WorldWideScience

Sample records for diurnal water relations

  1. DIURNAL CHANGES IN LEAF PHOTOSYNTHESIS AND RELATIVE WATER CONTENT OF GRAPEVINE

    Directory of Open Access Journals (Sweden)

    Monica Popescu

    2014-11-01

    Full Text Available Variation in light intensity, air temperature and relative air humidity leads to diurnal variations of photosynthetic rate and leaf relative water content. In order to determine the diurnal changes in net photosynthetic rate of vine plants and influence of the main environmental factors, gas exchange in the vine leaves were measure using a portable plant CO2 analysis package. The results show that diurnal changes in photosynthetic rate could be interpreted as single-peak curve, with a maximum at noon (10.794 μmol CO2 m-2 s-1. Leaf relative water content has maximum value in the morning; the values may slightly decrease during the day (day of June, with normal temperature, no rain, no water restriction in soil.

  2. Water-stress-induced breakdown of carbon-water relations: indicators from diurnal FLUXNET patterns

    Science.gov (United States)

    Nelson, Jacob A.; Carvalhais, Nuno; Migliavacca, Mirco; Reichstein, Markus; Jung, Martin

    2018-04-01

    Understanding of terrestrial carbon and water cycles is currently hampered by an uncertainty in how to capture the large variety of plant responses to drought. In FLUXNET, the global network of CO2 and H2O flux observations, many sites do not uniformly report the ancillary variables needed to study drought response physiology. To this end, we outline two data-driven indicators based on diurnal energy, water, and carbon flux patterns derived directly from the eddy covariance data and based on theorized physiological responses to hydraulic and non-stomatal limitations. Hydraulic limitations (i.e. intra-plant limitations on water movement) are proxied using the relative diurnal centroid (CET*), which measures the degree to which the flux of evapotranspiration (ET) is shifted toward the morning. Non-stomatal limitations (e.g. inhibitions of biochemical reactions, RuBisCO activity, and/or mesophyll conductance) are characterized by the Diurnal Water-Carbon Index (DWCI), which measures the degree of coupling between ET and gross primary productivity (GPP) within each day. As a proof of concept we show the response of the metrics at six European sites during the 2003 heat wave event, showing a varied response of morning shifts and decoupling. Globally, we found indications of hydraulic limitations in the form of significantly high frequencies of morning-shifted days in dry/Mediterranean climates and savanna/evergreen plant functional types (PFTs), whereas high frequencies of decoupling were dominated by dry climates and grassland/savanna PFTs indicating a prevalence of non-stomatal limitations in these ecosystems. Overall, both the diurnal centroid and DWCI were associated with high net radiation and low latent energy typical of drought. Using three water use efficiency (WUE) models, we found the mean differences between expected and observed WUE to be -0.09 to 0.44 µmol mmol-1 and -0.29 to -0.40 µmol mmol-1 for decoupled and morning-shifted days, respectively, compared

  3. diurnal and seasonal water relations of the desert phreatophyte prosopis-glandulosa (honey mesquite) in the Sonoran Desert of California

    OpenAIRE

    Nilsen, E. T.; Sharifi, M. R.; Rundel, P. W.; Jarrell, W. M.; Virginia, R. A.

    1983-01-01

    Diurnal and Seasonal water relations were monitored in a population of Prosopis glandulosa var. torreyana in the Sonoran Desert of southern California. Prosopis glandulosa at this research site acquired its water from a ground water source 4-6 m deep. Measurements of diurnal and seasonal cycles of aboveground environmental conditions, soil moisture, and soil water potential (to 6 m depth) were taken to ascertain environmental water availability and water stress. Leaf water potential, leaf con...

  4. Diurnal changes in ocean color in coastal waters

    Science.gov (United States)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  5. Evolution of concentration-discharge relations revealed by high frequency diurnal sampling of stream water during spring snowmelt

    Science.gov (United States)

    Olshansky, Y.; White, A. M.; Thompson, M.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    Concentration discharge (C-Q) relations contain potentially important information on critical zone (CZ) processes including: weathering reactions, water flow paths and nutrient export. To examine the C-Q relations in a small (3.3 km2) headwater catchment - La Jara Creek located in the Jemez River Basin Critical Zone Observatory, daily, diurnal stream water samples were collected during spring snow melt 2017, from two flumes located in outlets of the La Jara Creek and a high elevation zero order basin within this catchment. Previous studies from this site (McIntosh et al., 2017) suggested that high frequency sampling was needed to improve our interpretation of C-Q relations. The dense sampling covered two ascending and two descending limbs of the snowmelt hydrograph, from March 1 to May 15, 2017. While Na showed inverse correlation (dilution) with discharge, most other solutes (K, Mg, Fe, Al, dissolved organic carbon) exhibited positive (concentration) or chemostatic trends (Ca, Mn, Si, dissolved inorganic carbon and dissolved nitrogen). Hysteresis in the C-Q relation was most pronounced for bio-cycled cations (K, Mg) and for Fe, which exhibited concentration during the first ascending limb followed by a chemostatic trend. A pulsed increase in Si concentration immediately after the first ascending limb in both flumes suggests mixing of deep groundwater with surface water. A continual increase in Ge/Si concentrations followed by a rapid decrease after the second rising limb may suggest a fast transition between soil water to ground water dominating the stream flow. Fourier transform infrared spectroscopy of selected samples across the hydrograph demonstrated pronounced changes in dissolved organic matter molecular composition with the advancement of the spring snow melt. X-ray micro-spectroscopy of colloidal material isolated from the collected water samples indicated a significant role for organic matter in the transport of inorganic colloids. Analyses of high

  6. Shoot water relations of mature black spruce families displaying a genotype × environment interaction in growth rate. III. Diurnal patterns as influenced by vapor pressure deficit and internal water status

    Science.gov (United States)

    John E. Major; Kurt H. Johnsen

    2001-01-01

    Pressure­volume curves were constructed and shoot water potentials measured for +20-year-old black spruce (Picea mariana (Mill.) BSP) trees from four full-sib families growing on a moist site and a dry site at the Petawawa Research Forest, Ontario, to determine whether differences in diurnal water relations traits were related to productivity. To...

  7. Using diurnal temperature signals to infer vertical groundwater-surface water exchange

    Science.gov (United States)

    Irvine, Dylan J.; Briggs, Martin A.; Lautz, Laura K.; Gordon, Ryan P.; McKenzie, Jeffrey M.; Cartwright, Ian

    2017-01-01

    Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer.

  8. Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period

    Directory of Open Access Journals (Sweden)

    Y. García-Orellana

    2013-01-01

    Full Text Available Field-grown lemon trees (Citrus limon (L. Burm. fil. cv. Fino were subjected to different drip irrigation treatments: a control treatment, irrigated daily above crop water requirements in order to obtain non-limiting soil water conditions and two deficit irrigation treatments, reducing the water applied according to the maximum daily trunk shrinkage (MDS signal intensity (actual MDS/control treatment MDS threshold values of 1.25 (T1 treatment and 1.35 (T2 treatment, which induced two different drought stress levels. Daily variations in leaf (Yleaf and stem (Ystem water potentials, leaf conductance, net photosynthesis, sap flow (SF and trunk diameter fluctuations were studied on four occasions during the lemon fruit growth period. Ystem and Yleaf revealed a diurnal pattern in response to changes in evaporative demand of the atmosphere. Both water potentials decreased in response to water deficits, which were more pronounced in the T2 treatment. Ystem was seen to be a better plant water status indicator than Yleaf. The difference between the two values of Y (Ystem - Yleaf  = DY was closely correlated with sap flow, making it a suitable measure of leaf transpiration. Using the slope of this relationship, the canopy hydraulic conductance (KC was estimated. When other continuously recorded plant-based indicators are not accessible, the concurrent measurement of leaf and stem water potentials at midday, which are relatively inexpensive to measure and user-friendly, act as sufficiently good indicators of the plant water status in field grown Fino lemon trees.

  9. Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Orellana, Y.; Ortuno, M. F.; Conejero, W.; Ruiz-Sanchez, M. C.

    2013-05-01

    Field-grown lemon trees (Citrus limon (L.) Burm. fil. cv. Fino) were subjected to different drip irrigation treatments: a control treatment, irrigated daily above crop water requirements in order to obtain non-limiting soil water conditions and two deficit irrigation treatments, reducing the water applied according to the maximum daily trunk shrinkage (MDS) signal intensity (actual MDS/control treatment MDS) threshold values of 1.25 (T1 treatment) and 1.35 (T2 treatment), which induced two different drought stress levels. Daily variations in leaf (Y{sub l}eaf) and stem (Y{sub s}tem) water potentials, leaf conductance, net photosynthesis, sap flow (SF) and trunk diameter fluctuations were studied on four occasions during the lemon fruit growth period. Ystem and Y{sub l}eaf revealed a diurnal pattern in response to changes in evaporative demand of the atmosphere. Both water potentials decreased in response to water deficits, which were more pronounced in the T2 treatment. Y{sub s}tem was seen to be a better plant water status indicator than Y{sub l}eaf. The difference between the two values of Y (Y{sub s}tem - Y{sub l}eaf {Delta}{Psi}) was closely correlated with sap flow, making it a suitable measure of leaf transpiration. Using the slope of this relationship, the canopy hydraulic conductance (KC) was estimated. When other continuously recorded plant-based indicators are not accessible, the concurrent measurement of leaf and stem water potentials at midday, which are relatively inexpensive to measure and user-friendly, act as sufficiently good indicators of the plant water status in field grown Fino lemon trees. (Author) 40 refs.

  10. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees.

    Science.gov (United States)

    Cermák, Jan; Kucera, Jiri; Bauerle, William L; Phillips, Nathan; Hinckley, Thomas M

    2007-02-01

    Diurnal and seasonal tree water storage was studied in three large Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) trees at the Wind River Canopy Crane Research site. Changes in water storage were based on measurements of sap flow and changes in stem volume and tissue water content at different heights in the stem and branches. We measured sap flow by two variants of the heat balance method (with internal heating in stems and external heating in branches), stem volume with electronic dendrometers, and tissue water content gravimetrically. Water storage was calculated from the differences in diurnal courses of sap flow at different heights and their integration. Old-growth Douglas-fir trees contained large amounts of free water: stem sapwood was the most important storage site, followed by stem phloem, branch sapwood, branch phloem and needles. There were significant time shifts (minutes to hours) between sap flow measured at different positions within the transport system (i.e., stem base to shoot tip), suggesting a highly elastic transport system. On selected fine days between late July and early October, when daily transpiration ranged from 150 to 300 liters, the quantity of stored water used daily ranged from 25 to 55 liters, i.e., about 20% of daily total sap flow. The greatest amount of this stored water came from the lower stem; however, proportionally more water was removed from the upper parts of the tree relative to their water storage capacity. In addition to lags in sap flow from one point in the hydrolic pathway to another, the withdrawal and replacement of stored water was reflected in changes in stem volume. When point-to-point lags in sap flow (minutes to hours near the top and stem base, respectively) were considered, there was a strong linear relationship between stem volume changes and transpiration. Volume changes of the whole tree were small (equivalent to 14% of the total daily use of stored water) indicating that most stored water came from

  11. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  12. Diurnal Reflectance Changes in Vegetation Observed with AVIRIS

    Science.gov (United States)

    Vanderbilt, V. C.; Ambrosia, V. G.; Ustin, S. L.

    1998-01-01

    Among the most important short-term dynamic biological processes are diurnal changes in canopy water relations. Plant regulation of water transport through stomatal openings affects other gaseous transport processes, often dramatically decreasing photosynthetic fixation of carbon dioxide during periods of water stress. Water stress reduces stomatal conductance of water vapor through the leaf surface and alters the diurnal timing of stomatal opening. Under non-water stressed conditions, stomates typically open soon after dawn and transpire water vapor throughout the daylight period. During stress periods, stomates may close for part of the day, generally near mid-day. Under prolonged stress conditions, stomatal closure shifts to earlier times during the day; stomates may close by mid-morning and remain closed until the following morning - or remain closed entirely. Under these conditions the relationship between canopy greenness (e.g., measured with a vegetation index or by spectral mixture analysis) and photosynthetic fixation of carbon is lost and the remotely sensed vegetation metric is a poor predictor of gas exchange. Prediction of stomatal regulation and exchange of water and trace gases is critical for ecosystem and climate models to correctly estimate budgets of these gases and understand or predict other processes like gross and net ecosystem primary production. Plant gas exchange has been extensively studied by physiologists at the leaf and whole plant level and by biometeorologists at somewhat larger scales. While these energy driven processes follow a predictable if somewhat asymmetric diurnal cycle dependent on soil water availability and the constraints imposed by the solar energy budget, they are nonetheless difficult to measure at the tree and stand levels using conventional methods. Ecologists have long been interested in the potential of remote sensing for monitoring physiological changes using multi-temporal images. Much of this research has

  13. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool

    NARCIS (Netherlands)

    Paaijmans, K.P.; Heusinkveld, B.G.; Jacobs, A.F.G.

    2008-01-01

    Water temperature is a critical regulator in the growth and development of malaria mosquito immatures, as they are poikilothermic. Measuring or estimating the diurnal temperature ranges to which these immatures are exposed is of the utmost importance, as these immatures will develop into adults that

  14. Biodegradation of Toluene under seasonal and diurnal fluctuations of soil-water temperature

    NARCIS (Netherlands)

    Yadav, B.K.; Shrestha, S.R.; Hassanizadeh, S.M.

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of

  15. Oral Contraceptives and Renal Water Handling; A diurnal study in young women

    DEFF Research Database (Denmark)

    Graugaard-Jensen, Charlotte; Hvistendahl, Gitte M; Frøkiær, Jørgen

    2017-01-01

    To test the hypothesis that use of oral contraceptives (OC) changes diurnal variation in fluid balance mechanisms including blood pressure, secretion of vasopressin and oxytocin, and renal water and electrolyte excretion. Fifteen naturally cycling (NC) women in mid-follicular phase and 11 long-te...

  16. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    Science.gov (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  17. Predominant role of water in regulating the tree-growth response to diurnal asymmetric warmin

    Science.gov (United States)

    Chen, Z.; Xia, J.; Cui, E.

    2017-12-01

    Growth of the Northern Hemisphere trees is affected by diurnal asymmetric warming, which is generally considered to touch off carbon assimilation and increment of carbon storage. Asymmetric effects of diurnal warming on vegetation greenness were validated in previous researches, however, the effect of diurnal warming on wood tissue which stores most carbon of a whole plant is still unknown. Here, we combined ring-width index (RWI), remote sensing-based normalized difference vegetation index (NDVI) and climate datasets to detect the effects of daytime and night-time warming on vegetation growth, respectively. Our results indicate that daytime warming enhances NDVI but has neutral effect on tree woody growth over the Northern Hemisphere. Response of wood growth to daytime warming is linearly regulated by soil water availability. The underlying mechanism of different response of canopy and wood growth to daytime warming may attribute to the biomass change, that is, allocation to foliage tissues increased at the expense of wood tissue under warming and water-limited conditions. Night-time warming show neutral effects on NDVI and RWI over the Northern Hemisphere, and the neutral Tmin-NDVI correlations result from the non-linear mediation of soil water availability. Our results highlight the current greening trend under daytime warming does not mean higher carbon sink capacity, the warming-drying climate may impair the large carbon sink of global forests.

  18. Diurnal changes in ocean color sensed in satellite imagery

    Science.gov (United States)

    Arnone, Robert; Vandermuelen, Ryan; Soto, Inia; Ladner, Sherwin; Ondrusek, Michael; Yang, Haoping

    2017-07-01

    Measurements of diurnal changes in ocean color in turbid coastal regions in the Gulf of Mexico were characterized using above water spectral radiometry from a National Aeronautics and Space Administration (aerosol robotic network-WaveCIS CSI-06) site that can provide 8 to 10 observations per day. Satellite capability to detect diurnal changes in ocean color was characterized using hourly overlapping afternoon orbits of the visual infrared imaging radiometer suite (VIIRS) Suomi National Polar-orbiting Partnership ocean color sensor and validated with in situ observations. The monthly cycle of diurnal changes was investigated for different water masses using VIIRS overlaps. Results showed the capability of satellite observations to monitor hourly color changes in coastal regions that can be impacted by vertical movement of optical layers, in response to tides, resuspension, and river plume dispersion. The spatial variability of VIIRS diurnal changes showed the occurrence and displacement of phytoplankton blooming and decaying processes. The diurnal change in ocean color was above 20%, which represents a 30% change in chlorophyll-a. Seasonal changes in diurnal ocean color for different water masses suggest differences in summer and winter responses to surface processes. The diurnal changes observed using satellite ocean color can be used to define the following: surface processes associated with biological activity, vertical changes in optical depth, and advection of water masses.

  19. Factors affecting diurnal stem contraction in young Douglas-fir

    Science.gov (United States)

    Warren D. Devine; Constance Harrington

    2011-01-01

    Diurnal fluctuation in a tree's stem diameter is a function of daily growth and of the tree's water balance, as water is temporarily stored in the relatively elastic outer cambial and phloem tissues. On a very productive site in southwestern Washington, U.S.A we used recording dendrometers to monitor stem diameter fluctuations of Douglas-fir at plantation...

  20. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    International Nuclear Information System (INIS)

    Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario

    2015-01-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ 18 O-H 2 O) as well as those of nitrate (δ 15 N-NO 3 − and δ 18 O-NO 3 − ) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal

  1. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  2. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    Science.gov (United States)

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-09-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (2110°C, 3021°C, and 1030°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  3. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K

    2012-05-12

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  4. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Chittoor Viswanathan, Vidhya [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Université de Neuchâtel, Centre d' Hydrogéologie et de Géothermie (CHYN), Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland); Molson, John [Université Laval, Département de Géologie et Génie Géologique, Québec City, Québec (Canada); Schirmer, Mario [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Université de Neuchâtel, Centre d' Hydrogéologie et de Géothermie (CHYN), Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland)

    2015-11-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min–1 h) over selected time scales. In addition, the stable isotopes of water (δD and δ{sup 18}O-H{sub 2}O) as well as those of nitrate (δ{sup 15}N-NO{sub 3}{sup −} and δ{sup 18}O-NO{sub 3}{sup −}) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes — mainly photosynthesis and respiration — were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological

  5. Sleep hygiene awareness: its relation to sleep quality and diurnal preference

    OpenAIRE

    Voinescu, Bogdan Ioan; Szentagotai-Tatar, Aurora

    2015-01-01

    Background Sleep hygiene is a core component for psychological treatments of insomnia and essential for maintaining a satisfactory sleep. Our study aimed to measure the sleep hygiene awareness and the self-reported quality of sleep among three age groups (young adults, adults and middle-aged adults) and to determine their relation. We also measured their relation with diurnal preference. Methods Using an online questionnaire, we surveyed six hundred fifty two participants, recruited nationwid...

  6. Diurnal-and sex-related difference of metallothionein expression in mice

    Directory of Open Access Journals (Sweden)

    Zhang Dan

    2012-07-01

    Full Text Available Abstract Background Metallothionein (MT is a small, cysteine-rich, metal-binding protein that plays an important role in protecting against toxicity of heavy metal and chemicals. This study was aimed to define diurnal and sex variation of MT in mice. Methods Adult mice were maintained in light- and temperature-controlled facilities for 2 weeks with light on at 8:00 and light off at 20:00. The blood, liver, and kidneys were collected every 4 h during the 24 h period. Total RNA was isolated, purified, and subjected to real-time RT-PCR analysis and MT protein was determined by western blot and the Cd/hemoglobin assay. Results The diurnal variations in mRNA levels of MT-1 and MT-2in liver were dramatic, up to a 40-foldpeak/trough ratio. MT mRNA levels in kidneys and blood also showed diurnal variation, up to 5-fold peak/trough ratio. The diurnal variation of MT mRNAs resembled the clock gene albumin site D-binding protein (Dbp, and was anti-phase to the clock gene Brain and Muscle ARNT-like Protein 1 (Bmal1 in liver and kidneys. The peaks of MT mRNA levels were higher in females than in males. Hepatic MT protein followed a similar pattern, with about a 3-fold difference. Conclusion MT mRNA levels and protein showed diurnal- and sex-variation in liver, kidney, and blood of mice, which could impact the body defense against toxic stimuli.

  7. Tracking Seasonal and Diurnal Photosynthesis and Plant Water Status in Maize Using SIF, Eddy Covariance Fluxes, PAM Fluorescence and Gas Exchange

    Science.gov (United States)

    Chang, C.; Melkonian, J.; Riha, S. J.; Gu, L.; Sun, Y.

    2017-12-01

    Improving the sensitivity of methods for crop monitoring and yield forecasting is crucial as the frequency of extreme weather events increases. Conventional remote monitoring methods rely on greenness-based indices such as NDVI and EVI, which do not directly measure photosynthesis and are not sufficiently sensitive to rapid plant stress response. Solar-induced chlorophyll fluorescence (SIF) is a promising new technology that serves as a direct functional proxy of photosynthesis. We developed the first system utilizing dual QE Pro spectrometers to continuously measure the diurnal and seasonal cycle of SIF, and deployed the system in a corn field in upstate New York in 2017. To complement SIF, canopy-level measurements of carbon and water fluxes were also measured, along with concurrent leaf-level measurements of gas exchange and PAM fluorescence, midday water potential, leaf pigments, phenology, LAI, and soil moisture. We show that SIF is well correlated to GPP during the growing season and show that both are controlled by similar environmental conditions including PAR and water availability. We also describe diurnal changes in photosynthesis and plant water status and demonstrate the sensitivity of SIF to diurnal plant response.

  8. Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model

    Science.gov (United States)

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Morcrette, Cyril J.; Hill, Peter G.; Russell, Jacqueline E.; Brindley, Helen E.

    2018-04-01

    A globally complete, high temporal resolution and multiple-variable approach is employed to analyse the diurnal cycle of Earth's outgoing energy flows. This is made possible via the use of Met Office model output for September 2010 that is assessed alongside regional satellite observations throughout. Principal component analysis applied to the long-wave component of modelled outgoing radiation reveals dominant diurnal patterns related to land surface heating and convective cloud development, respectively explaining 68.5 and 16.0 % of the variance at the global scale. The total variance explained by these first two patterns is markedly less than previous regional estimates from observations, and this analysis suggests that around half of the difference relates to the lack of global coverage in the observations. The first pattern is strongly and simultaneously coupled to the land surface temperature diurnal variations. The second pattern is strongly coupled to the cloud water content and height diurnal variations, but lags the cloud variations by several hours. We suggest that the mechanism controlling the delay is a moistening of the upper troposphere due to the evaporation of anvil cloud. The short-wave component of modelled outgoing radiation, analysed in terms of albedo, exhibits a very dominant pattern explaining 88.4 % of the variance that is related to the angle of incoming solar radiation, and a second pattern explaining 6.7 % of the variance that is related to compensating effects from convective cloud development and marine stratocumulus cloud dissipation. Similar patterns are found in regional satellite observations, but with slightly different timings due to known model biases. The first pattern is controlled by changes in surface and cloud albedo, and Rayleigh and aerosol scattering. The second pattern is strongly coupled to the diurnal variations in both cloud water content and height in convective regions but only cloud water content in marine

  9. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential if leaf hydraulic conductance is insufficient to supply water to in...

  10. Effects of sleeve gastrectomy on the composition and diurnal oscillation of gut microbiota related to the metabolic improvements.

    Science.gov (United States)

    Shao, Yikai; Shen, Qiwei; Hua, Rong; Evers, Simon S; He, Kai; Yao, Qiyuan

    2018-03-07

    Disruptions of the composition and diurnal oscillation of gut microbiota are involved in metabolic disorders. To identify alterations in both the composition and diurnal oscillation of gut microbiota after high-fat diet (HFD) feeding and sleeve gastrectomy (SG) related to host metabolic status. University laboratories. Twenty-one 6-week-old male C57 BL/6 J mice were randomized on an HFD (n = 14) or normal chow (NC, n = 7). After 14 weeks of feeding, HFD-induced obese mice were randomized to receive either SG or sham surgery (n = 7 in each group). Fecal samples were collected every 6 hours over a 24-hour period at 14 weeks of NC or HFD feeding and subsequently 8 weeks after surgery. The composition and diurnal oscillation of gut microbiota were characterized using next-generation Illumina sequencing of 16 S rDNA. HFD feeding led to adiposity, disrupted composition, and impaired diurnal oscillation of gut microbiota relative to NC. After surgery, SG mice had considerable weight loss, improved glucose tolerance, and insulin sensitivity compared with sham mice. SG restored the reduced richness and disruptions in the composition of gut microbiota. The diminished diurnal oscillation of gut microbiota was improved after SG. SG not only changed the disrupted composition of gut microbiota toward that of NC feeding, but also improved the dampened diurnal oscillation of gut microbiota due to HFD feeding. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  11. Effects of the Relaxation of Upwelling-Favorable Winds on the Diurnal and Semidiurnal Water Temperature Fluctuations in the Santa Barbara Channel, California

    Science.gov (United States)

    Aristizábal, María. F.; Fewings, Melanie R.; Washburn, Libe

    2017-10-01

    In the Santa Barbara Channel, California, and around the Northern Channel Islands, water temperature fluctuations in the diurnal and semidiurnal frequency bands are intermittent, with amplitudes that vary on time scales of days to weeks. The cause of this intermittency is not well understood. We studied the effects of the barotropic tide, vertical stratification, propagation of coastal-trapped waves, regional wind relaxations, and diurnal-band winds on the intermittency of the temperature fluctuations during 1992-2015. We used temperature data from 43 moorings in 10-200 m water depth and wind data from two buoys and one land station. Subtidal-frequency changes in vertical stratification explain 20-40% of the intermittency in diurnal and semidiurnal temperature fluctuations at time scales of days to weeks. Along the mainland north of Point Conception and at the Northern Channel Islands, the relaxation of upwelling-favorable winds substantially increases vertical stratification, accounting for up to 55% of the subtidal-frequency variability in stratification. As a result of the enhanced stratification, wind relaxations enhance the diurnal and semidiurnal temperature fluctuations at those sites, even though the diurnal-band wind forcing decreases during wind relaxation. A linear model where the background stratification is advected vertically explains a substantial fraction of the temperature fluctuations at most sites. The increase of vertical stratification and subsequent increase in diurnal and semidiurnal temperature fluctuations during wind relaxation is a mechanism that can supply nutrients to the euphotic zone and kelp forests in the Channel in summer when upwelling is weak.

  12. Temporal and diurnal analysis of trace elements in the Cryospheric water at remote Laohugou basin in northeast Tibetan Plateau.

    Science.gov (United States)

    Dong, Zhiwen; Kang, Shichang; Qin, Dahe; Qin, Xiang; Yan, Fangping; Du, Wentao; Wei, Ting

    2017-03-01

    An evaluation of glacial meltwater chemistry is needed under recent dramatic glacier melting when water resources might be significantly impacted. This study investigated trace elements variation in the meltwater stream, and its related aquatic environmental information, at the Laohugou (LHG) glacier basin (4260 m a.s.l.) at a remote location in northeast Tibetan Plateau. We focused on the spatial, temporal and diurnal change of trace elements during the glacier ablation period. Results showed evident elements spatial difference on the glacier surface meltwater, as most of the elements showed increased concentration at the terminus compared to higher elevations sites. Dominant elements in the meltwater were Ba, Sr and Cr, whereas elements with high enrichment factors (EFs) were Sb, Ni, Mo and Zn. Temporal change of some trace elements concentration (e.g. Sc, Cu, and Rb) indicated increasing trend with accelerated snow-ice melting, whereas others (e.g. Ni, Zn, and Pb) showed decreasing trend. We find that, trace elements showed evident diurnal change and a peak value of concentration was observed each day at about 15:00-17:00, and the diurnal change was influenced by runoff level and pH. Moreover, EFs calculations revealed that heavy metals were partially originated from regional anthropogenic sources. Overall, the accelerated diurnal and temporal snow-ice melting (with high runoff level) were correlated to increased elemental concentration, pH, EC and elemental change mode, and thus this work is of great importance for evaluating the impacts of accelerated glacier melting to meltwater chemistry and downstream ecosystem in the northeast Tibetan Plateau. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Diurnal blood pressure changes.

    Science.gov (United States)

    Asayama, Kei; Satoh, Michihiro; Kikuya, Masahiro

    2018-05-23

    The definition of diurnal blood pressure changes varies widely, which can be confusing. Short-term blood pressure variability during a 24-h period and the dipping status of diurnal blood pressure can be captured by ambulatory blood pressure monitoring, and these metrics are reported to have prognostic significance for cardiovascular complications. Morning blood pressure surge also indicates this risk, but its effect may be limited to populations with specific conditions. Meanwhile, the combined use of conventional office blood pressure and out-of-office blood pressure allows us to identify people with white-coat and masked hypertension. Current home devices can measure nocturnal blood pressure during sleep more conveniently than ambulatory monitoring; however, we should pay attention to blood pressure measurement conditions regardless of whether they are in a home, ambulatory, or office setting. The relatively poor reproducibility of diurnal blood pressure changes, including the nocturnal fall of blood pressure, is another underestimated issue to be addressed. Although information on diurnal blood pressure changes is expected to be used more effectively in the future, we should also keep in mind that blood pressure levels have remained central to the primary and secondary prevention of blood pressure-related cardiovascular diseases in clinical practice.

  14. Diurnal flight behavior of Ichneumonoidea (Insecta: Hymenoptera) related to environmental factors in a tropical dry forest.

    Science.gov (United States)

    González-Moreno, A; Bordera, S; Leirana-Alcocer, J; Delfín-González, H

    2012-06-01

    The biology and behavior of insects are strongly influenced by environmental conditions such as temperature and precipitation. Because some of these factors present a within day variation, they may be causing variations on insect diurnal flight activity, but scant information exists on the issue. The aim of this work was to describe the patterns on diurnal variation of the abundance of Ichneumonoidea and their relation with relative humidity, temperature, light intensity, and wind speed. The study site was a tropical dry forest at Ría Lagartos Biosphere Reserve, Mexico; where correlations between environmental factors (relative humidity, temperature, light, and wind speed) and abundance of Ichneumonidae and Braconidae (Hymenoptera: Ichneumonoidea) were estimated. The best regression model for explaining abundance variation was selected using the second order Akaike Information Criterion. The optimum values of temperature, humidity, and light for flight activity of both families were also estimated. Ichneumonid and braconid abundances were significantly correlated to relative humidity, temperature, and light intensity; ichneumonid also showed significant correlations to wind speed. The second order Akaike Information Criterion suggests that in tropical dry conditions, relative humidity is more important that temperature for Ichneumonoidea diurnal activity. Ichneumonid wasps selected toward intermediate values of relative humidity, temperature and the lowest wind speeds; while Braconidae selected for low values of relative humidity. For light intensity, braconids presented a positive selection for moderately high values.

  15. Diurnal and seasonal changes in stem increment and water use by yellow poplar trees in response to environmental stress.

    Science.gov (United States)

    McLaughlin, Samuel B; Wullschleger, Stan D; Nosal, Miloslav

    2003-11-01

    To evaluate indicators of whole-tree physiological responses to climate stress, we determined seasonal, daily and diurnal patterns of growth and water use in 10 yellow poplar (Liriodendron tulipifera L.) trees in a stand recently released from competition. Precise measurements of stem increment and sap flow made with automated electronic dendrometers and thermal dissipation probes, respectively, indicated close temporal linkages between water use and patterns of stem shrinkage and swelling during daily cycles of water depletion and recharge of extensible outer-stem tissues. These cycles also determined net daily basal area increment. Multivariate regression models based on a 123-day data series showed that daily diameter increments were related negatively to vapor pressure deficit (VPD), but positively to precipitation and temperature. The same model form with slight changes in coefficients yielded coefficients of determination of about 0.62 (0.57-0.66) across data subsets that included widely variable growth rates and VPDs. Model R2 was improved to 0.75 by using 3-day running mean daily growth data. Rapid recovery of stem diameter growth following short-term, diurnal reductions in VPD indicated that water stored in extensible stem tissues was part of a fast recharge system that limited hydration changes in the cambial zone during periods of water stress. There were substantial differences in the seasonal dynamics of growth among individual trees, and analyses indicated that faster-growing trees were more positively affected by precipitation, solar irradiance and temperature and more negatively affected by high VPD than slower-growing trees. There were no negative effects of ozone on daily growth rates in a year of low ozone concentrations.

  16. SST diurnal variability in the North Sea and the Baltic Sea

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob; Hasager, Charlotte Bay

    2012-01-01

    (σ) between 0.4K and 0.9K. The 5year record with daytime temperature anomalies is used to derive robust statistical description of duration, spatial extent, proximity to coast and water depth of the diurnal warming events. Seasonal and inter-annual variations in the diurnal warming are also...... quantified. Daytime anomalies exceeding 2K are identified during the spring and summer months of every year, peaking at 1500 LT. Events with daily anomalies exceeding 5K are observed. Areas where diurnal variability is often observed coincide with areas of frequently observed low winds and turbid waters...

  17. Impacts of water stress, environment and rootstock on the diurnal behaviour of stem water potential and leaf conductance in pistachio (Pistacia vera L.)

    International Nuclear Information System (INIS)

    Memmi, H.; Couceiro, J.F.; Gijón, C.; Pérez-López, D.

    2016-01-01

    Little information is available on the diurnal behaviour of water potential and leaf conductance on pistachio trees despite their relevance to fine tune irrigation strategies. Mature pistachio trees were subject to simultaneous measurements of stem water potential (Ψx) and leaf conductance (gl) during the day, at three important periods of the irrigation season. Trees were grown on three different rootstocks and water regimes. An initial baseline relating Ψx to air vapor pressure deficit (VPD) is presented for irrigation scheduling in pistachio. Ψx was closely correlated with VPD but with a different fit according to the degree of water stress. No evidence of the variation of Ψx in relation to the phenology of the tree was observed. Furthermore, midday Ψx showed more accuracy to indicate a situation of water stress than predawn water potential. Under well irrigated conditions, gl was positively correlated with VPD during stage II of growth reaching its peak when VPD reached its maximum value (around 4 kPa). This behaviour changed during stage III of fruit growth suggesting a reliance of stomatal behaviour to the phenological stage independently to the tree water status. The levels of water stress reached were translated in a slow recovery of tree water status and leaf conductance (more than 40 days). Regarding rootstocks, P. integerrima showed little adaptation to water shortage compared to the two other rootstocks under the studied conditions. (Author)

  18. Impacts of water stress, environment and rootstock on the diurnal behaviour of stem water potential and leaf conductance in pistachio (Pistacia vera L.

    Directory of Open Access Journals (Sweden)

    Houssem Memmi

    2016-06-01

    Full Text Available Little information is available on the diurnal behaviour of water potential and leaf conductance on pistachio trees despite their relevance to fine tune irrigation strategies. Mature pistachio trees were subject to simultaneous measurements of stem water potential (Ψx and leaf conductance (gl during the day, at three important periods of the irrigation season. Trees were grown on three different rootstocks and water regimes. An initial baseline relating Ψx to air vapor pressure deficit (VPD is presented for irrigation scheduling in pistachio. Ψx was closely correlated with VPD but with a different fit according to the degree of water stress. No evidence of the variation of Ψx in relation to the phenology of the tree was observed. Furthermore, midday Ψx showed more accuracy to indicate a situation of water stress than predawn water potential. Under well irrigated conditions, gl was positively correlated with VPD during stage II of growth reaching its peak when VPD reached its maximum value (around 4 kPa. This behaviour changed during stage III of fruit growth suggesting a reliance of stomatal behaviour to the phenological stage independently to the tree water status. The levels of water stress reached were translated in a slow recovery of tree water status and leaf conductance (more than 40 days. Regarding rootstocks, P. integerrima showed little adaptation to water shortage compared to the two other rootstocks under the studied conditions.

  19. Impacts of water stress, environment and rootstock on the diurnal behaviour of stem water potential and leaf conductance in pistachio (Pistacia vera L.)

    Energy Technology Data Exchange (ETDEWEB)

    Memmi, H.; Couceiro, J.F.; Gijón, C.; Pérez-López, D.

    2016-11-01

    Little information is available on the diurnal behaviour of water potential and leaf conductance on pistachio trees despite their relevance to fine tune irrigation strategies. Mature pistachio trees were subject to simultaneous measurements of stem water potential (Ψx) and leaf conductance (gl) during the day, at three important periods of the irrigation season. Trees were grown on three different rootstocks and water regimes. An initial baseline relating Ψx to air vapor pressure deficit (VPD) is presented for irrigation scheduling in pistachio. Ψx was closely correlated with VPD but with a different fit according to the degree of water stress. No evidence of the variation of Ψx in relation to the phenology of the tree was observed. Furthermore, midday Ψx showed more accuracy to indicate a situation of water stress than predawn water potential. Under well irrigated conditions, gl was positively correlated with VPD during stage II of growth reaching its peak when VPD reached its maximum value (around 4 kPa). This behaviour changed during stage III of fruit growth suggesting a reliance of stomatal behaviour to the phenological stage independently to the tree water status. The levels of water stress reached were translated in a slow recovery of tree water status and leaf conductance (more than 40 days). Regarding rootstocks, P. integerrima showed little adaptation to water shortage compared to the two other rootstocks under the studied conditions. (Author)

  20. 40 CFR 1060.105 - What diurnal requirements apply for equipment?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What diurnal requirements apply for... EQUIPMENT Emission Standards and Related Requirements § 1060.105 What diurnal requirements apply for... for controlling diurnal emissions: (1) If you are subject to both running loss and diurnal emission...

  1. Comparison of specific-yield estimates for calculating evapotranspiration from diurnal groundwater-level fluctuations

    Science.gov (United States)

    Gribovszki, Zoltán

    2018-05-01

    Methods that use diurnal groundwater-level fluctuations are commonly used for shallow water-table environments to estimate evapotranspiration (ET) and recharge. The key element needed to obtain reliable estimates is the specific yield (Sy), a soil-water storage parameter that depends on unsaturated soil-moisture and water-table fluxes, among others. Soil-moisture profile measurement down to the water table, along with water-table-depth measurements, can provide a good opportunity to calculate Sy values even on a sub-daily scale. These values were compared with Sy estimates derived by traditional techniques, and it was found that slug-test-based Sy values gave the most similar results in a sandy soil environment. Therefore, slug-test methods, which are relatively cheap and require little time, were most suited to estimate Sy using diurnal fluctuations. The reason for this is that the timeframe of the slug-test measurement is very similar to the dynamic of the diurnal signal. The dynamic characteristic of Sy was also analyzed on a sub-daily scale (depending mostly on the speed of drainage from the soil profile) and a remarkable difference was found in Sy with respect to the rate of change of the water table. When comparing constant and sub-daily (dynamic) Sy values for ET estimation, the sub-daily Sy application yielded higher correlation, but only a slightly smaller deviation from the control ET method, compared with the usage of constant Sy.

  2. Lack of diurnal effects on periodic exercise during prolonged cold water immersion.

    Science.gov (United States)

    Doubt, T J; Smith, D J

    1990-03-01

    Diurnal effects on periodic exercise were examined in 8 male divers wearing passive thermal protection during whole body immersions in 5 degrees C water for periods of up to 6 h. Studies were done during the course of 5-day air saturation dives at a depth of 1.61 ATA, with immersions beginning at 1000 h (AM) and 2200 h (PM). During each hour of immersion, leg exercise was done for 3 min each at workloads of 50, 70, and 90 W. Heart rate (HR) at each workload increased uniformly with immersion time, without a change in slope of HR vs. workload. No AM or PM differences occurred. AM resting VO2 increased linearly, and to the same extent as PM, with exposure time. VO2 at 50 W also increased at the same rate as resting values. VO2 at 70 and 90 W were similar for AM and PM and did not vary significantly during the 6-h immersions. Temporal increases in exercise HR may reflect cardiac compensation of diminished plasma volume. Workloads greater than or equal to 70 W generate enough metabolic heat in this specific condition to meet the thermogenic requirement. Lack of diurnal effects on exercise variables may be due to environmental conditions suppressing circadian rhythms.

  3. The diurnal pattern of microwave backscattering by wheat

    International Nuclear Information System (INIS)

    Brisco, B.; Brown, R.J.; Koehler, J.A.; Sofko, G.J.; McKibben, M.J.

    1990-01-01

    A truck-mounted Ku-, C-, and L-band scatterometer system was used to obtain diurnal multiparameter radar backscatter measurements of wheat in August 1987 and June and July 1988. Concurrent field measurements of plant and soil moisture content were made in support of the radar data. Analyses of these data demonstrate the sensitivity of the microwave signals to the daily movement of water in the soil/plant system. The dependence of frequency, incidence angle, and polarization are discussed in relationship to the diurnal and seasonal changes in the soil and plant water content. The results are used to identify potential agronomic applications and future research requirements. (author)

  4. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] and reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential ('leaf) if leaf hydraulic conductance (Kleaf) is insufficient to su...

  5. Diurnal variations of tritium uptake by plants

    International Nuclear Information System (INIS)

    Hettinger, M.; Diabate, S.; Strack, S.

    1991-02-01

    The influence of the diurnal cycle is important for the behaviour of environmental tritium in the vegetation. A mathematical model has been used to calculate the deposition of tritium in plants as a function of diurnal variations of climatic parameters. The necessary physiological parameters (relationship of net photosynthesis and growth) were derived from growth experiments for tomatoes and maize. In chamber experiments, tomato and maize plants were exposed to tritium with natural diurnal variations of the climatic conditions. Within the range of standard deviations the measured concentrations of tritium in tissue free water of tomatoes correspond well to the estimated values. Furthermore, the incorporation into non-exchangeable organically bound tritium (OBT nx) can be sufficiently modelled and explained. There are deviations from the estimated concentrations in some parts of maize leaves. (orig.) [de

  6. Diurnal variations in depth profiles of UV-induced DNA damage and inhibition of bacterioplankton production in tropical coastal waters

    NARCIS (Netherlands)

    Visser, PM; Poos, JJ; Scheper, BB; Boelen, P; van Duyl, FC

    2002-01-01

    In this study, diurnal changes in bacterial production and DNA damage in bacterio-plankton (measured as cyclobutane pyrimidine dimers, CPDs) incubated in bags at different depths in tropical coastal waters were investigated. The DNA damage and inhibition of the bacterial production was highest at

  7. Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations

    International Nuclear Information System (INIS)

    Liu Xiaodong; Bai Aijuan; Liu Changhai

    2009-01-01

    The diurnal patterns of variation of summertime precipitation over the Tibetan Plateau were first investigated using the TRMM multi-satellite precipitation analysis product for five summer seasons (i.e. June to August for 2002-2006). Both hourly precipitation amount and precipitation frequency exhibit pronounced daily variability with an overall late-afternoon-evening maximum and a dominant morning minimum. A notable exception is the prevalent nocturnal maximum around the periphery of the Plateau. In terms of the normalized harmonic amplitude, the diurnal signal shows significant regional contrast with the strongest manifestation over the central Plateau and the weakest near the periphery. This remarkable spatial dependence in daily rainfall cycles is clear evidence of orographic and heterogeneous land-surface impacts on convective development. Using six-hourly NCEP FNL data, we then examined the diurnal variability in the atmospheric circulation and thermodynamics in this region. The results show that the Plateau heats (cools) the overlying atmosphere during the day (night) more than the surrounding areas, and as a consequence a relatively stronger confluent circulation in this region occurs during the day than during the night, consistent with the diurnal rainfall cycles. Moreover, the regions with large low-level convergence and upper-level divergence correspond to the strong diurnal rainfall variations. The reversed daily alterations of convergence-divergence patterns in the vicinity of the Plateau edges are in agreement with the observed nighttime rainfall peak therein. This study further demonstrates the importance of the Tibetan Plateau in regulating regional circulation and precipitation.

  8. Foraging Activity Pattern Is Shaped by Water Loss Rates in a Diurnal Desert Rodent.

    Science.gov (United States)

    Levy, Ofir; Dayan, Tamar; Porter, Warren P; Kronfeld-Schor, Noga

    2016-08-01

    Although animals fine-tune their activity to avoid excess heat, we still lack a mechanistic understanding of such behaviors. As the global climate changes, such understanding is particularly important for projecting shifts in the activity patterns of populations and communities. We studied how foraging decisions vary with biotic and abiotic pressures. By tracking the foraging behavior of diurnal desert spiny mice in their natural habitat and estimating the energy and water costs and benefits of foraging, we asked how risk management and thermoregulatory requirements affect foraging decisions. We found that water requirements had the strongest effect on the observed foraging decisions. In their arid environment, mice often lose water while foraging for seeds and cease foraging even at high energetic returns when water loss is high. Mice also foraged more often when energy expenditure was high and for longer times under high seed densities and low predation risks. Gaining insight into both energy and water balance will be crucial to understanding the forces exerted by changing climatic conditions on animal energetics, behavior, and ecology.

  9. Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events.

    Science.gov (United States)

    Pahlevan, Nima; Lee, Zhongping; Hu, Chuanmin; Schott, John R

    2014-02-01

    Optical remote sensing systems aboard geostationary platforms can provide high-frequency observations of bio-optical properties in dynamical coastal/oceanic waters. From the end-user standpoint, it is recognized that the fidelity of daily science products relies heavily on the radiometric sensitivity/performance of the imaging system. This study aims to determine the theoretical detection limits for bio-optical properties observed diurnally from a geostationary orbit. The analysis is based upon coupled radiative transfer simulations and the minimum radiometric requirements defined for the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) mission. The diurnal detection limits are found for the optically active constituents of water, including near-surface concentrations of chlorophyll-a (CHL) and total suspended solids (TSS), and the absorption of colored dissolved organic matter (aCDOM). The diurnal top-of-atmosphere radiance (Lt) is modeled for several locations across the field of regard (FOR) to investigate the radiometric sensitivity at different imaging geometries. It is found that, in oceanic waters (CHL=0.07  mg/m3), detecting changes smaller than 0.01  mg/m3 in CHL is feasible for all locations and hours except for late afternoon observations on the edge of the FOR. For more trophic/turbid waters (0.6

  10. Remote detection of water stress conditions via a diurnal photochemical reflectance index (PRI) improves yield prediction in rainfed wheat

    Science.gov (United States)

    Magney, T. S.; Vierling, L. A.; Eitel, J.

    2014-12-01

    Employing remotely sensed techniques to quantify the existence and magnitude of midday photosynthetic downregulation using the photochemical reflectance index (PRI) may reveal new information about plant responses to abiotic stressors in space and time. However, the interpretation and application of the PRI can be confounded because of its sensitivity to several variables changing at the diurnal (e.g., irradiation, shadow fraction) and seasonal (e.g., leaf area, chlorophyll and carotene pigment concentrations, irradiation) time scales. We explored different techniques to correct the PRI for variations in canopy structure and relative chlorophyll content (ChlR) using highly temporally resolved (frequency = five minutes) in-situ radiometric measurements of PRI and the Normalized Difference Vegetation Index (NDVI) over eight soft white spring wheat (Triticum aestivum L.)field plots under varying nitrogen and soil water conditions over two seasons. Our results suggest that the influence of seasonal variation in canopy ChlR and LAI on the diurnally measured PRI (PRIdiurnal) can be minimized using simple correction techniques, therefore improving the strength of PRI as a tool to quantify abiotic stressors such as daily changes in soil volumetric water content (SVWC), and vapor pressure deficit (VPD). PRIdiurnal responded strongly to available nitrogen, and linearly tracked seasonal changes in SVWC, VPD, and stomatal conductance (gc). Utilizing the PRI as an indicator of stress, yield predictions significantly over greenness indices such as the NDVI. This study provides insight towards the future interpretation and scaling of PRI to quantify rapid changes in photosynthesis, and as an indicator of plant stress.

  11. Diurnal dynamics of the CO2 concentration in water of the coastal zone of lake Baikal in the ice period (testing of the DIEL - CO2 method for assessment of lake metabolic rate)

    Science.gov (United States)

    Panchenko, M. V.; Domysheva, V. M.; Pestunov, D. A.; Sakirko, M. V.; Ivanov, V. G.; Shamrin, A. M.

    2017-11-01

    Results of three long cycles of 24-hour measurements of the carbon dioxide content in the surface and bottom water in the ice period of 2014-2016 in the Baikal coastal zone are analyzed. The diurnal dynamics of the CO2 concentration in the subglacial water, in which photosynthesis plays the leading role, is described. It is found that, in comparison with the surface subglacial water (that is, directly adjacent to the ice bottom), the more pronounced diurnal rhythm of CO2 is observed in the bottom layer in all realizations. This rhythm is well correlated with pyranometer readings. The data on the diurnal dynamics of CO2 are used to estimate the gross primary production in the bottom water with the DIEL method based on the analysis of temporal variability of the carbon dioxide concentration in water in situ.

  12. Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China

    Science.gov (United States)

    Liu, Xiuping; Zhang, Wanjun; Zhang, Bin; Yang, Qihong; Chang, Jianguo; Hou, Ke

    2016-01-01

    The aim of this paper is to evaluate the diurnal variation in soil respiration under different land use types on Taihang Mountain, North China, and to understand its response to environmental factors (e.g., soil temperature and moisture) and forest management. Diurnal variations in soil respiration from plantations (Robinia pseudoacacia, Punica granatum, and Ziziphus jujuba), naturally regenerated forests (Vitex negundo var. heterophylla), grasslands (Bothriochloa ischaemum), and farmlands (winter wheat/summer maize) were measured using an LI-8100 automated soil CO2 flux system from May 2012 to April 2013. The results indicated that land use type had a significant effect on the diurnal variation of soil respiration. The diurnal soil respiration from farmlands was highest, followed by Ziziphus jujube, R. pseudoacacia, P. granatum, the lower soil CO2 efflux was found from B. ischaemum and V. negundo var. heterophylla. The diurnal soil respiration across different land use types was significantly affected by soil temperature and moisture, and their interaction. Precipitation-stimulated soil respiration increased more in soil with low water content and less in soil with high water content. The lower diurnal soil respiration from naturally regenerated forests suggests that naturally regenerated vegetation is the optimal vegetation type for reducing global warming.

  13. Diurnal Salivary Alpha-amylase Dynamics among Dementia Family Caregivers

    Science.gov (United States)

    Liu, Yin; Granger, Douglas A.; Kim, Kyungmin; Klein, Laura C.; Almeida, David M.; Zarit, Steven H.

    2016-01-01

    Objective The study examined diurnal regulation of salivary alpha-amylase (sAA) in association with daily stressors, adult day services (ADS) use, and other caregiving characteristics. Methods A sample of 165 family caregivers of individuals with dementia (IWD) completed an 8-day diary study. Caregivers provided 5 saliva samples across the 8 days. On some days, caregivers provided all or most of the care. On other days, their relative attended ADS for part of the day. A 3-level unconditional linear spline model was fit to describe the typical sAA diurnal rhythms. Predictors were then added to the unconditional model to test the hypotheses on ADS use and daily stressors. Results Daily ADS use did not have an effect on diurnal sAA regulation. However, controlling for daily ADS use, greater ADS use over the 8 days was associated with a more prominent rise between 30 minutes after wake-up and before lunch, and a more prominent decline between before lunch and late afternoon. Fewer ADS days were associated with a more flattened sAA diurnal rhythm. Additionally, greater daily care-related stressor exposures had a within-person association with lower sAA levels in the late afternoon. Care-related stressor exposures had significant within- and between-person associations with sAA diurnal slopes. Furthermore, daily positive experiences had a significant between-person association with sAA diurnal slopes. Conclusions Caring for a disabled family member may heighten the vulnerability to potential physiological conditions. Respite from care stressors from ADS use may have some biobehavioral benefits on sAA regulations. PMID:27786517

  14. Individual Differences in Diurnal Preference and Time-of-Exercise Interact to Predict Exercise Frequency.

    Science.gov (United States)

    Hisler, Garrett C; Phillips, Alison L; Krizan, Zlatan

    2017-06-01

    Diurnal preference (and chronotype more generally) has been implicated in exercise behavior, but this relation has not been examined using objective exercise measurements nor have potential psychosocial mediators been examined. Furthermore, time-of-day often moderates diurnal preference's influence on outcomes, and it is unknown whether time-of-exercise may influence the relation between chronotype and exercise frequency. The current study examined whether individual differences in diurnal preference ("morningness-eveningness") predict unique variance in exercise frequency and if commonly studied psychosocial variables mediate this relation (i.e., behavioral intentions, internal exercise control, external exercise control, and conscientiousness). Moreover, the study sought to test whether individuals' typical time-of-exercise moderated the impact of diurnal preference on exercise frequency. One hundred twelve healthy adults (mean age = 25.4; SD = 11.6 years) completed baseline demographics and then wore Fitbit Zips® for 4 weeks to objectively measure exercise frequency and typical time-of-exercise. At the end of the study, participants also self-reported recent exercise. Diurnal preference predicted both self-reported exercise and Fitbit-recorded exercise frequency. When evaluating mediators, only conscientiousness emerged as a partial mediator of the relation between diurnal preference and self-reported exercise. In addition, time-of-exercise moderated diurnal preference's relation to both self-reported exercise and Fitbit-recorded exercise frequency such that diurnal preference predicted higher exercise frequency when exercise occurred at a time that was congruent with one's diurnal preference. Based on these findings, diurnal preference is valuable, above and beyond other psychological constructs, in predicting exercise frequency and represents an important variable to incorporate into interventions seeking to increase exercise.

  15. Analysis of Diurnal Variations in Energy Footprint and Its Associated Carbon Emission for Water Supply and Reuse in Arid and Semi-Arid Areas

    Science.gov (United States)

    Sobhani, Reza

    Arid and semi-arid regions throughout the world face water scarcity. Conventional water supply portfolio of these regions encompassed limited surface water, groundwater, and imported water. Current technological innovations technically and economically supplemented new water sources i.e., reclaimed water, desalted water and the groundwater sources that were not potable. The need for more efficient and alternative sources of drinking water supply necessitates studying the impediments e.g., intensive energy required, and emerging concern of the carbon emission. This dissertation discusses the challenges of energy footprint and its carbon emission among the processes involved in water supplies in the aforementioned regions. The conducted studies present time-dependent energy footprint analyses of different water reclamation and reuse processes. This study discusses the energy consumption in four main energy intensive processes inclusive of: activated sludge, microfiltration, reverse osmosis, and advanced oxidation with UV/ H2O2. The results indicate how the diurnal variations of different environmental parameters (e.g. flow and pollutant concentration) amplify the energy footprint variation among these processes. Meanwhile, the results show, due to the different power sources diurnally employed to provide electrical energy, the energy-associated carbon emission has more drastic variation in diurnal period compared to the energy footprint variation. In addition, this study presents the energy footprint of a modular process for treating local brackish groundwater by employing a combination of pellet reactor for radium and hardness minimization, reverse osmosis with intermediate precipitation, and concentrated brine crystallization to achieve high recovery with zero liquid discharge. Also it compares the energy footprint of the aforementioned process with the alternative option (i.e. desalted seawater conveyance with substantial lift). Finally, in coastal regions

  16. The global surface composition of 67P/Churyumov-Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability

    Science.gov (United States)

    Ciarniello, M.; Raponi, A.; Capaccioni, F.; Filacchione, G.; Tosi, F.; De Sanctis, M. C.; Kappel, D.; Rousseau, B.; Arnold, G.; Capria, M. T.; Barucci, M. A.; Quirico, E.; Longobardo, A.; Kuehrt, E.; Mottola, S.; Erard, S.; Bockelée-Morvan, D.; Leyrat, C.; Migliorini, A.; Zinzi, A.; Palomba, E.; Schmitt, B.; Piccioni, G.; Cerroni, P.; Ip, W.-H.; Rinaldi, G.; Salatti, M.

    2016-11-01

    VIRTIS-M observations of the nucleus of comet 67P/Churyumov-Gerasimenko acquired from 2014 August to 2015 May have been analysed to investigate surface temporal variability at both seasonal and diurnal scales. The measured reflectance spectra are studied by means of comet spectral indicators (CSI) such as slopes in the visible and infrared ranges, and 3.2 μm band area and band centre. CSI maps derived from data acquired at different heliocentric distances (from 3.62 to 1.72 au) along the inbound leg of the comet's orbit are used to infer surface water ice abundance. We measure a global scale enrichment of water ice from 2014 August to 2015 May across the body of the comet, along with variability at small spatial scale, possibly related with the local insolation conditions. Analysis of water ice diurnal variability is performed on 2014 August observations. Water ice appears at the border of receding shadows in the neck of the comet (Hapi), sublimating in less than 1 h, after exposure to sunlight. As similar variability is not observed in other regions of the comet, we interpreted this as the expression of a diurnal cycle of sublimation and re-condensation of water ice, triggered by sudden shadowing produced on the neck by the body and the head of the nucleus.

  17. Impact of assimilation window length on diurnal features in a Mars atmospheric analysis

    Directory of Open Access Journals (Sweden)

    Yongjing Zhao

    2015-05-01

    Full Text Available Effective simulation of diurnal variability is an important aspect of many geophysical data assimilation systems. For the Martian atmosphere, thermal tides are particularly prominent and contribute much to the Martian atmospheric circulation, dynamics and dust transport. To study the Mars diurnal variability and Mars thermal tides, the Geophysical Fluid Dynamics Laboratory Mars Global Climate Model with the 4D-local ensemble transform Kalman filter (4D-LETKF is used to perform an analysis assimilating spacecraft temperature retrievals. We find that the use of a ‘traditional’ 6-hr assimilation cycle induces spurious forcing of a resonantly enhanced semi-diurnal Kelvin waves represented in both surface pressure and mid-level temperature by forming a wave 4 pattern in the diurnal averaged analysis increment that acts as a ‘topographic’ stationary forcing. Different assimilation window lengths in the 4D-LETKF are introduced to remove the artificially induced resonance. It is found that short assimilation window lengths not only remove the spurious resonance, but also push the migrating semi-diurnal temperature variation at 50 Pa closer to the estimated ‘true’ tides even in the absence of a radiatively active water ice cloud parameterisation. In order to compare the performance of different assimilation window lengths, short-term to mid-range forecasts based on the hour 00 and 12 assimilation are evaluated and compared. Results show that during Northern Hemisphere summer, it is not the assimilation window length, but the radiatively active water ice clouds that influence the model prediction. A ‘diurnal bias correction’ that includes bias correction fields dependent on the local time is shown to effectively reduce the forecast root mean square differences between forecasts and observations, compensate for the absence of water ice cloud parameterisation and enhance Martian atmosphere prediction. The implications of these results for

  18. Large Eddy Simulation of the Diurnal Cycle in Southeast Pacific Stratocumulus

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, P; Bretherton, C

    2008-03-03

    This paper describes a series of 6 day large eddy simulations of a deep, sometimes drizzling stratocumulus-topped boundary layer based on forcings from the East Pacific Investigation of Climate (EPIC) 2001 field campaign. The base simulation was found to reproduce the observed mean boundary layer properties quite well. The diurnal cycle of liquid water path was also well captured, although good agreement appears to result partially from compensating errors in the diurnal cycles of cloud base and cloud top due to overentrainment around midday. At other times of the day, entrainment is found to be proportional to the vertically-integrated buoyancy flux. Model stratification matches observations well; turbulence profiles suggest that the boundary layer is always at least somewhat decoupled. Model drizzle appears to be too sensitive to liquid water path and subcloud evaporation appears to be too weak. Removing the diurnal cycle of subsidence had little effect on simulated cloud albedo. Simulations with changed droplet concentration and drizzle susceptibility showed large liquid water path differences at night, but differences were quite small at midday. Droplet concentration also had a significant impact on entrainment, primarily through droplet sedimentation feedback rather than through drizzle processes.

  19. Specific diurnal EMG activity pattern observed in occlusal collapse patients: relationship between diurnal bruxism and tooth loss progression.

