance of arthropods on individual plants growing in that community. We sampled arthropods and recorded plant size of individual

  16. Soil biota suppress positive plant diversity effects on productivity at high but not low soil fertility

    NARCIS (Netherlands)

    Luo, Shan; Deyn, De Gerlinde B.; Jiang, B.; Yu, Shixiao

    2017-01-01

    Plant community productivity commonly increases with increasing plant diversity, which is explained by complementarity among plant species in resource utilization (complementarity effect), or by selection of particularly productive plant species in diverse plant communities (selection effect).

  17. Current perspectives on mitochondrial inheritance in fungi

    Directory of Open Access Journals (Sweden)

    Xu J

    2015-08-01

    Full Text Available Jianping Xu,1,2 He Li2 1Department of Biology, McMaster University, Hamilton, Canada; 2The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Federal Ministry of Education, Central South University of Forestry and Technology, Changsha, People’s Republic of China Abstract: The mitochondrion is an essential organelle of eukaryotes, generating the universal energy currency, adenosine triphosphate, through oxidative phosphorylation. However, aside from generation of adenosine triphosphate, mitochondria have also been found to impact a diversity of cellular functions and organ system health in humans and other eukaryotes. Thus, inheriting and maintaining functional mitochondria are essential for cell health. Due to the relative ease of conducting genetic and molecular biological experiments using fungi, they (especially the budding yeast Saccharomyces cerevisiae have been used as model organisms for investigating the patterns of inheritance and intracellular dynamics of mitochondria and mitochondrial DNA. Indeed, the diversity of mitochondrial inheritance patterns in fungi has contributed to our broad understanding of the genetic, cellular, and molecular controls of mitochondrial inheritance and their evolutionary implications. In this review, we briefly summarize the patterns of mitochondrial inheritance in fungi, describe the genes and processes involved in controlling uniparental mitochondrial DNA inheritance in sexual crosses in basidiomycete yeasts, and provide an overview of the molecular and cellular processes governing mitochondrial inheritance during asexual budding in S. cerevisiae. Together, these studies reveal that complex regulatory networks and molecular processes are involved in ensuring the transmission of healthy mitochondria to the progeny. Keywords: uniparental inheritance, biparental inheritance, mating type, actin cable, mitochore, mitochondrial partition 

  18. Habitats as complex odour environments: how does plant diversity affect herbivore and parasitoid orientation?

    Directory of Open Access Journals (Sweden)

    Nicole Wäschke

    Full Text Available Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weeviĺs capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weeviĺs foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.

  19. Long-term effects of plant diversity and composition on soil nematode communities in grassland.

    NARCIS (Netherlands)

    Viketoft, M.; Bengtsson, J.; Sohlenius, B.; Berg, M.P.; Petchey, O.; Palmborg, C.; Huss-Daniel, K.

    2009-01-01

    An important component of plant-soil feedbacks is how plant species identity and diversity influence soil organism communities. We examine the effects of grassland plant species growing alone and together up to a richness of 12 species on nematode diversity and feeding group composition, eight years

  20. Plant diversity and conservation in China: planning a strategic bioresource for a sustainable future.

    Science.gov (United States)

    Huang, Hongwen

    2011-01-01

    China is one of the richest countries for plant diversity with approximately 33 000 vascular plant species, ranking second in the world. However, the plant diversity in China is increasingly threatened, with an estimated 4000–5000 plant species being threatened or on the verge of extinction, making China, proportionally, one of the highest priorities for global plant biodiversity conservation. Coming in the face of the current ecological crisis, it is timely that China has launched China's Strategy for Plant Conservation (CSPC). China has increasingly recognized the importance of plant diversity in efforts to conserve and sustainably use its plant diversity. More than 3000 nature reserves have been established, covering approximately 16% of the land surface of China. These natural reserves play important roles in plant conservation, covering more than 85% of types of terrestrial natural ecosystems, 40% of types of natural wetlands, 20% of native forests and 65% of natural communities of vascular plants. Meanwhile, the flora conserved in botanical gardens is also extensive. A recent survey shows that the 10 largest botanical gardens have living collections of 43 502 taxa, with a total of 24 667 species in ex situ conservation. These provide an important reserve of plant resources for sustainable economic and social development in China. Plant diversity is the basis for bioresources and sustainable utilization. The 21st century is predicted to be an era of bio-economy driven by advances of bioscience and biotechnology. Bio-economy may become the fourth economy form after agricultural, industrial, and information and information technology economies, having far-reaching impacts on sustainable development in agriculture, forestry, environmental protection, light industry, food supply and health care and other micro-economy aspects. Thus, a strategic and forward vision for conservation of plant diversity and sustainable use of plant resources in the 21st century is of

  1. Plant diversity in the homegardens of Karwar, Karnataka, India

    Directory of Open Access Journals (Sweden)

    SHIVANAND BHAT

    2014-10-01

    Full Text Available Bhat S, Bhandary MJ, Rajanna L. 2014. Plant diversity in the homegardens of Karwar, Karnataka, India. Biodiversitas 15: 229-235. A study was conducted in 50 selected home gardens of Karwar, Karnataka, India to document their floristic diversity and composition with regard to life forms and uses. As many as 210 species of flowering plants belonging to 69 families were recorded. Euphorbiaceae (13species, Apocynaceae (11spp., Cucurbitaceae (10 spp. and Fabaceae (10 spp. are the predominant families. Shrubs are the dominant life forms (73 spp. followed by trees (61 spp., herbs (42 spp. and climbers (24 spp.. Areca palm (Areca catechu, coconut palm (Cocos nucifera, mango tree (Mangifera indica, banana (Musa paradisiaca, shoe flower (Hibiscus rosa-sinensis and holy basil (Ocimum tenuiflorum are the most common plants occurring in all of the 50 studied gardens. 38% of the plant species are grown mainly for ornamental and aesthetic purposes while 33% of the species are used for obtaining food products like fruits and vegetables and 22% of the plants are mainly used for medicinal purposes. The predominance of ornamental species makes the home gardens of Karwar different from those occurring in other regions in which mostly food plants form the major component.

  2. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    Science.gov (United States)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  3. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    Science.gov (United States)

    Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  4. Size, age and composition: characteristics of plant taxa as diversity predictors of gall-midges (Diptera: Cecidomyiidae

    Directory of Open Access Journals (Sweden)

    Walter S Araújo

    2011-12-01

    Full Text Available Many hypotheses have been proposed to explain the diversity of gall-midge insects (Diptera: Cecidomyiidae, some of them taking into account plant diversity. This study aims to test the importance of size, age and composition of host plant taxa in the diversity of Cecidomyiidae. For this we used inventories data on the diversity of galling and host plants in Brazil. We found that Asterales, Myrtales and Malpighiales, were the most important orders, with 34, 33 and 25, gall morphotypes, respectively. The most representative host families were Asteraceae (34 morphotypes, Myrtaceae (23 and Fabaceae (22. In general, the order size and the plant family were good predictors of the galling diversity, but not the taxon age. The most diverse host genera for gall-midges were Mikania, Eugenia and Styrax, with 15, 13 and nine galler species, respectively. The size of plant genera showed no significant relationship with the richness of Cecidomyiidae, contrary to the prediction of the plant taxon size hypothesis. The plant genera with the greatest diversity of galling insects are not necessarily those with the greatest number of species. These results indicate that some plant taxa have a high intrinsic richness of galling insects, suggesting that the plant species composition may be equally or more important for the diversity of gall-midges than the size or age of the host taxon. Rev. Biol. Trop. 59 (4: 1599- 1607. Epub 2011 December 01.

  5. Severe plant invasions can increase mycorrhizal fungal abundance and diversity

    DEFF Research Database (Denmark)

    Lekberg, Ylva; Gibbons, Sean; Rosendahl, Søren

    2013-01-01

    Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge...... plant provenance.The ISME Journal advance online publication, 14 March 2013; doi:10.1038/ismej.2013.41....

  6. Plant Community Diversity After Herbicide Control of Spotted Knapweed

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Herbicides were applied to four west-central Montana sites with light to moderate spotted knapweed (Centaurea maculosa Lam.) infestations. Althought knapweed suppression was high, 2 years after the spraying the communities were not converted to grass monocultures. No large declines in plant diversity were caused by the herbicides, and small depressions were probably transitory. By the third year, diversity had increased.

  7. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Lanoue, Arnaud; Strecker, Tanja; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, Liesje

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  8. Assessing genetic diversity of wild and hatchery samples of the Chinese sucker (Myxocyprinus asiaticus) by the mitochondrial DNA control region.

    Science.gov (United States)

    Wu, Jiayun; Wu, Bo; Hou, Feixia; Chen, Yongbai; Li, Chong; Song, Zhaobin

    2016-01-01

    To restore the natural populations of Chinese sucker (Myxocyprinus asiaticus), a hatchery release program has been underway for nearly 10 years. Using DNA sequences of the mitochondrial control region, we assessed the genetic diversity and genetic structure among samples collected from three sites of the wild population as well as from three hatcheries. The haplotype diversity of the wild samples (h = 0.899-0.975) was significantly higher than that of the hatchery ones (h = 0.296-0.666), but the nucleotide diversity was almost identical between them (π = 0.0170-0.0280). Relatively high gene flow was detected between the hatchery and wild samples. Analysis of effective population size indicated that M. asiaticus living in the Yangtze River has been expanding following a bottleneck in the recent past. Our results suggest the hatchery release programs for M. asiaticus have not reduced the genetic diversity, but have influenced the genetic structure of the species in the upper Yangtze River.

  9. Capturing goats: documenting two hundred years of mitochondrial DNA diversity among goat populations from Britain and Ireland

    Science.gov (United States)

    Carolan, Seán; Enright, Ruth; Werner, Raymond; Bradley, Daniel G.; Finlay, Emma K.; Mattiangeli, Valeria

    2017-01-01

    The domestic goat (Capra hircus) plays a key role in global agriculture, being especially prized in regions of marginal pasture. However, the advent of industrialized breeding has seen a dramatic reduction in genetic diversity within commercial populations, while high extinction rates among feral herds have further depleted the reservoir of genetic variation available. Here, we present the first survey of whole mitochondrial genomic variation among the modern and historical goat populations of Britain and Ireland using a combination of mtDNA enrichment and high throughput sequencing. Fifteen historical taxidermy samples, representing the indigenous ‘Old Goat’ populations of the islands, were sequenced alongside five modern Irish dairy goats and four feral samples from endangered populations in western Ireland. Phylogenetic and network analyses of European mitochondrial variation revealed distinct groupings dominated by historical British and Irish samples, which demonstrate a degree of maternal genetic structure between the goats of insular and continental Europe. Several Irish modern feral samples also fall within these clusters, suggesting continuity between these dwindling populations and the ancestral ‘Old Goats’ of Ireland and Britain. PMID:28250207

  10. Capturing goats: documenting two hundred years of mitochondrial DNA diversity among goat populations from Britain and Ireland.

    Science.gov (United States)

    Cassidy, Lara M; Teasdale, Matthew D; Carolan, Seán; Enright, Ruth; Werner, Raymond; Bradley, Daniel G; Finlay, Emma K; Mattiangeli, Valeria

    2017-03-01

    The domestic goat ( Capra hircus ) plays a key role in global agriculture, being especially prized in regions of marginal pasture. However, the advent of industrialized breeding has seen a dramatic reduction in genetic diversity within commercial populations, while high extinction rates among feral herds have further depleted the reservoir of genetic variation available. Here, we present the first survey of whole mitochondrial genomic variation among the modern and historical goat populations of Britain and Ireland using a combination of mtDNA enrichment and high throughput sequencing. Fifteen historical taxidermy samples, representing the indigenous 'Old Goat' populations of the islands, were sequenced alongside five modern Irish dairy goats and four feral samples from endangered populations in western Ireland. Phylogenetic and network analyses of European mitochondrial variation revealed distinct groupings dominated by historical British and Irish samples, which demonstrate a degree of maternal genetic structure between the goats of insular and continental Europe. Several Irish modern feral samples also fall within these clusters, suggesting continuity between these dwindling populations and the ancestral 'Old Goats' of Ireland and Britain. © 2017 The Author(s).

  11. Assessing the mitochondrial DNA diversity of the Chagas disease vector Triatoma sordida (Hemiptera: Reduviidae

    Directory of Open Access Journals (Sweden)

    Grasielle Caldas D‘Ávila Pessoa

    2016-01-01

    Full Text Available Triatoma sordida is a species that transmits Trypanosoma cruzi to humans. In Brazil, T. sordida currently deserves special attention because of its wide distribution, tendency to invade domestic environments and vectorial competence. For the planning and execution of control protocols to be effective against Triatominae, they must consider its population structure. In this context, this study aimed to characterise the genetic variability of T. sordida populations collected in areas with persistent infestations from Minas Gerais, Brazil. Levels of genetic variation and population structure were determined in peridomestic T. sordida by sequencing a polymorphic region of the mitochondrial cytochrome b gene. Low nucleotide and haplotype diversity were observed for all 14 sampled areas; π values ranged from 0.002-0.006. Most obtained haplotypes occurred at low frequencies, and some were exclusive to only one of the studied populations. Interpopulation genetic diversity analysis revealed strong genetic structuring. Furthermore, the genetic variability of Brazilian populations is small compared to that of Argentinean and Bolivian specimens. The possible factors related to the reduced genetic variability and strong genetic structuring obtained for studied populations are discussed in this paper.

  12. Forest climbing plants of West Africa: diversity, ecology and management

    NARCIS (Netherlands)

    Bongers, F.J.J.M.; Parren, M.P.E.; Traoré, D.

    2005-01-01

    Climbing plants, including lianas, represent a fascinating component of the ecology of tropical forests. This book focuses on the climbing plants of West African forests. Based on original research, it presents information on the flora (including a checklist), diversity (with overviews at several

  13. Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

  14. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae) in a mature Asian temperate forest ecosystem.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  15. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae in a mature Asian temperate forest ecosystem.

    Directory of Open Access Journals (Sweden)

    Yi Zou

    Full Text Available A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.

  16. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  17. Disturbance in dry coastal dunes in Denmark promotes diversity of plants and arthropods

    DEFF Research Database (Denmark)

    Brunbjerg, Ane Kirstine; Jørgensen, Gorm Pilgaard; Nielsen, Kristian Mandsberg

    2015-01-01

    of three disturbance types (burning, trampling and blowouts) on plant and arthropod species richness and composition in dry coastal dunes in Jutland, Denmark. Environmental variables, plant presence–absence and arthropod abundance were measured in 150 1 × 2 m plots along transects in blowouts, burned areas...... on plant and arthropod composition. Indicator species analysis revealed plant and arthropod species indicative for different disturbances. Plant and arthropod species richness and the number of annual plant species generally increased with disturbance, and plant and arthropod richness and composition...... responded differently to different disturbances. Arthropod communities were more diverse in disturbed plots and hosted species often found in early successional habitats of potential conservation value. Disturbance promoted β-diversity, but affected plants more than arthropods, likely because...

  18. Simulated geographic variations of plant species richness, evenness and abundance using climatic constraints on plant functional diversity

    International Nuclear Information System (INIS)

    Kleidon, Axel; Pavlick, Ryan; Reu, Bjoern; Adams, Jonathan

    2009-01-01

    Among the most pronounced large-scale geographic patterns of plant biodiversity are the increase in plant species richness towards the tropics, a more even distribution of the relative abundances of plant species in the tropics, and a nearly log-normal relative abundance distribution. Here we use an individual-based plant diversity model that relates climatic constraints to feasible plant growth strategies to show that all three basic diversity patterns can be predicted merely from the climatic constraints acting upon plant ecophysiological trade-offs. Our model predicts that towards objectively 'harsher' environments, the range of feasible growth strategies resulting in reproductive plants is reduced, thus resulting in lower functional plant species richness. The reduction of evenness is attributed to a more rapid decline in productivity from the most productive to less productive plant growth strategies since the particular setup of the strategy becomes more important in maintaining high productivity in harsher environments. This approach is also able to reproduce the increase in the deviation from a log-normal distribution towards more evenly distributed communities of the tropics. Our results imply that these general biodiversity relationships can be understood primarily by considering the climatic constraints on plant ecophysiological trade-offs.

  19. Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome

    Directory of Open Access Journals (Sweden)

    Chun Pong eLee

    2013-01-01

    Full Text Available Mitochondria are important organelles for providing the ATP and carbon skeletons required to sustain cell growth. While these organelles also participate in other key metabolic functions across species, they have a specialized role in plants of optimizing photosynthesis through participating in photorespiration. It is therefore critical to map the protein composition of mitochondria in plants to gain a better understanding of their regulation and define the uniqueness of their metabolic networks. To date, less than 30% of the predicted number of mitochondrial proteins has been verified experimentally by proteomics and/or GFP localization studies. In this mini-review, we will provide an overview of the advances in mitochondrial proteomics in the model plant Arabidopsis thaliana over the past five years. The ultimate goal of mapping the mitochondrial proteome in Arabidopsis is to discover novel mitochondrial components that are critical during development in plants as well as genes involved in developmental abnormalities, such as those implicated in mitochondrial-linked cytoplasmic male sterility.

  20. [Diversity and distribution of the threatened medicinal vascular plants in Lancang].

    Science.gov (United States)

    Chi, Xiu-Lian; Yuan, Yi-Kai; Fang, Bo; Zhang, Xiao-Bo; Yang, Han-Yu; Zhao, Zhi-Ping; Li, Guo; Fu, Kai-Cong; Guo, Lan-Ping; Huang, Lu-Qi

    2017-11-01

    The rich diversity in medicinal plants provides an important material basic for the development of Traditional Chinese medicine in China. It is important to explore the present situation of medicinal plants within special regions in order to provide scientific instructions for their sustainable protection and exploitation and utilization. In this study, we carried out the field survey according to the guideline of national survey of Chinese material medica resources and the guideline of plant species diversity survey and estimation at county level with the line transect method. With the field surveyed data, we explored the diversity and distribution of the threatened medicinal vascular plants in Lancang. We found that there were 33 species of the threatened medicinal vascular plants in this county. These species were from 23 genera and 17 families, and were composed of one critical endangered, 10 endangered and 22 vulnerable species. They were widely distributed across the whole county and were most concentrated in the town of Nuozhadu, Fazhanhe, Nuofu and Zhutang, which were located in the southeastern, southwestern and western of Lancang, respectively. We also found that the plant species richness followed a unimodal pattern along elevation. In addition, we found that the areas of Nuozhadu Nature Reserve in Lancang only covered six threatened medicinal vascular plants, while most of the regions with high species richness were not well protected. Therefore, we proposed to make more efforts to improve the protection measurements in order to better protect and utilize the medicinal plants in Lancang. Copyright© by the Chinese Pharmaceutical Association.

  1. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome.

    Science.gov (United States)

    Cuenca, Argelia; Ross, T Gregory; Graham, Sean W; Barrett, Craig F; Davis, Jerrold I; Seberg, Ole; Petersen, Gitte

    2016-08-03

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Diversity of vascular plants of Piestany and surroundings (presentation)

    International Nuclear Information System (INIS)

    Penzesova, A.; Galusova, T.

    2013-01-01

    In this presentation is a summary of the results of floristic research aimed at determining diversity of vascular plants of Piestany and its surroundings. Plant taxa we determined using the designation keys. We have compiled a list of plant species occurring in the monitored area, we evaluated the selected botanical-phytogeographical characteristics of flora, we've put together a list of local protected, endangered and rare species and a list of local invasive and expansive species according to sources. (Authors)

  3. The local knowledge of medicinal plants trader and diversity of medicinal plants in the Kabanjahe traditional market, North Sumatra, Indonesia.

    Science.gov (United States)

    Silalahi, Marina; Nisyawati; Walujo, Eko Baroto; Supriatna, Jatna; Mangunwardoyo, Wibowo

    2015-12-04

    Market is the main place for transactions of medicinal plants and traditional ingredients by local community in the Karo regency, North Sumatra, Indonesia. This is the first study to document the local knowledge of traders on and the diversity of the medicinal plants. The investigation was carried out in the Kabanjahe traditional market, in the Karo regency. The research goal was to reveal the local knowledge, diversity and utilization of medicinal plants, which have been traded in the Kabanjahe traditional market, as a basis for conservation efforts. The study was conducted through ethnobotanical approach using market surveys. All traders of medicinal plants were surveyed applying in-depth interviews and participative observations. Data were analyzed qualitatively using descriptive statistics. The diversity of medicinal plants was expressed in term of the Shannon-Wiener diversity index (H'), whereas the similarity among traders was indicated by Jaccard index (Ji). Traders of medicinal plants stored the simplicia of medicinal plants in chest of drawers, plastic baskets, plastic bags, and in the air by suspending them from the the stall ceilings. We recorded 344 species, 217 genera and 90 families of medicinal plants. Those that were sold mostly belong to Zingeberaceae (20 species), Poaceae (19 species), and Asclepiadaceae (17 species), and the species received high consumers demand, mostly belong to Zingiberaceae, Rutaceae, and Asclepidiaceae. Asclepidiaceae was used to treat diseases like cancer and heart problems. The Shannon-Wiener diversity index of medicinal plants at the Kabanjahe traditional market was high (H'= 5.637). The high Jaccard similarity index (Ji>0.56) suggested that the traders were trading similar species of medicinal plants. Kabanjahe traditional market is the center for the sale of of medicinal plants as traditional ingredients. Several species are well known for their pharmacological properties but others, [such as: Dischidia imbricata (Blume

  4. Ex situ conservation of plant diversity in the world's botanic gardens.

    Science.gov (United States)

    Mounce, Ross; Smith, Paul; Brockington, Samuel

    2017-10-01

    Botanic gardens conserve plant diversity ex situ and can prevent extinction through integrated conservation action. Here we quantify how that diversity is conserved in ex situ collections across the world's botanic gardens. We reveal that botanic gardens manage at least 105,634 species, equating to 30% of all plant species diversity, and conserve over 41% of known threatened species. However, we also reveal that botanic gardens are disproportionately temperate, with 93% of species held in the Northern Hemisphere. Consequently, an estimated 76% of species absent from living collections are tropical in origin. Furthermore, phylogenetic bias ensures that over 50% of vascular genera, but barely 5% of non-vascular genera, are conserved ex situ. While botanic gardens are discernibly responding to the threat of species extinction, just 10% of network capacity is devoted to threatened species. We conclude that botanic gardens play a fundamental role in plant conservation, but identify actions to enhance future conservation of biodiversity.

  5. Monitoring shifts in plant diversity in response to climate change: A method for landscapes

    Science.gov (United States)

    Stohlgren, T.J.; Owen, A.J.; Lee, M.

    2000-01-01

    Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.

  6. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    Science.gov (United States)

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  7. Plant diversity in a changing world: Status, trends, and conservation needs

    Directory of Open Access Journals (Sweden)

    Richard T. Corlett

    2016-02-01

    Full Text Available The conservation of plants has not generated the sense of urgency—or the funding—that drives the conservation of animals, although plants are far more important for us. There are an estimated 500,000 species of land plants (angiosperms, gymnosperms, ferns, lycophytes, and bryophytes, with diversity strongly concentrated in the humid tropics. Many species are still unknown to science. Perhaps a third of all land plants are at risk of extinction, including many that are undescribed, or are described but otherwise data deficient. There have been few known global extinctions so far, but many additional species have not been recorded recently and may be extinct. Although only a minority of plant species have a specific human use, many more play important roles in natural ecosystems and the services they provide, and rare species are more likely to have unusual traits that could be useful in the future. The major threats to plant diversity include habitat loss, fragmentation, and degradation, overexploitation, invasive species, pollution, and anthropogenic climate change. Conservation of plant diversity is a massive task if viewed globally, but the combination of a well-designed and well-managed protected area system and ex situ gap-filling and back-up should work anywhere. The most urgent needs are for the completion of the global botanical inventory and an assessment of the conservation status of the 94% of plant species not yet evaluated, so that both in and ex situ conservation can be targeted efficiently. Globally, the biggest conservation gap is in the hyperdiverse lowland tropics and this is where attention needs to be focused.

  8. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  9. Expanding Kenya's protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity.

    Science.gov (United States)

    Scherer, Laura; Curran, Michael; Alvarez, Miguel

    2017-04-01

    Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected-area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant-cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility. © 2016 Society for Conservation Biology.

  10. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Yunzhao Li

    2014-01-01

    Full Text Available The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of βT and Jaccard’s coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  11. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Science.gov (United States)

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

  12. Acacia sieberiana Effects on Soil Properties and Plant Diversity in Songa Pastures, Rwanda

    Directory of Open Access Journals (Sweden)

    C. P. Mugunga

    2013-01-01

    Full Text Available Effects of A. sieberiana trees on soil properties and plant diversity were investigated in Songa pastures, Rwanda. Tree characteristics and crown architecture of A. sieberiana were studied. Soil properties were assessed and plants were identified under and away from tree crowns. Counts of individual plants/species were done only under tree crowns. Nitrogen, P, and K were analysed in the soil, grass, and A. sieberiana leaves. Plant diversity was determined using Simpson's diversity index. Data were subjected to ANOVA. Soil organic carbon (SOC, cation exchange capacity (CEC, Ca2+, N and pH, and plant diversity were higher in soils under tree canopies than in open areas. Tree leaves were significantly richer in N and poorer in P and K as compared to grasses. Tree crowns grew wider and horizontal and developed intertwined secondary branching, reducing light intensity to as low as 38% under tree canopies compared to the open pasture. At 3 trees/ha stocking, A. sieberiana trees shaded 0.18 ha and herbaceous plants and grasses unpalatable to livestock dominated under tree canopies. A tradeoff of A. sieberiana tree value versus the loss of palatable grass due to tree presence needs to be assessed to decide whether the trees should be included in pastures and if yes, the apporpriate stocking identified.

  13. Using dark diversity and plant characteristics to guide conservation and restoration

    DEFF Research Database (Denmark)

    Moeslund, Jesper Erenskjold; Brunbjerg, Ane Kirstine; Clausen, Kevin

    2017-01-01

    more often than others, although this is important knowledge for restoration and conservation actions. 2. We applied the concept to a massive national (Danish) plant diversity data base, containing 236 923 records from 15 160 surveys involving 564 species. This enabled the first geographically...... comprehensive (43 000 km2) assessment of dark diversity, at a spatial resolution relevant for conservation and restoration planning (78 m2) across multiple terrestrial habitats, thereby maximising the practical applications of this concept. The probability for a given plant species to belong to the dark...

  14. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  15. The influence of canopy-layer composition on understory plant diversity in southern temperate forests

    Directory of Open Access Journals (Sweden)

    Luciana Mestre

    2017-05-01

    Full Text Available Background Understory plants represents the largest component of biodiversity in most forest ecosystems and plays a key role in forest functioning. Despite their importance, the influence of overstory-layer composition on understory plant diversity is relatively poorly understood within deciduous-evergreen broadleaved mixed forests. The aim of this work was to evaluate how tree overstory-layer composition influences on understory-layer diversity in three forest types (monospecific deciduous Nothofagus pumilio (Np, monospecific evergreen Nothofagus betuloides (Nb, and mixed N. pumilio-N. betuloides (M forests, comparing also between two geographical locations (coast and mountain to estimate differences at landscape level. Results We recorded 46 plant species: 4 ferns, 12 monocots, and 30 dicots. Canopy-layer composition influences the herb-layer structure and diversity in two different ways: while mixed forests have greater similarity to evergreen forests in the understory structural features, deciduous and mixed were similar in terms of the specific composition of plant assemblage. Deciduous pure stands were the most diverse, meanwhile evergreen stands were least diverse. Lack of exclusive species of mixed forest could represent a transition where evergreen and deciduous communities meet and integrate. Moreover, landscape has a major influence on the structure, diversity and richness of understory vegetation of pure and mixed forests likely associated to the magnitude and frequency of natural disturbances, where mountain forest not only had highest herb-layer diversity but also more exclusive species. Conclusions Our study suggests that mixed Nothofagus forest supports coexistence of both pure deciduous and pure evergreen understory plant species and different assemblages in coastal and mountain sites. Maintaining the mixture of canopy patch types within mixed stands will be important for conserving the natural patterns of understory plant

  16. The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms

    Science.gov (United States)

    Sun, Hongying; Zhang, Chongbang; Song, Changchun; Chang, Scott X.; Gu, Baojing; Chen, Zhengxin; Peng, Changhui; Chang, Jie; Ge, Ying

    2013-10-01

    Previous studies have shown that plant diversity can improve the wastewater purification efficiency of constructed wetlands (CWs), but its effect on the nitrous oxide (N2O) emission in CWs has been unknown. To investigate the effect of plant diversity on the N2O emission, we established four plant species richness levels (each level containing 1, 2, 3 and 4 species, respectively) by using 96 hydroponic microcosms. Results showed that plant species richness enhanced the N2O emission, ranging from 27.1 to 115.4 μg N2O m-2 d-1, and improved nitrate removal (P 0.05), but improved nitrogen removal (P < 0.001). Hence, our study highlights the importance of both plant species richness and species identity in mediating the N2O emission and nitrogen removal in CWs.

  17. Grazing intensity on the plant diversity of alpine meadow in the eastern Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Wu Ning

    2004-04-01

    Full Text Available Because ofthe remoteness and harsh conditions of the high-altitude rangelands on the eastern Tibetan Plateau, the relationship between yak grazing and plant diversity has not been so clear although livestock increase was thought as the main issue leading to the degradation of rangeland. In the debate of rangeland degradation, biodiversity loss has been assumed as one of the indicators in the last two decades. In this paper authors measured the effects of different grazing intensities on the plant diversity and the structure of Kobresia pygmaea community in the case-study area, northwestern Sichuan. The results indicated that plant diversity of alpine meadow has different changing trends respectively with the change of grazing intensity and seasons. In June the highest plant diversity occurred in the intensively grazed (HG plots, but in July and September species biodiversity index of slightly grazed (LG plots is higher than other experimental treatments. In August the intermediate grazed (IG plots has the highest biodiversity index. Moreover, it was found that intensively grazing always leads to the increase of plant density, but meanwhile the decrease of community height, coverage and biomass. Over-grazing can change the community structure and lead to the succession from Kobresia pygmaea dominated community to Poa pratensis dominated. Analyzing results comprehensively, it can be suggested that the relationship between grazing intensity and plant diversity is not linear, i.e. diversity index is not as good as other characteristics of community structure to evaluate rangeland degradation on the high altitude situation. The change of biodiversity is so complicated that it can not be explained with the simple corresponding causality.

  18. The mitochondrial genomes of the ciliates Euplotes minuta and Euplotes crassus.

    NARCIS (Netherlands)

    Graaf, R.M. de; Alen, T.A. van; Dutilh, B.E.; Kuiper, J.W.; Zoggel, H.J. van; Huynh, M.B.; Gortz, H.D.; Huynen, M.A.; Hackstein, J.H.

    2009-01-01

    BACKGROUND: There are thousands of very diverse ciliate species from which only a handful mitochondrial genomes have been studied so far. These genomes are rather similar because the ciliates analysed (Tetrahymena spp. and Paramecium aurelia) are closely related. Here we study the mitochondrial

  19. Genetic diversity of Taenia hydatigena in the northern part of the West Bank, Palestine as determined by mitochondrial DNA sequences.

    Science.gov (United States)

    Adwan, Kamel; Jayousi, Alaa; Abuseir, Sameh; Abbasi, Ibrahim; Adwan, Ghaleb; Jarrar, Naser

    2018-06-26

    Cysticercus tenuicollis is the metacestode of canine tapeworm Taenia hydatigena, which has been reported in domestic and wild ruminants and is causing veterinary and economic losses in the meat industry. This study was conducted to determine the sequence variation in the mitochondrial cytochrome c oxidase subunit 1 (coxl) gene in 20 isolates of T. hydatigena metacestodes (cysticercus tenuicollis) collected from northern West Bank in Palestine. Nine haplotypes were detected, with one prevailing (55%). The total haplotype diversity (0.705) and the total nucleotide diversity (0.0045) displayed low genetic diversity among our isolates. Haplotype analysis showed a star-shaped network with a centrally positioned common haplotype. The Tajima's D, and Fu and Li's statistics in cysticercus tenuicollis population of this region showed a negative value, indicating deviations from neutrality and both suggested recent population expansion for the population. The findings of this study would greatly help to implement control and preventive measures for T. hydatigena larvae infection in Palestine.

  20. Mobilization of interactions between functional diversity of plant and soil organisms on nitrogen availability and use

    Science.gov (United States)

    Drut, Baptiste; Cassagne, Nathalie; Cannavacciuolo, Mario; Brauman, Alain; Le Floch, Gaëtan; Cobo, Jose; Fustec, Joëlle

    2017-04-01

    Keywords: legumes, earthworms, microorganisms, nitrogen, interactions Both aboveground and belowground biodiversity and their interactions can play an important role in crop productivity. Plant functional diversity, such as legume based intercrops have been shown to improve yields through plant complementarity for nitrogen use (Corre-Hellou et al., 2006). Moreover, plant species or plant genotype may influence the structure of soil microorganism communities through the composition of rhizodeposits in the rhizosphere (Dennis et al., 2010). Belowground diversity can also positively influence plant performance especially related to functional dissimilarity between soil organisms (Eisenhauer, 2012). Earthworms through their burrowing activity influence soil microbial decomposers and nutrient availability and have thus been reported to increase plant growth (Brown, 1995; Brown et al., 2004). We hypothesize that i) plant functional (genetic and/or specific) diversity associated to functional earthworms diversity are key drivers of interactions balance to improve crop performances and ii) the improvement of plant performances can be related to change in the structure of soil microorganism communities due to the diversity of rhizodeposits and the burrowing activity of earthworms. In a first mesocosm experiment, we investigated the effect of a gradient of plant diversity - one cultivar of wheat (Triticum aestivum L.), 3 different wheat cultivars, and 3 different cultivars intercropped with clover (Trifolium hybridum L.) - and the presence of one (endogeic) or two (endogeic and anecic) categories of earthworms on biomass and nitrogen accumulation of wheat. In a second mesocosm experiment, we investigated the influence of three species with different rhizodeposition - wheat, rapeseed (Brassica napus L. ) and faba bean (Vicia faba L.) in pure stand or intercropped - and the presence of endogeic earthworms on microbial activity and nitrogen availability. In the first experiment

  1. Temporal dynamics of soil nematode communities in a grassland plant diversity experiment.

    NARCIS (Netherlands)

    Viketoft, M.; Sohlenius, B.; Bostrom, S.; Palmborg, C.; Bengtsson, J.; Berg, M.P.; Kuss-Danell, K.

    2011-01-01

    We report here on an 8-year study examining links between plant and nematode communities in a grassland plant diversity experiment, located in the north of Sweden on previous agricultural soil. The examined plots contained 1, 4 and 12 common grassland plant species from three functional groups;

  2. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes.

    Science.gov (United States)

    Yoshizumi, Takeshi; Oikawa, Kazusato; Chuah, Jo-Ann; Kodama, Yutaka; Numata, Keiji

    2018-05-14

    Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.

  3. Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania.

    Science.gov (United States)

    Nagle, Nano; Ballantyne, Kaye N; van Oven, Mannis; Tyler-Smith, Chris; Xue, Yali; Wilcox, Stephen; Wilcox, Leah; Turkalov, Rust; van Oorschot, Roland A H; van Holst Pellekaan, Sheila; Schurr, Theodore G; McAllister, Peter; Williams, Lesley; Kayser, Manfred; Mitchell, R John

    2017-03-01

    Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.