    Directory of Open Access Journals (Sweden)

    Shigehisa Kawakami

    Full Text Available AIM: The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. MATERIALS AND METHODS: Six progressive bite collapse patients (PBC group, six age- and gender-matched control subjects (MC group, and six young control subjects (YC group were enrolled. Electromyograms (EMG of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. RESULTS: Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (p<0.01. ROC curve analysis suggested that the number of diurnal phasic episodes might be used to predict bite collapsing tooth loss. CONCLUSION: Extensive bite loss might be related to diurnal masticatory muscle parafunction but not to parafunction during sleep. CLINICAL RELEVANCE SCIENTIFIC RATIONALE FOR STUDY: Although mandibular parafunction has been implicated in stomatognathic system breakdown, a causal relationship has not been established because scientific modalities to evaluate parafunctional activity have been lacking. PRINCIPAL FINDINGS: This study used a newly developed EMG recording system that evaluates masseter muscle activity throughout the day. Our results challenge the stereotypical idea of nocturnal bruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. PRACTICAL IMPLICATIONS: The incidence of diurnal phasic contractions could be used for

  20. Water relations in silver birch during springtime: How is sap pressurised?

    Science.gov (United States)

    Hölttä, T; Dominguez Carrasco, M D R; Salmon, Y; Aalto, J; Vanhatalo, A; Bäck, J; Lintunen, A

    2018-05-06

    Positive sap pressures are produced in the xylem of birch trees in boreal conditions during the time between the thawing of the soil and bud break. During this period, xylem embolisms accumulated during wintertime are refilled with water. The mechanism for xylem sap pressurization and its environmental drivers are not well known. We measured xylem sap flow, xylem sap pressure, xylem sap osmotic concentration, xylem and whole stem diameter changes, and stem and root non-structural carbohydrate concentrations, along with meteorological conditions at two sites in Finland during and after the sap pressurisation period. The diurnal dynamics of xylem sap pressure and sap flow during the sap pressurisation period varied, but were more often opposite to the diurnal pattern after bud burst, i.e. sap pressure increased and sap flow rate mostly decreased when temperature increased. Net conversion of soluble sugars to starch in the stem and roots occurred during the sap pressurisation period. Xylem sap osmotic pressure was small in comparison to total sap pressure, and it did not follow changes in environmental conditions or tree water relations. Based on these findings, we suggest that xylem sap pressurisation and embolism refilling occur gradually over a few weeks through water transfer from parenchyma cells to xylem vessels during daytime, and then the parenchyma are refilled mostly during nighttime by water uptake from soil. Possible drivers for water transfer from parenchyma cells to vessels are discussed. Also the functioning of thermal dissipation probes in conditions of changing stem water content is discussed. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  1. Concerted diurnal patterns in riverine nutrient concentrations and physical conditions

    International Nuclear Information System (INIS)

    Scholefield, David; Le Goff, Thierry; Braven, Jim; Ebdon, Les; Long, Terry; Butler, Mark

    2005-01-01

    Several long-term sets of hourly nitrate concentration data were obtained through deployment of a nitrate sensor in an upper reach of the River Taw, a small moorland-fed river in the South West of the UK. Examination of the data obtained during periods of low flow and the absence of rainfall in the catchment revealed the presence of marked diurnal cycles, which were in concert and negatively correlated with diurnal cycles in water temperature. After verifying that these cycles were natural, an intensive 90-h field monitoring campaign was conducted, in which river water was sampled hourly and immediately analysed in the laboratory for molybdate-reactive phosphorus (P), nitrate, nitrite, ammonium, and pH. Coincident measurements of water temperature, river discharge and solar energy were also taken at, or close to, the site. All measurements revealed diurnal patterns and all patterns were concerted. The cycles of P, nitrate, nitrite, and discharge had two maxima and minima per 24 h, while the cycle of water temperature had one, with a maximum at 20.00 and a minimum at 08.00. The amplitudes of the cycles of P and nitrate were each about 30% of the mean values, while the amplitude of the nitrite cycle was as great as 80% of the mean value on occasions. Both biological and physical mechanisms for the cycling could operate through water temperature and/or incident radiation to account for the observed phenomenon, but there remains uncertainty of which is the more important. The observations have important implications for both the accuracy of pollution assessment in rivers and the physiological rhythms of riverine organisms

  2. Concerted diurnal patterns in riverine nutrient concentrations and physical conditions.

    Science.gov (United States)

    Scholefield, David; Le Goff, Thierry; Braven, Jim; Ebdon, Les; Long, Terry; Butler, Mark

    2005-05-15

    Several long-term sets of hourly nitrate concentration data were obtained through deployment of a nitrate sensor in an upper reach of the River Taw, a small moorland-fed river in the South West of the UK. Examination of the data obtained during periods of low flow and the absence of rainfall in the catchment revealed the presence of marked diurnal cycles, which were in concert and negatively correlated with diurnal cycles in water temperature. After verifying that these cycles were natural, an intensive 90-h field monitoring campaign was conducted, in which river water was sampled hourly and immediately analysed in the laboratory for molybdate-reactive phosphorus (P), nitrate, nitrite, ammonium, and pH. Coincident measurements of water temperature, river discharge and solar energy were also taken at, or close to, the site. All measurements revealed diurnal patterns and all patterns were concerted. The cycles of P, nitrate, nitrite, and discharge had two maxima and minima per 24 h, while the cycle of water temperature had one, with a maximum at 20.00 and a minimum at 08.00. The amplitudes of the cycles of P and nitrate were each about 30% of the mean values, while the amplitude of the nitrite cycle was as great as 80% of the mean value on occasions. Both biological and physical mechanisms for the cycling could operate through water temperature and/or incident radiation to account for the observed phenomenon, but there remains uncertainty of which is the more important. The observations have important implications for both the accuracy of pollution assessment in rivers and the physiological rhythms of riverine organisms.

  3. Spectral and diurnal variations in clear sky planetary albedo

    Science.gov (United States)

    Briegleb, B.; Ramanathan, V.

    1982-01-01

    Spectral and diurnal variations in the clear sky planetary albedo of the earth are calculated using a radiative transfer model to obtain January and July values for a 5 deg x 5 deg global grid. The model employs observed climatological values of temperatures, humidities, snow and sea-ice cover. The diurnal cycle of clear sky albedo is calculated in the following intervals: 0.2-0.5, 0.5-0.7, and 0.7-4 microns. Observed ozone distribution is specified as a function of latitude and season. The 0.2-0.5 micron spectral albedo is 10-20% higher than the total albedo for all latitudes because of Rayleigh scattering; the 0.5-0.7 micron albedo differs from the total albedo by 1-2% for most latitudes, while the 0.7-4 micron albedo is 5-10% lower than the total because of strong atmospheric absorption. Planetary albedo decreases from morning to local noon, with diurnal variations being particularly strong over water.

  4. Diurnal and semi-diurnal tidal currents in the deep mid-Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Gouveia, A.D.; Shetye, S.R.

    Current meter records from two depths, approximately 1000 m, at three mooring in the deep mid-Arabian Sea were used to study tidal components. Tidal ellipses for the semi-diurnal (M2, S2 and K2) and the diurnal (K1 and P1) tidal constituents have...

  5. Diurnal cortisol after early institutional care—Age matters

    Directory of Open Access Journals (Sweden)

    Jessica E. Flannery

    2017-06-01

    Full Text Available Several studies have shown that young children who have experienced early caregiving adversity (e.g. previously institutionalization (PI exhibit flattened diurnal cortisol slopes; however, less is known about how these patterns might differ between children and adolescents, since the transition between childhood and adolescence is a time of purported plasticity in the hypothalamic-pituitary-adrenal (HPA axis. PI youth experience a massive improvement in caregiving environment once adopted into families; therefore we anticipated that a developmental increase in HPA axis plasticity during adolescence might additionally allow for an enhanced enrichment effect by the adoptive family. In a cross-sectional sample of 197 youths (PI and Comparison; 4–15 years old we observed age-related group differences in diurnal slope. First replicating previous findings, PI children exhibited flattened diurnal slope. This group difference, however, was not observed in adolescents. Moderation analyses showed that pubertal development, increased time with family, and early adoption contributed to the steeper diurnal cortisol slope in PI adolescents. These findings add support to existing theories positing that the transition between middle childhood and adolescence may mark an additional sensitive period for diurnal cortisol patterning, allowing PI youth to benefit from the enriched environment provided by adoptive parents during this period of development.

  6. How does a diurnal hawkmoth find nectar? Differences in sensory control with a nocturnal relative

    OpenAIRE

    Joaquín Goyret; Almut Kelber

    2011-01-01

    Recent research shows that a nocturnal hawkmoth, Manduca sexta, inspects flowers in search for nectar by means of a series of hovering and proboscis movements controlled by different sensory modalities, mainly vision and mechanoreception. The diurnal Macroglossum stellatarum is a closely related hawkmoth challenged with the same task but under illuminances 6--8 orders of magnitude higher. Here, we use flower models presenting color markings, 3D features, or both to study innate flower movemen...

  7. Summer to Winter Diurnal Variabilities of Temperature and Water Vapour in the Lowermost Troposphere as Observed by HAMSTRAD over Dome C, Antarctica

    Science.gov (United States)

    Ricaud, P.; Genthon, C.; Durand, P.; Attié, J.-L.; Carminati, F.; Canut, G.; Vanacker, J.-F.; Moggio, L.; Courcoux, Y.; Pellegrini, A.; Rose, T.

    2012-04-01

    The HAMSTRAD (H2O Antarctica Microwave Stratospheric and Tropospheric Radiometers) microwave radiometer operating at 60 GHz (oxygen line, thus temperature) and 183 GHz (water vapour line) has been permanently deployed at the Dome C station, Concordia, Antarctica [75°06'S, 123°21'E, 3,233 m above mean sea level] in January 2010 to study long-term trends in tropospheric absolute humidity and temperature. The great sensitivity of the instrument in the lowermost troposphere helped to characterize the diurnal cycle of temperature and H2O from the austral summer (January 2010) to the winter (June 2010) seasons from heights of 10 to 200 m in the planetary boundary layer (PBL). The study has characterized the vertical resolution of the HAMSTRAD measurements: 10-20 m for temperature and 25-50 m for H2O. A strong diurnal cycle in temperature and H2O (although noisier) has been measured in summertime at 10 m, decreasing in amplitude with height, and phase-shifted by about 4 h above 50 m with a strong H2O-temperature correlation (>0.8) throughout the entire PBL. In autumn, whilst the diurnal cycle in temperature and H2O is less intense, a 12-h phase shift is observed above 30 m. In wintertime, a weak diurnal signal measured between 10 to 200 m is attributed to the methodology employed, which consists of monthly averaged data, and that combines air masses from different origins (sampling effect) and not to the imprint of the null solar irradiation. In situ sensors scanning the entire 24-h period, radiosondes launched at 2000 local solar time (LST) and European Centre for Medium-Range Weather Forecasts (ECMWF) analyses at 0200, 0800, 1400 and 2000 LST agree very well with the HAMSTRAD diurnal cycles for temperature and relatively well for absolute humidity. For temperature, HAMSTRAD tends to be consistent with all the other datasets but shows a smoother vertical profile from 10 to 100 m compared to radiosondes and in-situ data, with ECMWF profiles even smoother than HAMSTRAD

  8. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Pt. 1: a diurnally forced OGCM

    Energy Technology Data Exchange (ETDEWEB)

    Bernie, D.J. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom); Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Met Office Hadley Centre, Exeter, EX1 3PB (United Kingdom); Guilyardi, E. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom); Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Madec, G. [Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Slingo, J.M.; Woolnough, S.J. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom)

    2007-11-15

    The diurnal cycle is a fundamental time scale in the climate system, at which the upper ocean and atmosphere are routinely observed to vary. Current climate models, however, are not configured to resolve the diurnal cycle in the upper ocean or the interaction of the ocean and atmosphere on these time scales. This study examines the diurnal cycle of the tropical upper ocean and its climate impacts. In the present paper, the first of two, a high vertical resolution ocean general circulation model (OGCM), with modified physics, is developed which is able to resolve the diurnal cycle of sea surface temperature (SST) and current variability in the upper ocean. It is then validated against a satellite derived parameterization of diurnal SST variability and in-situ current observations. The model is then used to assess rectification of the intraseasonal SST response to the Madden-Julian oscillation (MJO) by the diurnal cycle of SST. Across the equatorial Indo-Pacific it is found that the diurnal cycle increases the intraseasonal SST response to the MJO by around 20%. In the Pacific, the diurnal cycle also modifies the exchange of momentum between equatorially divergent Ekman currents and the meridionally convergent geostrophic currents beneath, resulting in a 10% increase in the strength of the Ekman cells and equatorial upwelling. How the thermodynamic and dynamical impacts of the diurnal cycle effect the mean state, and variability, of the climate system cannot be fully investigated in the constrained design of ocean-only experiments presented here. The second part of this study, published separately, addresses the climate impacts of the diurnal cycle in the coupled system by coupling the OGCM developed here to an atmosphere general circulation model. (orig.)

  9. CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line.

    Science.gov (United States)

    Dawes, Melissa A; Zweifel, Roman; Dawes, Nicholas; Rixen, Christian; Hagedorn, Frank

    2014-06-01

    To understand how trees at high elevations might use water differently in the future, we investigated the effects of CO2 enrichment and soil warming (separately and combined) on the water relations of Larix decidua growing at the tree line in the Swiss Alps. We assessed diurnal stem radius fluctuations using point dendrometers and applied a hydraulic plant model using microclimate and soil water potential data as inputs. Trees exposed to CO2 enrichment for 9 yr showed smaller diurnal stem radius contractions (by 46 ± 16%) and expansions (42 ± 16%) compared with trees exposed to ambient CO2 . Additionally, there was a delay in the timing of daily maximum (40 ± 12 min) and minimum (63 ± 14 min) radius values for trees growing under elevated CO2 . Parameters optimized with the hydraulic model suggested that CO2 -enriched trees had an increased flow resistance between the xylem and bark, representing a more buffered water supply system. Soil warming did not alter diurnal fluctuation dynamics or the CO2 response. Elevated CO2 altered the hydraulic water flow and storage system within L. decidua trees, which might have contributed to enhanced growth during 9 yr of CO2 enrichment and could ultimately influence the future competitive ability of this key tree-line species. © 2014 WSL Institute for Snow and Avalanche Research - SLF. New Phytologist © 2014 New Phytologist Trust.

  10. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    Science.gov (United States)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  11. Diurnal Variations of Airborne Pollen and Spores in Taipei City, Taiwan

    Directory of Open Access Journals (Sweden)

    Yueh-Lin Yang

    2003-09-01

    Full Text Available The diurnal variation of airborne pollen and spores in Taipei City, Taiwan, was investigated during a two-year survey from 1993 to 1994. The pollen and spores were sampled using a Burkard seven-day volumetric pollen trap. The diurnal trends of the total amount of pollen and spores in 1993 and in 1994 were similar to each other, and peaked at 3 to 10 o’clock. The diurnal patterns of airborne pollen and spores of Broussonetia, Fraxinus, Cyathea and Gramineae in 1993 were similar to those in 1994. High concentrations of Broussonetia and Fraxinus were obtained from midnight to the next morning. Cyathea spores peaked from morning till noon, and Gramineae peaked in the afternoon. The diurnal patterns of airborne pollen of Bischofia, Juniperus, Mallotus, Morus, Trema and Urticaceae in 1993 were different to those in 1994. Regular diurnal patterns also associated with the taxa, which produce large pollen or spores, such as Gramineae and Cyathea. In contrast, Bischofia, Juniperus, Mallotus, Morus, Trema and Urticaceae produce relatively small pollen and the diurnal patterns of their airborne pollen were found irregular. The source plants Broussonetia and Fraxinus were close to the collection site so the diurnal patterns of their airborne pollen were regular, suggesting that the diurnal fluctuations of the pollen or spores in air might be affected by the source of plants and the sizes of pollen or spores. The transportation of the smaller pollen or spores in air is probably more easily affected by instability of air currents; they are therefore more likely to exhibit irregular diurnal patterns.

  12. Tracking diurnal changes of photosynthesis and evapotranspiration using fluorescence, gas exchange and hyperspectral remote sensing measurements

    Science.gov (United States)

    Wang, S.; Zhang, L.; Guanter, L.; Huang, C.

    2017-12-01

    Photosynthesis and evapotranspiration (ET) are the two most important activities of vegetation and make a great contribution to carbon, water and energy exchanges. Remote sensing provides opportunities for monitoring these processes across time and space. This study focuses on tracking diurnal changes of photosynthesis and evapotranspiration over soybean using multiple measurement techniques. Diurnal changes of both remote sensing-based indicators, including active and passive chlorophyll fluorescence and biophysical-related parameters, including photosynthesis rate (photo) and leaf stomatal conductance (cond), were observed. Results showed that both leaf-level steady-state fluorescence (Fs) and canopy-level solar-induced chlorophyll fluorescence were linearly correlated to photosynthetically active radiation (PAR) during the daytime. A double-peak diurnal change curve was observed for leaf-level photo and cond but not for Fs or SIF. Photo and cond showed a strong nonlinear (second-order) correlation, indicating that photosynthesis, which might be remotely sensed by SIF, has the opportunity to track short-term changes of ET. Results presented in this report will be helpful for better understanding the relationship between remote-sensing-based indices and vegetation's biophysical processes.

  13. Atmospheric diurnal variations observed with GPS radio occultation soundings

    Directory of Open Access Journals (Sweden)

    F. Xie

    2010-07-01

    Full Text Available The diurnal variation, driven by solar forcing, is a fundamental mode in the Earth's weather and climate system. Radio occultation (RO measurements from the six COSMIC satellites (Constellation Observing System for Meteorology, Ionosphere and Climate provide nearly uniform global coverage with high vertical resolution, all-weather and diurnal sampling capability. This paper analyzes the diurnal variations of temperature and refractivity from three-year (2007–2009 COSMIC RO measurements in the troposphere and stratosphere between 30° S and 30° N. The RO observations reveal both propagating and trapped vertical structures of diurnal variations, including transition regions near the tropopause where data with high vertical resolution are critical. In the tropics the diurnal amplitude in refractivity shows the minimum around 14 km and increases to a local maximum around 32 km in the stratosphere. The upward propagating component of the migrating diurnal tides in the tropics is clearly captured by the GPS RO measurements, which show a downward progression in phase from stratopause to the upper troposphere with a vertical wavelength of about 25 km. At ~32 km the seasonal variation of the tidal amplitude maximizes at the opposite side of the equator relative to the solar forcing. The vertical structure of tidal amplitude shows strong seasonal variations and becomes asymmetric along the equator and tilted toward the summer hemisphere in the solstice months. Such asymmetry becomes less prominent in equinox months.

  14. Combined diurnal variations of discharge and hydrochemistry of the Isunnguata Sermia outlet, Greenland Ice Sheet

    Science.gov (United States)

    Graly, Joseph; Harrington, Joel; Humphrey, Neil

    2017-05-01

    In order to examine daily cycles in meltwater routing and storage in the Isunnguata Sermia outlet of the Greenland Ice Sheet, variations in outlet stream discharge and in major element hydrochemistry were assessed over a 6-day period in July 2013. Over 4 days, discharge was assessed from hourly photography of the outlet from multiple vantages, including where midstream naled ice provided a natural gauge. pH, electrical conductivity, suspended sediment, and major element and anion chemistry were measured in samples of stream water collected every 3 h.Photography and stream observations reveal that although river width and stage have only slight diurnal variation, there are large diurnal changes in discharge shown by the doubling in width of what we term the active channel, which is characterized by large standing waves and fast flow. The concentration of dissolved solutes follows a sinusoidal diurnal cycle, except for large and variable increases in dissolved solutes during the stream's waning flow. Solute concentrations vary by ˜ 30 % between diurnal minima and maxima. Discharge maxima and minima lag temperature and surface melt by 3-7 h; diurnal solute concentration minima and maxima lag discharge by 3-6 h.This phase shift between discharge and solute concentration suggests that during high flow, water is either encountering more rock material or is stored in longer contact with rock material. We suggest that expansion of a distributed subglacial hydrologic network into seldom accessed regions during high flow could account for these phenomena, and for a spike of partial silicate reaction products during waning flow, which itself suggests a pressure threshold-triggered release of stored water.

  15. Diurnal variations of summer precipitation over the regions east to Tibetan Plateau

    Science.gov (United States)

    Wu, Yang; Huang, Anning; Huang, Danqing; Chen, Fei; Yang, Ben; Zhou, Yang; Fang, Dexian; Zhang, Lujun; Wen, Lijuan

    2017-12-01

    Based on the hourly gauge-satellite merged precipitation product with the horizontal resolution of 0.1° latitude/longitude during 2008-2014, diurnal variations of the summer precipitation amount (PA), frequency (PF), and intensity (PI) with different duration time over the regions east to Tibetan Plateau have been systematically revealed in this study. Results indicate that the eight typical precipitation diurnal patterns identified by the cluster analysis display pronounced regional features among the plateaus, basins, plains, hilly and coastal areas. The precipitation diurnal cycles are significantly affected by the sub-grid terrain fluctuations. The PA, PF and PI of the total rainfall show much more pronounced double diurnal peaks with the sub-grid topography standard deviation (SD) decreased. Meanwhile, the diurnal peaks of PA and PF (PI) strengthen (weaken) with the sub-grid topography SD enhanced. Over the elevated mountain ranges, southeastern hilly and coastal regions, the PA and PF diurnal patterns of the total rainfall generally show predominant late-afternoon peaks, which are closely associated with the short-duration (≤slant 3 h) rainfall. Along the Tibetan Plateau to its downstream, the diurnal peaks of PA, PF and PI for the total rainfall all exhibit obvious eastward phase time delay mainly due to the diurnal evolutions of long-duration (> 6 h) rainfall. However, the 4-6 h rainfall leads to the eastward phase time delay of the total rainfall along the Taihang Mountains to its downstream. Further mechanism analysis suggests that the midnight to morning diurnal evolution of the long-duration rainfall is closely associated with the diurnal variations of the upward branches of thermally driven mountain-plain solenoids and the water vapor transport associated with the accelerated nocturnal southwesterly winds. The late-afternoon peak of the short-duration PA over the southeastern hilly and coastal regions is ascribed to the strong local thermal

  16. Comparison of diurnal dynamics in evaporation rate between bare soil and moss-crusted soil within a revegetated desert ecosystem of northwestern China

    Science.gov (United States)

    Zhang, Ya-Feng; Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui

    2016-02-01

    Effects of biological soil crusts (BSCs) on soil evaporation is quite controversial in literature, being either facilitative or inhibitive, and therein few studies have actually conducted direct evaporation measurements. Continuous field measurements of soil water evaporation were conducted on two microlysimeters, i.e., one with sand soil collected from bare sand dune area and the other with moss-crusted soil collected from an area that was revegetated in 1956, from field capacity to dry, at the southeastern edge of the Tengger Desert. We mainly aimed to quantify the diurnal variations of evaporation rate from two soils, and further comparatively discuss the effects of BSCs on soil evaporation after revegetation. Results showed that in clear days with high soil water content (Day 1 and 2), the diurnal variation of soil evaporation rate followed the typical convex upward parabolic curve, reaching its peak around mid-day. Diurnal evaporation rate and the accumulated evaporation amount of moss-crusted soil were lower (an average of 0.90 times) than that of sand soil in this stage. However, as soil water content decreased to a moderately low level (Day 3 and 4), the diurnal evaporation rate from moss-crusted soil was pronouncedly higher (an average of 3.91 times) than that of sand soil, prolonging the duration of this higher evaporation rate stage; it was slightly higher in the final stage (Day 5 and 6) when soil moisture was very low. We conclude that the effects of moss crusts on soil evaporation vary with different evaporation stages, which is closely related to soil water content, and the variation and transition of evaporation rate between bare soil and moss-crusted soil are expected to be predicted by soil water content.

  17. Diurnal rhythm of pituitary gonadotropic activity of male Japanese quail in relation to testicular growth

    International Nuclear Information System (INIS)

    Hashiguchi, Mineo; Koga, Osamu; Nishiyama, Hisayoshi

    1977-01-01

    Male Japanese quail were exposed to 14-hr (5:00-19:00) light:10-hr darkness (14 L:10D) from 1 day to 28 days of age and exposed to 8 L (5:00-13:00); 16D from 29 days to 49 days of age. Thereafter the birds were again transferred to 14L:10D for photostimulation. Gonadotropic activities of the anterior lobes of the pituitary were measured at various times during the 24-hr period in relation to testicular growth with a blossary method based on sup(32P)-uptake by one-day-old chick tests. The mean testicular weights increased from the 2nd to 35th day of exposure to 14L:10D and an abrupt increase was observed between the 7th and 21st day. Thereafter the weight reached a plateau. Under 8L:16D and on the 1st day of exposure to 14L:10D, no diurnal changes in the pituitary gonadotropic activity were observed but on the 2nd day the activity showed a peak at 19:00 (14 hr after the onset of light). On the 7th and 21st day, two peaks of the activity were found at 8:00 (3 hr after the onset of light) and 22:00 (17 hr after the onset of light or 3 hr after the onset of darkness). However, only one peak was found at 19:00 (14 hr after the onset of light) on the 35th and 49th day. These results indicate that the diurnal rhythm of pituitary gonadotropic activity of male quail appears after transfer of the birds from short days to long days, and that the diurnal pattern changes with photoperiodically induced testicular growth. (auth.)

  18. Effects of light on NO3 uptake in small forested streams: diurnal and day-to-day variations

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL

    2006-08-01

    We investigated the effects of autotrophy on short-term variations in nutrient dynamics by measuring diurnal and day-to-day variations in light level, primary productivity, and NO{sub 3}{sup -} uptake during early and late spring in 2 forested streams, the East and West Forks of Walker Branch in eastern Tennessee, USA. We predicted that diurnal and day-to-day variations in NO{sub 3}{sup -} uptake rate would be larger in the West Fork than in the East Fork in early spring because of higher rates of primary productivity resulting from a more stable substratum in the West Fork. We also predicted minimal diurnal variations in both streams in late spring after forest leaf emergence when light levels and primary productivity are uniformly low. Reach-scale rates of gross primary production (GPP) were determined using the diurnal dissolved O{sub 2} change technique, and reach-scale rates of NO{sub 3}{sup -} uptake were determined by tracer {sup 15}N-NO{sub 3}{sup -} additions. In the West Fork, significant diurnal and day-to-day variations in NO{sub 3}{sup -} uptake were related to variations in light level and primary productivity in early spring but not in late spring, consistent with our predictions. In early spring, West Fork NO{sub 3}{sup -} uptake rates were 2 to 3x higher at midday than during predawn hours and 50% higher on 2 clear days than on an overcast day several days earlier. In the East Fork, early spring rates of GPP were 4 to 5x lower than in the West Fork and diurnal and day-to-day variations in NO{sub 3}{sup -} uptake rates were <30%, considerably lower than in the West Fork. However, diurnal variations in NO{sub 3}{sup -} uptake rates were greater in late spring in the East Fork, possibly because of diurnal variation in water temperature. Our results indicate the important role of autotrophs in nutrient uptake in some forested streams, particularly during seasons when forest vegetation is dormant and light levels are relatively high. Our results also

  19. Evaluation of the sensitivity of the Amazonian diurnal cycle to convective intensity in reanalyses

    Science.gov (United States)

    Itterly, Kyle F.; Taylor, Patrick C.

    2017-02-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  20. Effects of sea surface temperature, cloud radiative and microphysical processes, and diurnal variations on rainfall in equilibrium cloud-resolving model simulations

    International Nuclear Information System (INIS)

    Jiang Zhe; Li Xiao-Fan; Zhou Yu-Shu; Gao Shou-Ting

    2012-01-01

    The effects of sea surface temperature (SST), cloud radiative and microphysical processes, and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations. For a rain rate of higher than 3 mm·h −1 , water vapor convergence prevails. The rainfall amount decreases with the decrease of SST from 29 °C to 27 °C, the inclusion of diurnal variation of SST, or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds, which are primarily associated with the decreases in water vapor convergence. However, the amount of rainfall increases with the increase of SST from 29 °C to 31 °C, the exclusion of diurnal variation of solar zenith angle, and the exclusion of the radiative effects of ice clouds, which are primarily related to increases in water vapor convergence. For a rain rate of less than 3 mm·h −1 , water vapor divergence prevails. Unlike rainfall statistics for rain rates of higher than 3 mm·h −1 , the decrease of SST from 29 °C to 27 °C and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount, which corresponds to the suppression in water vapor divergence. The exclusion of microphysical effects of ice clouds decreases the amount of rainfall, which corresponds to the enhancement in water vapor divergence. The amount of rainfall is less sensitive to the increase of SST from 29 °C to 31 °C and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Posttraumatic stress symptoms related to community violence and children's diurnal cortisol response in an urban community-dwelling sample.

    Science.gov (United States)

    Suglia, Shakira Franco; Staudenmayer, John; Cohen, Sheldon; Wright, Rosalind J

    2010-03-01

    While community violence has been linked to psychological morbidity in urban youth, data on the physiological correlates of violence and associated posttraumatic stress symptoms are sparse. We examined the influence of child posttraumatic stress symptoms reported in relationship to community violence exposure on diurnal salivary cortisol response in a population based sample of 28 girls and 15 boys ages 7-13, 54% self-identified as white and 46% as Hispanic. Mothers' reported on the child's exposure to community violence using the Survey of Children's Exposure to Community Violence and completed the Checklist of Children's Distress Symptoms (CCDS) which captures factors related to posttraumatic stress; children who were eight years of age or greater reported on their own community violence exposure. Saliva samples were obtained from the children four times a day (after awakening, lunch, dinner and bedtime) over three days. Mixed models were used to assess the influence of posttraumatic stress symptoms on cortisol expression, examined as diurnal slope and area under the curve (AUC), calculated across the day, adjusting for socio-demographics. In adjusted analyses, higher scores on total traumatic stress symptoms (CCDS) were associated with both greater cortisol AUC and with a flatter cortisol waking to bedtime rhythm. The associations were primarily attributable to differences on the intrusion, arousal and avoidance CCDS subscales. Posttraumatic stress symptomatology reported in response to community violence exposure was associated with diurnal cortisol disruption in these community-dwelling urban children.

  2. Diurnal variations of Titan

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  3. Diurnal regulation of photosynthesis in Jatropha curcas under drought during summer in a semi-arid region

    International Nuclear Information System (INIS)

    Tominaga, Jun; Inafuku, Sayuri; Coetzee, Tidimalo; Kawamitsu, Yoshinobu

    2014-01-01

    The diurnal photosynthetic responses to drought in Jatropha curcas have not been well assessed under field conditions in harsh semi-arid habitats. To illustrate this, diurnal changes in chlorophyll fluorescence and gas exchange rates were measured in field-grown Jatropha with or without a short (13 days) water recovery treatment under drought conditions during hot summer in a semi-arid. Sensitive stomatal closure coordinated with a drying atmosphere strictly limited a net CO 2 assimilation rate with a predominant morning peak, eventually turning negative during the day. Even though the risk of excess excitation energy which potentially causes photodamage increased with the extremely low capacity for CO 2 fixation, Jatropha preserved the integrity of PSII. Quantitative analysis of quenching partitioning revealed that regulated thermal energy dissipation accounted a large fraction of both instantaneous and daily absorbed energy by up to 80 and 72%, respectively, under the drought condition. Water recovery treatment more than doubled daily CO 2 uptake via mitigating diurnal stomatal closure. The regulated thermal dissipation flexibly adjusted PSII quantum efficiency to capacity of CO 2 fixation. In addition, downregulation of PSII quantum efficiency via sustained regulated thermal dissipation was observed and thought to be an additional photoprotective function. It is clear that Jatropha strongly rely upon the regulated thermal dissipation under drought condition, which must be critically important for this strict water conserving species, especially under a climate with high solar radiation loads as is seen in semi-arid regions. - Highlights: • Diurnal gas exchange and the fate of absorbed energy were assessed in Jatropha. • The dynamic stomatal closure was the predominant restriction under water stress. • The PSII integrity was preserved even under severe water stress. • The regulated thermal dissipation accounted by up to 72% of daily absorbed energy.

  4. Trajectories of Diurnal Cortisol in Mothers of Children with Autism and Other Developmental Disabilities: Relations to Health and Mental Health

    Science.gov (United States)

    Dykens, Elisabeth M.; Lambert, Warren

    2013-01-01

    This study used a stress biomarker, diurnal cortisol, to identify how elevated stress in mothers of children and adults with autism and other disabilities relates to their health and mental health. Based on semi-parametric, group-based trajectory analysis of 91 mothers, two distinctive cortisol trajectories emerged: blunted (63%) or steep (37%).…

  5. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    Science.gov (United States)

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  6. Reproducibility of summertime diurnal precipitation over northern Eurasia simulated by CMIP5 climate models

    Science.gov (United States)

    Hirota, N.; Takayabu, Y. N.

    2015-12-01

    Reproducibility of diurnal precipitation over northern Eurasia simulated by CMIP5 climate models in their historical runs were evaluated, in comparison with station data (NCDC-9813) and satellite data (GSMaP-V5). We first calculated diurnal cycles by averaging precipitation at each local solar time (LST) in June-July-August during 1981-2000 over the continent of northern Eurasia (0-180E, 45-90N). Then we examined occurrence time of maximum precipitation and a contribution of diurnally varying precipitation to the total precipitation.The contribution of diurnal precipitation was about 21% in both NCDC-9813 and GSMaP-V5. The maximum precipitation occurred at 18LST in NCDC-9813 but 16LST in GSMaP-V5, indicating some uncertainties even in the observational datasets. The diurnal contribution of the CMIP5 models varied largely from 11% to 62%, and their timing of the precipitation maximum ranged from 11LST to 20LST. Interestingly, the contribution and the timing had strong negative correlation of -0.65. The models with larger diurnal precipitation showed precipitation maximum earlier around noon. Next, we compared sensitivity of precipitation to surface temperature and tropospheric humidity between 5 models with large diurnal precipitation (LDMs) and 5 models with small diurnal precipitation (SDMs). Precipitation in LDMs showed high sensitivity to surface temperature, indicating its close relationship with local instability. On the other hand, synoptic disturbances were more active in SDMs with a dominant role of the large scale condensation, and precipitation in SDMs was more related with tropospheric moisture. Therefore, the relative importance of the local instability and the synoptic disturbances was suggested to be an important factor in determining the contribution and timing of the diurnal precipitation. Acknowledgment: This study is supported by Green Network of Excellence (GRENE) Program by the Ministry of Education, Culture, Sports, Science and Technology

  7. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated‐unsaturated flow assessment

    Science.gov (United States)

    Loheide, Steven P.; Butler, James J.; Gorelick, Steven M.

    2005-01-01

    Groundwater consumption by phreatophytes is a difficult‐to‐measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated‐unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified.

  8. Diurnal and semi-diurnal tidal structures due to O2, O3 and H2O ...

    Indian Academy of Sciences (India)

    from World Meteorological Organization (WMO. 1986), while the Rayleigh scattering cross section was calculated using the formula of Nicolet (1984). ..... Figure 5(a) exhibits the exponential growth of diurnal amplitude with altitude, at low to mid lat- itudes. At high latitudes, the diurnal amplitude decreases with altitude due to ...

  9. Observed diurnal variations in Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data

    Science.gov (United States)

    Tate, C. G.; Moersch, J.; Jun, I.; Mitrofanov, I.; Litvak, M.; Boynton, W. V.; Drake, D.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Maclennan, E.; Malakhov, A.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.

    2018-06-01

    The Mars Science Laboratory Dynamic Albedo of Neutrons (DAN) experiment measures the martian neutron leakage flux in order to estimate the amount of water equivalent hydrogen present in the shallow regolith. When DAN is operating in passive mode, it is sensitive to neutrons produced through the interactions of galactic cosmic rays (GCR) with the regolith and atmosphere and neutrons produced by the rover's Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). During the mission, DAN passive mode data were collected over the full diurnal cycle at the locations known as Rocknest (sols 60-100) and John Klein (sols 166-272). A weak, but unexpected, diurnal variation was observed in the neutron count rates reported at these locations. We investigate different hypotheses that could be causing these observed variations. These hypotheses are variations in subsurface temperature, atmospheric pressure, the exchange of water vapor between the atmosphere and regolith, and instrumental effects on the neutron count rates. Our investigation suggests the most likely factors contributing to the observed diurnal variations in DAN passive data are instrumental effects and time-variable preferential shielding of alpha particles, with other environmental effects only having small contributions.

  10. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Pt. 2. A diurnally coupled CGCM

    Energy Technology Data Exchange (ETDEWEB)

    Bernie, D.J. [Met Office Hadley Centre, Exeter (United Kingdom); University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom); Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Guilyardi, E. [University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom); Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Madec, G. [Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Slingo, J.M.; Woolnough, S.J.; Cole, J. [University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom)

    2008-12-15

    Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2 C in the central and western Pacific to over 0.3 C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170 E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase in

  11. Diurnal variations of humidity and ice water content in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    P. Eriksson

    2010-12-01

    Full Text Available Observational results of diurnal variations of humidity from Odin-SMR and AURA-MLS, and cloud ice mass from Odin-SMR and CloudSat are presented for the first time. Comparisons show that the retrievals of humidity and cloud ice from these two satellite combinations are in good agreement. The retrieved data are combined from four almost evenly distributed times of the day allowing mean values, amplitudes and phases of the diurnal variations around 200 hpa to be estimated. This analysis is applied to six climatologically distinct regions, five located in the tropics and one over the subtropical northern Pacific Ocean. The strongest diurnal cycles are found over tropical land regions, where the amplitude is ~7 RHi for humidity and ~50% for ice mass. The greatest ice mass for these regions is found during the afternoon, and the humidity maximum is observed to lag this peak by ~6 h. Over tropical ocean regions the variations are smaller and the maxima in both ice mass and humidity are found during the early morning. Observed results are compared with output from three climate models (ECHAM, EC-EARTH and CAM3. Direct measurement-model comparisons were not possible because the measured and modelled cloud ice masses represent different quantities. To make a meaningful comparison, the amount of snow had to be estimated from diagnostic parameters of the models. There is a high probability that the models underestimate the average ice mass (outside the 1-σ uncertainty. The models also show clear deficiencies when it comes to amplitude and phase of the regional variations, but to varying degrees.

  12. A study of diurnal variations of PM2.5 acidity and related chemical species using a new thermodynamic equilibrium model

    International Nuclear Information System (INIS)

    Behera, Sailesh N.; Betha, Raghu; Liu, Ping; Balasubramanian, Rajasekhar

    2013-01-01

    Aerosol acidity is one of the most important parameters that can influence atmospheric visibility, climate change and human health. Based on continuous field measurements of inorganic aerosol species and their thermodynamic modeling on a time resolution of 1 h, this study has investigated the acidic properties of PM 2.5 and their relation with the formation of secondary inorganic aerosols (SIA). The study was conducted by taking into account the prevailing ambient temperature (T) and relative humidity (RH) in a tropical urban atmosphere. The in-situ aerosol pH (pH IS ) on a 12 h basis ranged from − 0.20 to 1.46 during daytime with an average value of 0.48 and 0.23 to 1.53 during nighttime with an average value of 0.72. These diurnal variations suggest that the daytime aerosol was more acidic than that caused by the nighttime aerosol. The hourly values of pH IS showed a reverse trend as compared to that of in-situ aerosol acidity ([H + ] Ins ). The pH IS had its maximum values at 3:00 and at 20:00 and its minimum during 11:00 to 12:00. Correlation analyses revealed that the molar concentration ratio of ammonium to sulfate (R N/S ), equivalent concentration ratio of cations to anions (R C/A ), T and RH can be used as independent variables for prediction of pH IS . A multi-linear regression model consisting of R N/S , R C/A, T and RH was developed to estimate aerosol pH IS. - Highlights: • Fine aerosol acidic characteristics were evaluated on an hourly basis. • Diurnal variations of in-situ acidity, water content and pH of aerosols were investigated. • Aerosols were more acidic during daytime than during nighttime. • The molar ratio of ammonium to sulfate and equivalent ratio of cations to anions were good indicators of aerosol acidity. • Meteorology had a significant effect on the hygroscopic nature of aerosol

  13. Growth and water relations of Kentucky coffee tree in protective shelters during establishment

    International Nuclear Information System (INIS)

    Kjelgren, R.

    1994-01-01

    Growth and water relations of Kentucky coffee tree [Gymnocladus dioica (L.) K. Koch] whips in translucent tubelike shelters were investigated. In a container study, 1.2-m-high shelters were placed over whips following transplanting, then diurnal microclimate, water relations, and water use were measured. Shelter air temperature and vapor pressure were substantially higher, and solar radiation was 70% lower, than ambient conditions. Sheltered trees responded with nearly three-times higher stomatal conductance than nonsheltered trees. However, due to substantially lower boundary layer conductance created by the shelter, normalized water use was 40% lower. In a second experiment, same-sized shelters were placed on whips following spring transplanting in the field. Predawn and midday leaf water potentials and midday stomatal conductance (g(s)) were monitored periodically through the season, and growth was measured in late summer. Midday g(s) was also much higher in field-grown trees with shelters than in those without. Sheltered trees in the field had four times greater terminal shoot elongation but 40% less stem diameter growth. Attenuated radiation in the shelters and lower-specific leaf area of sheltered trees indicated shade acclimation. Shelters can improve height and reduce water loss during establishment in a field nursery, but they do not allow for sufficient trunk growth

  14. Diurnal and stress-reactive dehydroepiandrosterone levels and telomere length in youth.

    Science.gov (United States)

    Dismukes, Andrew R; Meyer, Vanessa J; Shirtcliff, Elizabeth A; Theall, Katherine P; Esteves, Kyle C; Drury, Stacy S

    2016-05-01

    The current investigation examined the association between the aging-related biomarkers dehydroepiandrosterone (DHEA) and telomere length (TL) in community-recruited African-American youth. The examination of DHEA included stress reactive, basal and diurnal sampling, in order to elucidate the underlying physiological process that may overlap with TL. One hundred and two participants completed the Trier Social Stressor Test for children (TSST-C). TL was obtained from all youth from buccal swabs on the same day as the TSST-C. Saliva samples from 83 participants were obtained over the course of two additional days to measure waking and diurnal levels of DHEA. DHEA diurnal slope was a robust predictor of TL (B=0.516, P<0.05), while other DHEA values were not significantly associated with TL. This study is one of the first studies to examine basal, diurnal and reactivity measurements of DHEA in youth. Furthermore, this is the first study, to our knowledge, to demonstrate a positive association between DHEA, a putative anti-aging hormone, and TL, an indicator of cellular aging. © 2016 The authors.

  15. Diurnal and stress-reactive dehydroepiandrosterone levels and telomere length in youth

    Directory of Open Access Journals (Sweden)

    Andrew R Dismukes

    2016-05-01

    Full Text Available The current investigation examined the association between the aging-related biomarkers dehydroepiandrosterone (DHEA and telomere length (TL in community-recruited African-American youth. The examination of DHEA included stress reactive, basal and diurnal sampling, in order to elucidate the underlying physiological process that may overlap with TL. One hundred and two participants completed the Trier Social Stressor Test for children (TSST-C. TL was obtained from all youth from buccal swabs on the same day as the TSST-C. Saliva samples from 83 participants were obtained over the course of two additional days to measure waking and diurnal levels of DHEA. DHEA diurnal slope was a robust predictor of TL (B=0.516, P<0.05, while other DHEA values were not significantly associated with TL. This study is one of the first studies to examine basal, diurnal and reactivity measurements of DHEA in youth. Furthermore, this is the first study, to our knowledge, to demonstrate a positive association between DHEA, a putative anti-aging hormone, and TL, an indicator of cellular aging.

  16. Diurnal variations in personal care products in seawater and mussels at three Mediterranean coastal sites.

    Science.gov (United States)

    Picot-Groz, Marina; Fenet, Hélène; Martinez Bueno, Maria Jesus; Rosain, David; Gomez, Elena

    2018-03-01

    The presence of personal care products (PCPs) in the marine environment is of major concern. PCPs, UV filters, and musks can enter the marine environment indirectly through wastewater or directly via recreational activities. We conducted this study to document patterns in the occurrence of seven PCPs at three coastal sites impacted by recreational activities during 1 day. The study focused on diurnal variations in these seven PCPs in seawater and indigenous mussels. In seawater, UV filters showed diurnal variations that mirrored variations in recreational activities at the sites. Ethylhexyl methoxycinnamate (EHMC) and octocrylene (OC) water concentrations increased from under the limit of quantification in the morning to 106 and 369 ng/L, respectively, when recreational activities were the highest. In mussels, diurnal variations in OC were observed, with the lowest concentrations recorded in the morning and then increasing throughout the day. As Mytilus spp. are widely used as sentinels in coastal pollution monitoring programs (mussel watch), our findings on diurnal variations could enhance sampling recommendations for recreational sites impacted by PCPs.

  17. Influence of menarche on the relation between diurnal cortisol production and ventral striatum activity during reward anticipation.

    Science.gov (United States)

    LeMoult, Joelle; Colich, Natalie L; Sherdell, Lindsey; Hamilton, J Paul; Gotlib, Ian H

    2015-09-01

    Adolescence is characterized by an increase in risk-taking and reward-seeking behaviors. In other populations, increased risk taking has been associated with tighter coupling between cortisol production and ventral striatum (VS) activation during reward anticipation; this relation has not yet been examined, however, as a function of adolescent development. This study examined the influence of pubertal development on the association between diurnal cortisol production and VS activity during reward anticipation. Pre- and post-menarcheal girls collected diurnal cortisol and completed an functional magnetic resonance imaging-based monetary incentive delay task, from which we extracted estimates of VS activity during the anticipation of reward, anticipation of loss and anticipation of non-incentive neutral trials. Post-menarcheal girls showed greater coupling between the cortisol awakening response and VS activation during anticipation of reward and loss than did their pre-menarcheal counterparts. Post-menarcheal girls did not differ from pre-menarcheal girls in their cortisol-VS coupling during anticipation of neutral trials, suggesting that puberty-related changes in cortisol-VS coupling are specific to affective stimuli. Interestingly, behavioral responses during the task indicate that post-menarcheal girls are faster to engage with affective stimuli than are pre-menarcheal girls. Thus, post-menarcheal girls exhibit neurobiological and behavioral patterns that have been associated with risk taking and that may underlie the dramatic increase in risk-taking behavior documented during adolescence. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Wheel running improves REM sleep and attenuates stress-induced flattening of diurnal rhythms in F344 rats.

    Science.gov (United States)

    Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika

    2016-05-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.

  19. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    Science.gov (United States)

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  20. Seasonal Cycle of the Near-Surface Diurnal Wind Field Over the Bay of La Paz, Mexico

    Science.gov (United States)

    Turrent, Cuauhtémoc; Zaitsev, Oleg

    2014-05-01

    The results of numerical simulations of the troposphere over the Bay of La Paz, calculated for the months of January, April, July and October during the period 2006-2010 with the Weather Research and Forecast (WRF v3.5) regional model, are used to describe the seasonal features of the diurnal cycle of planetary boundary-layer winds. Two distinct near-surface diurnal flows with strong seasonal variability were identified: (1) a nocturnal and matutinal breeze directed from the subtropical Pacific Ocean, over the Baja California peninsula and the Bay of La Paz, into the Gulf of California that is associated with the regional sea-surface temperature difference between those two major water bodies; and (2) a mid to late afternoon onshore sea-breeze related to the peninsula's daily cycle of insolation heating that evolves with counter-clockwise rotation over the Bay of La Paz. The model results reveal the interaction over Baja California of opposing afternoon sea-breeze fronts that originate from the subtropical Pacific Ocean and the Gulf of California, with a convergence line forming over the peaks of the peninsula's topography and the associated presence of a closed vertical circulation cell over the Bay of La Paz and the adjacent Gulf. The collision of the opposing sea-breeze fronts over the narrow peninsula drives convection that is relatively weak due to the reduced heat source and only appears to produce precipitation sporadically. The spatial structure of the sea-breeze fronts over the Bay of La Paz region is complex due to shoreline curvature and nearby topographic features. A comparison of the numerical results with available meteorological near-surface observations indicates that the modelling methodology adequately reproduced the observed features of the seasonal variability of the local planetary boundary-layer diurnal wind cycle and confirms that the low-level atmospheric circulation over the Bay of La Paz is dominated by kinetic energy in the diurnal band

  1. The relative contribution of diurnal and nocturnal pollinators to plant female fitness in a specialized nursery pollination system.

    Science.gov (United States)

    Scopece, Giovanni; Campese, Lucia; Duffy, Karl J; Cozzolino, Salvatore

    2018-02-01

    Plants involved in specialized pollinator interactions, such as nursery pollination, may experience trade-offs in their female fitness, as the larvae of their pollinators may also consume seeds produced by the flowers they pollinate. These interactions could potentially shift between mutualism and parasitism, depending on the presence and abundance of both the nursery pollinator and of other pollinators. We investigated the fitness trade-off in a Mediterranean plant ( Silene latifolia ), which has a specialist nocturnal nursery pollinator moth ( Hadena bicruris ) and is also visited by several diurnal pollinators. We estimated the pollination rates and fecundity of S. latifolia in both natural and experimental populations in the Mediterranean. We estimated natural pollination rates in different flowering times and with presence/absence of the H. bicruis moth. Then by exposing plants to each pollinator group either during the day or at night, we quantified the contribution of other diurnal pollinators and the specialized nocturnal nursery pollinator to plant female fitness. We found no difference in plant fruit set mediated by diurnal versus nocturnal pollinators, indicating that non-specialist pollinators contribute to plant female fitness. However, in both natural and experimental populations, H. bicruris was the most efficient pollinator in terms of seeds produced per fruit. These results suggest that the female fitness costs generated by nursery pollination can be overcome through higher fertilization rates relative to predation rates, even in the presence of co-pollinators. Quantifying such interactions is important for our understanding of the selective pressures that promote highly specialized mutualisms, such as nursery pollination, in the Mediterranean region, a centre of diversification of the carnation family.

  2. Specific Diurnal EMG Activity Pattern Observed in Occlusal Collapse Patients: Relationship between Diurnal Bruxism and Tooth Loss Progression

    Science.gov (United States)

    Kawakami, Shigehisa; Kumazaki, Yohei; Manda, Yosuke; Oki, Kazuhiro; Minagi, Shogo

    2014-01-01

    Aim The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. Materials and Methods Six progressive bite collapse patients (PBC group), six age- and gender-matched control subjects (MC group), and six young control subjects (YC group) were enrolled. Electromyograms (EMG) of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. Results Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (pbruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. Practical implications The incidence of diurnal phasic contractions could be used for the prognostic evaluation of stomatognathic system stability. PMID:25010348

  3. Convective Cloud and Rainfall Processes Over the Maritime Continent: Simulation and Analysis of the Diurnal Cycle

    Science.gov (United States)

    Gianotti, Rebecca L.

    The Maritime Continent experiences strong moist convection, which produces significant rainfall and drives large fluxes of heat and moisture to the upper troposphere. Despite the importance of these processes to global circulations, current predictions of climate change over this region are still highly uncertain, largely due to inadequate representation of the diurnally-varying processes related to convection. In this work, a coupled numerical model of the land-atmosphere system (RegCM3-IBIS) is used to investigate how more physically-realistic representations of these processes can be incorporated into large-scale climate models. In particular, this work improves simulations of convective-radiative feedbacks and the role of cumulus clouds in mediating the diurnal cycle of rainfall. Three key contributions are made to the development of RegCM3-IBIS. Two pieces of work relate directly to the formation and dissipation of convective clouds: a new representation of convective cloud cover, and a new parameterization of convective rainfall production. These formulations only contain parameters that can be directly quantified from observational data, are independent of model user choices such as domain size or resolution, and explicitly account for subgrid variability in cloud water content and nonlinearities in rainfall production. The third key piece of work introduces a new method for representation of cloud formation within the boundary layer. A comprehensive evaluation of the improved model was undertaken using a range of satellite-derived and ground-based datasets, including a new dataset from Singapore's Changi airport that documents diurnal variation of the local boundary layer height. The performance of RegCM3-IBIS with the new formulations is greatly improved across all evaluation metrics, including cloud cover, cloud liquid water, radiative fluxes and rainfall, indicating consistent improvement in physical realism throughout the simulation. This work

  4. Effects of ultraviolet-B radiation on plants during mild water stress, 4: The insensitivity of soybean internal water relations to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Teramura, A.H.; Forseth, I.N.; Lydon, J.

    1984-01-01

    The combined effects of ultraviolet-B (UV-B, 280–320 nm) radiation and water stress were investigated on the water relations of greenhouse grown soybean [Glycine max (L.) Merr. cv. Essex]. On a weighted (Caldwell 1971), total daily dose basis, plants received either 0 or 3 000 effective J m 2 UV-B BE supplied by filtered FS-40 sunlamps. The latter dose simulated the solar UV-B radiation anticipated at College Park, Maryland, U.S.A. (39°N latitude) in the event that the global stratospheric ozone column is reduced by 25%. Plants were either well-watered or preconditioned by drought stress cycles. Diurnal measurements of water potential and stomatal conductance were made on the youngest fully expanded leaf. Various internal water relations parameters were determined for detached leaves. Plants were monitored before, during and after water stress. There were no significant differences in leaf water potential or stomatal conductance between treatments before plants were preconditioned to water stress. However, drought stress resulted in significantly lower midday and afternoon leaf water potentials and lower leaf conductances as compared to well-watered plants. UV-B radiation had no additional effect on leaf water potential; however, UV did result in lower leaf conductances in plants preconditioned to water stress. Turgid weight:dry weight ratio, elastic modulus, bound water and relative water content were unaffected by UV-B radiation. Osmotic potentials at full and zero turgor were significantly lower in the drought stressed treatments as compared to well-watered plants. (author)

  5. Monthly variations of diurnal rainfall in north coast of West Java Indonesia during boreal winter periods

    Science.gov (United States)

    Yulihastin, E.; Trismidianto

    2018-05-01

    Diurnal rainfall during the active monsoon period is usually associated with the highest convective activity that often triggers extreme rainfall. Investigating diurnal rainfall behavior in the north coast of West Java is important to recognize the behavioral trends of data leading to such extreme events in strategic West Java because the city of Jakarta is located in this region. Variability of diurnal rainfall during the period of active monsoon on December-January-February (DJF) composite during the 2000-2016 period was investigated using hourly rainfall data from Tropical Rainfall Measuring Mission (TRMM) 3B41RT dataset. Through the Empirical Mode Decomposition method was appears that the diurnal rain cycle during February has increased significantly in its amplitude and frequency. It is simultaneously shows that the indication of extreme rainfall events is related to diurnal rain divergences during February shown through phase shifts. The diurnal, semidiurnal, and terdiurnal cycles appear on the characteristics of the DJF composite rainfall data during the 2000-2016 period.The significant increases in amplitude occurred during February are the diurnal (IMF 3) and terdiurnal (IMF 1) of rainfall cycles.

  6. Psychosocial determinants of diurnal alpha-amylase among healthy Quebec workers.

    Science.gov (United States)

    Marchand, Alain; Juster, Robert-Paul; Lupien, Sonia J; Durand, Pierre

    2016-04-01

    Salivary alpha-amylase (sAA) is a stress-sensitive biomarker the shows promise as an indirect proxy of sympathetic-adrenal-medullary axis activities that are otherwise difficult to discern non-invasively. This comprehensive study investigated diurnal sAA in association with numerous psychosocial characteristics related to mental health, work stress, and non-work stress. Participants included 395 workers (56.1% women, age: M=41.3, SD=10.81) from across 34 distinct workplaces. Diurnal sAA was sampled over two non-consecutive work days at awakening, 30 min after awakening, 14h00, 16h00, and bedtime. Well-validated psychometrics and survey items were used to measure mental health (psychological distress, depression, burnout, work characteristics) (task design, demands, social relations, gratifications), and non-work characteristics (marital/parental status, economic statuses, marital and parental stress, work-family conflicts). Preliminary results revealed that men showed occasionally higher sAA concentrations than women. Multilevel regressions were used to analyze sAA concentrations nested according to levels (i) for each time-point, (ii) between workers, and (iii) across workplaces while covarying for time of awakening, sex, age, cigarette smoking, alcohol consumption, regular physical activity, psychotropic drug use, and body mass index. Main results revealed that psychological demands, support from colleagues, interpersonal conflicts, job recognition and job insecurity appear to be associated with diurnal sAA, while non-work factors did not. Our findings showing a distinct diurnal profile for sAA replicate and expand those of Nater et al. (2007, Psychoneuroendocrinology 32, 392-401), providing further evidence that sAA is associated to subjective psychosocial factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Diurnal salivary cortisol in relation to perceived stress at home and at work in healthy men and women.

    Science.gov (United States)

    Sjörs, Anna; Ljung, Thomas; Jonsdottir, Ingibjörg H

    2014-05-01

    This study investigated the association between diurnal salivary cortisol profile and perceived stress at work and at home. Healthy participants (N=180, 52% women) collected saliva cortisol samples immediately after waking up, 15 min later, 30 min later, and at 9:00, 12:00, 15:00, 18:00 and 21:00. The area under the cortisol awakening curve with respect to ground (AUCgCAR) and increase (AUCiCAR), and diurnal slope between 9:00 and 21:00 were analyzed. Perceived stress at work and at home was measured with the Stress-Energy Questionnaire. Participants reporting stress at home had significantly lower AUCgCAR and a flatter diurnal slope. When performing separate analyses for men and women, this association was only significant among women. Perceived stress at work was not associated with any cortisol measure. This study highlights the importance of stress outside the workplace. The sex differences may indicate an increased vulnerability to non-work stress in women. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay

    Science.gov (United States)

    Yates, K.K.; Halley, R.B.

    2006-01-01

    Water quality and circulation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate density Thalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to -0.410 g CaCO3 m-2 d-1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to -1.900 g CaCO3 m -2 night-1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average

  9. ESA STSE Project “Sea Surface Temperature Diurnal Variability: Regional Extend – Implications in Atmospheric Modelling”

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    of the vertical extend of diurnal signals. Drifting buoys provide measurements close to the surface but are not always available. Moored buoys are generally not able to resolve the daily SST signal, which strongly weakens with depth within the upper water column. For such reasons, the General Ocean Turbulence......, atmospheric and oceanic modelling, bio-chemical processes and oceanic CO2 studies. The diurnal variability of SST, driven by the coincident occurrence of low enough wind and solar heating, is currently not properly understood. Atmospheric, oceanic and climate models are currently not adequately resolving...... the daily SST variability, resulting in biases of the total heat budget estimates and therefore, demised model accuracies. The ESA STSE funded project SSTDV:R.EX.-IM.A.M. aimed at characterising the regional extend of diurnal SST signals and their impact in atmospheric modelling. This study will briefly...

  10. Work, Stress, and Diurnal Bruxism: A Pilot Study among Information Technology Professionals in Bangalore City, India

    Directory of Open Access Journals (Sweden)

    S. K. Rao

    2011-01-01

    Full Text Available The study assessed the prevalence of diurnal bruxism among information technology (IT professionals and explored plausible predictors associated with the parafunctional habit. A cross-sectional study was designed and IT professionals were invited to participate. The inclusion criteria composed of participants in service for at least one year, having natural dentition, no history of cervical or facial injury and not undergoing orthodontic therapy. The participants (N=147 were interviewed by a trained interviewer to record information. A pre-tested questionnaire that included questions related to work, stress symptoms and diurnal bruxism was completed by each participant. The prevalence of self-reported diurnal bruxism was 59%. Bivariate analyses revealed that work (<0.05 and work experience (<0.05 were significantly associated with self-reported diurnal bruxism. In the binary logistic regression analysis stress (Odds Ratio [OR] =5.9, 95% Confidence Interval [CI] 2.6–13.3 was identified to be a strong predictor of diurnal bruxism. Professionals with 11 or more years of experience were less likely to report diurnal bruxism (OR=0.04, 95% CI 0.00–0.43 than those with 1 to 5 years of work experience. The study revealed that stress and less work experience were associated with diurnal bruxism among IT professionals in Bangalore city.

  11. Multiple origin of diurnality in geckos: evidence from eye lens crystallins

    Science.gov (United States)

    Röll, Beate

    2001-05-01

    The large lizard family Gekkonidae comprises about 90 genera (1000 species). While most geckos are nocturnal, the members of about 15 genera are diurnal. All of these species are 'tertiarily' diurnal, i.e. they are descended from 'secondarily' nocturnal ancestors. They have adapted to a diurnal lifestyle in quite different ways, as can be deduced by the crystallin proteins in their lenses. Evaluation of the heterogeneous lens crystallin compositions of diurnal geckos reveals that there are at least three lineages that regained diurnality independently.

  12. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis.

    Science.gov (United States)

    Adam, Emma K; Quinn, Meghan E; Tavernier, Royette; McQuillan, Mollie T; Dahlke, Katie A; Gilbert, Kirsten E

    2017-09-01

    Changes in levels of the stress-sensitive hormone cortisol from morning to evening are referred to as diurnal cortisol slopes. Flatter diurnal cortisol slopes have been proposed as a mediator between chronic psychosocial stress and poor mental and physical health outcomes in past theory and research. Surprisingly, neither a systematic nor a meta-analytic review of associations between diurnal cortisol slopes and health has been conducted to date, despite extensive literature on the topic. The current systematic review and meta-analysis examined associations between diurnal cortisol slopes and physical and mental health outcomes. Analyses were based on 179 associations from 80 studies for the time period up to January 31, 2015. Results indicated a significant association between flatter diurnal cortisol slopes and poorer health across all studies (average effect size, r=0.147). Further, flatter diurnal cortisol slopes were associated with poorer health in 10 out of 12 subtypes of emotional and physical health outcomes examined. Among these subtypes, the effect size was largest for immune/inflammation outcomes (r=0.288). Potential moderators of the associations between diurnal cortisol slopes and health outcomes were examined, including type of slope measure and study quality indices. The possible roles of flatter slopes as either a marker or a mechanism for disease etiology are discussed. We argue that flatter diurnal cortisol slopes may both reflect and contribute to stress-related dysregulation of central and peripheral circadian mechanisms, with corresponding downstream effects on multiple aspects of biology, behavior, and health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Diurnal variation of tropospheric temperature at a tropical station

    Directory of Open Access Journals (Sweden)

    K. Revathy

    2001-08-01

    Full Text Available The vertical velocity in the troposphere-lower stratosphere region measured using MST radar has been utilized to evaluate the temperature profile in the region. The diurnal variation of the tropospheric temperature on one day in August 1998 at the tropical station Gadanki (13.5° N, 79.2° E has been studied using the MST radar technique. The diurnal variation of the temperature revealed a prominent diurnal variation with the peak in the afternoon hours increasingly delayed in altitude. The tropopause temperature and altitude exhibited a clear diurnal cycle.Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere - composition and chemistry; instruments and technique

  14. Diurnal and Nocturnal Pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico

    Science.gov (United States)

    DAR, SALEEM; ARIZMENDI, Ma. del CORO; VALIENTE-BANUET, ALFONSO

    2006-01-01

    • Background and Aims Chiropterophillous and ornithophillous characteristics can form part of a single reproductive strategy in plants that have flowers with diurnal and nocturnal anthesis. This broader pollination strategy can ensure seed set when pollinators are scarce or unpredictable. This appears to be true of hummingbirds, which presumably pollinate Marginatocereus marginatus, a columnar cactus with red nocturnal and diurnal flowers growing as part of dense bat-pollinated columnar cacti forests in arid regions of central Mexico. The aim of this study was to study the floral biology of M. marginatus, and evaluate the effectiveness of nocturnal vs. diurnal pollinators and the contribution of each pollinator group to overall plant fitness. • Methods Individual flower buds were marked and followed to evaluate flower phenology and anthesis time. Flowers and nectar production were measured. An exclusion experiment was conducted to measure the relative contribution of nocturnal and diurnal pollinators to seed set. • Key Results Marginatocereus marginatus has red hermaphroditic flowers with nocturnal and diurnal anthesis. The plant cannot produce seeds by selfing and was pollinated during the day by hummingbirds and during the night by bats, demonstrating that both pollinator groups were important for plant reproduction. Strong pollen limitation was found in the absence of one of the pollinator guilds. • Conclusions Marginatocereus marginatus has an open pollination system in which both diurnal and nocturnal pollinators are needed to set seeds. This represents a fail-safe pollination system that can ensure both pollination, in a situation of low abundance of one of the pollinator groups (hummingbirds), and high competition for nocturnal pollinators with other columnar cacti that bloom synchronously with M. marginatus in the Tehuacan Valley, Mexico. PMID:16394025

  15. Aging, health behaviors, and the Diurnal rhythm and awakening response of salivary cortisol

    OpenAIRE

    Heaney, Jennifer L. J.; Phillips, Anna C.; Carroll, Douglas

    2012-01-01

    This study compared the awakening response and diurnal rhythm of cortisol in young versus older adults in relation to health behaviours. Older adults displayed significantly reduced cortisol upon awakening, a lower cortisol awakening response and a flatter diurnal profile represented by a reduced area under the curve and cortisol slope. There was also a significant interaction of age, cortisol and diet; younger adults with a higher fat and lower fruit and vegetable intake exhibited the flatte...

  16. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt

    2012-02-01

    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  17. The influence of air temperature and relative humidity on dynamics of water potential in Betula pendula (Betulaceae trees

    Directory of Open Access Journals (Sweden)

    G. P. Тikhova

    2017-02-01

    Full Text Available Linear multiple models were developed to describe diurnal and seasonal dynamics of water potential (Ψ of the foliated shoots in the plants of Betula genus related to air temperature and relative humidity in the middle taiga (southern Karelia. The results of the study revealed unidirectional changes, but different effect strength of air temperature and relative humidity on Ψ of the foliated shoots of common silver birch (Betula pendula Roth and curly (Karelian birch (Betula pendula Roth var. carelica. It was shown that increasing air temperature 1°С results in similar decreasing of Ψ value equal to 0.037–0.038 MPa in both of the birches (p > 0.05. Since the diurnal air temperature range achieves 10–15 °С, the contribution of this factor may be up to 0.57 MPa. On the contrary, the contribution of relative air humidity to Ψ value differs significantly in distinct birch forms (p < 0.05. In this case the change range of Ψ value in silver birch and curly birch may be up to 0.46 (0.015 MPa/1 % RH and 0.52 МПа (0.017 MPa/1 % RH, respectively. The results indicate that curly birch responds to the increase of relative air humidity with higher magnification of Ψ in comparison with common silver birch.

  18. Diurnal variations of indoor radon progeny for Bangalore metropolitan, India

    International Nuclear Information System (INIS)

    Nagesh, V.; Sathish, L.A.; Nagaraja, K.; Sundareshan, S.

    2010-01-01

    Radon progenies are identified as major causes of the lung cancer if the activity is above its normal. It has not been clear whether radon poses a similar risk of causing lung cancer in humans exposed at generally lower levels found in homes, but a number of indoor radon survey have been carried out in recent years around the world. In view of this an attempt has been made for the measurement of diurnal variation of indoor radon levels for the environment of Bangalore metropolitan, India. The Radon progeny concentrations in terms of working level were measured using Kusnetz's method. The patterns of daily and annual changes in indoor Radon concentration have been observed in a general way for many years. However, understanding of the physical basis for these changes had to await the development of continuous monitors and a more complete knowledge of transport processes in the atmosphere. Over a continent, heating of the ground surface by the Sun during the day and cooling by radiation during the night causes a marked diurnal change in temperature near the surface. As a result cool air near the ground will accumulate radon isotopes from surface flux during the night; while during the day the warm air will be transported upward carrying radon with it. Many buildings show diurnal radon variations. Concentrations are relatively higher during night than daytime. This is influenced by the outdoor-indoor temperature contrast. This effect can be enhanced in buildings with strong diurnal use patterns. Buildings that have high average radon concentrations, but are only occupied for part of the day, may need to be measured during occupied periods to determine if there is significant diurnal radon variation. The results are discussed in detail. (author)

  19. Water stress detection in the Amazon using radar

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  20. Radial frequency diagram (sunflower) for the analysis of diurnal cycle parameters: Solar energy application

    International Nuclear Information System (INIS)

    Božnar, Marija Zlata; Grašič, Boštjan; Mlakar, Primož; Soares, Jacyra; Pereira de Oliveira, Amauri; Costa, Tássio Santos

    2015-01-01

    Graphical abstract: A new type of graphical presentation showing diurnal cycle of solar energy forecast. The application is possible for other parameters related to weather and green energy production. - Highlights: • The diurnal cycle of solar energy is important for the management of the electrical grid. • A solar plant’s average production depends on the statistical features of solar radiation. • The new tool – the “sunflower”, is proposed for solar energy availability representation. • The sunflower identifies and quantifies information with a clear diurnal cycle. • The sunflower diagram has been developed from the “wind rose” diagram. - Abstract: Many meteorological parameters present a natural diurnal cycle because they are directly or indirectly dependent on sunshine exposure. The solar radiation diurnal pattern is important to energy production, agriculture, prognostic models, health and general climatology. This article aims at introducing a new type of radial frequency diagram – hereafter called sunflower – for the analysis of solar radiation data in connection with energy production and also for climatological studies. The diagram is based on two-dimensional data sorting. Firstly data are sorted into classes representing hours in a day. Then the data in each hourly class is sorted into classes of the observed variable values. The relative frequencies of the value classes are shown as sections on each hour’s segment in a radial diagram. The radial diagram forms a unique pattern for each analysed dataset. Therefore it enables the quick detection of features and the comparison of several such patterns belonging to the different datasets being analysed. The sunflower diagram enables a quick and comprehensive understanding of the information about diurnal cycle of the solar radiation data. It enables in a graphical form, quick screening and long-term statistics of huge data quantities when searching for their diurnal features and

  1. Diurnal Thermal Behavior of Pavements, Vegetation, and Water Pond in a Hot-Humid City

    Directory of Open Access Journals (Sweden)

    Xiaoshan Yang

    2015-12-01

    Full Text Available This study investigated the diurnal thermal behavior of several urban surfaces and landscape components, including pavements, vegetation, and a water pond. The field experiment was conducted in a university campus of Guangzhou, South China, which is characterized by a hot and humid summer. The temperature of ground surface and grass leaves and the air temperature and humidity from 0.1 to 1.5 m heights were measured for a period of 24 h under hot summer conditions. The results showed that the concrete and granite slab pavements elevated the temperature of the air above them throughout the day. In contrast, the trees and the pond lowered the air temperature near ground during the daytime but produced a slight warming effect during the nighttime. The influence of vegetation on air temperature and humidity is affected by the configurations of greenery. Compared to the open lawn, the grass shaded by trees was more effective in cooling and the mixture of shrub and grass created a stronger cooling effect during the nighttime. The knowledge of thermal behavior of various urban surfaces and landscape components is an important tool for planners and designers. If utilized properly, it can lead to climatic rehabilitation in urban areas and an improvement of the outdoor thermal environment.

  2. Diurnal variations in the UV albedo of arctic snow

    Directory of Open Access Journals (Sweden)

    O. Meinander

    2008-11-01

    Full Text Available The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67°22'N, 26°39'E, 179 m a.s.l. during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period, and from 0.5 to 0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1–2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again.

  3. The diurnal patterns of cortisol and dehydroepiandrosterone in relation to intense aerobic exercise in recreationally trained soccer players.

    Science.gov (United States)

    Labsy, Z; Prieur, F; Le Panse, B; Do, M C; Gagey, O; Lasne, F; Collomp, K

    2013-03-01

    Diurnal patterns of cortisol and dehydroepiandrosterone (DHEA) secretion, the two main peripheral secretory products of the hypothalamic-pituitary-adrenal neuroendocrine stress axis, have been well characterized in rest conditions but not in relation to physical exercise. The purpose of this investigation was therefore to determine the effects of an intense 90-min aerobic exercise on the waking diurnal cortisol and DHEA cycles on three separate days [without exercise, with morning exercise (10:00-11:30 h), and with afternoon exercise (14:00-15:30 h)] in nine recreationally trained soccer players. Saliva samples were collected at awakening, 30 min after awakening, and then every 2 h from 08:00 to 22:00 h. A burst of secretory activity was found for cortisol (p exercise days under all conditions. However, there was a significant increase in salivary cortisol concentrations on the morning-exercise and afternoon-exercise days at, respectively, 12:00 h (p exercise was not evident for DHEA. The results of this investigation indicate that 90 min of intense aerobic exercise does not affect the circadian pattern of salivary adrenal steroids in recreationally trained athletes over a 16-h waking period, despite a transitory increase in post-exercise cortisol concentration. Further studies are necessary to determine whether these results are applicable to elite athletes or patients with cortisol or DHEA deficiency.

  4. Daytime passerine migrants over the Sahara — are these diurnal ...

    African Journals Online (AJOL)

    The landing tendency (sink rate) correlated negatively with the tail wind component. Transect counts on the ground revealed very low proportions of diurnal migrants, not matching the relatively high densities of passerine migration during the day, and a high correlation between transect density of nocturnal migrants and ...

  5. Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate

    Science.gov (United States)

    Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.

    1999-01-01

    A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.

  6. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Science.gov (United States)

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  7. Diurnal changes in photosynthetic parameters of Populus tremuloides, modulated by elevated concentrations of CO2 and/or O3 and daily climatic variation

    International Nuclear Information System (INIS)

    Kets, Katre; Darbah, Joseph N.T.; Sober, Anu; Riikonen, Johanna; Sober, Jaak; Karnosky, David F.

    2010-01-01

    The diurnal changes in light-saturated photosynthesis (Pn) under elevated CO 2 and/or O 3 in relation to stomatal conductance (g s ), water potential, intercellular [CO 2 ], leaf temperature and vapour-pressure difference between leaf and air (VPD L ) were studied at the Aspen FACE site. Two aspen (Populus tremuloides Michx.) clones differing in their sensitivity to ozone were measured. The depression in Pn was found after 10:00 h. The midday decline in Pn corresponded with both decreased g s and decreased Rubisco carboxylation efficiency, Vc max . As a result of increasing VPD L , g s decreased. Elevated [CO 2 ] resulted in more pronounced midday decline in Pn compared to ambient concentrations. Moreover, this decline was more pronounced under combined treatment compared to elevated CO 2 treatment. The positive impact of CO 2 on Pn was relatively more pronounced in days with environmental stress but relatively less pronounced during midday depression. The negative impact of ozone tended to decrease in both cases. - Diurnal and seasonal patterns of environmental stress (drought, high air temperature) affects a relative impact of elevated concentrations of CO 2 and O 3 on trees.

  8. Observing Seasonal and Diurnal Hydrometeorological Variability Within a Tropical Alpine Valley: Implications for Evapotranspiration

    Science.gov (United States)

    Hellstrom, R. A.; Mark, B. G.

    2007-12-01

    Conditions of glacier recession in the seasonally dry tropical Peruvian Andes motivate research to better constrain the hydrological balance in alpine valleys. There is an outstanding need to better understand the impact of the pronounced tropical hygric seasonality on energy and water budgets within pro-glacial valleys that channel glacier runoff to stream flow. This paper presents a novel embedded network installed in the glacierized Llanganuco valley of the Cordillera Blanca (9°S) comprising eight low-cost, discrete temperature and humidity microloggers ranging from 3470 to 4740 masl and an automatic weather station at 3850 masl. Data are aggregated into distinct dry and wet periods sampled from two full annual cycles (2004-2006) to explore patterns of diurnal and seasonal variability. The magnitude of diurnal solar radiation varies little within the valley between the dry and wet periods, while wet season near-surface air temperatures are cooler. Seasonally characteristic diurnal fluctuations in lapse rate partially regulate convection and humidity. Steep lapse rates during the wet season afternoon promote up-slope convection of warm, moist air and nocturnal rainfall events. Standardized grass reference evapotranspiration (ET0) was estimated using the FAO-56 algorithm of the United Nations Food and Agriculture Organization and compared with estimates of actual ET from the process-based BROOK90 model that incorporates more realistic vegetation parameters. Comparisons of composite diurnal cycles of ET for the wet and dry periods suggest about twice the daily ET0 during the dry period, attributed primarily to the 500% higher vapor pressure deficit and 20% higher daily total solar irradiance. Conversely, the near absence of rainfall during the dry season diminishes actual ET below that of the wet season by two orders of magnitude. Nearly cloud-free daylight conditions are critical for ET during the wet season. We found significant variability of ET with elevation

  9. Characteristics of diurnal pattern of global photosynthetically-active ...

    African Journals Online (AJOL)

    A two year data (September 1992 August 1994) on photosynhetically-active radiation (PAR) measured at Ilorin (Lat.: 832´N. Long.:434´E) using LI-190SA quantum sensor are analysed both on daily and monthly mean diurnal bases. This was done with the aim of characterizing the diurnal pattern of this radiation at this ...

  10. Specific diurnal EMG activity pattern observed in occlusal collapse patients: relationship between diurnal bruxism and tooth loss progression.

    Science.gov (United States)

    Kawakami, Shigehisa; Kumazaki, Yohei; Manda, Yosuke; Oki, Kazuhiro; Minagi, Shogo

    2014-01-01

    The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. Six progressive bite collapse patients (PBC group), six age- and gender-matched control subjects (MC group), and six young control subjects (YC group) were enrolled. Electromyograms (EMG) of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (pstability.

  11. Model independent result on possible diurnal effect in DAMA/LIBRA-phase1

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R.; D' Angelo, S.; Di Marco, A. [Universita di Roma ' ' Tor Vergata' ' , Dipt. di Fisica, Rome (Italy); INFN, Sezione Roma ' ' Tor Vergata' ' , Rome (Italy); Belli, P. [INFN, Sezione Roma ' ' Tor Vergata' ' , Rome (Italy); Cappella, F.; D' Angelo, A.; Prosperi, D. [Universita di Roma ' ' La Sapienza' ' , Dipt. di Fisica, Rome (Italy); INFN, Sezione Roma, Rome (Italy); Caracciolo, V.; Castellano, S.; Cerulli, R. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G. [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Incicchitti, A. [INFN, Sezione Roma, Rome (Italy); Montecchia, F. [INFN, Sezione Roma ' ' Tor Vergata' ' , Rome (Italy); Universita di Roma ' ' Tor Vergata' ' , Dipt. di Ingegneria Civile e Ingegneria Informatica, Rome (Italy); Ye, Z.P. [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); University of Jing Gangshan, Jiangxi (China)

    2014-03-15

    The results obtained in the search for possible diurnal effect in the single-hit low energy data collected by DAMA/LIBRA-phase1 (total exposure 1.04 ton x year) deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN are presented. At the present level of sensitivity the presence of any significant diurnal variation and of diurnal time structures in the data can be excluded for both the cases of solar and sidereal time. In particular, the diurnal modulation amplitude expected, because of the Earth diurnal motion, on the basis of the DAMA dark matter annual modulation results is below the present sensitivity. (orig.)

  12. Model independent result on possible diurnal effect in DAMA/LIBRA-phase1

    International Nuclear Information System (INIS)

    Bernabei, R.; D'Angelo, S.; Di Marco, A.; Belli, P.; Cappella, F.; D'Angelo, A.; Prosperi, D.; Caracciolo, V.; Castellano, S.; Cerulli, R.; Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G.; Incicchitti, A.; Montecchia, F.; Ye, Z.P.

    2014-01-01

    The results obtained in the search for possible diurnal effect in the single-hit low energy data collected by DAMA/LIBRA-phase1 (total exposure 1.04 ton x year) deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN are presented. At the present level of sensitivity the presence of any significant diurnal variation and of diurnal time structures in the data can be excluded for both the cases of solar and sidereal time. In particular, the diurnal modulation amplitude expected, because of the Earth diurnal motion, on the basis of the DAMA dark matter annual modulation results is below the present sensitivity. (orig.)

  13. Diurnal and seasonal DOC and POC variability in the land-locked sea

    Directory of Open Access Journals (Sweden)

    Beata Szymczycha

    2017-07-01

    Full Text Available Organic matter is a minor yet important component of the marine environment. The aim of this study was to investigate the diurnal and seasonal changes in dissolved and particulate organic carbon (DOC and POC, respectively. Thus, DOC and POC as well as chlorophyll a (Chl a, δ13C, NO3−, NO2−, NH4+, PO43−, salinity, pH, and temperature were regularly measured in samples collected for 24 h (2-h resolution in the Gdańsk Deep (54°44.730′N, 19°08.531′E at three water depths (1, 10, and 40 m during sampling campaigns in 2011 (May, 2014 (May, and 2015 (January, March, May, July, September, November. Seasonal variations in DOC and POC followed the seasonality of Chl a (proportional trend and nutrients (reverse trend concentrations. Diurnal oscillations were detected in six out of the eight measurement series. The strongest diurnal variability in both POC and DOC occurred in May 2011 and March 2015, when phytoplankton activity was highest (high Chl a. The surprisingly low δ13C values (range: −28‰ to −24‰ measured over the course of the study revealed the gaps in our knowledge of the isotopic characteristics of terrestrial- vs. marine-derived particulate organic matter.

  14. Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations

    Science.gov (United States)

    Gentemann, C. L.; Akella, S.

    2018-02-01

    An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.

  15. Familial circadian rhythm disorder in the diurnal primate, Macaca mulatta.

    Directory of Open Access Journals (Sweden)

    Irina V Zhdanova

    Full Text Available In view of the inverse temporal relationship of central clock activity to physiological or behavioral outputs in diurnal and nocturnal species, understanding the mechanisms and physiological consequences of circadian disorders in humans would benefit from studies in a diurnal animal model, phylogenetically close to humans. Here we report the discovery of the first intrinsic circadian disorder in a family of diurnal non-human primates, the rhesus monkey. The disorder is characterized by a combination of delayed sleep phase, relative to light-dark cycle, mutual desynchrony of intrinsic rhythms of activity, food intake and cognitive performance, enhanced nighttime feeding or, in the extreme case, intrinsic asynchrony. The phenotype is associated with normal length of intrinsic circadian period and requires an intact central clock, as demonstrated by an SCN lesion. Entrainment to different photoperiods or melatonin administration does not eliminate internal desynchrony, though melatonin can temporarily reinstate intrinsic activity rhythms in the animal with intrinsic asynchrony. Entrainment to restricted feeding is highly effective in animals with intrinsic or SCN lesion-induced asynchrony. The large isolated family of rhesus macaques harboring the disorder provides a powerful new tool for translational research of regulatory circuits underlying circadian disorders and their effective treatment.

  16. Fallen leaves on the water-bed: diurnal camouflage of three night active fish species in an Amazonian streamlet

    Directory of Open Access Journals (Sweden)

    Ivan Sazima

    Full Text Available Resemblance to dead leaves is a well known type of camouflage recorded for several small vertebrates that dwell in the leaf and root litter on the ground. We present here instances of such resemblance in three species of nocturnal fishes (Siluriformes and Gymnotiformes that spend the daytime among submersed root-tangle with leaf litter in Amazonian streams. All three species are very difficult to spot visually, due both to their shape and colors which blend with the substrate, as well as to the heterogeneous nature of their cover. Two species were recorded to lie on their sides, which adds to their resemblance to dead leaves. When disturbed, one species may drift like a waterlogged leaf, whereas another moves upwards the root-tangle, exposing its fore body above the water surface. We regard their leaf-like shapes, cryptic colors, and escape movements as a convergence in defensive responses to visually hunting aquatic vertebrates, most likely diurnal predaceous fishes.

  17. Diurnal and circadian rhythms in the tomato transcriptome and their modulation by cryptochrome photoreceptors.

    Directory of Open Access Journals (Sweden)

    Paolo Facella

    Full Text Available BACKGROUND: Circadian clocks are internal molecular time-keeping mechanisms that provide living organisms with the ability to adjust their growth and physiology and to anticipate diurnal environmental changes. Circadian clocks, without exception, respond to light and, in plants, light is the most potent and best characterized entraining stimulus. The capacity of plants to respond to light is achieved through a number of photo-perceptive proteins including cryptochromes and phytochromes. There is considerable experimental evidence demonstrating the roles of photoreceptors in providing light input to the clock. METHODOLOGY: In order to identify genes regulated by diurnal and circadian rhythms, and to establish possible functional relations between photoreceptors and the circadian clock in tomato, we monitored the temporal transcription pattern in plants entrained to long-day conditions, either by large scale comparative profiling, or using a focused approach over a number of photosensory and clock-related genes by QRT-PCR. In parallel, focused transcription analyses were performed in cry1a- and in CRY2-OX tomato genotypes. CONCLUSIONS: We report a large series of transcript oscillations that shed light on the complex network of interactions among tomato photoreceptors and clock-related genes. Alteration of cryptochrome gene expression induced major changes in the rhythmic oscillations of several other gene transcripts. In particular, over-expression of CRY2 had an impact not only on day/night fluctuations but also on rhythmicity under constant light conditions. Evidence was found for widespread diurnal oscillations of transcripts encoding specific enzyme classes (e.g. carotenoid biosynthesis enzymes as well as for post-transcriptional diurnal and circadian regulation of the CRY2 transcript.

  18. Diurnal Cycle of Clouds and Precipitation at the ARM SGP Site

    Science.gov (United States)

    Zhao, W.; Marchand, R.; Fu, Q.

    2016-12-01

    Millimeter Wavelength Cloud Radar (MMCR) data from Dec. 1996 to Dec. 2010, collected at the U. S. Department of Energy Atmospheric Radiation Measurement (ARM) program site in the U.S. Southern Great Plains (SGP), are categorized into clouds (-40dBZe≤reflectivityCRM). Observational and simulated radar reflectivity are compared and further sorted into different atmospheric states identified by Evans (2014). Evans used a neutral network to take ERA-Interim state variables (i.e. horizontal winds, relative humidity, temperature at seven predetermined pressure level and surface pressure) on an 8×8 grid with 1.5º×1.5º spatial resolution centered on the SGP site and found twenty-one atmospheric states which represent specific synoptic conditions. We use these states to study the differences in the diurnal cycle between observations and simulations. Differences in the (mean) annual diurnal cycle between the observations and model are decomposed into errors in the daily mean, errors in the diurnal variation in each state, and errors due to difference in the frequency of occurrence of atmospheric states between ERA and the MMF. The magnitude of various error sources is assessed.

  19. Children's diurnal cortisol responses to negative events at school and home.

    Science.gov (United States)

    Bai, Sunhye; Robles, Theodore F; Reynolds, Bridget M; Repetti, Rena L

    2017-09-01

    This study examined the within-and between-person associations between daily negative events - peer problems, academic problems and interparental conflict - and diurnal cortisol in school-age children. Salivary cortisol levels were assessed four times per day (at wakeup, 30min later, just before dinner and at bedtime) on eight days in 47 youths ages 8-13 years old (60% female; M age=11.28, SD=1.50). The relative contributions of within- and between-person variances in each stressor were estimated in models predicting same-day diurnal cortisol slope, same-day bedtime cortisol, and next morning wakeup cortisol. Children who reported more peer problems on average showed flatter slopes of cortisol decline from wakeup to bedtime. However, children secreted more cortisol at wakeup following days when they had reported more peer or academic problems than usual. Interparental conflict was not significantly associated with diurnal cortisol. Findings from this study extend our understanding of short-term cortisol responses to naturally occurring problems in daily life, and help to differentiate these daily processes from the cumulative effects of chronic stress. Copyright © 2017. Published by Elsevier Ltd.

  20. Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model

    Directory of Open Access Journals (Sweden)

    J.-P. Lhomme

    1999-01-01

    Full Text Available In many experimental conditions, the evaporative fraction, defined as the ratio between evaporation and available energy, has been found stable during daylight hours. This constancy is investigated over fully covering vegetation by means of a land surface scheme coupled with a mixed-layer model, which accounts for entrainment of overlying air. The evaporation rate follows the Penman-Monteith equation and the surface resistance is given by a Jarvis type parameterization involving solar radiation, saturation deficit and leaf water potential. The diurnal course of the evaporative fraction is examined, together with the influence of environmental factors (soil water availability, solar radiation input, wind velocity, saturation deficit above the well-mixed layer. In conditions of fair weather, the curves representing the diurnal course of the evaporative fraction have a typical concave-up shape. Around midday (solar time these curves appear as relatively constant, but always lower that the daytime mean value. Evaporative fraction decreases when soil water decreases or when solar energy increases. An increment of saturation deficit above the mixed-layer provokes only a slight increase of evaporative fraction, and wind velocity has almost no effect. The possibility of estimation daytime evaporation from daytime available energy multiplied by the evaporative fraction at a single time of the day is also investigated. It appears that it is possible to obtain fairly good estimates of daytime evaporation by choosing adequately the time of the measurement of the evaporative fraction. The central hours of the day, and preferably about 3 hr before or after noon, are the most appropriate to provide good estimates. The estimation appears also to be much better when soil water availability (or evaporation is high than when it is low.

  1. Diurnal changes of remote sensing reflectance over Chesapeake Bay: Observations from the Airborne Compact Atmospheric Mapper

    Science.gov (United States)

    Zhang, Minwei; Hu, Chuanmin; Cannizzaro, Jennifer; Kowalewski, Matthew G.; Janz, Scott J.

    2018-01-01

    Using hyperspectral data collected by the Airborne Compact Atmospheric Mapper (ACAM) and a shipborne radiometer in Chesapeake Bay in July-August 2011, this study investigates diurnal changes of surface remote sensing reflectance (Rrs). Atmospheric correction of ACAM data is performed using the traditional "black pixel" approach through radiative transfer based look-up-tables (LUTs) with non-zero Rrs in the near-infrared (NIR) accounted for by iterations. The ACAM-derived Rrs was firstly evaluated through comparison with Rrs derived from the Moderate Resolution Imaging Spectroradiometer satellite measurements, and then validated against in situ Rrs using a time window of ±1 h or ±3 h. Results suggest that the uncertainties in ACAM-derived Rrs are generally comparable to those from MODIS satellite measurements over coastal waters, and therefore may be used to assess whether Rrs diurnal changes observed by ACAM are realistic (i.e., with changes > 2 × uncertainties). Diurnal changes observed by repeated ACAM measurements reaches up to 66.8% depending on wavelength and location and are consistent with those from the repeated in situ Rrs measurements. These findings suggest that once airborne data are processed using proper algorithms and validated using in situ data, they are suitable for assessing diurnal changes in moderately turbid estuaries such as Chesapeake Bay. The findings also support future geostationary satellite missions that are particularly useful to assess short-term changes.

  2. Diurnal temperature asymmetries and fog at Churchill, Manitoba

    Science.gov (United States)

    Gough, William A.; He, Dianze

    2015-07-01

    A variety of methods are available to calculate daily mean temperature. We explore how the difference between two commonly used methods provides insight into the local climate of Churchill, Manitoba. In particular, we found that these differences related closely to seasonal fog. A strong statistically significant correlation was found between the fog frequency (hours per day) and the diurnal temperature asymmetries of the surface temperature using the difference between the min/max and 24-h methods of daily temperature calculation. The relationship was particularly strong for winter, spring and summer. Autumn appears to experience the joint effect of fog formation and the radiative effect of snow cover. The results of this study suggests that subtle variations of diurnality of temperature, as measured in the difference of the two mean temperature methods of calculation, may be used as a proxy for fog detection in the Hudson Bay region. These results also provide a cautionary note for the spatial analysis of mean temperatures using data derived from the two different methods particularly in areas that are fog prone.

  3. Long-term stability of diurnal salivary cortisol and alpha-amylase secretion patterns.

    Science.gov (United States)

    Skoluda, Nadine; La Marca, Roberto; Gollwitzer, Mario; Müller, Andreas; Limm, Heribert; Marten-Mittag, Birgitt; Gündel, Harald; Angerer, Peter; Nater, Urs M

    2017-06-01

    This study aimed to investigate long-term stability and variability of diurnal cortisol and alpha-amylase patterns. Diurnal cortisol and alpha-amylase secretion patterns were assessed on a single workday with three waves of measurement across a total time period of 24months in 189 participants. Separate hierarchical linear models were analyzed, with and without a number of potential predictor variables (age, BMI, smoking, chronic stress, stress reactivity). While low long-term stability was found in diurnal cortisol, the stability of diurnal alpha-amylase was moderate across the time period of 24months. Several predictor variables had a positive impact on diurnal cortisol and alpha-amylase secretion patterns averaged across waves. Our findings underpin the notion that long-term stability is not necessarily warranted in longitudinal studies. It is important to choose an appropriate study design when attempting to disentangle clinically and biologically relevant changes from naturally occurring variations in diurnal cortisol and alpha-amylase. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Diurnal Change of Soil Carbon Flux of Binhai New District

    Science.gov (United States)

    Wang, T. F.; Mao, T. Y.; Ye, W.

    2018-05-01

    In order to investigate the factors influencing diurnal change of soil carbon flux of Binhai New District. Field observation experiments were carried out by using LC pro-SD photosynthetic apparatus. The diurnal changes of soil carbon flux and its environmental factors such as atmosphere temperature and soil temperature were analysed. The results indicated that soil carbon flux appeared single diurnal pattern. The diurnal average of soil carbon flux ranked from 0.2761 to 2.3367μmo1/m2/s. Soil carbon flux varied significantly among different land use regimes(Pequations (Pquadratic correlations between soil carbon flux and soil temperature (10cm). And soil temperature could account for more than 32.27% of the soil carbon flux changes (P<0.05, R2=0.3227-0.7465).

  5. Moderation of genetic and environmental influences on diurnal preference by age in adult twins.

    Science.gov (United States)

    Barclay, Nicola L; Watson, Nathaniel F; Buchwald, Dedra; Goldberg, Jack

    2014-03-01

    Diurnal preference changes across the lifespan. However, the mechanisms underlying this age-related shift are poorly understood. The aim of this twin study was to determine the extent to which genetic and environmental influences on diurnal preference are moderated by age. Seven hundred and sixty-eight monozygotic and 674 dizygotic adult twin pairs participating in the University of Washington Twin Registry completed the reduced Morningness-Eveningness Questionnaire as a measure of diurnal preference. Participants ranged in age from 19 to 93 years (mean = 36.23, SD = 15.54) and were categorized on the basis of age into three groups: younger adulthood (19-35 years, n = 1715 individuals), middle adulthood (36-64 years, n = 1003 individuals) and older adulthood (65+ years, n = 168 individuals). Increasing age was associated with an increasing tendency towards morningness (r = 0.42, p influences for the total sample as well as for each age group separately. Additive genetic influences accounted for 52%[46-57%], and non-shared environmental influences 48%[43-54%], of the total variance in diurnal preference. In comparing univariate genetic models between age groups, the best-fitting model was one in which the parameter estimates for younger adults and older adults were equated, in comparison with middle adulthood. For younger and older adulthood, additive genetic influences accounted for 44%[31-49%] and non-shared environmental influences 56%[49-64%] of variance in diurnal preference, whereas for middle adulthood these estimates were 34%[21-45%] and 66%[55-79%], respectively. Therefore, genetic influences on diurnal preference are attenuated in middle adulthood. Attenuation is likely driven by the increased importance of work and family responsibilities during this life stage, in comparison with younger and older adulthood when these factors may be less influential in determining sleep-wake timing. These findings have implications for studies

  6. Characterisation and quantification of regional diurnal SST cycles from SEVIRI

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, J.L.

    2014-01-01

    seas. Six years of SST fields from SEVIRI are validated against the Advanced Along-Track Scanning Radiometer (AATSR) Reprocessed for Climate (ARC) data set. The overall SEVIRI–AATSR bias is −0.07 K, and the standard deviation is 0.51 K, based on more than 53×106 matchups. Identification of the diurnal...... in the tropics. Longer diurnal warming duration is identified in the high latitudes compared to the tropics. The maximum monthly mean diurnal signal can be up to 0.5K in specific regions....

  7. Diurnal variation of cosmic ray intensity I. Two approaches to the study

    International Nuclear Information System (INIS)

    Sari, J.W.; Venkatesan, D.; Lanzerotti, L.J.; Maclennan, C.G.

    1978-01-01

    The investigation has been carried out over the past two decades by either of two approaches: the traditional Fourier series method and the more recently introduced power spectral method. A comparison of the two approaches is essential to the proper understanding of the results derived from them. The present study, for the first time, adopts both approaches for investigating the data from the Sulfur Mountain super neutron monitor for the period of mid-December 1965 to April 1966 (extending over five solar rotations), when interplanetary magnetic field data from Pioneer 6 were also available. Problems relating to the analyses of both data sets on a day-to-day basis and on a statistical basis over a number of days are discussed. The power spectral analysis method cannot provide information on the phase of the diurnal variation or information on the diurnal amplitude on a day-to-day basis. This method provides excellent estimates of the diurnal anisotropy amplitude provides a measure of the ambient anisotropy amplitude. The Fourier series method can yield reliable measures of the amplitude and phase on a day-to-day basis, provided the time series is reasonably stationary. This method cannot estimate the ambient anisotropy amplitude which, for small amplitudes, contributes to large uncertainties in the Fourier coefficients. We find that there is a general agreement between the observed diurnal variation and that predicted theoretically. However, for most of the periods examined the ratio of the perpendicular diffusion coefficient to the parallel diffusion coefficient is rather small (K 1 /K < or approx. =0.1). As such the diurnal variation amplitude is generally most sensitive to the interplanetary field direction and the solar wind velocity and not to the calculated values of the diffusion coefficients. Further tests of the theory are discussed

  8. Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest

    Science.gov (United States)

    van der Tol, C.; Dolman, A. J.; Waterloo, M. J.; Raspor, K.

    2007-02-01

    The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and 13C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and 13C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial variations in

  9. Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2007-01-01

    Full Text Available The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and 13C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and 13C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial

  10. Diurnal variations in iron concentrations and expression of genes involved in iron absorption and metabolism in pigs.

    Science.gov (United States)

    Zhang, Yiming; Wan, Dan; Zhou, Xihong; Long, Ciming; Wu, Xin; Li, Lan; He, Liuqin; Huang, Pan; Chen, Shuai; Tan, Bie; Yin, Yulong

    2017-09-02

    Diurnal variations in serum iron levels have been well documented in clinical studies, and serum iron is an important diagnostic index for iron-deficiency anemia. However, the underlying mechanism of dynamic iron regulation in response to the circadian rhythm is still unclear. In this study, we investigated daily variations in iron status in the plasma and liver of pigs. The transcripts encoding key factors involved in iron uptake and homeostasis were evaluated. The results showed that iron levels in the plasma and liver exhibited diurnal rhythms. Diurnal variations were also observed in transcript levels of divalent metal transporter 1 (DMT1), membrane-associated ferric reductase 1 (DCYTB), and transferrin receptor (TfR) in the duodenum and jejunum, as well as hepcidin (HAMP) and TfR in the liver. Moreover, the results showed a network in which diurnal variations in systemic iron levels were tightly regulated by hepcidin and Tf/TfR via DCYTB and DMT1. These findings provide new insights into circadian iron homeostasis regulation. The diurnal variations in serum iron levels may also have pathophysiological implications for clinical diagnostics related to iron deficiency anemia in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Separating selection by diurnal and nocturnal pollinators on floral display and spur length in Gymnadenia conopsea.

    Science.gov (United States)

    Sletvold, Nina; Trunschke, Judith; Wimmergren, Carolina; Agren, Jon

    2012-08-01

    Most plants attract multiple flower visitors that may vary widely in their effectiveness as pollinators. Floral evolution is expected to reflect interactions with the most important pollinators, but few studies have quantified the contribution of different pollinators to current selection on floral traits. To compare selection mediated by diurnal and nocturnal pollinators on floral display and spur length in the rewarding orchid Gymnadenia conopsea, we manipulated the environment by conducting supplemental hand-pollinations and selective pollinator exclusions in two populations in central Norway. In both populations, the exclusion of diurnal pollinators significantly reduced seed production compared to open pollination, whereas the exclusion of nocturnal pollinators did not. There was significant selection on traits expected to influence pollinator attraction and pollination efficiency in both the diurnal and nocturnal pollination treatment. The relative strength of selection among plants exposed to diurnal and nocturnal visitors varied among traits and populations, but the direction of selection was consistent. The results suggest that diurnal pollinators are more important than nocturnal pollinators for seed production in the study populations, but that both categories contribute to selection on floral morphology. The study illustrates how experimental manipulations can link specific categories of pollinators to observed selection on floral traits, and thus improve our understanding of how species interactions shape patterns of selection.

  12. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.

    Science.gov (United States)

    Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix

    2014-01-07

    Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.

  13. [Effects of different irrigations on the water physiological characteristics of Haloxylon ammodendron in Taklimakan Desert hinterland].

    Science.gov (United States)

    Xie, Ting-ting; Zhang, Xi-ming; Liang, Shao-min; Shan, Li-shan; Yang, Xiao-lin; Hua, Yong-hui

    2008-04-01

    By using heat-balance stem flow gauge and press chamber, the water physiological characteristics of Haloxylon ammodendron under different irrigations in Taklimakan Desert hinterland were measured and analyzed. The results indicated that the diurnal variation curve of H. ammodendron stem sap flow varied with irrigations. When irrigated 35 and 24.5 kg x plant(-1) once time, the diurnal variation of stem sap flow changed in single peak curve and the variation extent was higher; while irrigated 14 kg x plant(-1) once time, the diurnal variation changed in two-peak curve and the variation extent was small. With the decrease of irrigations, the average daily sap flow rate and the daily water consumption of H. ammodendron decreased gradually, the dawn and postmeridian water potential also had a gradual decrease, and the correlations of stem sap flow with total radiation, air temperature, relative humidity, and wind speed enhanced. Under different irrigations, the correlation between stem sap flow rate and total radiation was always the best.

  14. Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring

    Energy Technology Data Exchange (ETDEWEB)

    Tognetti, R.; Miglietta, F.; Raschi, A. [Consiglio Nazionale della Ricerche, Firenze (Italy); Longobucco, A. [Centro Studi per l`Informatica applicata all`Agricoltura, Firenze (Italy)

    1999-04-01

    Variations in water relations and stomatal response of downy oak (Quercus pubescens) were analyzed under Mediterranean field conditions during two consecutive summers at two locations characterized by different atmospheric CO{sub 2} concentrations due to the presence of a CO{sub 2} spring at one of the locations. The heat-pulse velocity technique was used to estimate water use during a five-month period from June to November 1994. At the end of the sap flow measurements, the trees were harvested and foliage and sapwood area measured. The effect of elevated CO{sub 2} concentration on leaf conductance was less at high leaf-to-air water vapour pressure difference than at low leaf-to-air water vapour pressure difference. Mean and diurnal sap fluxes were consistently higher in trees at the control site than in the trees at the CO{sub 2} spring site. Results are discussed in terms of effects of elevated CO{sub 2} concentration on plant water use at the organ and whole-tree level. 76 refs., 9 figs.

  15. Daily positive events and diurnal cortisol rhythms: Examination of between-person differences and within-person variation.

    Science.gov (United States)

    Sin, Nancy L; Ong, Anthony D; Stawski, Robert S; Almeida, David M

    2017-09-01

    Growing evidence from field studies has linked daily stressors to dysregulated patterns of diurnal cortisol. Less is known about whether naturally-occurring positive events in everyday life are associated with diurnal cortisol. The objectives of this study were to evaluate daily positive events as predictors of between-person differences and within-person (day-to-day) variations in diurnal cortisol parameters, in addition to daily positive events as buffers against the associations between daily stressors and cortisol. In the National Study of Daily Experiences, 1657 adults ages 33-84 (57% female) reported daily experiences during telephone interviews on 8 consecutive evenings. Saliva samples were collected 4 times per day on 4 interview days and assayed for cortisol. Multilevel models were used to estimate associations of daily positive events with cortisol awakening response (CAR), diurnal cortisol slope, and area under the curve (AUC). At the between-person level, people who experienced more frequent positive events exhibited a steeper diurnal cortisol slope, controlling for daily stressors, daily affect, and other covariates. At the within-person level, positive events in the morning (but not prior-night or afternoon/evening events) predicted steeper decline in cortisol across that day; positive events were also marginally associated with lower same-day AUC. Associations were not mediated by daily positive affect, and positive events did not buffer against stressor-related cortisol alterations. These findings indicate that individual differences and day-to-day variations in daily positive events are associated with diurnal cortisol patterns, independent of stressors and affect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling the diurnal tide with dissipation derived from UARS/HRDI measurements

    Directory of Open Access Journals (Sweden)

    M. A. Geller

    1997-09-01

    Full Text Available This paper uses dissipation values derived from UARS/HRDI observations in a recently published diurnal-tide model. These model structures compare quite well with the UARS/HRDI observations with respect to the annual variation of the diurnal tidal amplitudes and the size of the amplitudes themselves. It is suggested that the annual variation of atmospheric dissipation in the mesosphere-lower thermosphere is a major controlling factor in determining the annual variation of the diurnal tide.

  17. Progress in Research on Diurnal and Semidiurnal Earth Rotation Change

    Science.gov (United States)

    Xu, Xueqing

    2015-08-01

    We mainly focus on the progress of research on high frequency changes in the earth rotation. Firstly, we review the development course and main motivating factors of the diurnal and semidiurnal earth rotation change. In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including lunar and satellite laser ranging, very long baseline interferometry and the global positioning system. We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1, whose compliance is 90%, and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. Then we comprehensively review the different types of global ocean tidal correction models since the last eighties century, as well as the application research on diurnal and semidiurnal polar motion and UT1, the current ocean tidal correction models have 10% to 20% uncertainty, and need for further refinement.

  18. Interannual and Intraseasonal Variability of the Diurnal Tide

    Science.gov (United States)

    Riggin, D. M.; Ortland, D. A.; Lieberman, R. S.; Oberheide, J.; Murayama, Y.; Hocking, W. K.; Vincent, R. A.; Reid, I. M.; Kumar, G. K.; Batista, P. P.; Clemesha, B. R.

    2013-12-01

    Temporal variations in the amplitude of the diurnal tide (DT) have been observed by radars with a seasonal dependence that is typically semiannual in the tropics. During some years the wind variation departs from the normal seasonal behavior with anomalously large amplitudes compared to most other years. This anomaly often takes the form of a greatly enhanced boreal spring equinoctal maximum. The boreal spring of 2008 is a example of this behavior. Diurnal amplitudes in the meridional winds are shown in the figure below for the first 6 months of 2008. Note that the diurnal tide undergoes a sharp increase in amplitude up to 80 ms-1 during this event. The characteristics of this event are diagnosed in a variety of global data sets. These include our own physics-based assimilation of SABER temperatures, and gridded analyses from the national weather services (NCAR/NCEP and ECMWF). Tidal amplitude variations are sometimes attributed to nonlinear interaction. However, this type of interaction would be expected to produce non-migrating tides, e.g., westward-2 or standing. SABER data show that the amplitude anomaly is mainly in the migrating DT. The global data sets allow us to explore properties of the anomaly, such as its origin, evolution in time, and associated momentum flux. In addition to this case study, we also investigate the general characteristics of DT interannual variability during the years of the SABER mission (2002-present). Diurnal tide momentum deposition plays a significant role in controlling the zonal mean wind in the mesosphere, We demonstrate its importance in driving the mesospheric semiannual oscillation (MSAO). Diurnal tide wind amplitudes in the meridional component observed at two radar sites, Rarotonga, Cook Islands (22.1°S, 159.8°W), and at Guanacaste, Costa Rica (10.3°N, 85.6°W).

  19. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    Science.gov (United States)

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  20. The role of mesoscale convective systems in the diurnal cycle of rainfall and its seasonality over sub-Saharan Northern Africa

    Science.gov (United States)

    Liu, Weiran; Cook, Kerry H.; Vizy, Edward K.

    2018-03-01

    This study evaluates the role of MCSs in the total rainfall distribution as a function of season from a climatological perspective (1998-2014) over sub-Saharan northern Africa and examines how the diurnal cycle of rainfall changes with season. Tropical Rainfall Measuring Mission (TRMM) 3B42V7 rainfall estimates and European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis are used to evaluate the climatology. The percentages of the full TRMM precipitation delivered by MCSs have meridional structures in spring, fall and winter, ranging from 0 to 80% across sub-Saharan northern Africa, while the percentages are homogenous in summer (> 80%). The diurnal cycles of MCS-associated precipitation coincide with the full TRMM rainfall. Attributes of MCSs, including size, count, and intensity, vary synchronously with the diurnal cycle of rainfall. The diurnal peaks are classified into three categories: single afternoon peak, continuous afternoon peak, and nocturnal peak. Single afternoon peaks dominate in spring and fall while continuous afternoon and nocturnal peaks are more common in summer, indicating the seasonality of the diurnal cycle. The continuous afternoon peak combines rainfall from two system types—one locally-generated and one propagating. The seasonality of the diurnal cycle is related to the seasonality of MCS lifetimes, and propagation speeds and directions. The moisture component of the MSE profile contributes to the instability most in summer when convection is more frequent. Low-level temperature, which is related to surface warming and sensible heat fluxes, influences the instability more during winter and spring.

  1. Diurnal variation of the human adipose transcriptome and the link to metabolic disease

    Directory of Open Access Journals (Sweden)

    Lamb John

    2009-02-01

    Full Text Available Abstract Background Circadian (diurnal rhythm is an integral part of the physiology of the body; specifically, sleep, feeding behavior and metabolism are tightly linked to the light-dark cycle dictated by earth's rotation. Methods The present study examines the effect of diurnal rhythm on gene expression in the subcutaneous adipose tissue of overweight to mildly obese, healthy individuals. In this well-controlled clinical study, adipose biopsies were taken in the morning, afternoon and evening from individuals in three study arms: treatment with the weight loss drug sibutramine/fasted, placebo/fed and placebo/fasted. Results The results indicated that diurnal rhythm was the most significant driver of gene expression variation in the human adipose tissue, with at least 25% of the genes having had significant changes in their expression levels during the course of the day. The mRNA expression levels of core clock genes at a specific time of day were consistent across multiple subjects on different days in all three arms, indicating robust diurnal regulation irrespective of potential confounding factors. The genes essential for energy metabolism and tissue physiology were part of the diurnal signature. We hypothesize that the diurnal transition of the expression of energy metabolism genes reflects the shift in the adipose tissue from an energy-expending state in the morning to an energy-storing state in the evening. Consistent with this hypothesis, the diurnal transition was delayed by fasting and treatment with sibutramine. Finally, an in silico comparison of the diurnal signature with data from the publicly-available Connectivity Map demonstrated a significant association with transcripts that were repressed by mTOR inhibitors, suggesting a possible link between mTOR signaling, diurnal gene expression and metabolic regulation. Conclusion Diurnal rhythm plays an important role in the physiology and regulation of energy metabolism in the adipose

  2. Reproductive biology of Echinopsis terscheckii (Cactaceae): the role of nocturnal and diurnal pollinators.

    Science.gov (United States)

    Ortega-Baes, P; Saravia, M; Sühring, S; Godínez-Alvarez, H; Zamar, M

    2011-01-01

    The aim of this study was to analyse the reproductive biology of Echinopsis terscheckii, a species endemic to northwest Argentina that has nocturnal flowers. We expected that this species had a generalised pollination system, with moths and diurnal visitors as the primary pollinators. To test this, we studied the floral biology, breeding system and floral visitors of this species and the effectiveness of nocturnal and diurnal visitors. Floral biology was defined based on floral morphology, floral cycle and nectar production of the flowers. The breeding system and relative contributions of diurnal and nocturnal visitors to fruit and seed set were analysed through field experiments. E. terscheckii flowers opened at sunset and closed the following day. The peak of nectar production occurred at midnight. Flowers were determined to be self-incompatible. Moths, bees and birds were identified as floral visitors. Moths were the most frequent visitors at night, whereas bees were the most frequent visitors during the day. Fruit production by diurnal pollinators was less than that by nocturnal pollinators; among all floral visitors, moths were the most effective pollinators. We have demonstrated for the first time that moths are the primary pollinators of columnar cacti of the genus Echinopsis. Our results suggest that moths might be important pollinators of columnar cactus species with nocturnal flowers in the extra-tropical deserts of South America. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Changing On Diurnal Cycle Of Rainfall In Northern Coastal Of West Java

    Science.gov (United States)

    Yulihastin, E.; Hadi, T. W.; Ningsih, N. S.

    2017-12-01

    The floods event in the north of Java was largely due to persistent of rainfall that occurred in the morning which indicated of deviation of diurnal pattern of rainfall. The shift of the phase of diurnal rainfall cycle using TRMM satellite hourly data of 3B41RT on the rainy period of 2000-2016 exhibits over land from Late Afternoon-Early Midnight (LA-EM) to morning. The peak of the cycle changes from diurnal to semidiurnal with a peak occurring in LA-EM and morning. Location of rainfall which usually occurs in the oceans shifted into near coastal area. The classification of diurnal rainfall cycles based on composite analysis shows four types: Normal (N) Type (45.6%) with one peak rainfall occurring in the afternoon until night, Diurnal (D) Type (26%) with one peak and phase opposite to normal type, Semidiurnal (SD) Type (6.5 %) with two peaks and the main peak occurring in the afternoon until night, Third Diurnal (TD) Type (21.7%) with three peaks and the main peak occurs in the morning. The classification was confirmed using the objective method of Empirical Mode Decomposition (EMD) and obtained three IMFs representing three diurnal cycle modes of Type TD (67.8%) with the main rain peak taking place in the afternoon, Type D with rain peak occurring in the early hours (18.9%), and SD type (9.9%) with the first peak occurred in the afternoon. For D Type, the results also prove that the diurnal cycle with significant deviations in amplitude occurred in February 2002, 2004, 2008, 2014, wich is the maximum rainfall occurs in the EM. It also seems that in those years, rainfall intensity is concentrated on the northern coast of West Java while in the Java Sea rainfall was minimum.

  4. Seasonal variations of the semi-diurnal and diurnal tides in the MLT: multi-year MF radar observations from 2–70° N, modelled tides (GSWM, CMAM

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2002-05-01

    Full Text Available In an earlier paper (Manson et al., 1999a tidal data (1990–1997 from six Medium Frequency Radars (MFR were compared with the Global Scale Wave Model (GSWM, original 1995 version. The radars are located between the equator and high northern latitudes: Christmas Island (2° N, Hawaii (22° N, Urbana (40° N, London (43° N, Saskatoon (52° N and Tromsø (70° N. Common harmonic analysis was applied, to ensure consistency of amplitudes and phases in the 75–95 km height range. For the diurnal tide, seasonal agreements between observations and model were excellent while for the semi-diurnal tide the seasonal transitions between clear solstitial states were less well captured by the model. Here the data set is increased by the addition of two locations in the Pacific-North American sector: Yamagawa 31° N, and Wakkanai 45° N. The GSWM model has undergone two additional developments (1998, 2000 to include an improved gravity wave (GW stress parameterization, background winds from UARS systems and monthly tidal forcing for better characterization of seasonal change. The other model, the Canadian Middle Atmosphere Model (CMAM which is a General Circulation Model, provides internally generated forcing (due to ozone and water vapour for the tides. The two GSWM versions show distinct differences, with the 2000 version being either closer to, or further away from, the observations than the original 1995 version. CMAM provides results dependent upon the GW parameterization scheme inserted, but one of the schemes provides very useful tides, especially for the semi-diurnal component.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  5. Seasonal variation in diurnal atmospheric grass pollen concentration profiles

    DEFF Research Database (Denmark)

    Peel, Robert George; Ørby, Pia Viuf; Skjøth, Carsten Ambelas

    2014-01-01

    the time of day when peak concentrations are most likely to occur using seasonally averaged diurnal profiles. Atmospheric pollen loads are highly dependent upon emissions, and different species of grass are known to flower and emit pollen at different times of the day and during different periods......In this study, the diurnal atmospheric grass pollen concentration profile within the Danish city of Aarhus was shown to change in a systematic manner as the pollen season progressed. Although diurnal grass pollen profiles can differ greatly from day-to-day, it is common practice to establish...... of the pollen season. Pollen concentrations are also influenced by meteorological factors - directly through those parameters that govern pollen dispersion and transport, and indirectly through the weather-driven flowering process. We found that three different profiles dominated the grass pollen season...

  6. Regimes of Diurnal Variation of Summer Rainfall over Subtropical East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Yuan W.; Lin W.; Yu, R.; Zhang, M.; Chen, H.; Li, J.

    2012-05-01

    Using hourly rain gauge records and Tropical Rainfall Measuring Mission 3B42 from 1998 to 2006, the authors present an analysis of the diurnal characteristics of summer rainfall over subtropical East Asia. The study shows that there are four different regimes of distinct diurnal variation of rainfall in both the rain gauge and the satellite data. They are located over the Tibetan Plateau with late-afternoon and midnight peaks, in the western China plain with midnight to early-morning peaks, in the eastern China plain with double peaks in late afternoon and early morning, and over the East China Sea with an early-morning peak. No propagation of diurnal phases is found from the land to the ocean across the coastlines. The different diurnal regimes are highly correlated with the inhomogeneous underlying surface, such as the plateau, plain, and ocean, with physical mechanisms consistent with the large-scale 'mountain-valley' and 'land-sea' breezes and convective instability. These diurnal characteristics over subtropical East Asia can be used as diagnostic metrics to evaluate the physical parameterization and hydrological cycle of climate models over East Asia.

  7. Large variations in diurnal and seasonal patterns of sap flux among Aleppo pine trees in semi-arid forest reflect tree-scale hydraulic adjustments

    Science.gov (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan

    2015-04-01

    Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal

  8. Preeclampsia prediction in type 1 diabetes and diurnal blood pressure methodology

    DEFF Research Database (Denmark)

    Lauszus, Finn

    2016-01-01

    of the papers with the best, validated methodology on BP measurements, which is by no way guaranteed in numerous recent publications. Inherent characteristics of the measurements to be considered are reproducibility, consistency, precision, and trend over scale of measurement. Studies on these issues suggest....... Preeclampsia is associated with urinary albumin excretion rate, reduced night/day ratio, and elevated diurnal blood pressure from first trimester and onwards. However, due to blunting of the diurnal variation, the night/day rhythm provides no good prediction of preeclampsia. Diurnal measurement is a valuable...

  9. Seasonal and diurnal variations of ocular pressure in ocular hypertensive subjects in Pakistan.

    Science.gov (United States)

    Qureshi, I A; Xiao, R X; Yang, B H; Zhang, J; Xiang, D W; Hui, J L

    1999-05-01

    Studies have been shown that intraocular pressure (IOP) shows a diurnal variation in ocular hypertensive subjects, but the amount of change differs from study to study. In recent years it has been noted that intraocular pressure is a dynamic function and is subjected to many influences both acutely and over the long term. The variability in the results may be due to negligence of factors that can affect IOP. Moreover, seasonal variations in the ocular hypertensive subjects have never been described. After placing control on those factors that can affect IOP, this study investigated seasonal and diurnal variations in IOP of ocular hypertensive subjects. IOP was measured each month over the course of 12 months with the Goldmann applanation tonometer in 91 ocular hypertensive male subjects. To see the diurnal changes, subjects were asked to stay in the hospital for 24 hours. The average IOP in the winter months was higher than those in spring, summer, and autumn. The IOP difference between winter and summer was (mean +/- sem) 2.9 +/- 0.9 mmHg (p < 0.001). The peak of mean IOP in diurnal variation curve (25.7 +/- 1.2 mmHg) appeared in the morning when the subjects had just awaken. The mean diurnal variation was found to be 4.2 +/- 0.6 mmHg (p < 0.001). This study confirms that seasons influence IOP and it shows diurnal variations. As compared to other nations, diurnal variations in ocular hypertensive subjects seem to be somewhat less in Pakistan. Knowledge of the seasonal and diurnal variations in IOP may help glaucoma screeners.

  10. Dopamine transporters govern diurnal variation in extracellular dopamine tone

    OpenAIRE

    Ferris, Mark J.; España, Rodrigo A.; Locke, Jason L.; Konstantopoulos, Joanne K.; Rose, Jamie H.; Chen, Rong; Jones, Sara R.

    2014-01-01

    The mechanism for diurnal (i.e., light/dark) oscillations in extracellular dopamine tone in mesolimbic and nigrostriatal systems is unknown. This is because, unlike other neurotransmitter systems, variation in dopamine tone does not correlate with variation in dopamine cell firing. The current research pinpoints the dopamine transporter as a critical governor of diurnal variation in both extracellular dopamine tone and the intracellular availability of releasable dopamine. These data describe...