  4. Phylogeography and population diversity of Simulium hirtipupa Lutz (Diptera: Simuliidae based on mitochondrial COI sequences.

    Directory of Open Access Journals (Sweden)

    Vanderly Andrade-Souza

    Full Text Available High morphological homogeneity and cryptic speciation may cause the diversity within Simuliidae to be underestimated. Recent molecular studies on population genetics and phylogeography have contributed to reveal which factors influenced the diversity within this group. This study aimed at examining the genetic diversity of Simulium hirtipupa Lutz, 1910 in populations from the biomes Caatinga, Cerrado, and Atlantic Forest. In this study, we carried out phylogeographic and population genetic analyses using a fragment of the mitochondrial gene COI. The 19 populations studied were clustered into seven groups, most of which are associated with geography indicating certain genetic structure. The northern region of the state of Minas Gerais is most likely the center of origin of this species. The average intergroup genetic distance was 3.7%, indicating the presence of cryptic species. The species tree as well as the haplotype network recovered all groups forming two major groups: the first comprises groups Gr-Bahia (in which the São Francisco river has not acted as geographical barrier, Gr-Pernambuco, and Gr-Mato Grosso do Sul. The second included groups comprising populations of the states of Goiás, Tocantins, Minas Gerais, Bahia, São Paulo, and Espírito Santo. The mismatch distribution for groups was consistent with the model of demographic expansion, except for the Gr-Central-East_1 group. The diversification in this group occurred about 1.19 Mya during the Pleistocene, influenced by paleoclimatic oscillations during the Quaternary glacial cycles.

  5. The beta-diversity of species interactions: Untangling the drivers of geographic variation in plant-pollinator diversity and function across scales.

    Science.gov (United States)

    Burkle, Laura A; Myers, Jonathan A; Belote, R Travis

    2016-01-01

    Geographic patterns of biodiversity have long inspired interest in processes that shape the assembly, diversity, and dynamics of communities at different spatial scales. To study mechanisms of community assembly, ecologists often compare spatial variation in community composition (beta-diversity) across environmental and spatial gradients. These same patterns inspired evolutionary biologists to investigate how micro- and macro-evolutionary processes create gradients in biodiversity. Central to these perspectives are species interactions, which contribute to community assembly and geographic variation in evolutionary processes. However, studies of beta-diversity have predominantly focused on single trophic levels, resulting in gaps in our understanding of variation in species-interaction networks (interaction beta-diversity), especially at scales most relevant to evolutionary studies of geographic variation. We outline two challenges and their consequences in scaling-up studies of interaction beta-diversity from local to biogeographic scales using plant-pollinator interactions as a model system in ecology, evolution, and conservation. First, we highlight how variation in regional species pools may contribute to variation in interaction beta-diversity among biogeographic regions with dissimilar evolutionary history. Second, we highlight how pollinator behavior (host-switching) links ecological networks to geographic patterns of plant-pollinator interactions and evolutionary processes. Third, we outline key unanswered questions regarding the role of geographic variation in plant-pollinator interactions for conservation and ecosystem services (pollination) in changing environments. We conclude that the largest advances in the burgeoning field of interaction beta-diversity will come from studies that integrate frameworks in ecology, evolution, and conservation to understand the causes and consequences of interaction beta-diversity across scales. © 2016 Botanical

  6. Culture creates genetic structure in the Caucasus: Autosomal, mitochondrial, and Y-chromosomal variation in Daghestan

    Directory of Open Access Journals (Sweden)

    Harpending Henry C

    2008-07-01

    Full Text Available Abstract Background Near the junction of three major continents, the Caucasus region has been an important thoroughfare for human migration. While the Caucasus Mountains have diverted human traffic to the few lowland regions that provide a gateway from north to south between the Caspian and Black Seas, highland populations have been isolated by their remote geographic location and their practice of patrilocal endogamy. We investigate how these cultural and historical differences between highland and lowland populations have affected patterns of genetic diversity. We test 1 whether the highland practice of patrilocal endogamy has generated sex-specific population relationships, and 2 whether the history of migration and military conquest associated with the lowland populations has left Central Asian genes in the Caucasus, by comparing genetic diversity and pairwise population relationships between Daghestani populations and reference populations throughout Europe and Asia for autosomal, mitochondrial, and Y-chromosomal markers. Results We found that the highland Daghestani populations had contrasting histories for the mitochondrial DNA and Y-chromosome data sets. Y-chromosomal haplogroup diversity was reduced among highland Daghestani populations when compared to other populations and to highland Daghestani mitochondrial DNA haplogroup diversity. Lowland Daghestani populations showed Turkish and Central Asian affinities for both mitochondrial and Y-chromosomal data sets. Autosomal population histories are strongly correlated to the pattern observed for the mitochondrial DNA data set, while the correlation between the mitochondrial DNA and Y-chromosome distance matrices was weak and not significant. Conclusion The reduced Y-chromosomal diversity exhibited by highland Daghestani populations is consistent with genetic drift caused by patrilocal endogamy. Mitochondrial and Y-chromosomal phylogeographic comparisons indicate a common Near Eastern

  7. Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species

    DEFF Research Database (Denmark)

    Morin, Phillip A; Archer, Frederick I.; Foote, Andrew David

    2010-01-01

    Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric "ecotypes" with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions...... and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales...... as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales...

  8. Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach.

    Science.gov (United States)

    Van der Putten, W H; Mortimer, S R; Hedlund, K; Van Dijk, C; Brown, V K; Lepä, J; Rodriguez-Barrueco, C; Roy, J; Diaz Len, T A; Gormsen, D; Korthals, G W; Lavorel, S; Regina, I Santa; Smilauer, P

    2000-07-01

    Succession is one of the most studied processes in ecology and succession theory provides strong predictability. However, few attempts have been made to influence the course of succession thereby testing the hypothesis that passing through one stage is essential before entering the next one. At each stage of succession ecosystem processes may be affected by the diversity of species present, but there is little empirical evidence showing that plant species diversity may affect succession. On ex-arable land, a major constraint of vegetation succession is the dominance of perennial early-successional (arable weed) species. Our aim was to change the initial vegetation succession by the direct sowing of later-successional plant species. The hypothesis was tested that a diverse plant species mixture would be more successful in weed suppression than species-poor mixtures. In order to provide a robust test including a wide range of environmental conditions and plant species, experiments were carried out at five sites across Europe. At each site, an identical experiment was set up, albeit that the plant species composition of the sown mixtures differed from site to site. Results of the 2-year study showed that diverse plant species mixtures were more effective at reducing the number of natural colonisers (mainly weeds from the seed bank) than the average low-diversity treatment. However, the effect of the low-diversity treatment depended on the composition of the species mixture. Thus, the effect of enhanced species diversity strongly depended on the species composition of the low-diversity treatments used for comparison. The effects of high-diversity plant species mixtures on weed suppression differed between sites. Low-productivity sites gave the weakest response to the diversity treatments. These differences among sites did not change the general pattern. The present results have implications for understanding biological invasions. It has been hypothesised that alien

  9. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    -interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased......Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  10. Supplementary data: A complete mitochondrial genome of wheat ...

    Indian Academy of Sciences (India)

    Supplementary data: A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants. Peng Cui, Huitao Liu, Qiang Lin, Feng Ding, Guoyin Zhuo, Songnian Hu, Dongcheng Liu, Wenlong Yang, Kehui Zhan,. Aimin Zhang and Jun Yu. J. Genet.

  11. Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine

    Science.gov (United States)

    Wang, Pei; Song, Fan; Cai, Wanzhi

    2014-01-01

    Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409

  12. Loss of heterozygosity drives clonal diversity of Phytophthora capsici in China.

    Directory of Open Access Journals (Sweden)

    Jian Hu

    Full Text Available Phytophthora capsici causes significant loss to pepper (Capsicum annum in China and our goal was to develop single nucleotide polymorphism (SNP markers for P. capsici and characterize genetic diversity nationwide. Eighteen isolates of P. capsici from locations worldwide were re-sequenced and candidate nuclear and mitochondrial SNPs identified. From 2006 to 2012, 276 isolates of P. capsici were recovered from 136 locations in 27 provinces and genotyped using 45 nuclear and 2 mitochondrial SNPs. There were two main mitochondrial haplotypes and 95 multi-locus genotypes (MLGs identified. Genetic diversity was geographically structured with a high level of genotypic diversity in the north and on Hainan Island in the south, suggesting outcrossing contributes to diversity in these areas. The remaining areas of China are dominated by four clonal lineages that share mitochondrial haplotypes, are almost exclusively the A1 or A2 mating type and appear to exhibit extensive diversity based on loss of heterozygosity (LOH. Analysis of SNPs directly from infected peppers confirmed LOH in field populations. One clonal lineage is dominant throughout much of the country. The overall implications for long-lived genetically diverse clonal lineages amidst a widely dispersed sexual population are discussed.

  13. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.

    Science.gov (United States)

    Lehti-Shiu, Melissa D; Panchy, Nicholas; Wang, Peipei; Uygun, Sahra; Shiu, Shin-Han

    2017-01-01

    Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Data from: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Strecker, Tanja; Lanoue, Arnaud; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, L.

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  15. Vascular plant diversity and community Structure of nandi forests ...

    African Journals Online (AJOL)

    Abundance data of species was used for species diversity, similarity, species richness estimation and plant community analysis. PC-ORD, CANOCO and EstimateS were used to analyze the data. A total of 321 species ... Keywords: floristic composition, ordination, rarefaction, species accumulation, species richness.

  16. Plant diversity associated with pools in natural and restored peatlands

    Directory of Open Access Journals (Sweden)

    N. Fontaine

    2007-06-01

    Full Text Available This study describes plant assemblages associated with the edges of peatland pools. We conducted inventories in six natural peatlands in the province of Québec (Canada in order to measure the contribution of pools to species diversity in climatic regions where peatlands are used for peat extraction. We also carried out vegetation surveys in a peatland that has been restored after peat extraction/harvesting to determine whether pool vegetation establishes along the edges of created pools when dry surface restoration techniques only are used. Pools enhanced plant species richness in natural peatlands. Around created pools, species associated with natural pools were still absent, and non-bog species were present, six years after restoration. On this basis, we emphasise the importance of preserving natural peatlands with pools. In order to restore fully the plant diversity associated with peatlands at harvested sites, it may be necessary to modify pool excavation techniques so that created pools resemble more closely those in natural peatlands. Active introduction of the plant species or communities associated with natural pools may also be needed; candidate species for North America include Andromeda glaucophylla, Cladopodiella fluitans, Carex limosa, Eriophorum virginicum, Rhynchospora alba and Sphagnum cuspidatum.

  17. Genotyping-By-Sequencing for Plant Genetic Diversity Analysis: A Lab Guide for SNP Genotyping

    Directory of Open Access Journals (Sweden)

    Gregory W. Peterson

    2014-10-01

    Full Text Available Genotyping-by-sequencing (GBS has recently emerged as a promising genomic approach for exploring plant genetic diversity on a genome-wide scale. However, many uncertainties and challenges remain in the application of GBS, particularly in non-model species. Here, we present a GBS protocol we developed and use for plant genetic diversity analysis. It uses two restriction enzymes to reduce genome complexity, applies Illumina multiplexing indexes for barcoding and has a custom bioinformatics pipeline for genotyping. This genetic diversity-focused GBS (gd-GBS protocol can serve as an easy-to-follow lab guide to assist a researcher through every step of a GBS application with five main components: sample preparation, library assembly, sequencing, SNP calling and diversity analysis. Specifically, in this presentation, we provide a brief overview of the GBS approach, describe the gd-GBS procedures, illustrate it with an application to analyze genetic diversity in 20 flax (Linum usitatissimum L. accessions and discuss related issues in GBS application. Following these lab bench procedures and using the custom bioinformatics pipeline, one could generate genome-wide SNP genotype data for a conventional genetic diversity analysis of a non-model plant species.

  18. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic.

    Science.gov (United States)

    Ortega-Domínguez, Bibiana; Aparicio-Trejo, Omar Emiliano; García-Arroyo, Fernando E; León-Contreras, Juan Carlos; Tapia, Edilia; Molina-Jijón, Eduardo; Hernández-Pando, Rogelio; Sánchez-Lozada, Laura Gabriela; Barrera-Oviedo, Diana; Pedraza-Chaverri, José

    2017-09-01

    Cisplatin is widely used as chemotherapeutic agent for treatment of diverse types of cancer, however, acute kidney injury (AKI) is an important side effect of this treatment. Diverse mechanisms have been involved in cisplatin-induced AKI, such as oxidative stress, apoptosis and mitochondrial damage. On the other hand, curcumin is a polyphenol extracted from the rhizome of Curcuma longa L. Previous studies have shown that curcumin protects against the cisplatin-induced AKI; however, it is unknown whether curcumin can reduce alterations in mitochondrial bioenergetics and dynamic in this model. It was found that curcumin prevents cisplatin-induced: (a) AKI and (b) alterations in the following mitochondrial parameters: bioenergetics, ultrastructure, hydrogen peroxide production and dynamic. In fact, curcumin prevented the increase of mitochondrial fission 1 protein (FIS1), the decrease of optic atrophy 1 protein (OPA1) and the decrease of NAD + -dependent deacetylase sirtuin-3 (SIRT3), a mitochondrial dynamic regulator as well as the increase in the mitophagy associated proteins parkin and phosphatase and tensin homologue (PTEN)-induced putative kinase protein 1 (PINK1). In conclusion, the protective effect of curcumin in cisplatin-induced AKI was associated with the prevention of the alterations in mitochondrial bioenergetics, ultrastructure, redox balance, dynamic, and SIRT3 levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    Science.gov (United States)

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  20. Fly Diversity Revealed by PCR-RFLP of Mitochondrial DNA

    Science.gov (United States)

    Asraoui, Jimmy F.; Sayar, Nancy P.; Knio, Khouzama M.; Smith, Colin A.

    2008-01-01

    In this article, we describe an inexpensive, two-session undergraduate laboratory activity that introduces important molecular biology methods in the context of biodiversity. In the first session, students bring tentatively identified flies (order Diptera, true flies) to the laboratory, extract DNA, and amplify a region of the mitochondrial gene…

  1. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma; Ferjani, Raoudha; Marasco, Ramona; Guesmi, Amel; Cherif, Hanene; Rolli, Eleonora; Mapelli, Francesca; Ouzari, Hadda Imene; Daffonchio, Daniele; Cherif, Ameur

    2015-01-01

    Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  2. [Species, functional, structural diversity of typical plant communities and their responses to environmental factors in Miao Archipelago, China.

    Science.gov (United States)

    Zheng, Li Ting; Su, Tian; Liu, Xiang Yu; Yin, Fang; Guo, Chao; Tuo, Bin; Yan, En Rong

    2018-02-01

    Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.

  3. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    Science.gov (United States)

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  4. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers.

    Science.gov (United States)

    Zhao, Dong-Wei; Yang, Jun-Bo; Yang, Shi-Xiong; Kato, Kenji; Luo, Jian-Ping

    2014-01-09

    Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique genetic characteristics, which

  5. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    Directory of Open Access Journals (Sweden)

    Jorge Omar López-Martínez

    Full Text Available Two main theories have attempted to explain variation in plant species composition (β-diversity. Niche theory proposes that most of the variation is related to environment (environmental filtering, whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning, and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position, whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity

  6. Environmental Drivers of Patterns of Plant Diversity Along a Wide Environmental Gradient in Korean Temperate Forests

    Directory of Open Access Journals (Sweden)

    Chang-Bae Lee

    2016-01-01

    Full Text Available Understanding patterns of biodiversity and their drivers along environmental gradients is one of the central topics in ecology. However, whether diversity patterns along environmental gradients differ among diversity components as well as life forms and what kind of variables control or interact to shape the diversity patterns are poorly known. This study scrutinized the distribution patterns of three plant groups with four diversity indices and evaluated the effects of regional area, topography, topographic heterogeneity, climate, primary productivity, vegetation structure diversity and vegetation type diversity along an extensive elevational gradient on the Baekdudaegan Mountains in South Korea. Different elevational patterns, including hump-shaped, reversed hump-shaped, increasing, multimodal and no relationship, were observed among both the diversity indices and the plant groups. Regional area, habitat heterogeneity and climate were included to explain most of the elevational diversity patterns. In particular, habitat heterogeneity was the most important variable for explaining the patterns of diversity. The results suggest that patterns of elevational diversity may differ not only among plant groups but also among diversity indices and that such patterns are primarily caused by habitat heterogeneity in the Baekdudaegan Mountains because more heterogeneous and diverse habitats can support more coexisting species.

  7. Ex situ Conservation Effort through the Inventory of Plant Diversity in Mount Seblat, Bengkulu

    Directory of Open Access Journals (Sweden)

    Imawan Wahyu Hidayat

    2017-12-01

    Full Text Available Mount Seblat, as part a of Kerinci Seblat National Park (KSNP, is a pristine and natural mountain, particularly from disturbances and destructions by human activities. Nevertheless, the richness of biological resources especially plant diversity.in this area has not been more explored. The purpose of this study was to conduct an inventory of plant diversity and to determine the plant species composition. The inventory activities were conducted by plants collection along the ascent route. The results were then be maintained through ex situ conservation method in Cibodas Botanical Garden (CBG. The study was conducted by exploratory method, from Seblat Ulu Village (641 m asl up to altitude of 1,037 m asl. There were 18 points of plant sample observation with an area of 5 x 5 square meters per point. Plant collection obtained 380 specimens. Five groups of most collected plants were Lauraceae (18 species, Rubiaceae (8 species, Anacardiaceae (6 species, Annonaceae (5 species, and Fagaceae (4 species. In order to enrich the plants collection as well as conduct the ex situ conservation effort, plants from Orchidaceae were also collected which resulted in 33 species. These results were an important initial inventory of plant diversity of Mount Seblat, considering that there was no record as well as very limited current information. When the environment disturbance tends to increase, this information may act as a reference and an initial database to develop plants conservation effort and strategy in the future.

  8. Species diversity of plant communities from territories with natural origin radionuclides contamination

    Energy Technology Data Exchange (ETDEWEB)

    Kaneva, A.V.; Belykh, E.S.; Maystrenko, T.A.; Grusdev, B.I.; Zainullin, V.G.; Vakhrusheva, O.M. [Institute of Biology, Komi Scientific Center, Ural Division of RAS, Syktyvkar, 167982 (Russian Federation); Oughton, D. [Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Aas (Norway)

    2014-07-01

    Since plants dominate every landscape, the impact of any environmental stressor on plants can directly affect the structure and function of an ecosystem, resulting in decreased primary productivity and degradation of wildlife habitat. The investigation goal of the present research was to study how vascular plant species' composition at a former radium mining site could be related to i) soil contamination with heavy metals and uranium and thorium decay chain radionuclides and ii) soil agrochemical properties. Between the 1930's and 1950's, the commercial extraction of radium, storage of the uranium mill tailings and radium production wastes, together with deactivation of the site with a mixture of sand and gravel completely destroyed plant communities in the vicinity of Vodny settlement (Komi Republic, Russia). The plant cover recovery started more than 60 years ago, and resulted in overgrowing with common grassland plant species. Three meadow sites were investigated, one with low contamination (on the territory of former radium production plant), one with high contamination (waste storage cell) and a reference sites out of the radiochemical plant zone of influence, but with similar natural conditions. Geo-botanical descriptions revealed 134 vascular plant species from 34 families in the meadow communities studied. The greatest richness was seen for Poaceae, Asteraceae, Rosaceae and Fabaceae families; others had 1-5 species. The highest richness in diversity was seen at reference sites with 95 vascular plant species. 87 species were registered on low contaminated sites and 75 species on high contaminated. Perennial herbs were the dominant life form on all the studied meadow communities. Arboreal species expansion in vegetation was noted at both experimental and reference sites. Shannon index calculations indicated a significant (p<0.05) decrease in species diversity on sample areas of the highly contaminated radioactive waste storage cell. Mean values

  9. Seed plant features, distribution patterns, diversity hotspots, and conservation gaps in Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Jihong Huang

    2018-06-01

    Full Text Available The flora in Xinjiang is unique. Decisions about biodiversity conservation and management based on seed plant diversity hotspots and conservation gaps in Xinjiang are essential to maintain this unique flora. Based on a species distribution dataset of seed plants, we measured seed plant diversity using species richness and phylogenetic diversity indices. Five percent of Xinjiang’s total land area with the highest biodiversity was used to identify hotspots for each index. In total, eight hotspots were identified. Most hotspots were located in mountainous areas, mainly in the Tianshan Mountains and Altai Mountains. Furthermore, we detected conservation gaps for Xinjiang’s seed flora hotspots by overlaying nature reserve maps on to maps of identified hotspots and we designated priority conservation gaps for hotspots by overlaying global biodiversity hotspot maps on to hotspot conservation gaps maps. Most of Xinjiang’s seed plant hotspots are poorly protected; only 10.45% of these hotspots were covered by nature reserves. We suggest that it is essential to promote network function of nature reserves within these hotspots in Xinjiang to conserve this unique flora.

  10. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  11. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  12. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    Science.gov (United States)

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  13. Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization.

    Science.gov (United States)

    Nelson, Erik J; Helmus, Matthew R; Cavender-Bares, Jeannine; Polasky, Stephen; Lasky, Jesse R; Zanne, Amy E; Pearse, William D; Kraft, Nathan J B; Miteva, Daniela A; Fagan, William F

    2016-01-01

    Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers). According to the economic theory of comparative advantage, countries open to trade will be able to consume more-in terms of volume and diversity-if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country's plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a hotter and more

  14. Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization.

    Directory of Open Access Journals (Sweden)

    Erik J Nelson

    Full Text Available Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers. According to the economic theory of comparative advantage, countries open to trade will be able to consume more-in terms of volume and diversity-if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country's plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a

  15. Criteria of diversity evaluation for intelligent diagnosis of nuclear power plants

    International Nuclear Information System (INIS)

    Washio, Takashi; Sakuma, Masatake; Furukawa, Hiroshi; Kitamura, Masaharu.

    1995-01-01

    One of important problems of a current operation support system for a nuclear power plant is that the credibility of its resultant suggestions is not always high sufficiently. The authors have proposed an efficient remedy called 'Diversity Criteria' for this issue in the previous works. It employs a variety of information resources and reasoning mechanisms for the system to enhance its entire credibility. Within this framework, a complementary combination of the resources and mechanisms is desired. The work presented here proposes systematic and quantitative measures determining the appropriate combinations. First, concrete and systematic guidelines are proposed for the detailed criteria of 'Information Diversity' and 'Methodology Diversity'. Next, two concepts of 'Orthogonality of Identified Result' and 'Orthogonality of Utilized Symptom' are presented together with their quantitative measures. These guidelines and measures have been applied to an example of failure diagnosis of a nuclear power plant, and their efficiency has been clearly confirmed. (author)

  16. Medicinal plant diversity and traditional healing practices in eastern Nepal.

    Science.gov (United States)

    Shrestha, Nawal; Shrestha, Saugat; Koju, Laxmi; Shrestha, Krishna Kumar; Wang, Zhiheng

    2016-11-04

    The rich floral and ethnic composition of eastern Nepal and the widespread utilization of locally available medicinal plants offer remarkable opportunity for ethnomedicinal research. The present paper aims to explore medicinal plant diversity and use in the remote villages of eastern Nepal. It also aims to evaluate ethnopharmacological significance of the documented use reports and identify species of high indigenous priority. The study was undertaken in four villages located in the Sankhuwasabha district in eastern Nepal. Ethnomedicinal information was collected through structured interviews. The homogeneity of informant's knowledge and the relative importance of documented medicinal plants were validated by informant consensus factor and use value, respectively. Species preference for treatment of particular diseases was evaluated through fidelity level. We reported medicinal properties of 48 species belonging to 33 families and 40 genera, for the treatment of 37 human ailments. The uses of 10 medicinal plants were previously undocumented. The informant consensus factor (F IC ) ranged between 0.38 and 1 with about 50% of values greater than 0.80 and over 75% of values greater than 0.70, indicating moderate to high consensus among the informants on the use of medicinal plants in the region. Swertia chirayita was the most preferred species with significantly high use values, followed by Paris polyphylla and Neopicrorhiza scrophulariiflora. The remote villages in eastern Nepal possess rich floral and cultural diversity with strong consensus among informants on utilization of plants for local healthcare. The direct pharmacological evidence for medicinal properties of most species indicates high reliability of documented information. Careful and systematic screening of compounds isolated from these plants could possibly provide good opportunity for the discovery of novel medicines to treat life-threatening human diseases. We recommend prioritization of medicinal

  17. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.

    Science.gov (United States)

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

    2013-12-20

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  18. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain.

    Science.gov (United States)

    Alber, Nicole A; Sivanesan, Hampavi; Vanlerberghe, Greg C

    2017-07-01

    The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Q i -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Q o -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III. © 2016 John Wiley & Sons Ltd.

  19. Endophytic Fungal Diversity in Medicinal Plants of Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Monnanda Somaiah Nalini

    2014-01-01

    Full Text Available Endophytes constitute an important component of microbial diversity, and in the present investigation, seven plant species with rich ethnobotanical uses representing six families were analyzed for the presence of endophytic fungi from their natural habitats during monsoon (May/June and winter (November/December seasons of 2007. Fungal endophytes were isolated from healthy plant parts such as stem, root, rhizome, and inflorescence employing standard isolation methods. One thousand five hundred and twenty-nine fungal isolates were obtained from 5200 fragments. Stem fragments harbored more endophytes (80.37% than roots (19.22%. 31 fungal taxa comprised of coelomycetes (65%, hyphomycetes (32%, and ascomycetes (3%. Fusarium, Acremonium, Colletotrichum, Chaetomium, Myrothecium, Phomopsis, and Pestalotiopsis spp. were commonly isolated. Diversity indices differed significantly between the seasons (P<0.001. Species richness was greater for monsoon isolations than winter. Host specificity was observed for few fungal endophytes. UPGMA cluster analysis grouped the endophytes into distinct clusters on the basis of genetic distance. This study is the first report on the diversity and host-specificity of endophytic fungal taxa were from the semi evergreen forest type in Talacauvery subcluster of Western Ghats.

  20. Patterns of genetic diversity in three plant lineages endemic to the Cape Verde Islands.

    Science.gov (United States)

    Romeiras, Maria M; Monteiro, Filipa; Duarte, M Cristina; Schaefer, Hanno; Carine, Mark

    2015-05-15

    Conservation of plant diversity on islands relies on a good knowledge of the taxonomy, distribution and genetic diversity of species. In recent decades, a combination of morphology- and DNA-based approaches has become the standard for investigating island plant lineages and this has led, in some cases, to the discovery of previously overlooked diversity, including 'cryptic species'. The flora of the Cape Verde archipelago in the North Atlantic is currently thought to comprise ∼740 vascular plant species, 92 of them endemics. Despite the fact that it is considered relatively well known, there has been a 12 % increase in the number of endemics in the last two decades. Relatively few of the Cape Verde plant lineages have been included in genetic studies so far and little is known about the patterns of diversification in the archipelago. Here we present an updated list for the endemic Cape Verde flora and analyse diversity patterns for three endemic plant lineages (Cynanchum, Globularia and Umbilicus) based on one nuclear (ITS) and four plastid DNA regions. In all three lineages, we find genetic variation. In Cynanchum, we find two distinct haplotypes with no clear geographical pattern, possibly reflecting different ploidy levels. In Globularia and Umbilicus, differentiation is evident between populations from northern and southern islands. Isolation and drift resulting from the small and fragmented distributions, coupled with the significant distances separating the northern and southern islands, could explain this pattern. Overall, our study suggests that the diversity in the endemic vascular flora of Cape Verde is higher than previously thought and further work is necessary to characterize the flora. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Low Mitochondrial DNA Diversity in an Ancient Population from China: Insight into Social Organization at the Fujia Site.

    Science.gov (United States)

    Dong, Yu; Li, Chunxiang; Luan, Fengshi; Li, Zhenguang; Li, Hongjie; Cui, Yinqiu; Zhou, Hui; Malhi, Ripan S

    2015-01-01

    To gain insight into the social organization of a population associated with the Dawenkou period, we performed ancient DNA analysis of 18 individuals from human remains from the Fujia site in Shandong Province, China. Directly radiocarbon dated to 4800-4500 cal BP, the Fujia site is assumed to be associated with a transitional phase from matrilineal clans to patrilineal monogamous families. Our results reveal a low mitochondrial DNA diversity from the site and population. Combined with Y chromosome data, the pattern observed at the Fujia site is most consistent with a matrilineal community. The patterns also suggest that the bond of marriage was de-emphasized compared with the bonds of descent at Fujia.

  2. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Plant diversity and conservation status of Himalayan Region Poonch Valley Azad Kashmir (Pakistan).

    Science.gov (United States)

    Khan, Muhammad Azam; Khan, Mir Ajab; Hussain, Mazhar; Mujtaba, Ghulam

    2014-09-01

    The plant diversity of Himalayan region has been reduced to greater extent due to environmental degradation and human exploitation. Anthropogenic disturbance was the major factor responsible for fragmentation of forest vegetation into small patches. Little research has been conducted in the Himalayan region of Poonch Valley of North eastern Pakistan with reference to plants biodiversity and its conservation. The present research was carried out to provide a checklist of vegetation for biodiversity conservation. A total of 430 vascular and 5 nonvascular plant species with 5 species of Bryophytes (5 families), 13 species of Pteridophytes (6 families), 4 species of Gymnosperms (1 family) and 413 species of angiosperms (95 families) were enumerated from the Poonch valley Azad Kashmir. The genera were classified into three categories according to the number of species. 25 plant communities with phytosociological parameters and diversity indices were reported. Present study revealed that there were 145 threatened, 30 endangered, 68 vulnerable and 47 rare species. It is recorded that extensive grazing, uprooting of plants and soil slope erosion intensify the environmental problems. Since there is maximum exploitation of vegetation, the valley showed a decline in plant diversity. The study was also indicated that the main threats to the biodiversity are expansion of settlement and army installations in the forest area of the valley. For sustainable use In-situ and Ex-situ conservation, controlled harvesting and afforestation may be the solution. Moreover, forest area should be declared prohibited for settlements and army installations.

  4. A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Armstrong, M R; Blok, V C; Phillips, M S

    2000-01-01

    The mitochondrial genome (mtDNA) of the plant parasitic nematode Globodera pallida exists as a population of small, circular DNAs that, taken individually, are of insufficient length to encode the typical metazoan mitochondrial gene complement. As far as we are aware, this unusual structural organization is unique among higher metazoans, although interesting comparisons can be made with the multipartite mitochondrial genome organizations of plants and fungi. The variation in frequency between populations displayed by some components of the mtDNA is likely to have major implications for the way in which mtDNA can be used in population and evolutionary genetic studies of G. pallida.

  5. Phylogenetic analysis of Tibetan mastiffs based on mitochondrial ...

    Indian Academy of Sciences (India)

    ZHANJUN REN

    sites were identified which defined eight haplotypes of which H4 and H8 were unique to Tibetan ... tion rate makes HVRI preferred to study molecular evolution ... Tibetan mastiffs; hypervariable region; genetic diversity; mitochondrial DNA.

  6. The Genetic Diversity of Endophytic and Phyllosphere Bacteria from Several Indonesian Herbal Plants

    Directory of Open Access Journals (Sweden)

    Devi Rachelia

    2012-04-01

    Full Text Available Herbal plants have been believed by Indonesians to be an alternative medicine to treat illnesses. The bioactivecompounds in the plant can be derived from secondary metabolites or from endophytic and phyllosphere bacteria whichcoexist within medicinal plants. A total of 18 endophytic bacteria and 32 phyllosphere bacteria were isolated from theherbal plants of Citrus sp., Pluchea indica, Curcuma longa, Nothopanax scuttelarium, Piper crocatum, andAndrographis paniculata. About 72% of endophytic bacteria isolates have proteolytic activity and about 11% havelipolytic activity. On the other hand, about 59% of phyllosphere bacteria isolates have proteolytic activity and about19% have lipolytic activity. Phylogenetic diversity analysis was conducted by using the amplified ribosomal DNArestriction analysis (ARDRA method and the sequence of 16S rDNA was digested with endonuclease restrictionenzymes: MspI, RsaI, and Sau961. The diversity of endophytic and phyllosphere bacterium from the samples of herbalplants was high. Bacteria isolated from the same herbal plant does not always have a close genetic relationship exceptfor the bacteria isolated from the P. indica plant which showed a close genetic relationship with each other.

  7. Genetic diversity of Guangxi chicken breeds assessed with microsatellites and the mitochondrial DNA D-loop region.

    Science.gov (United States)

    Liao, Yuying; Mo, Guodong; Sun, Junli; Wei, Fengying; Liao, Dezhong Joshua

    2016-05-01

    The domestic chicken (Gallus gallus domesticus) is an excellent model for genetic studies of phenotypic diversity. The Guangxi Region of China possesses several native chicken breeds displaying a broad range of phenotypes well adapted to the extreme hot-and-wet environments in the region. We thus evaluated the genetic diversity and relationships among six native chicken populations of the Guangxi region and also evaluated two commercial breeds (Arbor Acres and Roman chickens). We analyzed the sequences of the D-loop region of the mitochondrial DNA (mtDNA) and 18 microsatellite loci of 280 blood samples from six Guangxi native chicken breeds and from Arbor Acres and Roman chickens, and used the neighbor-joining method to construct the phylogenetic tree of these eight breeds. Our results showed that the genetic diversity of Guangxi native breeds was relatively rich. The phylogenetic tree using the unweighed pair-group method with arithmetic means (UPGAM) on microsatellite marks revealed two main clusters. Arbor Acres chicken and Roman chicken were in one cluster, while the Guangxi breeds were in the other cluster. Moreover, the UPGAM tree of Guangxi native breeds based on microsatellite loci was more consistent with the genesis, breeding history, differentiation and location than the mtDNA D-loop region. STRUCTURE analysis further confirmed the genetic structure of Guangxi native breeds in the Neighbor-Net dendrogram. The nomenclature of mtDNA sequence polymorphisms suggests that the Guangxi native chickens are distributed across four clades, but most of them are clustered in two main clades (B and E), with the other haplotypes within the clades A and C. The Guangxi native breeds revealed abundant genetic diversity not only on microsatellite loci but also on mtDNA D-loop region, and contained multiple maternal lineages, including one from China and another from Europe or the Middle East.

  8. Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants.

    Science.gov (United States)

    Calderón, Aingeru; Sánchez-Guerrero, Antonio; Ortiz-Espín, Ana; Martínez-Alcalá, Isabel; Camejo, Daymi; Jiménez, Ana; Sevilla, Francisca

    2018-02-15

    In a changing environment, plants are able to acclimate to the new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here we studied a mitochondrial thioredoxin in wild type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants in control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H 2 O 2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavourable environment. This article is protected by copyright. All rights reserved.

  9. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    Science.gov (United States)

    Menzies, Brandon R.; Renfree, Marilyn B.; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B.; Pask, Andrew J.

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

  10. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tianhong Su

    2018-03-01

    Full Text Available Mitochondrial DNA (mtDNA mutations accumulate in somatic stem cells during ageing and cause mitochondrial dysfunction. In this review, we summarize the studies that link mtDNA mutations to stem cell ageing. We discuss the age-related behaviours of the somatic mtDNA mutations in stem cell populations and how they potentially contribute to stem cell ageing by altering mitochondrial properties in humans and in mtDNA-mutator mice. We also draw attention to the diverse fates of the mtDNA mutations with different origins during ageing, with potential selective pressures on the germline inherited but not the somatic mtDNA mutations.