  11. Dynamic relationship between the VOC emissions from a Scots pine stem and the tree water relations

    Science.gov (United States)

    Vanhatalo, Anni; Chan, Tommy; Aalto, Juho; Kolari, Pasi; Rissanen, Kaisa; Hakola, Hannele; Hölttä, Teemu; Bäck, Jaana

    2013-04-01

    The stems of coniferous trees contain huge storages of oleoresin. The composition of oleoresin depends on e.g. tree species, age, provenance, health status, and environmental conditions. Oleoresin is under pressure in the extensive network of resin ducts in wood and needles. It flows out from a mechanically damaged site to protect the tree by sealing the wounded site. Once in contact with air, volatile parts of oleoresin evaporate, and the residual compounds harden to make a solid protective seal over damaged tissues. The hardening time of the resin depends on evaporation rate of the volatiles which in turn depends on temperature. The storage is also toxic to herbivores and attracts predators that restrict the herbivore damage. Despite abundant knowledge on emissions of volatile isoprenoids from foliage, very little is known about their emissions from woody plant parts. We set up an experiment to measure emissions of isoprene and monoterpenes as well as two oxygenated VOCs, methanol and acetone, from a Scots pine (Pinus sylvestris) stem and branches. The measurements were started in early April and continued until mid-June, 2012. Simultaneously, we measured the dynamics of whole stem and xylem diameter changes, stem sap flow rate and foliage transpiration rate. These measurements were used to estimate A) pressure changes inside the living stem tissue and the water conducting xylem, B) the refilling of stem water stores after winter dehydration (the ratio of sap flow at the stem base to water loss by foliage), and C) the increase in tree water transport capacity (the ratio of maximum daily sap flow rate to the diurnal variation in xylem pressure) during spring due to winter embolism refilling and/or the temperature dependent root water uptake capacity. The results show that already very early in spring, significant VOC emissions from pine stem can be detected, and that they exhibit a diurnal cycle similar to that of ambient temperature. During the highest emission

  12. Diurnal variations of Titan's ionosphere

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  13. Differences in ocular parameters between diurnal and nocturnal raptors.

    Science.gov (United States)

    Beckwith-Cohen, Billie; Horowitz, Igal; Bdolah-Abram, Tali; Lublin, Avishai; Ofri, Ron

    2015-01-01

    To establish and compare normal ocular parameters between and within diurnal and nocturnal raptor groups. Eighty-eight ophthalmically normal raptors of six nocturnal and 11 diurnal species were studied. Tear production was measured using Schirmer tear test (STT) and phenol red thread test (PRTT), and applanation tonometry was conducted. Ultrasonographic measurements of axial length (AL), mediolateral axis (ML), vitreous body (VB), and pecten length (PL) were recorded, and conjunctival cultures were obtained. A weak correlation (R = 0.312, P = 0.006) was found between PRTT and STT. Tear production was significantly lower in nocturnal species (P raptors were positive for mycology or bacteriology, either on culture or PCR. The most common infectious agent isolated was Staphylococcus spp. Phenol red thread test and STT are both valid methods to measure tear production; however, a separate baseline must be determined for each species using these methods, as the results of one method cannot be extrapolated to the other. Due to significant differences observed within diurnal and nocturnal species, it appears that a more intricate division should be used when comparing these parameters for raptors, and the classification of diurnal or nocturnal holds little significance in the baseline of these data. © 2013 American College of Veterinary Ophthalmologists.

  14. Study of a Functional Polymorphism in the PER3 Gene and Diurnal Preference in a Colombian Sample

    Science.gov (United States)

    Perea, Claudia S; Niño, Carmen L; López-León, Sandra; Gutiérrez, Rafael; Ojeda, Diego; Arboleda, Humberto; Camargo, Andrés; Adan, Ana; Forero, Diego A

    2014-01-01

    Polymorphisms in human clock genes have been evaluated as potential factors influencing circadian phenotypes in several populations. There are conflicting results for the association of a VNTR in the PER3 gene and diurnal preference in different studies. The objective of this study was to investigate the association between diurnal preference and daytime somnolence with the PER3 VNTR polymorphism (rs57875989) in healthy subjects from Colombia, a Latin American population.A total of 294 undergraduate university students from Bogotá, Colombia participated in this study. Two validated self-report questionnaires, the Composite Scale of Morningness (CSM) and the Epworth Sleep Scale (ESS) were used to assess diurnal preference and daytime somnolence, respectively. Individuals were genotyped for the PER3 VNTR using conventional PCR. Statistical comparisons were carried out with PLINK and SNPStats programs. The PER3 VNTR polymorphism was not associated with either diurnal preference or daytime somnolence in this population. No significant differences in mean scores for those scales were found between PER3 VNTR genotypes. In addition, there were no differences in allelic or genotypic frequencies between chronotype categories. This is consistent with several negative findings in other populations, indicating that the proposed influence of this polymorphism in diurnal preference, and related endophenotypes of neuropsychiatric importance, needs further clarification. This is the first report of molecular genetics of human circadian phenotypes in a Spanish-speaking population. PMID:24860629

  15. Satellite, climatological, and theoretical inputs for modeling of the diurnal cycle of fire emissions

    Science.gov (United States)

    Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.

    2009-12-01

    The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.

  16. Shift work parameters and disruption of diurnal cortisol production in female hospital employees.

    Science.gov (United States)

    Hung, Eleanor Wai Man; Aronson, Kristan J; Leung, Michael; Day, Andrew; Tranmer, Joan

    2016-01-01

    Shift work is associated with an increased risk of cardiovascular diseases (CVD). Disruption of cortisol production is a potential underlying mechanism. This study explored the associations of diurnal quantity and pattern of cortisol production in relation to (1) current shift work status (exclusive day versus rotating days and nights), (2) years of past shift work and (3) parameters of rotating shift work (timing, length and intensity). Female hospital employees (160 day workers and 168 rotating shift workers) from southeastern Ontario, Canada, participated in a cross-sectional study. Participants completed a baseline questionnaire and measures of body height, weight, and waist circumference were taken. Midstream urine samples were collected over two separate 24-hour periods to measure creatinine-adjusted cortisol. Total diurnal cortisol production and pattern were described with two measures of the area under the curve. The effect of shift work on cortisol was modeled using multivariable linear regression analyses. Cortisol production in day workers and shift workers on their day shift were similar; however, shift workers on the night shift had flatter diurnal cortisol curves and produced less cortisol. This suggests that night work is associated with an acute attenuation of cortisol production.

  17. Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect

    Directory of Open Access Journals (Sweden)

    A. Arola

    2013-08-01

    Full Text Available The diurnal variability of aerosol optical depth (AOD can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF or aerosol direct radiative effect (ADRE. The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally. We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on

  18. The effects of the diurnal atmospheric variability on entry, descent and landing on Mars

    Directory of Open Access Journals (Sweden)

    Marčeta D.

    2014-01-01

    Full Text Available Landing on Mars is extremely challenging task due to the fact that the Martian atmosphere is the most hostile environment in the Solar system to perform the entry, descent and landing (EDL process, because it is thick enough to create substantial heating of the entry vehicle but not thick enough to reduce its velocity to the one necessary for safe landing. Beside this, the atmosphere is very dynamic mainly due to high eccentricity of the Martian orbit, obliquity of the orbital to the equatorial plane and close alignment of the winter solstice and the orbital perihelion. Although seasonal variations of atmospheric parameters are significantly larger than the diurnal, it is very important to analyze diurnal cycles as they can significantly change vertical and horizontal atmospheric profiles in very short time intervals. This can present a serious threat to missions which have very precise timings and specific requirements such as the requirement for the daytime landing to enable ground images acquisition during the descent and landing phase. A 3-degrees-of-freedom trajectory integration routine was combined with the Mars Global Reference Atmospheric Model (Mars-GRAM to identify the dependence of the EDL profiles on the diurnal cycles of atmospheric parameters throughout the Martian year. The obtained results show that the influence of the diurnal cycles is the largest at the equator and decreases relatively symmetrically towards the poles with a slightly stronger influence in the northern hemisphere. Also, there is a significant influence of the orbital position of Mars on the effect of diurnal atmospheric variations which causes that, around the orbital perihelion and winter solstice, there is some kind of inversion of the dependance of optimal entry timing on latitude of the landing site comparing to the rest of the Martian year. [Projekat Ministarstva nauke Republike Srbije, br. 176002

  19. Real world vehicle fleet emission factors: Seasonal and diurnal variations in traffic related air pollutants

    Science.gov (United States)

    Wang, Jonathan M.; Jeong, Cheol-Heon; Zimmerman, Naomi; Healy, Robert M.; Evans, Greg J.

    2018-07-01

    Temporal variations of vehicle emissions are affected by various compounding factors in the real world. The focus of this study is to determine the effects of ambient conditions and post-tailpipe changes on traffic emissions measured in the near-road region. Emission factors allowed for the isolation of the traffic signal and accounted for effects of local meteorology and dilution. Five month-long measurement campaigns were conducted at an urban near-road site that exhibited a broad range of ambient conditions with temperatures ranging between -18 and +30 °C. Particle number emission factors were 2.0× higher in the winter relative to the summer, which was attributed to changes in particles post-tailpipe. Conversely, toluene emissions were 2.5× higher in the summer relative to the winter, attributed to changes in fuel composition. Diurnal trends of emission factors showed substantial increases in emissions during the morning rush hour for black carbon (1.9×), particle number (2.4×), and particle-bound polycyclic aromatic hydrocarbons (3.0×), affected by fleet make-up. In contrast, particle number emission factors were highest midday with mean values 3.7× higher than at night. This midday increase was attributed to particle formation or growth from local traffic emissions and showed different wind direction dependence than regional events.

  20. The diurnal order of the image in Dracula

    Directory of Open Access Journals (Sweden)

    Claudio Vescia Zanini

    2015-02-01

    Full Text Available the article analyses images from Bram Stoker’s novel Dracula having as a main theoretical frame the Diurnal regime of the Image, proposed by Gilbert Durand in The Anthropological Structures of the Imaginary and presented by Durand himself as the “order of antithesis”. By presenting the main kinds of images proposed by Durand in binary pairs (theriomorphic and diæretic, nyctomorphic and spectacular, catamorphic and ascensional, the analysis proposed here aims at staying in tune with both the theoretical approach and the context of production of the novel. Victorian England at the end of the nineteenth century was a time of anxieties, fears and doubts, recurrent in the Victorian cultural production as a whole and well-depicted in Dracula, a work where binary oppositions also seem to be recurrent: life and death, good and evil, moral and desire, among others. The focus is on how the main character is perceived by the other characters, which ultimately affects our perception as readers. Images related to animals, colors, weapons and movements are also included in the analysis. The conclusion points out that the Diurnal Order is a prolific and coherent approach towards an understanding of Bram Stoker’s vampire novel.

  1. Termite mounds harness diurnal temperature oscillations for ventilation.

    Science.gov (United States)

    King, Hunter; Ocko, Samuel; Mahadevan, L

    2015-09-15

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations.

  2. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing

    International Nuclear Information System (INIS)

    Min, Min; Zhang, Zhibo

    2014-01-01

    The objective of this study is to understand how cloud fraction diurnal cycle and sub-grid cloud optical thickness variability influence the all-sky direct aerosol radiative forcing (DARF). We focus on the southeast Atlantic region where transported smoke is often observed above low-level water clouds during burning seasons. We use the CALIOP observations to derive the optical properties of aerosols. We developed two diurnal cloud fraction variation models. One is based on sinusoidal fitting of MODIS observations from Terra and Aqua satellites. The other is based on high-temporal frequency diurnal cloud fraction observations from SEVIRI on board of geostationary satellite. Both models indicate a strong cloud fraction diurnal cycle over the southeast Atlantic region. Sensitivity studies indicate that using a constant cloud fraction corresponding to Aqua local equatorial crossing time (1:30 PM) generally leads to an underestimated (less positive) diurnal mean DARF even if solar diurnal variation is considered. Using cloud fraction corresponding to Terra local equatorial crossing time (10:30 AM) generally leads overestimation. The biases are a typically around 10–20%, but up to more than 50%. The influence of sub-grid cloud optical thickness variability on DARF is studied utilizing the cloud optical thickness histogram available in MODIS Level-3 daily data. Similar to previous studies, we found the above-cloud smoke in the southeast Atlantic region has a strong warming effect at the top of the atmosphere. However, because of the plane-parallel albedo bias the warming effect of above-cloud smoke could be significantly overestimated if the grid-mean, instead of the full histogram, of cloud optical thickness is used in the computation. This bias generally increases with increasing above-cloud aerosol optical thickness and sub-grid cloud optical thickness inhomogeneity. Our results suggest that the cloud diurnal cycle and sub-grid cloud variability are important factors

  3. Simulated precipitation diurnal cycles over East Asia using different CAPE-based convective closure schemes in WRF model

    Science.gov (United States)

    Yang, Ben; Zhou, Yang; Zhang, Yaocun; Huang, Anning; Qian, Yun; Zhang, Lujun

    2018-03-01

    Closure assumption in convection parameterization is critical for reasonably modeling the precipitation diurnal variation in climate models. This study evaluates the precipitation diurnal cycles over East Asia during the summer of 2008 simulated with three convective available potential energy (CAPE) based closure assumptions, i.e. CAPE-relaxing (CR), quasi-equilibrium (QE), and free-troposphere QE (FTQE) and investigates the impacts of planetary boundary layer (PBL) mixing, advection, and radiation on the simulation by using the weather research and forecasting model. The sensitivity of precipitation diurnal cycle to PBL vertical resolution is also examined. Results show that the precipitation diurnal cycles simulated with different closures all exhibit large biases over land and the simulation with FTQE closure agrees best with observation. In the simulation with QE closure, the intensified PBL mixing after sunrise is responsible for the late-morning peak of convective precipitation, while in the simulation with FTQE closure, convective precipitation is mainly controlled by advection cooling. The relative contributions of different processes to precipitation formation are functions of rainfall intensity. In the simulation with CR closure, the dynamical equilibrium in the free troposphere still can be reached, implying the complex cause-effect relationship between atmospheric motion and convection. For simulations in which total CAPE is consumed for the closures, daytime precipitation decreases with increased PBL resolution because thinner model layer produces lower convection starting layer, leading to stronger downdraft cooling and CAPE consumption. The sensitivity of the diurnal peak time of precipitation to closure assumption can also be modulated by changes in PBL vertical resolution. The results of this study help us better understand the impacts of various processes on the precipitation diurnal cycle simulation.

  4. Mount for continuously orienting a collector dish in a system adapted to perform both diurnal and seasonal solar tracking

    Science.gov (United States)

    Brantley, L. W., Jr.; Lawson, B. D. (Inventor)

    1977-01-01

    A collector dish is continuously oriented toward the sun in a system adapted to perform both diurnal and seasonal solar tracking. The mount is characterized by a rigid, angulated axle having a linear midportion supporting a collector dish, and oppositely extended end portions normally related to the midportion of the axle and received in spaced journals. The longitudinal axis of symmetry for the midportion of the axle is coincident with a seasonal axis while the axes of the journals are coincident with a diurnal axis paralleling the earth's polar axis. Drive means are provided for periodically displacing the axle about the diurnal axis at a substantially constant rate, while other drive means are provided for periodically indexing the dish through 1 deg about the seasonal axis whereby the position of the dish relative to the axle is varied for accommodating seasonal tracking as changes in the angle of inclination of the polar axis occurs.

  5. Dating base flow in streams using dissolved gases and diurnal temperature changes

    Science.gov (United States)

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.

    2015-01-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  6. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  7. Heliospheric Modulation of Galactic Cosmic Rays; Diurnal Variability Abstract Details

    Science.gov (United States)

    Kalu, D. F.; Okpala, K. C.

    2017-12-01

    We have studied the variability of Cosmic rays flux during solar quiet days at mid and high latitudes in the Northern Hemisphere. By using the five (5) quietest days for each month and the five disturbed days for each month, the monthly mean diurnal variation of cosmic ray anisotropy have been derived for the period 1999-2015, which covers part of cycles 23, and cycle 24. This study seeks to understand the heliospheric contribution to the variation of these Cosmic rays on quietest days, three stations (Inuvik, Moscow, Rome) Neutron Monitors were employed. This study seeks to understand the important features of the high latitude and mid latitude diurnal wave, and how solar and geomagnetic activity may be influencing the wave characteristics. Cosmic ray wave characteristics were obtained by discrete Fourier transform (DFT). The mean, diurnal amplitude, phase and dispersion for each month's diurnal wave were calculated and profiled. There was clear indication that the terrestrial effect on the variability of the monthly mean was more associated with geomagnetic activity rather than rigidity of the cosmic rays. Correlation of the time series of these wave characteristic with solar and geomagnetic activity index showed better association with solar activity.

  8. Influences of diurnal bright or dim light exposure on urine volume in humans.

    Science.gov (United States)

    Hyun, Ki-Ja; Nishimura, Shinya; Tokura, Hiromi

    2006-03-01

    We investigated with eight healthy females if 8 hr diurnal (0700 to 1500 h) bright rather than dim light (5,000 vs. 80 lx) influenced urine volume. Environmental illuminance was made identical at all other times besides 07:00 to 15:00 h. The participants spent time at strictly regulated schedules in a bioclimatic chamber (26 degrees C, relative humidity 60%) for 57 h. Blood was drawn (2 ml) just before lunch in order to calculate Creatinine clearance (Ccr). Urine volume was significantly higher during wakefulness and the 8-h sleep period with bright rather than dim light. Ccr was significantly higher after bright light. The results were discussed in terms of suppression of the sympathetic nerve system under the influence of diurnal bright light exposure. We also discussed these in terms of physiological polymorphisms.

  9. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A V; Bezmenov, K V; Demchenko, P F; Mokhov, I I; Petoukhov, V K [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1996-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  10. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A.V.; Bezmenov, K.V.; Demchenko, P.F.; Mokhov, I.I.; Petoukhov, V.K. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1995-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  11. Diurnal and seasonal occurrence of polar patches

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    1996-05-01

    Full Text Available Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994 when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

  12. Estimation of evaporation from equilibrium diurnal boundary layer humidity

    Science.gov (United States)

    Salvucci, G.; Rigden, A. J.; Li, D.; Gentine, P.

    2017-12-01

    Simplified conceptual models of the convective boundary layer as a well mixed profile of potential temperature (theta) and specific humidity (q) impinging on an initially stably stratified linear potential temperature profile have a long history in atmospheric sciences. These one dimensional representations of complex mixing are useful for gaining insights into land-atmosphere interactions and for prediction when state of the art LES approaches are infeasible. As previously shown (e.g. Betts), if one neglects the role of q in bouyancy, the framework yields a unique relation between mixed layer Theta, mixed layer height (h), and cumulative sensible heat flux (SH) throughout the day. Similarly assuming an initially q profile yields a simple relation between q, h, and cumulative latent heat flux (LH). The diurnal dynamics of theta and q are strongly dependent on SH and the initial lapse rates of theta (gamma_thet) and q (gamma q). In the estimation method proposed here, we further constrain these relations with two more assumptions: 1) The specific humidity is the same at the start of the period of boundary layer growth and at the collapse; and 2) Once the mixed layer reaches the LCL, further drying occurs proportionally to the deardorff convective velocity scale (omega) multiplied by q. Assumption (1) is based on the idea that below the cloud layer, there are no sinks of moisture within the mixed layer (neglecting lateral humidity divergence). Thus the net mixing of dry air aloft with evaporation from the surface must balance. Inclusion of the simple model of moisture loss above the LCL into the bulk-CBL model allows definition of an equilibrium humidity (q) condition at which the diurnal cycle of q repeats (i.e. additions of q from surface balance entrainment of dry air from above). Surprisingly, this framework allows estimation of LH from q, theta, and estimated net radiation by solving for the value of Evaporative Fraction (EF) for which the diurnal cycle of q

  13. Diurnal variation of summer precipitation over the Tibetan Plateau. A cloud-resolving simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianyu; Zhang, Bing; Wang, Minghuan [China Meteorological Administration, Wuhan (China). Wuhan Inst. of Heavy Rain; Wang, Huijuan [Weather Modification Office of Hubei Province, Wuhan (China)

    2012-07-01

    In this study, the Weather Research and Forecasting model was used to simulate the diurnal variation in summer precipitation over the Tibetan Plateau (TP) at a cloudresolving scale. Compared with the TRMM, precipitation data shows that the model can well simulate the diurnal rainfall cycle with an overall late-afternoon maximum precipitation in the central TP and a nighttime maximum in the southern edge. The simulated diurnal variations in regional circulation and thermodynamics are in good correspondence with the precipitation diurnal cycles in the central and southern edge of TP, respectively. A possible mechanism responsible for the nocturnal precipitation maximum in the southern edge has been proposed, indicating the importance of the TP in regulating the regional circulation and precipitation. (orig.)

  14. Diurnal rhythm in serum levels of inhibin B in normal men

    DEFF Research Database (Denmark)

    Carlsen, E; Olsson, C; Petersen, J H

    1999-01-01

    in the early morning hours and lower values in the late afternoon and evening. We did not find evidence for a role of FSH in this diurnal variation of inhibin B. However, covariation with serum levels of testosterone and estradiol suggested that these hormones might play a role in the diurnal rhythm of inhibin...

  15. Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne; Weckwerth, Wolfram

    2014-01-01

    Environmental metabolomics has become interesting in marine ecological studies. One example is the revealing of new insights in stress response of Zostera marina. This is essential to understand how, at which level and to what extend aquatic plants adapt, tolerate and react to environmental...... stressors. We exposed Z. marina to water column anoxia and assessed the diurnal metabolomic response by GC-TOF-MS based metabolomics identifying 109 known and 217 unknown metabolites. During day time photosynthetic oxygen production prevents severe effects of anoxia on the metabolome (complete set of small...... the applicability of metabolomics to assess environmental stress responses of Zostera marina....

  16. Diurnal Variation of Radon Concentration in the Postojna Cave

    International Nuclear Information System (INIS)

    Gregoric, A.; Vaupotic, J.

    2011-01-01

    Postojna Cave, with 20 km of galleries, is the longest known cave system and also the largest of about 20 show caves in Slovenia and one of the most visited show caves in the world. It is well known that high concentrations of radon are common in karstic caves, although quantities of uranium (238U) in limestone are rather low. The reason for this is low natural ventilation of the underground cavities. Tectonic faults constitute an additional source of radon. Variations of radon concentration in cave air arise from a balance of the emission from cave surfaces and drip waters, decay in cave air, and exchange with the outside atmosphere. Because of its elevated radon concentrations, Postojna Cave has been under permanent radon survey since 1995. The influence of meteorological conditions on the radon levels and their temporal variations depends mostly on the shape of the cave, and the number and directions of cracks, corridors and fissures connecting the cave rooms with the outside atmosphere. The driving force for air movement in horizontal caves, and thus the inflow of fresh air and release of the cave air to the atmosphere, is the temperature difference between the cave air and outdoors, which causes seasonal pattern of radon concentration in the cave with high levels in summer and low in winter. However, on a daily scale different behaviour of radon can be observed at different locations in the cave. In this paper diurnal variation of radon concentration at two locations is presented and discussed. Postojna Cave is a horizontal cave with a stable yearly temperature around 10 degrees of @C. Continuous measurements of radon concentration were carried out from 2005 to 2010 at two locations along the guided tourist trail. Radon concentration was measured with Radim 5 WP monitors (SMM Company, Prague, Czech Republic) with sampling frequency once an hour. The evaluation of five-year radon monitoring at two sites in the Postojna Cave reveals significant diurnal and

  17. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching

    Science.gov (United States)

    Roach, Thomas; Miller, Ramona; Aigner, Siegfried; Kranner, Ilse

    2015-01-01

    Background and Aims In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage. A ubiquitous response to high light is the induction of the xanthophyll cycle, but its role in algae is unclear as it is not always associated with NPQ induction. The aim of this study was to reveal how diurnal changes in the level of H2O2 are regulated in a freshwater algal community. Methods A natural freshwater community of algae in a temporary rainwater pool was studied, comprising photosynthetic Euglena species, benthic Navicula diatoms, Chlamydomonas and Chlorella species. Diurnal measurements were made of photosynthetic performance, concentrations of photosynthetic pigments and H2O2. The frequently studied model organisms Chlamydomonas and Chlorella species were isolated to study photosynthesis-related H2O2 responses to high light. Key Results NPQ was shown to prevent H2O2 release in Chlamydomonas and Chlorella species under high light; in addition, dissolved organic carbon excited by UV-B radiation was probably responsible for a part of the H2O2 produced in the water column. Concentrations of H2O2 peaked at 2 µm at midday and algae rapidly scavenged H2O2 rather than releasing it. A vertical H2O2 gradient was observed that was lowest next to diatom-rich benthic algal mats. The diurnal changes in photosynthetic pigments included the violaxanthin and diadinoxanthin cycles; the former was induced prior to the latter, but neither was strictly correlated with NPQ. Conclusions The diurnal cycling of H2O2 was apparently modulated by the organisms in this freshwater algal community. Although the community showed flexibility in its levels of NPQ, the diurnal changes in

  18. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    International Nuclear Information System (INIS)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia; Plainaki, Christina; National and Kapodistrian Univ. of Athens; Andriopoulou, Maria

    2016-01-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  19. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    Energy Technology Data Exchange (ETDEWEB)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia [National and Kapodistrian Univ. of Athens (Greece). Nuclear and Particle Physics Dept.; Plainaki, Christina [INAF-IAPS, Rome (Italy); National and Kapodistrian Univ. of Athens (Greece). Nuclear and Particle Physics Dept.; Andriopoulou, Maria [Austrian Academy of Sciences, Graz (Austria). Space Research Inst.

    2016-07-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  20. Using a 1-D model to reproduce diurnal SST signals

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob L.

    2014-01-01

    The diurnal variability of SST has been extensively studied as it poses challenges for validating and calibrating satellite sensors, merging SST time series, oceanic and atmospheric modelling. As heat is significantly trapped close to the surface, the diurnal signal’s maximum amplitude is best...... captured by radiometers. The availability of infra-red retrievals from a geostationary orbit allows the hourly monitoring of the diurnal SST evolution. When infra-red SSTs are validated with in situ measurements a general mismatch is found, associated with the different reference depth of each type...... of measurement. A generally preferred approach to bridge the gap between in situ and remotely obtained measurements is through modelling of the upper ocean temperature. This ESA supported study focuses on the implementation of the 1 dimensional General Ocean Turbulence Model (GOTM), in order to resolve...

  1. Modulation of the atmospheric quasi-biweekly oscillation on the diurnal variation of the occurrence frequency of the Tibetan Plateau vortices

    Science.gov (United States)

    Li, Lun; Zhang, Renhe; Wen, Min

    2018-06-01

    In this study, modulation of the atmospheric quasi-biweekly oscillation (QBWO) on diurnal variation of the occurrence frequency of Tibetan Plateau vortices (TPVs) during May-August of 2000-2009 was investigated. The diurnal variations of the occurrence frequency of the TPVs (OFTPVs) and the related dynamic and thermodynamic features in the positive and negative phases of QBWO were compared. In both the positive and negative phases, the OFTPVs reaches the maximum from evening to midnight (18-00 LT, LT indicates the local time), and minimum from early morning to noon (06-12 LT). At 18 LT, there is strongest convergence at 500 hPa and ascending motion, as well as the most abundant net water vapor budget over the Tibetan Plateau, which is in favor of the precipitation and the related condensation latent heat release, corresponding to the maximum of OFTPVs in 18-00 LT. On the contrary, in the early morning at 06 LT, the conditions are most unfavorable for genesis of TPVs in 06-12 LT. QBWO leads to stronger convergence at 500 hPa, ascending motion as well as more massive water vapor in the positive phases than those in the negative phases, resulting in larger numbers of TPVs occur in all of the four periods of a day (00-06 LT, 06-12 LT, 12-18 LT, and 18-00 LT) in the former. The TPVs generating from the early morning to noon (06-12 LT) are weaker and more sensitive and fragile to the disadvantageous background, while the TPVs occurring from evening to midnight (18-00 LT) are stronger and seem to be well tolerated, leading to more remarkable contrast between the OFTPVs in the negative and positive phases in 06-12 LT than in 18-00 LT.

  2. Simulating the convective precipitation diurnal cycle in a North American scale convection-permitting model

    Science.gov (United States)

    Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.

    2017-12-01

    A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.

  3. Diurnal variation of zooplankton off Versova (Bombay)

    Digital Repository Service at National Institute of Oceanography (India)

    Gajbhiye, S.N.; Nair, V.R.; Desai, B.N.

    Physicochemical parameters and diurnal variaion of zooplankton were studied off Versova on 17/18 February 1981. Salinity and dissolved oxygen showed limited variation during the period of study. Nutrient values followed the tidal rhythm and high...

  4. Providing Diurnal Sky Cover Data at ARM Sites

    Energy Technology Data Exchange (ETDEWEB)

    Klebe, Dimitri I. [Solmirus Corporation, Colorado Springs, CO (United States)

    2015-03-06

    The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizing the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.

  5. Diurnal adjustment in ultraviolet sunscreen protection is widespread among higher plants.

    Science.gov (United States)

    Barnes, Paul W; Flint, Stephan D; Tobler, Mark A; Ryel, Ronald J

    2016-05-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) in the epidermis of higher plants reduces the penetration of solar UV radiation to underlying tissues and is a primary mechanism of acclimation to changing UV conditions resulting from ozone depletion and climate change. Previously we reported that several herbaceous plant species were capable of rapid, diurnal adjustments in epidermal UV transmittance (T UV), but how widespread this phenomenon is among plants has been unknown. In the present study, we tested the generality of this response by screening 37 species of various cultivated and wild plants growing in four locations spanning a gradient of ambient solar UV and climate (Hawaii, Utah, Idaho and Louisiana). Non-destructive measurements of adaxial T UV indicated that statistically significant midday decreases in T UV occurred in 49 % of the species tested, including both herbaceous and woody growth forms, and there was substantial interspecific variation in the magnitude of these changes. In general, plants in Louisiana exhibited larger diurnal changes in T UV than those in the other locations. Moreover, across all taxa, the magnitude of these changes was positively correlated with minimum daily air temperatures but not daily UV irradiances. Results indicate that diurnal changes in UV shielding are widespread among higher plants, vary both within and among species and tend to be greatest in herbaceous plants growing in warm environments. These findings suggest that plant species differ in their UV protection "strategies" though the functional and ecological significance of this variation in UV sunscreen protection remains unclear at present.

  6. Water Relations, Diurnal Acidity Changes, and Productivity of a Cultivated Cactus, Opuntia ficus-indica1

    Science.gov (United States)

    Acevedo, Edmundo; Badilla, Ignacio; Nobel, Park S.

    1983-01-01

    Physiological responses of the Crassulacean acid metabolism (CAM) plant Opuntia ficus-indica (Cactaceae) were studied on a commercial plantation in central Chile. Young cladodes (flattened stems) and flower buds exhibited daytime stomatal opening, whereas mature cladodes and fruit exhibited the nocturnal stomatal opening characteristic of CAM plants. Severe water stress suppressed the nocturnal stomatal opening by mature cladodes, but their high water vapor conductance occurring near dawn was not affected. Nocturnal acidity increases were not as sensitive to water stress as was the nocturnal stomatal opening. The magnitude of the nocturnal acidity increases depended on the total daily photosynthetically active radiation (PAR), being 90% PAR-saturated at 27 moles per square meter per day for a mean nighttime air temperature of 5°C and at 20 moles per square meter per day for 18°C. Inasmuch as the PAR received on unshaded vertical surfaces averaged about 21 moles per square meter per day, nocturnal acidity increases by the cladodes were on the verge of being PAR-limited in the field. The net assimilation rate, which was positive throughout the year, annually averaged 3.4 grams per square meter per day for 1.0- and 2.0-year-old plants. Plants that were 5.4 years old had 7.2 square meters of cladode surface area (both sides) and an annual dry weight productivity of 13 megagrams (metric tons) per hectare per year when their ground cover was 32%. This substantial productivity for a CAM plant was accompanied by the highest nocturnal acidity increase so far observed in the field, 0.78 mole H+ per square meter. PMID:16663084

  7. Effects of Water Stress on Photosynthesis and Chlorophyll Fluorescence of the Sugar Beet

    Directory of Open Access Journals (Sweden)

    HAN Kai-hong

    2015-10-01

    Full Text Available To investigate the effect of water stress and rewatering on sugar beet yield and its corresponding photosynthetic parameters, and to provide the basis of water management for the sugar beet fields, pool experiments in an artificial proof canopy were set up to observe changes of beet net photosynthetic rate(Pn, transpiration rate(Tr, water use efficiency(WUE and stomatal limitation (Ls, intercellular CO2 oncentration(Ci, and PSⅡ maximum quantum yield(Fv/Fm. The results indicated that the diurnal variation of Tr and Pn in CK treatment (whole growth period replenishment at different times near "unimodal" type; and water shortage treatments presented "twin peaks" change. Diurnal transpiration capacity(DTC under water stress at sugar accumulation stage reduced by 70.16%~74.81% and diurnal photosynthetic capacity(DPC was 63.48%~69.96% lower than that of CK, while diurnal water use efficiency(WUEd increased by 19.28%~22.39%. Rehydration helped Tr and Pn recovery, but did not reach unstressed levels. Ls changes under extremely dry environment had a midday trough "twin peaks" feature, and Ci was at "double-dip" in consistent with the timing of Ls; Water stress inhibited and inactivated photochemical reaction center of midday PSⅡ. Water stress led to irreversible decrease in the Pn and Tr, and prolonged the Pn inefficient period, which become the important factor of influencing the sugar beet yield.

  8. Global distributions of diurnal and semi-diurnal tides: observations from HRDI-UARS of the MLT region

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2002-11-01

    Full Text Available HRDI (High Resolution Doppler Interferometer-UARS winds data have been analyzed in 4° latitude by 10° longitude cells at 96 km to obtain global contour maps of solar-tidal amplitudes and phases, and also mean winds. The solstices June–July (1993, December–January (1993–1994, and one equinox September–October (1994 are shown.  The 24-h diurnal tide that maximizes near the 20–25° latitude has significant seasonal changes with equinoctial maxima, and very clear longitudinal variability. Maxima are very clear over the oceans. In contrast, the 12-h semi-diurnal tides that maximize near the 40–55° latitude have very strong seasonal changes with winter maxima, and more modest longitudinal changes. The similarities with MLT (mesosphere-lower thermosphere radar observations (90 km and the GSWM (Global Scale Wave Model are very satisfactory. The mean winds are consistent with expectations and show clear poleward flow from summer to winter hemispheres in the solstices.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides Radio science (remote sensing

  9. Effects of Tropical Islands on the Diurnal Cycle of Convection and its Influence on the MJO Propagation over the Maritime Continent

    Science.gov (United States)

    Savarin, A.; Chen, S. S.

    2017-12-01

    The Madden-Julian Oscillation (MJO) is a dominant mode of intraseasonal variability in the tropics. Large-scale convection fueling the MJO is initiated over the tropical Indian Ocean and propagates eastward across the Maritime Continent (MC) and into the western Pacific. Observational studies have shown that near 40-50% of the MJO events cannot pass through the MC, which is known as the MC barrier effect. Previous studies have also shown a strong diurnal cycle of convection over the islands and coastal seas, with an afternoon precipitation maximum over land and high terrain, and an early morning maximum over water and mountain valley areas. As an eastward-propagating MJO convective event passes over the MC, its nature may be altered due to the complex interaction with the large Islands and topography. In turn, the passage of an MJO event modulates local conditions over the MC. The diurnal cycle of convection over the MC and its modulation by the MJO are not well understood and poorly represented in global numerical prediction models. This study aims to improve our understanding of how the diurnal cycle of convection and the presence of islands of the MC affect the eastward propagation of the MJO over the region. To this end, we use the Unified Wave Interface-Coupled Model (UWIN-CM) in its fully-coupled atmosphere-ocean configuration at a convection-permitting (4 km) resolution over the region. The control simulation is from the MJO event that occurred in November-December 2011, and has been verified against the Dynamics of the MJO (DYNAMO) field campaign observations, TRMM precipitation, and reanalysis products. To investigate the effects of the tropical islands on the MJO, we conduct two additional numerical experiments, one with preserved island shape but flattened topography, and one where islands are replaced by water. The difference in the diurnal cycle and convective organization among these experiments will provide some insights on the origin of the MC

  10. Diurnal periodicity in the activity of the common sole, solea vulgaris quensel

    NARCIS (Netherlands)

    Kruuk, H.

    1963-01-01

    1. 1. The diurnal rhythm in the trawl catch of Solea vulgaris Quensel gave rise to this investigation into the diurnal activity rhythm of the fish. 2. 2. Periodicity in the food intake of the Sole in its natural habitat was studied by analyses of the contents of the intestines. Food intake

  11. Future Time Perspective, Socio-Emotional Regulation, and Diurnal Cortisol Patterns in Post-Secondary Engineering Students

    Science.gov (United States)

    Cheng, Katherine C.

    2017-01-01

    Built upon Control Value Theory, this dissertation consists of two studies that examine university students' future-oriented motivation, socio-emotional regulation, and diurnal cortisol patterns in understanding students' well-being in the academic-context. Study 1 examined the roles that Learning-related Hopelessness and Future Time Perspective…

  12. Scale interactions on diurnal toseasonal timescales and their relevanceto model systematic errors

    Directory of Open Access Journals (Sweden)

    G. Yang

    2003-06-01

    Full Text Available Examples of current research into systematic errors in climate models are used to demonstrate the importance of scale interactions on diurnal,intraseasonal and seasonal timescales for the mean and variability of the tropical climate system. It has enabled some conclusions to be drawn about possible processes that may need to be represented, and some recommendations to be made regarding model improvements. It has been shown that the Maritime Continent heat source is a major driver of the global circulation but yet is poorly represented in GCMs. A new climatology of the diurnal cycle has been used to provide compelling evidence of important land-sea breeze and gravity wave effects, which may play a crucial role in the heat and moisture budget of this key region for the tropical and global circulation. The role of the diurnal cycle has also been emphasized for intraseasonal variability associated with the Madden Julian Oscillation (MJO. It is suggested that the diurnal cycle in Sea Surface Temperature (SST during the suppressed phase of the MJO leads to a triggering of cumulus congestus clouds, which serve to moisten the free troposphere and hence precondition the atmosphere for the next active phase. It has been further shown that coupling between the ocean and atmosphere on intraseasonal timescales leads to a more realistic simulation of the MJO. These results stress the need for models to be able to simulate firstly, the observed tri-modal distribution of convection, and secondly, the coupling between the ocean and atmosphere on diurnal to intraseasonal timescales. It is argued, however, that the current representation of the ocean mixed layer in coupled models is not adequate to represent the complex structure of the observed mixed layer, in particular the formation of salinity barrier layers which can potentially provide much stronger local coupling between the atmosphere and ocean on diurnal to intraseasonal timescales.

  13. Do diurnal patterns of branch carbon uptake and transpiration recover after heat waves? Results from a Mediterranean-type ecosystem experiencing seasonal and exceptional drought

    Science.gov (United States)

    Pivovaroff, A. L.; Pesqueira, A.; Sun, W.; Seibt, U.

    2016-12-01

    Mediterranean-type ecosystems are biodiversity hotspots, but increasing temperature and changes in precipitation will have significant impacts on vegetation, as evidenced by the current die-back of many woody species in southern California, USA, due to exceptional drought conditions. We installed flow-through chambers on four native woody plant species at Stunt Ranch, a University of California Natural Reserve System site, in order to continuously monitor fluxes of carbon and water at the branch-scale from the growing season through the annual seasonal drought period. Study species included Heteromeles arbutifolia, Malosma laurina, Salvia leucophylla, and Quercus agrifolia. Here we present the results of diurnal flux patterns before, during, and after two extreme heat waves events, when daily maximum temperatures doubled. Under typical summer conditions, which include hot, sunny days, study species exhibited two peaks in carbon assimilation during a diurnal cycle: a peak in the morning and a smaller, secondary peak in the afternoon, separated by a midday depression. During heat wave events, which generally lasted 3 days, species exhibited a small morning peak and no afternoon peak at all. All study species returned to their pre-heat wave diurnal flux patterns, which included the second afternoon peak, when weather conditions returned to normal. Since soil moisture was not affected by the short-term heat wave events, we conclude that the pronounced changes in diurnal patterns, including disappearance of the secondary afternoon peak, are the result of stomatal regulation in response to atmospheric water demand rather than root responses to soil moisture deficits. Our results demonstrate that carbon uptake of native species may be impacted under ongoing climate change when increased temperatures and drought conditions may be sustained.

  14. Glucocorticoid treatment earlier in childhood and adolescence show dose-response associations with diurnal cortisol levels

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Holm, Sara K; Uldall, Peter

    2017-01-01

    or diurnal cortisol output; however, sex-dependent group differences were observed. Specifically, female patients had a higher CAR relative to female controls, while male patients had higher daily cortisol levels compared to male controls. Notably, CAR in female patients and daily cortisol levels in male...... for males and females....

  15. Pathophysiology of diurnal drooling in Parkinson's disease

    NARCIS (Netherlands)

    Kalf, J.G.; Munneke, M.; Engel-Hoek, L. van den; Swart, B.J.M. de; Borm, G.F.; Bloem, B.R.; Zwarts, M.J.

    2011-01-01

    Drooling is an incapacitating feature of Parkinson's disease. Better pathophysiological insights are needed to improve treatment. In this study, we tested the hypothesis that the cause of drooling is multifactorial. We examined 15 patients with Parkinson's disease with distinct diurnal saliva loss

  16. Diurnal variation and reliability of the urine lactate concentration after maximal exercise.

    Science.gov (United States)

    Nikolaidis, Stefanos; Kosmidis, Ioannis; Sougioultzis, Michail; Kabasakalis, Athanasios; Mougios, Vassilis

    2018-01-01

    The postexercise urine lactate concentration is a novel valid exercise biomarker, which has exhibited satisfactory reliability in the morning hours under controlled water intake. The aim of the present study was to investigate the diurnal variation of the postexercise urine lactate concentration and its reliability in the afternoon hours. Thirty-two healthy children (11 boys and 21 girls) and 23 adults (13 men and 10 women) participated in the study. All participants performed two identical sessions of eight 25 m bouts of maximal freestyle swimming executed every 2 min with passive recovery in between. These sessions were performed in the morning and afternoon and were separated by 3-4 days. Adults performed an additional afternoon session that was also separated by 3-4 days. All swimmers drank 500 mL of water before and another 500 mL after each test. Capillary blood and urine samples were collected before and after each test for lactate determination. Urine creatinine, urine density and body water content were also measured. The intraclass correlation coefficient was used as a reliability index between the morning and afternoon tests, as well as between the afternoon test and retest. Swimming performance and body water content exhibited excellent reliability in both children and adults. The postexercise blood lactate concentration did not show diurnal variation, showing a good reliability between the morning and afternoon tests, as well as high reliability between the afternoon test and retest. The postexercise urine density and lactate concentration were affected by time of day. However, when lactate was normalized to creatinine, it exhibited excellent reliability in children and good-to-high reliability in adults. The postexercise urine lactate concentration showed high reliability between the afternoon test and retest, independent of creatinine normalization. The postexercise blood and urine lactate concentrations were significantly correlated in all

  17. Diurnal Variations of the Flux Imbalance Over Homogeneous and Heterogeneous Landscapes

    Science.gov (United States)

    Zhou, Yanzhao; Li, Dan; Liu, Heping; Li, Xin

    2018-05-01

    It is well known that the sum of the turbulent sensible and latent heat fluxes as measured by the eddy-covariance method is systematically lower than the available energy (i.e., the net radiation minus the ground heat flux). We examine the separate and joint effects of diurnal and spatial variations of surface temperature on this flux imbalance in a dry convective boundary layer using the Weather Research and Forecasting model. Results show that, over homogeneous surfaces, the flux due to turbulent-organized structures is responsible for the imbalance, whereas over heterogeneous surfaces, the flux due to mesoscale or secondary circulations is the main contributor to the imbalance. Over homogeneous surfaces, the flux imbalance in free convective conditions exhibits a clear diurnal cycle, showing that the flux-imbalance magnitude slowly decreases during the morning period and rapidly increases during the afternoon period. However, in shear convective conditions, the flux-imbalance magnitude is much smaller, but slightly increases with time. The flux imbalance over heterogeneous surfaces exhibits a diurnal cycle under both free and shear convective conditions, which is similar to that over homogeneous surfaces in free convective conditions, and is also consistent with the general trend in the global observations. The rapid increase in the flux-imbalance magnitude during the afternoon period is mainly caused by the afternoon decay of the turbulent kinetic energy (TKE). Interestingly, over heterogeneous surfaces, the flux imbalance is linearly related to the TKE and the difference between the potential temperature and surface temperature, ΔT; the larger the TKE and ΔT values, the smaller the flux-imbalance magnitude.

  18. Global distributions of diurnal and semi-diurnal tides: observations from HRDI-UARS of the MLT region

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    Full Text Available HRDI (High Resolution Doppler Interferometer-UARS winds data have been analyzed in 4° latitude by 10° longitude cells at 96 km to obtain global contour maps of solar-tidal amplitudes and phases, and also mean winds. The solstices June–July (1993, December–January (1993–1994, and one equinox September–October (1994 are shown. 

    The 24-h diurnal tide that maximizes near the 20–25° latitude has significant seasonal changes with equinoctial maxima, and very clear longitudinal variability. Maxima are very clear over the oceans. In contrast, the 12-h semi-diurnal tides that maximize near the 40–55° latitude have very strong seasonal changes with winter maxima, and more modest longitudinal changes. The similarities with MLT (mesosphere-lower thermosphere radar observations (90 km and the GSWM (Global Scale Wave Model are very satisfactory. The mean winds are consistent with expectations and show clear poleward flow from summer to winter hemispheres in the solstices.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides Radio science (remote sensing

  19. Robust fitting of diurnal brightness temperature cycle

    CSIR Research Space (South Africa)

    Udahemuka, G

    2007-11-01

    Full Text Available for a pixel concerned. Robust fitting of observed Diurnal Temperature Cycle (DTC) taken over a day of a given pixel without cloud cover and other abnormally conditions such as fire can give a data based brightness temperature model for a given pixel...

  20. Effects of diurnal variations in temperature on non-accidental mortality among the elderly population of Montreal, Québec, 1984-2007.

    Science.gov (United States)

    Vutcovici, Maria; Goldberg, Mark S; Valois, Marie-France

    2014-07-01

    The association between ambient temperature and mortality has been studied extensively. Recent data suggest an independent role of diurnal temperature variations in increasing daily mortality. Elderly adults-a growing subgroup of the population in developed countries-may be more susceptible to the effects of temperature variations. The aim of this study was to determine whether variations in diurnal temperature were associated with daily non-accidental mortality among residents of Montreal, Québec, who were 65 years of age and over during the period between 1984 and 2007. We used distributed lag non-linear Poisson models constrained over a 30-day lag period, adjusted for temporal trends, mean daily temperature, and mean daily concentrations of nitrogen dioxide and ozone to estimate changes in daily mortality with diurnal temperature. We found, over the 30 day lag period, a cumulative increase in daily mortality of 5.12% [95% confidence interval (CI): 0.02-10.49%] for a change from 5.9 °C to 11.1 °C (25th to 75th percentiles) in diurnal temperature, and a 11.27% (95%CI: 2.08-21.29%) increase in mortality associated with an increase of diurnal temperature from 11.1 to 17.5 °C (75th to 99th percentiles). The results were relatively robust to adjustment for daily mean temperature. We found that, in Montreal, diurnal variations in temperature are associated with a small increase in non-accidental mortality among the elderly population. More studies are needed in different geographical locations to confirm this effect.

  1. Diurnal cortisol rhythms, fatigue and psychosocial factors in five-year survivors of ovarian cancer.

    Science.gov (United States)

    Cuneo, Michaela G; Schrepf, Andrew; Slavich, George M; Thaker, Premal H; Goodheart, Michael; Bender, David; Cole, Steve W; Sood, Anil K; Lutgendorf, Susan K

    2017-10-01

    Fatigue is a challenge in ovarian cancer survivorship and greatly impacts quality of life. In other cancer populations, fatigue has been associated with abnormal diurnal cortisol patterns. However, little is known about biological and behavioral factors in 5+-year ovarian cancer survivors and potential mechanisms underlying persistent fatigue have not been investigated in this population. Moreover, relationships between neuroendocrine and psychosocial factors in 5+-year ovarian cancer survivors have not been studied. We addressed these issues by examining relationships between diurnal cortisol rhythms, fatigue, life stress, and social support in 30 survivors of ovarian cancer who were assessed at least 5 years (mean=6.20years) following their primary diagnosis. Flatter diurnal cortisol slopes were associated with higher levels of fatigue, suggesting a role for HPA-axis dysregulation in sustained fatigue experienced by survivors. Moreover, greater cumulative lifetime stressor exposure (p=0.023) and stressor severity (p=0.004) were associated with flatter diurnal cortisol slopes, while higher social attachment (p=0.001) was associated with steeper diurnal cortisol slopes. These findings suggest that ovarian cancer survivors with greater lifetime stress exposure or lower social attachment may be at increased risk for circadian rhythm disruption, which in turn is associated with fatigue. Future research should examine relationships of clinical stage and inflammatory cytokines to cortisol rhythms and fatigue in long-term ovarian cancer survivors, as well as investigating the clinical significance of abnormal diurnal cortisol profiles in this population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Diurnal variations in wastewater characteristics at main out fall in Lahore

    International Nuclear Information System (INIS)

    Haider, H.; Ali, W.; Ali, W.

    2012-01-01

    Variations in the flow and pollutants concentrations during the day were monitored at the Main Out fall disposal station of the city of Lahore. The laboratory analysis of the wastewater samples collected at 2 hour interval on fifth and sixth May, 2009 for pH, temperature, alkalinity, hardness, Biochemical Oxygen Demand (BOD5), BOD5 Filtered, Total Kjeldahl Nitrogen (TKN), Ammonia Nitrogen (NH/sub 3/-N), chlorides, solids, turbidity, sulphates and nitrates were carried out. Average values and standard deviations were determined to assess the type of wastewater treatment. Correlation between BOD5 and BOD5 Filtered was developed through regression analysis. Diurnal variations in the Ultimate Biochemical Oxygen Demand (BODU) at the Main Out fall based on Carbonaceous Biochemical Oxygen Demand (CBODU) and Nitrogenous Biochemical Oxygen Demand (NBODU) are also estimated. The ratio between CBODU/NBODU ranges between 0.86 to 1.8 during a day at Main Out fall. This variation is primarily due to the large diurnal variation in CBODU values as a result of industrial activities in the study area. The BOD5/ TKN ratio varies between 3.3 and 6.9 and the calculated BODU (i.e., CBODU + NBODU) was found to be almost double of BOD5 during most part of the day primarily due to inclusion of NBOD. The study results reveal the importance of NBOD while designing the wastewater treatment facilities and implementing a water quality control strategy for the River Ravi. (author)

  3. Studying Diurnal Variations of Aerosols with NASA MERRA-2 Reanalysis Data

    Science.gov (United States)

    Shen, Suhung; Ostrenga, Dana M.; Zeng, Jian; Vollmer, Bruce E.

    2018-01-01

    Aerosols play an important role in atmospheric dynamics, climate variations, and Earth's energy cycle by altering the radiation balance in the atmosphere through interaction with clouds, providing fertilizer for forests and canopy, and as a supply of iron to the ocean over long time periods. Studies suggest that much of the feedback between dust aerosols and dynamics is associated with diurnal and synoptic scale variability. However, the lack of sub-daily resolution of aerosols from satellite observations makes it difficult to study the diurnal characteristics, especially over tropical and subtropical regions. Investigation of this topic utilizes over 37 years of simulated global aerosol products from NASA atmospheric reanalysis, in the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data set, available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). MERRA-2 covers the period 1980-present, and is continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using data from MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated using the MERRA-2 aerosol model, which interacts directly with radiation parameterization, and is radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Hourly, monthly, and monthly diurnal data are available at spatial resolution of 0.5o x 0.625o (latitude x longitude). By using MERRA-2 hourly and monthly diurnal products, different aerosol diurnal variabilities are observed over North America, Africa, Asia, and Australia, that may be due to different meteorological conditions and aerosol sources. The presentation will also provide an overview of MERRA-2 data services at GES DISC, such as how to find and download data, and how to quickly visualize and analyze data online with Giovanni.

  4. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  5. The impact of negative family-work spillover on diurnal cortisol.

    Science.gov (United States)

    Zilioli, Samuele; Imami, Ledina; Slatcher, Richard B

    2016-10-01

    Both dimensions of the work-family interface, work-to-family and family-to-work spillover, have important implications for health and well-being. Despite the importance of these associations, very little is known about the physiological mechanisms through which the interplay between family and work experiences are translated into long-lasting consequences for health. This study investigated both positive and negative aspects of each spillover dimension on diurnal cortisol secretion patterns in a large panel study of working adults between the ages of 33 and 80. Greater negative family-to-work (NFW) spillover predicted lower wake-up cortisol values and a flatter (less "healthy") diurnal cortisol slope. This effect was evident even after controlling for the effects of the other spillover dimensions. These findings indicate that not all aspects of the work-family interface might impact stress physiology to the same extent and suggest that diurnal cortisol may be an important pathway through which negative aspects of the work-family interface leave their mark on health. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. natalensis) and diurn'al (Rhabdomys pumilio)

    African Journals Online (AJOL)

    The thermo neutral zone for both speCies was found to be at T. = 32 ± 1 °e. Below the lower critical point. Vo. for the diurnal species (R. pumilio) was significantly higher. (p

  7. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  8. Central melanopsin projections in the diurnal rodent, Arvicanthis niloticus

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2015-07-01

    Full Text Available The direct effects of photic stimuli on behavior are very different in diurnal and nocturnal species, as light stimulates an increase in activity in the former and a decrease in the latter. Studies of nocturnal mice have implicated a select population of retinal ganglion cells that are intrinsically photosensitive (ipRGCs in mediation of these acute responses to light. ipRGCs are photosensitive due to the expression of the photopigment melanopsin; these cells use glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP as neurotransmitters. PACAP is useful for the study of central ipRGC projections because, in the retina, it is found exclusively within melanopsin cells. Little is known about the central projections of ipRGCs in diurnal species. Here, we first characterized these cells in the retina of the diurnal Nile grass rat using immunohistochemistry (IHC. The same basic subtypes of melanopsin cells that have been described in other mammals were present, but nearly 25% of them were displaced, primarily in its superior region. PACAP was present in 87.7% of all melanopsin cells, while 97.4% of PACAP cells contained melanopsin. We then investigated central projections of ipRGCs by examining the distribution of immunoreactive PACAP fibers in intact and enucleated animals. This revealed evidence that these cells project to the suprachiasmatic nucleus, lateral geniculate nucleus (LGN, pretectum and superior colliculus. This distribution was confirmed with injections of cholera toxin subunit β coupled with Alexa Fluor 488 in one eye and Alexa Flour 594 in the other, combined with IHC staining of PACAP. These studies also revealed that the ventral and dorsal LGN and the caudal olivary pretectal nucleus receive less innervation from ipRGCs than that reported in nocturnal rodents. Overall, these data suggest that although ipRGCs and their projections are very similar in diurnal and nocturnal rodents, they may not be identical.

  9. Chronotype, sleep loss, and diurnal pattern of salivary cortisol in a simulated daylong driving.

    Science.gov (United States)

    Oginska, Halszka; Fafrowicz, Magdalena; Golonka, Krystyna; Marek, Tadeusz; Mojsa-Kaja, Justyna; Tucholska, Kinga

    2010-07-01

    The study focused on chronotype-related differences in subjective load assessment, sleepiness, and salivary cortisol pattern in subjects performing daylong simulated driving. Individual differences in work stress appraisal and psychobiological cost of prolonged load seem to be of importance in view of expanding compressed working time schedules. Twenty-one healthy, male volunteers (mean +/- SD: 27.9 +/- 4.9 yrs) were required to stay in semiconstant routine conditions. They performed four sessions (each lasting approximately 2.5 h) of simulated driving, i.e., completed chosen tasks from computer driving games. Saliva samples were collected after each driving session, i.e., at 10:00-11:00, 14:00-15:00, 18:00-19:00, and 22:00-23:00 h as well as 10-30 min after waking (between 05:00 and 06:00 h) and at bedtime (after 00:00 h). Two subgroups of subjects were distinguished on the basis of the Chronotype Questionnaire: morning (M)- and evening (E)-oriented types. Subjective data on sleep need, sleeping time preferences, sleeping problems, and the details of the preceding night were investigated by questionnaire. Subjective measures of task load (NASA Task Load Index [NASA-TLX]), activation (Thayer's Activation-Deactivation Adjective Check List [AD ACL]), and sleepiness (Karolinska Sleepiness Scale [KSS]) were applied at times of saliva samples collection. M- and E-oriented types differed significantly as to their ideal sleep length (6 h 54 min +/- 44 versus 8 h 13 min +/- 50 min), preferred sleep timing (midpoint at 03:19 versus 04:26), and sleep index, i.e., 'real-to-ideal' sleep ratio, before the experimental day (0.88 versus 0.67). Sleep deficit proved to be integrated with eveningness. M and E types exhibited similar diurnal profiles of energy, tiredness, tension, and calmness assessed by AD ACL, but E types estimated higher their workload (NASA-TLX) and sleepiness (KSS). M types exhibited a trend of higher mean cortisol levels than E types (F = 4.192, p < .056) and

  10. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    Science.gov (United States)

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes

  11. The influence of high and low levels of estrogen on diurnal urine regulation in young women

    Directory of Open Access Journals (Sweden)

    Bie Peter

    2008-11-01

    Full Text Available Abstract Background Sex hormones have a pronounced effect on arginine vasopressin (AVP, and therefore on the diurnal water homeostasis. Low and high levels of plasma-estradiol as seen in the follicular phase of the menstrual cycle may therefore alter the diurnal regulation of urine production. Furthermore the structural resemblance of oxytocin to vasopressin has led to speculations about the possible antidiuretic properties of oxytocin under normal physiological conditions. To elucidate the influence of high and low p-estradiol on the regulation of the diurnal urine production, 15 normal menstruating women (21–33 y underwent two circadian in-patient investigations, both situated in follicular phase. Methods Admitting the participants solely in the follicular phase resulted in high and low plasma-estradiol whereas plasma-progesterone was similar. Urine and blood samples were taken at predetermined time points to determine plasma AVP, plasma oxytocin, plasma aldosterone, plasma natriuretic peptide (ANP, urinary solute excretions, and urinary excretions of prostaglandin E2 (PGE-2 and aquaporin-2 (AQP-2. Blood pressure was measured every hour. Results Plasma AVP, plasma aldosterone and plasma ANP were unaffected by the different levels of estradiol. All had marked circadian variations whereas oxytocin did not display any circadian rhythm. High estradiol resulted in lower p-osmolality and p-sodium reflecting the downward resetting of the osmoreceptors. Oxytocin did not correlate with either diuresis or urine osmolality. The diurnal urine production was similar in the two groups as were urine osmolality, excretion of PGE-2 and AQP-2. AQP-2 does not have a circadian rhythm and is not significantly correlated to either AVP or oxytocin under normal physiological conditions. Conclusion High and low level of estradiol has no influence on the circadian rhythm of AVP or the subsequent urine production. High p-estradiol resets the osmoreceptors for AVP

  12. Diurnal patterns of photosynthesis and water relations for four orchard-grown pomegranate (Punica granatum L.) cultivars

    Science.gov (United States)

    Long-term drought, coupled with tighter regulations on limited water resources have caused growers to seek drought tolerant cultivars of common tree crops in California. Yet information on pomegranate physiology is lacking, even though it is grown throughout the world in various climates. The purpos...

  13. [Spatial variation in diurnal courses of stem temperature of Betula platyphylla and Fraxinus mandshurica and its influencing factors].

    Science.gov (United States)

    Li, Yu Ran; Wang, Xing Chang; Wang, Chuan Kuan; Liu, Fan; Zhang, Quan Zhi

    2017-10-01

    Plant temperature is an important parameter for estimating energy balance and vegetation respiration of forest ecosystem. To examine spatial variation in diurnal courses of stem temperatures (T s ) and its influencing factors, we measured the T s with copper constantan thermocouples at different depths, heights and azimuths within the stems of two broadleaved tree species with contrasting bark and wood properties, Betula platyphylla and Fraxinus mandshurica. The results showed that the monthly mean diurnal courses of the T s largely followed that of air temperature with a 'sinusoi dal' pattern, but the T s lagged behind the air temperature by 0 h at the stem surface to 4 h at 6 cm depth. The daily maximal values and ranges of the diurnal course of T s decreased gradually with increasing measuring depth across the stem and decreasing measuring height along the stem. The circumferential variation in T s was marginal, with slightly higher daily maximal values in the south and west directions during the daytime of the dormant season. Differences in thermal properties (i.e. , specific heat capacity and thermal conductivity) of both bark and wood tissue between the two species contributed to the inter specific variations in the radial variation in T s through influencing the heat exchange between the stem surface and ambient air as well as heat diffusion within the stem. The higher reflectance of the bark of B. platyphylla decreased the influence of solar radiation on T s . The stepwise regression showed that the diurnal courses of T s could be well predicted by the environmental factors (R 2 > 0.85) with an order of influence ranking as air temperature > water vapor pressure > net radiation > wind speed. It is necessary to take the radial, vertical and inter specific varia-tions in T s into account when estimating biomass heat storage and stem CO2 efflux.

  14. Seasonal and diurnal variation of outdoor radon (222Rn) concentrations in urban and rural area with reference to meteorological conditions

    International Nuclear Information System (INIS)

    Podstawczynska, A.; Pawlak, W.; Kozak, K.; Mazur, J.

    2010-01-01

    The objective of the study was to investigate temporal variability of outdoor radon ( 222 Rn) concentration registered in the center of Lodz (urban station), at Ciosny (rural station) and Krakow (suburban station) in relation to meteorological parameters (i.e. air temperature, temperature vertical gradient, wind speed, soil heat flux, volumetric water content in soil) with special consideration of urban-rural differences. Continuous measurements of 222 Rn concentration (at 60 min intervals) were performed at a height of 2 m above the ground using AlphaGUARD PQ2000PRO (ionization chamber) from January 2008 to May 2009. 222 Rn levels were characterized by a diurnal cycle with an early morning maximum and a minimum in the afternoon. The well-marked 24 h pattern of radon concentration occurred in summer at anticyclonic weather with cloudless sky, light wind and large diurnal temperature ranges. The urban measurement site was characterized by the lowest atmospheric 222 Rn concentration and an urban-rural differences of radon levels increased from winter to summer and during the nighttime periods. The maximum contrasts of 222 Rn levels between Lodz and Ciosny, reaching - 30 Bq m -3 , were registered in June and July during the urban heat island (UHI) phenomenon (a positive thermal anomaly of a city if compared to rural area) and strong thermal inversion near the ground in the rural area. (authors)

  15. Diurnal tides in the Arctic Ocean

    Science.gov (United States)

    Kowalik, Z.; Proshutinsky, A. Y.

    1993-01-01

    A 2D numerical model with a space grid of about 14 km is applied to calculate diurnal tidal constituents K(1) and O(1) in the Arctic Ocean. Calculated corange and cotidal charts show that along the continental slope, local regions of increased sea level amplitude, highly variable phase and enhanced currents occur. It is shown that in these local regions, shelf waves (topographic waves) of tidal origin are generated. In the Arctic Ocean and Northern Atlantic Ocean more than 30 regions of enhanced currents are identified. To prove the near-resonant interaction of the diurnal tides with the local bottom topography, the natural periods of oscillations for all regions have been calculated. The flux of energy averaged over the tidal period depicts the gyres of semitrapped energy, suggesting that the shelf waves are partially trapped over the irregularities of the bottom topography. It is shown that the occurrence of near-resonance phenomenon changes the energy flow in the tidal waves. First, the flux of energy from the astronomical sources is amplified in the shelf wave regions, and afterwards the tidal energy is strongly dissipated in the same regions.

  16. Light exposure influences the diurnal oscillation of gut microbiota in mice.

    Science.gov (United States)

    Wu, Guangyan; Tang, Wenli; He, Yan; Hu, Jingjuan; Gong, Shenhai; He, Zhanke; Wei, Guoquan; Lv, Liyi; Jiang, Yong; Zhou, Hongwei; Chen, Peng

    2018-05-03

    The gut microbiota exhibit diurnal compositional and functional oscillations that influence the host homeostasis. However, the upstream factors that affect the microbial oscillations remain elusive. Here, we focused on the potential impact of light exposure, the main factor that affects the host circadian oscillation, on the diurnal oscillations of intestinal microflora to explore the upstream factor that governs the fluctuations of the gut microbes. The gut microbiota of the mice that were underwent regular light/dark (LD) cycles exhibited a robust rhythm at both compositional and functional level, in all parts of the intestine. Comparably, constant darkness (DD) led to the loss of the rhythmic oscillations in almost all parts of the intestine. Additionally, the abundance of Clostridia in DD conditions was dramatically enhanced in the small intestine. Our data indicated light exposure is the upstream factor that governs the regular diurnal fluctuations of gut microbiota in vivo. Copyright © 2018. Published by Elsevier Inc.

  17. Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in Arabidopsis.

    Science.gov (United States)

    Nakamura, Yuki; Andrés, Fernando; Kanehara, Kazue; Liu, Yu-chi; Coupland, George; Dörmann, Peter

    2014-01-01

    Glycerolipid composition in plant membranes oscillates in response to diurnal change. However, its functional significance remained unclear. A recent discovery that Arabidopsis florigen FT binds diurnally oscillating phosphatidylcholine molecules to promote flowering suggests that diurnal oscillation of glycerolipid composition is an important input in flowering time control. Taking advantage of public microarray data, we globally analyzed the expression pattern of glycerolipid biosynthetic genes in Arabidopsis under long-day, short-day, and continuous light conditions. The results revealed that 12 genes associated with glycerolipid metabolism showed significant oscillatory profiles. Interestingly, expression of most of these genes followed circadian profiles, suggesting that glycerolipid biosynthesis is partially under clock regulation. The oscillating expression profile of one representative gene, PECT1, was analyzed in detail. Expression of PECT1 showed a circadian pattern highly correlated with that of the clock-regulated gene GIGANTEA. Thus, our study suggests that a considerable number of glycerolipid biosynthetic genes are under circadian control.

  18. Solar-forced diurnal regulation of cave drip rates via phreatophyte evapotranspiration

    Directory of Open Access Journals (Sweden)

    K. Coleborn

    2016-11-01

    Full Text Available We present results of a detailed study of drip rate variations at 12 drip discharge sites in Glory Hole Cave, New South Wales, Australia. Our novel time series analysis, using the wavelet synchrosqueezed transform, reveals pronounced oscillations at daily and sub-daily frequencies occurring in 8 out of the 12 monitored sites. These oscillations were not spatially or temporally homogenous, with different drip sites exhibiting such behaviour at different times of year in different parts of the cave. We test several hypotheses for the cause of the oscillations, including variations in pressure gradients between karst and cave due to cave breathing effects or atmospheric and earth tides, variations in hydraulic conductivity due to changes in viscosity of water with daily temperature oscillations, and solar-driven daily cycles of vegetative (phreatophytic transpiration. We conclude that the only hypothesis consistent with the data and hydrologic theory is that daily oscillations are caused by solar-driven pumping by phreatophytic trees which are abundant at the site. The daily oscillations are not continuous and occur sporadically in short bursts (2–14 days throughout the year due to non-linear modification of the solar signal via complex karst architecture. This is the first indirect observation leading to the hypothesis of tree water use in cave drip water. It has important implications for karst hydrology in regards to developing a new protocol to determine the relative importance of trends in drip rate, such as diurnal oscillations, and how these trends change over timescales of weeks to years. This information can also be used to infer karst architecture. This study demonstrates the importance of vegetation on recharge dynamics, information that will inform both process-based karst models and empirical estimation approaches. Our findings support a growing body of research exploring the impact of trees on speleothem paleoclimate proxies.

  19. Poor sleep as a pathophysiological pathway underlying the association between stressful experiences and the diurnal cortisol profile among children and adolescents

    Science.gov (United States)

    Ly, Jinshia; McGrath, Jennifer J.; Gouin, Jean-Philippe

    2017-01-01

    Summary Recent evidence suggests that poor sleep is a potential pathway underlying the association between stressful experiences and the diurnal cortisol profile. However, existing findings are largely limited to adults. The present study examines whether poor sleep (duration, quality) mediates the relation between stressful experiences and the diurnal cortisol profile in children and adolescents. Children and adolescents (N = 220, Mage = 12.62) provided six saliva samples over two days to derive cortisol indices (bedtime, AUCAG, AUCTG, slopeMAX). Perceived stress, stressful life events, self-reported sleep duration, and sleep quality were measured. Using bootstrapping analyses, sleep quality mediated the relation between perceived stress and AUCTG (R2 = 0.10, F(7, 212) = 3.55, p = .001; 95% BCI[0.09, 1.15]), as well as the relation between stressful life events and AUCTG (R2 = 0.11, F(7, 212) = 3.69, p = .001; 95% BCI[0.40, 3.82]). These mediation models remained significant after adjusting for sleep duration, suggesting that poor sleep quality underlies the association between stressful experiences and the diurnal cortisol profile in children and adolescents. Longitudinal data combined with objectively-measured sleep is essential to further disentangle the complex association between sleep and stress. PMID:25889840

  20. Seasonal and Diurnal Variations of Atmospheric Non-Methane Hydrocarbons in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Longfeng Li

    2012-05-01

    Full Text Available In recent decades, high ambient ozone concentrations have become one of the major regional air quality issues in the Pearl River Delta (PRD region. Non-methane hydrocarbons (NMHCs, as key precursors of ozone, were found to be the limiting factor in photochemical ozone formation for large areas in the PRD. For source apportioning of NMHCs as well as ozone pollution control strategies, it is necessary to obtain typical seasonal and diurnal patterns of NMHCs with a large pool of field data. To date, few studies have focused on seasonal and diurnal variations of NMHCs in urban areas of Guangzhou. This study explored the seasonal variations of most hydrocarbons concentrations with autumn maximum and spring minimum in Guangzhou. The diurnal variations of most anthropogenic NMHCs typically showed two-peak pattern with one at 8:00 in the morning and another at 20:00 in the evening, both corresponding to traffic rush hours in Guangzhou, whereas isoprene displayed a different bimodal diurnal curve. Propene, ethene, m, p-xylene and toluene were the four largest contributors to ozone formation in Guangzhou, based on the evaluation of individual NMHCs’ photochemical reactivity. Therefore, an effective strategy for controlling ozone pollution may be achieved by the reduction of vehicle emissions in Guangzhou.

  1. Seasonal and diurnal variations of atmospheric mercury across the US determined from AMNet monitoring data

    Directory of Open Access Journals (Sweden)

    X. Lan

    2012-11-01

    Full Text Available Speciated atmospheric mercury observations collected over the period from 2008 to 2010 at the Environmental Protection Agency and National Atmospheric Deposition Program Atmospheric Mercury Network sites (AMNet were analyzed for its spatial, seasonal, and diurnal characteristics across the US. Median values of gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM at 11 different AMNet sites ranged from 148–226 ppqv (1.32–2.02 ng m−3, 0.05–1.4 ppqv (0.47–12.4 pg m−3 and 0.18–1.5 ppqv (1.61–13.7 pg m−3, respectively. Common characteristics of these sites were the similar median levels of GEM as well as its seasonality, with the highest mixing ratios occurring in winter and spring and the lowest in fall. However, discernible differences in monthly average GEM were as large as 30 ppqv, which may be caused by sporadic influence from local emission sources. The largest diurnal variation amplitude of GEM occurred in the summer. Seven rural sites displayed similar GEM summer diurnal patterns, in that the lowest levels appeared in the early morning, and then the GEM mixing ratio increased after sunrise and reached its maxima at noon or in the early afternoon. Unlike GEM, GOM exhibited higher mixing ratios in spring and summer. The largest diurnal variation amplitude of GOM occurred in spring for most AMNet sites. The GOM diurnal minima appeared before sunrise and maxima appeared in the afternoon. The increased GOM mixing ratio in the afternoon indicated a photochemically driven oxidation of GEM resulting in GOM formation. PBM exhibited diurnal fluctuations in summertime. The summertime PBM diurnal pattern displayed daily maxima in the early afternoon and lower mixing ratios at night, implying photochemical production of PBM in summer.

  2. Analysis of the Diurnal Variation of the Global Electric Circuit Obtained From Different Numerical Models

    Science.gov (United States)

    Jánský, Jaroslav; Lucas, Greg M.; Kalb, Christina; Bayona, Victor; Peterson, Michael J.; Deierling, Wiebke; Flyer, Natasha; Pasko, Victor P.

    2017-12-01

    This work analyzes different current source and conductivity parameterizations and their influence on the diurnal variation of the global electric circuit (GEC). The diurnal variations of the current source parameterizations obtained using electric field and conductivity measurements from plane overflights combined with global Tropical Rainfall Measuring Mission satellite data give generally good agreement with measured diurnal variation of the electric field at Vostok, Antarctica, where reference experimental measurements are performed. An approach employing 85 GHz passive microwave observations to infer currents within the GEC is compared and shows the best agreement in amplitude and phase with experimental measurements. To study the conductivity influence, GEC models solving the continuity equation in 3-D are used to calculate atmospheric resistance using yearly averaged conductivity obtained from the global circulation model Community Earth System Model (CESM). Then, using current source parameterization combining mean currents and global counts of electrified clouds, if the exponential conductivity is substituted by the conductivity from CESM, the peak to peak diurnal variation of the ionospheric potential of the GEC decreases from 24% to 20%. The main reason for the change is the presence of clouds while effects of 222Rn ionization, aerosols, and topography are less pronounced. The simulated peak to peak diurnal variation of the electric field at Vostok is increased from 15% to 18% from the diurnal variation of the global current in the GEC if conductivity from CESM is used.

  3. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    Science.gov (United States)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  4. Monthly and diurnal variations of limnological conditions of two ponds

    Directory of Open Access Journals (Sweden)

    AKM Fazlur Rahaman

    2017-06-01

    Full Text Available A study on monthly and diurnal changes of limnological conditions of two ponds was conducted in the Bangladesh Agricultural University campus, Mymensingh. The research work was performed by studying the limnological parameters such as transparency, temperature, dissolved oxygen, free carbon dioxide, pH, total alkalinity, nitrate-nitrogen, phosphate-phosphorus and plankton. Diurnal variations of physico-chemical factors were studied fortnightly at 6 hrs intervals at 6 a.m., 12 noon, 6 p.m. and 12 midnight. The amounts of transparency, dissolved oxygen and pH were higher during winter months than in summer months in both the ponds. Transparency, water temperature, total alkalinity, NO3-N and PO4-P were higher during summer months than in winter months in both the ponds. But the amount of free carbon dioxide was higher during winter months than in summer months in pond 1 while in pond 2 the amount of free carbon dioxide was higher during summer months than in winter months. Qualitative and quantitative monthly variations of phytoplankton and zooplankton were observed in both the ponds during the study period. The highest amount of dissolved oxygen, pH and total alkalinity were recorded at 6 p.m. and the lowest amounts of those at 6 a.m. in both the ponds. The highest temperature was recorded at 12 noon and the lowest at 12 midnight. But the highest amount of free carbon dioxide was recorded at 6 a.m. and the lowest at 6 p.m. in both the ponds. All the factors showed appreciable diel variations throughout the study period, which indicate that the ponds are productive.

  5. The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2017-11-01

    Full Text Available This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60 % of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1 h peak delay. The diurnal cycle of the rainfall and the related land–sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1 h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a

  6. Segmental Quantitative MR Imaging analysis of diurnal variation of water content in the lumbar intervertebral discs

    International Nuclear Information System (INIS)

    Zhu, Ting Ting; Ai, Tao; Zhang, Wei; Li, Tao; Li, Xiao Ming

    2015-01-01

    To investigate the changes in water content in the lumbar intervertebral discs by quantitative T2 MR imaging in the morning after bed rest and evening after a diurnal load. Twenty healthy volunteers were separately examined in the morning after bed rest and in the evening after finishing daily work. T2-mapping images were obtained and analyzed. An equally-sized rectangular region of interest (ROI) was manually placed in both, the anterior and the posterior annulus fibrosus (AF), in the outermost 20% of the disc. Three ROIs were placed in the space defined as the nucleus pulposus (NP). Repeated-measures analysis of variance and paired 2-tailed t tests were used for statistical analysis, with p < 0.05 as significantly different. T2 values significantly decreased from morning to evening, in the NP (anterior NP = -13.9 ms; central NP = -17.0 ms; posterior NP = -13.3 ms; all p < 0.001). Meanwhile T2 values significantly increased in the anterior AF (+2.9 ms; p = 0.025) and the posterior AF (+5.9 ms; p < 0.001). T2 values in the posterior AF showed the largest degree of variation among the 5 ROIs, but there was no statistical significance (p = 0.414). Discs with initially low T2 values in the center NP showed a smaller degree of variation in the anterior NP and in the central NP, than in discs with initially high T2 values in the center NP (10.0% vs. 16.1%, p = 0.037; 6.4% vs. 16.1%, p = 0.006, respectively). Segmental quantitative T2 MRI provides valuable insights into physiological aspects of normal discs.

  7. Pathophysiology of diurnal drooling in Parkinson’s disease

    NARCIS (Netherlands)

    Lenie van den Engel-Hoek; Johanna Kalf; Bastiaan Bloem; George Borm; Machiel Zwarts; Bert de Swart; Marten Munneke

    2011-01-01

    Drooling is an incapacitating feature of Parkinson's disease. Better pathophysiological insights are needed to improve treatment. In this study, we tested the hypothesis that the cause of drooling is multifactorial. We examined 15 patients with Parkinson's disease with distinct diurnal saliva loss

  8. Diurnality as an energy-saving strategy: energetic consequences of temporal niche switching in small mammals

    NARCIS (Netherlands)

    van der Vinne, V.; Gorter, J.A.; Riede, S.J.; Hut, R.A.

    2015-01-01

    Endogenous daily (circadian) rhythms allow organisms to anticipate daily changes in the environment. Most mammals are specialized to be active during the night (nocturnal) or day (diurnal). However, typically nocturnal mammals become diurnal when energetically challenged by cold or hunger. The

  9. Diurnality as an energy-saving strategy : energetic consequences of temporal niche switching in small mammals

    NARCIS (Netherlands)

    van der Vinne, Vincent; Gorter, Jenke A; Riede, Sjaak J; Hut, Roelof A

    Endogenous daily (circadian) rhythms allow organisms to anticipate daily changes in the environment. Most mammals are specialized to be active during the night (nocturnal) or day (diurnal). However, typically nocturnal mammals become diurnal when energetically challenged by cold or hunger. The

  10. Assessing the sources and magnitude of diurnal nitrate variability in the San Joaquin River (California) with an in situ optical nitrate sensor and dual nitrate isotopes

    Science.gov (United States)

    Pellerin, Brian A.; Downing, Bryan D.; Kendall, Carol; Dahlgren, Randy A.; Kraus, Tamara E.C.; Saraceno, John Franco; Spencer, Robert G. M.; Bergamaschi, Brian A.

    2009-01-01

    1. We investigated diurnal nitrate (NO3−) concentration variability in the San Joaquin River using an in situ optical NO3− sensor and discrete sampling during a 5‐day summer period characterized by high algal productivity. Dual NO3− isotopes (δ15NNO3 and δ18ONO3) and dissolved oxygen isotopes (δ18ODO) were measured over 2 days to assess NO3− sources and biogeochemical controls over diurnal time‐scales.2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and δ18ODOwere consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge.3. Surface water NO3− concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5‐day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of δ15NNO3 and δ18ONO3isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3− variability in the San Joaquin River during the study. The lack of a clear explanation for NO3− variability likely reflects a combination of riverine biological processes and time‐varying physical transport of NO3− from upstream agricultural drains to the mainstem San Joaquin River.4. The application of an in situ optical NO3− sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.

  11. Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.

    Science.gov (United States)

    Shi, Haitao; Wei, Yunxie; He, Chaozu

    2016-03-01

    Melatonin (N-acetyl-5-methoxytryptamine) is an important regulator of circadian rhythms and immunity in animals. However, the diurnal changes of endogenous melatonin and melatonin-mediated diurnal change of downstream responses remain unclear in Arabidopsis. Using the publicly available microarray data, we found that the transcript levels of two melatonin synthesis genes (serotonin N-acetyltransferase (SNAT) and caffeate O-methyltransferase (COMT)) and endogenous melatonin level were regulated by diurnal cycles, with different magnitudes of change. Moreover, the transcripts of C-repeat-binding factors (CBFs)/Drought response element Binding 1 factors (DREB1s) were co-regulated by exogenous melatonin and diurnal changes, indicating the possible correlation among clock, endogenous melatonin level and AtCBFs expressions. Interestingly, diurnal change of plant immunity against Pst DC3000 and CIRCADIANCLOCK ASSOCIATED 1 (CCA1) expression were largely lost in AtCBFs knockdown line-amiR-1. Taken together, this study identifies the molecular pathway underlying the diurnal changes of immunity in Arabidopsis. Notably, the diurnal changes of endogenous melatonin may regulate corresponding changes of AtCBF/DREB1s expression and their underlying diurnal cycle of plant immunity and AtCCA1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Concurrent and longitudinal associations between diurnal cortisol and body mass index across adolescence.

    Science.gov (United States)

    Ruttle, Paula L; Javaras, Kristin N; Klein, Marjorie H; Armstrong, Jeffrey M; Burk, Linnea R; Essex, Marilyn J

    2013-06-01

    Childhood and adolescent obesity have reached epidemic levels; however, little is known about the psychobiological underpinnings of obesity in youth and whether these differ from the mechanisms identified in adults. The current study examines concurrent (i.e., measured at the same point in time) and longitudinal (i.e., using earlier cortisol measures to predict later body mass index [BMI]) associations between diurnal cortisol and BMI across adolescence. Adolescent diurnal cortisol was measured over 3 days at each 11, 13, and 15 years. Hierarchical linear modeling was used to extract average measures of predicted morning, afternoon, evening levels of cortisol and the diurnal slope at each assessment. Adolescent BMI (kg/m(2)) was measured at 11, 13, 15, and 18 years. Sex, family socioeconomic status, mother's BMI, pubertal status, and adolescent mental health were examined as possible confounding variables. Linear regressions revealed that blunted patterns of adolescent cortisol were associated with increased measures of BMI across adolescence both concurrently and longitudinally, particularly when examining measures of cortisol in early adolescence. Multinomial logistic regressions extended the linear regression findings beyond BMI scores to encompass categories of obesity. The current study builds on previous research documenting diurnal cortisol-obesity findings in adults by demonstrating similar findings exist both concurrently and longitudinally in adolescents. Findings suggest the association between cortisol and BMI is developmentally influenced and that blunted diurnal cortisol patterns can be identified in overweight individuals at a younger age than previously thought. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  13. Habitat selection and diurnal refugia of gray foxes in southwestern Georgia, USA.

    Directory of Open Access Journals (Sweden)

    Nicholas R Deuel

    Full Text Available Understanding habitat selection of gray foxes (Urocyon cinereoargenteus is essential to evaluate their potential response to changes in land use and predator communities. Few studies have evaluated temporal habitat selection or explicitly identified habitats used by gray foxes for diurnal refugia. We used GPS collars to obtain location data for 34 gray foxes (20 males and 14 females from February 2014 to December 2015 to evaluate temporal (seasonal and diel habitat selection and selection of diurnal refugia in southwestern Georgia, USA. We analyzed habitat selection at 2 levels, selection of a core area within the home range and selection of locations within the home range. Habitat selection was non-random (P 0.05. Hardwoods, human use (i.e., areas associated with regular human activity such as buildings, lawns, parking areas, etc., and roads were selected (P 0.05. Selection of habitats for diurnal refugia did not vary seasonally or by sex (P > 0.05, with foxes selecting (P < 0.05 areas near hardwood forests, roads, agriculture, human use, pastures/food plots, and shrub scrub habitats. Gray foxes were observed on the ground while resting, and we found no evidence of gray foxes diurnally resting in trees. Our results suggest that on our study area, gray foxes are an edge species that prefer forests with a hardwood component in areas near human use and roads.

  14. Diurnal variation in the performance of rapid response systems: the role of critical care services-a review article.

    Science.gov (United States)

    Sundararajan, Krishnaswamy; Flabouris, Arthas; Thompson, Campbell

    2016-01-01

    , or related to the circadian variation inherent in human physiology. Importantly, diurnal variations in the implementation and performance of the RRS, as gauged by ALF, the RRT response to clinical deterioration and any variations in quality and quantity of patient monitoring have not been fully explored across a diverse group of hospitals.

  15. Modelling the diurnal variability of SST and its vertical extent

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob L.; Donlon, Craig J.

    2014-01-01

    of the water column where most of the heat is absorbed and where the exchange of heat and momentum with the atmosphere occurs. During day-time and under favourable conditions of low winds and high insolation, diurnal warming of the upper layer poses challenges for validating and calibrating satellite sensors......Sea Surface Temperature (SST) is a key variable in air-sea interactions, partly controlling the oceanic uptake of CO2 and the heat exchange between the ocean and the atmosphere, amongst others. Satellite SSTs are representative of skin and sub-skin temperature, i.e. in the upper millimetres...... and merging SST time series. When radiometer signals, typically from satellites, are validated with in situ measurements from drifting and moored buoys a general mismatch is found, associated with the different reference depth of each type of measurement. A generally preferred approach to bridge the gap...

  16. Bats as prey of diurnal birds: a global perspective.

    Czech Academy of Sciences Publication Activity Database

    Mikula, P.; Morelli, Federico; Lučan, R. K.; Jones, D. N.; Tryjanowski, P.

    2016-01-01

    Roč. 46, č. 3 (2016), s. 160-174 ISSN 0305-1838 Institutional support: RVO:60077344 Keywords : avian predation hypothesis * bats * diurnal birds * nocturnality * predation Subject RIV: EG - Zoology Impact factor: 3.286, year: 2016

  17. Sleep duration partially accounts for race differences in diurnal cortisol dynamics.

    Science.gov (United States)

    Peterson, Laurel M; Miller, Karissa G; Wong, Patricia M; Anderson, Barbara P; Kamarck, Thomas W; Matthews, Karen A; Kirschbaum, Clemens; Manuck, Stephen B

    2017-05-01

    Emerging research demonstrates race differences in diurnal cortisol slope, an indicator of hypothalamic-pituitary-adrenocortical (HPA)-axis functioning associated with morbidity and mortality, with African Americans showing flatter diurnal slopes than their White counterparts. Sleep characteristics are associated with both race and with HPA-axis functioning. The present report examines whether sleep duration may account for race differences in cortisol dynamics. Participants were 424 employed African American and White adults (mean age = 42.8 years, 84.2% White, 53.6% female) with no cardiovascular disease (Adult Health and Behavior Project-Phase 2 [AHAB-II] cohort, University of Pittsburgh). Cortisol slope was calculated using 4 salivary cortisol readings, averaged over each of 4 days. Demographic (age, sex), psychosocial (socioeconomic status [SES], affect, discrimination), and health behaviors (smoking, alcohol use, physical activity) variables were used as covariates, and sleep (self-report and accelerometry) was also assessed. African Americans had flatter slopes than Whites (F(1, 411) = 10.45, B = .02, p = .001) in models adjusting for demographic, psychosocial, and health behavior covariates. Shorter actigraphy-assessed total sleep time was a second significant predictor of flatter cortisol slopes (F(1, 411) = 25.27, B = -.0002, p race and diurnal slope [confidence interval = .05 (lower = .014, upper .04)]. African Americans have flatter diurnal cortisol slopes than their White counterparts, an effect that may be partially attributable to race differences in nightly sleep duration. Sleep parameters should be considered in further research on race and cortisol. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Diurnal variability of CO2 flux at coastal zone of Taiwan based on eddy covariance observation

    Science.gov (United States)

    Chien, Hwa; Zhong, Yao-Zhao; Yang, Kang-Hung; Cheng, Hao-Yuan

    2018-06-01

    In this study, we employed shore-based eddy covariance systems for a continuous measurement of the coastal CO2 flux near the northwestern coast of Taiwan from 2011 to 2015. To ensure the validity of the analysis, the data was selected and filtered with a footprint model and an empirical mode decomposition method. The results indicate that the nearshore air-sea and air-land CO2 fluxes exhibited a significant diurnal variability and a substantial day-night difference. The net air-sea CO2 flux was -1.75 ± 0.98 μmol-C m-2 s-1, whereas the net air-land CO2 flux was 0.54 ± 7.35 μmol-C m-2 s-1, which indicated that in northwestern Taiwan, the coastal water acts as a sink of atmospheric CO2 but the coastal land acts as a source. The Random Forest Method was applied to hierarchize the influence of Chl-a, SST, DO, pH and U10 on air-sea CO2 fluxes. The result suggests that the strength of the diurnal air-sea CO2 flux is strongly influenced by the local wind speed.

  19. Diurnal variability and biogeochemical reactivity of mercury species in an extreme high-altitude lake ecosystem of the Bolivian Altiplano.

    Science.gov (United States)

    Alanoca, L; Amouroux, D; Monperrus, M; Tessier, E; Goni, M; Guyoneaud, R; Acha, D; Gassie, C; Audry, S; Garcia, M E; Quintanilla, J; Point, D

    2016-04-01

    Methylation and demethylation represent major transformation pathways regulating the net production of methylmercury (MMHg). Very few studies have documented Hg reactivity and transformation in extreme high-altitude lake ecosystems. Mercury (Hg) species concentrations (IHg, MMHg, Hg°, and DMHg) and in situ Hg methylation (M) and MMHg demethylation (D) potentials were determined in water, sediment, floating organic aggregates, and periphyton compartments of a shallow productive Lake of the Bolivian Altiplano (Uru Uru Lake, 3686 m). Samples were collected during late dry season (October 2010) and late wet season (May 2011) at a north (NS) and a south (SS) site of the lake, respectively. Mercury species concentrations exhibited significant diurnal variability as influenced by the strong diurnal biogeochemical gradients. Particularly high methylated mercury concentrations (0.2 to 4.5 ng L(-1) for MMHgT) were determined in the water column evidencing important Hg methylation in this ecosystem. Methylation and D potentials range were, respectively, production in both water (up to 0.45 ng MMHg L(-1) day(-1)) and sediment compartments (2.0 to 19.7 ng MMHg g(-1) day(-1)). While the sediment compartment appears to represent a major source of MMHg in this shallow ecosystem, floating organic aggregates (dry season, SS) and Totora's periphyton (wet season, NS) were found to act as a significant source (5.8 ng MMHg g(-1) day(-1)) and a sink (-2.1 ng MMHg g(-1) day(-1)) of MMHg, respectively. This work demonstrates that high-altitude productive lake ecosystems can promote MMHg formation in various compartments supporting recent observations of high Hg contents in fish and water birds.

  20. Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator.

    Directory of Open Access Journals (Sweden)

    Kevin R Hayes

    Full Text Available BACKGROUND: Plant diurnal rhythms are vital environmental adaptations to coordinate internal physiological responses to alternating day-night cycles. A comprehensive view of diurnal biology has been lacking for maize (Zea mays, a major world crop. METHODOLOGY: A photosynthetic tissue, the leaf, and a non-photosynthetic tissue, the developing ear, were sampled under natural field conditions. Genome-wide transcript profiling was conducted on a high-density 105 K Agilent microarray to investigate diurnal rhythms. CONCLUSIONS: In both leaves and ears, the core oscillators were intact and diurnally cycling. Maize core oscillator genes are found to be largely conserved with their Arabidopsis counterparts. Diurnal gene regulation occurs in leaves, with some 23% of expressed transcripts exhibiting a diurnal cycling pattern. These transcripts can be assigned to over 1700 gene ontology functional terms, underscoring the pervasive impact of diurnal rhythms on plant biology. Considering the peak expression time for each diurnally regulated gene, and its corresponding functional assignment, most gene functions display temporal enrichment in the day, often with distinct patterns, such as dawn or midday preferred, indicating that there is a staged procession of biological events undulating with the diurnal cycle. Notably, many gene functions display a bimodal enrichment flanking the midday photosynthetic maximum, with an initial peak in mid-morning followed by another peak during the afternoon/evening. In contrast to leaves, in developing ears as few as 47 gene transcripts are diurnally regulated, and this set of transcripts includes primarily the core oscillators. In developing ears, which are largely shielded from light, the core oscillator therefore is intact with little outward effect on transcription.

  1. Generation of diurnal variation for influent data for dynamic simulation.

    Science.gov (United States)

    Langergraber, G; Alex, J; Weissenbacher, N; Woerner, D; Ahnert, M; Frehmann, T; Halft, N; Hobus, I; Plattes, M; Spering, V; Winkler, S

    2008-01-01

    When using dynamic simulation for fine tuning of the design of activated sludge (AS) plants diurnal variations of influent data are required. For this application usually only data from the design process and no measured data are available. In this paper a simple method to generate diurnal variations of wastewater flow and concentrations is described. The aim is to generate realistic influent data in terms of flow, concentrations and TKN/COD ratios and not to predict the influent of the AS plant in detail. The work has been prepared within the framework of HSG-Sim (Hochschulgruppe Simulation, http://www.hsgsim.org), a group of researchers from Germany, Austria, Luxembourg, Poland, the Netherlands and Switzerland. (c) IWA Publishing 2008.

  2. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    Directory of Open Access Journals (Sweden)

    Dario Moreira-Arce

    Full Text Available Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in

  3. Diurnal Human Activity and Introduced Species Affect Occurrence of Carnivores in a Human-Dominated Landscape.

    Science.gov (United States)

    Moreira-Arce, Dario; Vergara, Pablo M; Boutin, Stan

    2015-01-01

    Diurnal human activity and domestic dogs in agro-forestry mosaics should theoretically modify the diurnal habitat use patterns of native carnivores, with these effects being scale-dependent. We combined intensive camera trapping data with Bayesian occurrence probability models to evaluate both diurnal and nocturnal patterns of space use by carnivores in a mosaic of land-use types in southern Chile. A total of eight carnivores species were recorded, including human-introduced dogs. During the day the most frequently detected species were the culpeo fox and the cougar. Conversely, during the night, the kodkod and chilla fox were the most detected species. The best supported models showed that native carnivores responded differently to landscape attributes and dogs depending on both the time of day as well as the spatial scale of landscape attributes. The positive effect of native forest cover at 250 m and 500 m radius buffers was stronger during the night for the Darwin's fox and cougar. Road density at 250 m scale negatively affected the diurnal occurrence of Darwin´s fox, whereas at 500 m scale roads had a stronger negative effect on the diurnal occurrence of Darwin´s foxes and cougars. A positive effect of road density on dog occurrence was evidenced during both night and day. Patch size had a positive effect on cougar occurrence during night whereas it affected negatively the occurrence of culpeo foxes and skunks during day. Dog occurrence had a negative effect on Darwin's fox occurrence during day-time and night-time, whereas its negative effect on the occurrence of cougar was evidenced only during day-time. Carnivore occurrences were not influenced by the proximity to a conservation area. Our results provided support for the hypothesis that diurnal changes to carnivore occurrence were associated with human and dog activity. Landscape planning in our study area should be focused in reducing both the levels of diurnal human activity in native forest remnants

  4. No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest

    International Nuclear Information System (INIS)

    Betson, N.R.; Gottlicher, S.G.; Hogberg, P.; Hall, M.; Wallin, G.; Richter, A.

    2007-01-01

    This study evaluated the diurnal variability in the rate and stable carbon isotope ratio ((delta) 13 C) of soil respiration in a northern boreal forest, measured with opaque chambers after the removal of understory vegetation. The experiment was conducted in June and August 2004 at the Picea abies L. Karst-dominated Flakaliden Research Forest in northern Sweden, using unfertilized girdled-tree plots and unfertilized non-girdled tree plots. Soil respiration and (delta) 13 C of soil-respired carbon dioxide (CO 2 ) were measured every 4 hours on 6 plots, with a total of 11 sampling times over each 48 hour period. The purpose was to clarify an earlier study regarding the origin of diurnal patterns of soil CO 2 flux. This study explored whether the diurnal patterns were the result of photosynthetic CO 2 uptake during the day by the understory or whether there were underlying trends in soil respiration driven by plant root allocation. The sampling campaigns undertaken in this study investigated whether diurnal variations in soil respiration rate and (delta) 13 C exist in this ecosystem when no understory vegetation is present. Shoot photosynthesis and environmental parameters were measured simultaneously. Despite significant variations in climatic conditions and shoot photosynthetic rates in non-girdled trees, no diurnal patterns in soil respiration rates and (delta) 13 C were noted in either treatment. The lack of detectable diurnal changes in both treatments indicates that modeling of daily boreal forest carbon balances based on single instantaneous measurements are unlikely to be misconstrued by substantial diurnal trends. However, it was suggested that spatial variable should be accounted for, given the large standard errors. The impact of tree girdling on soil respiration rates also emphasized the significance of canopy photosynthesis in driving soil processes. 37 refs., 2 figs

  5. Diurnal Variation of Rainfall Associated with Tropical Depression in South China and its Relationship to Land-Sea Contrast and Topography

    Directory of Open Access Journals (Sweden)

    Yuchun Zhao

    2013-12-01

    Full Text Available Convective precipitation associated with tropical depression (TD is one primary type of post-flooding season rainfall in South China (SC. Observations of the Tropical Rainfall Measuring Mission (TRMM satellite have shown specific diurnal features of convective rainfall in South China, which is somewhat different from that in other seasons or regions of China. Convective precipitation is usually organized into a rainfall band along the southeastern coast of South China in the early morning hours. The rainfall band develops and intensifies quickly in the morning, then moves inland in the afternoon and, finally, diminishes at night. The daily convective rainfall along the coast is much more than that in the inland region, and heavy rainfall is often found along the coast. A long-duration heavy rainfall event associated with tropical depression “Fitow” during the period from 28 August to 6 September 2001, is selected in this study to explore the diurnal feature of convective rainfall and its formation mechanism. Modeling results of the 10-day heavy rainfall event are compared with both rain-gauge observation and satellite-retrieved rainfall. Total precipitation and its spatial distribution, as well as diurnal variations are reasonably simulated and agree well with observations. Further analysis reveals that the development and movement of convective precipitation is mainly related to the land and sea breezes. The anomalous height-latitudinal circulation in the morning-to-noon hours is completely reversed in the afternoon-to-late-evening hours, with the convective rainfall swinging back and forth, following its updraft branch. Sensitivity experiments show that the afternoon convective rainfall in the inland region of SC is caused by the diurnal variation of solar radiation forcing. The mountain range along the coast and the complex topography in the inland region of SC plays a critical role in the enhancement of diurnal convective rainfall

  6. Monitoring stress-related mass variations in Amazon trees using accelerometers

    Science.gov (United States)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Hut, R.; Guerin, M. F.; Leus, G.; Oliveira, R. S.; Van De Giesen, N.

    2016-12-01

    Containing half of the world's rainforests, the Amazon plays a key role in the global water and carbon budget. However, the Amazon remains poorly understood, but appears to be vulnerable to increasing moisture stress, and future droughts have the potential to considerably change the global water and carbon budget. Field measurements will allow further investigations of the effects of moisture stress and droughts on tree dynamics, and its impact on the water and carbon budget. This study focuses on studying the diurnal mass variations of seven Amazonian tree species. The mass of trees is influenced by physiological processes within the tree (e.g. transpiration and root water uptake), as well as external loads (e.g. intercepted precipitation). Depending on the physiological traits of an individual tree, moisture stress and drought affect processes such as photosynthesis, assimilation, transpiration, and root water uptake. In turn, these have their influence on diurnal mass variations of a tree. Our study uses measured three-dimensional displacement and acceleration of trees, to detect and quantify their diurnal (bio)mass variations. Nineteen accelerometers and dendrometers were installed on seven different tree species in the Amazon rainforest, covering an area of 250 x 250 m. The selected species span a wide range in wood density (0.5 - 1.1), diameter (15 - 40 cm) and height (25 - 60 m). Acceleration was measured with a frequency of 10 Hz, from August 2015 to June 2016, covering both the wet and dry season. On-site additional measurements of net radiation, wind speed at three heights, temperature, and precipitation as available every 15 minutes. Dendrometers measured variation in xylem and bark thickness every 5 minutes. The MUltiple SIgnal Classification (MUSIC) algorithm was applied to the acceleration time series to estimate the frequency spectrum of each tree. A correction was necessary to account for the dominant effect of wind. The resulting spectra reveal

  7. Standardised Resting Time Prior to Blood Sampling and Diurnal Variation Associated with Risk of Patient Misclassification

    DEFF Research Database (Denmark)

    Bøgh Andersen, Ida; Brasen, Claus L.; Christensen, Henry

    2015-01-01

    .9×10-7) and sodium (p = 8.7×10-16). Only TSH and albumin were clinically significantly influenced by diurnal variation. Resting time had no clinically significant effect. CONCLUSIONS: We found no need for resting 15 minutes prior to blood sampling. However, diurnal variation was found to have a significant......BACKGROUND: According to current recommendations, blood samples should be taken in the morning after 15 minutes' resting time. Some components exhibit diurnal variation and in response to pressures to expand opening hours and reduce waiting time, the aims of this study were to investigate...... the impact of resting time prior to blood sampling and diurnal variation on biochemical components, including albumin, thyrotropin (TSH), total calcium and sodium in plasma. METHODS: All patients referred to an outpatient clinic for blood sampling were included in the period Nov 2011 until June 2014 (opening...

  8. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.

    2013-09-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  9. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.; Farrar, J. T.; Weller, R. A.

    2013-01-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  10. Diurnal variability of Synechococcus abundance in Sagami Bay, Japan

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Saino, T.

    Synechococcus, the most dominant picophytoplankton in coastal regions, exhibits diurnal variations in the open ocean. The aim of this study was to assess its short-term population dynamics and cell cycle phases through DNA analysis in a coastal...

  11. Sewer infiltration/inflow: long-term monitoring based on diurnal variation of pollutant mass flux.

    Science.gov (United States)

    Bares, V; Stránský, D; Sýkora, P

    2009-01-01

    The paper deals with a method for quantification of infiltrating groundwater based on the variation of diurnal pollutant load and continuous water quality and quantity monitoring. Although the method gives us the potential to separate particular components of wastewater hygrograph, several aspects of the method should be discussed. Therefore, the paper investigates the cost-effectiveness, the relevance of pollutant load from surface waters (groundwater) and the influence of measurement time step. These aspects were studied in an experimental catchment of Prague sewer system, Czech Republic, within a three-month period. The results indicate high contribution of parasitic waters on night minimal discharge. Taking into account the uncertainty of the results and time-consuming maintenance of the sensor, the principal advantages of the method are evaluated. The study introduces a promising potential of the discussed measuring concept for quantification of groundwater infiltrating into the sewer system. It is shown that the conventional approach is sufficient and cost-effective even in those catchments, where significant contribution of foul sewage in night minima would have been assumed.

  12. Diurnal levels of immunoreactive erythropoietin in normal subjects and subjects with chronic lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.E.; Garcia, J.F.; Cohen, R.A.; Cronkite, E.P.; Moccia, G.; Acevedo, J.

    1981-10-01

    Serum levels of immunoreactive erythropoietin (Ep) were measured in 48 normal male and female volunteers, ages 20-60 years, to establish a control value for Ep of 18.5 +/- 5.0 (mean +/- SD) mU/ml. Levels of the hormone were also measured sequentially over a 24 h period of time in an additional 17 normal volunteers with no diurnal variation. Diurnal levels of immunoreactive Ep were also measured in 30 subjects, with chronic lung disease. These patients, in contrast to normal subjects exhibited a diurnal variation in the level of immunoreactive Ep with peak levels occurring at midnight. The only variable measured which correlated with the serum immunoreactive Ep level in subjects with chronic lung disease was the level of carboxyhaemoglobin (P less than 0.02).

  13. Midday Depression vs. Midday Peak in Diurnal Light Interception: Contrasting Patterns at Crown and Leaf Scales in a Tropical Evergreen Tree

    Directory of Open Access Journals (Sweden)

    Agustina Ventre-Lespiaucq

    2018-05-01

    Full Text Available Crown architecture usually is heterogeneous as a result of foraging in spatially and temporally heterogeneous light environments. Ecologists are only beginning to identify the importance of temporal heterogeneity for light acquisition in plants, especially at the diurnal scale. Crown architectural heterogeneity often leads to a diurnal variation in light interception. However, maximizing light interception during midday may not be an optimal strategy in environments with excess light. Instead, long-lived plants are expected to show crown architectures and leaf positions that meet the contrasting needs of light interception and avoidance of excess light on a diurnal basis. We expected a midday depression in the diurnal course of light interception both at the whole-crown and leaf scales, as a strategy to avoid the interception of excessive irradiance. We tested this hypothesis in a population of guava trees (Psidium guajava L. growing in an open tropical grassland. We quantified three crown architectural traits: intra-individual heterogeneity in foliage clumping, crown openness, and leaf position angles. We estimated the diurnal course of light interception at the crown scale using hemispheric photographs, and at the leaf scale using the cosine of solar incidence. Crowns showed a midday depression in light interception, while leaves showed a midday peak. These contrasting patterns were related to architectural traits. At the crown scale, the midday depression of light interception was linked to a greater crown openness and foliage clumping in crown tops than in the lateral parts of the crown. At the leaf scale, an average inclination angle of 45° led to the midday peak in light interception, but with a huge among-leaf variation in position angles. The mismatch in diurnal course of light interception at crown and leaf scales can indicate that different processes are being optimized at each scale. These findings suggest that the diurnal course of

  14. Deregulated power prices: comparison of diurnal patterns

    International Nuclear Information System (INIS)

    Ying Li; Flynn, P.C.

    2004-01-01

    We examine electrical power price, and in particular its daily and average weekday vs. weekend pattern of change, for 14 deregulated markets. Power price in deregulated markets shows fundamentally different patterns. North American markets show a monotonic diurnal weekday price pattern, while all other markets studied show more than one price peak. Deregulated power markets differ in maximum vs. minimum daily average price and in average weekday to weekend price, in turn creating a different incentive for a consumer to time shift power consuming activities. Markets differ in the extent to which a small fraction of the days shapes the average diurnal pattern and value of price. Deregulated markets show a wide variation in the correlation between load and price. Some deregulated markets, most notably Britain and Spain, show patterns that are predictable and consistent, and hence that can encourage a customer to shape consumption behaviors. Other markets, for example South Australia, have patterns that are inconsistent and irregular, and hence are hard for a customer to interpret; a customer in such a market will have a higher incentive to escape risk through hedging mechanisms. (Author)

  15. Deregulated power prices: comparison of diurnal patterns

    International Nuclear Information System (INIS)

    Li Ying; Flynn, Peter C.

    2004-01-01

    We examine electrical power price, and in particular its daily and average weekday vs. weekend pattern of change, for 14 deregulated markets. Power price in deregulated markets shows fundamentally different patterns. North American markets show a monotonic diurnal weekday price pattern, while all other markets studied show more than one price peak. Deregulated power markets differ in maximum vs. minimum daily average price and in average weekday to weekend price, in turn creating a different incentive for a consumer to time shift power consuming activities. Markets differ in the extent to which a small fraction of the days shapes the average diurnal pattern and value of price. Deregulated markets show a wide variation in the correlation between load and price. Some deregulated markets, most notably Britain and Spain, show patterns that are predictable and consistent, and hence that can encourage a customer to shape consumption behaviors. Other markets, for example South Australia, have patterns that are inconsistent and irregular, and hence are hard for a customer to interpret; a customer in such a market will have a higher incentive to escape risk through hedging mechanisms

  16. Developing a Data Record of Lower Troposphere Temperature Profiles for Diurnal Land-Atmosphere Coupling Investigations

    Science.gov (United States)

    Lin, Z.; Li, D.

    2017-12-01

    The lower troposphere, including the planetary boundary layer, is strongly influenced by the land surface at diurnal scales. However, investigations of diurnal land-atmosphere coupling are significantly hindered by the lack of profile measurements that resolve the diurnal cycle. This study aims to bridge this gap by developing a decade-long (from 2007 to 2016) data record of diurnal temperature profiles in the lower troposphere (from the surface to about 4 km above the surface), which is based on the Aircrafts Communications Addressing and Reporting System (ACARS) meteorological observations. We first identify the number of profiles within an hour for each airport over the CONUS. At each airport, only data that passed at least level-1 quality check are retained. 40 airports out of 275 are then selected, which have data for more than 12 hours per day. These selected airports are mainly located along the east and west coasts, as expected. Because the data are recorded at irregular heights, we resample each profile in the lowest 4 km or so to pre-defined vertical coordinates. These temperature profiles are further bias-corrected by comparing to collocated radiosonde observations. This consistent data record of diurnal temperature profiles in the lower troposphere can be also used for regional climatology research, short-term weather forecasts, and numerical model evaluation.

  17. Development and evaluation of an empirical diurnal sea surface temperature model

    Science.gov (United States)

    Weihs, R. R.; Bourassa, M. A.

    2013-12-01

    An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with

  18. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    Science.gov (United States)

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  19. Seasonal and diurnal variation in the deposition velocity of ozone over a spruce forest in Denmark

    DEFF Research Database (Denmark)

    Pilegaard, K.; Jensen, N.O.; Hummelshøj, P.

    1995-01-01

    The flux of O-3 was measured by the eddy-correlation method over Norway spruce in periods when the trees had a very low activity, periods with optimum growth, and periods with water stress. The aerodynamic resistance (tau(a)), viscous sub-layer resistance (tau(b)) and surface resistance (tau...... the activity of the trees was low. The surface resistance increased when the trees were subject to water stress. It is concluded that stomatal uptake is an important parameter for the deposition of O-3. However, other processes such as destruction of O-3 at surfaces, reaction with NO emitted from the soil......(c)) to O-3 were calculated from meteorological parameters and the deposition velocity. The canopy stomatal resistance to O-3 was calculated from measurements of the water vapour flux. The deposition velocities showed a diurnal pattern with night-time values of 3.5 mm s(-1) and day-time values of 7 mm s(-1...

  20. ANNUAL AND DIURNAL CYCLES OF THE INVERSE RELATION BETWEEN PLANT TRANSPIRATION AND CARBON SEQUESTRATION

    Directory of Open Access Journals (Sweden)

    Hernán Alonso Moreno

    2008-07-01

    Full Text Available Understanding biogeochemical cycles and especially carbon budgets is clue to validate global change models in the present and near future. As a consequence, sinks and sources of carbon in the world are being studied. One of those sinks is the non-well known behavior of the planet vegetation which involves the processes of photosynthesis and respiration. Carbon sequestration rates are highly related to the transpiration through a molecular diffusion process occurring at the stomatal level which can be recorded by an eddy covariance micrometeorological station. This paper explores annual and diurnal cycles of latent heat (LE and CO2 net (FC fluxes over 6 different ecosystems. Based on the physics of the transpiration process, different time-scale analysis are performed, finding a near-linear relation between LE and CO2 net fluxes, which is stronger at the more vegetated areas. The North American monsoon season increases carbon up taking and LE-CO2 flux relation preserves at different time scales analysis (hours to days to months.El conocimiento de los ciclos biogeoquímicos y, en especial, de los balances de carbono es clave para la validación de los modelos de cambio global para el presente y el futuro cercano. Como consecuencia, en el mundo se estudian las fuentes y los sumideros de carbono. Uno de esos sumideros es la vegetación del planeta, que involucra los procesos de respiración y fotosíntesis y cuyo comportamiento se empieza a estudiar. Las tasas de captura del carbono están muy ligadas a la transpiración mediante un proceso de difusión molecular en los estomas, que puede registrarse por un sistema micrometeorológico de eddy covarianza. Este artículo explora los ciclos anuales y diurnos de los flujos netos de CO2 y calor latente de seis ecosistemas diferentes. Se desarrollan diversos análisis de escala temporal, basados en la física de la transpiración, y se halla una relación cuasilineal entre los flujos netos de calor

  1. Effects of soil water decline on diurnal and seasonal variations in sap flux density for differently aged Japanese cypress (Chamaecyparis obtusa trees

    Directory of Open Access Journals (Sweden)

    Kenji Tsuruta

    2014-01-01

    Full Text Available The effects of soil drought on transpiration are often neglected when predicting transpiration for forests in humid regions under the influence of the Asian monsoon. These effects have indeed been neglected for Japanese cypress, Chamaecyparis obtusa, a major plantation species in Japan and the surrounding area, probably because previous studies have reported no clear effects of soil drought on transpiration for Japanese cypress forests. However, a few studies have reported an apparent reduction in transpiration with soil drought for young Japanese cypress forests. It remains unclear whether such a reduction in transpiration is limited to young Japanese cypress forests or if it is not uncommon for mature Japanese cypress forests, which occupy a large area in Japan. To clarify this point, we conducted sap flux measurements in a year with soil drought on three differently aged Japanese cypress stands including mature (43 years old and relatively young (23 and 26 years old trees. In a diurnal time scale, a cross correlation analysis of sap flux density (Fd and vapor pressure deficit (VPD showed that the time lags between Fd and VPD were 1-3 h in dry soil conditions. These were larger than those of wet soil conditions (<1 h for all sample trees. Fd at a given VPD in dry soil conditions was smaller than that in wet soil conditions for all sample trees; a 28%–63% reduction in the rate of change in Fd was observed under dry soil conditions. Because our results were obtained when the non-exceedance probability of recorded monthly precipitation was 9%–18%, the results suggest the need to consider the effects of soil drought more extensively. Those effects should be considered for not only relatively young but also mature Japanese cypress when predicting diurnal and seasonal patterns of transpiration in years with soil drought, and when predicting inter-annual patterns of transpiration for Japanese cypress despite humid

  2. Optimisation of the Monitoring Strategy of Macroinvertebrate Communities in the River Dender, in Relation to the EU Water Framework Directive

    Directory of Open Access Journals (Sweden)

    Tom P. D’heygere

    2002-01-01

    Full Text Available The Dender basin in Flanders (Belgium was used as a case study to implement the European Union (EU Water Framework Directive. During the last 5 years, ample research on pollution loads and ecological water quality has been done on the Dender River. In addition to biological sampling of macroinvertebrates and fish, automated measurement stations were also used to investigate the spatial-temporal variability of the physical-chemical water quality. This research revealed that the pollution of the Dender River is highly variable. The high nutrient loads result in severe algae blooms during summer, leading to very complex diurnal processes. In this paper, the monitoring strategy for the assessment of the biological water quality in the Dender basin has been reviewed in relation to the EU Water Framework Directive. For this, seasonal macroinvertebrate data were collected and assessed. General trends and hidden structures in these data were analysed by means of classification trees, using different inputs (seasons, river types, and subbasins. Validation of the results was obtained by applying statistical methods. Analysis about the presence and abundance of the macroinvertebrates revealed that there is a distinct difference between the biological water quality in the Dender stem river and its tributaries. There are also seasonal differences between the macroinvertebrate communities when the Dender and its tributaries are examined separately. An optimised monitoring strategy is proposed based on these results and the EU Water Framework Directive. This includes two monitoring campaigns in summer and winter every 3 years. Furthermore, a cyclic monitoring scheme was developed to minimise sampling efforts.

  3. Timing the tides: genetic control of diurnal and lunar emergence times is correlated in the marine midge Clunio marinus.

    Science.gov (United States)

    Kaiser, Tobias S; Neumann, Dietrich; Heckel, David G

    2011-05-20

    The intertidal zone of seacoasts, being affected by the superimposed tidal, diurnal and lunar cycles, is temporally the most complex environment on earth. Many marine organisms exhibit lunar rhythms in reproductive behaviour and some show experimental evidence of endogenous control by a circalunar clock, the molecular and genetic basis of which is unexplored. We examined the genetic control of lunar and diurnal rhythmicity in the marine midge Clunio marinus (Chironomidae, Diptera), a species for which the correct timing of adult emergence is critical in natural populations. We crossed two strains of Clunio marinus that differ in the timing of the diurnal and lunar rhythms of emergence. The phenotype distribution of the segregating backcross progeny indicates polygenic control of the lunar emergence rhythm. Diurnal timing of emergence is also under genetic control, and is influenced by two unlinked genes with major effects. Furthermore, the lunar and diurnal timing of emergence is correlated in the backcross generation. We show that both the lunar emergence time and its correlation to the diurnal emergence time are adaptive for the species in its natural environment. The correlation implies that the unlinked genes affecting lunar timing and the two unlinked genes affecting diurnal timing could be the same, providing an unexpectedly close interaction of the two clocks. Alternatively, the genes could be genetically linked in a two-by-two fashion, suggesting that evolution has shaped the genetic architecture to stabilize adaptive combinations of lunar and diurnal emergence times by tightening linkage. Our results, the first on genetic control of lunar rhythms, offer a new perspective to explore their molecular clockwork.

  4. Diurnal Cycle of ITCZ Convection during the MJO Suppressed Phase in DYNAMO

    Science.gov (United States)

    Ciesielski, P. E.; Johnson, R. H.; Schubert, W. H.

    2017-12-01

    During the special observing period of the Dynamics of the MJO (DYNAMO) experiment, conducted over the Indian Ocean from 1 October to 30 November 2011, two sounding arrays - one north and one south of the equator, referred to here as the NSA and SSA, respectively - took 4-8 soundings/day. We augment this 3-h dataset with observations of radiation and rainfall to investigate the diurnal cycle of convection during the suppressed phase of the October MJO. During this 14-day period when convection was suppressed over the NSA but prominent over the SSA, the circulation over the sounding arrays could be characterized as a local Hadley cell embedded within a monsoonal flow. Strong rising motion was present within the ITCZ and compensating subsidence over the NSA. A prominent diurnal pulsing of this cell was observed, impacting conditions on both sides of the equator, with the cell running strongest in the early morning hours (05-08 LT) and notably weakening later in the day (17-20LT). The reduction in evening subsidence over the NSA may have assisted the moistening of the low to mid-troposphere there during the pre-onset stage of the MJO. Apparent heating Q1 within the ITCZ exhibits a diurnal evolution from early morning bottom-heavy profiles to weaker daytime top-heavy profiles. Making use of the weak temperature gradient approximation, results suggest that direct radiative effects played a dominant role in controlling diurnal variations of vertical motion and convection within the ITCZ while non-radiative processes were more prominent over the NSA.

  5. Diurnal rhythms in psychological reward functioning in healthy young men: 'Wanting', liking, and learning.

    Science.gov (United States)

    Byrne, Jamie E M; Murray, Greg

    2017-01-01

    A range of evidence suggests that human reward functioning is partly driven by the endogenous circadian system, generating 24-hour rhythms in behavioural measures of reward activation. Reward functioning is multifaceted but literature to date is largely limited to measures of self-reported positive mood states. The aim of this study was to advance the field by testing for hypothesised diurnal variation in previously unexplored components of psychological reward: 'wanting', liking, and learning using subjective and behavioural measures. Risky decision making (automatic Balloon Analogue Risk Task), affective responsivity to positive images (International Affective Pictures System), uncued self-reported discrete emotions, and learning-contingent reward (Iowa Gambling Task) were measured at 10.00 hours, 14.00 hours, and 19.00 hours in a counterbalanced repeated measures design with 50 healthy male participants (aged 18-30). As hypothesised, risky decision making (unconscious 'wanting') and ratings of arousal towards positive images (conscious wanting) exhibited a diurnal waveform with indices highest at 14.00 hours. No diurnal rhythm was observed for liking (pleasure ratings to positive images, discrete uncued positive emotions) or in a learning-contingent reward task. Findings reaffirm that diurnal variation in human reward functioning is most pronounced in the motivational 'wanting' components of reward.

  6. Diurnal Periodicity in the Supply of Cell Wall Components during Wood Cell Wall Formation

    OpenAIRE

    細尾, 佳宏

    2012-01-01

    This review summarizes recent studies on the diurnal periodicity in wood cell wall formation, with a major focus on those that we have conducted. Differences in the innermost surface of developing secondary walls of differentiating conifer tracheids can be seen from day to night Cellulose microfibrils are clearly evident during the day, and amorphous material containing abundant hemicelluloses is prevalent at night. These findings suggest a diurnal periodicity in the supply of cell wall compo...