  11. Population genetic diversity and genetic structure of Spodoptera exigua around the Bohai Gulf area of China based on mitochondrial DNA signatures.

    Science.gov (United States)

    Zhou, L-H; Wang, X-Y; Lei, J-J

    2016-09-30

    The beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), is an economically important pest that causes major losses in some main crop-producing areas of China. To control this pest effectively, it is necessary to investigate its population genetic diversity and genetic structure around the Bohai Gulf area of China. In this study, we used two mitochondrial genes, COI (578 bp) and Cytb (724 bp), to investigate its genetic diversity. We obtained 622 COI sequences and 462 Cytb sequences from 23 populations, and 28 and 73 haplotypes, respectively, were identified. Low to moderate levels of genetic diversity (COI: Hd = 0.267 ± 0.023, Pi = 0.00082 ± 0.00010; Cytb: Hd = 0.689 ± 0.018, Pi = 0.00255 ± 0.00029) for the total populations were observed. Phylogenetic and median-joining network analyses indicated no distinct geographical distribution pattern among the haplotypes. Overall, this study revealed that there was significant differentiation among the populations (COI: F ST = 0.158, P neutrality test results, showed a recent population expansion of the beet armyworm around the Bohai Gulf area of China.

  12. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    Directory of Open Access Journals (Sweden)

    Martina eKöberl

    2013-12-01

    Full Text Available Past medicinal plant research primarily focused on bioactive phytochemicals, however the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is i to introduce novel insights into the plant microbiome with a focus on medicinal plants, ii to provide details about plant- and microbe-derived ingredients of medicinal plants, and iii to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn. cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  13. Cenozoic plant diversity of Yunnan: A review

    Directory of Open Access Journals (Sweden)

    Yongjiang Huang

    2016-12-01

    Full Text Available Yunnan in southwestern China is renowned for its high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate the past biodiversity throughout the geological time. In this review, we present a summary on plant diversity, floristics and climates in the Cenozoic of Yunnan and document their changes, by compiling published palaeobotanical sources. Our review demonstrates that thus far a total of 386 fossil species of ferns, gymnosperms and angiosperms belonging to 170 genera within 66 families have been reported from the Cenozoic, particularly the Neogene, of Yunnan. Angiosperms display the highest richness represented by 353 species grouped into 155 genera within 60 families, with Fagaceae, Fabaceae, Lauraceae and Juglandaceae being the most diversified. Most of the families and genera recorded as fossils still occur in Yunnan, but seven genera have disappeared, including Berryophyllum, Cedrelospermum, Cedrus, Palaeocarya, Podocarpium, Sequoia and Wataria. The regional extinction of these genera is commonly referred to an aridification of the dry season associated with Asian monsoon development. Floristic analyses indicate that in the late Miocene, Yunnan had three floristic regions: a northern subtropical floristic region in the northeast, a subtropical floristic region in the east, and a tropical floristic region in the southwest. In the late Pliocene, Yunnan saw two kinds of floristic regions: a subalpine floristic region in the northwest, and two subtropical floristic regions separately in the southwest and the eastern center. These floristic concepts are verified by results from our areal type analyses which suggest that in the Miocene southwestern Yunnan supported the most Pantropic elements, while in the Pliocene southwestern Yunnan had abundant Tropical Asia (Indo–Malaysia type and East Asia and North America disjunct type that were absent from northwestern Yunnan. From the late Miocene to

  14. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Science.gov (United States)

    2017-01-01

    We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants. PMID:28717591

  15. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Directory of Open Access Journals (Sweden)

    Azucena Canto

    2017-07-01

    Full Text Available We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

  16. Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization

    Science.gov (United States)

    Nelson, Erik J.; Helmus, Matthew R.; Cavender-Bares, Jeannine; Polasky, Stephen; Lasky, Jesse R.; Zanne, Amy E.; Pearse, William D.; Kraft, Nathan J. B.; Miteva, Daniela A.; Fagan, William F.

    2016-01-01

    Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers). According to the economic theory of comparative advantage, countries open to trade will be able to consume more–in terms of volume and diversity–if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country’s plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a hotter and more

  17. EdiPy: a resource to simulate the evolution of plant mitochondrial genes under the RNA editing.

    Science.gov (United States)

    Picardi, Ernesto; Quagliariello, Carla

    2006-02-01

    EdiPy is an online resource appropriately designed to simulate the evolution of plant mitochondrial genes in a biologically realistic fashion. EdiPy takes into account the presence of sites subjected to RNA editing and provides multiple artificial alignments corresponding to both genomic and cDNA sequences. Each artificial data set can successively be submitted to main and widespread evolutionary and phylogenetic software packages such as PAUP, Phyml, PAML and Phylip. As an online bioinformatic resource, EdiPy is available at the following web page: http://biologia.unical.it/py_script/index.html.

  18. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    Science.gov (United States)

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  19. Diversity of Mitochondrial Pathology in a Mouse Model of Axonal Degeneration in Synucleinopathies

    Directory of Open Access Journals (Sweden)

    Akio Sekigawa

    2013-01-01

    Full Text Available There is mounting evidence for a role of mitochondrial dysfunction in the pathogenesis of α-synucleinopathies such as Parkinson's disease (PD and dementia with Lewy bodies (DLB. In particular, recent studies have demonstrated that failure of mitochondrial quality control caused by loss of function of the PTEN-induced kinase 1 (PINK1, PARK6 Parkin (PARK2 pathway may be causative in some familial PD. In sporadic PD, α-synuclein aggregation may interfere with mitochondrial function, and this might be further exacerbated by leucine-rich repeat kinase 2 (LRRK2. The majority of these findings have been obtained in Drosophila and cell cultures, whereas the objective of this paper is to discuss our recent results on the axonal pathology of brains derived from transgenic mice expressing α-synuclein or DLB-linked P123H β-synuclein. In line with the current view of the pathogenesis of sporadic PD, mitochondria abnormally accumulated in α-synuclein/LRRK2-immunopositive axonal swellings in mice expressing α-synuclein. Curiously, neither mitochondria nor LRRK2 was present in the swellings of mice expressing P123H β-synuclein, suggesting that α- and β-synuclein might play differential roles in the mitochondrial pathology of α-synucleinopathies.

  20. Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss

    OpenAIRE

    Sammler, Svenja; Ketmaier, Valerio; Havenstein, Katja; Krause, Ulrike; Curio, Eberhard; Tiedemann, Ralph

    2012-01-01

    Abstract Background The Visayan Tarictic Hornbill (Penelopides panini) and the Walden’s Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in ~ 600 base pairs (bp) of the mitochondrial control region I and at 12...

  1. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    Science.gov (United States)

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights

  2. Comparative Analysis of Putative Orthologues of Mitochondrial Import Motor Subunit: Pam18 and Pam16 in Plants

    OpenAIRE

    Chen, Xuejin; Ghazanfar, Bushra; Khan, Abdul Rehman; Hayat, Sikandar; Cheng, Zhihui

    2013-01-01

    Pam18/Tim14 and Pam16/Tim16, highly conserved proteins among eukaryotes, are two essential subunits of protein import motors localized in the inner mitochondrial membrane. The heterodimer formed by Pam18 and Pam16 via their J-type domains serves a regulatory function in protein translocation. Here, we report that thirty-one Pam18 and twenty-six Pam16 putative orthologues in twelve plant species were identified and analyzed through bioinformatics strategy. Results data revealed that Pam18 and ...

  3. Past climate-driven range shifts and population genetic diversity in arctic plants

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Eidesen, Pernille Bronken; Ehrich, Dorothee

    2016-01-01

    High intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since ...... the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses...

  4. Species turnover drives β-diversity patterns across multiple spatial scales of plant-galling interactions in mountaintop grasslands.

    Science.gov (United States)

    Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson

    2018-01-01

    This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.

  5. Phenotypic diversity associated with the mitochondrial m.8313G>A point mutation.

    LENUS (Irish Health Repository)

    O'Rourke, Killian

    2012-02-01

    We report the clinical, histochemical, and molecular genetic findings in a patient with progressive mitochondrial cytopathy due to the m.8313G>A point mutation in the mitochondrial tRNA(Lys) (MTTK) gene. The clinical features in this case are severe, including short stature, myopathy, peripheral neuropathy, and osteoporosis, while extensive analysis of maternal relatives indicate that the mutation has arisen de novo and was not maternally inherited. This report of a second case, together with single muscle fiber mutation analysis that shows clear segregation of mutation load with cytochrome c oxidase deficiency, confirms that the mutation is pathologic.

  6. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  7. Climate vs. topography – spatial patterns of plant species diversity and endemism on a high-elevation island

    DEFF Research Database (Denmark)

    Irl, Severin David Howard; Harter, David E. V.; Steinbauer, Manuel

    2015-01-01

    the independent contribution of climatic and topographic variables to spatial diversity patterns. We constructed a presence/absence matrix of perennial endemic and native vascular plant species (including subspecies) in 890 plots on the environmentally very heterogeneous island of La Palma, Canary Islands......Climate and topography are among the most fundamental drivers of plant diversity. Here, we assessed the importance of climate and topography in explaining diversity patterns of species richness, endemic richness and endemicity on the landscape scale of an oceanic island and evaluated...... to ecological speciation and specialization to local conditions. We highlight the importance of incorporating climatic variability into future studies of plant species diversity and endemism. The spatial incongruence in hot spots of species richness, endemic richness and endemicity emphasizes the need...

  8. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web

    NARCIS (Netherlands)

    De Deyn, G.B.; Raaijmakers, C.E.; Van Ruijven, J.; Berendse, F.; Van der Putten, W.H.

    2004-01-01

    Previous studies on biodiversity and soil food web composition have mentioned plant species identity, as well as plant species diversity as the main factors affecting the abundance and diversity of soil organisms. However, most studies have been carried out under limitations of time, space, or

  9. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2013-03-05

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops that are grown for biofuel, food or feed. Most Dothideomycetes have only a single host plant, and related species can have very diverse hosts. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  10. The potential of plant viruses to promote genotypic diversity via genotype x environment interactions

    DEFF Research Database (Denmark)

    van Mölken, Tamara; Stuefer, Josef F.

    2011-01-01

    † Background and Aims Genotype by environment (G × E) interactions are important for the long-term persistence of plant species in heterogeneous environments. It has often been suggested that disease is a key factor for the maintenance of genotypic diversity in plant populations. However, empirical...... and the G × E interactions were examined with respect to genotypespecific plant responses to WClMV infection. Thus, the environment is defined as the presence or absence of the virus. † Key Results WClMV had a negative effect on plant performance as shown by a decrease in biomass and number of ramets...... evidence for this contention is scarce. Here virus infection is proposed as a possible candidate for maintaining genotypic diversity in their host plants. † Methods The effects of White clover mosaic virus (WClMV) on the performance and development of different Trifolium repens genotypes were analysed...

  11. Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench

    Science.gov (United States)

    2012-08-01

    1105 Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench Luiz H...fungal community and micropropagated clones of E. purpurea was re-established after acclimatization to soil and the endophytic fungi produced compounds...Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench 5a. CONTRACT

  12. Impacts of weather on long-term patterns of plant richness and diversity vary with location and management.

    Science.gov (United States)

    Jonas, Jayne L; Buhl, Deborah A; Symstad, Amy J

    2015-09-01

    Better understanding the influence of precipitation and temperature on plant assemblages is needed to predict the effects of climate change. Many studies have examined the relationship between plant productivity and weather (primarily precipitation), but few have directly assessed the relationship between plant richness or diversity and weather despite their increased use as metrics of ecosystem condition. We focus on the grasslands of central North America, which are characterized by high temporal climatic variability. Over the next 100 years, these grasslands are predicted to experience further increased variability in growing season precipitation, as well as increased temperatures, due to global climate change. We assess the portion of interannual variability of richness and diversity explained by weather, how relationships between these metrics and weather vary among plant assemblages, and which aspects of weather best explain temporal variability. We used an information-theoretic approach to assess relationships between long-term plant richness and diversity patterns and a priori weather covariates using six data sets from four grasslands. Weather explained up to 49% and 63% of interannual variability in total plant species richness and diversity, respectively. However, richness and diversity responses to specific weather variables varied both among sites and among experimental treatments within sites. In general, we found many instances in which temperature was of equal or greater importance as precipitation, as well as evidence of the importance of lagged effects and precipitation or temperature variability. Although precipitation has been shown to be a key driver of productivity in grasslands, our results indicate that increasing temperatures alone, without substantial changes in precipitation patterns, could have measurable effects on Great Plains grassland plant assemblages and biodiversity metrics. Our results also suggest that richness and diversity

  13. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene

    DEFF Research Database (Denmark)

    Campos, Paula; Kristensen, Tommy; Orlando, Ludovic Antoine Alexandre

    2010-01-01

    of the Soviet Union, after which its populations were reduced by over 95%. We have analysed the mitochondrial control region sequence variation of 27 ancient and 38 modern specimens, to assay how the species' genetic diversity has changed since the Pleistocene. Phylogenetic analyses reveal the existence of two...... well-supported, and clearly distinct, clades of saiga. The first, spanning a time range from >49,500 (14) C ybp to the present, comprises all the modern specimens and ancient samples from the Northern Urals, Middle Urals and Northeast Yakutia. The second clade is exclusive to the Northern Urals...... and includes samples dating from between 40,400 to 10,250 (14) C ybp. Current genetic diversity is much lower than that present during the Pleistocene, an observation that data modelling using serial coalescent indicates cannot be explained by genetic drift in a population of constant size. Approximate...

  14. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on {sup 13}C natural abundances

    Energy Technology Data Exchange (ETDEWEB)

    Klaus, Valentin H., E-mail: v.klaus@uni-muenster.de [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany); Hölzel, Norbert [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany); Prati, Daniel; Schmitt, Barbara [University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern (Switzerland); Schöning, Ingo; Schrumpf, Marion; Solly, Emily F. [Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena (Germany); Hänsel, Falk [University Marburg, Environmental Informatics, Faculty of Geography, Deutschhausstr. 12, 35037 Marburg (Germany); Fischer, Markus [University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3013 Bern (Switzerland); Kleinebecker, Till [Münster University, Institute for Landscape Ecology, Heisenbergstr. 2, 48149 Münster (Germany)

    2016-10-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ{sup 13}C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier {sup 13}C due to closing stomata leading to an enrichment of {sup 13}C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ{sup 13}C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ{sup 13}C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ{sup 13}C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future

  15. Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on "1"3C natural abundances

    International Nuclear Information System (INIS)

    Klaus, Valentin H.; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F.; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till

    2016-01-01

    Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ"1"3C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier "1"3C due to closing stomata leading to an enrichment of "1"3C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ"1"3C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ"1"3C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ"1"3C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change. - Highlights

  16. Soil stability and plant diversity in eco-engineering

    Science.gov (United States)

    Böll, Albert; Gerber, Werner; Rickli, Christian; Graf, Frank

    2010-05-01

    Slopes affected by superficial sliding and subsequently re-stabilised with eco-engineering measures were investigated, particularly related to soil stability and plant diversity. The sites are situated in three different areas of beech-fir-spruce forest associations of the higher montane zone of Switzerland. Climatic and site characteristics, in paraticular soil properties after the sliding event, of the three investigation areas are very similar. However, the number of species (shrubs and trees) used for the initial planting as well as the year of application of the eco-engineering measures differ substantially. In the investigation area Dallenwil-Wirzweli the biological measures taken in 1981 were restricted to one tree species, namely White Alder (Alnus incana). In Klosters, where measures were taken in 1983 as well as in the Arieschbach valley, where eco-engineering was applied in 1998, the initial planting consisted of 15 species either. Investigations in 2005/2006 revealed neither obvious differences among the three areas nor distinct correlations related to the diversity of the initial planting on the on hand and the development of the vegetation cover and soil stability on the other hand. During the available time of development, the soil aggregate stability increased by 30 to 39%. Compared to the corresponding climax association, the relative values of soil aggregate stability varied between 90 and 120%. Concurrently, the dry unit weight decreased between 1.1 and 3.1 kN/m3. The cumulative vegetation cover varied from 110 to 150%. Due to processes of soil development a distinct shift in the grain size distribution was noticed, from a well sorted gravel with clay and sand (GW-GC) to a silty gravel with sand (GM) in Dallenwil-Wirzweli and a silty to clayey gravel with sand (GC-GM) in Klosters and the Arieschbach valley. Furthermore, in all three investigation areas succession processes were observed that are comparable to average rates of natural secondary

  17. Demography or selection on linked cultural traits or genes? Investigating the driver of low mtDNA diversity in the sperm whale using complementary mitochondrial and nuclear genome analyses.

    Science.gov (United States)

    Morin, Phillip A; Foote, Andrew D; Baker, C Scott; Hancock-Hanser, Brittany L; Kaschner, Kristin; Mate, Bruce R; Mesnick, Sarah L; Pease, Victoria L; Rosel, Patricia E; Alexander, Alana

    2018-04-19

    Mitochondrial DNA has been heavily utilized in phylogeography studies for several decades. However, underlying patterns of demography and phylogeography may be misrepresented due to coalescence stochasticity, selection, variation in mutation rates, and cultural hitchhiking (linkage of genetic variation to culturally transmitted traits affecting fitness). Cultural hitchhiking has been suggested as an explanation for low genetic diversity in species with strong social structures, counteracting even high mobility, abundance and limited barriers to dispersal. One such species is the sperm whale, which shows very limited phylogeographic structure and low mtDNA diversity despite a worldwide distribution and large population. Here, we use analyses of 175 globally distributed mitogenomes and three nuclear genomes to evaluate hypotheses of a population bottleneck/expansion versus a selective sweep due to cultural-hitchhiking or selection on mtDNA as the mechanism contributing to low worldwide mitochondrial diversity in sperm whales. In contrast to mtDNA control region (CR) data, mitogenome haplotypes are largely ocean-specific, with only one of 80 shared between the Atlantic and Pacific. Demographic analyses of nuclear genomes suggest low mtDNA diversity is consistent with a global reduction in population size that ended approximately 125,000 years ago, correlated with the Eemian interglacial. Phylogeographic analysis suggests that extant sperm whales descend from maternal lineages endemic to the Pacific during the period of reduced abundance, and have subsequently colonized the Atlantic several times. Results highlight the apparent impact of past climate change, and suggest selection and hitchhiking are not the sole processes responsible for low mtDNA diversity in this highly social species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. The relative role of dispersal and local interactions for alpine plant community diversity under simulated climate warming

    Energy Technology Data Exchange (ETDEWEB)

    Klanderud, K.; Totland, Oe. [Norwegian Univ. of Life Science, Dept. of Ecology and Natural Resource Management, Aas (Norway)

    2007-08-15

    Most studies on factors determining diversity are conducted in temperate or warm regions, whereas studies in climatically harsh and low productivity areas, such as alpine regions, are rare. We examined the relative roles of seed availability and different biotic and abiotic factors for the diversity of an alpine plant community in southern Norway. Furthermore, because climate warming is predicted to be an important driver of alpine species diversity, we assessed how the relative impacts of dispersal and local interactions on diversity might change under experimental warming (open top chambers, OTCs). Addition of seeds from 27 regional species increased community diversity. The establishment of the species was negatively related both to the diversity of the existing system and the cover of the abundant dwarf shrub Dryas octopetala. These results show that both species dispersal limitation and local biotic interactions are important factors for alpine plant community diversity. Despite relatively harsh environmental conditions and low productivity, competition from the resident vegetation appeared to have a greater role for species establishment and diversity than facilitation and experimental warming. Higher temperature appeared to increase the negative relationship between resident species diversity and species establishment. This may suggest that climate warming can increase the role of interspecific competition for alpine plant community structure, and thus alter the long-term effects of biotic interactions on diversity. (au)

  19. Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya.

    Science.gov (United States)

    Adnan, Muhammad; Hölscher, Dirk

    2012-12-01

    Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya Medicinal plants collected in Himalayan forests play a vital role in the livelihoods of regional rural societies and are also increasingly recognized at the international level. However, these forests are being heavily transformed by logging. Here we ask how forest transformation influences the diversity and composition of medicinal plants in northwestern Pakistan, where we studied old-growth forests, forests degraded by logging, and regrowth forests. First, an approximate map indicating these forest types was established and then 15 study plots per forest type were randomly selected. We found a total of 59 medicinal plant species consisting of herbs and ferns, most of which occurred in the old-growth forest. Species number was lowest in forest degraded by logging and intermediate in regrowth forest. The most valuable economic species, including six Himalayan endemics, occurred almost exclusively in old-growth forest. Species composition and abundance of forest degraded by logging differed markedly from that of old-growth forest, while regrowth forest was more similar to old-growth forest. The density of medicinal plants positively correlated with tree canopy cover in old-growth forest and negatively in degraded forest, which indicates that species adapted to open conditions dominate in logged forest. Thus, old-growth forests are important as refuge for vulnerable endemics. Forest degraded by logging has the lowest diversity of relatively common medicinal plants. Forest regrowth may foster the reappearance of certain medicinal species valuable to local livelihoods and as such promote acceptance of forest expansion and medicinal plants conservation in the region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12231-012-9213-4) contains supplementary material, which is available to authorized users.

  20. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Directory of Open Access Journals (Sweden)

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  1. effect of bush burning on herbaceous plant diversity in lagos state

    African Journals Online (AJOL)

    conducted to assess the effect of bush burning on plant species diversity. Three frequently burnt ... also believed to rid the grassland of parasitic insects and to prevent the encroachment of ..... The effect of smoke inhalation on lung function and ...

  2. DNA from soil mirrors plant taxonomic and growth form diversity

    Czech Academy of Sciences Publication Activity Database

    Yoccoz, N. G.; Brathen, K. A.; Gielly, L.; Haile, J.; Edwards, M. E.; Goslar, T.; von Stedingk, H.; Brysting, A.; Coissac, E.; Pompanon, F.; Sonstebo, J. H.; Miquel, C.; Valentini, A.; de Bello, Francesco; Chave, J.; Thuiller, W.; Wincker, P.; Cruaud, C.; Gavory, F.; Rasmussen, M.; Gilbert, M. T. P.; Orlando, L.; Brochmann, C.; Willerslev, E.; Taberlet, P.

    2012-01-01

    Roč. 21, č. 15 (2012), s. 3647-3655 ISSN 0962-1083 R&D Projects: GA ČR GAP505/12/1296 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : biodiversity assessment * environmental sequencing * plant diversity * DNA Subject RIV: EH - Ecology, Behaviour Impact factor: 6.275, year: 2012

  3. Low levels of mitochondrial DNA and symbiont diversity in the worldwide agricultural pest, the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae).

    Science.gov (United States)

    Kapantaidaki, Despoina E; Ovčarenko, Irina; Fytrou, Natasa; Knott, K Emily; Bourtzis, Kostas; Tsagkarakou, Anastasia

    2015-01-01

    Trialeurodes vaporariorum, the greenhouse whitefly, is a cosmopolitan agricultural pest. Little is known about the genetic diversity of T. vaporariorum and the bacterial symbionts associated with this species. Here, we undertook a large phylogeographic study by investigating both the mitochondrial (mt) diversity and the infection status of 38 T. vaporariorum collections from 18 countries around the world. Genetic diversity of T. vaporariorum was studied by analyzing sequence data from the mt cytochrome oxidase I, cytochrome b, and NADH dehydrogenase subunit 5 genes. Maximum-likelihood (ML) phylogeny reconstruction delineated 2 clades characterized by limited sequence divergence: one clade comprised samples only from the Northern hemisphere whereas the other comprised samples from a broader geographical range. The presence of secondary symbionts was determined by PCR using primers specific for Hamiltonella, Rickettsia, Arsenophonus, Cardinium, Wolbachia, and Fritschea. Most individuals examined harbored at least one secondary endosymbiont, and Arsenophonus was detected in almost all male and female individuals. Wolbachia was present at a much lower frequency, and Cardinium was detected in only a few individuals from Greece. Rickettsia, Hamiltonella, and Fritschea were not found. Additionally, we set out to further analyze Arsenophonus diversity by multilocus sequence typing analysis; however, the Arsenophonus sequences did not exhibit any polymorphism. Our results revealed remarkably low diversity in both mtDNA and symbionts in this worldwide agricultural pest, contrasting sharply with that of the ecologically similar Bemisia tabaci. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  5. Diversity and incidence of plant-parasitic nematodes in Belgian turf grass

    NARCIS (Netherlands)

    Vandenbossche, B.; Viaene, N.; Sutter, de N.; Maes, M.; Karssen, G.; Bert, W.

    2011-01-01

    Eleven golf courses and eight football pitches, located in Belgium, were surveyed for plant-parasitic nematodes. This revealed a remarkably high diversity: 52 different species/taxa were identified morphologically, belonging to 23 genera and nine families. Among the most prevalent nematodes on both

  6. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  7. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    NARCIS (Netherlands)

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D'Elia, D.; Montalvo, A.; Pinto, B.; de Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces

  8. Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes.

    Science.gov (United States)

    Hirsch, Cory D; Evans, Joseph; Buell, C Robin; Hirsch, Candice N

    2014-07-01

    Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  10. Diversity distribution patterns of Chinese endemic seed plant species and their implications for conservation planning

    Science.gov (United States)

    Huang, Jihong; Huang, Jianhua; Lu, Xinghui; Ma, Keping

    2016-01-01

    Endemism is an important concept in biogeography and biodiversity conservation. China is one of the richest countries in biodiversity, with very high levels of plant endemism. In this study, we analysed the distribution patterns of diversity, the degree of differentiation, and the endemicity of Chinese endemic seed plants using the floristic unit as a basic spatial analysis unit and 11 indices. The analysis was based on distribution data of 24,951 native seed plant species (excluding subspecies and varieties) and 12,980 Chinese endemic seed plant species, which were sourced from both specimen records and published references. The distribution patterns of Chinese endemic flora were generally consistent but disproportionate across China for diversity, degree of differentiation and endemicity. The South Hengduan Mountains Subregion had the highest values for all indices. At the regional level, both the Hengduan Mountains and the Central China regions were highest in diversity and degrees of differentiation. However, both the rate of local endemic to native species and the rate of local to Chinese endemic species were highest in the Taiwan Region and the South Taiwan Region. The Hengduan Mountains Region and the Central China Region are two key conservation priority areas for Chinese endemic seed plants. PMID:27658845

  11. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Doethideomycetes Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabien; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2012-03-13

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related species can have very diverse host plants. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  12. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Francisco

    2013-01-01

    Full Text Available Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  13. WITHIN-POPULATION GENETIC DIVERSITY OF CLIMBING PLANTS AND TREES IN A TEMPERATE FOREST IN CENTRAL CHILE

    OpenAIRE

    Torres-Díaz, Cristian; Ruiz, Eduardo; Salgado-Luarte, Cristian; Molina-Montenegro, Marco A; Gianoli, Ernesto

    2013-01-01

    The climbing habit is a key innovation in angiosperm evolution: climbing plant taxa have greater species richness than their non-climbing sister groups. It is considered that highly diversified clades should show increased among-population genetic differentiation. Less clear is the expected pattern regarding within-population genetic diversity in speciose lineages. We tested the hypothesis of greater within-population genetic diversity in climbing plants compared to trees in a temperate fores...

  14. Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China

    International Nuclear Information System (INIS)

    Lu Xiankai; Mo Jiangming; Gilliam, Frank S.; Yu Guirui; Zhang Wei; Fang Yunting; Huang Juan

    2011-01-01

    Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (with harvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha -1 yr -1 , and 100 kg N ha -1 yr -1 . Nitrogen additions did not significantly affect understory plant richness, density, and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in this forest. In the rehabilitated forest, species richness and density showed no significant response to N additions; however, understory cover decreased significantly in the N-treated plots, largely a function of a significant increase in canopy closure. Our results suggest that responses of plant diversity to N deposition may vary with different land-use history, and rehabilitated forests may be more sensitive to N deposition. - Highlights: → Nitrogen addition had no significant effect on understory plant diversity in the disturbed forest. → Nitrogen addition significantly decreased understory plant cover. → Nitrogen addition had no effect on richness and density in the rehabilitated forest. → The decrease is largely a function of a significant increase in canopy closure. → Land-use practices may dominate the responses of plant diversity to N addition. - Research in disturbed forests of southeastern China demonstrates that land-use history can substantially alter effects of excess nitrogen deposition on plant diversity of tropical forest ecosystems.

  15. Pyraclostrobin Impairs Energetic Mitochondrial Metabolism and Productive Performance of Silkworm (Lepidoptera: Bombycidae) Caterpillars.

    Science.gov (United States)

    Nicodemo, Daniel; Mingatto, Fábio Ermínio; Carvalho, Amanda de; Bizerra, Paulo Francisco Veiga; Tavares, Marco Aurélio; Balieira, Kamila Vilas Boas; Bellini, William Cesar

    2018-03-09

    Silkworm cocoon production has been reduced due to a number of problems other than those inherent in sericulture, such as diseases, malnutrition, and inappropriate management. The use of pesticides in areas surrounding mulberry fields can contaminate these plants and consequently harm caterpillars. The aim of this study was to evaluate whether the application of the fungicide pyraclostrobin in mulberry plants interferes with the mitochondrial bioenergetics and the productive performance of silkworms. Mulberry plants were treated with pyraclostrobin (0, 100, 200, and 300 g ha-1). After 30 d of fungicide application, fifth instar caterpillars were fed with leaves from the treated plants. We evaluated in vitro and in vivo mitochondrial bioenergetics of mitochondria from the head and intestines, as well as the feed intake and mortality rate of the caterpillars and the weight of fresh cocoons and cocoons shells. At doses of 50 µM (in vitro) and 200 g ha-1 (in vivo), pyraclostrobin inhibited oxygen consumption in state 3, dissipated membrane potential, and inhibited ATP synthesis in mitochondria. Pyraclostrobin acted as a respiratory chain inhibitor, affecting mitochondrial bioenergetics. The fungicide did not interfere with food consumption but negatively affected mortality rate and weight of cocoons. Mulberry leaves contaminated with pyraclostrobin negatively impact the mitochondrial bioenergetics of silkworms and cocoon production.

  16. Taxonomic and phylogenetic diversity of vascular plants at Ma'anling volcano urban park in tropical Haikou, China: Reponses to soil properties.

    Science.gov (United States)

    Cheng, Xia-Lan; Yuan, Lang-Xing; Nizamani, Mir Mohammad; Zhu, Zhi-Xin; Friedman, Cynthia Ross; Wang, Hua-Feng

    2018-01-01

    Anthropogenic processes and socio-economic factors play important roles in shaping plant diversity in urban parks. To investigate how plant diversity of Ma' anling urban volcano park in Hainan Province, China respond to these factors, we carried out a field investigation on the taxonomic and phylogenetic diversity of vascular plants and soil properties in this area. We found 284 species of vascular plants belonging to 88 families and 241 genera, which included 194 native species, 23 invasive species, 31 naturalized species, 40 cultivars, and 4 rare / endangered plant species. Tree composition and richness significantly varied between different vegetation formations (plantation, secondary forest, and abandoned land). Plant species richness and community composition were significantly affected by elevation (El), soil water content (WC), total soil nitrogen (TN) and soil organic matter (SOM). There were significant diversity differences between plantations and abandoned lands, but not between the plantations and secondary forests. The flora in the study site was tropical in nature, characterized by pantropic distributions. Compared to adjacent areas, floristic composition in the study site was most similar to that of Guangdong, followed by that of Vietnam. Our study revealed the diversity patterns of volcanic plants and provided the basis for future planning of plant conservation, such as preserving plant species, maintaining plant habitats, and coordinating plant management in this region.

  17. On the western fringe of baboon distribution: mitochondrial D-loop diversity of Guinea Baboons (Papio papio Desmarest, 1820 (Primates: Cercopithecidae in Coastal Guinea-Bissau, western Africa

    Directory of Open Access Journals (Sweden)

    M.J. Ferreira da Silva

    2013-06-01

    Full Text Available Like many primate species in West Africa, habitat loss and intensive hunting are threatening the poorly studied Guinea Baboon (Papio papio. These factors contributed to a significant population contraction during the last 30 years. Our study presents genetic diversity estimates for the Guinea Baboon based on a 391 base pair fragment of the mitochondrial DNA D-loop hypervariable region I. We used non-invasively collected genetic samples from two locations in Guinea-Bissau: Cufada Lagoons Natural Park and Cantanhez Forest National Park. Although most sampling was opportunistic, we observed and collected samples from two dames (social units. Among the 25 sequences obtained, we found seven closely related mtDNA haplotypes and one highly different haplotype. The presence of this divergent haplotype suggests a contact area between genetically differentiated populations in Cufada Lagoons Natural Park, or dispersal of individuals. The samples gathered from both regions share two of the most common haplotypes in different frequencies, but also exhibit unique haplotypes. No significant genetic differentiation was found between social units from both regions, possibly due to common ancestral origin or frequent dispersal between sampling locations. The presence of different maternal lineages in the same social unit and a higher percentage of variation within social units suggest historical female-biased dispersal for Guinea-Bissau Baboons. We further compared mitochondrial genetic diversity of Guinea and Hamadryas Baboons. We found lower haplotype, nucleotide and theta diversity for Guinea Baboons, which points to different demographic histories of these species. This work supports the need for additional genetic studies within the full Guinea Baboon range.

  18. A highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats

    OpenAIRE

    Karadjian , Gregory; Hassanin , Alexandre; Saintpierre , Benjamin; Gembu Tungaluna , Guy-Crispin; Ariey , Frederic; Ayala , Francisco J.; Landau , Irene; Duval , Linda

    2016-01-01

    International audience; Haemosporidia parasites have mostly and abundantly been described using mitochondrial genes, and in particular cytochrome b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria parasites isolated from Nycteridae bats has been recently reported. Bats are hosts to a diverse and profuse array of Haemosporidia parasites that remain largely unstudied. There is a need to obtain more molecular data from chiropteran parasites. Such data would help to better under...

  19. Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste

    Directory of Open Access Journals (Sweden)

    Chartone-Souza Edmar

    2008-10-01

    Full Text Available Abstract Background Molecular studies of Bacillus diversity in various environments have been reported. However, there have been few investigations concerning Bacillus in steel plant environments. In this study, genotypic and phenotypic diversity and phylogenetic relationships among 40 bacterial isolates recovered from steel plant waste were investigated using classical and molecular methods. Results 16S rDNA partial sequencing assigned all the isolates to the Bacillus genus, with close genetic relatedness to the Bacillus subtilis and Bacillus cereus groups, and to the species Bacillus sphaericus. tDNA-intergenic spacer length polymorphisms and the 16S–23S intergenic transcribed spacer region failed to identify the isolates at the species level. Genomic diversity was investigated by molecular typing with rep (repetitive sequence based PCR using the primer sets ERIC2 (enterobacterial repetitive intergenic consensus, (GTG5, and BOXAIR. Genotypic fingerprinting of the isolates reflected high intraspecies and interspecies diversity. Clustering of the isolates using ERIC-PCR fingerprinting was similar to that obtained from the 16S rRNA gene phylogenetic tree, indicating the potential of the former technique as a simple and useful tool for examining relationships among unknown Bacillus spp. Physiological, biochemical and heavy metal susceptibility profiles also indicated considerable phenotypic diversity. Among the heavy metal compounds tested Zn, Pb and Cu were least toxic to the bacterial isolates, whereas Ag inhibited all isolates at 0.001 mM. Conclusion Isolates with identical 16S rRNA gene sequences had different genomic fingerprints and differed considerably in their physiological capabilities, so the high levels of phenotypic diversity found in this study are likely to have ecological relevance.