  7. Diurnal and seasonal variations of greenhouse gas emissions from a naturally ventilated dairy barn in a cold region

    Science.gov (United States)

    Huang, Dandan; Guo, Huiqing

    2018-01-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions were quantified for a naturally ventilated free-stall dairy barn in the Canadian Prairies climate through continuous measurements for a year from February 2015 to January 2016, with ventilation rate estimated by a CO2 mass balance method. The results were categorized into seasonal emission profiles with monthly data measured on a typical day, and diurnal profiles in cold (January), warm (July), and mild seasons (October) of all three gases. Seasonal CO2, CH4, and N2O concentrations greatly fluctuated within ranges of 593-2433 ppm, 15-152 ppm, and 0.32-0.40 ppm, respectively, with obviously higher concentrations in the cold season. Emission factors of the three gases were summarized: seasonal N2O emission varied between 0.5 and 10 μg s-1 AU-1 with lower emission in the cold season, while seasonal CO2 and CH4 emissions were within narrow ranges of 112-119 mg s-1 AU-1 and 2.5-3.5 mg s-1 AU-1. The result suggested a lower enteric CH4 emission for dairy cows than that estimated by Environment Canada (2014). Significant diurnal effects (P 0.05), but obvious diurnal variations in all seasons. In comparison with previous studies, it was found that the dairy barn in a cold region climate with smaller vent openings had relatively higher indoor CO2 and CH4 concentrations, but comparable CO2 and CH4 emissions to most previous studies. Besides, ventilation rate, temperature, and relative humidity all significantly affected the three gas concentrations with the outdoor temperature being the most relevant factor (P < 0.01); however, they showed less or no statistical relations to emissions.

  8. Tracking the MJO Convection and its Impact on the Diurnal Cycle over the Maritime Continent Using Satellite Observations

    Science.gov (United States)

    Kerns, B. W.; Chen, S. S.

    2017-12-01

    The Indo-Pacific Maritime Continent (MC) is the most active convection center in the tropics, and the most important modes of variability are the diurnal cycle and the Madden-Julian Oscillation (MJO). Previous studies have shown that the MC has strong diurnal variability compared with the rest of the tropics, and the diurnal cycle of convection over the MC is amplified during the passage of an MJO. One outstanding science question is how the passage of the active MJO affects the diurnal cycle. The atmospheric, upper ocean, and land surface forcing factors contributing to the diurnal cycle need to be clarified. In order to address this, large scale precipitation tracking (LPT) is used to identify MJO active and suppressed periods for 2000-2015. To document the diurnal cycle of convection during the active and suppressed periods, TRMM/GPM and mesoscale cloud cluster tracking are used. Finally, the LPT tracking is used to composite the satellite-estimated surface wind, humidity, temperature, cloud cover, and soil moisture over the islands for active versus suppressed MJO periods. In active MJO periods, the diurnal convection in the surrounding marginal seas is enhanced and the diurnal convection over land is decreased. The islands of the MC have greater soil moisture, more cloud cover, and do not warm up as much during the day, leading to a weaker afternoon maximum over land. But how is nocturnal convection over the sea increased? The largest, most mature convective cloud systems are found over the marginal seas in the early morning. This is hypothesized to mainly be a consequence of the longer life cycle of convective systems in the favorable large-scale active MJO. The propagation of the MJO across the MC is facilitated by the enhanced nocturnal deep convection over the sea. In contrast, In the suppressed period the convection is mostly daytime forced convection over land which is locked to the terrain.

  9. Determination of semi-diurnal ocean tide loading constituents using GPS in Alaska

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Tscherning, C.C.

    2001-01-01

    During the past years, the accuracy of relative positioning using differential GPS (DGPS) has been improved significantly. The present accuracy of DGPS allows us to directly estimate the differential amplitudes and Greenwich phase lags of the main semi-diurnal ocean tide loading constituents (S-2......, K-2, M-2 and N-2). For this purpose a test is carried out using two GPS stations in Alaska. One station, Chi3, is located on an island in the Gulf of Alaska, while the second station, Fair, is located far away from the coastal areas. Processing hourly GPS solutions for the baseline between Fair...

  10. The stably stratified internal boundary layer for steady and diurnally varying offshore flow

    Science.gov (United States)

    Garratt, J. R.

    1987-03-01

    A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients ( K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land. A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and gδθ/θ, Δθ being the temperature difference between continental mixed-layer air and sea surface, θ is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014 x 1/2 U ( gδθ/θ)-1/2. In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale ≈ 500 km. The circulation is related to the advection, and

  11. Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects

    Science.gov (United States)

    Meier-Ewert, H. K.; Ridker, P. M.; Rifai, N.; Price, N.; Dinges, D. F.; Mullington, J. M.

    2001-01-01

    BACKGROUND: The concentration of C-reactive protein (CRP) in otherwise healthy subjects has been shown to predict future risk of myocardial infarction and stroke. CRP is synthesized by the liver in response to interleukin-6, the serum concentration of which is subject to diurnal variation. METHODS: To examine the existence of a time-of-day effect for baseline CRP values, we determined CRP concentrations in hourly blood samples drawn from healthy subjects (10 males, 3 females; age range, 21-35 years) during a baseline day in a controlled environment (8 h of nighttime sleep). RESULTS: Overall CRP concentrations were low, with only three subjects having CRP concentrations >2 mg/L. Comparison of raw data showed stability of CRP concentrations throughout the 24 h studied. When compared with cutoff values of CRP quintile derived from population-based studies, misclassification of greater than one quintile did not occur as a result of diurnal variation in any of the subjects studied. Nonparametric ANOVA comparing different time points showed no significant differences for both raw and z-transformed data. Analysis for rhythmic diurnal variation using a method fitting a cosine curve to the group data was negative. CONCLUSIONS: Our data show that baseline CRP concentrations are not subject to time-of-day variation and thus help to explain why CRP concentrations are a better predictor of vascular risk than interleukin-6. Determination of CRP for cardiovascular risk prediction may be performed without concern for diurnal variation.

  12. Diurnal Patterns of Heterotrophic and Autotrophic Soil Respiration in Maize and Switchgrass Bioenergy Cropping Systems

    Science.gov (United States)

    von Haden, A.; Marin-Spiotta, E.; Jackson, R. D.; Kucharik, C. J.

    2016-12-01

    A high proportion of carbon lost from terrestrial ecosystems occurs via soil CO2 respiration. Soil respiration is comprised of two contrasting sources: heterotrophic respiration (RH) from the decomposition of organic matter and autotrophic respiration (RA) from plant root metabolism. Since the two sources of soil respiration vary widely in their origin, the controls of each source are also likely to differ. However, the challenge of partitioning soil respiration sources in situ has limited our mechanistic understanding of RH and RA. Our objective was to evaluate the in situ diurnal controls of RH and RA in maize (Zea mays L.) and switchgrass (Panicum virgatum L.) bioenergy cropping systems. We hypothesized that both RH and RA would follow diurnal soil temperature trends, but that RA would also respond to diel patterns of photosynthetically active radiation (PAR). We also expected that diurnal soil respiration patterns would vary significantly within the growing season. We evaluated our hypothesis with six diurnal soil respiration campaigns during the 2015 and 2016 growing seasons at Arlington, WI, USA. RH showed clear oscillating diel trends, typically peaking in the mid-afternoon when near-surface soil temperatures were highest. Diurnal RA patterns were more nuanced than RH, but were generally highest in the late afternoon and showed the most pronounced diel trends during peak growing season in July. RA also tended to spike in concert with PAR, but this effect was much more prominent in maize than switchgrass. Continuing efforts will attempt to quantitatively separate the effects of soil temperature and PAR on RA.

  13. Prenatal exposure to diurnal temperature variation and early childhood pneumonia.

    Science.gov (United States)

    Zeng, Ji; Lu, Chan; Deng, Qihong

    2017-04-01

    Childhood pneumonia is one of the leading single causes of mortality and morbidity in children worldwide, but its etiology still remains unclear. We investigate the association between childhood pneumonia and exposure to diurnal temperature variation (DTV) in different timing windows. We conducted a prospective cohort study of 2,598 children aged 3-6 years in Changsha, China. The lifetime prevalence of pneumonia was assessed by a questionnaire administered by the parents. Individual exposure to DTV during both prenatal and postnatal periods was estimated. Logic regression models was used to examine the association between childhood pneumonia and DTV exposure in terms of odds ratios (OR) and 95% confidence interval (CI). Lifetime prevalence of childhood pneumonia in preschool children in Changsha was high up to 38.6%. We found that childhood pneumonia was significantly associated with prenatal DTV exposure, with adjusted OR (95%CI) =1.19 (1.02-1.38), particularly during the second trimester. However, childhood pneumonia not associated with postnatal DTV exposure. Sensitivity analysis indicated that boys are more susceptible to the pneumonia risk of diurnal temperature variation than girls. We further observed that the prevalence of childhood pneumonia was decreased in recent years as DTV shrinked. Early childhood pneumonia was associated with prenatal exposure to the diurnal temperature variation (DTV) during pregnancy, particularly in the second trimester, which suggests fetal origin of childhood pneumonia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Diurnal variation of precipitation over the Carolina Sandhills region

    Indian Academy of Sciences (India)

    State Climate Office of North Carolina, Raleigh, NC 27695-8208, USA. ∗ e-mail: ... of the weather forecast models experience problems in accounting for the ... effect of vegetation and soil contrasts on thermally induced flow is ... Sandhills; diurnal convection; heat flux gradients; cloud–radiation interaction. J. Earth Syst. Sci.

  15. Sexual orientation and diurnal cortisol patterns in a cohort of U.S. young adults.

    Science.gov (United States)

    Austin, S Bryn; Rosario, Margaret; McLaughlin, Katie A; Roberts, Andrea L; Gordon, Allegra R; Sarda, Vishnudas; Missmer, Stacey; Anatale-Tardiff, Laura; Scherer, Emily A

    2016-07-01

    Sexual minorities in the United States are at elevated risk of bullying, discrimination, and violence victimization, all stressors that have been linked to psychological and behavioral stress responses including depressive and anxious symptoms and substance use. Acute and chronic stressors may also elicit physiologic stress responses, including changes in the regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Few studies, however, have examined the relationship between minority sexual orientation and diurnal cortisol patterns. The present study included 1670 young adults ages 18-32 years (69% female, 31% male) from the Growing Up Today Study, a prospective cohort of U.S. youth. Participants provided five saliva samples over one day to estimate diurnal cortisol patterns. Sexual orientation groups included: completely heterosexual with no same-sex partners (referent), completely heterosexual with same-sex partners/mostly heterosexual, and gay/lesbian/bisexual. Covariates included perceived stress and stressful life events in the past month. Sex-stratified multilevel models of log-transformed cortisol values were used to model diurnal cortisol patterns, and generalized estimating equations were used to model area under the curve (AUC), both with respect to ground (AUCg) and increase (AUCi). Among females, sexual minorities reported significantly more stressful life events in the past month than their heterosexual counterparts. In adjusted multilevel models, sexual orientation was not significantly associated with diurnal cortisol patterns or with AUCg or AUCi in either females or males. There were no significant interactions between sexual orientation and stressful life events. Time-varying negative mood was significantly associated with higher cortisol levels across the day for both female and male participants, after adjusting for all covariates. This study from a large cohort of U.S. young adults did not detect a relationship between sexual

  16. Diurnal Patterns and Correlates of Older Adults' Sedentary Behavior.

    Directory of Open Access Journals (Sweden)

    Jelle Van Cauwenberg

    Full Text Available Insights into the diurnal patterns of sedentary behavior and the identification of subgroups that are at increased risk for engaging in high levels of sedentary behavior are needed to inform potential interventions for reducing older adults' sedentary time. Therefore, we examined the diurnal patterns and sociodemographic correlates of older adults' sedentary behavior(s.Stratified cluster sampling was used to recruit 508 non-institutionalized Belgian older adults (≥ 65 years. Morning, afternoon, evening and total sedentary time was assessed objectively using accelerometers. Specific sedentary behaviors, total sitting time and sociodemographic attributes were assessed using an interviewer-administered questionnaire.Participants self-reported a median of 475 (Q1-Q3 = 383-599 minutes/day of total sitting time and they accumulated a mean of 580 ± 98 minutes/day of accelerometer-derived sedentary time. Sedentary time was lowest during the morning and highest during the evening. Older participants were as sedentary as younger participants during the evening, but they were more sedentary during daytime. Compared to married participants, widowers were more sedentary during daytime. Younger participants (< 75 years, men and the higher educated were more likely to engage in (high levels of sitting while driving a car and using the computer. Those with tertiary education viewed 29% and 22% minutes/day less television compared to those with primary or secondary education, respectively. Older participants accumulated 35 sedentary minutes/day more than did younger participants and men accumulated 32 sedentary minutes/day more than did women.These findings highlight diurnal variations and potential opportunities to tailor approaches to reducing sedentary time for subgroups of the older adult population.

  17. Diurnal pattern of the drying front in desert and its application for determining the effective infiltration

    Directory of Open Access Journals (Sweden)

    Y. Zeng

    2009-06-01

    Full Text Available Located in western Inner Mongolia, the Badain Jaran Desert is the second largest desert in China and consists of a regular series of stable megadunes, among which over 70 permanent lakes exist. The unexpected lakes in desert attracted research interests on exploring the hydrological process under this particular landscape; however, a very few literatures exist on the diurnal and spatial variation of the drying front in this area, which is the main issue in the desert hydrological process to characterize the movement of water in soil. In order to understand the drying front in the Badain Jaran Desert, a field campaign was conducted by the observations of soil physical parameters and micrometeorological parameters. With the field data, the performance of a vadose zone soil water balance model, the HYDRUS, was verified and calibrated. Then, the HYDRUS was used to produce the spatial and temporal information of coupled water, water vapour and heat transport in sand to characterize the variation pattern of the drying front before, during and after the rainfall. Finally, the deepest drying front was applied to determine the effective infiltration, which is defined as the amount of soil water captured by the sand beneath the deepest drying front by infiltrating water of an incident rainfall event.

  18. Diurnal variability of inner-shelf circulation in the lee of a cape under upwelling conditions

    Science.gov (United States)

    Lamas, L.; Peliz, A.; Dias, J.; Oliveira, P. B.; Angélico, M. M.; Castro, J. J.; Fernandes, J. N.; Trindade, A.; Cruz, T.

    2017-07-01

    The nearshore circulation in the lee of a cape under upwelling conditions was studied using in-situ data from 3 consecutive summers (2006-2008). Focus was given to a period between 20 July and 04 August 2006 to study the diurnal variability of the cross-shelf circulation. This period was chosen because it had a steady upwelling-favourable wind condition modulated by a diurnal cycle much similar to sea breeze. The daily variability of the observed cross-shelf circulation consisted of three distinct periods: a morning period with a 3-layer vertical structure with onshore velocities at mid-depth, a mid-day period where the flow is reversed and has a 2-layer structure with onshore velocities at the surface and offshore flow below, and, lastly, in the evening, a 2-layer period with intensified offshore velocities at the surface and onshore flow at the bottom. The observed cross-shelf circulation showed a peculiar vertical shape and diurnal variability different from several other systems described in literature. We hypothesize that the flow reversal of the cross-shelf circulation results as a response to the rapid change of the wind magnitude and direction at mid-day with the presence of the cape north of the mooring site influencing this response. A numerical modelling experiment exclusively forced by winds simulated successfully most of the circulation at the ADCP site, especially the mid-day reversal and the evening's upwelling-type structure. This supports the hypothesis that the cross-shelf circulation at diurnal timescales is mostly wind-driven. By analysing the 3D circulation in the vicinity of Cape Sines we came to the conclusion that the diurnal variability of the wind and the flow interaction with topography are responsible for the circulation variability at the ADCP site, though only a small region in the south of the cape showed a similar diurnal variability. The fact that the wind diurnally undergoes relaxation and intensification strongly affects the

  19. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    Science.gov (United States)

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  20. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies.

    Science.gov (United States)

    Zeppel, Melanie; Tissue, David; Taylor, Daniel; Macinnis-Ng, Catriona; Eamus, Derek

    2010-08-01

    Nocturnal fluxes may be a significant factor in the annual water budget of forested ecosystems. Here, we assessed sap flow in two co-occurring evergreen species (Eucalyptus parramattensis and Angophora bakeri) in a temperate woodland for 2 years in order to quantify the magnitude of seasonal nocturnal sap flow (E(n)) under different environmental conditions. The two species showed different diurnal water relations, demonstrated by different diurnal curves of stomatal conductance, sap flow and leaf water potential. The relative influence of several microclimatic variables, including wind speed (U), vapour pressure deficit (D), the product of U and D (UD) and soil moisture content, were quantified. D exerted the strongest influence on E(n) (r² = 0.59-0.86), soil moisture content influenced E(n) when D was constant, but U and UD did not generally influence E(n). In both species, cuticular conductance (G(c)) was a small proportion of total leaf conductance (G(s)) and was not a major pathway for E(n). We found that E(n) was primarily a function of transpiration from the canopy rather than refilling of stem storage, with canopy transpiration accounting for 50-70% of nocturnal flows. Mean E(n) was 6-8% of the 24-h flux across seasons (spring, summer and winter), but was up to 19% of the 24-h flux on some days in both species. Despite different daytime strategies in water use of the two species, both species demonstrated low night-time water loss, suggesting similar controls on water loss at night. In order to account for the impact of E(n) on pre-dawn leaf water potential arising from the influence of disequilibria between root zone and leaf water potential, we also developed a simple model to more accurately predict soil water potential (ψ(s)).

  1. Diurnal Variation in the Basal Emission Rate of Isoprene

    Science.gov (United States)

    Jennifer Funk; Clive G. Jones; Christine J. Baker; Heather M. Fuller; Christian P. Giardina; Manuel T. Lerdua

    2003-01-01

    Isoprene is emitted from numerous plant species and profoundly influences tropospheric chemistry. Due to the short lifetime of isoprene in the atmosphere, developing an understanding of emission patterns at small time scales is essential for modeling regional atmospheric chemistry processes. Previous studies suggest that diurnal fluctuations in isoprene emission may be...

  2. Phase difference between calcification and organic matrix formation in the diurnal growth of otoliths in rainbow trout, Salmo gairdneri

    International Nuclear Information System (INIS)

    Mugiya, Y.

    1987-01-01

    The relative role of calcium and organic matrix deposition in the formation of daily increments in otoliths was studied in in vitro preparations of otolith-containing sacculi of rainbow trout, Salmo gairdneri. Sacculi were incubated in a Ringer solution containing both 45 Ca and 3 H-glutamic acid for 2 hours at 6-h intervals throughout a 24-h period and then the uptake of these isotopes was determined for both otolith and saccular tissue fractions. Serum calcium and sodium concentrations were also analyzed for diurnal variations. Serum calcium concentrations varied diurnally by 8% in a single phasic pattern, reaching a peak at dusk (1600 h) and a nadir at night (2200 h), while sodium concentrations remained almost constant throughout a 24-h period. Diurnal variation in the otolith's uptake of calcium and glutamic acid showed discrete, antiphasic cycles. The rate of calcium uptake varied in a pattern closely resembling that of serum calcium (the peak at 1600 h and the nadir at 2200 h); glutamic acid uptake remained almost constant during the daytime and peaked at night (2200 h). The results indicate that in rainbow trout daily increments of otoliths are formed by the antiphasic deposition of calcium and organic matrix

  3. Diurnal changes in flavonoids

    International Nuclear Information System (INIS)

    Veit, M.; Bilger, W.; Mühlbauer, T.; Brummet, W.; Winter, K.

    1996-01-01

    Field studies of a tropical tree, Anacardium excelsum, and a northern hemisphere high altitude fern, Cryptogramma crispa, revealed marked diurnal changes in soluble flavonoid content of leaves and fronds, respectively. The flavonoid content increased during the morning and decreased during the afternoon. In plants of C. crispa covered with UV-B absorbing filters, the flavonoid content remained at a constant level throughout the day/night cycle. Upon removal of UV-B absorbing filters (at night), the flavonoid content increased the next morning in a fashion similar to that observed in control plants maintained without filters. Decreases in photosystem II photochemical efficiency upon exposure of C. crispa to natural daylight were similar in plants previously covered with UV-B absorbing filters and in control plants, probably owing to the observed ability of plants to rapidly accumulate UV-B protective flavonoids. (author)

  4. Daily diurnal variation in admissions for ruptured abdominal aortic aneurysms.

    LENUS (Irish Health Repository)

    Killeen, Shane

    2012-02-03

    BACKGROUND: Many vascular events, such as myocardial infarction and cerebrovascular accident, demonstrate a circadian pattern of presentation. Blood pressure is intimately related to these pathologies and is the one physiological variable consistently associated with abdominal aortic aneurysm rupture. It also demonstrates a diurnal variation. The purpose of this study was to determine if rupture of an abdominal aortic aneurysm (RAAA) exhibits a diurnal variation. METHODS: A retrospective cohort-based study was performed to determine the timing of presentation of RAAA to the vascular unit of Cork University Hospital over a 15-year period. Time of admission, symptom onset, and co-morbidities such as hypertension were noted. Fournier\\'s analysis and chi-squared analysis were performed. To ameliorate possible confounding factors, patients admitted with perforated peptic ulcers were examined in the same manner. RESULTS: A total of 148 cases of RAAA were identified, with a male preponderance (71.7% [124] male versus 29.3% [44] female patients) and a mean age of 74.4 +\\/- 7.2 years at presentation. 70.9% (105) were known to have hypertension, 52.2% (77) were current smokers, and 46.8% (69) were being treated for chronic obstructive airway disease (COAD). Time of symptom onset was recorded in 88.5% (131) of patients. There was a marked early morning peak in RAAA admissions, with the highest number of RAAA being admitted between 08.00 and 09.59. A second, smaller peak was observed at 14.00-15.59. These findings were suggestive of diurnal variation. [chi(2) =16.75, p < 0.003]. Some 40% (59) of patients were admitted between 00.00 and 06.00, an incidence significantly higher than for other time periods (06.00-12.00, 12.00-18.00, and 18.00-24.00) [chi(2) = 18.72; df = 3; p < 0.0003]. A significantly higher number of patients admitted between 00.00 and 06.00 were known hypertensives (chi(2) = 7.94; p < 0.05). CONCLUSIONS: The findings of this study suggest a distinct

  5. Autoradiographic investigations on the question of diurnal variations of cell proliferation in the jejunal crypt epithelia of mice

    International Nuclear Information System (INIS)

    Herterich, G.C.

    1982-01-01

    In this work the question was investigated whether the proliferation activity of the crypt epithelia of the small intestine of mice is subject to diurnal variations. The results published so far to settle this question are contradictory. The flow rate at the beginning and end of the S phase was measured as a function of daytime for the jejunal crypt epithelia of mice following a double labelling with 3-H and 14-C-TdR. The quotient of the cell flow rate in and out of the S phase is supposed to be = 1 over the whole day if there are no diurnal variations. The method of measurements of the cell flow rate was chosen above all because the quotient is largely independent of the variation from animal to animal. The experiments provided dues as to the presence of deviations of the quotient of cell flow rate at the end and beginning of the S phase and of the mitotic index from the daily mean value. However, on account of the relatively large statistical variations of the values at the different daytimes it is not possible to state clearly whether the cell proliferation of the jejunal epithelium is subject to diurnal variations. Should there be such variations, then they are not large at any rate. (orig./MG) [de

  6. Radiation balance at the surface in the city of São Paulo, Brazil: diurnal and seasonal variations

    NARCIS (Netherlands)

    Ferreira, M.J.; Oliveira, de A.P.; Soares, J.; Codato, G.; Wilde Barbaro, E.; Escobedo, J.F.

    2012-01-01

    The main goal of this work is to describe the diurnal and seasonal variations of the radiation balance components at the surface in the city of São Paulo based on observations carried out during 2004. Monthly average hourly values indicate that the amplitudes of the diurnal cycles of net radiation

  7. Differential arousal regulation by prokineticin 2 signaling in the nocturnal mouse and the diurnal monkey.

    Science.gov (United States)

    Zhou, Qun-Yong; Burton, Katherine J; Neal, Matthew L; Qiao, Yu; Kanthasamy, Anumantha G; Sun, Yanjun; Xu, Xiangmin; Ma, Yuanye; Li, Xiaohan

    2016-08-18

    The temporal organization of activity/rest or sleep/wake rhythms for mammals is regulated by the interaction of light/dark cycle and circadian clocks. The neural and molecular mechanisms that confine the active phase to either day or night period for the diurnal and the nocturnal mammals are unclear. Here we report that prokineticin 2, previously shown as a circadian clock output molecule, is expressed in the intrinsically photosensitive retinal ganglion cells, and the expression of prokineticin 2 in the intrinsically photosensitive retinal ganglion cells is oscillatory in a clock-dependent manner. We further show that the prokineticin 2 signaling is required for the activity and arousal suppression by light in the mouse. Between the nocturnal mouse and the diurnal monkey, a signaling receptor for prokineticin 2 is differentially expressed in the retinorecipient suprachiasmatic nucleus and the superior colliculus, brain projection targets of the intrinsically photosensitive retinal ganglion cells. Blockade with a selective antagonist reveals the respectively inhibitory and stimulatory effect of prokineticin 2 signaling on the arousal levels for the nocturnal mouse and the diurnal monkey. Thus, the mammalian diurnality or nocturnality is likely determined by the differential signaling of prokineticin 2 from the intrinsically photosensitive retinal ganglion cells onto their retinorecipient brain targets.

  8. Diurnal and annual variations of meteor rates at the arctic circle

    Directory of Open Access Journals (Sweden)

    W. Singer

    2004-01-01

    Full Text Available Meteors are an important source for (a the metal atoms of the upper atmosphere metal layers and (b for condensation nuclei, the existence of which are a prerequisite for the formation of noctilucent cloud particles in the polar mesopause region. For a better understanding of these phenomena, it would be helpful to know accurately the annual and diurnal variations of meteor rates. So far, these rates have been little studied at polar latitudes. Therefore we have used the 33 MHz meteor radar of the ALOMAR observatory at 69° N to measure the meteor rates at this location for two full annual cycles. This site, being within 3° of the Arctic circle, offers in addition an interesting capability: The axis of its antenna field points (almost towards the North ecliptic pole once each day of the year. In this particular viewing direction, the radar monitors the meteoroid influx from (almost the entire ecliptic Northern hemisphere. We report on the observed diurnal variations (averaged over one month of meteor rates and their significant alterations throughout the year. The ratio of maximum over minimum meteor rates throughout one diurnal cycle is in January and February about 5, from April through December 2.3±0.3. If compared with similar measurements at mid-latitudes, our expectation, that the amplitude of the diurnal variation is to decrease towards the North pole, is not really borne out. Observations with the antenna axis pointing towards the North ecliptic pole showed that the rate of deposition of meteoric dust is substantially larger during the Arctic NLC season than the annual mean deposition rate. The daylight meteor showers of the Arietids, Zeta Perseids, and Beta Taurids supposedly contribute considerably to the June maximum of meteor rates. We note, though, that with the radar antenna pointing as described above, all three meteor radiants are close to the local horizon but all three radiants were detected.

  9. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Satoru Koda

    2017-11-01

    Full Text Available We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX model with a group smoothly clipped absolute deviation (SCAD method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon. To reveal the diurnal changes in the transcriptome in B. distachyon, we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon. On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon, aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  10. Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Fragner, Lena; Holmer, Marianne

    2015-01-01

    We investigated the response, adaptation and tolerance mechanisms of the temperate seagrass Zostera marina to water column anoxia. We exposed Z. marina to a diurnal light/dark cycle under anoxia and assessed the metabolic response by measuring the metabolome with gas chromatography coupled to mass...... spectrometry (GC–MS). During anoxia and light exposure the roots showed an altered metabolome whereas the leaves were only marginally affected, indicating that photosynthetically derived oxygen could satisfy the oxygen demand in the leaves but not in the roots. Nocturnal anoxia caused a biphasic shift...... in the metabolome of roots and leaves. The first phase, after 15 h under anoxia and 3 h of darkness showed a fast increase of lactate, pyruvate, GABA (γ-aminobutyric acid), succinate, alanine and a decrease in glutamate and glutamine. The second phase, after 21 h under anoxia and 9 h of darkness showed a decrease...

  11. Diurnal fluctuations in cotton leaf carbon export, carbohydrate content, and sucrose synthesizing enzymes.

    Science.gov (United States)

    Hendrix, D L; Huber, S C

    1986-06-01

    In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.

  12. The moderating role of meaning in life in the relationship between perceived stress and diurnal cortisol.

    Science.gov (United States)

    Pulopulos, Matias M; Kozusznik, Malgorzata W

    2018-05-01

    Previous studies have suggested that meaning in life may buffer the negative effects of stress. This study is the first to investigate the moderating role of meaning in life in the relationship between the perception of stress and diurnal cortisol in two independent samples of healthy adults. In study 1 (n = 172, men = 82, women = 90, age range = 21-55 years, mean age = 37.58 years), the results of moderated regression analyses revealed that there was a significant positive relationship between overall perceived stress in the past month and both diurnal cortisol levels (area-under-the-curve with respect to the ground; AUCg) and the diurnal cortisol slope (DCS) only in individuals with low levels of meaning in life conceptualized as the degree to which one engages in activities that are personally valued and important. In study 2 (n = 259, men = 125, women = 134, age range = 18-54 years, mean age = 29.06 years), we found a non-significant interaction term between meaning in life conceptualized as having goals and a sense of excitement regarding one's future and perception of stress in a model of both adjusted AUCg and DCS. The results were independent of age, sex, body mass index, education, and race. The results shed light on the importance and the complexity of the construct of meaning in life and offer a possible explanation for why some people who face stressors may be more vulnerable than others to developing stress-related health problems.

  13. High-resolution magnetic resonance imaging of diurnal variations in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Nicholas, R.S.

    2000-09-01

    This thesis describes work that uses high-resolution magnetic resonance imaging (MRI) to give an insight into the aetiology of rheumatoid arthritis (RA) with particular reference to characterising diurnal changes in joint stiffness in the metacarpophalangeal (MCP) joints. The study was performed on a targeted 1.1 T MRI scanner using specialised sequences, including 3-dimensional gradient-echo, magnetisation transfer (MT) and multiple gradient-echo. These enabled tissue-dependent parameters such as MT ratio, effective transverse relaxation time (T 2 *) and proton density (ρ) to be made. Preliminary reproducibility studies of the MRI measurements showed that MT ratio could be measured in vivo to an accuracy of better than 8%. This variation is due to repositioning errors and physiological changes. Equivalent variations in T 2 * and p were 23% and 16% respectively; these poorer figures were contributed to errors in fitting the data to an exponential curve. An MRI study monitoring the diurnal variation of stiffness in RA demonstrated better characterisation of the disease state using MT and T 2 * maps compared to standard gradient-echo imaging. Features associated with arthritis such as bone erosions and cysts were found in the control group and an MT age dependence was measured in the soft tissue on the superior margin of the joint. This region also exhibited a diurnal variation in MT ratio for the patient group. The interaction between this region of tissue and other structures (e.g. the sheath of extensor tendon) within the joint could be a possible cause of joint stiffness. An incidental finding of this study was that Ritchie joint score also showed a diurnal variation. This study has demonstrated that MRI can be used to make reproducible measurements of the diurnal variations in RA. The indication is that the soft tissues in the superior aspect of the joint may be responsible for the symptom of joint stiffness in the MCP joints and future studies should be

  14. diurnal climatic pressure on haematology and blood biochemistry of ...

    African Journals Online (AJOL)

    Twelve 2.5-year-old West African Dward (WAD) sheep consisting of eight (8) ewes and four (4) rams with mean body weight 19.4kg were used to study the effects of diurnal (morning and afternoon) climatic variations on the haematological and biochemical responses in WAD sheep. The animals were randomly assigned to ...

  15. Characteristics of GHG flux from water-air interface along a reclaimed water intake area of the Chaobai River in Shunyi, Beijing

    Science.gov (United States)

    He, Baonan; He, Jiangtao; Wang, Jian; Li, Jie; Wang, Fei

    2018-01-01

    To understand greenhouse gas (GHG) flux in reclaimed water intake area impact on urban climate, 'static chamber' method was used to investigate the spatio-diurnal variations and the influence factors of GHG fluxes at water-air interface from Jian River to Chaobai River. Results showed that the average fluxes of CO2 from the Jian River and the Chaobai River were 73.46 mg(m2·h)-1 and -64.75 mg(m2·h)-1, respectively. CO2 was emitted the most in the Jian River, but it was absorbed from the atmosphere in the Chaobai River. Unary linear regression analyses demonstrated that Chlorophyll a (Chl a) and pH variation controlled the carbon source and sink from the Jian River to the Chaobai River. The diurnal variation of CO2 fluxes was higher at night than in the daytime in the Jian River, and it was the inverse in the Chaobai River, which highly correlated with dissociative CO2 and HCO3- transformation to CO32-. The average fluxes of CH4 from the Jian River and Chaobai River were 0.973 mg(m2·h)-1 and 5.556 mg(m2·h)-1, respectively, which increased along the water flow direction. Unary and multiple linear regression analyses demonstrated that Chl a and total organic carbon (TOC) controlled the increase of CH4 along the flow direction. The diurnal variation of CH4 fluxes was slightly higher in the daytime than at night due to the effect of water temperature.

  16. Diurnal modulation and sources of variation affecting ventricular repolarization in Warmblood horses

    DEFF Research Database (Denmark)

    Pedersen, Philip Juul; Moeller, Sine B.; Madsen, Mette Flethøj

    2014-01-01

    Te) are used as repolarization markers. To support the use of these markers in horses, we sought to describe the possible influence of the environment, time of day, day-to-day effects, T wave conformation, age, body weight (BW), and horse-to-horse variation on repolarization measurements. ANIMALS: 12 Warmblood...... affecting these intervals. RESULTS: Differences between individual horses were the largest source of repolarization variability although the environment had a significant effect on repolarization as well. Diurnal variation affected both the RR interval and the repolarization markers. The QT, QTc and Tp......, diurnal variation, the environment, and T wave conformation. These factors must be considered if markers of equine repolarization are used diagnostically....

  17. The relationship between stable oxygen and hydrogen isotope ratios of water in astomatal plants

    Science.gov (United States)

    Cooper, Lee W.; DeNiro, Michael J.; Keeley, Jon E.; Taylor, H. P.; O'Neil, J. R.; Kaplan, I.R.

    1991-01-01

    Isotropic fractination of leaf water during transpiration is influenced by both equilibrium and kinetic factors. Previous workers have predicted that the influence of each factor varies depending upon the path of water loss,m whether centralized through stomata, or diffuse through the cuticle. We studied the relationship between the δD and δ18O values of lead and stem waters of laurel sumac, Rhus laurina (Nutt.) T. & G., and its parasite, dodder, Cuscuta subinclusa D. & H., growing in the field. Stomatal transpiration, associated with more stagnant boundary layers, predominates in R. laurina; cuticular transpiration, associated with more turbulent boundary layers, is most important in the largely astomatal C. subinclusa. We also studied the diurnal variation in the δD and δ18O values of lead waters of two astomatal plants, Chiloschista lunifera (Rchb. F.) J.J.S. and Stylites andicola Amstutz, and two stomatal plants, Tillandsia balbisiana Schult. and Lilaeopsis schaffneriana (Schlecht.) C. & R., growing with them under the same conditions in the laboratory. Slopes, m, for the relation δD = mδ18O + b were significantly higher for stem waters in C. subinclusa that for leaf waters in R. laurina (1.77), consistent with the difference in the boundary layers through which water was lost in the two species. The magnitude of diurnal heavy isotope enrichment of tissue water was smaller in C. subinclusa than in R. laurina, which is also consistent with predictions concerning evapotranspiration through difference types of boundary layers. The slopes, m, in plant waters in the laboratory experiments, conducted at high humidity, were not different than those observed during evaporation of water from pans, regardless of plant anatomy. The observation suggests that cuticular transpiration is important in influencing isotopic fractionation of water only at low humidity. Our results indicate that the isotopic composition of water vapor released by plants in arid regions may

  18. Seasonal and diurnal variability of N{sub 2}O emissions from a full-scale municipal wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Daelman, Matthijs R.J., E-mail: m.r.j.daelman@tudelft.nl [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands); Department of Biosystems engineering, Ghent University, Coupure links 653, 9000 Gent (Belgium); Voorthuizen, Ellen M. van [Royal HaskoningDHV, P.O. Box 151, 6500AD Nijmegen (Netherlands); Dongen, Udo G.J.M. van [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands); Volcke, Eveline I.P. [Department of Biosystems engineering, Ghent University, Coupure links 653, 9000 Gent (Belgium); Loosdrecht, Mark C.M. van [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2015-12-01

    During nitrogen removal in conventional activated sludge processes, nitrous oxide can be emitted. With a global warming potential of 298 CO{sub 2}-equivalents it is an important greenhouse gas that affects the sustainability of wastewater treatment. The present study reports nitrous oxide emission data from a 16 month monitoring campaign on a full-scale municipal wastewater treatment. The emission demonstrated a pronounced diurnal and seasonal variability. This variability was compared with the variability of a number of process variables that are commonly available on a municipal wastewater treatment plant. On a seasonal timescale, the occurrence of peaks in the nitrite concentration correlated strongly with the emission. The diurnal trend of the emission coincided with the diurnal trend of the nitrite and nitrate concentrations in the tank, suggesting that suboptimal oxygen concentrations may induce the production of nitrous oxide during both nitrification and denitrification. This study documents an unprecedented dataset that could serve as a reference for further research. - Highlights: • Unique dataset of long-term nitrous oxide emission from activated sludge tanks • Emission exhibited pronounced diurnal variability, superimposed on seasonal trend • Seasonal nitrous oxide emission trend correlated with daily nitrite peaks • Emission’s diurnal trend suggests suboptimal oxygen concentrations as cause.

  19. The Role of Nitric Oxide in Memory is Modulated by Diurnal Time

    Directory of Open Access Journals (Sweden)

    Stephanie L. Gage

    2014-04-01

    Full Text Available Nitric oxide (NO is thought to play an important neuromodulatory role in the olfactory system. This modulation has been suggested to be particularly important for olfactory learning and memory in the antennal lobe (the primary olfactory network in invertebrates. We are using the hawkmoth, Manduca sexta, to further investigate the role of NO in olfactory memory. Recent findings suggest that NO affects short-term memory traces and that NO concentration fluctuates with the light cycle. This gives rise to the hypothesis that NO may be involved in the connection between memory and circadian rhythms. In this study, we explore the role of diurnal time and NO in memory by altering the time of day when associative-olfactory conditioning is performed. We find a strong effect of NO on short-term memory, and two surprising effects of diurnal time. We find that (1 at certain time points, NO affects longer traces of memory in addition to short-term memory, and (2 when conditioning is performed close to the light cycle switches—both from light to dark and dark to light—NO does not significantly affect memory at all. These findings suggest an intriguing functional role for NO in olfactory conditioning that is modulated as a function of diurnal time.

  20. Diurnal patterns and associations among salivary cortisol, DHEA and alpha-amylase in older adults.

    Science.gov (United States)

    Wilcox, Rand R; Granger, Douglas A; Szanton, Sarah; Clark, Florence

    2014-04-22

    Cortisol and dehydroepiandrosterone (DHEA) are considered to be valuable markers of the hypothalamus-pituitary-adrenal (HPA) axis, while salivary alpha-amylase (sAA) reflects the autonomic nervous system. Past studies have found certain diurnal patterns among these biomarkers, with some studies reporting results that differ from others. Also, some past studies have found an association among these three biomarkers while other studies have not. This study investigates these patterns and associations in older adults by taking advantage of modern statistical methods for dealing with non-normality, outliers and curvature. Basic characteristics of the data are reported as well, which are relevant to understanding the nature of any patterns and associations. Boxplots were used to check on the skewness and presence of outliers, including the impact of using simple transformations for dealing with non-normality. Diurnal patterns were investigated using recent advances aimed at comparing medians. When studying associations, the initial step was to check for curvature using a non-parametric regression estimator. Based on the resulting fit, a robust regression estimator was used that is designed to deal with skewed distributions and outliers. Boxplots indicated highly skewed distributions with outliers. Simple transformations (such as taking logs) did not deal with this issue in an effective manner. Consequently, diurnal patterns were investigated using medians and found to be consistent with some previous studies but not others. A positive association between awakening cortisol levels and DHEA was found when DHEA is relatively low; otherwise no association was found. The nature of the association between cortisol and DHEA was found to change during the course of the day. Upon awakening, cortisol was found to have no association with sAA when DHEA levels are relatively low, but otherwise there is a negative association. DHEA was found to have a positive association with s

  1. Solar flare location effect on the spectral characteristics of the diurnal anisotropy of cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, R S; Kumar, S; Naqvi, T N [Aligarh Muslim Univ. (India)

    1977-01-01

    The spectral parameters of the diurnal anisotropy of cosmic ray intensity are studied separately for days where the solar flares have occurred on the western limb as well as on the eastern limb of the solar disc for both nucleonic as well as mesonic components of the cosmic rays. It is observed that the diurnal amplitude of the cosmic ray intensity in space is larger for days where solar flares have occurred on the western limb of the solar disc as compared to the days where solar flares have occurred on the eartern limb of the solar disc. This is true in both nucleonic as well as mesonic components of the cosmic ray intensity. The average value of the direction in space of diurnal anisotropy in local asymptotic time for various stations is almost same and is observed at around the same hours for flares which occur on the western as well as eastern limb of the solar disc. When these results are compared with the direction of the diurnal anisotropy in space on quiet days, it is found that the direction of the diurnal anisotropy on days where solar flares have occurred on the western limb as well as eastern limb of the solar disc is earlier in comparison to quiet days. This phase shift towards earlier hours is about three hours for nucleonic as well as mesonic components of the cosmic rays intensity. The variation of the rigidity exponent observed on different types of days for the nucleonic component has also been discussed.

  2. Blunted Diurnal Cortisol Activity in Healthy Adults with Childhood Adversity.

    Science.gov (United States)

    Kuras, Yuliya I; Assaf, Naomi; Thoma, Myriam V; Gianferante, Danielle; Hanlin, Luke; Chen, Xuejie; Fiksdal, Alexander; Rohleder, Nicolas

    2017-01-01

    Childhood adversity, such as neglect, or physical, emotional, or sexual abuse, is prevalent in the U.S. and worldwide, and connected to an elevated incidence of disease in adulthood. A pathway in this relationship might be altered hypothalamic-pituitary-adrenal (HPA) axis functioning, as a result of differential hippocampal development in early life. A blunted diurnal cortisol slope is a precursor for many disorders. While studies have focused on HPA reactivity in relation to childhood adversity, there has been markedly less research on basal HPA functioning in those with low-to-moderate adversity. Based on previous research, we hypothesized that adults with low-to-moderate childhood adversity would have altered HPA axis functioning, as evidenced by a blunted diurnal cortisol slope and altered cortisol awakening response (CAR). Healthy adults aged 18-65 ( n = 61 adults; 31 males and 30 females) completed the Childhood Trauma Questionnaire. Participants provided at-home saliva samples on two consecutive days at wake-up, and 30 min, 1, 4, 9, and 13 h later; samples were averaged over the 2 days. We found that low-to-moderate childhood adversity predicted lower morning cortisol (β = -0.34, p = 0.007, R 2 = 0.21), as well as a blunted cortisol slope (β = 2.97, p = 0.004, R 2 = 0.22), but found no association with CAR (β = 0.19, p = 0.14, R 2 = 0.12). Overall, we found that in healthy participants, low-to-moderate adversity in childhood is associated with altered basal HPA activity in adulthood. Our findings indicate that even low levels of childhood adversity may predispose individuals to disease associated with HPA dysregulation in later life.

  3. Blunted Diurnal Cortisol Activity in Healthy Adults with Childhood Adversity

    Directory of Open Access Journals (Sweden)

    Yuliya I. Kuras

    2017-11-01

    Full Text Available Childhood adversity, such as neglect, or physical, emotional, or sexual abuse, is prevalent in the U.S. and worldwide, and connected to an elevated incidence of disease in adulthood. A pathway in this relationship might be altered hypothalamic-pituitary-adrenal (HPA axis functioning, as a result of differential hippocampal development in early life. A blunted diurnal cortisol slope is a precursor for many disorders. While studies have focused on HPA reactivity in relation to childhood adversity, there has been markedly less research on basal HPA functioning in those with low-to-moderate adversity. Based on previous research, we hypothesized that adults with low-to-moderate childhood adversity would have altered HPA axis functioning, as evidenced by a blunted diurnal cortisol slope and altered cortisol awakening response (CAR. Healthy adults aged 18–65 (n = 61 adults; 31 males and 30 females completed the Childhood Trauma Questionnaire. Participants provided at-home saliva samples on two consecutive days at wake-up, and 30 min, 1, 4, 9, and 13 h later; samples were averaged over the 2 days. We found that low-to-moderate childhood adversity predicted lower morning cortisol (β = -0.34, p = 0.007, R2 = 0.21, as well as a blunted cortisol slope (β = 2.97, p = 0.004, R2 = 0.22, but found no association with CAR (β = 0.19, p = 0.14, R2 = 0.12. Overall, we found that in healthy participants, low-to-moderate adversity in childhood is associated with altered basal HPA activity in adulthood. Our findings indicate that even low levels of childhood adversity may predispose individuals to disease associated with HPA dysregulation in later life.

  4. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    Science.gov (United States)

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.

  5. Changes in diurnal temperature range and national cereal yields

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D

    2007-04-26

    Models of yield responses to temperature change have often considered only changes in average temperature (Tavg), with the implicit assumption that changes in the diurnal temperature range (DTR) can safely be ignored. The goal of this study was to evaluate this assumption using a combination of historical datasets and climate model projections. Data on national crop yields for 1961-2002 in the 10 leading producers of wheat, rice, and maize were combined with datasets on climate and crop locations to evaluate the empirical relationships between Tavg, DTR, and crop yields. In several rice and maize growing regions, including the two major nations for each crop, there was a clear negative response of yields to increased DTR. This finding reflects a nonlinear response of yields to temperature, which likely results from greater water and heat stress during hot days. In many other cases, the effects of DTR were not statistically significant, in part because correlations of DTR with other climate variables and the relatively short length of the time series resulted in wide confidence intervals for the estimates. To evaluate whether future changes in DTR are relevant to crop impact assessments, yield responses to projected changes in Tavg and DTR by 2046-2065 from 11 climate models were estimated. The mean climate model projections indicated an increase in DTR in most seasons and locations where wheat is grown, mixed projections for maize, and a general decrease in DTR for rice. These mean projections were associated with wide ranges that included zero in nearly all cases. The estimated impacts of DTR changes on yields were generally small (<5% change in yields) relative to the consistently negative impact of projected warming of Tavg. However, DTR changes did significantly affect yield responses in several cases, such as in reducing US maize yields and increasing India rice yields. Because DTR projections tend to be positively correlated with Tavg, estimates of yields

  6. Prolonged whole body immersion in cold water: hormonal and metabolic changes.

    Science.gov (United States)

    Smith, D J; Deuster, P A; Ryan, C J; Doubt, T J

    1990-03-01

    To characterize metabolic and hormonal responses during prolonged whole body immersion, 16 divers wearing dry suits completed four immersions in 5 degrees C water during each of two 5-day air saturation dives at 6.1 meters of sea water. One immersion began in the AM (1000 h) and one began in the PM (2200 h) to evaluate diurnal variations. Venous blood samples were obtained before and after completion of each immersion. Cortisol and ACTH levels demonstrated diurnal variation, with larger increases occurring after PM immersions. A greater than three-fold postimmersion increase occurred in norepinephrine (NE). There were significant increases in triiodothyronine (T3) uptake and epinephrine, but no change in T3, thyroxine, thyrotrophic hormone, and dopamine. Postimmersion free fatty acid levels increased 409% from preimmersion levels; glucose levels declined, and lactate increased significantly. Only changes in NE correlated significantly with changes in rectal temperature. In summary, when subjects are immersed in cold water for prolonged periods, with a slow rate of body cooling afforded by thermal protection and intermittent exercise, hormonal and metabolic changes occur that are similar in direction and magnitude to short-duration unprotected exposures. Except for cortisol and ACTH, none of the other measured variables exhibited diurnal alterations.

  7. The Influence of Roof Material on Diurnal Urban Canyon Breathing

    Science.gov (United States)

    Abuhegazy, Mohamed; Yaghoobian, Neda

    2017-11-01

    Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.

  8. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N

    1996-01-01

    in 2, 3 diphosphoglycerate. After 64 h at altitude, six of the nine subjects had down-regulated their serum-EPO concentrations so that median values were three times above those at sea level. These six subjects had significant diurnal variations of serum-EPO concentration at sea level; the nadir......This study tested the hypothesis that the diurnal variations of serum-erythropoietin concentration (serum-EPO) observed in normoxia also exist in hypoxia. The study also attempted to investigate the regulation of EPO production during sustained hypoxia. Nine subjects were investigated at sea level...... and during 4 days at an altitude of 4350 m. Median sea level serum-EPO concentration was 6 (range 6-13) U.l-1. Serum-EPO concentration increased after 18 and 42 h at altitude, [58 (range 39-240) and 54 (range 36-340) U.l-1, respectively], and then decreased after 64 and 88 h at altitude [34 (range 18...

  9. SMLTM simulations of the diurnal tide: comparison with UARS observations

    Directory of Open Access Journals (Sweden)

    R. A. Akmaev

    1997-09-01

    Full Text Available Wind and temperature observations in the mesosphere and lower thermosphere (MLT from the Upper Atmosphere Research Satellite (UARS reveal strong seasonal variations of tides, a dominant component of the MLT dynamics. Simulations with the Spectral mesosphere/lower thermosphere model (SMLTM for equinox and solstice conditions are presented and compared with the observations. The diurnal tide is generated by forcing specified at the model lower boundary and by in situ absorption of solar radiation. The model incorporates realistic parameterizations of physical processes including various dissipation processes important for propagation of tidal waves in the MLT. A discrete multi-component gravity-wave parameterization has been modified to account for seasonal variations of the background temperature. Eddy diffusion is calculated depending on the gravity-wave energy deposition rate and stability of the background flow. It is shown that seasonal variations of the diurnal-tide amplitudes are consistent with observed variations of gravity-wave sources in the lower atmosphere.

  10. Does the diurnal pattern of enteric methane emissions from dairy cows change over time?

    Science.gov (United States)

    Bell, M J; Craigon, J; Saunders, N; Goodman, J R; Garnsworthy, P C

    2018-02-22

    Diet manipulation and genetic selection are two important mitigation strategies for reducing enteric methane (CH4) emissions from ruminant livestock. The aim of this study was to assess whether the diurnal pattern of CH4 emissions from individual dairy cows changes over time when cows are fed on diets varying in forage composition. Emissions of CH4 from 36 cows were measured during milking in an automatic (robotic) milking station in three consecutive feeding periods, for a total of 84 days. In Periods 1 and 2, the 36 cows were fed a high-forage partial mixed ration (PMR) containing 75% forage, with either a high grass silage or high maize silage content. In Period 3, cows were fed a commercial PMR containing 69% forage. Cows were offered PMR ad libitum plus concentrates during milking and CH4 emitted by individual cows was sampled during 8662 milkings. A linear mixed model was used to assess differences among cows, feeding periods and time of day. Considerable variation was observed among cows in daily mean and diurnal patterns of CH4 emissions. On average, cows produced less CH4 when fed on the commercial PMR in feeding Period 3 than when the same cows were fed on high-forage diets in feeding Periods 1 and 2. The average diurnal pattern for CH4 emissions did not significantly change between feeding periods and as lactation progressed. Emissions of CH4 were positively associated with dry matter (DM) intake and forage DM intake. It is concluded that if the management of feed allocation remains constant then the diurnal pattern of CH4 emissions from dairy cows will not necessarily alter over time. A change in diet composition may bring about an increase or decrease in absolute emissions over a 24-h period without significantly changing the diurnal pattern unless management of feed allocation changes. These findings are important for CH4 monitoring techniques that involve taking measurements over short periods within a day rather than complete 24-h observations.

  11. Diurnal cycle of the dust instantaneous direct radiative forcing over the Arabian Peninsula

    KAUST Repository

    Osipov, Sergey

    2015-08-27

    In this study we attempted to better quantify radiative effects of dust over the Arabian Peninsula and their dependence on input parameters. For this purpose we have developed a stand-alone column radiation transport model coupled with the Mie, T-matrix and geometric optics calculations and driven by reanalysis meteorological fields and atmospheric composition. Numerical experiments were carried out for a wide range of aerosol optical depths, including extreme values developed during the dust storm on 18–20 March 2012. Comprehensive ground-based observations and satellite retrievals were used to estimate aerosol optical properties, validate calculations and carry out radiation closure. The broadband surface albedo, fluxes at the bottom and top of the atmosphere as well as instantaneous dust radiative forcing were estimated both from the model and observations. Diurnal cycle of the shortwave instantaneous dust direct radiative forcing was studied for a range of aerosol and surface characteristics representative of the Arabian Peninsula. Mechanisms and parameters responsible for diurnal variability of the radiative forcing were evaluated. We found that intrinsic variability of the surface albedo and its dependence on atmospheric conditions, along with anisotropic aerosol scattering, are mostly responsible for diurnal effects.

  12. Childhood maltreatment and diurnal cortisol patterns in women with chronic pain.

    Science.gov (United States)

    Nicolson, Nancy A; Davis, Mary C; Kruszewski, Denise; Zautra, Alex J

    2010-06-01

    To assess whether alleged childhood maltreatment is associated with daily cortisol secretion in women with chronic pain. Women with fibromyalgia (FM group, n = 35) or with osteoarthritis only (OA group, n = 35) completed diaries and collected three saliva samples daily for 30 days, with compliance monitored electronically. Childhood abuse and neglect were assessed by self-report (Childhood Trauma Questionnaire-short form [CTQ-sf]). Multilevel regression analyses estimated associations between maltreatment and diurnal cortisol levels and slopes, controlling for depressive symptoms, posttraumatic stress disorder (PTSD), and daily experience variables. Women reporting more severe childhood maltreatment had higher cortisol throughout the day. The estimated effect of CTQ on log cortisol (beta = 0.007, p = .001) represents a 0.7% increase in raw cortisol level for every unit increase in maltreatment score, which ranged from 25 (no maltreatment) to 106 in this sample. Although different forms of maltreatment were interrelated, emotional and sexual abuse were most closely linked to cortisol levels. Fibromyalgia and osteoarthritis groups showed similar secretory patterns, and maltreatment was associated with elevated cortisol in both. Although maltreatment was related to symptoms of depression, PTSD, and averaged daily reports of positive and negative affect, none of these variables mediated the link between maltreatment and cortisol. In women with chronic pain, self-reported childhood maltreatment was associated with higher diurnal cortisol levels. These results add to the evidence that abuse in childhood can induce long-term changes in hypothalamic-pituitary-adrenocortical activity. They further underscore the importance of evaluating childhood maltreatment in fibromyalgia and other chronic pain conditions.

  13. Sleep quality and diurnal preference in a sample of young adults: associations with 5HTTLPR, PER3, and CLOCK 3111.

    Science.gov (United States)

    Barclay, Nicola L; Eley, Thalia C; Mill, Jonathan; Wong, Chloe C Y; Zavos, Helena M S; Archer, Simon N; Gregory, Alice M

    2011-09-01

    Research investigating associations between specific genes and individual differences with regards to the quality and timing of sleep has primarily focussed on serotonin-related and clock genes. However, there are only a few studies of this type and most of those to date have not considered the possibility of gene-environment interaction. Here, we describe associations between sleep quality and diurnal preference and three functional polymorphisms: 5HTTLPR, PERIOD3, and CLOCK 3111. Furthermore, we assessed whether associations between genotypes and sleep phenotypes were moderated by negative life events-a test of gene-environment interaction. DNA from buccal swabs was collected from 947 individuals [mean age = 20.3 years (SD = 1.77), age range = 18-27 years; 61.8% female] and genotyped for the three polymorphisms. Participants completed the Pittsburgh Sleep Quality Index and the Morningness-Eveningness Questionnaire. There was a significant main effect of 5HTTLPR on sleep quality, indicating that "long-long" homozygotes experienced significantly poorer sleep quality (mean = 6.35, SD = 3.36) than carriers of at least one "short" allele (mean = 5.67, SD = 2.96; β = -0.34, P = 0.005). There were no main effects of 5HTTLPR on diurnal preference; no main effects of PERIOD3 or CLOCK on sleep quality or diurnal preference; and no significant interactions with negative life events. The main effect of the "long" 5HTTLPR allele contradicts previous research, suggesting that perhaps the effects of this gene are heterogeneous in different populations. Failure to replicate previous research in relation to PERIOD3 and CLOCK concurs with previous research suggesting that the effects of these genes are small and may be related to population composition. Copyright © 2011 Wiley-Liss, Inc.

  14. Sex differences in diurnal rhythms of food intake in mice caused by gonadal hormones and complement of sex chromosomes.

    Science.gov (United States)

    Chen, Xuqi; Wang, Lixin; Loh, Dawn H; Colwell, Christopher S; Taché, Yvette; Reue, Karen; Arnold, Arthur P

    2015-09-01

    We measured diurnal rhythms of food intake, as well as body weight and composition, while varying three major classes of sex-biasing factors: activational and organizational effects of gonadal hormones, and sex chromosome complement (SCC). Four Core Genotypes (FCG) mice, comprising XX and XY gonadal males and XX and XY gonadal females, were either gonad-intact or gonadectomized (GDX) as adults (2.5months); food intake was measured second-by-second for 7days starting 5weeks later, and body weight and composition were measured for 22weeks thereafter. Gonadal males weighed more than females. GDX increased body weight/fat of gonadal females, but increased body fat and reduced body weight of males. After GDX, XX mice had greater body weight and more fat than XY mice. In gonad-intact mice, males had greater total food intake and more meals than females during the dark phase, but females had more food intake and meals and larger meals than males during the light phase. GDX reduced overall food intake irrespective of gonad type or SCC, and eliminated differences in feeding between groups with different gonads. Diurnal phase of feeding was influenced by all three sex-biasing variables. Gonad-intact females had earlier onset and acrophase (peak) of feeding relative to males. GDX caused a phase-advance of feeding, especially in XX mice, leading to an earlier onset of feeding in GDX XX vs. XY mice, but earlier acrophase in GDX males relative to females. Gonadal hormones and SCC interact in the control of diurnal rhythms of food intake. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N

    1996-01-01

    in 2, 3 diphosphoglycerate. After 64 h at altitude, six of the nine subjects had down-regulated their serum-EPO concentrations so that median values were three times above those at sea level. These six subjects had significant diurnal variations of serum-EPO concentration at sea level; the nadir...

  16. Circadian variation of melatonin, light exposure, and diurnal preference in day and night shift workers of both sexes.

    Science.gov (United States)

    Papantoniou, Kyriaki; Pozo, Oscar J; Espinosa, Ana; Marcos, Josep; Castaño-Vinyals, Gemma; Basagaña, Xavier; Ribas, Ferran Calduch; Mirabent, Joan; Martín, Jordi; Carenys, Gemma; Martín, Celia Reyes; Middleton, Benita; Skene, Debra J; Kogevinas, Manolis

    2014-07-01

    Light-at-night has been shown in experimental studies to disrupt melatonin production but this has only partly been confirmed in studies of night shift workers. In this cross-sectional study, we examined the circadian variation of melatonin in relation to shift status, individual levels of light-at-night exposure, and diurnal preference, an attribute reflecting personal preference for activity in the morning or evening. One hundred and seventeen workers (75 night and 42 day) of both sexes, ages 22 to 64 years, were recruited from four companies. Participants collected urine samples from all voids over 24 hours and wore a data logger continuously recording their light exposure. Sociodemographic, occupational, lifestyle, and diurnal preference information were collected by interview. Concentrations of urinary 6-sulfatoxymelatonin (aMT6s), the main melatonin metabolite, were measured. Mean aMT6s levels were lower in night [10.9 ng/mg creatinine/hour; 95% confidence interval (CI), 9.5-12.6] compared with day workers (15.4; 95% CI, 12.3-19.3). The lowest aMT6s levels were observed in night workers with morning preference (6.4; 95% CI, 3.0-13.6). Peak time of aMT6s production occurred 3 hours later in night (08:42 hour, 95% CI, 07:48-09:42) compared with day workers (05:36 hour, 95% CI, 05:06-06:12). Phase delay was stronger among subjects with higher light-at-night exposure and number of nights worked. Night shift workers had lower levels and a delay in peak time of aMT6s production over a 24-hour period. Differences were modified by diurnal preference and intensity of light-at-night exposure. Night shift work affects levels and timing of melatonin production and both parameters may relate to future cancer risk. ©2014 American Association for Cancer Research.