  20. Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition

    NARCIS (Netherlands)

    Chen, Hongmei; Oram, Natalie J.; Barry, Kathryn E.; Mommer, Liesje; Ruijven, van Jasper; Kroon, de Hans; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Gleixner, Gerd; Gessler, Arthur; González Macé, Odette; Hacker, Nina; Hildebrandt, Anke; Lange, Markus; Scherer-lorenzen, Michael; Scheu, Stefan; Oelmann, Yvonne; Wagg, Cameron; Wilcke, Wolfgang; Wirth, Christian; Weigelt, Alexandra

    2017-01-01

    Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we

  1. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  2. De novo assembly of mitochondrial genomes provides insights into genetic diversity and molecular evolution in wild boars and domestic pigs.

    Science.gov (United States)

    Ni, Pan; Bhuiyan, Ali Akbar; Chen, Jian-Hai; Li, Jingjin; Zhang, Cheng; Zhao, Shuhong; Du, Xiaoyong; Li, Hua; Yu, Hui; Liu, Xiangdong; Li, Kui

    2018-05-10

    Up to date, the scarcity of publicly available complete mitochondrial sequences for European wild pigs hampers deeper understanding about the genetic changes following domestication. Here, we have assembled 26 de novo mtDNA sequences of European wild boars from next generation sequencing (NGS) data and downloaded 174 complete mtDNA sequences to assess the genetic relationship, nucleotide diversity, and selection. The Bayesian consensus tree reveals the clear divergence between the European and Asian clade and a very small portion (10 out of 200 samples) of maternal introgression. The overall nucleotides diversities of the mtDNA sequences have been reduced following domestication. Interestingly, the selection efficiencies in both European and Asian domestic pigs are reduced, probably caused by changes in both selection constraints and maternal population size following domestication. This study suggests that de novo assembled mitogenomes can be a great boon to uncover the genetic turnover following domestication. Further investigation is warranted to include more samples from the ever-increasing amounts of NGS data to help us to better understand the process of domestication.

  3. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments

    Science.gov (United States)

    Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able tomodify other mitochondrial constituents. Fourier tran...

  4. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1.

    Directory of Open Access Journals (Sweden)

    Ronald A Merrill

    2011-04-01

    Full Text Available Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM targeted form of the protein kinase A (PKA catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1 as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1, inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.

  5. Genotype-Phenotype Correlation of Maternally Inherited Disorders due to Mutations in Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Peterus Thajeb

    2006-09-01

    Full Text Available Mitochondrial disorders are heterogeneous systemic ailments that are most often caused by maternal inheritance of a variety of mutations of the mitochondrial (mt DNA. Paternal inheritance and somatic mutation are rare. The disorders are well recognized not only for the genotypic heterogeneity, but also the phenotypic variation among the affected members of a single family. The genotype-phenotype correlation of the diversity of the syndromic and non-syndromic features of mitochondrial disorders are discussed. Some aspects of the molecular mechanisms of this heterogeneity, and the histopathologic findings are highlighted.

  6. Climate-suitable planting as a strategy for maintaining forest productivity and functional diversity.

    Science.gov (United States)

    Duveneck, Matthew J; Scheller, Robert M

    2015-09-01

    Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have

  7. Expression of the nuclear gene TaF(A)d is under mitochondrial retrograde regulation in anthers of male sterile wheat plants with timopheevii cytoplasm.

    Science.gov (United States)

    Xu, Pei; Yang, Yuwen; Zhang, Zhengzhi; Chen, Weihua; Zhang, Caiqin; Zhang, Lixia; Zou, Sixiang; Ma, Zhengqiang

    2008-01-01

    Alterations of mitochondrial-encoded subunits of the F(o)F(1)-ATP synthase are frequently associated with cytoplasmic male sterility (CMS) in plants; however, little is known about the relationship of the nuclear encoded subunits of this enzyme with CMS. In the present study, the full cDNA of the gene TaF(A)d that encodes the putative F(A)d subunit of the F(o)F(1)-ATP synthase was isolated from the wheat (Triticum aestivum) fertility restorer '2114' for timopheevii cytoplasm-based CMS. The deduced 238 amino acid polypeptide is highly similar to its counterparts in dicots and other monocots but has low homology to its mammalian equivalents. TaF(A)d is a single copy gene in wheat and maps to the short arm of the group 6 chromosomes. Transient expression of the TaF(A)d-GFP fusion in onion epidermal cells demonstrated TaF(A)d's mitochondrial location. TaF(A)d was expressed abundantly in stem, leaf, anther, and ovary tissues of 2114. Nevertheless, its expression was repressed in anthers of CMS plants with timopheevii cytoplasm. Genic male sterility did not affect its expression in anthers. The expression of the nuclear gene encoding the 20 kDa subunit of F(o) was down-regulated in a manner similar to TaF(A)d in the T-CMS anthers while that of genes encoding the 6 kDa subunit of F(o) and the gamma subunit of F(1) was unaffected. These observations implied that TaF(A)d is under mitochondrial retrograde regulation in the anthers of CMS plants with timopheevii cytoplasm.

  8. Size, age and composition: characteristics of plant taxa as diversity predictors of gall-midges (Diptera: Cecidomyiidae

    Directory of Open Access Journals (Sweden)

    Walter S Araújo

    2011-12-01

    Full Text Available Many hypotheses have been proposed to explain the diversity of gall-midge insects (Diptera: Cecidomyiidae, some of them taking into account plant diversity. This study aims to test the importance of size, age and composition of host plant taxa in the diversity of Cecidomyiidae. For this we used inventories data on the diversity of galling and host plants in Brazil. We found that Asterales, Myrtales and Malpighiales, were the most important orders, with 34, 33 and 25, gall morphotypes, respectively. The most representative host families were Asteraceae (34 morphotypes, Myrtaceae (23 and Fabaceae (22. In general, the order size and the plant family were good predictors of the galling diversity, but not the taxon age. The most diverse host genera for gall-midges were Mikania, Eugenia and Styrax, with 15, 13 and nine galler species, respectively. The size of plant genera showed no significant relationship with the richness of Cecidomyiidae, contrary to the prediction of the plant taxon size hypothesis. The plant genera with the greatest diversity of galling insects are not necessarily those with the greatest number of species. These results indicate that some plant taxa have a high intrinsic richness of galling insects, suggesting that the plant species composition may be equally or more important for the diversity of gall-midges than the size or age of the host taxon. Rev. Biol. Trop. 59 (4: 1599- 1607. Epub 2011 December 01.Muchas hipótesis se han propuesto para explicar la diversidad de dipteros de la familia Cecidomyiidae, algunos de ellos teniendo en cuenta la diversidad de las plantas. Este estudio tiene como objetivo probar la importancia del tamaño, la edad y la composición de las plantas en la diversidad de Cecidomyiidae, a través de los inventarios de las agallas y las plantas hospederas, en Brasil. Asterales, Malpighiales y Myrtales fueron los órdenes más importantes, con 34, 33 y 25 tipos de agallas, respectivamente. Las familias m

  9. Mitochondrial genetic characterization of Gujar population living in the Northwest areas of Pakistan

    Directory of Open Access Journals (Sweden)

    Inam Ullah

    2017-05-01

    Full Text Available Background: Diversity of communities with specific cultural, ethnic, lingual and geographical backgrounds makes Pakistani society a suitable study subject to unravel the early human migrations, evolutionary history of population having about 18 ethnic groups. Gujars are mostly Indic-speaking nomadic herders with the claims of multiple origins in the sub-continent. Present study was aimed at the determination of maternal lineage of Gujars by mitochondrial DNA analysis. Methods: Total DNA from the human buccal cells was isolated using modified phenol chloroform method. Purified DNA was used for the PCR amplification of mitochondrial Hyper Variable Region 1 and 2 (HVR1 & 2. The nucleotide sequences of amplified PCR products were used to explore the maternal lineage of the Gujar population residing in Northern Pakistan. Results: Haplotypes, allele frequencies and population data of the mitochondrial control region was determined in 73 unrelated individuals belonging to Gujar ethnic group of Northwest areas of Pakistan. Total 46 diverse haplotypes were identified out of which 29 were found unique with (0.9223 genetic diversity and (0.9097 power of discrimination. Haplogroup R was the most frequent (48% followed by haplogroup M (45% and N (7%. Conclusion: We found that the Gujar population has multiple maternal gene pool comprising of South Asian, West Eurasian, East Eurasian, Southeast Asian and fractions of Eastern Asian, Eastern Europe and Northern Asian lineages. This study will contribute for the development of mitochondrial DNA database for Pakistani population.

  10. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants.

    Science.gov (United States)

    Jagtap, Soham; Shivaprasad, Padubidri V

    2014-12-02

    Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved. We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors. Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show

  11. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity.

    Science.gov (United States)

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M; El-Arabi, Tarek F; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2016-02-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. © FEMS 2015.

  12. Directed seed dispersal of Piper by Carollia perspicillata and its effect on understory plant diversity and folivory.

    Science.gov (United States)

    Salazar, Diego; Kelm, Detlev H; Salazar, Diego

    2013-11-01

    Directed dispersal occurs when seeds are differentially deposited to sites where offspring survivorship is higher than at randomly chosen sites. Traditionally, characteristics of the dispersal target sites that could increase survivorship of the dispersed plants are thought to be intrinsic to the sites. If directed dispersal is constant over extended periods of time, however, it is likely that nonrandom patterns of dispersal could modify the ecological characteristics of the target site in ways that could increase survivorship and fitness of the dispersed plants. Here we report patterns of Piper diversity (richness, equitability, and similarity) and Piper folivory within plots near natural or artificial roosts of Carollia perspicillata vs. similar plots without bat roosts. Plots with bat roosts, both natural and artificial, had significantly higher Piper species diversity. Additionally, we found that plots with a higher Piper species diversity showed less specialist folivory, higher generalist folivory, and lower total herbivore leaf damage than plots with low Piper diversity. Finally, plots with bat roosts also showed less specialist folivory, lower generalist folivory, and lower total folivory when compared to plots without roosts. We propose that long-lasting nonrandom patterns of seed dispersal can change the local ecological characteristics of target sites via changes in plant diversity, and that these changes are likely to reduce the local rates of folivory and, therefore, increase seed and adult plant survivorship.

  13. Out of the shadows : multiple nutrient limitations drive relationships among biomass, light and plant diversity

    NARCIS (Netherlands)

    Harpole, W. Stanley; Sullivan, Lauren L.; Lind, Eric M.; Firn, Jennifer; Adler, Peter B.; Borer, Elizabeth T.; Chase, Jonathan; Fay Jennifer Firn, Philip A.; Hautier, Yann; Hillebrand, Helmut; MacDougall, Andrew S.; Seabloom, Eric W.; Bakker, Jonathan D.; Cadotte, Marc W; Chaneton, Enrique J; Chu, Chengjin; Hagenah, Nicole; Kirkman, Kevin; La Pierre, Kimberly J.; Moore, Joslin L.; Morgan, John W.; Prober, Suzanne M.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.

    2017-01-01

    The paradigmatic hypothesis for the effect of fertilisation on plant diversity represents a one-dimensional trade-off for plants competing for below-ground nutrients (generically) and above-ground light: fertilisation reduces competition for nutrients while increasing biomass and thereby shifts

  14. Diverse plant and animal genetic records from Holocene and Pleistocene sediments

    DEFF Research Database (Denmark)

    Willerslev, E.; Hansen, Anders J.; Binladen, J.

    2003-01-01

    Genetic analyses of permafrost and temperate sediments reveal that plant and animal DNA may be preserved for long periods, even in the absence of obvious macrofossils. In Siberia, five permafrost cores ranging from 400,000 to 10,000 years old contained at least 19 different plant taxa, including...... the oldest authenticated ancient DNA sequences known, and megafaunal sequences including mammoth, bison, and horse. The genetic data record a number of dramatic changes in the taxonomic diversity and composition of Beringian vegetation and fauna. Temperate cave sediments in New Zealand also yielded DNA...

  15. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  16. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  17. Diversity and molecular phylogeny of mitochondrial DNA of rhesus macaques (Macaca mulatta) in Bangladesh.

    Science.gov (United States)

    Hasan, M Kamrul; Feeroz, M Mostafa; Jones-Engel, Lisa; Engel, Gregory A; Kanthaswamy, Sree; Smith, David Glenn

    2014-11-01

    While studies of rhesus macaques (Macaca mulatta) in the eastern (e.g., China) and western (e.g., India) parts of their geographic range have revealed major genetic differences that warrant the recognition of two different subspecies, little is known about genetic characteristics of rhesus macaques in the transitional zone extending from eastern India and Bangladesh through the northern part of Indo-China, the probable original homeland of the species. We analyzed genetic variation of 762 base pairs of mitochondrial DNA from 86 fecal swab samples and 19 blood samples from 25 local populations of rhesus macaque in Bangladesh collected from January 2010 to August 2012. These sequences were compared with those of rhesus macaques from India, China, and Myanmar. Forty-six haplotypes defined by 200 (26%) polymorphic nucleotide sites were detected. Estimates of gene diversity, expected heterozygosity, and nucleotide diversity for the total population were 0.9599 ± 0.0097, 0.0193 ± 0.0582, and 0.0196 ± 0.0098, respectively. A mismatch distribution of paired nucleotide differences yielded a statistically significantly negative value of Tajima's D, reflecting a population that rapidly expanded after the terminal Pleistocene. Most haplotypes throughout regions of Bangladesh, including an isolated region in the southwestern area (Sundarbans), clustered with haplotypes assigned to the minor haplogroup Ind-2 from India reflecting an east to west dispersal of rhesus macaques to India. Haplotypes from the southeast region of Bangladesh formed a cluster with those from Myanmar, and represent the oldest rhesus macaque haplotypes of Bangladesh. These results are consistent with the hypothesis that rhesus macaques first entered Bangladesh from the southeast, probably from Indo-China, then dispersed westward throughout eastern and central India. © 2014 Wiley Periodicals, Inc.

  18. Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity

    Directory of Open Access Journals (Sweden)

    Feng Gui

    2011-04-01

    Full Text Available Abstract Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.

  19. Genetic diversity and population structure of Eleutheronema rhadinum in the East and South China Seas revealed in mitochondrial COI sequences

    Science.gov (United States)

    Sun, Xinxu; Xu, Dongdong; Lou, Bao; Zhang, Tao; Xin, Jian; Guo, Yaoshi; Ma, Shilei

    2013-11-01

    Eleutheronema rhadinum is a potential commercial fisheries species and is subject to intense exploitation in China. Knowledge on the population structure of E. rhadinum in Chinese coastal waters, which is important for sustainable exploitation and proper resource management, is lacking. In the present study, the genetic diversity and population structure of E. rhadinum were evaluated using a 564-base pair fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 76 specimens were collected from three localities around the East (Qidong and Zhoushan) and South China Seas (Zhuhai). Among these individuals, nine polymorphic sites were detected and 11 distinct haplotypes were defined. High levels of haplotype diversity ( h =0.759±0.035) and low levels of nucleotide diversity ( π= 0.001 98±0.003 26) were observed in these populations. Hierarchical analysis of molecular variance (AMOVA) indicated that 96.72% of the genetic variation occurred within the populations, whereas 3.28% occurred among populations. No significant genealogical branches or clusters were recognized on the neighbor-joining tree. Intra-group variation among populations was significant ( φ st=0.032 85, PTests of neutral evolution and mismatch distribution suggest that E. rhadinum may have experienced a population expansion. The present study provides basic information for the conservation and sustainable exploitation of this species.

  20. Family-specific vs. universal PCR primers for the study of mitochondrial DNA in plants

    Directory of Open Access Journals (Sweden)

    Aleksić Jelena M.

    2016-01-01

    Full Text Available Mitochondrial genomes (mtDNAs or mitogenomes of seed plants are characterized by a notoriously unstable organization on account of which available so-called universal or consensus primers may fail to fulfil their foreseen function - amplification of various mtDNA regions in a broad range of plant taxa. Thus, the primers developed for groups assumed to have similar organization of their mitogenomes, such as families, may facilitate a broader usage of more variable non-coding portions of these genomes in group members. Using in silico PCR method and six available complete mitogenomes of Fabaceae, it has been demonstrated that only three out of 36 published universal primer and three Medicago sativa-specific primer pairs that amplify various mtDNA regions are suitable for six representatives of the Fabaceae family upon minor modifications, and develop 21 Fabaceae-specific primer pairs for amplification of all 14 cis-splicing introns in genes of NADH subunits (nad genes which represent the most commonly used non-coding mtDNA regions in various studies in plants. Using the same method and six available complete mitogenomes of representatives of related families Cucurbitaceae, Euphorbiaceae and Rosaceae and a model plant, Arabidopsis thaliana, it has further been demonstrated that applicability of newly developed primer pairs for amplification of nad introns in more or less related taxa was dependent not only on species evolutionary distances but also on their genome sizes. A reported set of 24 primer pairs is a valuable resource which may facilitate a broader usage of mtDNA variability in future studies at both intra- and inter-specific levels in Fabaceae, which is the third largest family of flowering plants rarely studied at the mtDNA level, and in other more or less related taxa. [Projekat Ministarstva nauke Republike Srbije, br. 173005

  1. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    Research on plant biodiversity and ecosystem functioning has mainly focused on terrestrial ecosystems, and our understanding of how plant species diversity and interactions affect processes in marine ecosystems is still limited. To investigate if plant species richness and composition influence...... plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...

  2. Effect of wetland management: are lentic wetlands refuges of plant-species diversity in the Andean–Orinoco Piedmont of Colombia?

    Directory of Open Access Journals (Sweden)

    Johanna I. Murillo-Pacheco

    2016-08-01

    Full Text Available Accelerated degradation of the wetlands and fragmentation of surrounding vegetation in the Andean–Orinoco Piedmont are the main threats to diversity and ecological integrity of these ecosystems; however, information on this topic is of limited availability. In this region, we evaluated the value of 37 lentic wetlands as reservoirs of woody and aquatic plants and analyzed diversity and changes in species composition within and among groups defined according to management given by: (1 type (swamps, heronries, rice fields, semi-natural lakes, constructed lakes and fish farms and (2 origins (natural, mixed and artificial. A total of 506 plant species were recorded: 80% woody and 20% aquatic. Of these, 411 species (81% were considered species typical of the area (Meta Piedmont distribution. Diversity patterns seem to be driven by high landscape heterogeneity and wetland management. The fish farms presented the highest diversity of woody plants, while swamps ranked highest for aquatic plant diversity. Regarding wetland origin, the artificial systems were the most diverse, but natural wetlands presented the highest diversity of typical species and can therefore be considered representative ecosystems at the regional scale. Our results suggest that lentic wetlands act as refuges for native vegetation of Meta Piedmont forest, hosting 55% of the woody of Piedmont species and 29% of the aquatic species of Orinoco basin. The wetlands showed a high species turnover and the results indicated that small wetlands (mean ± SD: size = 11 ± 18.7 ha, with a small area of surrounding forest (10 ± 8.6 ha supported high local and regional plant diversity. To ensure long-term conservation of lentic wetlands, it is necessary to develop management and conservation strategies that take both natural and created wetlands into account.

  3. The mitochondrial genomes of the ciliates Euplotes minuta and Euplotes crassus

    Directory of Open Access Journals (Sweden)

    Huynh Minh

    2009-11-01

    Full Text Available Abstract Background There are thousands of very diverse ciliate species from which only a handful mitochondrial genomes have been studied so far. These genomes are rather similar because the ciliates analysed (Tetrahymena spp. and Paramecium aurelia are closely related. Here we study the mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus. These ciliates are only distantly related to Tetrahymena spp. and Paramecium aurelia, but more closely related to Nyctotherus ovalis, which possesses a hydrogenosomal (mitochondrial genome. Results The linear mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus were sequenced and compared with the mitochondrial genomes of several Tetrahymena species, Paramecium aurelia and the partially sequenced mitochondrial genome of the anaerobic ciliate Nyctotherus ovalis. This study reports new features such as long 5'gene extensions of several mitochondrial genes, extremely long cox1 and cox2 open reading frames and a large repeat in the middle of the linear mitochondrial genome. The repeat separates the open reading frames into two blocks, each having a single direction of transcription, from the repeat towards the ends of the chromosome. Although the Euplotes mitochondrial gene content is almost identical to that of Paramecium and Tetrahymena, the order of the genes is completely different. In contrast, the 33273 bp (excluding the repeat region piece of the mitochondrial genome that has been sequenced in both Euplotes species exhibits no difference in gene order. Unexpectedly, many of the mitochondrial genes of E. minuta encoding ribosomal proteins possess N-terminal extensions that are similar to mitochondrial targeting signals. Conclusion The mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus are rather different from the previously studied genomes. Many genes are extended in size compared to mitochondrial

  4. Longterm changes in plant diversity of grasslands under agricultural and conservation management

    NARCIS (Netherlands)

    Snoo, de G.R.; Naus, N.; Verhulst, J.; Ruijven, van J.; Schaffers, A.P.

    2012-01-01

    Question In many industrialized countries biodiversity is declining. Although changes in species composition and species richness have been documented for many individual systems, little long-term research has been done on a regional scale. We compared the temporal patterns of plant diversity over

  5. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function

    Directory of Open Access Journals (Sweden)

    Abou-Rached Charbel

    2008-04-01

    Full Text Available Abstract Background StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. Results To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. Conclusion AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.

  6. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    Science.gov (United States)

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant

    International Nuclear Information System (INIS)

    Renker, C.; Blanke, V.; Buscot, F.

    2005-01-01

    Mycorrhizal colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in a calcareous grassland with residual phosphate contamination 10 years after the closure of a pollutant fertilizer plant in Thuringia (Germany). AMF were detected in 21 of 22 plant species analyzed. Mean mycorrhization levels reached up to 74.5% root length colonized. AMF diversity was analyzed based on 104 sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Phylogenetic analyses revealed a total of 6 species all belonging to the genus Glomus. There was no overlap between species detected as active mycorrhizas on roots (2 taxa) or as spores (4 taxa). Compared to the regional context, the diversity of AMF at our field site was reduced, which may reflect a residual disturbance effect. However, none of the detected species was exclusive to the polluted site as they are commonly found in the region. - Almost all plant species were mycorrhizal

  8. Highly Diverse Endophytic and Soil Fusarium oxysporum Populations Associated with Field-Grown Tomato Plants

    Science.gov (United States)

    Demers, Jill E.; Gugino, Beth K.

    2014-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

  9. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.

    Directory of Open Access Journals (Sweden)

    Evgeny I Rogaev

    2006-03-01

    Full Text Available Phylogenetic relationships between the extinct woolly mammoth (Mammuthus primigenius, and the Asian (Elephas maximus and African savanna (Loxodonta africana elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch--the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as approximately 1,600-1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests that M. primigenius and E. maximus are sister species that diverged soon after their common ancestor split from the L. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population of M. primigenius throughout the late Pleistocene.

  10. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    Science.gov (United States)

    Symstad, Amy J.; Jonas, Jayne L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity.

  11. Cultivation Versus Molecular Analysis of Banana (Musa sp.) Shoot-Tip Tissue Reveals Enormous Diversity of Normally Uncultivable Endophytic Bacteria.

    Science.gov (United States)

    Thomas, Pious; Sekhar, Aparna Chandra

    2017-05-01

    The interior of plants constitutes a unique environment for microorganisms with various organisms inhabiting as endophytes. Unlike subterranean plant parts, aboveground parts are relatively less explored for endophytic microbial diversity. We employed a combination of cultivation and molecular approaches to study the endophytic bacterial diversity in banana shoot-tips. Cultivable bacteria from 20 sucker shoot-tips of cv. Grand Naine included 37 strains under 16 genera and three phyla (Proteobacteria, Actinobacteria, Firmicutes). 16S rRNA gene-ribotyping approach on 799f and 1492r PCR-amplicons to avoid plant organelle sequences was ineffective showing limited bacterial diversity. 16S rRNA metagene profiling targeting the V3-V4 hypervariable region after filtering out the chloroplast (74.2 %), mitochondrial (22.9 %), and unknown sequences (1.1 %) revealed enormous bacterial diversity. Proteobacteria formed the predominant phylum (64 %) succeeded by Firmicutes (12.1 %), Actinobacteria (9.5 %), Bacteroidetes (6.4 %), Planctomycetes, Cyanobacteria, and minor shares (banana shoot-tips (20 phyla, 46 classes) with about 2.6 % of the deciphered 269 genera and 1.5 % of the 656 observed species from the same source of shoot-tips attained through cultivation. The predominant genera included several agriculturally important bacteria. The study reveals an immense ecosystem of endophytic bacteria in banana shoot tissues endorsing the earlier documentation of intracellular "Cytobacts" and "Peribacts" with possible roles in plant holobiome and hologenome.

  12. The contribution of the mitochondrial genome to sex-specific fitness variance.

    Science.gov (United States)

    Smith, Shane R T; Connallon, Tim

    2017-05-01

    Maternal inheritance of mitochondrial DNA (mtDNA) facilitates the evolutionary accumulation of mutations with sex-biased fitness effects. Whereas maternal inheritance closely aligns mtDNA evolution with natural selection in females, it makes it indifferent to evolutionary changes that exclusively benefit males. The constrained response of mtDNA to selection in males can lead to asymmetries in the relative contributions of mitochondrial genes to female versus male fitness variation. Here, we examine the impact of genetic drift and the distribution of fitness effects (DFE) among mutations-including the correlation of mutant fitness effects between the sexes-on mitochondrial genetic variation for fitness. We show how drift, genetic correlations, and skewness of the DFE determine the relative contributions of mitochondrial genes to male versus female fitness variance. When mutant fitness effects are weakly correlated between the sexes, and the effective population size is large, mitochondrial genes should contribute much more to male than to female fitness variance. In contrast, high fitness correlations and small population sizes tend to equalize the contributions of mitochondrial genes to female versus male variance. We discuss implications of these results for the evolution of mitochondrial genome diversity and the genetic architecture of female and male fitness. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  13. Aboriginal Australian mitochondrial genome variation - an increased understanding of population antiquity and diversity

    Science.gov (United States)

    Nagle, Nano; van Oven, Mannis; Wilcox, Stephen; van Holst Pellekaan, Sheila; Tyler-Smith, Chris; Xue, Yali; Ballantyne, Kaye N.; Wilcox, Leah; Papac, Luka; Cooke, Karen; van Oorschot, Roland A. H.; McAllister, Peter; Williams, Lesley; Kayser, Manfred; Mitchell, R. John; Adhikarla, Syama; Adler, Christina J.; Balanovska, Elena; Balanovsky, Oleg; Bertranpetit, Jaume; Clarke, Andrew C.; Comas, David; Cooper, Alan; der Sarkissian, Clio S. I.; Dulik, Matthew C.; Gaieski, Jill B.; Ganeshprasad, Arunkumar; Haak, Wolfgang; Haber, Marc; Hobbs, Angela; Javed, Asif; Jin, Li; Kaplan, Matthew E.; Li, Shilin; Martínez-Cruz, Begoña; Matisoo-Smith, Elizabeth A.; Melé, Marta; Merchant, Nirav C.; Owings, Amanda C.; Parida, Laxmi; Pitchappan, Ramasamy; Platt, Daniel E.; Quintana-Murci, Lluis; Renfrew, Colin; Royyuru, Ajay K.; Santhakumari, Arun Varatharajan; Santos, Fabrício R.; Schurr, Theodore G.; Soodyall, Himla; Soria Hernanz, David F.; Swamikrishnan, Pandikumar; Vilar, Miguel G.; Wells, R. Spencer; Zalloua, Pierre A.; Ziegle, Janet S.

    2017-03-01

    Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia’s first settlers.

  14. When to Suspect and How to Diagnose Mitochondrial Disorders?

    Science.gov (United States)

    Korenev, Sergei; Morris, Andrew A M

    2016-10-01

    Disorders of the mitochondrial respiratory chain are an exceedingly diverse group. The clinical features can affect any tissue or organ and occur at any age, with any mode of inheritance. The diagnosis of mitochondrial disorders requires knowledge of the clinical phenotypes and access to a wide range of laboratory techniques. A few syndromes are associated with a specific genetic defect and in these cases it is appropriate to proceed directly to an appropriate test of blood or urine. In most cases, however, the best strategy starts with biochemical and histochemical studies on a muscle biopsy. Appropriate molecular genetic studies can then be chosen, based on these results and the clinical picture. Unfortunately, there is currently limited availability of respiratory chain studies in India. Exome sequencing is undertaken increasingly often; without preceding mitochondrial studies, this can lead to misleading results.

  15. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil

    NARCIS (Netherlands)

    Weid, von der I.; Paiva, E.; Nobrega, A.; Elsas, van J.D.; Seldin, L.

    2000-01-01

    Paenibacillus polymyxa populations present in the rhizosphere of maize (cultivar BR-201) planted in Cerrado soil were investigated in order to assess their diversity at four stages of plant growth. A total of 67 strains were isolated and all strains were identified as P. polymyxa by classical

  16. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies

    Directory of Open Access Journals (Sweden)

    Jean-Paul Lasserre

    2015-06-01

    Full Text Available Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’, and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast.

  17. Forest structure and plant diversity in maritime pine (Pinus pinaster Ait.) stands in central Spain

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, L. F.; Bravo, F.; Zaldivar, P.; Pando, V.

    2009-07-01

    The relationship between forest structure and plant diversity in Mediterranean Maritime pine stands (Pinus pinaster Ait.) in the Iberian Range (Spain) was studied. Forty eight stands were sampled. In each, a circular plot (15 m radius) and a transect (25*1 m{sup 2}) were established to estimate stand variables and record presence and abundance of vascular species respectively. Canonical correlation analysis (CCA), simple correlations and multiple stepwise linear regressions were used to explore the relationship between plant diversity and forest structure. Correlation between diversity measurements and stand variables is very weak, but significant correlations were found when evaluating each set of variables separately. Presence and cover of some species (for instance, Veronica arvensis L. or Micropyrum tenellum (L.) Link) is correlated with stand variables; however, determination coefficients found in step-by-step regression are not significant. (Author) 34 refs.

  18. Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe

    Science.gov (United States)

    Ripplinger, Julie; Franklin, Janet; Edwards, Thomas C.

    2015-01-01

    Questions(i) What role does the type of managed disturbance play in structuring sagebrush steppe plant communities? (ii) How does the composition of post-disturbance plant communities change with time since disturbance? (iii) Does plant community diversity change over time following managed disturbance?LocationField study within the sagebrush steppe ecosystem. Rich County, Utah, USA.MethodsWe developed a chronosequence spanning up to 50 yrs post-treatment to study sagebrush steppe vegetation dynamics. Direct ordination was used to examine plant community composition by managed disturbance type and time since disturbance, and factorial analysis of covariance was used to examine diversity dynamics following disturbance. Indicator species values were calculated in order to identify characteristic species for each disturbance type.ResultsPlant communities experienced a shift toward distinct community composition for each of the three managed disturbance types, and gave no indication of returning to untreated community composition or diversity. Small post-disturbance increases in the number of non-native grass species were observed in the treatments relative to reference, with native forb species making the largest contribution to altered composition. On fire- and chemically-treated sites the proportional native forb species richness increased over time since disturbance, while the proportional contribution of non-native forbs to total species richness decreased. For all three treatment types, native grasses contributed less on average to total richness than on reference sites, while non-native grasses made up a higher proportion of total richness.ConclusionsCommon shrubland management techniques have legacy effects on the composition and diversity of sagebrush steppe plant communities, and no-analogue disturbances, such as chemical or mechanical treatments, have more pronounced legacy effects than treatments similar to natural disturbance regimes (fire). This study

  19. Mitochondrial Haplotype Diversity in Zambian Lions: Bridging a Gap in the Biogeography of an Iconic Species.

    Science.gov (United States)

    Curry, Caitlin J; White, Paula A; Derr, James N

    2015-01-01

    Analysis of DNA sequence diversity at the 12S to 16S mitochondrial genes of 165 African lions (Panthera leo) from five main areas in Zambia has uncovered haplotypes which link Southern Africa with East Africa. Phylogenetic analysis suggests Zambia may serve as a bridge connecting the lion populations in southern Africa to eastern Africa, supporting earlier hypotheses that eastern-southern Africa may represent the evolutionary cradle for the species. Overall gene diversity throughout the Zambian lion population was 0.7319 +/- 0.0174 with eight haplotypes found; three haplotypes previously described and the remaining five novel. The addition of these five novel haplotypes, so far only found within Zambia, nearly doubles the number of haplotypes previously reported for any given geographic location of wild lions. However, based on an AMOVA analysis of these haplotypes, there is little to no matrilineal gene flow (Fst = 0.47) when the eastern and western regions of Zambia are considered as two regional sub-populations. Crossover haplotypes (H9, H11, and Z1) appear in both populations as rare in one but common in the other. This pattern is a possible result of the lion mating system in which predominately males disperse, as all individuals with crossover haplotypes were male. The determination and characterization of lion sub-populations, such as done in this study for Zambia, represent a higher-resolution of knowledge regarding both the genetic health and connectivity of lion populations, which can serve to inform conservation and management of this iconic species.

  20. Mitochondrial Haplotype Diversity in Zambian Lions: Bridging a Gap in the Biogeography of an Iconic Species.

    Directory of Open Access Journals (Sweden)

    Caitlin J Curry

    Full Text Available Analysis of DNA sequence diversity at the 12S to 16S mitochondrial genes of 165 African lions (Panthera leo from five main areas in Zambia has uncovered haplotypes which link Southern Africa with East Africa. Phylogenetic analysis suggests Zambia may serve as a bridge connecting the lion populations in southern Africa to eastern Africa, supporting earlier hypotheses that eastern-southern Africa may represent the evolutionary cradle for the species. Overall gene diversity throughout the Zambian lion population was 0.7319 +/- 0.0174 with eight haplotypes found; three haplotypes previously described and the remaining five novel. The addition of these five novel haplotypes, so far only found within Zambia, nearly doubles the number of haplotypes previously reported for any given geographic location of wild lions. However, based on an AMOVA analysis of these haplotypes, there is little to no matrilineal gene flow (Fst = 0.47 when the eastern and western regions of Zambia are considered as two regional sub-populations. Crossover haplotypes (H9, H11, and Z1 appear in both populations as rare in one but common in the other. This pattern is a possible result of the lion mating system in which predominately males disperse, as all individuals with crossover haplotypes were male. The determination and characterization of lion sub-populations, such as done in this study for Zambia, represent a higher-resolution of knowledge regarding both the genetic health and connectivity of lion populations, which can serve to inform conservation and management of this iconic species.