  17. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  18. Water advisory demand evaluation and resource toolkit

    OpenAIRE

    Paluszczyszyn, D.; Illya, S.; Goodyer, E.; Kubrycht, T.; Ambler, M.

    2016-01-01

    Cities are living organisms, 24h / 7day, with demands on resources and outputs. Water is a key resource whose management has not kept pace with modern urban life. Demand for clean water and loads on waste water no longer fit diurnal patterns; and they are impacted by events that are outside the normal range of parameters that are taken account of in water management. This feasibility study will determine how the application of computational intelligence can be used to analyse a mix of dat...

  19. Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

    Science.gov (United States)

    Chen, H.; Zou, X.; Qin, Z.

    2018-03-01

    Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polarorbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Intersensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A.We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998-2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECTamong different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.

  20. Solar diurnal anisotropy measured using muons in GRAPES-3 ...

    Indian Academy of Sciences (India)

    The mean energy of muons at sea level is ∼4 GeV with a rel- .... of decays of mesons and muons work against each other resulting in temperature coef- ..... The mean muon rate of 16 modules measured every 15 min for one week interval from .... 4. 8. 12. 16. 20. 24. Hours. Figure 12. Solar diurnal anisotropy measured in ...

  1. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    Science.gov (United States)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  2. Relative roles of emissions and meteorology in the diurnal pattern of urban PM10: analysis of the daylight saving time effect.

    Science.gov (United States)

    Muñoz, Ricardo C

    2012-06-01

    Daylight saving time (DST) is a common practice in many countries, in which Official Time (OT) is abruptly shifted 1 hour with respect to solar time on two occasions every year (in fall and spring). All anthropogenic emitting processes tied to OT like job and school commuting traffic, abruptly change in this moment their timing with respect to solar time, inducing a sudden shift between emissions and the meteorological factors that control the dispersion and transport of air pollutants. Analyzing 13 years of hourly particulate matter (PM10) concentrations measured in Santiago, Chile, we demonstrate that the DST practice has observable non-trivial effects in the PM10 diurnal cycle. The clearest impact is in the morning peak of PM10 during the fall DST change, which occurs later and has on average a significant smaller magnitude in the days after the DST change as compared to the days before it. This decrease in magnitude is most remarkable because it occurs in a period of the year when overall PM10 concentrations increase due to generally worsening of the dispersion conditions. Results are shown for seven monitoring stations around the city, and for the fall and spring DST changes. They show clearly the interplay of emissions and meteorology in conditioning urban air pollution problems, highlighting the role of the morning and evening transitions of the atmospheric boundary layer in shaping the diurnal pattern of urban air pollutant concentrations.

  3. The impact of diurnal variations of air traffic on contrail radiative forcing

    Directory of Open Access Journals (Sweden)

    N. Stuber

    2007-06-01

    Full Text Available We combined high resolution aircraft flight data from the EU Fifth Framework Programme project AERO2k with analysis data from the ECMWF's integrated forecast system to calculate diurnally resolved 3-D contrail cover. We scaled the contrail cover in order to match observational data for the Bakan area (eastern-Atlantic/western-Europe.

    We found that less than 40% of the global distance travelled by aircraft is due to flights during local night time. Yet, due to the cancellation of shortwave and longwave effects during daytime, night time flights contribute a disproportional 60% to the global annual mean forcing. Under clear sky conditions the night flights contribute even more disproportionally at 76%. There are pronounced regional variations in night flying and the associated radiative forcing. Over parts of the North Atlantic flight corridor 75% of air traffic and 84% of the forcing occurs during local night, whereas only 35% of flights are during local night in South-East Asia, yet these contribute 68% of the radiative forcing. In general, regions with a significant local contrail radiative forcing are also regions for which night time flights amount to less than half of the daily total of flights. Therefore, neglecting diurnal variations in air traffic/contrail cover by assuming a diurnal mean contrail cover can over-estimate the global mean radiative forcing by up to 30%.

  4. Evaluation of Multiple Mechanistic Hypotheses of Leaf Photosynthesis and Stomatal Conductance against Diurnal and Seasonal Data from Two Contrasting Panamanian Tropical Forests

    Science.gov (United States)

    Serbin, S.; Walker, A. P.; Wu, J.; Ely, K.; Rogers, A.; Wolfe, B.

    2017-12-01

    Tropical forests play a key role in regulating the global carbon (C), water, and energy cycles and stores, as well as influence climate through the exchanges of mass and energy with the atmosphere. However, projected changes in temperature and precipitation patterns are expected to impact the tropics and the strength of the tropical C sink, likely resulting in significant climate feedbacks. Moreover, the impact of stronger, longer, and more extensive droughts not well understood. Critical for the accurate modeling of the tropical C and water cycle in Earth System Models (ESMs) is the representation of the coupled photosynthetic and stomatal conductance processes and how these processes are impacted by environmental and other drivers. Moreover, the parameterization and representation of these processes is an important consideration for ESM projections. We use a novel model framework, the Multi-Assumption Architecture and Testbed (MAAT), together with the open-source bioinformatics toolbox, the Predictive Ecosystem Analyzer (PEcAn), to explore the impact of the multiple mechanistic hypotheses of coupled photosynthesis and stomatal conductance as well as the additional uncertainty related to model parameterization. Our goal was to better understand how model choice and parameterization influences diurnal and seasonal modeling of leaf-level photosynthesis and stomatal conductance. We focused on the 2016 ENSO period and starting in February, monthly measurements of diurnal photosynthesis and conductance were made on 7-9 dominant species at the two Smithsonian canopy crane sites. This benchmark dataset was used to test different representations of stomatal conductance and photosynthetic parameterizations with the MAAT model, running within PEcAn. The MAAT model allows for the easy selection of competing hypotheses to test different photosynthetic modeling approaches while PEcAn provides the ability to explore the uncertainties introduced through parameterization. We

  5. A stochastic differential equation model of diurnal cortisol patterns

    Science.gov (United States)

    Brown, E. N.; Meehan, P. M.; Dempster, A. P.

    2001-01-01

    Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.

  6. The effect of the number of consecutive night shifts on diurnal rhythms in cortisol, melatonin and heart rate variability (HRV)

    DEFF Research Database (Denmark)

    Jensen, Marie Aarrebo; Garde, Anne Helene; Kristiansen, Jesper

    2016-01-01

    PURPOSE: The purpose of this review is to summarize the current knowledge from field studies on how many consecutive night shifts are required for adaptation of diurnal rhythms in cortisol, melatonin and heart rate variability (HRV) to night work. METHODS: A systematic search of the databases Pub...... recordings for HRV. Most of the studies in the review were small studies with less than 30 participants, and most studies evaluated diurnal rhythms after only two consecutive night shifts whereas only six studies used seven or more consecutive night shifts. The majority of studies found that adaptation...... to night work had not occurred after two consecutive night shifts, whereas a small number found evidence for full adaptation after seven consecutive night shifts based on diurnal rhythms in cortisol and melatonin. CONCLUSION: There are methodological differences in the field studies analyzing diurnal...

  7. Diurnal Variation of Tropical Ice Cloud Microphysics inferred from Global Precipitation Measurement Microwave Imager (GPM-GMI)'s Polarimetric Measurement

    Science.gov (United States)

    Gong, J.; Zeng, X.; Wu, D. L.; Li, X.

    2017-12-01

    Diurnal variation of tropical ice cloud has been well observed and examined in terms of the area of coverage, occurring frequency, and total mass, but rarely on ice microphysical parameters (habit, size, orientation, etc.) because of lack of direct measurements of ice microphysics on a high temporal and spatial resolutions. This accounts for a great portion of the uncertainty in evaluating ice cloud's role on global radiation and hydrological budgets. The design of Global Precipitation Measurement (GPM) mission's procession orbit gives us an unprecedented opportunity to study the diurnal variation of ice microphysics on the global scale for the first time. Dominated by cloud ice scattering, high-frequency microwave polarimetric difference (PD, namely the brightness temperature difference between vertically- and horizontally-polarized paired channel measurements) from the GPM Microwave Imager (GMI) has been proven by our previous study to be very valuable to infer cloud ice microphysical properties. Using one year of PD measurements at 166 GHz, we found that cloud PD exhibits a strong diurnal cycle in the tropics (25S-25N). The peak PD amplitude varies as much as 35% over land, compared to only 6% over ocean. The diurnal cycle of the peak PD value is strongly anti-correlated with local ice cloud occurring frequency and the total ice mass with a leading period of 3 hours for the maximum correlation. The observed PD diurnal cycle can be explained by the change of ice crystal axial ratio. Using a radiative transfer model, we can simulate the observed 166 GHz PD-brightness temperature curve as well as its diurnal variation using different axial ratio values, which can be caused by the diurnal variation of ice microphysical properties including particle size, percentage of horizontally-aligned non-spherical particles, and ice habit. The leading of the change of PD ahead of ice cloud mass and occurring frequency implies the important role microphysics play in the

  8. Salivary alpha amylase diurnal pattern and stress response are associated with body mass index in low-income preschool-aged children.

    Science.gov (United States)

    Miller, Alison L; Sturza, Julie; Rosenblum, Katherine; Vazquez, Delia M; Kaciroti, Niko; Lumeng, Julie C

    2015-03-01

    Physiological stress responses are proposed as a pathway through which stress can "get under the skin" and lead to health problems, specifically obesity. We tested associations of salivary alpha amylase (sAA) diurnal patterns and stress responses with body mass index (BMI) in young, low-income children (51% male; 54% non-Hispanic white). Diurnal saliva samples were collected three times per day across three days for 269 children (M age 50.8 months, SD 6.3). Individual sAA intercept and slope values were calculated using random effect models to represent morning sAA levels and rate of sAA change across the day. A subset of children (n=195; M age 56.6 months, SD 6.9) participated in a lab-based behavioral stress protocol. Area under the curve increase (AUCI) across four timepoints was calculated to represent increase in sAA output during stress elicitation. Children were weighed and height measured and BMI z-score was calculated. Linear regression was used to evaluate associations of sAA intercept, sAA slope, and sAA AUCI with BMI z-score, controlling for child age, sex, and race/ethnicity; maternal weight status; and family income-to-needs ratio. Diurnal and stress-response sAA patterns were related to child adiposity: for each 1-standard deviation unit (SDU) decrease in morning sAA level, the child's BMI z-score increased by 0.11 (SE 0.05) SDU's (pstress elicitation, the child's BMI z-score increased by 0.14 (SE 0.06) SDU's (pstress responses and atypical diurnal patterns of sAA have been found following exposure to chronic life stressors such as poverty. Findings suggest that associations of stress, sAA, and elevated body mass index may develop very early in the lifespan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Ten-Year Climatology of Summertime Diurnal Rainfall Rate Over the Conterminous U.S.

    Science.gov (United States)

    Matsui, Toshihisa; Mocko, David; Lee, Myong-In; Tao, Wei-Kuo; Suarez, Max J.; Pielke, Roger A., Sr.

    2010-01-01

    Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.

  10. Epidemicity thresholds for water-borne and water-related diseases.

    Science.gov (United States)

    Mari, Lorenzo; Casagrandi, Renato; Rinaldo, Andrea; Gatto, Marino

    2018-06-14

    Determining the conditions that favor pathogen establishment in a host community is key to disease control and eradication. However, focusing on long-term dynamics alone may lead to an underestimation of the threats imposed by outbreaks triggered by short-term transient phenomena. Achieving an effective epidemiological response thus requires to look at different timescales, each of which may be endowed with specific management objectives. In this work we aim to determine epidemicity thresholds for some prototypical examples of water-borne and water-related diseases, a diverse family of infections transmitted either directly through water infested with pathogens or by vectors whose lifecycles are closely associated with water. From a technical perspective, while conditions for endemicity are determined via stability analysis, epidemicity thresholds are defined through generalized reactivity analysis, a recently proposed method that allows the study of the short-term instability properties of ecological systems. Understanding the drivers of water-borne and water-related disease dynamics over timescales that may be relevant to epidemic and/or endemic transmission is a challenge of the utmost importance, as large portions of the developing world are still struggling with the burden imposed by these infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The diurnal variation in urine acidification differs between normal individuals and uric acid stone formers

    Science.gov (United States)

    Cameron, Mary Ann; Maalouf, Naim M.; Poindexter, John; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W.

    2012-01-01

    Many biologic functions follow circadian rhythms driven by internal and external cues that synchronize and coordinate organ physiology to diurnal changes in the environment and behavior. Urinary acid-base parameters follow diurnal patterns and it is thought these changes are due to periodic surges in gastric acid secretion. Abnormal urine pH is a risk factor for specific types of nephrolithiasis and uric acid stones are typical of excessively low urine pH. Here we placed 9 healthy volunteers and 10 uric acid stone formers on fixed metabolic diets to study the diurnal pattern of urinary acidification. All showed clear diurnal trends in urinary acidification but none of the patterns were affected by inhibitors of the gastric proton pump. Uric acid stone formers had similar patterns of change through the day but their urine pH was always lower compared to healthy volunteers. Uric acid stone formers excreted more acid (normalized to acid ingestion) with the excess excreted primarily as titratable acid rather than ammonium. Urine base excretion was also lower in uric acid stone formers (normalized to base ingestion) along with lower plasma bicarbonate concentrations during part of the day. Thus, increased net acid presentation to the kidney and the preferential use of buffers, other than ammonium, result in much higher concentrations of un-dissociated uric acid throughout the day and consequently an increased risk of uric acid stones. PMID:22297671

  12. Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent.

    Science.gov (United States)

    Jha, Pawan Kumar; Bouâouda, Hanan; Gourmelen, Sylviane; Dumont, Stephanie; Fuchs, Fanny; Goumon, Yannick; Bourgin, Patrice; Kalsbeek, Andries; Challet, Etienne

    2017-04-19

    Circadian rhythms in nocturnal and diurnal mammals are primarily synchronized to local time by the light/dark cycle. However, nonphotic factors, such as behavioral arousal and metabolic cues, can also phase shift the master clock in the suprachiasmatic nuclei (SCNs) and/or reduce the synchronizing effects of light in nocturnal rodents. In diurnal rodents, the role of arousal or insufficient sleep in these functions is still poorly understood. In the present study, diurnal Sudanian grass rats, Arvicanthis ansorgei , were aroused at night by sleep deprivation (gentle handling) or caffeine treatment that both prevented sleep. Phase shifts of locomotor activity were analyzed in grass rats transferred from a light/dark cycle to constant darkness and aroused in early night or late night. Early night, but not late night, sleep deprivation induced a significant phase shift. Caffeine on its own induced no phase shifts. Both sleep deprivation and caffeine treatment potentiated light-induced phase delays and phase advances in response to a 30 min light pulse, respectively. Sleep deprivation in early night, but not late night, potentiated light-induced c-Fos expression in the ventral SCN. Caffeine treatment in midnight triggered c-Fos expression in dorsal SCN. Both sleep deprivation and caffeine treatment potentiated light-induced c-Fos expression in calbindin-containing cells of the ventral SCN in early and late night. These findings indicate that, in contrast to nocturnal rodents, behavioral arousal induced either by sleep deprivation or caffeine during the sleeping period potentiates light resetting of the master circadian clock in diurnal rodents, and activation of calbindin-containing suprachiasmatic cells may be involved in this effect. SIGNIFICANCE STATEMENT Arousing stimuli have the ability to regulate circadian rhythms in mammals. Behavioral arousal in the sleeping period phase shifts the master clock in the suprachiasmatic nuclei and/or slows down the photic

  13. Hydrology, water resources and the epidemiology of water-related diseases

    Science.gov (United States)

    Bertuzzo, Enrico; Mari, Lorenzo

    2017-10-01

    Water-borne and water-based diseases are infections in which the causative agent (or one of its hosts) spends at least part of its lifecycle in water [1]. They still represent a major threat to human health, especially in the developing world. As an example, diarrhoea, commonly linked to water-borne diseases like cholera, is responsible for the death of about 525,000 children under five every year (out of nearly 1.7 billion cases globally), thus representing one of the leading causes of death among infants and children in low-income countries [2]. A wide range of micro- (protozoa, bacteria, viruses, algae) and macro-parasites (mostly flatworms and roundworms) is associated with water-borne and water-based diseases. Infection is generally caused by ingestion of, or exposure to, contaminated water, and is thus tightly linked to water excess, scarcity, availability or quality. More broadly, the term water-related diseases may also include vector-borne infections in which the ecology of the vector population is closely related to the presence of environmental water. This is the case, for instance, of mosquitoes acting as vectors of deadly diseases like malaria, dengue fever and yellow fever. Malaria alone exacted a toll of 429,000 deaths in 2015 (out of 212 million cases globally), according to the latest WHO estimates [3].

  14. Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere

    Science.gov (United States)

    Bjarnason, Gudmundur G.; Solomon, Susan; Garcia, Rolando R.

    1987-01-01

    Possible dynamical influences on the diurnal behavior of ozone are investigated. A time dependent one-dimensional photochemical model is developed for this purpose; all model calculations are made at 70 deg N during summer. It is shown that the vertical diffusion can vary as much as 1 order of magnitude within a day as a result of large changes in the zonal wind induced by atmospheric thermal tides. It is found that by introducing a dissipation time scale for turbulence produced by breaking gravity waves, the agreement with Poker Flat echo data is improved. Comparisons of results from photochemical model calculations, where the vertical diffusion is a function of height only, with those in which the vertical diffusion coefficient is changing in time show large differences in the diurnal behavior of ozone between 70 and 90 km. By including the dynamical effect, much better agreement with the Solar Mesosphere Explorers data is obtained. The results are, however, sensitive to the background zonally averaged wind. The influence of including time-varying vertical diffusion coefficient on the OH densities is also large, especially between 80 and 90 km. This suggests that dynamical effects are important in determining the diurnal behavior of the airglow emission from the Meinel bands.

  15. [Effects of diurnal warming on soil N2O emission in soybean field].

    Science.gov (United States)

    Hu, Zheng-Hua; Zhou, Ying-Ping; Cui, Hai-Ling; Chen, Shu-Tao; Xiao, Qi-Tao; Liu, Yan

    2013-08-01

    To investigate the impact of experimental warming on N2O emission from soil of soybean field, outdoor experiments with simulating diurnal warming were conducted, and static dark chamber-gas chromatograph method was used to measure N2O emission fluxes. Results indicated that: the diurnal warming did not change the seasonal pattern of N2O emissions from soil. In the whole growing season, comparing to the control treatment (CK), the warming treatment (T) significantly enhanced the N2O flux and the cumulative amount of N2O by 17.31% (P = 0.019), and 20.27% (P = 0.005), respectively. The significant correlations were found between soil N2O emission and soil temperature, moisture. The temperature sensitivity values of soil N2O emission under CK and T treatments were 3.75 and 4.10, respectively. In whole growing stage, T treatment significantly increased the crop aboveground and total biomass, the nitrate reductase activity, and total nitrogen in leaves, while significantly decreased NO3(-) -N content in leaves. T treatment significantly increased soil NO3(-) -N content, but had no significant effect on soil organic carbon and total nitrogen contents. The results of this study suggested that diurnal warming enhanced N2O emission from soil in soybean field.

  16. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Anita, E-mail: anita.balakrishnan@doctors.org.uk [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); School of Clinical Sciences, Division of Gastroenterology, University of Liverpool, Liverpool L69 3GE (United Kingdom); Stearns, Adam T. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 2JD (United Kingdom); Park, Peter J. [Department of Medicine, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Harvard Medical School, Center for Biomedical Informatics, Boston, MA 02115 (United States); Dreyfuss, Jonathan M. [Department of Medicine, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Ashley, Stanley W. [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Rhoads, David B. [Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States); Pediatric Endocrine Unit, MassGeneral Hospital for Children, Boston, MA 02114 (United States); Tavakkolizadeh, Ali, E-mail: atavakkoli@partners.org [Department of Surgery, Brigham and Women' s Hospital, Boston, MA 02115 (United States); Department of Surgery, Harvard Medical School, Boston, MA 02115 (United States)

    2010-12-10

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  17. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts

    International Nuclear Information System (INIS)

    Balakrishnan, Anita; Stearns, Adam T.; Park, Peter J.; Dreyfuss, Jonathan M.; Ashley, Stanley W.; Rhoads, David B.; Tavakkolizadeh, Ali

    2010-01-01

    Background and aims: The intestine exhibits profound diurnal rhythms in function and morphology, in part due to changes in enterocyte proliferation. The regulatory mechanisms behind these rhythms remain largely unknown. We hypothesized that microRNAs are involved in mediating these rhythms, and studied the role of microRNAs specifically in modulating intestinal proliferation. Methods: Diurnal rhythmicity of microRNAs in rat jejunum was analyzed by microarrays and validated by qPCR. Temporal expression of diurnally rhythmic mir-16 was further quantified in intestinal crypts, villi, and smooth muscle using laser capture microdissection and qPCR. Morphological changes in rat jejunum were assessed by histology and proliferation by immunostaining for bromodeoxyuridine. In IEC-6 cells stably overexpressing mir-16, proliferation was assessed by cell counting and MTS assay, cell cycle progression and apoptosis by flow cytometry, and cell cycle gene expression by qPCR and immunoblotting. Results: mir-16 peaked 6 hours after light onset (HALO 6) with diurnal changes restricted to crypts. Crypt depth and villus height peaked at HALO 13-14 in antiphase to mir-16. Overexpression of mir-16 in IEC-6 cells suppressed specific G1/S regulators (cyclins D1-3, cyclin E1 and cyclin-dependent kinase 6) and produced G1 arrest. Protein expression of these genes exhibited diurnal rhythmicity in rat jejunum, peaking between HALO 11 and 17 in antiphase to mir-16. Conclusions: This is the first report of circadian rhythmicity of specific microRNAs in rat jejunum. Our data provide a link between anti-proliferative mir-16 and the intestinal proliferation rhythm and point to mir-16 as an important regulator of proliferation in jejunal crypts. This function may be essential to match proliferation and absorptive capacity with nutrient availability.

  18. Genetic architecture of local adaptation in lunar and diurnal emergence times of the marine midge Clunio marinus (Chironomidae, Diptera).

    Science.gov (United States)

    Kaiser, Tobias S; Heckel, David G

    2012-01-01

    Circadian rhythms pre-adapt the physiology of most organisms to predictable daily changes in the environment. Some marine organisms also show endogenous circalunar rhythms. The genetic basis of the circalunar clock and its interaction with the circadian clock is unknown. Both clocks can be studied in the marine midge Clunio marinus (Chironomidae, Diptera), as different populations have different local adaptations in their lunar and diurnal rhythms of adult emergence, which can be analyzed by crossing experiments. We investigated the genetic basis of population variation in clock properties by constructing the first genetic linkage map for this species, and performing quantitative trait locus (QTL) analysis on variation in both lunar and diurnal timing. The genome has a genetic length of 167-193 centimorgans based on a linkage map using 344 markers, and a physical size of 95-140 megabases estimated by flow cytometry. Mapping the sex determining locus shows that females are the heterogametic sex, unlike most other Chironomidae. We identified two QTL each for lunar emergence time and diurnal emergence time. The distribution of QTL confirms a previously hypothesized genetic basis to a correlation of lunar and diurnal emergence times in natural populations. Mapping of clock genes and light receptors identified ciliary opsin 2 (cOps2) as a candidate to be involved in both lunar and diurnal timing; cryptochrome 1 (cry1) as a candidate gene for lunar timing; and two timeless (tim2, tim3) genes as candidate genes for diurnal timing. This QTL analysis of lunar rhythmicity, the first in any species, provides a unique entree into the molecular analysis of the lunar clock.

  19. Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment

    DEFF Research Database (Denmark)

    Christensen, Kim; Hounyo, Ulrich; Podolskij, Mark

    In this paper, we propose a nonparametric way to test the hypothesis that time-variation in intraday volatility is caused solely by a deterministic and recurrent diurnal pattern. We assume that noisy high-frequency data from a discretely sampled jump-diffusion process are available. The test...... inference, we propose a new bootstrap approach, which leads to almost correctly sized tests of the null hypothesis. We apply the developed framework to a large cross-section of equity high-frequency data and find that the diurnal pattern accounts for a rather significant fraction of intraday variation...

  20. Modelled and Observed Diurnal SST Signals: "SSTDV:R.EX.-IM.A.M." Project Preliminary Results

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob; LeBorgne, Pierre

    2013-01-01

    This study presents some of the preliminary results from the ESA Support To Science Element (STSE) funded project on the Diurnal Variability of the Sea Surface Temperature, regarding its Regional Extend and Implications in Atmospheric Modelling (SSTDV:R.EX.–IM.A.M.). During this phase of the proj......This study presents some of the preliminary results from the ESA Support To Science Element (STSE) funded project on the Diurnal Variability of the Sea Surface Temperature, regarding its Regional Extend and Implications in Atmospheric Modelling (SSTDV:R.EX.–IM.A.M.). During this phase...

  1. Seasonal and diurnal dependence of Pc 3-5 magnetic pulsation power at geomagnetically conjugate stations in the auroral zones

    International Nuclear Information System (INIS)

    Saito, Hiroaki; Sato, Natsuo; Tonegawa, Yutaka; Yoshino, Takeo; Saemundsson, T.

    1989-01-01

    Seasonal and diurnal variations of Pc 3-5 magnetic pulsation powers have been examined using 2 years of magnetic data from geomagnetically conjugate stations, Syowa in Antarctica and Husafell and Tjoernes in Iceland. The magnetic pulsation powers are found to be relatively higher at the winter hemisphere station than at the summer station. The pulsations observed during equinox show a diurnal dependence, i.e., that the power density is higher in the geomagnetic morning at the stations in Iceland than at Syowa, and this relationship is reversed in the afternoon. The power density ratio of Pc 3 pulsations between the conjugate stations, which is associated with the seasons and with local time, is higher than that of Pc 5. These characteristics can be attributed to the effects of sunlight in the ionosphere, i.e., Pc 3-5 pulsations are shielded when the waves propagate from the magnetosphere to the ground through the sunlit ionosphere

  2. ANALYSIS THE DIURNAL VARIATIONS ON SELECTED PHYSICAL AND PHYSIOLOGICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    A. MAHABOOBJAN

    2010-12-01

    Full Text Available The purpose of the study was to analyze the diurnal variations on selected physical and physiological parameters such as speed, explosive power, resting heart rate and breath holding time among college students. To achieve the purpose of this study, a total of twenty players (n=20 from Government Arts College, Salem were selected as subjects To study the diurnal variation of the players on selected physiological and performance variables, the data were collected 4 times a day with every four hours in between the times it from 6.00 to 18.00 hours were selected as another categorical variable. One way repeated measures (ANOVA was used to analyze the data. If the obtained F-ratio was significant, Seheffe’s post-hoc test was used to find out the significant difference if anyamong the paired means. The level of significance was fixed at.05 level. It has concluded that both physical and physiological parameters were significantly deferred with reference to change of temperature in a day

  3. On the Diurnal Periodicity of Representative Earthquakes in Greece: Comparison of Data from Different Observation Systems

    Science.gov (United States)

    Desherevskii, A. V.; Sidorin, A. Ya.

    2017-12-01

    Due to the initiation of the Hellenic Unified Seismic Network (HUSN) in late 2007, the quality of observation significantly improved by 2011. For example, the representative magnitude level considerably has decreased and the number of annually recorded events has increased. The new observational system highly expanded the possibilities for studying regularities in seismicity. In view of this, the authors revisited their studies of the diurnal periodicity of representative earthquakes in Greece that was revealed earlier in the earthquake catalog before 2011. We use 18 samples of earthquakes of different magnitudes taken from the catalog of Greek earthquakes from 2011 to June 2016 to derive a series of the number of earthquakes for each of them and calculate its average diurnal course. To increase the reliability of the results, we compared the data for two regions. With a high degree of statistical significance, we have obtained that no diurnal periodicity can be found for strongly representative earthquakes. This finding differs from the estimates obtained earlier from an analysis of the catalog of earthquakes at the same area for 1995-2004 and 2005-2010, i.e., before the initiation of the Hellenic Unified Seismic Network. The new results are consistent with the hypothesis of noise discrimination (observational selection) explaining the cause of the diurnal variation of earthquakes with different sensitivity of the seismic network in daytime and nighttime periods.

  4. Dim nighttime light impairs cognition and provokes depressive-like responses in a diurnal rodent.

    Science.gov (United States)

    Fonken, Laura K; Kitsmiller, Emily; Smale, Laura; Nelson, Randy J

    2012-08-01

    Circadian disruption is a common by-product of modern life. Although jet lag and shift work are well-documented challenges to circadian organization, many more subtle environmental changes cause circadian disruption. For example, frequent fluctuations in the timing of the sleep/wake schedule, as well as exposure to nighttime lighting, likely affect the circadian system. Most studies of these effects have focused on nocturnal rodents, which are very different from diurnal species with respect to their patterns of light exposure and the effects that light can have on their activity. Thus, the authors investigated the effect of nighttime light on behavior and the brain of a diurnal rodent, the Nile grass rat. Following 3 weeks of exposure to standard light/dark (LD; 14:10 light [~150 lux] /dark [0 lux]) or dim light at night (dLAN; 14:10 light [~150 lux] /dim [5 lux]), rats underwent behavioral testing, and hippocampal neurons within CA1, CA3, and the dentate gyrus (DG) were examined. Three behavioral effects of dLAN were observed: (1) decreased preference for a sucrose solution, (2) increased latency to float in a forced swim test, and (3) impaired learning and memory in the Barnes maze. Light at night also reduced dendritic length in DG and basilar CA1 dendrites. Dendritic length in the DG positively correlated with sucrose consumption in the sucrose anhedonia task. Nighttime light exposure did not disrupt the pattern of circadian locomotor activity, and all grass rats maintained a diurnal activity pattern. Together, these data suggest that exposure to dLAN can alter affective responses and impair cognition in a diurnal animal.

  5. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kazuhiko, E-mail: takedaq@hiroshima-u.ac.jp [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Katoh, Shinya; Mitsui, Yumi; Nakano, Shinichi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Nakatani, Nobutake [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan); Department of Environmental and Symbiotic Sciences, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501 (Japan); Sakugawa, Hiroshi [Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521 (Japan)

    2014-09-15

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area.

  6. Spatial distributions of and diurnal variations in low molecular weight carbonyl compounds in coastal seawater, and the controlling factors

    International Nuclear Information System (INIS)

    Takeda, Kazuhiko; Katoh, Shinya; Mitsui, Yumi; Nakano, Shinichi; Nakatani, Nobutake; Sakugawa, Hiroshi

    2014-01-01

    We studied the spatial distributions of and the diurnal variations in four low molecular weight (LMW) carbonyl compounds, formaldehyde, acetaldehyde, propionaldehyde, and glyoxal, in coastal seawater. The samples were taken from the coastal areas of Hiroshima Bay, the Iyo Nada, and the Bungo Channel, western Japan. The formaldehyde, acetaldehyde, and glyoxal concentrations were higher in the northern part of Hiroshima Bay than at offshore sampling points in the Iyo Nada and the Bungo Channel. These three compounds were found at much higher concentrations in the surface water than in deeper water layers in Hiroshima Bay. It is noteworthy that propionaldehyde was not detected in any of the seawater samples, the concentrations present being lower than the detection limit (1 nanomole per liter (nM)) of the high performance liquid chromatography (HPLC) system we used. Photochemical and biological experiments were performed in the laboratory to help understand the characteristic distributions and fates of the LMW carbonyl compounds. The primary process controlling their fate in the coastal environment appears to be their biological consumption. The direct photo degradation of propionaldehyde, initiated by ultraviolet (UV) absorption, was observed, although formaldehyde and acetaldehyde were not degraded by UV irradiation. Our results suggest that the degradation of the LMW carbonyl compounds by photochemically formed hydroxyl radicals is relatively insignificant in the study area. Atmospheric deposition is a possible source of soluble carbonyl compounds in coastal surface seawater, but it may not influence the carbonyl concentrations in offshore waters. - Highlights: • Low molecular weight (LMW) carbonyl compounds in coastal seawater were determined. • Photochemical productions of LMW carbonyl compounds in seawater were observed. • LMW carbonyl compounds were largely consumed biologically. • Photochemical degradation was relatively insignificant in the study area

  7. Ocellar optics in nocturnal and diurnal bees and wasps.

    Science.gov (United States)

    Warrant, Eric J; Kelber, Almut; Wallén, Rita; Wcislo, William T

    2006-12-01

    Nocturnal bees, wasps and ants have considerably larger ocelli than their diurnal relatives, suggesting an active role in vision at night. In a first step to understanding what this role might be, the morphology and physiological optics of ocelli were investigated in three tropical rainforest species - the nocturnal sweat bee Megalopta genalis, the nocturnal paper wasp Apoica pallens and the diurnal paper wasp Polistes occidentalis - using hanging-drop techniques and standard histological methods. Ocellar image quality, in addition to lens focal length and back focal distance, was determined in all three species. During flight, the ocellar receptive fields of both nocturnal species are centred very dorsally, possibly in order to maximise sensitivity to the narrow dorsal field of light that enters through gaps in the rainforest canopy. Since all ocelli investigated had a slightly oval shape, images were found to be astigmatic: images formed by the major axis of the ocellus were located further from the proximal surface of the lens than images formed by the minor axis. Despite being astigmatic, images formed at either focal plane were reasonably sharp in all ocelli investigated. When compared to the position of the retina below the lens, measurements of back focal distance reveal that the ocelli of Megalopta are highly underfocused and unable to resolve spatial detail. This together with their very large and tightly packed rhabdoms suggests a role in making sensitive measurements of ambient light intensity. In contrast, the ocelli of the two wasps form images near the proximal boundary of the retina, suggesting the potential for modest resolving power. In light of these results, possible roles for ocelli in nocturnal bees and wasps are discussed, including the hypothesis that they might be involved in nocturnal homing and navigation, using two main cues: the spatial pattern of bright patches of daylight visible through the rainforest canopy, and compass information

  8. Lack of diurnal rhythm of low molecular weight insulin-like growth factor binding protein in patients with Cushing's disease

    International Nuclear Information System (INIS)

    Degerblad, M.; Povoa, G.; Thoren, M.; Wivall, I.-L.; Hall, K.

    1989-01-01

    A specific radioimmunoassay with antibodies raised against the 25 kD insulin-like growth factor binding protein (25 kD IGFBP) in amniotic fluid was used to measure levels of cross-reacting protein in human serum and plasma. Plasma samples collected continually at 20-min intervals during 24-h in 6 healthy adults revealed a distinct diurnal rhythm in the concentration of 25 kD IGFBP. The lowest levels (9-13 μg/l) were found between 13.00 and 24.00 h with a rise after midnight to maximum levels (23-71 μg/l) between 03.00 and 09.00 h. There was no relation between the patterns of GH and 25 kD IGFBP. In 3 patients with active Cushing's disease, the levels of 25 kD IGFBP in plasma samples collected during 12 h. 19.00-07.00 h, were generally low and without nocturnal variations. One of the patients studied after extirpation of a pituitary adenoma displayed a nocturnal rhythm with maximum levels of 25 kD IGFBP between 03.00 and 07.00 h. Eight patients treated with stereotactic pituitary irradiation owing to Cushing's disease also showed a distinct nocturnal increase of 25 kD IGFBP. The results indicate the existence of a diurnal rhythm of 25 kD IGFBP in adults. Further, low levels and lack of diurnal rhythm of 25 kD IGFBP are demonstrated in Cushing's disease. (author)

  9. The diurnal vertical dynamics of cape hake and their potential prey ...

    African Journals Online (AJOL)

    cephalopods. Together with their cohabitant potential prey, hake are known to undertake diurnal vertical migrations, aggregating near the bottom during daylight, but migrating off the bottom at night. An attempt to determine the ... predation dominating. This may indicate a feeding strategy where vision is not important.

  10. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes

    Science.gov (United States)

    Bidirectional air–surface exchange of ammonia (NH3) has been neglected in many air quality models. In this study, we implement the bidirectional exchange of NH3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for NH3...

  11. Nocturnal to Diurnal Switches with Spontaneous Suppression of Wheel-Running Behavior in a Subterranean Rodent.

    Directory of Open Access Journals (Sweden)

    Patricia Tachinardi

    Full Text Available Several rodent species that are diurnal in the field become nocturnal in the lab. It has been suggested that the use of running-wheels in the lab might contribute to this timing switch. This proposition is based on studies that indicate feed-back of vigorous wheel-running on the period and phase of circadian clocks that time daily activity rhythms. Tuco-tucos (Ctenomys aff. knighti are subterranean rodents that are diurnal in the field but are robustly nocturnal in laboratory, with or without access to running wheels. We assessed their energy metabolism by continuously and simultaneously monitoring rates of oxygen consumption, body temperature, general motor and wheel running activity for several days in the presence and absence of wheels. Surprisingly, some individuals spontaneously suppressed running-wheel activity and switched to diurnality in the respirometry chamber, whereas the remaining animals continued to be nocturnal even after wheel removal. This is the first report of timing switches that occur with spontaneous wheel-running suppression and which are not replicated by removal of the wheel.

  12. Nocturnal to Diurnal Switches with Spontaneous Suppression of Wheel-Running Behavior in a Subterranean Rodent

    Science.gov (United States)

    Tachinardi, Patricia; Tøien, Øivind; Valentinuzzi, Veronica S.; Buck, C. Loren; Oda, Gisele A.

    2015-01-01

    Several rodent species that are diurnal in the field become nocturnal in the lab. It has been suggested that the use of running-wheels in the lab might contribute to this timing switch. This proposition is based on studies that indicate feed-back of vigorous wheel-running on the period and phase of circadian clocks that time daily activity rhythms. Tuco-tucos (Ctenomys aff. knighti) are subterranean rodents that are diurnal in the field but are robustly nocturnal in laboratory, with or without access to running wheels. We assessed their energy metabolism by continuously and simultaneously monitoring rates of oxygen consumption, body temperature, general motor and wheel running activity for several days in the presence and absence of wheels. Surprisingly, some individuals spontaneously suppressed running-wheel activity and switched to diurnality in the respirometry chamber, whereas the remaining animals continued to be nocturnal even after wheel removal. This is the first report of timing switches that occur with spontaneous wheel-running suppression and which are not replicated by removal of the wheel. PMID:26460828

  13. Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

    Science.gov (United States)

    Shamanaeva, L. G.; Krasnenko, N. P.; Kapegesheva, O. F.

    2018-04-01

    Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1-1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

  14. Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

    Directory of Open Access Journals (Sweden)

    Jana Stöckel

    Full Text Available Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.

  15. Potential influence of thermal effluents on the production and water-use efficiency of mangrove species in South Florida

    International Nuclear Information System (INIS)

    Miller, P.C.; Stoner, W.A.; Hom, J.; Poole, D.K.

    1976-01-01

    Data on mangrove-water relations and photosynthesis and energy-balance relationships between solar and infrared radiation, wind, air and surface temperature, and humidity profiles in mangrove canopies in south Florida were synthesized in a simulation model of leaf energy exchange, water relations, and photosynthesis. The model calculates the diurnal courses of these processes for sunlit and shaded leaves at different levels in the canopy. The model includes only canopy microclimate interaction and does not include the possible effects of changing root temperatures. The data on which model parameters are based are reviewed, and results of simulated changes in air and ground-surface temperature are discussed. Changes in ground-surface temperature showed little effect. Several trends and patterns appear in the simulations. Daily net photosynthesis is suppressed throughout the year by air temperatures over 5 0 C above ambient. Peak production occurs in spring when solar irradiance is high and air temperatures are moderate. Increased air temperatures shift the diurnal pattern of photosynthesis in winter, when maximum photosynthesis occurs at midday, to the pattern of summer, when maximum photosynthesis occurs in early morning and late afternoon. Increased temperatures are expected to affect Rhizophora mangle most adversely, but photosynthesis in Laguncularia racemosa showed the greatest sensitivity to temperature changes

  16. Seasonal variations of the semi-diurnal and diurnal tides in the MLT: multi-year MF radar observations from 2 to 70°N, and the GSWM tidal model

    Science.gov (United States)

    Manson, A.; Meek, C.; Hagan, M.; Hall, C.; Hocking, W.; MacDougall, J.; Franke, S.; Riggin, D.; Fritts, D.; Vincent, R.; Burrage, M.

    1999-07-01

    Continuous observations of the wind field have been made by six Medium Frequency Radars (MFRs), located between the equator and high northern latitudes: Christmas Islands (2°N), Hawaii (22°N), Urbana (40°N), London (43°N), Saskatoon (52°N) and Tromsø (70°N). Data have been sought for the time interval 1990-1997, and typically 5 years of data have become available from each station, to demonstrate the level of annual consistency and variability. Common harmonic analysis is applied so that the monthly amplitudes and phases of the semi-diurnal (SD) and diurnal (D) wind oscillations are available in the height range of (typically) 75-95 km in the upper Middle Atmosphere. Comparisons are made with tides from the Global Scale Wave Model (GSWM), which are available for 3-month seasons. The emphasis is upon the monthly climatologies at each location based upon comparisons of profiles, and also latitudinal plots of amplitudes and phases at particular heights. For the diurnal tide, the agreement between observations and model is now quite excellent with modelled values frequently lying within the range of yearly values. Both observations and model demonstrate strong seasonal changes. This result is a striking improvement over the comparisons of 1989 (JATP, Special issue). In particular, the phases and phase-gradients for the non-winter months at mid- to high-latitudes are now in excellent agreement. Some of the low latitude discrepancies are attributed to the existence of non-migrating tidal components associated with tropospheric latent heat release. For the semi-diurnal tide, the observed strong transitions between clear solstitial states are less well captured by the model. There is little evidence for improvement over the promising comparisons of 1989. In particular, the late-summer/autumnal tidal maximum of mid-latitudes is observed to be larger, and with strong monthly variability. Also the summer modelled tide has unobserved short (20 km) wavelengths at high

  17. Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myung-Sook; Elsberry, Russell L. [Naval Postgraduate School, Department of Meteorology, Monterey, CA (United States); Ho, Chang-Hoi [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea, Republic of); Kim, Jinwon [University of California in Los Angeles, Department of Meteorology, Berkeley, CA (United States)

    2011-10-15

    The morning diurnal precipitation maximum over the coastal sea upstream of the Philippines during intraseasonal westerly wind bursts is examined from observations and numerical model simulations. A well-defined case of precipitation and large-scale circulation over the coastal sea west of the Philippines during 17-27 June 2004 is selected as a representative case. The hypothesis is that the mesoscale diurnal circulation over the Philippines and a large-scale diurnal circulation that is induced by large-scale differential heating over Asian continent and the surrounding ocean interact to produce the offshore precipitation maximum during the morning. Three-hourly combined satellite microwave and infrared rainfall retrievals define the morning rainfall peak during this period, and then later the stratiform rain area extends toward the open sea. A control numerical simulation in which a grid-nudging four-dimensional data assimilation (FDDA) is applied to force the large-scale diurnal circulation represents reasonably well the morning rainfall maximum. An enhanced low-level convergence similar to observations is simulated due to the interaction of the local- and large-scale diurnal circulations. The essential role of the local-scale diurnal circulation is illustrated in a sensitivity test in which the solar zenith angle is fixed at 7 am to suppress this diurnal circulation. The implication for climate diagnosis or modeling of such upstream coastal sea precipitation maxima is that the diurnal variations of both the local- and the large-scale circulations must be taken into consideration. (orig.)

  18. Community Knowledge about Water: Who Has Better Knowledge and Is This Associated with Water-Related Behaviors and Support for Water-Related Policies?

    Directory of Open Access Journals (Sweden)

    Angela J Dean

    Full Text Available Sustainable approaches to water management require broad community acceptance of changes in policy, practice and technology, which in turn, requires an engaged community. A critical first step in building an engaged community is to identify community knowledge about water management, an issue rarely examined in research. To address this, we surveyed a representative sample of Australian adults (n = 5172. Knowledge was assessed using 15 questions about impact of household activities on waterways, the urban water cycle, and water management. This survey also examined demographics, psychosocial characteristics, exposure to water-related information, and water-related behaviors and policy support. Participants correctly answered a mean of 8.0 questions (Range 0-15. Most respondents knew that household actions can reduce water use and influence waterway health, whereas less than one third correctly identified that domestic wastewater is treated prior to entering waterways, urban stormwater is not treated, and that these are carried via different pipes. Higher water knowledge was associated with older age, higher education and living in non-urban areas. Poorer water knowledge was associated with speaking a language other than English in the home. Garden size, experience of water restrictions, satisfaction, waterway use for swimming, and certain information sources were also associated with knowledge. Greater water knowledge was associated with adoption of water-saving and pollution-reduction behaviors, and support for both alternative water sources and raingardens. These findings confirm the importance of community knowledge, and identify potential subgroups who may require additional targeting to build knowledge and support for water management initiatives.

  19. Community Knowledge about Water: Who Has Better Knowledge and Is This Associated with Water-Related Behaviors and Support for Water-Related Policies?

    Science.gov (United States)

    Dean, Angela J; Fielding, Kelly S; Newton, Fiona J

    2016-01-01

    Sustainable approaches to water management require broad community acceptance of changes in policy, practice and technology, which in turn, requires an engaged community. A critical first step in building an engaged community is to identify community knowledge about water management, an issue rarely examined in research. To address this, we surveyed a representative sample of Australian adults (n = 5172). Knowledge was assessed using 15 questions about impact of household activities on waterways, the urban water cycle, and water management. This survey also examined demographics, psychosocial characteristics, exposure to water-related information, and water-related behaviors and policy support. Participants correctly answered a mean of 8.0 questions (Range 0-15). Most respondents knew that household actions can reduce water use and influence waterway health, whereas less than one third correctly identified that domestic wastewater is treated prior to entering waterways, urban stormwater is not treated, and that these are carried via different pipes. Higher water knowledge was associated with older age, higher education and living in non-urban areas. Poorer water knowledge was associated with speaking a language other than English in the home. Garden size, experience of water restrictions, satisfaction, waterway use for swimming, and certain information sources were also associated with knowledge. Greater water knowledge was associated with adoption of water-saving and pollution-reduction behaviors, and support for both alternative water sources and raingardens. These findings confirm the importance of community knowledge, and identify potential subgroups who may require additional targeting to build knowledge and support for water management initiatives.

  20. Evaluation of the diurnal intraocular pressure fluctuations and blood pressure under dehydration due to fasting

    Directory of Open Access Journals (Sweden)

    Gonen Baser

    2016-12-01

    Full Text Available Introduction: This study aimed to investigate the diurnal intraocular pressure fluctuations under dehydration conditions and the relationship between the intraocular pressure fluctuations and blood pressure. Methods: The intraocular pressures (IOP, body weights, as well as systolic and diastolic blood pressures (SBP, DBP of 36 fasting healthy volunteers were recorded at 8:00 a.m. and 5:00 p.m. in the Ramadan of 2014 and two weeks after it. The data were analyzed using paired Student’s t-test and Pearson correlation analysis. Results: As the results demonstrated, the mean diurnal IOP differences of IOP, SBP, DBP, and weight were 2.67±1.33 mmHg, 9.44±8.02 mmHg, 3.33±5.94 mmHg, and 0.90±0.46 kg during the fasting period, respectively. In addition, the mean diurnal IOP differences of IOP, SBP, DBP, and weight were -0.33±1.4 mmHg (P=0.001, 0.55±7.25mmHg (P=0.003, -3.33±5.94 mmHg (P=0.001, and 0.12±0.45 kg (P=0.001 during the control period, respectively. There was a moderate correlation between the diurnal IOP and SBP differences (r=0.517, P=0.028. Conclusion: Based on the findings of the current study, the total fluid volume might have a more dominant effect on IOP peaks than the sympathetic system activity. Furthermore, the SBP was found to correlate with the IOP.

  1. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts

    Directory of Open Access Journals (Sweden)

    M. Kim

    2017-12-01

    Full Text Available Biological soil crusts (biocrusts are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.

  2. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts

    Science.gov (United States)

    Kim, Minsu; Or, Dani

    2017-12-01

    Biological soil crusts (biocrusts) are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment) under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.

  3. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies.

    Science.gov (United States)

    Meacham, Katherine; Sirault, Xavier; Quick, W Paul; von Caemmerer, Susanne; Furbank, Robert

    2017-01-01

    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Fruit response to water-scarcity and biochemical changes : Water relations and biochemical changes

    NARCIS (Netherlands)

    Rodríguez, P.; Galindo Egea, Alejandro; Collado-González, J.; Medina, S.; Corell, M.; Memmi, H.; Girón, I.F.; Centeno, A.; Martín-Palomo, M.J.; Cruz, Z.N.; Carbonell-Barrachina, A.A.; Hernandez, F.; Torrecillas, A.; Moriana, A.; Pérez-López, D.; Garcia Tejero, Ivan Francisco; Duran Zuazo, Victor Hugo

    2018-01-01

    The aim of this chapter is to give a general idea of the fruit response to water-scarcity conditions, paying special attention to fruit water relations modification and fruit composition changes, which are key for fruit quality. The strengths and weaknesses of fruit water relations measurement

  5. Nonphotic entrainment in a diurnal mammal, the European ground squirrel (Spermophilus citellus)

    NARCIS (Netherlands)

    Hut, Roelof A.; Mrosovsky, N.; Daan, Serge

    1999-01-01

    Entrainment by nonphotic, activity-inducing stimuli has been investigated in detail in nocturnal rodents, but little is known about nonphotic entrainment in diurnal animals. Comparative studies would offer the opportunity to distinguish between two possibilities. (1) If nonphotic phase shifts depend

  6. The Regional Water Cycle and Water Ice Clouds in the Tharsis - Valles Marineris System

    Science.gov (United States)

    Leung, C. W. S.; Rafkin, S. C.

    2017-12-01

    The regional atmospheric circulation on Mars is highly influenced by local topographic gradients. Terrain-following air parcels forced along the slopes of the major Tharsis volcanoes and the steep canyon walls of Valles Marineris significantly impact the local water vapor concentration and the associated conditions for cloud formation. Using a non-hydrostatic mesoscale atmospheric model with aerosol & cloud microphysics, we investigate the meteorological conditions for water ice cloud formation in the coupled Tharsis - Valles Marineris system near the aphelion season. The usage of a limited area regional model ensures that topographic slopes are well resolved compared to the typical resolutions of a global-coverage general circulation model. The effects of shadowing and slope angle geometries on the energy budget is also taken into account. Diurnal slope winds in complex terrains are typically characterized by the reversal of wind direction twice per sol: upslope during the day, and downslope at night. However, our simulation results of the regional circulation and diurnal water cycle indicate substantial asymmetries in the day-night circulation. The convergence of moist air masses enters Valles Marineris via easterly flows, whereas dry air sweep across the plateau of the canyon system from the south towards the north. We emphasize the non-uniform vertical distribution of water vapor in our model results. Water vapor mixing ratios in the lower planetary boundary layer may be factors greater than the mixing ratio aloft. Water ice clouds are important contributors to the climatic forcing on Mars, and their effects on the mesoscale circulations in the Tharsis - Valles Marineris region significantly contribute to the regional perturbations in the large-scale global atmospheric circulation.

  7. Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective

    Science.gov (United States)

    Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik

    2010-02-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer

  8. Habitual sleep quality and diurnal rhythms of salivary cortisol and dehydroepiandrosterone in postmenopausal women.

    Science.gov (United States)

    Huang, Tianyi; Poole, Elizabeth M; Vetter, Celine; Rexrode, Kathryn M; Kubzansky, Laura D; Schernhammer, Eva; Rohleder, Nicolas; Hu, Frank B; Redline, Susan; Tworoger, Shelley S

    2017-10-01

    Dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis has been suggested as a potential mechanism linking sleep and cardiometabolic disorders. However, the associations of two primary outputs of the HPA axis, cortisol and its antagonist dehydroepiandrosterone (DHEA), with sleep are less well studied. In the Nurses' Health Study II, 233 postmenopausal women provided five timed saliva samples over one day (immediately upon waking, 45min, 4h, and 10h after waking, and prior to going to sleep) to measure cortisol and DHEA. Of these, 209 completed assessment of their habitual sleep patterns using the Pittsburgh Sleep Quality Index (PSQI). We used piecewise linear mixed models to compare cross-sectional associations of slopes reflecting diurnal cortisol and DHEA rhythms with overall sleep quality and with seven sub-components. Overall, we observed no differences in the diurnal patterns of cortisol or DHEA between good versus poor sleepers as assessed by the global PSQI score. However, longer sleep latency was associated with significantly reduced cortisol awakening rise (p=0.02). Poorer subjective sleep quality (p=0.02), shorter sleep duration (p=0.02), and lower sleep efficiency (p=0.03) were associated with slower rate of cortisol decline later in the day. Women reporting daytime dysfunction had a sharper cortisol decline early in the day (p=0.03) but a flattened decline later in the day (p=0.01). The differences in diurnal patterns of DHEA between good versus poor sleepers, though less pronounced, were similar in direction to those of cortisol. Self-reported sleep duration, efficiency, latency and daytime dysfunction were associated with altered diurnal rhythms of cortisol and, to a lesser extent, DHEA. These findings provide support for the interplay between sleep and the HPA axis that may contribute to cardiometabolic disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Amazon forest structure generates diurnal and seasonal variability in light utilization

    Science.gov (United States)

    Douglas C. Morton; Jeremy Rubio; Bruce D. Cook; Jean-Philippe Gastellu-Etchegorry; Marcos Longo; Hyeungu Choi; Maria Hunter; Michael Keller

    2016-01-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART...

  10. 40 CFR 230.52 - Water-related recreation.

    Science.gov (United States)

    2010-07-01

    ... Section 230.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION... Effects on Human Use Characteristics § 230.52 Water-related recreation. (a) Water-related recreation.... canoeing and sight-seeing. (b) Possible loss of values: One of the more important direct impacts of dredged...

  11. Parameterization of water vapor using high-resolution GPS data and empirical models

    Science.gov (United States)

    Ningombam, Shantikumar S.; Jade, Sridevi; Shrungeshwara, T. S.

    2018-03-01

    The present work evaluates eleven existing empirical models to estimate Precipitable Water Vapor (PWV) over a high-altitude (4500 m amsl), cold-desert environment. These models are tested extensively and used globally to estimate PWV for low altitude sites (below 1000 m amsl). The moist parameters used in the model are: water vapor scale height (Hc), dew point temperature (Td) and water vapor pressure (Es 0). These moist parameters are derived from surface air temperature and relative humidity measured at high temporal resolution from automated weather station. The performance of these models are examined statistically with observed high-resolution GPS (GPSPWV) data over the region (2005-2012). The correlation coefficient (R) between the observed GPSPWV and Model PWV is 0.98 at daily data and varies diurnally from 0.93 to 0.97. Parameterization of moisture parameters were studied in-depth (i.e., 2 h to monthly time scales) using GPSPWV , Td , and Es 0 . The slope of the linear relationships between GPSPWV and Td varies from 0.073°C-1 to 0.106°C-1 (R: 0.83 to 0.97) while GPSPWV and Es 0 varied from 1.688 to 2.209 (R: 0.95 to 0.99) at daily, monthly and diurnal time scales. In addition, the moist parameters for the cold desert, high-altitude environment are examined in-depth at various time scales during 2005-2012.

  12. THE APPLICATION OF LEAF ULTRASONIC RESONANCE TO VITIS VINIFERA L. SUGGESTS THE EXISTENCE OF A DIURNAL OSMOTIC ADJUSTMENT SUBJECTED TO PHOTOSYNTHESIS

    Directory of Open Access Journals (Sweden)

    Domingo Sancho-Knapik

    2016-10-01

    Full Text Available The main objective of this study was to apply the air-coupled broad-band ultrasonic spectroscopy in attached transpiring leaves of Vitis vinifera L. to monitor changes in leaf water potential (Y through the measurements of the standardized value of the resonant frequency associated with the maximum transmitance (f/fo. With this purpose, the response of grapevine to a drought stress period was investigated in terms of leaf water status, ultrasounds, gas exchange and sugar accumulation. Two strong correlations were obtained between f/fo and Y measured at predawn (pd and at midday (md with different slopes. This fact implied the existence of two values of Y for a given value of f/fo, which was taken as a sign that the ultrasonic technique was not directly related to the overall Y, but only to one of its components: the turgor pressure (P. The difference in Y at constant f/fo (d was found to be dependent on net CO2 assimilation (A and might be used as a rough estimator of photosynthetic activity. It was then, the other main component of Y, osmotic potential (π, the one that may have lowered the values of midday Y with respect to predawn Y by the accumulation of sugars associated to net CO2 assimilation. This phenomenon suggests the existence of a diurnal osmotic adjustment in this species associated to sugars production in well-watered plants.

  13. UV Reconstruction Algorithm And Diurnal Cycle Variability

    Science.gov (United States)

    Curylo, Aleksander; Litynska, Zenobia; Krzyscin, Janusz; Bogdanska, Barbara

    2009-03-01

    UV reconstruction is a method of estimation of surface UV with the use of available actinometrical and aerological measurements. UV reconstruction is necessary for the study of long-term UV change. A typical series of UV measurements is not longer than 15 years, which is too short for trend estimation. The essential problem in the reconstruction algorithm is the good parameterization of clouds. In our previous algorithm we used an empirical relation between Cloud Modification Factor (CMF) in global radiation and CMF in UV. The CMF is defined as the ratio between measured and modelled irradiances. Clear sky irradiance was calculated with a solar radiative transfer model. In the proposed algorithm, the time variability of global radiation during the diurnal cycle is used as an additional source of information. For elaborating an improved reconstruction algorithm relevant data from Legionowo [52.4 N, 21.0 E, 96 m a.s.l], Poland were collected with the following instruments: NILU-UV multi channel radiometer, Kipp&Zonen pyranometer, radiosonde profiles of ozone, humidity and temperature. The proposed algorithm has been used for reconstruction of UV at four Polish sites: Mikolajki, Kolobrzeg, Warszawa-Bielany and Zakopane since the early 1960s. Krzyscin's reconstruction of total ozone has been used in the calculations.

  14. Annual and diurnal african biomass burning temporal dynamics

    Directory of Open Access Journals (Sweden)

    G. Roberts

    2009-05-01

    Full Text Available Africa is the single largest continental source of biomass burning emissions. Here we conduct the first analysis of one full year of geostationary active fire detections and fire radiative power data recorded over Africa at 15-min temporal interval and a 3 km sub-satellite spatial resolution by the Spinning Enhanced Visible and Infrared Imager (SEVIRI imaging radiometer onboard the Meteosat-8 satellite. We use these data to provide new insights into the rates and totals of open biomass burning over Africa, particularly into the extremely strong seasonal and diurnal cycles that exist across the continent. We estimate peak daily biomass combustion totals to be 9 and 6 million tonnes of fuel per day in the northern and southern hemispheres respectively, and total fuel consumption between February 2004 and January 2005 is estimated to be at least 855 million tonnes. Analysis is carried out with regard to fire pixel temporal persistence, and we note that the majority of African fires are detected only once in consecutive 15 min imaging slots. An investigation of the variability of the diurnal fire cycle is carried out with respect to 20 different land cover types, and whilst differences are noted between land covers, the fire diurnal cycle characteristics for most land cover type are very similar in both African hemispheres. We compare the Fire Radiative Power (FRP derived biomass combustion estimates to burned-areas, both at the scale of individual fires and over the entire continent at a 1-degree scale. Fuel consumption estimates are found to be less than 2 kg/m2 for all land cover types noted to be subject to significant fire activity, and for savanna grasslands where literature values are commonly reported the FRP-derived median fuel consumption estimate of 300 g/m2 is well within commonly quoted values. Meteosat-derived FRP data of the type presented here is now available freely to interested users continuously and in near

  15. An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2017-09-01

    Full Text Available Observations and climate model simulations consistently show a higher climate sensitivity of land surfaces compared to ocean surfaces. Here we show that this difference in temperature sensitivity can be explained by the different means by which the diurnal variation in solar radiation is buffered. While ocean surfaces buffer the diurnal variations by heat storage changes below the surface, land surfaces buffer it mostly by heat storage changes above the surface in the lower atmosphere that are reflected in the diurnal growth of a convective boundary layer. Storage changes below the surface allow the ocean surface–atmosphere system to maintain turbulent fluxes over day and night, while the land surface–atmosphere system maintains turbulent fluxes only during the daytime hours, when the surface is heated by absorption of solar radiation. This shorter duration of turbulent fluxes on land results in a greater sensitivity of the land surface–atmosphere system to changes in the greenhouse forcing because nighttime temperatures are shaped by radiative exchange only, which are more sensitive to changes in greenhouse forcing. We use a simple, analytic energy balance model of the surface–atmosphere system in which turbulent fluxes are constrained by the maximum power limit to estimate the effects of these different means to buffer the diurnal cycle on the resulting temperature sensitivities. The model predicts that land surfaces have a 50 % greater climate sensitivity than ocean surfaces, and that the nighttime temperatures on land increase about twice as much as daytime temperatures because of the absence of turbulent fluxes at night. Both predictions compare very well with observations and CMIP5 climate model simulations. Hence, the greater climate sensitivity of land surfaces can be explained by its buffering of diurnal variations in solar radiation in the lower atmosphere.