  1. Age-and Brain Region-Specific Differences in Mitochondrial ...

    Science.gov (United States)

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cerebellum (CER), striatum (STR), hippocampus (HIP)] of four diverse age groups [1 Month (young), 4 Month (adult), 12 Month (middle-aged), 24 Month (old age)] to understand age-related differences in selected brain regions and their contribution to age-related chemical sensitivity. Mitochondrial bioenergetics parameters and enzyme activity were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State 111 respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12 and 24 Month age groups. Activities of mitochondrial pyruvate dehydrogenase complex (PDHC) and electron transport chain (ETC) complexes I, II, and IV enzymes were also age- and brain-region specific. In general changes associated with age were more pronounced, with

  2. Mitochondrial DNA phylogeography of least cisco Coregonus sardinella in Alaska.

    Science.gov (United States)

    Padula, V M; Causey, D; López, J A

    2017-03-01

    This study presents the first detailed analysis of the mitochondrial DNA diversity of least cisco Coregonus sardinella in Alaska using a 678 bp segment of the control region (D-loop) of the mitochondrial genome. Findings suggest that the history of C. sardinella in Alaska differs from that of other species of Coregonus present in the state and surrounding regions. The examined populations of C. sardinella are genetically diverse across Alaska. Sixty-eight distinct mitochondrial haplotypes were identified among 305 individuals sampled from nine locations. The haplotype minimum spanning network and phylogeny showed a modest level of geographic segregation among haplotypes, suggesting high levels of on-going or recent connectivity among distant populations. Observed Φ ST values and the results of homogeneity and AMOVAs indicate incipient genetic differentiation between aggregations in three broad regional groups. Sites north of the Brooks Range formed one group, sites in the Yukon and Selawik Rivers formed a second group and sites south of the Yukon drainage formed the third group. Overall, the sequence data showed that a large proportion of mtDNA genetic variation in C. sardinella is shared across Alaska, but this variation is not homogeneously distributed across all regions and for all haplotype groups. © 2017 The Fisheries Society of the British Isles.

  3. Characterizing genetic diversity of contemporary pacific chickens using mitochondrial DNA analyses.

    Directory of Open Access Journals (Sweden)

    Kelsey Needham Dancause

    Full Text Available BACKGROUND: Mitochondrial DNA (mtDNA hypervariable region (HVR sequences of prehistoric Polynesian chicken samples reflect dispersal of two haplogroups--D and E--by the settlers of the Pacific. The distribution of these chicken haplogroups has been used as an indicator of human movement. Recent analyses suggested similarities between prehistoric Pacific and South American chicken samples, perhaps reflecting prehistoric Polynesian introduction of the chicken into South America. These analyses have been heavily debated. The current distribution of the D and E lineages among contemporary chicken populations in the Western Pacific is unclear, but might ultimately help to inform debates about the movements of humans that carried them. OBJECTIVES: We sought to characterize contemporary mtDNA diversity among chickens in two of the earliest settled archipelagos of Remote Oceania, the Marianas and Vanuatu. METHODS: We generated HVR sequences for 43 chickens from four islands in Vanuatu, and for 5 chickens from Guam in the Marianas. RESULTS: Forty samples from Vanuatu and three from Guam were assigned to haplogroup D, supporting this as a Pacific chicken haplogroup that persists in the Western Pacific. Two haplogroup E lineages were observed in Guam and two in Vanuatu. Of the E lineages in Vanuatu, one was identical to prehistoric Vanuatu and Polynesian samples and the other differed by one polymorphism. Contrary to our expectations, we observed few globally distributed domesticate lineages not associated with Pacific chicken dispersal. This might suggest less European introgression of chickens into Vanuatu than expected. If so, the E lineages might represent lineages maintained from ancient Pacific chicken introductions. The Vanuatu sample might thus provide an opportunity to distinguish between maintained ancestral Pacific chicken lineages and replacement by global domesticates through genomic analyses, which could resolve questions of contemporary

  4. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    Science.gov (United States)

    Ferrer-Paris, José R; Sánchez-Mercado, Ada; Viloria, Ángel L; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  5. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    Directory of Open Access Journals (Sweden)

    José R Ferrer-Paris

    Full Text Available We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1 is there a general correlation between host diversity and butterfly species richness?, (2 has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3 what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea and 1,193 genera (66.3%. The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp. from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae, and Satyrinae (42.6% of all Nymphalidae. We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids, but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  6. The complete mitochondrial genome of eastern lowland gorilla, Gorilla beringei graueri, and comparative mitochondrial genomics of Gorilla species.

    Science.gov (United States)

    Hu, Xiao-di; Gao, Li-zhi

    2016-01-01

    In this study, we determined the complete mitochondrial (mt) genome of eastern lowland gorilla, Gorilla beringei graueri for the first time. The total genome was 16,416 bp in length. It contained a total of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region (D-loop region). The base composition was A (30.88%), G (13.10%), C (30.89%) and T (25.13%), indicating that the percentage of A+T (56.01%) was higher than G+C (43.99%). Comparisons with the other publicly available Gorilla mitogenome showed the conservation of gene order and base compositions but a bunch of nucleotide diversity. This complete mitochondrial genome sequence will provide valuable genetic information for further studies on conservation genetics of eastern lowland gorilla.

  7. Mitochondrial genome diversity and population structure of two western honey bee subspecies in the Republic of South Africa.

    Science.gov (United States)

    Eimanifar, Amin; Kimball, Rebecca T; Braun, Edward L; Ellis, James D

    2018-01-22

    Apis mellifera capensis Eschscholtz and A.m. scutellata Lepeletier are subspecies of western honey bees that are indigenous to the Republic of South Africa (RSA). Both subspecies have invasive potential and are organisms of concern for areas outside their native range, though they are important bees to beekeepers, agriculture, and the environment where they are native. The aim of the present study was to examine genetic differentiation among these subspecies and estimate their phylogenetic relationships using complete mitochondrial genomes sequences. We used 25 individuals that were either assigned to one of the subspecies or designated hybrids using morphometric analyses. Phylogenetic analyses of mitogenome sequences by maximum likelihood (ML) and Bayesian inference identified a monophyletic RSA clade, subdivided into two clades. A haplotype network was consistent with the phylogenetic trees. However, members of both subspecies occurred in both clades, indicating that A.m. capensis and A.m. scutellata are neither reciprocally monophyletic nor do they exhibit paraphyly with one subspecies nested within the other subspecies. Furthermore, no mitogenomic features were diagnostic to either subspecies. All bees analyzed from the RSA expressed a substantial level of haplotype diversity (most samples had unique haplotypes) but limited nucleotide diversity. The number of variable codons across protein-coding genes (PCGs) differed among loci, with CO3 exhibiting the most variation and ATP6 the least.

  8. Diversity, Distribution, and Abundance of Plants in Lewoh-Lebang in the Lebialem Highlands of Southwestern Cameroon

    Directory of Open Access Journals (Sweden)

    B. A. Fonge

    2013-01-01

    Full Text Available A survey was conducted between October 2010 and June 2011 to determine the diversity, distribution, and abundance of plants in 4 sites of the Lebialem highlands and to relate species diversity and abundance to altitude and soil types. Twelve (12 plots, each of 1 ha (250 × 40 m, were surveyed at the submontane and montane altitudes of the sites. One hundred (100 species belonging to 82 genera were identified with the genera Cola and Psychotria being the most represented. Vulnerable species included Guarea thompsonii, Schefflera hierniana, Allanblackia gabonensis, Cyclomorpha solmsii, Vepris trifoliolata, and Xylopia africana. Species such as Xymalos monospora, Tricalysia atherura, and Piptostigma oyemense present in the study area were endemic to Cameroon. Diversity and distribution of plants were affected by parameters such as the altitude and the soil type. Soil analysis revealed that diversity in the study area was affected by the organic carbon, nitrogen, calcium, and the cation exchange capacity of the soil.

  9. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development, and suppresses plant innate immunity

    Science.gov (United States)

    Block, Anna; Guo, Ming; Li, Guangyong; Elowsky, Christian; Clemente, Thomas E.; Alfano, James R.

    2009-01-01

    Summary The bacterial plant pathogen Pseudomonas syringae uses a type III protein secretion system to inject type III effectors into plant cells. Primary targets of these effectors appear to be effector-triggered immunity (ETI) and pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The type III effector HopG1 is a suppressor of ETI that is broadly conserved in bacterial plant pathogens. Here we show that HopG1 from P. syringae pv. tomato DC3000 also suppresses PTI. Interestingly, HopG1 localizes to plant mitochondria, suggesting that its suppression of innate immunity may be linked to a perturbation of mitochondrial function. While HopG1 possesses no obvious mitochondrial signal peptide, its N-terminal two-thirds was sufficient for mitochondrial localization. A HopG1-GFP fusion lacking HopG1’s N-terminal 13 amino acids was not localized to the mitochondria reflecting the importance of the N-terminus for targeting. Constitutive expression of HopG1 in Arabidopsis thaliana, Nicotiana tabacum (tobacco) and Lycopersicon esculentum (tomato) dramatically alters plant development resulting in dwarfism, increased branching and infertility. Constitutive expression of HopG1 in planta leads to reduced respiration rates and an increased basal level of reactive oxygen species. These findings suggest that HopG1’s target is mitochondrial and that effector/target interaction promotes disease by disrupting mitochondrial functions. PMID:19863557

  10. The relationship between soil physical properties and alpine plant diversity on Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Lin Tang

    2015-04-01

    Full Text Available Through a large-scale research, we examined the heterogeneity of soil properties and plant diversity, as well as their relationships across alpine grassland types on Qinghai-Tibet Plateau. The soil pH and EC value increased with the constant deepening of the soil in all the three alpine grassland types which in order of absolute value in every soil layer were alpine desert steppe, alpine steppe and alpine meadow. Among the three grassland types, the alpine meadow possessed the highest SM but the lowest SBD. For plant diversity, alpine meadow was the highest, alpine desert steppe ranked the second and alpine steppe was the last. SM and SBD were the highest influential soil physical properties to species richness, but with opposite effects.

  11. Impacts of invasive plants on animal diversity in South Africa: A synthesis

    Directory of Open Access Journals (Sweden)

    Susana Clusella-Trullas

    2017-03-01

    Full Text Available Background: Increasing numbers of invasive alien plant (IAP species are establishing around the globe and can have negative effects on resident animal species function and diversity. These impacts depend on a variety of factors, including the extent of invasion, the region and the taxonomic group affected. These context dependencies make extrapolations of IAP impacts on resident biota from region to region a substantial challenge. Objectives: Here, we synthesised data from studies that have examined the effects of IAPs on animal diversity in South Africa. Our focus is on ectothermic organisms (reptiles, amphibians and invertebrates. Method: We sourced relevant articles using keywords relating to (1 the effects of IAPs on species diversity (abundance, richness and composition, (2 the IAP and (3 the native ectotherm. We extracted the taxonomic and spatial coverage of IAPs and affected native species and assessed the extent of information given on potential mechanisms driving IAP impacts. Results: Across the 42 studies, IAPs had a decreasing or neutral effect on native animal abundance and richness and significantly changed species composition. This review highlighted the paucity of studies and the research deficits in taxonomic and geographic coverage and in the mechanisms underlying IAP impacts on ectotherms. Conclusion: By assessing the status of knowledge regarding the impacts of IAPs on resident animal species in South Africa, this study identifies information gaps and research priorities at the country level with a view to informing monitoring and conservation efforts, such as alien plant removal and control programmes, and ensuring that endemic terrestrial animal diversity is maintained.

  12. Diversity of beetle genes encoding novel plant cell wall degrading enzymes.

    Directory of Open Access Journals (Sweden)

    Yannick Pauchet

    Full Text Available Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent "disappearance" of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology.

  13. Membrane Bioreactor-Based Wastewater Treatment Plant in Saudi Arabia: Reduction of Viral Diversity, Load, and Infectious Capacity

    KAUST Repository

    Jumat, Muhammad

    2017-07-18

    A membrane bioreactor (MBR)-based wastewater treatment plant in Saudi Arabia was assessed over a nine-month period for virus removal efficiency. Viral diversity was detected using omics-based approaches. Log reduction values (LRV) of Adenoviruses (AdV) and Enteroviruses (EV) were enumerated using digital polymerase chain reaction (dPCR) and assessed for infectivity using fluorescence-based infection assays. MBR treatment was successful in reducing viral diversity. Plant viruses remained abundant in the treated effluent. Human enteric viruses were present in lower abundance than plant viruses, and were reduced by MBR at varying LRV. AdV copy numbers were reduced by 3.7-log. Infectious AdV was not detected in the effluent. EV copy numbers were reduced by 1.7-log post MBR and infectious EV decreased by an average of 2.0-log. Infectious EV was detected in the chlorinated effluent, occasionally in concentrations that approximate to its 50% infectious dose. Overall, results indicated that a MBR-based wastewater treatment plant (WWTP) effectively reduces viral diversity, viral load, and infectious capacity by up to 4-logs. These findings suggest potential concerns associated with plant and human enteric viruses for reuse events in this country. Local guidelines for assessment of treated water quality should take into consideration both infectious viral concentration and LRV.

  14. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal

    Science.gov (United States)

    Proença, Vânia M.; Pereira, Henrique M.; Guilherme, João; Vicente, Luís

    2010-03-01

    Forest ecosystems have been subjected to continuous dynamics between deforestation and forestation. Assessing the effects of these processes on biodiversity could be essential for conservation planning. We analyzed patterns of species richness, diversity and evenness of plants and birds in patches of natural forest of Quercus spp. and in stands of native Pinus pinaster and exotic Eucalyptus globulus in NW Portugal. We analyzed data of forest and non-forest species separately, at the intra-patch, patch and inter-patch scales. Forest plant richness, diversity and evenness were higher in oak forest than in pine and eucalypt plantations. In total, 52 species of forest plants were observed in oak forest, 33 in pine plantation and 28 in eucalypt plantation. Some forest species, such as Euphorbia dulcis, Omphalodes nitida and Eryngium juresianum, were exclusively or mostly observed in oak forest. Forest bird richness and diversity were higher in both oak and pine forests than in eucalypt forest; evenness did not differ among forests. In total, 16 species of forest birds were observed in oak forest, 18 in pine forest and 11 in eucalypt forest. Species such as Certhia brachydactyla, Sitta europaea and Dendrocopos major were common in oak and/or pine patches but were absent from eucalypt stands. Species-area relationships of forest plants and forest birds in oak patches had consistently a higher slope, at both the intra and inter-patch scales, than species-area relationships of forest species in plantations and non-forest species in oak forest. These findings demonstrate the importance of oak forest for the conservation of forest species diversity, pointing the need to conserve large areas of oak forest due to the apparent vulnerability of forest species to area loss. Additionally, diversity patterns in pine forest were intermediate between oak forest and eucalypt forest, suggesting that forest species patterns may be affected by forest naturalness.

  15. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  16. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes.

    Science.gov (United States)

    Hu, Hang-Wei; Wang, Jun-Tao; Singh, Brajesh K; Liu, Yu-Rong; Chen, Yong-Liang; Zhang, Yu-Jing; He, Ji-Zheng

    2018-04-24

    Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Science.gov (United States)

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  18. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  19. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP+ -dependent succinic semialdehyde dehydrogenase.

    Science.gov (United States)

    Kopečná, Martina; Vigouroux, Armelle; Vilím, Jan; Končitíková, Radka; Briozzo, Pierre; Hájková, Eva; Jašková, Lenka; von Schwartzenberg, Klaus; Šebela, Marek; Moréra, Solange; Kopečný, David

    2017-10-01

    Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP + -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD + is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP + binding induces a conformational change of the loop carrying Arg-228, which seals the NADP + in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Uses and conservation of plant diversity in Ben En National Park, Vietnam

    NARCIS (Netherlands)

    Hoang, Van Sam

    2009-01-01

    Ben En National Park is one of the 30 National Parks in Vietnam. In this study its botanical wealth has been comprehensively inventoried as well as the very important roles that plants play in the daily life and economy of the people inhabiting the Park. Floristic diversity - In our survey 1389

  1. Woody plant diversity in sacred forests and fallows in Chiang Mai, Thailand

    DEFF Research Database (Denmark)

    Junsongduang, A.; Balslev, Henrik; Jampeetong, Arunothai

    2014-01-01

    All woody plant and seedling diversity was compared in a Karen and a Lawa hill-tribe village in northern Thailand in four different habitats: sacred forests and fallow fields of three ages derived from rotational shifting cultivation (young fallows, 1–2 years old; medium-age fallow, 3-4 years old...

  2. Are Synonymous Substitutions in Flowering Plant Mitochondria Neutral?

    Science.gov (United States)

    Wynn, Emily L; Christensen, Alan C

    2015-10-01

    Angiosperm mitochondrial genes appear to have very low mutation rates, while non-gene regions expand, diverge, and rearrange quickly. One possible explanation for this disparity is that synonymous substitutions in plant mitochondrial genes are not truly neutral and selection keeps their occurrence low. If this were true, the explanation for the disparity in mutation rates in genes and non-genes needs to consider selection as well as mechanisms of DNA repair. Rps14 is co-transcribed with cob and rpl5 in most plant mitochondrial genomes, but in some genomes, rps14 has been duplicated to the nucleus leaving a pseudogene in the mitochondria. This provides an opportunity to compare neutral substitution rates in pseudogenes with synonymous substitution rates in the orthologs. Genes and pseudogenes of rps14 have been aligned among different species and the mutation rates have been calculated. Neutral substitution rates in pseudogenes and synonymous substitution rates in genes are significantly different, providing evidence that synonymous substitutions in plant mitochondrial genes are not completely neutral. The non-neutrality is not sufficient to completely explain the exceptionally low mutation rates in land plant mitochondrial genomes, but selective forces appear to play a small role.

  3. Digital Imaging Analysis for the Study of Endotoxin-Induced Mitochondrial Ultrastructure Injury

    Directory of Open Access Journals (Sweden)

    Mandar S. Joshi

    2000-01-01

    Full Text Available Primary defects in mitochondrial function have been implicated in over 100 diverse diseases. In situ, mitochondria possess unique and well-defined morphology in normal healthy cells, but diseases linked to defective mitochondrial function are characterized by the presence of morphologically abnormal and swollen mitochondria with distorted cristae. In situ study of mitochondrial morphology is established as an indicator of mitochondrial health but thus far assessments have been via subjective evaluations by trained observers using discontinuous scoring systems. Here we investigated the value of digital imaging analysis to provide for unbiased, reproducible, and convenient evaluations of mitochondrial ultrastructure. Electron photomicrographs of ileal mucosal mitochondria were investigated using a scoring system previously described by us, and also analyzed digitally by using six digital parameters which define size, shape, and electron density characteristics of over 700 individual mitochondria. Statistically significant changes in mitochondrial morphology were detected in LPS treated animals relative to vehicle control using both the subjective scoring system and digital imaging parameters (p < 0:05. However, the imaging approach provided convenient and high throughput capabilities and was easily automated to remove investigator influences. These results illustrate significant changes in ileal mucosal mitochondrial ultrastructure during sepsis and demonstrate the value of digital imaging technology for routine assessments in this setting.

  4. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  5. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia, a carnivorous plant with a minimal genome

    Directory of Open Access Journals (Sweden)

    Herrera-Estrella Alfredo

    2011-06-01

    Full Text Available Abstract Background The carnivorous plant Utricularia gibba (bladderwort is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution, and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. Results Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS. Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. Conclusion The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey

  6. Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae detect gene flow between island populations and genetic diversity loss

    Directory of Open Access Journals (Sweden)

    Sammler Svenja

    2012-10-01

    Full Text Available Abstract Background The Visayan Tarictic Hornbill (Penelopides panini and the Walden’s Hornbill (Aceros waldeni are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in ~ 600 base pairs (bp of the mitochondrial control region I and at 12–19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay, and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant sister taxa, the Luzon Tarictic Hornbill (P. manillae from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A

  7. Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss.

    Science.gov (United States)

    Sammler, Svenja; Ketmaier, Valerio; Havenstein, Katja; Krause, Ulrike; Curio, Eberhard; Tiedemann, Ralph

    2012-10-12

    The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in ~ 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow

  8. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris)

    Science.gov (United States)

    Moffat, Christopher; Pacheco, Joao Goncalves; Sharp, Sheila; Samson, Andrew J.; Bollan, Karen A.; Huang, Jeffrey; Buckland, Stephen T.; Connolly, Christopher N.

    2015-01-01

    The global decline in the abundance and diversity of insect pollinators could result from habitat loss, disease, and pesticide exposure. The contribution of the neonicotinoid insecticides (e.g., clothianidin and imidacloprid) to this decline is controversial, and key to understanding their risk is whether the astonishingly low levels found in the nectar and pollen of plants is sufficient to deliver neuroactive levels to their site of action: the bee brain. Here we show that bumblebees (Bombus terrestris audax) fed field levels [10 nM, 2.1 ppb (w/w)] of neonicotinoid accumulate between 4 and 10 nM in their brains within 3 days. Acute (minutes) exposure of cultured neurons to 10 nM clothianidin, but not imidacloprid, causes a nicotinic acetylcholine receptor-dependent rapid mitochondrial depolarization. However, a chronic (2 days) exposure to 1 nM imidacloprid leads to a receptor-dependent increased sensitivity to a normally innocuous level of acetylcholine, which now also causes rapid mitochondrial depolarization in neurons. Finally, colonies exposed to this level of imidacloprid show deficits in colony growth and nest condition compared with untreated colonies. These findings provide a mechanistic explanation for the poor navigation and foraging observed in neonicotinoid treated bumblebee colonies.—Moffat, C., Pacheco, J. G., Sharp, S., Samson, A. J., Bollan, K. A., Huang, J., Buckland, S. T., Connolly, C. N. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). PMID:25634958

  9. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health.

    Directory of Open Access Journals (Sweden)

    Martina Köberl

    Full Text Available BACKGROUND: To convert deserts into arable, green landscapes is a global vision, and desert farming is a strong growing area of agriculture world-wide. However, its effect on diversity of soil microbial communities, which are responsible for important ecosystem services like plant health, is still not known. METHODOLOGY/PRINCIPAL FINDINGS: We studied the impact of long-term agriculture on desert soil in one of the most prominent examples for organic desert farming in Sekem (Egypt. Using a polyphasic methodological approach to analyse microbial communities in soil as well as associated with cultivated plants, drastic effects caused by 30 years of agriculture were detected. Analysing bacterial fingerprints, we found statistically significant differences between agricultural and native desert soil of about 60%. A pyrosequencing-based analysis of the 16S rRNA gene regions showed higher diversity in agricultural than in desert soil (Shannon diversity indices: 11.21/7.90, and displayed structural differences. The proportion of Firmicutes in field soil was significantly higher (37% than in the desert (11%. Bacillus and Paenibacillus play the key role: they represented 96% of the antagonists towards phytopathogens, and identical 16S rRNA sequences in the amplicon library and for isolates were detected. The proportion of antagonistic strains was doubled in field in comparison to desert soil (21.6%/12.4%; disease-suppressive bacteria were especially enriched in plant roots. On the opposite, several extremophilic bacterial groups, e.g., Acidimicrobium, Rubellimicrobium and Deinococcus-Thermus, disappeared from soil after agricultural use. The N-fixing Herbaspirillum group only occurred in desert soil. Soil bacterial communities were strongly driven by the a-biotic factors water supply and pH. CONCLUSIONS/SIGNIFICANCE: After long-term farming, a drastic shift in the bacterial communities in desert soil was observed. Bacterial communities in agricultural

  10. A reduced number of mtSNPs saturates mitochondrial DNA haplotype diversity of worldwide population groups.

    Science.gov (United States)

    Salas, Antonio; Amigo, Jorge

    2010-05-03

    The high levels of variation characterising the mitochondrial DNA (mtDNA) molecule are due ultimately to its high average mutation rate; moreover, mtDNA variation is deeply structured in different populations and ethnic groups. There is growing interest in selecting a reduced number of mtDNA single nucleotide polymorphisms (mtSNPs) that account for the maximum level of discrimination power in a given population. Applications of the selected mtSNP panel range from anthropologic and medical studies to forensic genetic casework. This study proposes a new simulation-based method that explores the ability of different mtSNP panels to yield the maximum levels of discrimination power. The method explores subsets of mtSNPs of different sizes randomly chosen from a preselected panel of mtSNPs based on frequency. More than 2,000 complete genomes representing three main continental human population groups (Africa, Europe, and Asia) and two admixed populations ("African-Americans" and "Hispanics") were collected from GenBank and the literature, and were used as training sets. Haplotype diversity was measured for each combination of mtSNP and compared with existing mtSNP panels available in the literature. The data indicates that only a reduced number of mtSNPs ranging from six to 22 are needed to account for 95% of the maximum haplotype diversity of a given population sample. However, only a small proportion of the best mtSNPs are shared between populations, indicating that there is not a perfect set of "universal" mtSNPs suitable for all population contexts. The discrimination power provided by these mtSNPs is much higher than the power of the mtSNP panels proposed in the literature to date. Some mtSNP combinations also yield high diversity values in admixed populations. The proposed computational approach for exploring combinations of mtSNPs that optimise the discrimination power of a given set of mtSNPs is more efficient than previous empirical approaches. In contrast to

  11. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential.

    Science.gov (United States)

    Bezerra, Jadson D P; Nascimento, Carlos C F; Barbosa, Renan do N; da Silva, Dianny C V; Svedese, Virgínia M; Silva-Nogueira, Eliane B; Gomes, Bruno S; Paiva, Laura M; Souza-Motta, Cristina M

    2015-03-01

    Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen's index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus , Gibberella baccata , Penicillium commune , and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes . Thirteen species showed proteolytic activity, particularly Phoma putaminum . Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri . All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum . It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential.

  12. Plant diversity induces a shift of DOC concentration over time - results from long term and large scale experiment

    Science.gov (United States)

    Lange, Markus; Gleixner, Gerd

    2016-04-01

    Plant diversity has been demonstrated as a crucial factor for soil organic carbon (SOC) storage. The horizontal SOC formation in turn is strongly impacted by the relative small but consistent flow of dissolved organic carbon (DOC) in soils. In this process, pore water leaches plant material and already stored SOC while simultaneously these leachates are transported downwards. However, there is a big uncertainty about the drivers of DOC flux; in particular about the importance of biological processes. We investigated the impact of plant diversity and other biotic drivers on DOC concentrations and total DOC fluxes (concentration × sampled water amount). In addition, we considered abiotic factors such as weather and soil conditions to assess the relative importance of biotic and abiotic drivers and how their importance changes over time. We used a comprehensive data set, gathered in the frame of the long-term biodiversity experiment "The Jena Experiment". Permanent monitoring started directly after establishment of the field site in 2002 and is still running. This enabled us to trace the impact of plant communities with their increasing establishment over the time on DOC concentration. We found the amount of sampled pore water best explained by rainfall, while it was not related to plant associated variables. Directly after establishing the experimental site, DOC concentrations were highest and then decreasing with time. In the first period of the experiment plant diversity had no or even a slightly negative impact on DOC concentrations. The direction of the plant diversity effect on DOC concentrations changed over time; namely in later phases we observed highest DOC concentrations on plots with high plant diversity. Moreover, DOC concentrations were negatively affected by increased amounts of sampled pore water indicating a dilution effect. Even though this impact was highly significant; its effect size was even less pronounced at later time points. In summary

  13. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM: a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs

    Directory of Open Access Journals (Sweden)

    R. Pavlick

    2013-06-01

    Full Text Available Terrestrial biosphere models typically abstract the immense diversity of vegetation forms and functioning into a relatively small set of predefined semi-empirical plant functional types (PFTs. There is growing evidence, however, from the field ecology community as well as from modelling studies that current PFT schemes may not adequately represent the observed variations in plant functional traits and their effect on ecosystem functioning. In this paper, we introduce the Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM as a new approach to terrestrial biosphere modelling with a richer representation of functional diversity than traditional modelling approaches based on a small number of fixed PFTs. JeDi-DGVM simulates the performance of a large number of randomly generated plant growth strategies, each defined by a set of 15 trait parameters which characterize various aspects of plant functioning including carbon allocation, ecophysiology and phenology. Each trait parameter is involved in one or more functional trade-offs. These trade-offs ultimately determine whether a strategy is able to survive under the climatic conditions in a given model grid cell and its performance relative to the other strategies. The biogeochemical fluxes and land surface properties of the individual strategies are aggregated to the grid-cell scale using a mass-based weighting scheme. We evaluate the simulated global biogeochemical patterns against a variety of field and satellite-based observations following a protocol established by the Carbon-Land Model Intercomparison Project. The land surface fluxes and vegetation structural properties are reasonably well simulated by JeDi-DGVM, and compare favourably with other state-of-the-art global vegetation models. We also evaluate the simulated patterns of functional diversity and the sensitivity of the JeDi-DGVM modelling approach to the number of sampled strategies. Altogether, the results demonstrate the

  14. Evolution of the metazoan mitochondrial replicase.

    Science.gov (United States)

    Oliveira, Marcos T; Haukka, Jani; Kaguni, Laurie S

    2015-03-03

    The large number of complete mitochondrial DNA (mtDNA) sequences available for metazoan species makes it a good system for studying genome diversity, although little is known about the mechanisms that promote and/or are correlated with the evolution of this organellar genome. By investigating the molecular evolutionary history of the catalytic and accessory subunits of the mtDNA polymerase, pol γ, we sought to develop mechanistic insight into its function that might impact genome structure by exploring the relationships between DNA replication and animal mitochondrial genome diversity. We identified three evolutionary patterns among metazoan pol γs. First, a trend toward stabilization of both sequence and structure occurred in vertebrates, with both subunits evolving distinctly from those of other animal groups, and acquiring at least four novel structural elements, the most important of which is the HLH-3β (helix-loop-helix, 3 β-sheets) domain that allows the accessory subunit to homodimerize. Second, both subunits of arthropods and tunicates have become shorter and evolved approximately twice as rapidly as their vertebrate homologs. And third, nematodes have lost the gene for the accessory subunit, which was accompanied by the loss of its interacting domain in the catalytic subunit of pol γ, and they show the highest rate of molecular evolution among all animal taxa. These findings correlate well with the mtDNA genomic features of each group described above, and with their modes of DNA replication, although a substantive amount of biochemical work is needed to draw conclusive links regarding the latter. Describing the parallels between evolution of pol γ and metazoan mtDNA architecture may also help in understanding the processes that lead to mitochondrial dysfunction and to human disease-related phenotypes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available The mitochondrial phosphate transporter (MPT plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.

  16. Plant cell surface receptor-mediated signaling - a common theme amid diversity.

    Science.gov (United States)

    He, Yunxia; Zhou, Jinggeng; Shan, Libo; Meng, Xiangzong

    2018-01-29

    Sessile plants employ a diverse array of plasma membrane-bound receptors to perceive endogenous and exogenous signals for regulation of plant growth, development and immunity. These cell surface receptors include receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that harbor different extracellular domains for perception of distinct ligands. Several RLK and RLP signaling pathways converge at the somatic embryogenesis receptor kinases (SERKs), which function as shared co-receptors. A repertoire of receptor-like cytoplasmic kinases (RLCKs) associate with the receptor complexes to relay intracellular signaling. Downstream of the receptor complexes, mitogen-activated protein kinase (MAPK) cascades are among the key signaling modules at which the signals converge, and these cascades regulate diverse cellular and physiological responses through phosphorylation of different downstream substrates. In this Review, we summarize the emerging common theme that underlies cell surface receptor-mediated signaling pathways in Arabidopsis thaliana : the dynamic association of RLKs and RLPs with specific co-receptors and RLCKs for signal transduction. We further discuss how signaling specificities are maintained through modules at which signals converge, with a focus on SERK-mediated receptor signaling. © 2018. Published by The Company of Biologists Ltd.

  17. Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.

    Science.gov (United States)

    Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

    2014-01-01

    Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.

  18. Indigenous Knowledge of Dayaks Bakumpai in Barito Kuala District on the Management of Plant Diversity Growing at Streams and Swamps

    Directory of Open Access Journals (Sweden)

    Darmono Darmono

    2016-06-01

    Full Text Available Research aimed at describing profile of indigenous knowldge owned by the Dayaks Bakumpai in Batola district on managing the diversity of herbs growing at the river flow and swamp. Data on herb used by the tribe were grouped based on the etnobotanic study, covering study botany, etnofarmacology, etnoantrophology, etnolinguistik and etnoekologi. We also observed how the Dayaks Bakumpai in Batola district preserve the diversity of plant in around them, and how their efforts in bequeathing or teaching the traditional knowledge of an old breed generation to his young daam in managing diversity of herbs around them.  The study was carried out at three vellages, namely Simpang Arja, Pengulu and Ulu Benteng. The results showed that 52 plant species living along the river and 67 species that live in the marsh. Based on the interview we found that (1 the profile of indigenous knowldge dayaks bakumpai district batola in making use of the diversity of plant in surrounding shown through etno-linguistic, etno-economy, etno-anthropology, etno-farmacology and etno-ecology against 44 tufted herbs of 67 of herbs found, (2 Dayaks Bakumpai in Batola district, to preserve the diversity of plant surrounding them, have done without planting, but by making use of herbs without a certain rule, making use of herbs by a certain rule, making use of herbs let plant grown in nature, and destroy plants that exist or cultivated, and (3 efforts for the inheriting the indigenous knowldge to its young generation have been done by women and quite alarming that many young ages of Dayaks Bakumpai do not know the name of herbs around them.

  19. PATTERNS OF ALLOZYME DIVERSITY IN THE THREATENED PLANT ERIGERON PARISHII (ASTERACEAE). (R826102)

    Science.gov (United States)

    Thirty-one occurrences of Erigeron parishii, a narrowly endemic plant threatened by mining, were sampled for allozyme diversity. This taxon held considerable genetic variation at the [4 allozyme loci surveyed. Species (e.g., alleles per locus [A] = 4.3 and proportion of polymorph...

  20. Introducing close-range photogrammetry for characterizing forest understory plant diversity and surface fuel structure at fine scales

    Science.gov (United States)

    Benjamin C. Bright; E. Louise Loudermilk; Scott M. Pokswinski; Andrew T. Hudak; Joseph J. O' Brien

    2016-01-01

    Methods characterizing fine-scale fuels and plant diversity can advance understanding of plant-fire interactions across scales and help in efforts to monitor important ecosystems such as longleaf pine (Pinus palustris Mill.) forests of the southeastern United States. Here, we evaluate the utility of close-range photogrammetry for measuring fuels and plant...

  1. The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus)

    DEFF Research Database (Denmark)

    Miller, Webb; Drautz, Daniela I; Janecka, Jan E

    2009-01-01

    We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the ......We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support...... for the thylacine's basal position in Dasyuromorphia, aided by mitochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences differ by 11%-15% from putative thylacine mitochondrial genes in GenBank, with one of our samples originating...... at a very low genetic diversity shortly before extinction. Despite the samples' heavy contamination with bacterial and human DNA and their temperate storage history, we estimate that as much as one-third of the total DNA in each sample is from the thylacine. The microbial content of the two thylacine...

  2. The impact of forest roads on understory plant diversity in temperate hornbeam-beech forests of Northern Iran.

    Science.gov (United States)

    Deljouei, Azade; Abdi, Ehsan; Marcantonio, Matteo; Majnounian, Baris; Amici, Valerio; Sohrabi, Hormoz

    2017-08-01

    Forest roads alter the biotic and abiotic components of ecosystems, modifying temperature, humidity, wind speed, and light availability that, in turn, cause changes in plant community composition and diversity. We aim at investigating and comparing the diversity of herbaceous species along main and secondary forest roads in a temperate-managed hornbeam-beech forest, north of Iran. Sixteen transects along main and secondary forest roads were established (eight transects along main roads and eight along secondary roads). To eliminate the effect of forest type, all transects were located in Carpinetum-Fagetum forests, the dominant forest type in the study area. The total length of each transect was 200 m (100 m toward up slope and 100 m toward down slope), and plots were established along it at different distances from road edge. The diversity of herbaceous plant species was calculated in each plot using Shannon-Wiener index, species richness, and Pielou's index. The results showed that diversity index decreased when distance from road edge increases. This decreasing trend continued up to 60 m from forest road margin, and after this threshold, the index slightly increased. Depending on the type of road (main or secondary) as well as cut or fill slopes, the area showing a statistical different plant composition and diversity measured through Shannon-Wiener, species richness, and Pielou's index is up to 10 m. The length depth of the road edge effect found in main and secondary forest roads was small, but it could have cumulative effects on forest microclimate and forest-associated biota at the island scale. Forest managers should account for the effect of road buildings on plant communities.

  3. Dry coniferous forest restoration and understory plant diversity: The importance of community heterogeneity and the scale of observation

    Science.gov (United States)

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...

  4. Relative role of contemporary environment versus history in shaping diversity patterns of China's woody plants

    DEFF Research Database (Denmark)

    Wang, Zhiheng; Fang, Jingyun; Tang, Zhiyao

    2012-01-01

    What determines large-scale patterns of species diversity is a central and controversial topic in biogeography and ecology. In this study, we compared the effects of contemporary environment and historical contingencies on species richness patterns of woody plants in China, using fine-resolution ......-plant species richness across China, while historical contingencies generate regional deviations from this trend. Our findings imply that both species diversity and regional evolutionary and ecological histories should be taken into account for future nature conservation......., and the Tibetan Plateau, perhaps reflecting their special geological features and history. Nevertheless, partial regression indicated that historical effects were less important relative to contemporary environment. In conclusion, contemporary environment (notably climate) determines the general trend in woody...

  5. Predicting plant diversity patterns in Madagascar: understanding the effects of climate and land cover change in a biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Kerry A Brown

    Full Text Available Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future.

  6. Fatty Acid Diversity is Not Associated with Neutral Genetic Diversity in Native Populations of the Biodiesel Plant Jatropha curcas L.

    Science.gov (United States)

    Martínez-Díaz, Yesenia; González-Rodríguez, Antonio; Rico-Ponce, Héctor Rómulo; Rocha-Ramírez, Víctor; Ovando-Medina, Isidro; Espinosa-García, Francisco J

    2017-01-01

    Jatropha curcas L. (Euphorbiaceae) is a shrub native to Mexico and Central America, which produces seeds with a high oil content that can be converted to biodiesel. The genetic diversity of this plant has been widely studied, but it is not known whether the diversity of the seed oil chemical composition correlates with neutral genetic diversity. The total seed oil content, the diversity of profiles of fatty acids and phorbol esters were quantified, also, the genetic diversity obtained from simple sequence repeats was analyzed in native populations of J. curcas in Mexico. Using the fatty acids profiles, a discriminant analysis recognized three groups of individuals according to geographical origin. Bayesian assignment analysis revealed two genetic groups, while the genetic structure of the populations could not be explained by isolation-by-distance. Genetic and fatty acid profile data were not correlated based on Mantel test. Also, phorbol ester content and genetic diversity were not associated. Multiple linear regression analysis showed that total oil content was associated with altitude and seasonality of temperature. The content of unsaturated fatty acids was associated with altitude. Therefore, the cultivation planning of J. curcas should take into account chemical variation related to environmental factors. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  7. Species diversity of vascular plants in Si Phang-nga National Park, Phangnga Province

    Directory of Open Access Journals (Sweden)

    Leeratiwong, C.

    2005-07-01

    Full Text Available A survey of the vascular plants in Si Phang-nga National Park, Phangnga Province, was conducted from September 2002 to August 2003. Five hundred and forty three species of 287 genera and 111 families were collected. The most diverse family was Rubiaceae, 53 species. Four species of these collected plants are endemic to Thailand, Argostemma lobulatum, Aristolochia helix, Crinum thaianum and Mallotus hymenophyllus and three species, Hedyotis hedyotidea, Lipocarpha microcephala and Pterolobium intergum are newly recorded for southern Thailand.

  8. Multi-locus phylogeny reveals instances of mitochondrial introgression and unrecognized diversity in Kenyan barbs (Cyprininae: Smiliogastrini).

    Science.gov (United States)

    Schmidt, Ray C; Bart, Henry L; Nyingi, Wanja Dorothy

    2017-06-01

    The phylogenetics and taxonomic status of small African barbs (Cyprininae: Smiliogastrini) remains unresolved despite the recent decision to elevate the genus name Enteromius for the group. The main barrier to understanding the origin of African small barbs and evolutionary relationships within the group is the poor resolution of phylogenies published to date. These phylogenies usually rely on mitochondrial markers and have limited taxon sampling. Here we investigate the phylogenetic relationships of small barbs of Kenya utilizing cytochrome b, Growth Hormone (GH) intron 2, and RAG1 markers from multiple populations of many species in the region. This multi-locus study produced well-supported phylogenies and revealed additional issues that complicate understanding the relationships among East African barbs. We observed widespread mtDNA introgression within the Kenyan barbs, highlighting the need to include nuclear markers in phylogenetic studies of the group. The GH intron 2 resolved heterospecific individuals and aided in inferring the species level phylogeny. The study reveals unrecognized diversity within the group, including within species reported to occur throughout East Africa, and it provides the groundwork for future taxonomic work in the region and across Africa. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Historical agriculture alters the effects of fire on understory plant beta diversity

    Science.gov (United States)

    W. Brett Mattingly; John L. Orrock; Cathy D. Collins; Lars A. Brudvig; Ellen I. Damschen; Joseph W. Veldman; Joan L. Walker

    2015-01-01

    Land-use legacies are known to shape the diversity and distribution of plant communities, but we lack an understanding of whether historical land use influences community responses to contemporary disturbances. Because human-modified landscapes often bear a history of multiple land-use activities, this contingency can challenge our understanding of land-use impacts on...

  10. Fruit of plant diversity at home-garden of Jabon Mekar village, subdistrict of Parung, Bogor regency

    Directory of Open Access Journals (Sweden)

    BUDI PRASETYO

    2007-01-01

    Full Text Available Jabon Mekar village is well-known as the central of fruit supplayer at subdistrict of Parung. Many kinds of fruit were planted and developed in this area. Durian ‘lai-mas’ or durian jabon’s cultivar is the superior product of fruit. However it was estimated as a buffer zone of Jakarta and subject of the urban development. Due to the increasing number of the urbant development in Jakarta, it is concerned that this will have an effect to the function of home-garden.The aim of the research is to study the potential riches and fruit plant diversity at home-garden of community in the village of Jabon Mekar. The methods used for vegetation analysis were the quadratic method. The result of the research found 57 species of fruit plants from 41 genus, 23 families and 30 local cultivars. From all fruit of plants, there are 7 species as the main compositer of the community at home-garden i.e. Musa sp., Durio zibethinus, Nephelium lappaceum, Cocos nucifera, Artocarpus heterophyllus, Sandoricum koetjape, Carica papaya. It was found also that the diversity of plant species at home-garden was at the high level. While all fruit of plant species found a tendency SDR value under 50%, means that none of the plant species dominant toward other fruit of plants species.

  11. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  12. A complete mitochondrial genome of wheat (Triticum aestivum cv ...

    Indian Academy of Sciences (India)

    role in the development and reproduction of the plant. They occupy a specific ... for biosynthetic pathways relative to their free-living cousins. (Gray et al. 1999; Itoh ... A mitochondrial genome BAC library was constructed fol- lowing a previously ...

  13. Effects of plant diversity, N fertilization, and elevated carbon dioxide on grassland soil N cycling in a long-term experiment.

    Science.gov (United States)

    Mueller, Kevin E; Hobbie, Sarah E; Tilman, David; Reich, Peter B

    2013-04-01

    The effects of global environmental changes on soil nitrogen (N) pools and fluxes have consequences for ecosystem functions such as plant productivity and N retention. In a 13-year grassland experiment, we evaluated how elevated atmospheric carbon dioxide (CO2 ), N fertilization, and plant species richness alter soil N cycling. We focused on soil inorganic N pools, including ammonium and nitrate, and two N fluxes, net N mineralization and net nitrification. In contrast with existing hypotheses, such as progressive N limitation, and with observations from other, often shorter, studies, elevated CO2 had relatively static and small, or insignificant, effects on soil inorganic N pools and fluxes. Nitrogen fertilization had inconsistent effects on soil N transformations, but increased soil nitrate and ammonium concentrations. Plant species richness had increasingly positive effects on soil N transformations over time, likely because in diverse subplots the concentrations of N in roots increased over time. Species richness also had increasingly positive effects on concentrations of ammonium in soil, perhaps because more carbon accumulated in soils of diverse subplots, providing exchange sites for ammonium. By contrast, subplots planted with 16 species had lower soil nitrate concentrations than less diverse subplots, especially when fertilized, probably due to greater N uptake capacity of subplots with 16 species. Monocultures of different plant functional types had distinct effects on N transformations and nitrate concentrations, such that not all monocultures differed from diverse subplots in the same manner. The first few years of data would not have adequately forecast the effects of N fertilization and diversity on soil N cycling in later years; therefore, the dearth of long-term manipulations of plant species richness and N inputs is a hindrance to forecasting the state of the soil N cycle and ecosystem functions in extant plant communities. © 2012 Blackwell

  14. Genetic Diversity and Population Structure of the Critically Endangered Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis as Revealed by Mitochondrial and Microsatellite DNA

    Directory of Open Access Journals (Sweden)

    Minmin Chen

    2014-06-01

    Full Text Available Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS, and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY and Tongling (TL and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP.

  15. Genetic Diversity and Population Structure of the Critically Endangered Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) as Revealed by Mitochondrial and Microsatellite DNA

    Science.gov (United States)

    Chen, Minmin; Zheng, Jinsong; Wu, Min; Ruan, Rui; Zhao, Qingzhong; Wang, Ding

    2014-01-01

    Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA) control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS), and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY) and Tongling (TL)) and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP. PMID:24968271

  16. Effects of inter-row management intensity on wild bee, plant and soil biota diversity in vineyards

    Science.gov (United States)

    Kratschmer, Sophie; Pachinger, Bärbel; Winter, Silvia; Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Strauß, Peter; Bauer, Thomas; Stiper, Katrin

    2016-04-01

    Vineyards may provide a range of essential ecosystem services, which interact with a diverse community of above- and belowground organisms. Intensive soil management like frequent tilling has resulted in the degradation of habitat quality with consequences on biodiversity and ecosystem services. This study is part of the European BiodivERsA project "VineDivers - Biodiversity-based ecosystem services in vineyards". We study the effects of different soil management intensities on above- and below-ground biodiversity (plants, insect pollinators, and soil biota), their interactions and the consequences for ecosystem services. We investigated 16 vineyards in Austria assessing the diversity of (1) wild bees using a semi-quantitative transect method, (2) earthworms by hand sorting, (3) Collembola (springtails) via pitfall trapping and soil coring, (4) plants by relevés and (5) litter decomposition (tea bag method). Management intensity differed in tillage frequency from intermediate intensity resulting in temporary vegetation cover to no tillage in permanent vegetation cover systems. First results show opposed relationships between the biodiversity of selected species groups and management intensity. We will discuss possible explanations and evaluate ecological interactions between wild bee, plant and soil biota diversity.

  17. Genetic diversity of Taenia saginata (Cestoda: Cyclophyllidea) from Lao People's Democratic Republic and northeastern Thailand based on mitochondrial DNA.

    Science.gov (United States)

    Sanpool, Oranuch; Rodpai, Rutchanee; Intapan, Pewpan M; Sadaow, Lakkhana; Thanchomnang, Tongjit; Laymanivong, Sakhone; Maleewong, Wanchai; Yamasaki, Hiroshi

    2017-03-11

    Taenia saginata is a tapeworm found in cattle worldwide. Analysis of genetic diversity in different geographical populations of T. saginata not only helps to understand the origin, transmission and spread of this organism, but also to evaluate the selection pressures acting on T. saginata and how it is responding to them. However, there are few reports of the genetic variability of T. saginata populations in different regions of the world, including Lao PDR and Thailand. We report the genetic diversity of T. saginata populations in Lao PDR and northeastern Thailand together with sequences of T. saginata from other countries deposited in GenBank. Mitochondrial cox1 sequence analysis revealed that 15 and 8 haplotypes were identified in 30 and 21 T. saginata isolates from Lao PDR and northeastern Thailand, respectively. Fifty-three haplotypes were identified from 98 sequences. Phylogenetic tree and haplotype network analyses revealed that global isolates of T. saginata were genetically divided into five groups (A, B, C1, C2 and D). Taenia saginata isolates from Lao PDR and northeastern Thailand belonged to either Group A or B. Taenia saginata from western Thailand clustered in groups C1, C2 and D, and populations from the northeast and western Thailand were found to be genetically distinct. Taenia saginata isolates in Lao PDR and Thailand were also found to be genetically diverse but the degree of genetic differentiation was low. Taenia saginata populations from Lao PDR and northeastern Thailand are genetically distinct from the population in western Thailand and it is proposed that T. saginata has been dispersed by different transmission routes in Southeast Asia.

  18. Large-scale patterns of plant diversity and conservation priorities in South East Asia

    NARCIS (Netherlands)

    Marsh, S.T.; Brummitt, N.A.; Kok, de R.P.J.; Utteridge, T.M.A.

    2009-01-01

    In the absence of a complete floristic inventory, conservation priorities within South East Asia must often be based on incomplete knowledge or a rough approximation of diversity such as habitat cover. To help overcome this, a database containing distribution data for all 3 523 known flowering plant

  19. Canopy gap edge determination and the importance of gap edges for plant diversity

    Directory of Open Access Journals (Sweden)

    D. Salvador-Van Eysenrode

    2002-01-01

    Full Text Available Canopy gaps, i.e. openings in the forest cover caused by the fall of structural elements, are considered to be important for the maintenance of diversity and for the forest cycle. A gap can be considered as a young forest patch in the forest matrix, composed of interior surrounded by an edge, both enclosed by a perimeter. Much of the attention has been focused on the gap interior. However, at gap edges the spectrum of regeneration opportunities for plants may be larger than in the interior. Although definitions of gap are still discussed, any definition can describe it in an acceptable way, if justified, but defining edges is complicated and appropriate descriptors should be used. A method to determine gap interior and edge, using light as a descriptor, is presented with an example of gaps from a beech forest (Fagus sylvatica in Belgium. Also, the relevance and implications of gap edges for plant diversity and calculation of forest turnover is discussed.

  20. Diversity of Endophytic Fungi from Red Ginger (Zingiber officinale Rosc. Plant and Their Inhibitory Effect to Fusarium oxysporum Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    ROHANI CINTA BADIA GINTING

    2013-09-01

    Full Text Available Indonesia has been known as a country with high medicinal plant diversity. One of the most common medicinal plant from Indonesia is red ginger (Zingiber officinale Rosc.. Nevertheless, limited studies of endophytic fungi associated with these medicinal plants are hitherto available. The objectives of this research were to study the diversity of endophytic fungi on red ginger and to analyze their potential as a source of antifungal agent. All parts of plant organs such as leaf, rhizome, root, and stem were subjected for isolation. Fungal identification was carried out by using a combination of morphological characteristic and molecular analysis of DNA sequence generated from ITS rDNA region. Thirty endophytic fungi were successfully isolated from leaf, rhizome, root, and stem of red ginger plant. Antagonistic activity was tested against Fusarium oxysporum, a pathogenic fungus on plants, using an antagonistic assay. Based on this approach, the fungi were assigned as Acremonium macroclavatum, Beltraniella sp., Cochliobolus geniculatus and its anamorphic stage Curvularia affinis, Fusarium solani, Glomerella cingulata and its anamorphic stage Colletotrichum gloeosporoides, Lecanicillium kalimantanense, Myrothecium verrucaria, Neonectria punicea, Periconia macrospinosa, Rhizopycnis vagum, and Talaromyces assiutensis. R. vagum was found specifically on root whereas C. affinis, L. kalimantanense, and M. verrucaria were found on stem of red ginger plant. A. macroclavatum was found specifically in red ginger plant's organ which located under the ground, whereas C. affinis was found from shoot or organ which located above the ground. The antagonistic activity of isolated endophytic fungi against F. oxysporum varied with the inhibition value range from 1.4 to 68.8%. C. affinis (JMbt7, F. solani (JMd14, and G. cingulata (JMr2 had significantly high antagonistic activity with the value above 65%; and R. vagum (JMa4 and C. geniculatus (JMbt9 had significantly

  1. Evaluation of genetic diversity in wild populations of Peganum harmala L., a medicinal plant

    Directory of Open Access Journals (Sweden)

    Ranya EL-Bakatoushi

    2018-06-01

    Full Text Available Peganum harmala L. is a perennial herbaceous plant and can be a future drug due to its wide medicinal purposes. Despite its economic importance, the molecular genetics of P. harmal have not yet been studied in detail. Genetic diversity of 12 P. harmala genotypes were investigated by using Inter-Simple Sequence Repeats (ISSR, PCR-RFLP of rDNA-ITS, PCR-SSCP of rDNA-ITS and Simple Sequence Repeat (SSR markers. The level of polymorphism revealed by ITS-SSCP is the lowest, followed by ITS-RFLP then ISSR and the highest polymorphism level was reported for SSR marker. The AMOVA analysis implied that most of the variation occurred within the Populations. A value of inbreeding coefficient Fis estimated by the three co-dominant markers was nearly equal and offer an indication of the partial out-crossing reproductive system of P. harmala. Principal Coordinate Analysis (PCOA plot revealed a clear pattern of clustering based on the locations of collected plants which coincide with the isolation by distance. The study revealed that ITS-SSCP and ISSR markers respectively were more informative than the other used markers in the assessment of genetic diversity of P. harmala. The results reflect the great diversity of P. harmala and data obtained from this study can be used for future collecting missions. Keywords: Peganum harmala, Genetic diversity, ISSR, rDNA-ITS, SSR

  2. Should Exotic Eucalyptus be Planted in Subtropical China: Insights from Understory Plant Diversity in Two Contrasting Eucalyptus Chronosequences.

    Science.gov (United States)

    Wu, Jianping; Fan, Houbao; Liu, Wenfei; Huang, Guomin; Tang, Jianfu; Zeng, Ruijin; Huang, Jing; Liu, Zhanfeng

    2015-11-01

    Although Eucalyptus is widely planted in South China, whose effects on native biodiversity are unclear. The objective of this study was to quantify the richness and composition of understory plants in two contrasting Eucalyptus chronosequences in South China. One was in Zhangzhou City with plantation age of 2, 4, and 6 years after clear-cutting Chinese fir forests, while the other was in Heshan City with plantation age of 2, 3, and 24 years that reforested on barren lands. Results showed that the richness of understory plants and functional groups was not significantly altered in the Zhangzhou chronosequence, while increased in the 24-year-old plantations, with a significantly larger proportion of woody plants than the younger plantations for the Heshan chronosequence. Moreover, a higher richness of woody plants accompanied by a lower richness of herbaceous species was detected in the Zhangzhou chronosequence compared with the Heshan one. To balance the need for pulp production and plant diversity conservation, we suggest that intercropping approaches between exotic Eucalyptus plantations and native forests should be considered in the fast rotation Eucalyptus plantations. However, Eucalyptus plantations may be used as pioneer species to sustain ecosystem functioning for the degraded lands.

  3. Low genetic diversity of Pneumocystis jirovecii among Cuban population based on two-locus mitochondrial typing.

    Science.gov (United States)

    de Armas, Yaxsier; Friaza, Vicente; Capó, Virginia; Durand-Joly, Isabelle; Govín, Anamays; de la Horra, Carmen; Dei-Cas, Eduardo; Calderón, Enrique J

    2012-05-01

    Genotypes of two different loci of the Pneumocystis jirovecii mitochondrial gene were studied in specimens from a total of 75 Pneumocystis pneumonia patients in Spain, France and Cuba. A new genotype of the mitochondrial small subunit rRNA gene of P. jirovecii (160A/196T) was identified, which was revealed to be the most common in these three countries, especially in Cuba where its proportion reached 93.8%. Our data imply that the new genotype might be circulating worldwide and also suggests that the distribution of P. jirovecii genotypes could be narrower in islands such as Cuba.

  4. Low diversity in the mitogenome of sperm whales revealed by next-generation sequencing

    Science.gov (United States)

    Alana Alexander; Debbie Steel; Beth Slikas; Kendra Hoekzema; Colm Carraher; Matthew Parks; Richard Cronn; C. Scott Baker

    2012-01-01

    Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20...

  5. Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa.

    Science.gov (United States)

    Broz, Amanda K; Manter, Daniel K; Vivanco, Jorge M

    2007-12-01

    Interactions between plants and soil microbes are important determinants of both above- and belowground community composition, and ultimately ecosystem function. As exotic plants continue to invade and modify native plant communities, there has been increasing interest in determining the influence of exotic invasives on native soil microbial communities. Here, using highly sensitive molecular techniques, we examine fungal abundance and diversity in the soil surrounding a particularly aggressive invasive plant species in North America, Centaurea maculosa Lam. In mixed stands, we show that this invasive weed can alter the native fungal community composition within its own rhizosphere and that of neighboring native plants. At higher densities, the effect of C. maculosa on native soil fungal communities was even greater. Our results demonstrate that this invasive weed can have significant effects not only on visible aboveground biodiversity but also on the native soil microbial community that extends beyond its rhizosphere.

  6. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    Science.gov (United States)

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Plant diversity and regeneration in a disturbed isolated dry Afromontane forest in northern Ethiopia

    DEFF Research Database (Denmark)

    Aynekulu, Ermias; Aerts, Raf; Denich, Manfred

    2016-01-01

    We studied the diversity, community composition and natural regeneration of woody species in an isolated but relatively large (> 1,000 ha) dry Afromontane forest in northern Ethiopia to assess its importance for regional forest biodiversity conservation. The principal human-induced disturbance...... in biodiversity through local extinction of indigenous tree species. Despite the problems associated with conserving plant species diversity in small and isolated populations, this relic forest is of particular importance for regional conservation of forest biodiversity, as species with high conservation value...

  8. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization.

    Directory of Open Access Journals (Sweden)

    Annalisa Cossu

    Full Text Available The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs is the key step for the onset and progression of cardiovascular diseases (CVD, therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP, while the mitochondrial membrane potential (MMP was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.

  9. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    Science.gov (United States)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  10. Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health

    Directory of Open Access Journals (Sweden)

    Katherine E. French

    2017-07-01

    Full Text Available Creating sustainable bioeconomies for the 21st century relies on optimizing the use of biological resources to improve agricultural productivity and create new products. Arbuscular mycorrhizae (phylum Glomeromycota form symbiotic relationships with over 80% of vascular plants. In return for carbon, these fungi improve plant health and tolerance to environmental stress. This symbiosis is over 400 million years old and there are currently over 200 known arbuscular mycorrhizae, with dozens of new species described annually. Metagenomic sequencing of native soil communities, from species-rich meadows to mangroves, suggests biologically diverse habitats support a variety of mycorrhizal species with potential agricultural, medical, and biotechnological applications. This review looks at the effect of mycorrhizae on plant metabolism and how we can harness this symbiosis to improve crop health. I will first describe the mechanisms that underlie this symbiosis and what physiological, metabolic, and environmental factors trigger these plant-fungal relationships. These include mycorrhizal manipulation of host genetic expression, host mitochondrial and plastid proliferation, and increased production of terpenoids and jasmonic acid by the host plant. I will then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism. I subsequently outline how mycorrhizae induce three key benefits in crops: defense against pathogen and herbivore attack, drought resistance, and heavy metal tolerance. I conclude with an overview of current efforts to harness mycorrhizal diversity to improve crop health through customized inoculum. I argue future research should embrace synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and potentially novel functions to improve plant health. As the effects of climate change and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal fungi should be monitored

  11. Plant diversity in hedgerows amidst Atlantic Forest fragments

    Directory of Open Access Journals (Sweden)

    Carolina C. C. Oliveira

    2015-06-01

    Full Text Available Hedgerows are linear structures found in agricultural landscapes that may facilitate dispersal of plants and animals and also serve as habitat. The aim of this study was to investigate the relationships among diversity and ecological traits of woody plants, hedgerow characteristics (size, age, and origin, and the structure of the surrounding Atlantic Forest landscape. Field data were collected from 14 hedgerows, and landscape metrics from 1000-m buffers surrounding hedgerows were recorded from a thematic map. In all sampled hedgerows, arboreal species were predominantly zoochoric and early-succession species, and hedgerow width was an important factor explaining the richness and abundance of this group of species. Connection with forest vegetation did not explain richness and abundance of animal-dispersed species, but richness of non-zoochoric species increased in more connected hedgerows. These results suggest that hedgerows are probably colonized by species arriving from nearby early-succession sites, forest fragment edges, and isolated trees in the matrix. Nonetheless, hedgerows provide resources for frugivorous animals and influence landscape connectivity, highlighting the importance of these elements in the conservation of biodiversity in fragmented and rural landscapes.

  12. Medicinal, Aromatic and Cosmetic (MAC) plants for community health and bio-cultural diversity conservation in Bali, Indonesia

    NARCIS (Netherlands)

    Leurs, Liesbeth Nathalie

    2010-01-01

    The general aim of this ethno-botanical study is to document, describe and analyse the Balinese community members’ knowledge, belief and practices with regard to medicinal, aromatic and cosmetic (MAC) plants in relation to community health and bio-cultural diversity conservation of MAC plants. This

  13. A comparative study of AMF diversity in annual and perennial plant species from semiarid gypsum soils.

    Science.gov (United States)

    Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.

  14. Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms.

    Science.gov (United States)

    Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo

    2014-12-01

    The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  15. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast

    Science.gov (United States)

    Sze, H.; Liang, F.; Hwang, I.; Curran, A. C.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The spatial and temporal regulation of calcium concentration in plant cells depends on the coordinate activities of channels and active transporters located on different organelles and membranes. Several Ca2+ pumps have been identified and characterized by functional expression of plant genes in a yeast mutant (K616). This expression system has opened the way to a genetic and biochemical characterization of the regulatory and catalytic features of diverse Ca2+ pumps. Plant Ca(2+)-ATPases fall into two major types: AtECA1 represents one of four or more members of the type IIA (ER-type) Ca(2+)-ATPases in Arabidopsis, and AtACA2 is one of seven or more members of the type IIB (PM-type) Ca(2+)-ATPases that are regulated by a novel amino terminal domain. Type IIB pumps are widely distributed on membranes, including the PM (plasma membrane), vacuole, and ER (endoplasmic reticulum). The regulatory domain serves multiple functions, including autoinhibition, calmodulin binding, and sites for modification by phosphorylation. This domain, however, is considerably diverse among several type IIB ATPases, suggesting that the pumps are differentially regulated. Understanding of Ca2+ transporters at the molecular level is providing insights into their roles in signaling networks and in regulating fundamental processes of cell biology.

  16. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  17. The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera.

    Science.gov (United States)

    Grohmann, L; Brennicke, A; Schuster, W

    1992-01-01

    The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed. Images PMID:1454526

  18. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    International Nuclear Information System (INIS)

    Oyelami, Ayodeji O.; Okere, Uchechukwu V.; Orwin, Kate H.; De Deyn, Gerlinde B.; Jones, Kevin C.; Semple, Kirk T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14 C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of 14 C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of 14 C-phenanthrene degradation; lag phase, maximum rates and total extents of 14 C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: ► Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. ► The effects of individual plant species and plant diversity on mineralisation of 14 C-phenanthrene in soil were investigated. ► Soil fertility was the major influence on mineralisation of 14 C-phenanthrene, and abundance of microbial community. ► The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of 14 C-phenanthrene in soil.

  19. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats.

    Directory of Open Access Journals (Sweden)

    Masaki Odahara

    2015-03-01

    Full Text Available Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8-79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12-63 bp in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions.

  20. Predicting Vascular Plant Diversity in Anthropogenic Peatlands: Comparison of Modeling Methods with Free Satellite Data

    Directory of Open Access Journals (Sweden)

    Ivan Castillo-Riffart

    2017-07-01

    Full Text Available Peatlands are ecosystems of great relevance, because they have an important number of ecological functions that provide many services to mankind. However, studies focusing on plant diversity, addressed from the remote sensing perspective, are still scarce in these environments. In the present study, predictions of vascular plant richness and diversity were performed in three anthropogenic peatlands on Chiloé Island, Chile, using free satellite data from the sensors OLI, ASTER, and MSI. Also, we compared the suitability of these sensors using two modeling methods: random forest (RF and the generalized linear model (GLM. As predictors for the empirical models, we used the spectral bands, vegetation indices and textural metrics. Variable importance was estimated using recursive feature elimination (RFE. Fourteen out of the 17 predictors chosen by RFE were textural metrics, demonstrating the importance of the spatial context to predict species richness and diversity. Non-significant differences were found between the algorithms; however, the GLM models often showed slightly better results than the RF. Predictions obtained by the different satellite sensors did not show significant differences; nevertheless, the best models were obtained with ASTER (richness: R2 = 0.62 and %RMSE = 17.2, diversity: R2 = 0.71 and %RMSE = 20.2, obtained with RF and GLM respectively, followed by OLI and MSI. Diversity obtained higher accuracies than richness; nonetheless, accurate predictions were achieved for both, demonstrating the potential of free satellite data for the prediction of relevant community characteristics in anthropogenic peatland ecosystems.

  1. Diversity of Endophytic Fungi from Red Ginger (Zingiber officinale Rosc. Plant and Their Inhibitory Effect to Fusarium oxysporum Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    SIHEGIKO KANAYA

    2013-09-01

    Full Text Available Indonesia has been known as a country with high medicinal plant diversity. One of the most common medicinal plant from Indonesia is red ginger (Zingiber officinale Rosc.. Nevertheless, limited studies of endophytic fungi associated with these medicinal plants are hitherto available. The objectives of this research were to study the diversity of endophytic fungi on red ginger and to analyze their potential as a source of antifungal agent. All parts of plant organs such as leaf, rhizome, root, and stem were subjected for isolation. Fungal identification was carried out by using a combination of morphological characteristic and molecular analysis of DNA sequence generated from ITS rDNA region. Thirty endophytic fungi were successfully isolated from leaf, rhizome, root, and stem of red ginger plant. Antagonistic activity was tested against Fusarium oxysporum, a pathogenic fungus on plants, using an antagonistic assay. Based on this approach, the fungi were assigned as Acremonium macroclavatum, Beltraniella sp., Cochliobolus geniculatus and its anamorphic stage Curvularia affinis, Fusarium solani, Glomerella cingulata, and its anamorphic stage Colletotrichum gloeosporoides, Lecanicillium kalimantanense, Myrothecium verrucaria, Neonectria punicea, Periconia macrospinosa, Rhizopycnis vagum, and Talaromyces assiutensis. R. vagum was found specifically on root whereas C. affinis, L. kalimantanense, and M. verrucaria were found on stem of red ginger plant. A. macroclavatum was found specifically in red ginger plant’s organ which located under the ground, whereas C. affinis was found from shoot or organ which located above the ground. The antagonistic activity of isolated endophytic fungi against F. oxysporum varied with the inhibition value range from 1.4 to 68.8%. C. affinis (JMbt7, F. solani (JMd14, and G. cingulata (JMr2 had significantly high antagonistic activity with the value above 65%; and R. vagum (JMa4 and C. geniculatus (JMbt9 had

  2. Spatial and seasonal diversity of wild food plants in home gardens of Northeast Thailand

    NARCIS (Netherlands)

    Cruz Garcia, G.S.; Struik, P.C.

    2015-01-01

    Wild food plants (WFPs) are major components of tropical home gardens, constituting an important resource for poor farmers. The spatial and seasonal diversity of WFPs was analyzed across multi-species spatial configurations occurring within home gardens in a rice farming village in northeast

  3. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  4. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation

    Directory of Open Access Journals (Sweden)

    Michael J. McCann

    2016-03-01

    Full Text Available Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis to nutrient stoichiometry (nitrogen and phosphorus and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C and low nutrient conditions (0.5 mg N L−1, 0.083 mg P L−1. The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions.

  5. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation

    Science.gov (United States)

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L−1, 0.083 mg P L−1). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions. PMID:26989619

  6. Earthworms counterbalance the negative effects of microorganisms on plant diversity and enhance the tolerance of grasses to nematodes

    NARCIS (Netherlands)

    Wurst, S.; Allema, B.; Duyts, H.; Van der Putten, W.H.

    2008-01-01

    Plant community composition is affected by a wide array of soil organisms with diverse feeding modes and functions. Former studies dealt with the high diversity and complexity of soil communities by focusing on particular functional groups in isolation, by grouping soil organisms into body size

  7. Earthworms counterbalance the negative effect of microorganisms on plant diversity and enhance to tolerance of grasses to nematodes

    NARCIS (Netherlands)

    Wurst, S.; Allema, A.B.; Duyts, H.; Putten, van der W.H.

    2008-01-01

    Plant community composition is affected by a wide array of soil organisms with diverse feeding modes and functions. Former studies dealt with the high diversity and complexity of soil communities by focusing on particular functional groups in isolation, by grouping soil organisms into body size

  8. Mitochondrial isocitrate dehydrogenase is inactivated upon oxidation and reactivated by thioredoxin-dependent reduction in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Keisuke eYoshida

    2014-09-01

    Full Text Available Regulation of mitochondrial metabolism is essential for ensuring cellular growth and maintenance in plants. Based on redox-proteomics analysis, several proteins involved in diverse mitochondrial reactions have been identified as potential redox-regulated proteins. NAD+-dependent isocitrate dehydrogenase (IDH, a key enzyme in the tricarboxylic acid cycle, is one such candidate. In this study, we investigated the redox regulation mechanisms of IDH by biochemical procedures. In contrast to mammalian and yeast counterparts reported to date, recombinant IDH in Arabidopsis mitochondria did not show adenylate-dependent changes in enzymatic activity. Instead, IDH was inactivated by oxidation treatment and partially reactivated by subsequent reduction. Functional IDH forms a heterodimer comprising regulatory (IDH-r and catalytic (IDH-c subunits. IDH-r was determined to be the target of oxidative modifications forming an oligomer via intermolecular disulfide bonds. Mass spectrometric analysis combined with tryptic digestion of IDH-r indicated that Cys128 and Cys216 are involved in intermolecular disulfide bond formation. Furthermore, we showed that mitochondria-localized o-type thioredoxin (Trx-o promotes the reduction of oxidized IDH-r. These results suggest that IDH-r is susceptible to oxidative stress, and Trx-o serves to convert oxidized IDH-r to the reduced form that is necessary for active IDH complex.

  9. Genetic diversity and bottleneck studies in the Marwari horse breed

    Indian Academy of Sciences (India)

    Unknown

    [Gupta A. K., Chauhan M., Tandon S. N. and Sonia 2005 Genetic diversity and bottleneck studies in the Marwari horse breed. J. Genet. 84, 295–301] ... developed to carry out studies of genetic variation (Brad- ley et al. 1996; Canon et al. ..... 1996 Mitochondrial diversity and the origins of African and. European cattle. Proc.

  10. Diversity of alkane hydroxylase genes on the rhizoplane of grasses planted in petroleum-contaminated soils

    OpenAIRE

    Tsuboi, Shun; Yamamura, Shigeki; Nakajima-Kambe, Toshiaki; Iwasaki, Kazuhiro

    2015-01-01

    The study investigated the diversity and genotypic features of alkane hydroxylase genes on rhizoplanes of grasses planted in artificial petroleum-contaminated soils to acquire new insights into the bacterial communities responsible for petroleum degradation in phytoremediation. Four types of grass (Cynodon dactylon, two phenotypes of Zoysia japonica, and Z. matrella) were used. The concentrations of total petroleum hydrocarbon effectively decreased in the grass-planted systems compared with t...

  11. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    Science.gov (United States)

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  12. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  13. Diversity patterns amongst herbivorous dinosaurs and plants during the Cretaceous: implications for hypotheses of dinosaur/angiosperm co-evolution.

    Science.gov (United States)

    Butler, R J; Barrett, P M; Kenrick, P; Penn, M G

    2009-03-01

    Palaeobiologists frequently attempt to identify examples of co-evolutionary interactions over extended geological timescales. These hypotheses are often intuitively appealing, as co-evolution is so prevalent in extant ecosystems, and are easy to formulate; however, they are much more difficult to test than their modern analogues. Among the more intriguing deep time co-evolutionary scenarios are those that relate changes in Cretaceous dinosaur faunas to the primary radiation of flowering plants. Demonstration of temporal congruence between the diversifications of co-evolving groups is necessary to establish whether co-evolution could have occurred in such cases, but is insufficient to prove whether it actually did take place. Diversity patterns do, however, provide a means for falsifying such hypotheses. We have compiled a new database of Cretaceous dinosaur and plant distributions from information in the primary literature. This is used as the basis for plotting taxonomic diversity and occurrence curves for herbivorous dinosaurs (Sauropodomorpha, Stegosauria, Ankylosauria, Ornithopoda, Ceratopsia, Pachycephalosauria and herbivorous theropods) and major groups of plants (angiosperms, Bennettitales, cycads, cycadophytes, conifers, Filicales and Ginkgoales) that co-occur in dinosaur-bearing formations. Pairwise statistical comparisons were made between various floral and faunal groups to test for any significant similarities in the shapes of their diversity curves through time. We show that, with one possible exception, diversity patterns for major groups of herbivorous dinosaurs are not positively correlated with angiosperm diversity. In other words, at the level of major clades, there is no support for any diffuse co-evolutionary relationship between herbivorous dinosaurs and flowering plants. The diversification of Late Cretaceous pachycephalosaurs (excluding the problematic taxon Stenopelix) shows a positive correlation, but this might be spuriously related to

  14. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    Science.gov (United States)

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  15. Species discovery and diversity in Lobocriconema (Criconematidae: Nematoda) and related plant-parasitic nematodes from North American ecoregions.

    Science.gov (United States)

    Powers, T O; Bernard, E C; Harris, T; Higgins, R; Olson, M; Olson, S; Lodema, M; Matczyszyn, J; Mullin, P; Sutton, L; Powers, K S

    2016-03-03

    There are many nematode species that, following formal description, are seldom mentioned again in the scientific literature. Lobocriconema thornei and L. incrassatum are two such species, described from North American forests, respectively 37 and 49 years ago. In the course of a 3-year nematode biodiversity survey of North American ecoregions, specimens resembling Lobocriconema species appeared in soil samples from both grassland and forested sites. Using a combination of molecular and morphological analyses, together with a set of species delimitation approaches, we have expanded the known range of these species, added to the species descriptions, and discovered a related group of species that form a monophyletic group with the two described species. In this study, 148 specimens potentially belonging to the genus Lobocriconema were isolated from soil, individually measured, digitally imaged, and DNA barcoded using a 721 bp region of cytochrome oxidase subunit 1 (COI). One-third of the specimens were also analyzed using amplified DNA from the 3' region of the small subunit ribosomal RNA gene (18SrDNA) and the adjacent first internal transcribed spacer (ITS1). Eighteen mitochondrial haplotype groups, falling into four major clades, were identified by well-supported nodes in Bayesian and maximum likelihood trees and recognized as distinct lineages by species delimitation metrics. Discriminant function analysis of a set of morphological characters indicated that the major clades in the dataset possessed a strong morphological signal that decreased in comparisons of haplotype groups within clades. Evidence of biogeographic and phylogeographic patterns was apparent in the dataset. COI haplotype diversity was high in the southern Appalachian Mountains and Gulf Coast states and lessened in northern temperate forests. Lobocriconema distribution suggests the existence of phylogeographic patterns associated with recolonization of formerly glaciated regions by eastern

  16. Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador

    Directory of Open Access Journals (Sweden)

    Michael Richter

    2009-06-01

    Full Text Available Long-term field studies in the scope of a multidisciplinary project in southern Ecuador revealed extraordinary high species numbers of many organismic groups. This article discusses reasons for the outstanding vascular plant diversity using a hierarchical scale-oriented top-down approach (Grüninger 2005, from the global scale to the local microscale. The global scale explains general (paleo- ecological factors valid for most parts of the humid tropics, addressing various hypotheses and theories, such as the “greater effective evolutionary time”, constant input of “accidentals”, the “seasonal variability hypothesis”, the “intermediate disturbance hypothesis”, and the impact of soil fertility. The macroscale focuses on the Andes in northwestern South America. The tropical Andes are characterised by many taxa of restricted range which is particularly true for the Amotape-Huancabamba region, i.e. the so called Andean Depression, which is effective as discrete phytogeographic transition as well as barrier zone. Interdigitation of northern and southern flora elements, habitat fragmentation, geological and landscape history, and a high speciation rate due to rapid genetic radiation of some taxa contribute to a high degree of diversification. The mesoscale deals with the special environmental features of the eastern mountain range, the Cordillera Real and surrounding areas in southern Ecuador. Various climatic characteristics, the orographic heterogeneity, the geologic and edaphic conditions as well as human impact are the most prominent factors augmenting plant species diversity. On microscale, prevailing regimes of disturbance and environmental stresses, the orographic basement, as well as the general role on the various mountain chains are considered. Here, micro-habitats e.g. niches for epiphytes, effects of micro-relief patterns, and successions after small-sized disturbance events are screened. Direct effects of human impact are

  17. Are post-fire silvicultural treatments a useful tool to fight the climate change threat in terms of plant diversity?

    Science.gov (United States)

    Hedo de Santiago, Javier; Esteban Lucasr Borja, Manuel; de las Heras, Jorge

    2016-04-01

    Adaptative forest management demands a huge scientific knowledge about post-fire vegetation dynamics, taking into account the current context of global change. We hypothesized that management practices should be carry out taking into account the climate change effect, to obtain better results in the biodiversity maintenance across time. All of this with respect to diversity and species composition of the post-fire naturally regenerated Aleppo pine forests understory. The study was carried out in two post-fire naturally regenerated Aleppo pine forests in the Southeastern of the Iberian Peninsula, under contrasting climatic conditions: Yeste (Albacete) shows a dry climate and Calasparra (Murcia) shows a semiarid climate. Thinning as post-fire silvicultural treatment was carried out five years after the wildfire event, in the year 1999. An experiment of artificial drought was designed to evacuate 15% of the natural rainfall in both sites, Yeste and Calasparra, to simulate climate change. Taking into account all the variables (site, silvicultural treatment and artificial drought), alpha diversity indices including species richness, Shannon and Simpson diversity indices, and plant cover, were analyzed as a measure of vegetation abundance. The results showed that plant species were affected by thinning, whereas induced drought affected total cover and species, with lower values at Yeste. Significant site variation was also observed in soil properties, species richness and total plant cover, conversely to the plant species diversity indices. We conclude that the plant community shows different responses to a simulated environment of climate change depending on the experimental site.

  18. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    Science.gov (United States)

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  19. Selfish little circles: transmission bias and evolution of large deletion-bearing mitochondrial DNA in Caenorhabditis briggsae nematodes.

    Directory of Open Access Journals (Sweden)

    Katie A Clark

    Full Text Available Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA, in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans.

  20. Selfish Little Circles: Transmission Bias and Evolution of Large Deletion-Bearing Mitochondrial DNA in Caenorhabditis briggsae Nematodes

    Science.gov (United States)

    Clark, Katie A.; Howe, Dana K.; Gafner, Kristin; Kusuma, Danika; Ping, Sita; Estes, Suzanne; Denver, Dee R.

    2012-01-01

    Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans. PMID:22859984

  1. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content

    Directory of Open Access Journals (Sweden)

    Elisa Balboa

    2017-08-01

    Full Text Available MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.

  2. Post-fire salvage logging alters species composition and reduces cover, richness, and diversity in Mediterranean plant communities.

    Science.gov (United States)

    Leverkus, Alexandro B; Lorite, Juan; Navarro, Francisco B; Sánchez-Cañete, Enrique P; Castro, Jorge

    2014-01-15

    An intense debate exists on the effects of post-fire salvage logging on plant community regeneration, but scant data are available derived from experimental studies. We analyzed the effects of salvage logging on plant community regeneration in terms of species richness, diversity, cover, and composition by experimentally managing a burnt forest on a Mediterranean mountain (Sierra Nevada, S Spain). In each of three plots located at different elevations, three replicates of three treatments were implemented seven months after the fire, differing in the degree of intervention: "Non-Intervention" (all trees left standing), "Partial Cut plus Lopping" (felling 90% of the trees, cutting the main branches, and leaving all the biomass in situ), and "Salvage Logging" (felling and piling the logs, and masticating the woody debris). Plant composition in each treatment was monitored two years after the fire in linear point transects. Post-fire salvage logging was associated with reduced species richness, Shannon diversity, and total plant cover. Moreover, salvaged sites hosted different species assemblages and 25% lower cover of seeder species (but equal cover of resprouters) compared to the other treatments. Cover of trees and shrubs was also lowest in Salvage Logging, which could suggest a potential slow-down of forest regeneration. Most of these results were consistent among the three plots despite plots hosting different plant communities. Concluding, our study suggests that salvage logging may reduce species richness and diversity, as well as the recruitment of woody species, which could delay the natural regeneration of the ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Genetic diversity of a Daugava basin brown trout (Salmo trutta brood stock

    Directory of Open Access Journals (Sweden)

    Schmidt Thomas

    2017-01-01

    Full Text Available Genetics play an increasingly important role in the conservation of threatened fish populations. We have examined twelve microsatellite markers to determine the genetic diversity of a brood stock of brown trout from the Latvian Daugava river basin, used in a local supportive breeding program and compared diversity values to other Baltic populations. Allelic data was further inspected for indications of increased inbreeding. Additionally, we have analyzed the mitochondrial control region to classify the population within a broader phylogenetic framework. We found that the genetic diversity was comparatively low, but there was no strong evidence of high inbreeding. A newly detected mitochondrial haplotype indicates unnoticed genetic diversity of “Atlantic lineage” brown trout in the Daugava basin region. Our study provides first genetic details on resident brown trout from the Baltic Daugava river basin to improve the regional conservation management of this valuable genetic resource and contributes phylogeographically useful information.

  4. Diversity of Antifungal Compounds-Producing Bacillus spp. Isolated from Rhizosphere of Soybean Plant Based on ARDRA and 16S rRNA

    Directory of Open Access Journals (Sweden)

    ARIS TRI WAHYUDI

    2010-09-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR play an important role in improvement of seed germination, root development, and water utilization by plants. These rhizobacteria can stimulate plant growth directly by producing growth hormones or indirectly by producing antifungal compounds/antibiotics to suppress phytopathogenic fungi. The objective of this research was to analyze the diversity of 22 antifungal-producing rhizobacteria of Bacillus sp. isolated from rhizosphere of soybean plant based on Amplified rDNA Restriction Analysis (ARDRA and 16S rRNA Sequence. Restriction enzymes in ARDRA analysis, HinfI, HaeIII, and RsaI were used to digest 22 16S rDNA amplified from Bacillus sp. genomes. Based on this analysis, genetic diversity of 22 Bacillus sp. producing antifungal compounds were classified into eight different groups. Moreover, six selected isolates randomly from each ARDRA group that have strong activity to suppress fungal growth were analyzed for their 16S rDNA sequences compared with reference strains. The distributions of these isolates were genetically diverse on several species of Bacillus sp. such as B. subtilis, B. cereus, and B. fusiformis. ARDRA is a reliable technique to analyze genetic diversity of Bacillus sp. community in the rhizosphere.

  5. Phylogenetic diversity of macromycetes and woody plants along an elevational gradient in Eastern Mexico

    Science.gov (United States)

    Marko Gomez-Hernandez; Guadalupe Williams-Linera; D. Jean Lodge; Roger Guevara; Eduardo Ruiz-Sanchez; Etelvina Gandara

    2016-01-01

    Phylogenetic information provides insight into the ecological and evolutionary processes that organize species assemblages. We compared patterns of phylogenetic diversity among macromycete and woody plant communities along a steep elevational gradient in eastern Mexico to better understand the evolutionary processes that structure their communities. Macrofungi and...

  6. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    Energy Technology Data Exchange (ETDEWEB)

    Oyelami, Ayodeji O; Okere, Uchechukwu V; Orwin, Kate H; De Deyn, Gerlinde B; Jones, Kevin C [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2013-02-15

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of {sup 14}C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing differences in total nitrogen content (%N). Plant communities consisted of six different plant species: two grasses, two forbs, and two legume species, and ranged in species richness from 1 to 6. The degradation of {sup 14}C-phenanthrene was evaluated by measuring indigenous catabolic activity following the addition of the contaminant to soil using respirometry. Soil fertility was a driving factor in all aspects of {sup 14}C-phenanthrene degradation; lag phase, maximum rates and total extents of {sup 14}C-phenanthrene mineralisation were higher in improved soils compared to unimproved soils. Plant identity had a significant effect on the lag phase and extents of mineralisation. Soil fertility was the major influence also on abundance of microbial communities. - Highlights: Black-Right-Pointing-Pointer Two grassland soils of contrasting fertility showing differences in total nitrogen content (%N) were used in this study. Black-Right-Pointing-Pointer The effects of individual plant species and plant diversity on mineralisation of {sup 14}C-phenanthrene in soil were investigated. Black-Right-Pointing-Pointer Soil fertility was the major influence on mineralisation of {sup 14}C-phenanthrene, and abundance of microbial community. Black-Right-Pointing-Pointer The presence of a specific plant plays a role in the extent of mineralisation of phenanthrene in soil. - Soil management was the main driver for the mineralisation of {sup 14}C-phenanthrene in soil.

  7. Understory plant diversity in riparian alder-conifer stands after logging in southeast Alaska.

    Science.gov (United States)

    Robert L. Deal

    1997-01-01

    Stand structure, tree height growth, and understory plant diversity were assessed in five mixed alder-conifer stands after logging in southeast Alaska. Tree species composition ranged from 7- to 91-percent alder, and basal area ranged from 30 to 55 m2/ha. The alder exhibited rapid early height growth, but recent growth has slowed considerably. Some conifers have...

  8. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  9. Mitochondrial Respiration and Oxygen Tension.

    Science.gov (United States)

    Shaw, Daniel S; Meitha, Karlia; Considine, Michael J; Foyer, Christine H

    2017-01-01

    Measurements of respiration and oxygen tension in plant organs allow a precise understanding of mitochondrial capacity and function within the context of cellular oxygen metabolism. Here we describe methods that can be routinely used for the isolation of intact mitochondria, and the determination of respiratory electron transport, together with techniques for in vivo determination of oxygen tension and measurement of respiration by both CO 2 production and O 2 consumption that enables calculation of the respiratory quotient [CO 2 ]/[O 2 ].

  10. Effects of human proximity and nomadic grazing on the diversity of medicinal plants in temperate hindukush

    International Nuclear Information System (INIS)

    Adnan, M.; Tariq, A.

    2015-01-01

    Over exploitation and overgrazing are considered major factors for decreasing plant species diversity. However, we do need some more exploration on the types of anthropogenic disturbances responsible for variation in species decline among different regions. Therefore, the current study was conducted in a temperate Hindukush region of Pakistan with the aim to assess human settlements pressure on the diversity of medicinal plants. Field data was collected from 15 plots, of which 5 plots each were randomly selected at three distant locations in derived woodland forest. Near to community plots were heavily disturbed due to natives proximity, 2 kilometer away plots from the native community were moderately disturbed, while 4 kilometer away plots were under the disturbance regime from temporary settlers (Nomads). We have found all 10 studied medicinal plant species at 2 Km distance followed by 8 species found at 4 km distance. Economically important species such as Bergenia ciliata, Paeonia emodi, Podophyllum emodi, Valeriana jatamansi and Viola canescens were completely absent near village. Similarly, density (8.72 n m-2) and species richness (8.2 n 40 m-2) were found significantly highest at 2 km distance than other locations. Detrended Correspondence Analysis (DCA) showed that among forest stand structural variables, slope was the influencing variable related to the density of only Bergenia ciliata. In conclusions, moderate disturbance is associated to increase in the diversity of medicinal plants, while high anthropogenic pressures the otherwise. Hence, effective management strategies may be adopted to conserve such precious eroding flora. (author)

  11. Layout Guide for Burnt and Un-burnt Tropical Forest: The Diversity of Forest Plants and Insetcs for Sustainable Environmental

    Science.gov (United States)

    Watiniasih, N. L.; Tambunan, J.; Merdana, I. M.; Antara, I. N. G.

    2018-04-01

    Forest fire is a common phenomenon in tropical forest likes in Indonesia. Beside the effect of soaring heat and lack of rain during dry season due to the tropical climate, farming system is also reported as one reason of forest fire in Indonesia. People of surrounding areas and neighbouring countries are suffering from the effect of forest fire. Plants and animals are the most suffer from this occurrence that they cannot escape. This study aimed to investigate the effect of previously burnt and un-burnt tropical forest in Borneo Island on the plant and insect diversity of the tropical forest. The result of the study found that the plants in previously burnt forest area was dominated by one species, while higher and more stable plant diversity was found in un-burnt forest. Although the number of individual insects was higher in previously burnt tropical forest, but the insects was more diverse in un-burnt tropical forest. The alteration of environmental conditions in previously burnt and un-burnt forest indicate that the energy held in natural forest support higher number and more stable insects than previously burnt forest.

  12. Mitochondrial diversity and phylogeography of Acrossocheilus paradoxus (Teleostei: Cyprinidae).

    Science.gov (United States)

    Ju, Yu-Min; Hsu, Kui-Ching; Yang, Jin-Quan; Wu, Jui-Hsien; Li, Shan; Wang, Wei-Kuang; Ding, Fang; Li, Jun; Lin, Hung-Du

    2018-01-31

    Mitochondrial DNA cytochrome b sequences (1141 bp) in 229 specimens of Acrossocheilus paradoxus from 26 populations were identified as four lineages. The pairwise genetic distances among these four lineages ranged from 1.57 to 2.37% (mean= 2.00%). Statistical dispersal-vicariance analysis suggests that the ancestral populations were distributed over mainland China and Northern and Western Taiwan. Approximate Bayesian computation approaches show that the three lineages in Taiwan originated from the lineage in mainland China through three colonization routes during two glaciations. The results indicated that during the glaciation and inter-glacial periods, the Taiwan Strait was exposed and sank, which contributed to the dispersion and differentiation of populations. Furthermore, the populations of A. paradoxus colonized Taiwan through a land bridge to the north of the Formosa Bank, and the Miaoli Plateau in Taiwan was an important barrier that limited gene exchange between populations on both the sides.

  13. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives.

    Science.gov (United States)

    Govindaraj, M; Vetriventhan, M; Srinivasan, M

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable

  14. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives

    Directory of Open Access Journals (Sweden)

    M. Govindaraj

    2015-01-01

    Full Text Available The importance of plant genetic diversity (PGD is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i the significance of plant genetic diversity (PGD and PGR especially on agriculturally important crops (mostly field crops; (ii risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more

  15. Chloroplast and mitochondrial microsatellites for Millettia pinnata (Fabaceae) and cross-amplification in related species.

    Science.gov (United States)

    Wang, Yanling; Xie, Hongxian; Yang, Yi; Huang, Yelin; Wang, Jianwu; Tan, Fengxiao

    2017-05-01

    Chloroplast and mitochondrial microsatellites were identified to study the population genetics of Millettia pinnata (Fabaceae). Based on publicly available plastid genome sequence data of M. pinnata , 42 primer pairs were developed, of which 17 displayed polymorphisms across 89 individuals from four populations. For chloroplast loci, two to six alleles were recovered and the unbiased haploid diversity per locus ranged from 0.391 to 0.857. For mitochondrial loci, two to four alleles were recovered and the unbiased haploid diversity ranged from 0.264 to 0.740. Sixteen of the 17 screened markers could be successfully amplified in the related species M. pulchra . The 17 microsatellite markers developed here exhibited variation in M. pinnata and 16 presented transferability in the related species M. pulchra , suggesting that these markers will be valuable for genetic studies across M. pinnata and its related species.

  16. m-AAA Complexes Are Not Crucial for the Survival of Arabidopsis Under Optimal Growth Conditions Despite Their Importance for Mitochondrial Translation.

    Science.gov (United States)

    Kolodziejczak, Marta; Skibior-Blaszczyk, Renata; Janska, Hanna

    2018-05-01

    For optimal mitochondrial activity, the mitochondrial proteome must be properly maintained or altered in response to developmental and environmental stimuli. Based on studies of yeast and humans, one of the key players in this control are m-AAA proteases, mitochondrial inner membrane-bound ATP-dependent metalloenzymes. This study focuses on the importance of m-AAA proteases in plant mitochondria, providing their first experimentally proven physiological substrate. We found that the Arabidopsis m- AAA complexes composed of AtFTSH3 and/or AtFTSH10 are involved in the proteolytic maturation of ribosomal subunit L32. Consequently, in the double Arabidopsis ftsh3/10 mutant, mitoribosome biogenesis, mitochondrial translation and functionality of OXPHOS (oxidative phosphorylation) complexes are impaired. However, in contrast to their mammalian or yeast counterparts, plant m-AAA complexes are not critical for the survival of Arabidopsis under optimal conditions; ftsh3/10 plants are only slightly smaller in size at the early developmental stage compared with plants containing m-AAA complexes. Our data suggest that a lack of significant visible morphological alterations under optimal growth conditions involves mechanisms which rely on existing functional redundancy and induced functional compensation in Arabidopsis mitochondria.

  17. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties

    NARCIS (Netherlands)

    Fischer, C.; Tischer, J.; Roscher, C.; Eisenhauer, N.; Ravenek, J.; Gleixner, G.; Attinger, S.; Jensen, B.; Kroon, de H.; Mommer, L.; Scheu, S.; Hildebrandt, A.

    2015-01-01

    Background and aims Soil hydraulic properties drive water distribution and availability in soil. There exists limited knowledge of how plant species diversity might influence soil hydraulic properties. Methods We quantified the change in infiltration capacity affected by soil structural variables

  18. Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    2013-01-01

    Full Text Available Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P=0.03 and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23% presented in vitro multiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%, insoluble phosphate solubilisation (61%, and ammonia production (70%. The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root.

  19. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China.

    Science.gov (United States)

    Qin, Sheng; Li, Jie; Chen, Hua-Hong; Zhao, Guo-Zhen; Zhu, Wen-Yong; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun

    2009-10-01

    Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds.

  20. An Unusual Prohibitin Regulates Malaria Parasite Mitochondrial Membrane Potential

    Directory of Open Access Journals (Sweden)

    Joachim Michael Matz

    2018-04-01

    Full Text Available Summary: Proteins of the stomatin/prohibitin/flotillin/HfIK/C (SPFH family are membrane-anchored and perform diverse cellular functions in different organelles. Here, we investigate the SPFH proteins of the murine malaria model parasite Plasmodium berghei, the conserved prohibitin 1, prohibitin 2, and stomatin-like protein and an unusual prohibitin-like protein (PHBL. The SPFH proteins localize to the parasite mitochondrion. While the conserved family members could not be deleted from the Plasmodium genome, PHBL was successfully ablated, resulting in impaired parasite fitness and attenuated virulence in the mammalian host. Strikingly, PHBL-deficient parasites fail to colonize the Anopheles vector because of complete arrest during ookinete development in vivo. We show that this arrest correlates with depolarization of the mitochondrial membrane potential (ΔΨmt. Our results underline the importance of SPFH proteins in the regulation of core mitochondrial functions and suggest that fine-tuning of ΔΨmt in malarial parasites is critical for colonization of the definitive host. : Matz et al. present an experimental genetics study of an unusual prohibitin-like protein in the malaria parasite and find that it regulates mitochondrial membrane polarity. Ablation of this protein causes almost complete mitochondrial depolarization in the mosquito vector, which, in turn, leads to a block in malaria parasite transmission. Keywords: Plasmodium berghei, malaria, SPFH, prohibitin, stomatin-like protein, mitochondrion, membrane potential, ookinete, transmission

  1. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    Directory of Open Access Journals (Sweden)

    Christine Fischer

    Full Text Available BACKGROUND: Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs. In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i direct, probably by modifying the pore spectrum and (ii indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. CONCLUSIONS/SIGNIFICANCE: Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  2. Studies on ethno medicinal plant diversity in an urban area – a case study

    Directory of Open Access Journals (Sweden)

    Sudipta Biswas

    2016-08-01

    Full Text Available The present study deals with the Ethno-medicinal plants used by the local communities in Santragachhi area, under Howrah Municipal Corporation, ward no. 38, District Howrah, West Bengal, India. An ethno medicinal survey was carried out the use of medicinal plants in Santragachi region. The information was gathered from the local community people using an integrated approach botanical collections, group discussion and interview with questionnaire during 2012-2013. Among 50 informants interviewed, 10 were tribal practitioners. A total of 53 genera and 33 families are documented. In most of case, fresh parts of the plants were used for the preparation of medicine. The results further revealed that the natives of this area are not very much practiced in using the medicinal plants in the treatment of human illness. The study area is delimited by number of wetlands and the people collect the aquatic plants by their habitual knowledge as food resources. But due to expansion of city area, road construction causes loss of plant diversity and random exploitation of natural resources many valuable medicinal plants are at the stage of extinction. The present study documented ethno medicinal plants were mostly used for treatment of various diseases.

  3. Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods

    Energy Technology Data Exchange (ETDEWEB)

    Ranade, Shirish A; Srivastava, Anuj P; Srivastava, Jyoti; Tuli, Rakesh [PMB Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, U.P. (India); Rana, Tikam S [Plant Biodiversity and Conservation Biology Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001, U.P. (India)

    2008-06-15

    Jatropha curcas L. (physic nut) has drawn attention in recent years as a source of seed oil that can provide an economically viable substitute for diesel. Very little work on provenance trials and genetic resources of J. curcas L. has been reported so far. Though J. curcas grows widely in India and several collections of the plant are also maintained, pedigree and provenance records are not always available. This article reports our studies on the diversity amongst the accessions of J. curcas L., both amongst already held collections as well as from a few locations in the wild. Two single-primer amplification reaction (SPAR) methods were used for this purpose. The accessions from the North East were most distant from all other accessions in UPGMA analysis. The NBRI, Bhubaneshwar and Lalkuan accessions were more related to each other. The UPGMA tree clearly shows well-separated accession groups: NBRI, Bhubaneshwar, North East, Lalkuan and Outgroup. The study suggests that this relatively recently introduced plant species shows adequate genetic diversity in India and that the SPAR methods are useful for a rapid assessment of the same. The methods provide important tools for analyzing the diversity within the available collections to shortlist the parental lines for adaptability trials and further improvement of Jatropha plants. (author)

  4. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil

    NARCIS (Netherlands)

    Oyelami, A.O.; Okere, U.V.; Orwin, K.; Deyn, de G.B.; Jones, K.C.; Semple, K.T.

    2013-01-01

    The work presented in this paper investigated the effects of plant species composition, species diversity and soil fertility on biodegradation of 14C-phenanthrene in soil. The two soils used were of contrasting fertility, taken from long term unfertilised and fertilised grassland, showing

  5. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  6. High plant species diversity indirectly mitigates CO 2- and N-induced effects on grasshopper growth

    Science.gov (United States)

    Strengbom, Joachim; Reich, Peter B.; Ritchie, Mark E.

    2008-09-01

    We examined how elevated atmospheric [CO 2] and higher rate of nitrogen (N) input may influence grasshopper growth by changing food plant quality and how such effects may be modified by species diversity of the plant community. We reared grasshopper nymphs ( Melanoplus femurrubrum) on Poa pratensis from field-grown monocultures or polycultures (16 species) that were subjected to either ambient or elevated levels of CO 2 and N. Grasshopper growth rate was higher on P. pratensis leaves grown in monocultures than in polycultures, higher on P. pratensis grown under elevated than under ambient [CO 2], and higher on P. pratensis grown under elevated than under ambient [N]. The higher growth rate observed on P. pratensis exposed to elevated [CO 2] was, however, less pronounced for polyculture- than monoculture-grown P. pratensis. Growth rate of the grasshoppers was positively correlated with leaf [N], [C], and concentration of soluble carbohydrates + lipids. Concentration of non-structural carbohydrates + lipids was higher in leaves grown under elevated than under ambient [CO 2], and the difference between P. pratensis grown under ambient and elevated [CO 2] was greater for monoculture- than polyculture-grown P. pratensis. In addition, leaf N concentration was higher in P. pratensis grown in monocultures than in polycultures, suggesting that plant species richness, indirectly, may influence insect performance by changed nutritional value of the plants. Because we found interactive effects between all factors included ([CO 2], [N], and plant species diversity), our results suggest that these parameters may influence plant-insect interactions in a complex way that is not predictable from the sum of single factor manipulations.

  7. The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae.

    Science.gov (United States)

    Robertson, Helen E; Lapraz, François; Egger, Bernhard; Telford, Maximilian J; Schiffer, Philipp H

    2017-05-12

    Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra  mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.

  8. Mitochondrial DNA plays an equal role in influencing female and male longevity in centenarians.

    Science.gov (United States)

    He, Yong-Han; Lu, Xiang; Tian, Jiao-Yang; Yan, Dong-Jing; Li, Yu-Chun; Lin, Rong; Perry, Benjamin; Chen, Xiao-Qiong; Yu, Qin; Cai, Wang-Wei; Kong, Qing-Peng

    2016-10-01

    The mitochondrion is a double membrane-bound organelle which plays important functional roles in aging and many other complex phenotypes. Transmission of the mitochondrial genome in the matrilineal line causes the evolutionary selection sieve only in females. Theoretically, beneficial or neutral variations are more likely to accumulate and be retained in the female mitochondrial genome during evolution, which may be an initial trigger of gender dimorphism in aging. The asymmetry of evolutionary processes between gender could lead to males and females aging in different ways. If so, gender specific variation loads could be an evolutionary result of maternal heritage of mitochondrial genomes, especially in centenarians who live to an extreme age and are considered as good models for healthy aging. Here, we tested whether the mitochondrial variation loads were associated with altered aging patterns by investigating the mtDNA haplogroup distribution and genetic diversity between female and male centenarians. We found no evidence of differences in aging patterns between genders in centenarians. Our results indicate that the evolutionary consequence of gender dimorphism in mitochondrial genomes is not a factor in the altered aging patterns in human, and that mitochondrial DNA contributes equally to longevity in males and females. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Biogeographical Interpretation of Elevational Patterns of Genus Diversity of Seed Plants in Nepal.

    Science.gov (United States)

    Li, Miao; Feng, Jianmeng

    2015-01-01

    This study tests if the biogeographical affinities of genera are relevant for explaining elevational plant diversity patterns in Nepal. We used simultaneous autoregressive (SAR) models to investigate the explanatory power of several predictors in explaining the diversity-elevation relationships shown in genera with different biogeographical affinities. Delta akaike information criterion (ΔAIC) was used for multi-model inferences and selections. Our results showed that both the total and tropical genus diversity peaked below the mid-point of the elevational gradient, whereas that of temperate genera had a nearly symmetrical, unimodal relationship with elevation. The proportion of temperate genera increased markedly with elevation, while that of tropical genera declined. Compared to tropical genera, temperate genera had wider elevational ranges and were observed at higher elevations. Water-related variables, rather than mid-domain effects (MDE), were the most significant predictors of elevational patterns of tropical genus diversity. The temperate genus diversity was influenced by energy availability, but only in quadratic terms of the models. Though climatic factors and mid-domain effects jointly explained most of the variation in the diversity of temperate genera with elevation, the former played stronger roles. Total genus diversity was most strongly influenced by climate and the floristic overlap of tropical and temperate floras, while the influences of mid-domain effects were relatively weak. The influences of water-related and energy-related variables may vary with biogeographical affinities. The elevational patterns may be most closely related to climatic factors, while MDE may somewhat modify the patterns. Caution is needed when investigating the causal factors underlying diversity patterns for large taxonomic groups composed of taxa of different biogeographical affinities. Right-skewed diversity-elevation patterns may be produced by the differential

  10. Reversible infantile mitochondrial diseases.

    Science.gov (United States)

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  11. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle.

    Science.gov (United States)

    Mannen, H; Kohno, M; Nagata, Y; Tsuji, S; Bradley, D G; Yeo, J S; Nyamsamba, D; Zagdsuren, Y; Yokohama, M; Nomura, K; Amano, T

    2004-08-01

    In order to clarify the origin and genetic diversity of cattle in North Eastern Asia, this study examined mitochondrial displacement loop sequence variation and frequencies of Bos taurus and Bos indicus Y chromosome haplotypes in Japanese, Mongolian, and Korean native cattle. In mitochondrial analyses, 20% of Mongolian cattle carried B. indicus mitochondrial haplotypes, but Japanese and Korean cattle carried only B. taurus haplotypes. In contrast, all samples revealed B. taurus Y chromosome haplotypes. This may be due to the import of zebu and other cattle during the Mongol Empire era with subsequent crossing with native taurine cattle. B. taurus mtDNA sequences fall into several geographically distributed haplogroups and one of these, termed here T4, is described in each of the test samples, but has not been observed in Near Eastern, European or African cattle. This may have been locally domesticated from an East Eurasian strain of Bos primigenius.

  12. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    Science.gov (United States)

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  13. A new genus and twenty new species of Australian jumping plant-lice (Psylloidea: Triozidae) from Eremophila and Myoporum (Scrophulariaceae: Myoporeae).

    Science.gov (United States)

    Taylor, Gary S; Fagan-Jeffries, Erinn P; Austin, Andy D

    2016-02-05

    The Triozidae is a diverse, cosmopolitan family of jumping plant-lice (Hemiptera: Psylloidea) from an exceptionally diverse range of plant families, but with few described Australian species. As a direct outcome of the Australian Biological Resources Study Bush Blitz species discovery program, many new Psylloidea from novel host plants in remote localities have been revealed. In this study a new genus Myotrioza Taylor gen. nov. and 20 new species are described from southern and central Australia which also establishes the first host plant records from Eremophila and Myoporum (Scrophulariaceae: Myoporeae). New species, delineated using a combination of morphological and mitochondrial COI sequence data, are: Myotrioza clementsiana sp. nov., M. darwinensis sp. nov., M. desertorum sp. nov., M. eremi sp. nov., M. eremophili sp. nov., M. flindersiana sp.nov., M. gawlerensis sp. nov., M. insularis sp. nov., M. interioris sp. nov., M. interstantis sp. nov., M. longifoliae sp. nov., M. markmitchelli sp. nov., M. myopori sp. nov., M. oppositifoliae sp. nov., M. pantonii sp. nov., M. platycarpi sp. nov., M. remota sp. nov., M. scopariae sp. nov., M. serrulatae sp. nov., and M. telowiensis sp. nov. Genetic divergence data, host associations, biogeographic data, diagnoses and a key to species are presented. Myotrioza appears to be particularly diverse in ephemeral southern Australia, especially in inland Western Australia and South Australia, matching regions of high diversity of the host genera; some species are likely to be short range endemics.

  14. Beyond toxicity: a regulatory role for mitochondrial cyanide.

    Science.gov (United States)

    García, Irene; Gotor, Cecilia; Romero, Luis C

    2014-01-01

    In non-cyanogenic plants, cyanide is a co-product of ethylene and camalexin biosynthesis. To maintain cyanide at non-toxic levels, Arabidopsis plants express the mitochondrial β-cyanoalanine synthase CYS-C1. CYS-C1 knockout leads to an increased level of cyanide in the roots and leaves and a severe defect in root hair morphogenesis, suggesting that cyanide acts as a signaling factor in root development. During compatible and incompatible plant-bacteria interactions, cyanide accumulation and CYS-C1 gene expression are negatively correlated. Moreover, CYS-C1 mutation increases both plant tolerance to biotrophic pathogens and their susceptibility to necrotrophic fungi, indicating that cyanide could stimulate the salicylic acid-dependent signaling pathway of the plant immune system. We hypothesize that CYS-C1 is essential for maintaining non-toxic concentrations of cyanide in the mitochondria to facilitate cyanide's role in signaling.

  15. Alien Plant Species in the Agricultural Habitats of Ukraine: Diversity and Risk Assessment

    Directory of Open Access Journals (Sweden)

    Burda Raisa

    2018-03-01

    Full Text Available This paper is the first critical review of the diversity of the Ukrainian adventive flora, which has spread in agricultural habitats in the 21st century. The author’s annotated checklist contains the data on 740 species, subspecies and hybrids from 362 genera and 79 families of non-native weeds. The floristic comparative method was used, and the information was generalised into some categories of five characteristic features: climamorphotype (life form, time and method of introduction, level of naturalisation, and distribution into 22 classes of three habitat types according to European Nature Information System (EUNIS. Two assessments of the ecological risk of alien plants were first conducted in Ukraine according to the European methods: the risk of overcoming natural migration barriers and the risk of their impact on the environment. The exposed impact of invasive alien plants on ecosystems has a convertible character; the obtained information confirms a high level of phytobiotic contamination of agricultural habitats in Ukraine. It is necessary to implement European and national documents regarding the legislative and regulative policy on invasive alien species as one of the threats to biotic diversity.

  16. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

    Science.gov (United States)

    Alverson, Andrew J; Wei, XiaoXin; Rice, Danny W; Stern, David B; Barry, Kerrie; Palmer, Jeffrey D

    2010-06-01

    The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.

  17. Prioritizing conservation areas for coastal plant diversity under increasing urbanization.

    Science.gov (United States)

    Doxa, Aggeliki; Albert, Cécile Hélène; Leriche, Agathe; Saatkamp, Arne

    2017-10-01

    Coastal urban expansion will continue to drive further biodiversity losses, if conservation targets for coastal ecosystems are not defined and met. Prioritizing areas for future protected area networks is thus an urgent task in such urbanization-threatened ecosystems. Our aim is to quantify past and future losses of coastal vegetation priority areas due to urbanization and assess the effectiveness of the existing protected area network for conservation. We conduct a prioritization analysis, based on 82 coastal plants, including common and IUCN red list species, in a highly-urbanized but biotically diverse region, in South-Eastern France. We evaluate the role of protected areas, by taking into account both strict and multi-use areas. We assess the impact of past and future urbanization on high priority areas, by combining prioritization analyses and urbanization models. We show that half of the highly diverse areas have already been lost due to urbanization. Remaining top priority areas are also among the most exposed to future urban expansion. The effectiveness of the existing protected area (PA) network is only partial. While strict PAs coincide well with top priority areas, they only represent less than one third of priority areas. The effectiveness of multi-use PAs, such as the Natura 2000 network, also remains limited. Our approach highlights the impact of urbanization on plant conservation targets. By modelling urbanization, we manage to identify those areas where protection could be more efficient to limit further losses. We suggest to use our approach in the future to expand the PA network in order to achieve the 2020 Aichi biodiversity targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Subamolide B Isolated from Medicinal Plant Cinnamomum subavenium Induces Cytotoxicity in Human Cutaneous Squamous Cell Carcinoma Cells through Mitochondrial and CHOP-Dependent Cell Death Pathways

    Directory of Open Access Journals (Sweden)

    Shu-Yi Yang

    2013-01-01

    Full Text Available Subamolide B is a butanolide isolated from Cinnamomum subavenium, a medicinal plant traditionally used to treat various ailments including carcinomatous swelling. We herein reported for the first time that subamolide B potently induced cytotoxicity against diverse human skin cancer cell lines while sparing nonmalignant cells. Mechanistic studies on human cutaneous squamous cell carcinoma (SCC cell line SCC12 highlighted the involvement of apoptosis in subamolide B-induced cytotoxicity, as evidenced by the activation of caspases-8, -9, -4, and -3, the increase in annexin V-positive population, and the partial restoration of cell viability by cotreatment with the pan-caspase inhibitor z-VAD-fmk. Additionally, subamolide B evoked cell death pathways mediated by FasL/Fas, mitochondria, and endoplasmic reticulum (ER stress, as supported by subamolide B-induced FasL upregulation, BCL-2 suppression/cytosolic release of cytochrome c, and UPR activation/CHOP upregulation, respectively. Noteworthy, ectopic expression of c-FLIPL or dominant-negative mutant of FADD failed to impair subamolide B-induced cytotoxicity, whereas BCL-2 overexpression or CHOP depletion greatly rescued subamolide B-stimulated cells. Collectively, these results underscored the central role of mitochondrial and CHOP-mediated cell death pathways in subamolide B-induced cytotoxicity. Our findings further implicate the potential of subamolide B for cutaneous SCC therapy or as a lead compound for developing novel chemotherapeutic agents.

  19. A Dig into the Past Mitochondrial Diversity of Corsican Goats Reveals the Influence of Secular Herding Practices

    Science.gov (United States)

    Hughes, Sandrine; Fernández, Helena; Cucchi, Thomas; Duffraisse, Marilyne; Casabianca, François; Istria, Daniel; Pompanon, François; Vigne, Jean-Denis; Hänni, Catherine; Taberlet, Pierre

    2012-01-01

    The goat (Capra hircus) is one of the earliest domesticated species ca. 10,500 years ago in the Middle-East where its wild ancestor, the bezoar (Capra aegagrus), still occurs. During the Neolithic dispersal, the domestic goat was then introduced in Europe, including the main Mediterranean islands. Islands are interesting models as they maintain traces of ancient colonization, historical exchanges or of peculiar systems of husbandry. Here, we compare the mitochondrial genetic diversity of both medieval and extant goats in the Island of Corsica that presents an original and ancient model of breeding with free-ranging animals. We amplified a fragment of the Control Region for 21 medieval and 28 current goats. Most of them belonged to the A haplogroup, the most worldwide spread and frequent today, but the C haplogroup is also detected at low frequency in the current population. Present Corsican goats appeared more similar to medieval goats than to other European goat populations. Moreover, 16 out of the 26 haplotypes observed were endemic to Corsica and the inferred demographic history suggests that the population has remained constant since the Middle Ages. Implications of these results on management and conservation of endangered Corsican goats currently decimated by a disease are addressed. PMID:22299033

  20. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica.

    Science.gov (United States)

    Teixeira, Lia C R S; Peixoto, Raquel S; Cury, Juliano C; Sul, Woo Jun; Pellizari, Vivian H; Tiedje, James; Rosado, Alexandre S

    2010-08-01

    The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago.

  1. Disentangling the trajectories of alpha, beta and gamma plant diversity of North American boreal ecoregions since 15,500 years

    Directory of Open Access Journals (Sweden)

    Olivier eBlarquez

    2014-04-01

    Full Text Available Assessment of biodiversity in a changing world is a key issue and studies on the processes and factors influencing its history at relevant time scales are needed. In this study, we analysed temporal trends of plant diversity using fossil pollen records from the North American boreal forest-taiga biome (NABT. We selected 205 pollen records spanning the last 15,500 years. Diversity was decomposed into α and γ richness, and β diversity, using Shannon entropy indices. We investigated temporal and spatial patterns of β diversity by decomposing it into independent turnover (variation in taxonomic composition due to species replacements and nestedness (variation due to species loss components. The palynological diversity of the NABT biome experienced major rearrangements during the Lateglacial and early Holocene in response to major climatic shifts. The β nestedness likely reflected plant immigration processes and generally peaked before the β turnover value, which mirrors spatial and temporal community sorting related to environmental conditions and specific habitat constraints. Palynological diversity was generally maximal during the Lateglacial and the early Holocene and decreased progressively during the Holocene. These results are discussed according to macro-ecological processes, such as immigration, disturbances and environmental fluctuations, with climate most notably as the main ecological driver at millennial scales.

  2. Limitations of mitochondrial gene barcoding in Octocorallia.

    Science.gov (United States)

    McFadden, Catherine S; Benayahu, Yehuda; Pante, Eric; Thoma, Jana N; Nevarez, P Andrew; France, Scott C

    2011-01-01

    The widespread assumption that COI and other mitochondrial genes will be ineffective DNA barcodes for anthozoan cnidarians has not been well tested for most anthozoans other than scleractinian corals. Here we examine the limitations of mitochondrial gene barcoding in the sub-class Octocorallia, a large, diverse, and ecologically important group of anthozoans. Pairwise genetic distance values (uncorrected p) were compared for three candidate barcoding regions: the Folmer region of COI; a fragment of the octocoral-specific mitochondrial protein-coding gene, msh1; and an extended barcode of msh1 plus COI with a short, adjacent intergenic region (igr1). Intraspecific variation was barcodes, and there was no discernible barcoding gap between intra- and interspecific p values. In a case study to assess regional octocoral biodiversity, COI and msh1 barcodes each identified 70% of morphospecies. In a second case study, a nucleotide character-based analysis correctly identified 70% of species in the temperate genus Alcyonium. Although interspecific genetic distances were 2× greater for msh1 than COI, each marker identified similar numbers of species in the two case studies, and the extended COI + igr1 + msh1 barcode more effectively discriminated sister taxa in Alcyonium. Although far from perfect for species identification, a COI + igr1 + msh1 barcode nonetheless represents a valuable addition to the depauperate set of characters available for octocoral taxonomy. © 2010 Blackwell Publishing Ltd.

  3. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  4. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands.

    Directory of Open Access Journals (Sweden)

    Xavier Le Roux

    Full Text Available Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number - namely richness, presence of particular plant functional groups, or particular combinations of these and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively, the abundance of nitrifiers (bacterial and archaeal amoA gene number and denitrifiers (nirK, nirS and nosZ gene number, and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species, though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification

  5. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    Science.gov (United States)

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease

    Directory of Open Access Journals (Sweden)

    Sandra Torres

    2017-11-01

    Full Text Available Lysosomal storage disorders (LSD are characterized by the accumulation of diverse lipid species in lysosomes. Niemann-Pick type A/B (NPA/B and type C diseases Niemann-Pick type C (NPC are progressive LSD caused by loss of function of distinct lysosomal-residing proteins, acid sphingomyelinase and NPC1, respectively. While the primary cause of these diseases differs, both share common biochemical features, including the accumulation of sphingolipids and cholesterol, predominantly in endolysosomes. Besides these alterations in lysosomal homeostasis and function due to accumulation of specific lipid species, the lysosomal functional defects can have far-reaching consequences, disrupting intracellular trafficking of sterols, lipids and calcium through membrane contact sites (MCS of apposed compartments. Although MCS between endoplasmic reticulum and mitochondria have been well studied and characterized in different contexts, emerging evidence indicates that lysosomes also exhibit close proximity with mitochondria, which translates in their mutual functional regulation. Indeed, as best illustrated in NPC disease, alterations in the lysosomal-mitochondrial liaisons underlie the secondary accumulation of specific lipids, such as cholesterol in mitochondria, resulting in mitochondrial dysfunction and defective antioxidant defense, which contribute to disease progression. Thus, a better understanding of the lysosomal and mitochondrial interactions and trafficking may identify novel targets for the treatment of Niemann-Pick disease.

  7. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    Science.gov (United States)

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  8. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome

    Science.gov (United States)

    2017-01-01

    Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology. PMID:28680532

  9. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    Science.gov (United States)

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  10. A protocol for isolating insect mitochondrial genomes: a case study of NUMT in Melipona flavolineata (Hymenoptera: Apidae).

    Science.gov (United States)

    Françoso, Elaine; Gomes, Fernando; Arias, Maria Cristina

    2016-07-01

    Nuclear mitochondrial DNA insertions (NUMTs) are mitochondrial DNA sequences that have been transferred into the nucleus and are recognized by the presence of indels and stop codons. Although NUMTs have been identified in a diverse range of species, their discovery was frequently accidental. Here, our initial goal was to develop and standardize a simple method for isolating NUMTs from the nuclear genome of a single bee. Subsequently, we tested our new protocol by determining whether the indels and stop codons of the cytochrome c oxidase subunit I (COI) sequence of Melipona flavolineata are of nuclear origin. The new protocol successfully demonstrated the presence of a COI NUMT. In addition to NUMT investigations, the protocol described here will also be very useful for studying mitochondrial mutations related to diseases and for sequencing complete mitochondrial genomes with high read coverage by Next-Generation technology.

  11. Nano-Micelle of Moringa Oleifera Seed Oil Triggers Mitochondrial Cancer Cell Apoptosis

    Science.gov (United States)

    Abd-Rabou, Ahmed A; Zoheir, Khairy M A; Kishta, Mohamed S; Shalby, Aziza B; Ezzo, Mohamed I

    2016-01-01

    Cancer, a worldwide epidemic disease with diverse origins, involves abnormal cell growth with the potential to invade other parts of the body. Globally, it is the main cause of mortality and morbidity. To overcome the drawbacks of the commercially available chemotherapies, natural products-loaded nano-composites are recommended to improve cancer targetability and decrease the harmful impact on normal cells. This study aimed at exploring the anti-cancer impacts of Moringa oleifera seed oil in its free- (MO) and nano-formulations (MOn) through studying whether it mechanistically promotes mitochondrial apoptosis-mediating cell death. Mitochondrial-based cytotoxicity and flow cytometric-based apoptosis analyses were performed on cancer HepG2, MCF7, HCT 116, and Caco-2 cell lines against normal kidney BHK-21 cell line. The present study resulted that MOn triggered colorectal cancer Caco-2 and HCT 116 cytotoxicity via mitochondrial dysfunction more powerful than its free counterpart (MO). On the other side, MOn and MO remarkably induces HCT 116 mitochondrial apoptosis, while sparing normal BHK-21 cells with minimal cytotoxic effect. The present results concluded that nano-micelle of Moringa oleifera seed oil (MOn) can provide a novel therapeutic approach for colorectal and breast cancers via mitochondrial-mediated apoptosis, while sparing normal and even liver cancer cells a bit healthy or with minimal harmful effect. Intriguingly, MOn induced breast cancer not hepatocellular carcinoma cell death. PMID:28032498

  12. The influence of gap size on plant species diversity and composition in beech (Fagus orientalis forests, Ramsar, Mazandaran Province, North of Iran

    Directory of Open Access Journals (Sweden)

    MARZIEH BEGYOM-FAGHIR

    2013-10-01

    Full Text Available Pourbabaei H, Haddadi-Moghaddam H, Begyom-Faghir M, Abedi T. 2013. The influence of gap size on plant species diversity and composition in beech (Fagus orientalis forests, Ramsar, Mazandaran Province, North of Iran. Biodiversitas 14: 89-94.This study was conducted to investigate the influence of gap size on plant species diversity and composition in beech (Fagus orientalis Lipsky. forests, Ramsar, Mazandaran province. Fifteen gaps in small, medium, and large sizes were randomly selected. Abundance of tree saplings, shrubs and herbaceous species were counted on 4 m2 micro-plots within the gaps. Diversity indices including Shannon-Wiener, Simpson, Mc Arthur's N1, Hill's N2, species richness and Smith-Wilson’s evenness index were computed. The results revealed that there was significant difference among three gap categories in terms of diversity. The highest diversity values of tree and herbaceous species were obtained in the large gaps, while the highest diversity value of shrub species was in the medium gaps. Species composition of small gaps (28 species: 7 trees and 21 herbaceous, medium gaps (37 species: 7 trees, 5 shrubs and 25 herbaceous and large gaps (40 species: 7 trees, 4 shrubs and 29 herbaceous were recognized. Therefore, based on the results of this study, it is recommended that in order to maintain plant diversity and composition up to 400 m2 gap size cloud be used in this forests.

  13. Animal ecosystem engineers modulate the diversity-invasibility relationship.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Invasions of natural communities by non-indigenous species are currently rated as one of the most important global-scale threats to biodiversity. Biodiversity itself is known to reduce invasions and increase stability. Disturbances by ecosystem engineers affect the distribution, establishment, and abundance of species but this has been ignored in studies on diversity-invasibility relationships.We determined natural plant invasion into 46 plots varying in the number of plant species (1, 4, and 16 and plant functional groups (1, 2, 3, and 4 for three years beginning two years after the establishment of the Jena Experiment. We sampled subplots where earthworms were artificially added and others where earthworm abundance was reduced. We also performed a seed-dummy experiment to investigate the role of earthworms as secondary seed dispersers along a plant diversity gradient. Horizontal dispersal and burial of seed dummies were significantly reduced in subplots where earthworms were reduced in abundance. Seed dispersal by earthworms decreased with increasing plant species richness and presence of grasses but increased in presence of small herbs. These results suggest that dense vegetation inhibits the surface activity of earthworms. Further, there was a positive relationship between the number of earthworms and the number and diversity of invasive plants. Hence, earthworms decreased the stability of grassland communities against plant invasion.Invasibility decreased and stability increased with increasing plant diversity and, most remarkably, earthworms modulated the diversity-invasibility relationship. While the impacts of earthworms were unimportant in low diverse (low earthworm densities and high diverse (high floral structural complexity plant communities, earthworms decreased the stability of intermediate diverse plant communities against plant invasion. Overall, the results document that fundamental processes in plant communities like plant seed

  14. Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Lane, Nick; Pomiankowski, Andrew

    2017-10-26

    Mitochondria are predominantly inherited from the maternal gamete, even in unicellular organisms. Yet an extraordinary array of mechanisms enforce uniparental inheritance, which implies shifting selection pressures and multiple origins. We consider how this high turnover in mechanisms controlling uniparental inheritance arises using a novel evolutionary model in which control of mitochondrial transmission occurs either during spermatogenesis (by paternal nuclear genes) or at/after fertilization (by maternal nuclear genes). The model treats paternal leakage as an evolvable trait. Our evolutionary analysis shows that maternal control consistently favours strict uniparental inheritance with complete exclusion of sperm mitochondria, whereas some degree of paternal leakage of mitochondria is an expected outcome under paternal control. This difference arises because mito-nuclear linkage builds up with maternal control, allowing the greater variance created by asymmetric inheritance to boost the efficiency of purifying selection and bring benefits in the long term. In contrast, under paternal control, mito-nuclear linkage tends to be much weaker, giving greater advantage to the mixing of cytotypes, which improves mean fitness in the short term, even though it imposes a fitness cost to both mating types in the long term. Sexual conflict is an inevitable outcome when there is competition between maternal and paternal control of mitochondrial inheritance. If evolution has led to complete uniparental inheritance through maternal control, it creates selective pressure on the paternal nucleus in favour of subversion through paternal leakage, and vice versa. This selective divergence provides a reason for the repeated evolution of novel mechanisms that regulate the transmission of paternal mitochondria, both in the fertilized egg and spermatogenesis. Our analysis suggests that the widespread occurrence of paternal leakage and prevalence of heteroplasmy are natural outcomes of

  15. Specificity of DNA import into isolated mitochondria from plants and mammals

    Directory of Open Access Journals (Sweden)

    Koulintchenko M. V.

    2014-01-01

    Full Text Available Aim. Investigation of different features of DNA import into plant and human mitochondria, for a better understanding of mitochondrial genetics and generation of biotechnological tools. Methods. DNA up-take experiments with isolated plant mitochondria, using as substrates various sequences associated or not with the specific terminal inverted repeats (TIRs present at each end of the plant mitochondrial linear plasmids. Results. It was established that the DNA import efficiency has a non-linear dependence on DNA size. It was shown that import into plant mitochondria of DNA molecules of «medium» sizes, i. e. between 4 and 7 kb, barely has any sequence specificity: neither TIRs from the 11.6 kb Brassica plasmid, nor TIRs from the Zea mays S-plasmids influenced DNA import into Solanum tuberosum mitochondria. Conclusions. The data obtained support the hypothesis about species-specific import mechanism operating under the mitochondrial linear plasmids transfer into plant mitochondria.

  16. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J.

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  17. Membrane Bioreactor-Based Wastewater Treatment Plant in Saudi Arabia: Reduction of Viral Diversity, Load, and Infectious Capacity

    KAUST Repository

    Jumat, Muhammad; Hasan, Nur; Subramanian, Poorani; Heberling, Colin; Colwell, Rita; Hong, Pei-Ying

    2017-01-01

    (AdV) and Enteroviruses (EV) were enumerated using digital polymerase chain reaction (dPCR) and assessed for infectivity using fluorescence-based infection assays. MBR treatment was successful in reducing viral diversity. Plant viruses remained

  18. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  19. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  20. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  1. Mitochondrial DNA analysis reveals a low nucleotide diversity of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... gene sequences of C. japonica in China to assess nucleotide sequence diversity (GenBank ... provide a scientific basis for the regional control of forestry .... population (AB015869) was downloaded from GenBank database.

  2. Chloroplast and mitochondrial microsatellites for Millettia pinnata (Fabaceae) and cross-amplification in related species1

    Science.gov (United States)

    Wang, Yanling; Xie, Hongxian; Yang, Yi; Huang, Yelin; Wang, Jianwu; Tan, Fengxiao

    2017-01-01

    Premise of the study: Chloroplast and mitochondrial microsatellites were identified to study the population genetics of Millettia pinnata (Fabaceae). Methods and Results: Based on publicly available plastid genome sequence data of M. pinnata, 42 primer pairs were developed, of which 17 displayed polymorphisms across 89 individuals from four populations. For chloroplast loci, two to six alleles were recovered and the unbiased haploid diversity per locus ranged from 0.391 to 0.857. For mitochondrial loci, two to four alleles were recovered and the unbiased haploid diversity ranged from 0.264 to 0.740. Sixteen of the 17 screened markers could be successfully amplified in the related species M. pulchra. Conclusions: The 17 microsatellite markers developed here exhibited variation in M. pinnata and 16 presented transferability in the related species M. pulchra, suggesting that these markers will be valuable for genetic studies across M. pinnata and its related species. PMID:28529836

  3. The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Fukunaga, Kohji; Shinoda, Yasuharu; Tagashira, Hideaki

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) patients exhibit diverse pathologies such as endoplasmic reticulum (ER) stress and mitochondrial dysfunction in motor neurons. Five to ten percent of patients have familial ALS, a form of the disease caused by mutations in ALS-related genes, while sporadic forms of the disease occur in 90-95% of patients. Recently, it was reported that familial ALS patients exhibit a missense mutation in SIGMAR1 (c.304G > C), which encodes sigma-1 receptor (Sig-1R), substituting glutamine for glutamic acid at amino acid residue 102 (p.E102Q). Expression of that mutant Sig-1R(E102Q) protein reduces mitochondrial ATP production, inhibits proteasome activity and causes mitochondrial injury, aggravating ER stress-induced neuronal death in neuro2A cells. In this issue, we discuss mechanisms underlying mitochondrial impairment seen in ALS motor neurons and propose that therapies that protect mitochondria might improve the quality of life (QOL) of ALS patients and should be considered for clinical trials. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  4. Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae).

    Science.gov (United States)

    Chen, Juan; Zhang, Li-Chun; Xing, Yong-Mei; Wang, Yun-Qiang; Xing, Xiao-Ke; Zhang, Da-Wei; Liang, Han-Qiao; Guo, Shun-Xing

    2013-01-01

    Dendrobium spp. are traditional Chinese medicinal plants, and the main effective ingredients (polysaccharides and alkaloids) have pharmacologic effects on gastritis infection, cancer, and anti-aging. Previously, we confirmed endophytic xylariaceous fungi as the dominant fungi in several Dendrobium species of tropical regions from China. In the present study, the diversity, taxonomy, and distribution of culturable endophytic xylariaceous fungi associated with seven medicinal species of Dendrobium (Orchidaceae) were investigated. Among the 961 endophytes newly isolated, 217 xylariaceous fungi (morphotaxa) were identified using morphological and molecular methods. The phylogenetic tree constructed using nuclear ribosomal internal transcribed spacer (ITS), large subunit of ribosomal DNA (LSU), and beta-tubulin sequences divided these anamorphic xylariaceous isolates into at least 18 operational taxonomic units (OTUs). The diversity of the endophytic xylariaceous fungi in these seven Dendrobium species was estimated using Shannon and evenness indices, with the results indicating that the dominant Xylariaceae taxa in each Dendrobium species were greatly different, though common xylariaceous fungi were found in several Dendrobium species. These findings implied that different host plants in the same habitats exhibit a preference and selectivity for their fungal partners. Using culture-dependent approaches, these xylariaceous isolates may be important sources for the future screening of new natural products and drug discovery.

  5. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    Science.gov (United States)

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  6. Assessing genetic diversity and phylogeographic structure of duck ...

    African Journals Online (AJOL)

    In this study, the maternal genetic diversity and phylogenetic relationship of Nigerian duck populations were assessed. A total of 591 base pair fragment of the mitochondrial DNA (mtDNA) D-loop region of 87 indigenous ducks from two populations in Nigeria were analyzed. Seven haplotypes and 70 polymorphic sites were ...

  7. Mitochondrial shaping cuts.

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  8. Effects of reindeer density on vascular plant diversity on North Scandinavian mountains

    Directory of Open Access Journals (Sweden)

    Johan Olofsson

    2005-04-01

    Full Text Available We studied the effects of reindeer grazing on species richness and diversity of vascular plants on dolomite influenced low alpine sites in the species rich northern part of the Scandes using 8 sites with different reindeer densities. Two sites were situated inside Malla Strict Nature Reserve, where reindeer grazing have been totally prohibited since 1981, and strongly restricted since 1950s. The six other sites were located in other species rich hotspot sites standardized to be as similar to the dolomite-influenced sites in Malla Strict Reserve as possible but varying in reindeer densities commonly found in the Fennoscandian mountain chain. Each site with a habitat complex especially rich in rare vascular plants (the Dryas heath – low herb meadow complex was systematically sampled in four plots of 2 m x 10 m. The plots were divided to 20 squares of 1 m x 1 m, and complete species lists of vascular plants were compiled for each of the squares. The first DCA (detrended correspondence analysis axis was strongly related to an index of reindeer grazing, indicating that grazing has a strong impact on the composition of the vegetation. None of the characteristics indices of biodiversity (species richness, evenness or Shannon-Wiener H’ was correlated with reindeer density. The local abundances of categories consisting of relatively rare plants (Ca favored plants and red listed plants of Finland showed significant, positive correlation with the intensity of reindeer grazing. We conclude that even though the density of reindeer has no influence on the total species richness or diversity of vascular plants, reindeer may still be important for regional biodiversity as it seems to favour rare and threatened plants. Moreover, our results imply that standard diversity indices may have limited value in the context of conservation biology, as these indices are equally influenced by rarities and by trivial species.Abstract in Swedish / Sammandrag: Vi

  9. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  10. The Hidden Diversity of Zanclea Associated with Scleractinians Revealed by Molecular Data

    KAUST Repository

    Montano, Simone; Maggioni, Davide; Arrigoni, Roberto; Seveso, Davide; Puce, Stefania; Galli, Paolo

    2015-01-01

    focus on the genetic diversity among Zanclea specimens associated with 13 scleractinian genera. The monophyly of Zanclea associated with scleractinians was strongly supported in all nuclear and mitochondrial phylogenetic reconstructions. Furthermore, a

  11. Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and related species.

    Science.gov (United States)

    Zarza, Eugenia; Reynoso, Victor H; Emerson, Brent C

    2008-07-01

    While Quaternary climatic changes are considered by some to have been a major factor promoting speciation within the neotropics, others suggest that much of the neotropical species diversity originated before the Pleistocene. Using mitochondrial and nuclear sequence data, we evaluate the relative importance of Pleistocene and pre-Pleistocene events within the evolutionary history of the Mexican iguana Ctenosaura pectinata, and related species. Results support the existence of cryptic lineages with strong mitochondrial divergence (> 4%) among them. Some of these lineages form zones of secondary contact, with one of them hybridizing with C. hemilopha. Evolutionary network analyses reveal the oldest populations of C. pectinata to be those of the northern and southern Mexican coastal regions. Inland and mid-latitudinal coastal populations are younger in age as a consequence of a history of local extinction within these regions followed by re-colonization. Estimated divergence times suggest that C. pectinata originated during the Pliocene, whereas geographically distinct mitochondrial DNA lineages first started to diverge during the Pliocene, with subsequent divergence continuing through the Pleistocene. Our results highlight the influence of both Pliocene and Pleistocene events in shaping the geographical distribution of genetic variation within neotropical lowland organisms. Areas of high genetic diversity in southern Mexico were detected, this finding plus the high levels of genetic diversity within C. pectinata, have implications for the conservation of this threatened species.

  12. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae)

    Science.gov (United States)

    Shannon C.K. Straub; Richard C. Cronn; Christopher Edwards; Mark Fishbein; Aaron. Liston

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae...

  13. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity

    Directory of Open Access Journals (Sweden)

    Madelaine eBartlett

    2013-10-01

    Full Text Available Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; hypomorphic and hypermorphic alleles; altered protein-protein interactions; altered domain content; altered protein stability; and altered activity as an activator or repressor. Variability was also observed in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution.

  14. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Directory of Open Access Journals (Sweden)

    Anthony L Luz

    Full Text Available Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors, carbonyl cyanide 4-(trifluoromethoxy phenylhydrazone (mitochondrial uncoupler and sodium azide (cytochrome c oxidase inhibitor, we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1-, fusion (fzo-1-, mitophagy (pdr-1, pink-1-, and electron transport chain complex III (isp-1-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  15. Environmental determinants of woody plant diversity at a regional scale in China.

    Directory of Open Access Journals (Sweden)

    Hong Qian

    Full Text Available Understanding what drives the geographic variation of species richness across the globe is a fundamental goal of ecology and biogeography. Environmental variables have been considered as drivers of global diversity patterns but there is no consensus among ecologists on what environmental variables are primary drivers of the geographic variation of species richness. Here, I examine the relationship of woody plant species richness at a regional scale in China with sixteen environmental variables representing energy availability, water availability, energy-water balance, seasonality, and habitat heterogeneity. I found that temperature seasonality is the best predictor of woody species richness in China. Other important environmental variables include annual precipitation, mean temperature of the coldest month, and potential evapotranspiration. The best model explains 85% of the variation in woody plant species richness at the regional scale in China.

  16. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  17. Practicality of diversion path analysis

    International Nuclear Information System (INIS)

    Murphey, W.M.; Schleter, J.C.

    1974-07-01

    One can define the safeguards system for nuclear material as the set of all protective actions taken to prevent or to deter attempts to divert nuclear material to unauthorized use. Maintenance of effective safeguards requires a program for routine assessment of plant safeguards systems in terms of their capabilities to satisfy safeguards aims. Plant internal control systems provide capabilities for detection of unprevented diversion and can provide assurance that diversion has not occurred. A procedure called Diversion Path Analysis (DPA) enables routine assessment of the capabilities of internal control systems in this regard and identification of safeguards problem areas in a plant. A framework for safeguards system design is also provided which will allow flexibility to accommodate individual plant circumstances while maintaining acceptable diversion detection capability. The steps of the procedure are described and the practicality of the analytical method is shown by referring to a demonstration test for a high throughput process where plant personnel were major participants. The boundary conditions for the demonstration case are given, along with some conclusions about the general procedure. (U.S.)

  18. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Sirtuin type 1 (SIRT1 belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs, as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP. The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1.

  19. Mitochondrial DNA diversity of the Amerindian populations living in the Andean Piedmont of Bolivia: Chimane, Moseten, Aymara and Quechua.

    Science.gov (United States)

    Corella, Alfons; Bert, Francesc; Pérez-Pérez, Alejandro; Gené, Manel; Turbón, Daniel

    2007-01-01

    Chimane, Moseten Aymara and Quechua are Amerindian populations living in the Bolivian Piedmont, a characteristic ecoregion between the eastern slope of the Andean mountains and the Amazonian Llanos de Moxos. In both neighbouring areas, dense and complex societies have developed over the centuries. The Piedmont area is especially interesting from a human peopling perspective since there is no clear evidence regarding the genetic influence and peculiarities of these populations. This land has been used extensively as a territory of economic and cultural exchange between the Andes and Amazonia, however Chimane and Moseten populations have been sufficiently isolated from their neighbour groups to be recognized as distinct populations. Genetic information suggests that evolutionary processes, such as genetic drift, natural selection and genetic admixture have formed the history of the Piedmont populations. The objective of this study is to characterize the genetic diversity of the Piedmont populations, analysing the sequence variability of the HVR-I control region in the mitochondrial DNA (mtDNA). Haplogroup mtDNA data available from the whole of Central and South America were utilized to determine the relationship of the Piedmont populations with other Amerindian populations. Hair pulls were obtained in situ, and DNA from non-related individuals was extracted using a standard Chelex 100 method. A 401 bp DNA fragment of HVR-I region was amplified using standard procedures. Two independent 401 and 328 bp DNA fragments were sequenced separately for each sample. The sequence analyses included mismatch distribution and mean pairwise differences, median network analyses, AMOVA and principal component analyses. The genetic diversity of DNA sequences was measured and compared with other South Amerindian populations. The genetic diversity of 401 nucleotide mtDNA sequences, in the hypervariable Control Region, from positions 16 000-16 400, was characterized in a sample of 46

  20. Flora of IGCAR campus and PFBR site: II plant diversity analysis

    International Nuclear Information System (INIS)

    Gajendiran, N.; Ragupathy, S.

    2003-09-01

    This report highlights the level of plant diversity that prevails in IGCAR and PFBR sites. The stress tolerant sandy-shore flora of natural vegetation adorns the Campus. It is bewitchingly blended with horticultural design and sets the backdrop of the nuclear industries- MAPS I and II and the incumbent PFBR. The floristic analysis points out the genetic richness of the campus (over 650 plant species in a narrow strip of ∼2500 acres), which can also serve as genetic reserve for coastal flora. Based on the study, a digitized inventory of plant resources of Kalpakkam is now made available. Taxonomy, distribution, vernacular name, uses, produces, bio-chemical component, ethnobotany, photograph are featured in the database. The survey highlights the potential of mangroves as bio-fence protecting against cyclone and sand and salt laden wind erosion. Such information may also be useful to understand the flora of east coast, in general. Biodiversity information gains importance for its use in caring the ecosystem and for its wise management at every micro-level down to the back yard of individual institution, which is the need of the hour. The sustainable use and preserving the biological resources maximize the net long-term benefits to mankind. (author)