  16. Diurnal variations of airborne fungal spores concentration in the town and rural area

    Directory of Open Access Journals (Sweden)

    Idalia Kasprzyk

    2012-12-01

    Full Text Available Airborne fungal spores were monitored in 2001-2002 in Rzeszów (town and its neighborhood. The aim of investigations was to ascertain if there were differences in diurnal variations of airborne fungal spores concentration between town and rural area. The sampling was carried out using volumetric method. Traps were located at the same heights - app. 12 m. Airborne spores were sampled continuously. Microscopical slides were prepared for each day. Analysis was carried out on one longitudinal band of 48 mm long divided into 24 segments corresponding following hours of day. The results were expressed as mean number of fungal spores per cubic meter per 24 hours. For this survey, five geni of allergenic fungi were selected: Alternaria, Botrytis, Cladosporium, Epicoccum, Ganoderma. The concentrations of their airborne spores were high or very high. It was calculated theoretical day, where the hourly count was the percentage mean of number of spores at that time every chosen day without rainfall from 2001 and 2001 years. The diurnal periodicity of Alternaria, Cladosporium, Epicoccum and Ganoderma showed one peak, while Botrytis two. Anamorphic spores peaked in the afternoon, while their minima occurred in the morning. The highest concentrations of Ganoderma basidiospores were at down or at night, but minima during the day. There were no clear differences in the peak values between two studied sites. The results indicate that maximum concentrations of all spores generally occurred a few hour earlier in the rural area than in the town. Probably, in the rural area airborne spores came from many local sources and their diurnal periodicity reflected rhythm of spore liberation. Towns are characterized by specific microclimate with higher temperature and wind blowing to the centre. In Rzeszów fungal spores could be transported outside and carried out by wind from distant sources. This study showed, among others, that habitat conditions are an important factors

  17. Diurnal measurement of equilibrium equivalent radon/thoron concentration using time integrated flow mode grab sampler

    International Nuclear Information System (INIS)

    Pant, P.; Kandari, T.; Ramola, R.C.; Semwal, C.P.; Prasad, M.

    2018-01-01

    The basic processes which influenced the concentration of radon and thoron decay products are- attachment, recoil and deposition and by the room specific parameters of radon exhalation and ventilation. The freshly formed decay products have a high diffusivities (especially in air) and ability to stick to surfaces. According to UNSCEAR 1977, radon daughters may be combined as the so called equilibrium equivalent concentration which is related to the potential alpha energy distribution concentration. In the present study an effort has been made to see the diurnal variation of radon and thoron progeny concentration using time integrated flow mode sampler

  18. Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data

    Directory of Open Access Journals (Sweden)

    Si-Bo Duan

    2014-04-01

    Full Text Available The diurnal cycle of land surface temperature (LST is an important element of the climate system. Geostationary satellites can provide the diurnal cycle of LST with low spatial resolution and incomplete global coverage, which limits its applications in some studies. In this study, we propose a method to estimate the diurnal cycle of LST at high temporal and spatial resolution from clear-sky MODIS data. This method was evaluated using the MSG-SEVIRI-derived LSTs. The results indicate that this method fits the diurnal cycle of LST well, with root mean square error (RMSE values less than 1 K for most pixels. Because MODIS provides at most four observations per day at a given location, this method was further evaluated using only four MSG-SEVIRI-derived LSTs corresponding to the MODIS overpass times (10:30, 13:30, 22:30, and 01:30 local solar time. The results show that the RMSE values using only four MSG-SEVIRI-derived LSTs are approximately two times larger than those using all LSTs. The spatial distribution of the modeled LSTs at the MODIS pixel scale is presented from 07:00 to 05:00 local solar time of the next day with an increment of 2 hours. The diurnal cycle of the modeled LSTs describes the temporal evolution of the LSTs at the MODIS pixel scale.

  19. Child diurnal cortisol rhythms, parenting quality, and externalizing behaviors in preadolescence.

    Science.gov (United States)

    Martin, Christina Gamache; Kim, Hyoun K; Bruce, Jacqueline; Fisher, Philip A

    2014-02-01

    This study examined a neurobiologically informed model of the emergence of child externalizing behaviors in an ethnically diverse community sample of 232 9-12 year old children. Replicating extensive prior research, our analyses revealed that parents' inconsistent discipline and poor quality monitoring were predictive of child externalizing behavior. In addition, poor parental monitoring, but not inconsistent discipline, was associated with children having a significantly flatter morning-to-evening cortisol slope, which was in turn, related to higher levels of externalizing behaviors. An indirect effect of parental monitoring on externalizing behaviors, through child diurnal cortisol rhythms, was also supported. These findings highlight the role of the hypothalamic-pituitary-adrenal (HPA) axis and its hormonal end product, cortisol, in the relationship between the caregiving environment and the development of externalizing behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The diurnal interaction between convection and peninsular-scale forcing over South Florida

    Science.gov (United States)

    Cooper, H. J.; Simpson, J.; Garstang, M.

    1982-01-01

    One of the outstanding problems in modern meterology is that of describing in detail the manner in which larger scales of motion interact with, influence and are influenced by successively smaller scales of motion. The present investigation is concerned with a study of the diurnal evolution of convection, the interaction between the peninsular-scale convergence and convection, and the role of the feedback produced by the cloud-scale downdrafts in the maintenance of the convection. Attention is given to the analysis, the diurnal cycle of the network area-averaged divergence, convective-scale divergence, convective mass transports, and the peninsular scale divergence. The links established in the investigation between the large scale (peninsular), the mesoscale (network), and the convective scale (cloud) are found to be of fundamental importance to the understanding of the initiation, maintenance, and decay of deep precipitating convection and to its theoretical parameterization.

  1. Diurnal modulation due to self-interacting mirror and hidden sector dark matter

    International Nuclear Information System (INIS)

    Foot, R.

    2012-01-01

    Mirror and more generic hidden sector dark matter models can simultaneously explain the DAMA, CoGeNT and CRESST-II dark matter signals consistently with the null results of the other experiments. This type of dark matter can be captured by the Earth and shield detectors because it is self-interacting. This effect will lead to a diurnal modulation in dark matter detectors. We estimate the size of this effect for dark matter detectors in various locations. For a detector located in the northern hemisphere, this effect is expected to peak in April and can be detected for optimistic parameter choices. The diurnal variation is expected to be much larger for detectors located in the southern hemisphere. In particular, if the CoGeNT detector were moved to e.g. Sierra Grande, Argentina then a 5σ dark matter discovery would be possible in around 30 days of operation

  2. Diurnal Cortisol Profile in Williams Syndrome in Novel and Familiar Settings

    Science.gov (United States)

    Lense, Miriam Diane; Tomarken, Andrew J.; Dykens, Elisabeth M.

    2013-01-01

    Williams syndrome (WS) is a neurodevelopmental genetic disorder associated with high rates of anxiety and social issues. We examined diurnal cortisol, a biomarker of the stress response, in adults with WS in novel and familiar settings, and compared these profiles to typically developing (TD) adults. WS and TD participants had similar profiles in…

  3. Arvicanthis ansorgei, a Novel Model for the Study of Sleep and Waking in Diurnal Rodents

    Science.gov (United States)

    Hubbard, Jeffrey; Ruppert, Elisabeth; Calvel, Laurent; Robin-Choteau, Ludivine; Gropp, Claire-Marie; Allemann, Caroline; Reibel, Sophie; Sage-Ciocca, Dominique; Bourgin, Patrice

    2015-01-01

    Study Objectives: Sleep neurobiology studies use nocturnal species, mainly rats and mice. However, because their daily sleep/wake organization is inverted as compared to humans, a diurnal model for sleep studies is needed. To fill this gap, we phenotyped sleep and waking in Arvicanthis ansorgei, a diurnal rodent widely used for the study of circadian rhythms. Design: Video-electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG) recordings. Setting: Rodent sleep laboratory. Participants: Fourteen male Arvicanthis ansorgei, aged 3 mo. Interventions: 12 h light (L):12 h dark (D) baseline condition, 24-h constant darkness, 6-h sleep deprivation. Measurements and Results: Wake and rapid eye movement (REM) sleep showed similar electrophysiological characteristics as nocturnal rodents. On average, animals spent 12.9 h ± 0.4 awake per 24-h cycle, of which 6.88 h ± 0.3 was during the light period. NREM sleep accounted for 9.63 h ± 0.4, which of 5.13 h ± 0.2 during dark period, and REM sleep for 89.9 min ± 6.7, which of 52.8 min ± 4.4 during dark period. The time-course of sleep and waking across the 12 h light:12 h dark was overall inverted to that observed in rats or mice, though with larger amounts of crepuscular activity at light and dark transitions. A dominant crepuscular regulation of sleep and waking persisted under constant darkness, showing the lack of a strong circadian drive in the absence of clock reinforcement by external cues, such as a running wheel. Conservation of the homeostatic regulation was confirmed with the observation of higher delta power following sustained waking periods and a 6-h sleep deprivation, with subsequent decrease during recovery sleep. Conclusions: Arvicanthis ansorgei is a valid diurnal rodent model for studying the regulatory mechanisms of sleep and so represents a valuable tool for further understanding the nocturnality/diurnality switch. Citation: Hubbard J, Ruppert E, Calvel L, Robin-Choteau L, Gropp CM

  4. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Rucong [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); China Meteorological Administration, LaSW, Chinese Academy of Meteorological Sciences, Beijing (China); Yuan, Weihua [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Li, Jian [China Meteorological Administration, LaSW, Chinese Academy of Meteorological Sciences, Beijing (China); Fu, Yunfei [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); University of Science and Technology of China, Laboratory of Satellite Remote Sensing and Climate Environment, Hefei, Anhui (China)

    2010-09-15

    Using the tropical rainfall measuring mission (TRMM) Precipitation Radar (PR) observations combined with the surface rain gauge data during 1998-2006, the robust diurnal features of summer stratiform and convective precipitation over the southern contiguous China are revealed by exploring the diurnal variations of rain rate and precipitation profile. The precipitation over the southern contiguous China exhibits two distinguishing diurnal phases: late-night (2200-0600 LST) and late-afternoon (1400-2200 LST), dependent on the location, precipitation type and duration time. Generally, the maximum rain rate and the highest profile of stratiform precipitation occur in the late-afternoon (late-night) over the southeastern (southwestern) China, while most of the stratiform short-duration rain rate tends to present late-afternoon peaks over the southern China. For convective precipitation, the maximum rain rate and the highest profile occur in the late-afternoon over most of the southern contiguous China, while the convective long-duration rain rate exhibits late-night peaks over the southwestern China. Without regional dependence, the convective precipitation exhibits much larger amplitude of diurnal variations in both near surface rain rate and vertical extension compared with stratiform precipitation and the convective rain top rises most rapidly between noon and afternoon. However, there are two distinctive sub-regions. The diurnal phases of precipitation there are very weakly dependent on precipitation type and duration time. Over the eastern periphery of the Tibetan Plateau, the maximum rain rate and the highest profile of either convective or stratiform precipitation occur in the late-night. Over the southeastern coastal regions, both the near surface rain rate and rain top of convective and stratiform precipitation peak in the late-afternoon. (orig.)

  5. Physiological and Molecular Response of Ostrich to the Seasonal and Diurnal Variations in Egyptian conditions

    International Nuclear Information System (INIS)

    Khalil, M.H.; Khalifa, H.H; Elaroussi, M.A.; Elsayed, M.A.; Basuony, H.A.

    2013-01-01

    Twelve immature ostrich›s birds, 7 months old were used to evaluate the effect of ambient temperature variation and diurnal effect on response changes of some physiological and chemical parameters. All birds were reared out doors and exposed to daily ambient temperatures fluctuations during summer and winter. Blood samples were taken twice, one in the morning at 7 Am and once in the afternoon at 3 Pm during a representative 7 hot days of June (summer) (40±2ºC) and the 7 cold days of January (winter) (18±2ºC). Serum calcium, inorganic phosphorus, sodium, potassium, uric acid concentrations and aldosterone level were determined. The amount of total body water (TBW) and serum heat shock proteins (HSP) were estimated. Serum calcium, phosphorus, sodium and potassium concentrations in ostrich were significantly decreased, while uric acid concentration and aldosterone hormone level were significantly increased in summer as compared in winter during both at morning and at afternoon periods. Concerning the diurnal variation, serum calcium, phosphorus, sodium and potassium concentrations and aldosterone hormone level in ostrich were significantly increased, while uric acid concentration was significantly decreased at morning as compared at afternoon during both summer and winter seasons. TBW was significantly higher in summer season by 15.04% than winter season. It is concluded from the present study that heat or cold stress has a negative effect on most of the parameters studied and we recommend must be supplement diet with some nutrients like vitamins C, and E, sodium bicarbonate or yeast to overcome the negative effect and to better perform under such conditions

  6. Water chemistry-related activities at the IAEA

    International Nuclear Information System (INIS)

    Cheng, H.; Onufriev, V.

    2005-01-01

    Water chemistry activities and publications in the past are listed. IAEA Coordinated Research Programmes, WWER-1000 SG water chemistry database, materials issues TM in Vienna, TC workshops and attendance of international meetings, publications. There is a list of IAEA publications related to water chemistry and corrosion. Finally water chemistry activities planned for 2006-2008 are detailed. (N.T.)

  7. Corrigendum: Childhood Adversity, Self-Esteem, and Diurnal Cortisol Profiles Across the Life Span.

    Science.gov (United States)

    2018-01-01

    Original article: Zilioli, S., Slatcher, R. B., Chi, P., Li, X., Zhao, J., & Zhao, G. (2016). Childhood adversity, self-esteem, and diurnal cortisol profiles across the life span. Psychological Science, 27, 1249-1265. doi:10.1177/0956797616658287.

  8. Diurnal temperature variations affect development of a herbivorous arthropod pest and its predators.

    Directory of Open Access Journals (Sweden)

    Dominiek Vangansbeke

    Full Text Available The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen's inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae. We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen's inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes.

  9. Diurnal Temperature Variations Affect Development of a Herbivorous Arthropod Pest and its Predators

    Science.gov (United States)

    Vangansbeke, Dominiek; Audenaert, Joachim; Nguyen, Duc Tung; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick

    2015-01-01

    The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen’s inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C) on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen’s inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes. PMID:25874697

  10. Determining the water use of rambutan and longkong during phenological development by heat-pulse method

    Directory of Open Access Journals (Sweden)

    Sdoodee, S.

    2003-01-01

    Full Text Available The water use of two species of tropical fruit trees: rambutan (Nephelium lappaceum and longkong (Aglaia dookkoo Griff. were investigated by heat-pulse method. The sapflow rate of both species were determined during phenological development. An experiment was established at Prince of Songkla University, Songkhla Province. Characteristics of sapwood in each species and optimum depth for probe implanting on the trunk were investigated. During the measurement period, diurnal changes of photon flux density, leaf water potential and stomatal conductance were recorded. It was found that sapwood of rambutan and longkong were homogeneous. An appropriate probe depth to implant on the trunk was 25 mm from bark. It was found that diurnal changes of sapflow rates of each species varied with the changes of radiation, leaf water potential and stomata conductance. The results of measurement showed that water use decreased at pre-flowering stage, and fruit maturity stage. In rambutan, water use increased during vegetative growth stage followed by flowering stage. The marked increase of water use in rambutan was during fruit development. In longkong, water use increased at the flowering stage followed by vegetative growth stage, and the peak of water use was during fruit development.

  11. Seasonal and diurnal variations of Hg° over New England

    Directory of Open Access Journals (Sweden)

    J. D. Hegarty

    2008-03-01

    Full Text Available Factors influencing diurnal to interannual variability in Hg° over New England were investigated using multi-year measurements conducted by AIRMAP at the Thompson Farm (TF coastal site, an inland elevated site at Pac Monadnock (PM, and two month measurements on Appledore Island (AI in the Gulf of Maine. Mixing ratios of Hg° at TF showed distinct seasonality with maxima in March and minima in October. Hg° at AI tracked the trend at TF but with higher minima, while at PM the diurnal and annual cycles were dampened. In winter, Hg° was correlated most strongly with CO and NOy, indicative of anthropogenic emissions as their primary source. Our analysis indicates that Hg° had a regional background level of ~160 fmol/mol in winter, a dry deposition velocity of ~0.20 cm s−1 with a ~16 day lifetime in the coastal boundary layer in summer. The influence of oceanic emissions on ambient Hg° levels was identified using the Hg°-CHBr3 correlation at both TF and AI. Moreover, the lower Hg° levels and steeper decreasing warm season trend at TF (0.5–0.6 fmol/mol d−1 compared to PM (0.2–0.3 fmol/mol d−1 likely reflected the impact of marine halogen chemistry. Large interannual variability in warm season Hg° levels in 2004 versus 2005/2006 may be due to the role of precipitation patterns in influencing surface evasion of Hg°. In contrast, changes in wintertime maximum levels of Hg° were small compared to drastic reductions in CO, CO2, NOy, and SO2 from 2004/2005 to 2006/2007. These trends could be explained by a homogeneous distribution of Hg° over North American in winter due to its long lifetime and/or rapid removal of reactive mercury from anthropogenic sources. We caution that during warmer winters, the Hg°-CO slope possibly reflects Hg° loss relative to changes in CO more than their emission ratio.

  12. On the diurnal ranges of Sea Surface Temperature (SST) in the ...

    Indian Academy of Sciences (India)

    (Solomon and Jin 2005). The diurnal change in. SST has also been examined to study the possible feedbacks on the atmosphere (Clayson and Chen. 2002; Bernie et al 2007). Solar heating of the sea surface in low-wind conditions can lead to the development of a stable warm layer of a few meters thickness at the surface.

  13. Diurnal and seasonal cortisol, testosterone, and DHEA rhythms in boys and girls during puberty.

    Science.gov (United States)

    Matchock, Robert L; Dorn, Lorah D; Susman, Elizabeth J

    2007-01-01

    Diurnal and seasonal rhythms of cortisol, testosterone, and DHEA were examined, as little is known about the relationship between these rhythmicities and pubertal development. Salivary samples were obtained from 60 boys and 60 girls at approximately 07:45, 08:00, 08:30, 12:00, 16:50, and 21:00 h. The participants' ages ranged from 8-14 yrs, and each participant was tested three times at six-month intervals. The study was conducted at a General Clinical Research Center (GCRC) and at the homes of the participants. All hormones showed diurnal fluctuations. The acrophase (peak time) of cortisol occurred earlier than for testosterone or DHEA and showed a seasonal effect, with the acrophase occurring earlier in spring than in summer. The cortisol acrophase also occurred later in the day for boys than for girls during later puberty. Seasonal effects were found only for cortisol with higher concentrations in the spring and summer. Cortisol concentrations were relatively stable across pubertal maturation, but significantly lower concentrations were observed at pubertal stage 3 compared to the other stages. Morning cortisol levels were also higher in boys at pubertal stage 2. Testosterone concentrations were higher in boys at pubertal stages 3 and 4, and DHEA was lower at pubertal stage 1 than 3 and 4 for both boys and girls. For the total sample, there was a positive correlation between DHEA and testosterone during early puberty (stages 1-3) but not later puberty (stages 4-5). Awakening secretory activity correlated with daytime secretory activity for testosterone and DHEA, but not for cortisol. These data provide novel chronobiological information on cortisol, testosterone, and DHEA as it relates to sexual maturation and encourage further study on both normal and abnormal endocrine rhythms.

  14. Diurnal variation in glycogen phosphorylase activity in rat liver. A quantitative histochemical study

    NARCIS (Netherlands)

    Frederiks, W. M.; Marx, F.; Bosch, K. S.

    1987-01-01

    The diurnal variations of the glycogen content and of glycogen phosphorylase activity in periportal and pericentral areas of rat liver parenchyma have been analyzed in periodic acid Schiff (PAS)-stained cryostat sections using quantitative microdensitometry. Glycogen content and phosphorylase

  15. Diurnal spatial distributions of aerosol optical and cloud micro-macrophysics properties in Africa based on MODIS observations

    Science.gov (United States)

    Ntwali, Didier; Chen, Hongbin

    2018-06-01

    The diurnal spatial distribution of both natural and anthropogenic aerosols, as well as liquid and ice cloud micro-macrophysics have been evaluated over Africa using Terra and Aqua MODIS collection 6 products. The variability of aerosol optical depth (AOD), Ångström exponent (AE), liquid and ice cloud microphysics (Liquid cloud effective radius LCER, Ice cloud effective radius ICER) and cloud macrophysics (Liquid cloud optical thickness LCOT, Liquid cloud water path LCWP, Ice cloud optical thickness ICOT, Ice cloud water path ICWP) parameters were investigated from the morning to afternoon over Africa from 2010 to 2014. In both the morning (Terra) and afternoon (Aqua) heavy pollution (AOD ≥ 0.6) occurs in the coastal and central areas (between 120 N-170 N and 100 E-150 E) of West of Africa (WA), Central of Africa (CA) (0.50 S-70S and 100 E-250 E),. Moderate pollution (0.3 1.2) aerosols. The mixture of dust and biomass burning aerosols (0.7 improve aerosol and cloud remote sensing retrieval.

  16. Diurnal variation in ruminal pH on the digestibility of highly digestible perennial ryegrass during continuous culture fermentation.

    Science.gov (United States)

    Wales, W J; Kolver, E S; Thorne, P L; Egan, A R

    2004-06-01

    Dairy cows grazing high-digestibility pastures exhibit pronounced diurnal variation in ruminal pH, with pH being below values considered optimal for digestion. Using a dual-flow continuous culture system, the hypothesis that minimizing diurnal variation in pH would improve digestion of pasture when pH was low, but not at a higher pH, was tested. Four treatments were imposed, with pH either allowed to exhibit normal diurnal variation around an average pH of 6.1 or 5.6, or maintained at constant pH. Digesta samples were collected during the last 3 d of each of four, 9-d experimental periods. A constant pH at 5.6 compared with a constant pH of 6.1 reduced the digestibility of organic matter (OM), neutral detergent (NDF), and acid detergent fiber (ADF) by 7, 14, and 21%, respectively. When pH was allowed to vary (averaging 5.6), digestion of OM, NDF, and ADF were reduced by 15,30, and 36%, respectively, compared with pH varying at 6.1. There was little difference in digestion parameters when pH was either constant or varied with an average pH of 6.1. However, when average pH was 5.6, maintaining a constant pH significantly increased digestion of OM, NDF, and ADF by 5, 25, and 24% compared with a pH that exhibited normal diurnal variation. These in vitro results show that gains in digestibility and potential milk production can be made by minimizing diurnal variation in ruminal pH, but only when ruminal pH is low (5.6). However, larger gains in productivity can be achieved by increasing average daily ruminal pH from 5.6 to 6.1.

  17. Cognitive control moderates parenting stress effects on children's diurnal cortisol

    OpenAIRE

    Raffington, Laurel; Schmiedek, Florian; Heim, Christine; Shing, Yee Lee

    2018-01-01

    This study investigated associations between parenting stress in parents and self-reported stress in children with children's diurnal cortisol secretion and whether these associations are moderated by known stress-regulating capacities, namely child cognitive control. Salivary cortisol concentrations were assessed from awakening to evening on two weekend days from 53 6-to-7-year-old children. Children completed a cognitive control task and a self-report stress questionnaire with an experiment...

  18. ESA STSE “SST Diurnal Variability: Regional Extend - Implications in Atmospheric Modelling”

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    The diurnal variability of SST, driven by the coincident occurrence of low enough wind and solar heating, has been observed in various regions of the global ocean [4, 5, 6]. Atmospheric, oceanic and climate models are not adequately resolving the daily SST cycle, resulting in biases of the total...

  19. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    Science.gov (United States)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  20. Diurnal cycling of urban aerosols under different weather regimes

    Science.gov (United States)

    Gregorič, Asta; Drinovec, Luka; Močnik, Griša; Remškar, Maja; Vaupotič, Janja; Stanič, Samo

    2016-04-01

    A one month measurement campaign was performed in summer 2014 in Ljubljana, the capital of Slovenia (population 280,000), aiming to study temporal and spatial distribution of urban aerosols and the mixing state of primary and secondary aerosols. Two background locations were chosen for this purpose, the first one in the city center (urban background - KIS) and the second one in the suburban background (Brezovica). Simultaneous measurements of black carbon (BC) and particle number size distribution of submicron aerosols (PM1) were conducted at both locations. In the summer season emission from traffic related sources is expected to be the main local contribution to BC concentration. Concentrations of aerosol species and gaseous pollutants within the planetary boundary layer are controlled by the balance between emission sources of primary aerosols and gases, production of secondary aerosols, chemical reactions of precursor gases under solar radiation and the rate of dilution by mixing within the planetary boundary layer (PBL) as well as with tropospheric air. Only local emission sources contribute to BC concentration during the stable PBL with low mixing layer height, whereas during the time of fully mixed PBL, regionally transported BC and other aerosols can contribute to the surface measurements. The study describes the diurnal behaviour of the submicron aerosol at the urban and suburban background location under different weather regimes. Particles in three size modes - nucleation (humidity, wind speed and direction), diurnal profile differs for sunny, cloudy and rainy days. Nucleation mode particles were found to be subjected to lower daily variation and only slightly influenced by weather, as opposed to Aitken and accumulation mode particles. The highest correlation between BC and particle number concentration is observed during stable atmospheric conditions in the night and morning hours and is attributed to different particle size modes, depending on the

  1. Evaluation of yield and water-level relations

    International Nuclear Information System (INIS)

    Cushman, R.L.; Purtymun, W.D.

    1975-10-01

    Yield and water relations in the Los Alamos supply wells were evaluated because of the increasing demand for water. Water-level declines were extrapolated for 10 yr, to 1983, on the basis of past records. On the basis of current pumpage, the extrapolations indicate that nonpumping water levels in individual wells will decline from 10 to 30 ft. Well characteristics were compiled to provide an individual history of each well, and recommendations for improving water production are presented

  2. Influence of entrainment and countergradient on the ABL diurnal development

    Science.gov (United States)

    Hernández-Ceballos, M. A.

    2009-09-01

    The representation of the diurnal evolution of the boundary layer (ABL) by NCAR-Penn State Mesoscale Model (MM5) and by the mesoscale model Weather Research Forecast (WRF) is compared. Special attention is paid to determine the role of processes that occur near and below the inversion zone: the positive correlation between the heat flux and the gradient (countergradient) and the role of entrainment of heat originating from the free troposphere. Both processes play a key role in the modelling of the diurnal variability of temperature, moisture and atmospheric compounds. A number of 13 simulations are carried out to determine the sensitivity of the model results to the formulation of the ABL height and countergradient heat flux in the Medium Range Forecast (MRF) ABL scheme. Model results are compared with experimental data obtained from the DOMINO (Diel Oxidant Mechanisms in relation to Nitrogen oxides) campaign. It was organized by Max Planck Institute for Atmospheric Chemistry (Germany) in collaboration with the National Institute for Aerospace Technology (Spain). The DOMINO campaign took place at the "Atmospheric Sounding Station - El Arenosillo", a platform dedicated to atmospheric measurements in the Southwest of Spain. All numerical experiments are grouped in four clusters, each focussing on the sensitivity of different relevant aspects. The following aspects of the formulation are analyzed: surface moisture availability (M), the countergradient term (γc) and the ABL height (h). This is done by modifying both the bulk critical Richardson number (Ric) at the inversion zone, and a coefficient of proportionality (b) that determines the excess temperature and countergradient. The importance of b is due to its direct relation in the definition of both, γc and h. The results got with MM5 model show that temperature and specific moisture temporal evolution is not very sensitive to changes in the soil moisture availability (M value from 0.6 to 0.1). Using the MRF

  3. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  4. Nighttime Convection, Temperature Inversions, and Diurnal Variations at Low Altitudes in the Martian Tropics

    Science.gov (United States)

    Hinson, D. P.; Haberle, R. M.; Spiga, A.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Haeusler, B.

    2014-07-01

    We are using radio occultation measurements and numerical simulations to explore the atmospheric structure and diurnal variations in the lowest few scale heights of the martian atmosphere, with emphasis on nighttime convective layers.

  5. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes.

    Science.gov (United States)

    Gutierrez, Mario; Reynolds, Matthew P; Klatt, Arthur R

    2010-07-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r(2) >0.6-0.8) with leaf water potential (psi(leaf)) across a broad range of values (-2.0 to -4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (psi(soil)) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision

  6. Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2013-07-01

    Full Text Available Following recent studies evidencing the influence of deep convection on the chemical composition and thermal structure of the tropical lower stratosphere, we explore its impact on the temperature diurnal variation in the upper troposphere and lower stratosphere using the high-resolution COSMIC GPS radio-occultation temperature measurements spanning from 2006 through 2011. The temperature in the lowermost stratosphere over land during summer displays a marked diurnal cycle characterized by an afternoon cooling. This diurnal cycle is shown collocated with most intense land convective areas observed by the Tropical Rainfall Measurement Mission (TRMM precipitation radar and in phase with the maximum overshooting occurrence frequency in late afternoon. Two processes potentially responsible for that are identified: (i non-migrating tides, whose physical nature is internal gravity waves, and (ii local cross-tropopause mass transport of adiabatically cooled air by overshooting turrets. Although both processes can contribute, only the lofting of adiabatically cooled air is well captured by models, making it difficult to characterize the contribution of non-migrating tides. The impact of deep convection on the temperature diurnal cycle is found larger in the southern tropics, suggesting more vigorous convection over clean rain forest continents than desert areas and polluted continents in the northern tropics.

  7. The effects of diurnal Ramadan fasting on energy expenditure and substrate oxidation in healthy men.

    Science.gov (United States)

    Alsubheen, Sana'a A; Ismail, Mohammad; Baker, Alicia; Blair, Jason; Adebayo, Adeboye; Kelly, Liam; Chandurkar, Vikram; Cheema, Sukhinder; Joanisse, Denis R; Basset, Fabien A

    2017-12-01

    The study aimed to examine the effects of diurnal Ramadan fasting (RF) on substrate oxidation, energy production, blood lipids and glucose as well as body composition. Nine healthy Muslim men (fasting (FAST) group) and eight healthy non-practicing men (control (CNT) group) were assessed pre- and post-RF. FAST were additionally assessed at days 10, 20 and 30 of RF in the morning and evening. Body composition was determined by hydrodensitometry, substrate oxidation and energy production by indirect calorimetry, blood metabolic profile by biochemical analyses and energy balance by activity tracker recordings and food log analyses. A significant group×time interaction revealed that chronic RF reduced body mass and adiposity in FAST, without changing lean mass, whereas CNT subjects remained unchanged. In parallel to these findings, a significant main diurnal effect (morning v. evening) of RF on substrate oxidation (a shift towards lipid oxidation) and blood metabolic profile (a decrease in glucose and an increase in total cholesterol and TAG levels, respectively) was observed, which did not vary over the course of the Ramadan. In conclusion, although RF induces diurnal metabolic adjustments (morning v. evening), no carryover effect was observed throughout RF despite the extended daily fasting period (18·0 (sd 0·3) h) and changes in body composition.

  8. Variability of radiatively forced diurnal cycle of intense convection in the tropical west pacific

    Energy Technology Data Exchange (ETDEWEB)

    Gray, W.M.; Sheaffer, J.D.; Thorson, W.B. [Colorado State Univ., Fort Collins, CO (United States)

    1996-04-01

    Strong differences occur in daytime versus nighttime (DVN) net radiative cooling in clear versus cloudy areas of the tropical atmosphere. Daytime average cooling is approximately -0.7{degrees}C/day, whereas nighttime net tropospheric cooling rates are about -1.5{degrees}C/day, an approximately two-to-one difference. The comparatively strong nocturnal cooling in clear areas gives rise to a diurnally varying vertical circulation and horizontal convergence cycle. Various manifestations of this cyclic process include the observed early morning heavy rainfall maxima over the tropical oceans. The radiatively driven DVN circulation appears to strongly modulate the resulting diurnal cycle of intense convection which creates the highest, coldest cloudiness over maritime tropical areas and is likely a fundamental mechanism governing both small and large scale dynamics over much of the tropical environment.

  9. Serum Levels of Human MIC-1/GDF15 Vary in a Diurnal Pattern, Do Not Display a Profile Suggestive of a Satiety Factor and Are Related to BMI.

    Directory of Open Access Journals (Sweden)

    Vicky Wang-Wei Tsai

    Full Text Available The TGF-b superfamily cytokine MIC-1/GDF15 circulates in the blood of healthy humans. Its levels rise substantially in cancer and other diseases and this may sometimes lead to development of an anorexia/cachexia syndrome. This is mediated by a direct action of MIC-1/GDF15 on feeding centres in the hypothalamus and brainstem. More recent studies in germline gene deleted mice also suggest that this cytokine may play a role in physiological regulation of energy homeostasis. To further characterize the role of MIC-1/GDF15 in physiological regulation of energy homeostasis in man, we have examined diurnal and food associated variation in serum levels and whether variation in circulating levels relate to BMI in human monozygotic twin pairs. We found that the within twin pair differences in serum MIC-1/GDF15 levels were significantly correlated with within twin pair differences in BMI, suggesting a role for MIC-1/GDF15 in the regulation of energy balance in man. MIC-1/GDF15 serum levels altered slightly in response to a meal, but comparison with variation its serum levels over a 24 hour period suggested that these changes are likely to be due to bimodal diurnal variation which can alter serum MIC-1/GDF15 levels by about plus or minus 10% from the mesor. The lack of a rapid and substantial postprandial increase in MIC-1/GDF15 serum levels suggests that MIC1/GDF15 is unlikely to act as a satiety factor. Taken together, our findings suggest that MIC-1/GDF15 may be a physiological regulator of energy homeostasis in man, most probably due to actions on long-term regulation of energy homeostasis.

  10. Diurnal Variation In Behaviour Of Pink-Footed Geese (Anser Brachyrhynchus) During Spring Migration In Trøndelag, Norway

    DEFF Research Database (Denmark)

    Chudzińska, Magda Ewa; Madsen, Jesper; Nabe-Nielsen, Jacob

    During spring migration, Pink-footed Geese Anser brachyrhynchus stop in mid Norway to refuel before their onward flight to the Svalbard breeding grounds. In mid Norway, geese feed on pastures, stubble as well as newly sown grain fields. The aim of the paper is to describe diurnal variations...... in the behaviour of geese and to examine whether these variations are driven by digestibility of food geese feed on or also by external factors such as distance to the roost, disturbance and flock size. Based on diurnal flock scans of activity budgets (observations carried out between 05h00 and 22h00 hrs) in each...... habitat type, we fitted a model containing all predictors we believe may influence geese behaviour. The number of feeding and alert geese on fields displayed a strong diurnal trend, which varied among habitat types, frequent and sporadic disturbance, but not flock size. On roost sites, geese also showed...

  11. Circadian modulation of complex learning in diurnal and nocturnal Aplysia

    OpenAIRE

    Lyons, Lisa C.; Rawashdeh, Oliver; Katzoff, Ayelet; Susswein, Abraham J.; Eskin, Arnold

    2005-01-01

    Understanding modulation of memory, as well as the mechanisms underlying memory formation, has become a key issue in neuroscience research. Previously, we found that the formation of long-term, but not short-term, memory for a nonassociative form of learning, sensitization, was modulated by the circadian clock in the diurnal Aplysia californica. To define the scope of circadian modulation of memory, we examined an associative operant learning paradigm, learning that food is inedible (LFI). Si...

  12. Diurnal bird visiting of Caryocar brasiliense Camb. in Central Brazil

    OpenAIRE

    MELO, C.

    2001-01-01

    Nectar of nocturnal flowers may be used by diurnal species that occasionally accomplish secondary pollination. Thirteen bird species visited Caryocar brasiliense flowers in central Brazil. There is a temporal separation between nectarivores and non-nectarivores species. Nectarivores birds visited flowers late in the morning, while other species appear earlier. C. brasiliense nectar may be an alternative resource to birds visitors during the dry season. O néctar de flores noturnas pode ser ...

  13. Analysis on diurnal global geomagnetic variability under quiet-time conditions

    OpenAIRE

    Klausner, Virginia; Domingues, Margarete Oliveira; Mendes Jr, Odim; Papa, Andres Reinaldo Rodriguez; Frick, Peter

    2012-01-01

    This paper describes a methodology (or treatment) to establish a representative signal of the global magnetic diurnal variation based on a spatial distribution in both longitude and latitude of a set of magnetic stations as well as their magnetic behavior on a time basis. For that, we apply the Principal Component Analysis (PCA) technique implemented using gapped wavelet transform and wavelet correlation. The continuous gapped wavelet and the wavelet correlation techniques were used to descri...

  14. Thermoregulatory Behavior in Diurnal Lizards as a Vehicle for Teaching Scientific Process

    Science.gov (United States)

    Platz, James E.

    2009-01-01

    Field experiments offer the opportunity for hands on experience with the scientific process. While this is true of a wide variety of activities, many have pitfalls both experimental and logistical that reduce the overall rate of success, in turn, influencing student learning outcomes. Relying on small, territorial, diurnal lizards and an array of…

  15. 1-GWh diurnal load-leveling superconducting magnetic energy storage system reference design. Appendix D: superconductive magnetic energy storage cavern construction methods and costs

    International Nuclear Information System (INIS)

    1979-09-01

    The excavation and preparation of an underground cavern to contain a 1-GWh diurnal load-leveling Superconducting Magnetic Energy Storage (SMES) unit is examined. The cavern's principal function is to provide a rock structure for supporting the magnetic forces from the charged storage coil. Certain economic considerations indicate the refrigerator cold box for the helium system should also be underground. The study includes such a provision and considers, among other things, rock bolting, water seepage, concrete lining of the walls, steel bearing pads, a system to prevent freezing of the walls, a mining schedule, and costs

  16. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Brooks, J Renee [U.S. Environmental Protection Agency, Corvallis, OR; Dragila, Maria [Oregon State University, Corvallis; Meinzer, Rick [USDA Forest Service

    2011-01-01

    Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

  17. The effects of trait and state affect on diurnal cortisol slope among children affected by parental HIV/AIDS in rural China.

    Science.gov (United States)

    Chen, Lihua; Chi, Peilian; Li, Xiaoming; Zilioli, Samuele; Zhao, Junfeng; Zhao, Guoxiang; Lin, Danhua

    2017-08-01

    Affect is believed to be one of the most prominent proximal psychological pathway through which more distal psychosocial factors influence physiology and ultimately health. The current study examines the relative contributions of trait affect and state affect to the hypothalamic-pituitary-adrenal axis activity, with particular focus on cortisol slope, in children affected by parental HIV/AIDS. A sample of 645 children (8-15 years old) affected by parental HIV/AIDS in rural China completed a multiple-day naturalistic salivary cortisol protocol. Trait and state affect, demographics, and psychosocial covariates were assessed via self-report. Hierarchical linear modeling was used for estimating the effects of trait affect and state affect on cortisol slope. Confidence intervals for indirect effects were estimated using the Monte Carlo method. Our results indicated that both trait and state negative affect (NA) predicted flatter (less "healthy") diurnal cortisol slopes. Subsequent analyses revealed that children's state NA mediated the effect of their trait NA on diurnal cortisol slope. The same relationships did not emerge for trait and state positive affect. These findings provide a rationale for future interventions that target NA as a modifiable antecedent of compromised health-related endocrine processes among children affected by parental HIV/AIDS.

  18. Improved vertical streambed flux estimation using multiple diurnal temperature methods in series

    Science.gov (United States)

    Irvine, Dylan J.; Briggs, Martin A.; Cartwright, Ian; Scruggs, Courtney; Lautz, Laura K.

    2017-01-01

    Analytical solutions that use diurnal temperature signals to estimate vertical fluxes between groundwater and surface water based on either amplitude ratios (Ar) or phase shifts (Δϕ) produce results that rarely agree. Analytical solutions that simultaneously utilize Ar and Δϕ within a single solution have more recently been derived, decreasing uncertainty in flux estimates in some applications. Benefits of combined (ArΔϕ) methods also include that thermal diffusivity and sensor spacing can be calculated. However, poor identification of either Ar or Δϕ from raw temperature signals can lead to erratic parameter estimates from ArΔϕ methods. An add-on program for VFLUX 2 is presented to address this issue. Using thermal diffusivity selected from an ArΔϕ method during a reliable time period, fluxes are recalculated using an Ar method. This approach maximizes the benefits of the Ar and ArΔϕ methods. Additionally, sensor spacing calculations can be used to identify periods with unreliable flux estimates, or to assess streambed scour. Using synthetic and field examples, the use of these solutions in series was particularly useful for gaining conditions where fluxes exceeded 1 m/d.

  19. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  20. Salivary estradiol and testosterone in Filipino men: Diurnal patterns and relationships with adiposity.

    Science.gov (United States)

    Gettler, Lee T; McDade, Thomas W; Feranil, Alan B; Agustin, Sonny S; Kuzawa, Christopher W

    2014-01-01

    We used detailed saliva sampling procedures to test for diurnal changes in men's salivary estradiol (E2) and testosterone (T) and assessed whether greater adiposity predicted higher E2 and T. We drew on a subsample of young adults enrolled in a long-running birth cohort study in Metro Cebu, Philippines. Subjects provided saliva samples at four time points during the day (waking, waking +40 min, early evening, and bedtime), which were assayed for E2 and T. Using these detailed hormonal data, we calculated E2 (n = 29) and T (n = 44) area-under-the-curve values, which provide insights on hormonal production over the study period. While T declined immediately after waking and reached a nadir in the early evening, E2 did not show significant diurnal change (P ≥ 0.1) but was positively correlated to T at multiple time points (P ≤ 0.05). Subjects with higher adiposity (BMI, waist circumference, skinfolds) had elevated E2 secretion throughout the day (P ≤ 0.01), but adiposity was not related to salivary T. Consistent with past research, our results indicate that adipose tissue is a significant site of E2 production in males but differ from a limited number of prior studies of young men in that we did not find lower T with increasing adiposity. Given E2's role in male hypothalamic-pituitary-gonadal function and complex interfaces with the immune system, these results have important implications for models of male life history as rates of overweight and obesity rise in populations around the world. Copyright © 2014 Wiley Periodicals, Inc.

  1. Mean diurnal variations of noctilucent clouds during 7 years of lidar observations at ALOMAR

    Directory of Open Access Journals (Sweden)

    J. Fiedler

    2005-06-01

    Full Text Available From 1997 to 2003, noctilucent clouds (NLC were observed by lidar above the ALOMAR observatory in Northern Norway (69° N during a total of 1880 measurement hours. This data set contains NLC signatures for 640h, covering all local times, even during the highest solar background conditions. After data limitation imposing a threshold value of 4x10-10m-1sr-1 for the volume backscatter coefficient of the NLC particles, a measure for the cloud brightness, local time dependencies of the NLC occurrence frequency, altitude, and brightness were determined. On average, over the 7 years NLC occurred during the whole day and preferably in the early morning hours, with a maximum occurrence frequency of ~40% between 4 and 7 LT. Splitting the data into weak and strong clouds yields almost identical amplitudes of diurnal and semidiurnal variations for the occurrence of weak clouds, whereas the strong clouds are dominated by the diurnal variation. NLC occurrence, altitude, as well as brightness, show a remarkable persistence concerning diurnal and semidiurnal variations from 1997 to 2003, suggesting that NLC above ALOMAR are significantly controlled by atmospheric tides. The observed mean anti-phase behavior between cloud altitude and brightness is attributed to a phase shift between the semidiurnal components by ~6h. Investigation of data for each individual year regarding the prevailing oscillation periods of the NLC parameters showed different phase relationships, leading to a complex variability in the cloud parameters.

  2. Some analysis on the diurnal variation of rainfall over the Atlantic Ocean

    Science.gov (United States)

    Gill, T.; Perng, S.; Hughes, A.

    1981-01-01

    Data collected from the GARP Atlantic Tropical Experiment (GATE) was examined. The data were collected from 10,000 grid points arranged as a 100 x 100 array; each grid covered a 4 square km area. The amount of rainfall was measured every 15 minutes during the experiment periods using c-band radars. Two types of analyses were performed on the data: analysis of diurnal variation was done on each of grid points based on the rainfall averages at noon and at midnight, and time series analysis on selected grid points based on the hourly averages of rainfall. Since there are no known distribution model which best describes the rainfall amount, nonparametric methods were used to examine the diurnal variation. Kolmogorov-Smirnov test was used to test if the rainfalls at noon and at midnight have the same statistical distribution. Wilcoxon signed-rank test was used to test if the noon rainfall is heavier than, equal to, or lighter than the midnight rainfall. These tests were done on each of the 10,000 grid points at which the data are available.

  3. Does diurnal variation in cough reflex testing exist in healthy young adults?

    Science.gov (United States)

    Perry, Sarah; Huckabee, Maggie-Lee

    2017-05-01

    The aim of this study was to investigate whether diurnal variation in cough reflex sensitivity exists in healthy young adults when a tidal-breathing method is used. Fifty-three participants (19-37 years) underwent cough reflex testing on two occasions: once in the morning (between 9 am - midday) and once in the afternoon (between 2-5 pm). The order of testing was counter-balanced. Within each assessment, participants inhaled successively higher citric acid concentrations via a facemask, with saline solution randomly interspersed to control for a placebo response. The lowest concentration that elicited a reflexive cough response was recorded. Morning cough thresholds (mean=0.6mol/L) were not different from afternoon cough thresholds (mean=0.6mol/L), p=0.16, T=101, r=-0.14. We found no evidence of diurnal variability in cough reflex testing. There was, however, an order effect irrespective of time of day, confirming that healthy participants are able to volitionally modulate their cough response. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A combined stochastic analysis of mean daily temperature and diurnal temperature range

    Science.gov (United States)

    Sirangelo, B.; Caloiero, T.; Coscarelli, R.; Ferrari, E.

    2018-03-01

    In this paper, a stochastic model, previously proposed for the maximum daily temperature, has been improved for the combined analysis of mean daily temperature and diurnal temperature range. In particular, the procedure applied to each variable sequentially performs the deseasonalization, by means of truncated Fourier series expansions, and the normalization of the temperature data, with the use of proper transformation functions. Then, a joint stochastic analysis of both the climatic variables has been performed by means of a FARIMA model, taking into account the stochastic dependency between the variables, namely introducing a cross-correlation between the standardized noises. The model has been applied to five daily temperature series of southern Italy. After the application of a Monte Carlo simulation procedure, the return periods of the joint behavior of the mean daily temperature and the diurnal temperature range have been evaluated. Moreover, the annual maxima of the temperature excursions in consecutive days have been analyzed for the synthetic series. The results obtained showed different behaviors probably linked to the distance from the sea and to the latitude of the station.

  5. Development and application of diurnal thermal modeling for camouflage, concealment, and deception

    Science.gov (United States)

    Rodgers, Mark L. B.

    2000-07-01

    The art of camouflage is to make a military asset appear to be part of the natural environment: its background. In order to predict the likely performance of countermeasures in attaining this goal it is necessary to model the signatures of targets, backgrounds and the effect of countermeasures. A library of diurnal thermal models has been constructed covering a range of backgrounds from vegetated and non- vegetated surfaces to snow cover. These models, originally developed for Western Europe, have been validated successfully for theatres of operation from the arctic to the desert. This paper will show the basis for and development of physically based models for the diurnal thermal behavior both of these backgrounds and for major passive countermeasures: camouflage nets and continuous textile materials. The countermeasures set up significant challenges for the thermal modeler with their low but non-zero thermal inertial and the extent to which they influence local aerodynamic behavior. These challenges have been met and the necessary extensive validation has shown the ability of the models to predict successfully the behavior of in-service countermeasures.

  6. Diurnal variation in the biliary excretion of flomoxef in patients with percutaneous transhepatic biliary drainage.

    Science.gov (United States)

    Hishikawa, S; Kobayashi, E; Sugimoto , K; Miyata, M; Fujimura, A

    2001-07-01

    To examine diurnal variation in biliary excretion of flomoxef. Flomoxef (1 g) was injected intravenously in eight patients with percutaneous transhepatic cholangiography with drainage at 09.00 h and 21.00 h by a cross-over design with a 36 h washout period. Drained biliary fluid was collected for 6 h after each dosing. These patients still had mild to moderate hepatic dysfunction. Bile flow and bile acid excretion for 6 h after dosing did not differ significantly between the 09.00 h and 21.00 h treatments. The maximum concentration of biliary flomoxef was significantly greater and its total excretion for 6 h tended to be greater after the 21.00 h dose [maximum concentration (microg ml(-1)): 34.2 +/- 29.9 (09.00 h dose) vs 43.5 +/- 28.3 (21.00 h dose) (95% confidence interval for difference: 2.6 approximately 15.9, P = 0.013); total excretion (mg 6 h(-1)): 1.4 +/- 1.3 (09.00 h dose) vs 1.6 +/- 1.2 (21.00 h dose) (95% confidence interval for difference: -26.8, 313.7, P = 0.087)]. The period that biliary flomoxef remained above the minimal inhibitory concentration did not differ significantly between the two treatment times. These results suggest that biliary excretion of flomoxef shows diurnal variation. However, as the difference was relatively small, flomoxef could be given at any time of day without any dosage adjustments.

  7. Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF based Reconstruction Technique over Eastern China

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2015-05-01

    Full Text Available Water vapor, as one of the most important greenhouse gases, is crucial for both climate and atmospheric studies. Considering the high spatial and temporal variations of water vapor, a timely and accurate retrieval of precipitable water vapor (PWV is urgently needed, but has long been constrained by data availability. Our study derived the vertically integrated precipitable water vapor over eastern China using Multi-functional Transport Satellite (MTSAT data, which is in geostationary orbit with high temporal resolution. The missing pixels caused by cloud contamination were reconstructed using an Empirical Orthogonal Function (EOF decomposition method over both spatial and temporal dimensions. GPS meteorology data were used to validate the retrieval and the reconstructed results. The diurnal variation of PWV over eastern China was analyzed using harmonic analysis, which indicates that the reconstructed PWV data can depict the diurnal cycle of PWV caused by evapotranspiration and local thermal circulation.

  8. Effect of different mowing regimes on butterflies and diurnal moths on road verges

    Directory of Open Access Journals (Sweden)

    Valtonen, A.

    2006-12-01

    Full Text Available In northern and central Europe road verges offer alternative habitats for declining plant and invertebrate species of semi-natural grasslands. The quality of road verges as habitats depends on several factors, of which the mowing regime is one of the easiest to modify. In this study we compared the Lepidoptera communities on road verges that underwent three different mowing regimes regarding the timing and intensity of mowing; mowing in mid-summer, mowing in late summer, and partial mowing (a narrow strip next to the road. A total of 12,174 individuals and 107 species of Lepidoptera were recorded. The mid-summer mown verges had lower species richness and abundance of butterflies and lower species richness and diversity of diurnal moths compared to the late summer and partially mown verges. By delaying the annual mowing until late summer or promoting mosaic-like mowing regimes, such as partial mowing, the quality of road verges as habitats for butterflies and diurnal moths can be improved.

  9. Diurnal, semidiurnal, and fortnightly tidal components in orthotidal proglacial rivers.

    Science.gov (United States)

    Briciu, Andrei-Emil

    2018-02-22

    The orthotidal rivers are a new concept referring to inland rivers influenced by gravitational tides through the groundwater tides. "Orthotidal signals" is intended to describe tidal signals found in inland streamwaters (with no oceanic input); these tidal signals were locally generated and then exported into streamwaters. Here, we show that orthotidal signals can be found in proglacial rivers due to the gravitational tides affecting the glaciers and their surrounding areas. The gravitational tides act on glacier through earth and atmospheric tides, while the subglacial water is affected in a manner similar to the groundwater tides. We used the wavelet analysis in order to find tidally affected streamwaters. T_TIDE analyses were performed for discovering the tidal constituents. Tidal components with 0.95 confidence level are as follows: O1, PI1, P1, S1, K1, PSI1, M2, T2, S2, K2, and MSf. The amplitude of the diurnal tidal constituents is strongly influenced by the daily thermal cycle. The average amplitude of the semidiurnal tidal constituents is less altered and ranges from 0.0007 to 0.0969 m. The lunisolar synodic fortnightly oscillation, found in the time series of the studied river gauges, is a useful signal for detecting orthotidal rivers when using noisier data. The knowledge of the orthotidal oscillations is useful for modeling fine resolution changes in rivers.

  10. Solar tri-diurnal variation of cosmic rays in a wide range of rigidity

    Science.gov (United States)

    Mori, S.; Ueno, H.; Fujii, Z.; Morishita, I.; Nagashima, K.

    1985-01-01

    Solar tri-diurnal variations of cosmic rays have been analyzed in a wide range of rigidity, using data from neutron monitors, and the surface and underground muon telescopes for the period 1978-1983. The rigidity spectrum of the anisotropy in space is assumed to be of power-exponential type as (P/gamma P sub o) to the gamma exp (gamma-P/P sub o). By means of the best-fit method between the observed and the expected variations, it is obtained that the spectrum has a peak at P (=gamma P sub o) approx = 90 GV, where gamma=approx 3.0 and P sub o approx. 30 GV. The phase in space of the tri-diurnal variation is also obtained as 7.0 hr (15 hr and 23 hr LT), which is quite different from that of approx. 1 hr. arising from the axisymmetric distribution of cosmic rays with respect to the IMF.

  11. Diurnal and day-to-day variation of isometric muscle strength in myasthenia gravis.

    Science.gov (United States)

    Vinge, Lotte; Jakobsen, Johannes; Pedersen, Asger Roer; Andersen, Henning

    2016-01-01

    In patients with myasthenia gravis (MG), muscle strength is expected to decrease gradually during the day due to physical activities. Isometric muscle strength at the shoulder, knee, and ankle was determined in 10 MG patients (MGFA class II-IV) who were receiving usual medical treatment and in 10 control subjects. To determine diurnal and day-to-day variation, muscle strength was measured 4 times during day 1 and once at day 2. Knee extension strength decreased during the day in both patients and controls. Neither diurnal nor day-to-day variation of muscle strength was higher in patients compared with controls. Patients with mild to moderate MG did not have increased variation of isometric muscle strength during the day or from day-to-day compared with controls. This suggests that isometric muscle performance can be determined with high reproducibility in similar groups of MG patients without regard to time of day. © 2015 Wiley Periodicals, Inc.

  12. Sensitivity, reliability and the effects of diurnal variation on a test battery of field usable upper limb fatigue measures.

    Science.gov (United States)

    Yung, Marcus; Wells, Richard P

    2017-07-01

    Fatigue has been linked to deficits in production quality and productivity and, if of long duration, work-related musculoskeletal disorders. It may thus be a useful risk indicator and design and evaluation tool. However, there is limited information on the test-retest reliability, the sensitivity and the effects of diurnal fluctuation on field usable fatigue measures. This study reports on an evaluation of 11 measurement tools and their 14 parameters. Eight measures were found to have test-retest ICC values greater than 0.8. Four measures were particularly responsive during an intermittent fatiguing condition. However, two responsive measures demonstrated rhythmic behaviour, with significant time effects from 08:00 to mid-afternoon and early evening. Action tremor, muscle mechanomyography and perceived fatigue were found to be most reliable and most responsive; but additional analytical considerations might be required when interpreting daylong responses of MMG and action tremor. Practitioner Summary: This paper presents findings from test-retest and daylong reliability and responsiveness evaluations of 11 fatigue measures. This paper suggests that action tremor, muscle mechanomyography and perceived fatigue were most reliable and most responsive. However, mechanomyography and action tremor may be susceptible to diurnal changes.

  13. Diurnal and seasonal variations in surface methane at a tropical coastal station: Role of mesoscale meteorology.

    Science.gov (United States)

    Kavitha, M; Nair, Prabha R; Girach, I A; Aneesh, S; Sijikumar, S; Renju, R

    2018-08-01

    In view of the large uncertainties in the methane (CH 4 ) emission estimates and the large spatial gaps in its measurements, studies on near-surface CH 4 on regional basis become highly relevant. This paper presents the first time observational results of a study on the impacts of mesoscale meteorology on the temporal variations of near-surface CH 4 at a tropical coastal station, in India. It is based on the in-situ measurements conducted during January 2014 to August 2016, using an on-line CH 4 analyzer working on the principle of gas chromatography. The diurnal variation shows a daytime low (1898-1925ppbv) and nighttime high (1936-2022ppbv) extending till early morning hours. These changes are closely associated with the mesoscale circulations, namely Sea Breeze (SB) and Land Breeze (LB), as obtained through the meteorological observations, WRF simulations of the circulations and the diurnal variation of boundary layer height as observed by the Microwave Radiometer Profiler. The diurnal enhancement always coincides with the onset of LB. Several cases of different onset timings of LB were examined and results presented. The CH 4 mixing ratio also exhibits significant seasonal patterns being maximum in winter and minimum in pre-monsoon/monsoon with significant inter-annual variations, which is also reflected in diurnal patterns, and are associated with changing synoptic meteorology. This paper also presents an analysis of in-situ measured near-surface CH 4 , column averaged and upper tropospheric CH 4 retrieved by Atmospheric Infrared Sounder (AIRS) onboard Earth Observing System (EOS)/Aqua which gives insight into the vertical distribution of the CH 4 over the location. An attempt is also made to estimate the instantaneous radiative forcing for the measured CH 4 mixing ratio. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Parents Function and Behavioral Disorders in Children with and without Diurnal Voiding Dysfunction: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Parsa Yousefi

    2014-09-01

    Full Text Available Background: Diurnal voiding dysfunction is one of the most common causes of pediatric urology clinic admissions. It can cause behavioral problems for children and their parents. We lunch this study to compare the parents’ function and children’s behavior problem in pediatric patients suffering from diurnal voiding dysfunction referring Arak Amir Kabir hospital. Materials and Methods: To perform this case-control study, we recruit 116 children with diurnal voiding dysfunction and compared them with other 116 children non-affected children aged between 5 to 16 years old. The child behavior checklist (CBCL4/18 for children behavior assessment and Global Assessment of Functioning (GAF for the evaluation of their parent’s behavior was completed by the parents. Data was analyzed using ANOVA, qualitative variables and χ2 formula. Results: Among 116 patient with voiding dysfunction, 10 case (8.6% showed behavioral problem while this figure was 3 case (2.6% in the control group, denoting a significant difference (p=0.04. Moreover 20 children (17.2% in the case group and 9 children (7.8% in the control group had internalizing problem (p=0.02. Twenty two children (19% with voiding dysfunction and 8 children (6.9% in the healthy group had externalizing problem which was also a significant difference (p=0.01. As a significant difference (0.01, the parent’s average stress and behavior scores in case and control group were 3.65 and 3.76, respectively. Conclusion: The higher prevalence of behavioral problem in the children suffering from diurnal voiding dysfunction and their parent’s functional impairment highlights the importance of early parent’s intervention for early treatment and subsequently prevention of future behavioral problem in their sibling.

  15. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    Directory of Open Access Journals (Sweden)

    Rajib Saha

    2016-05-01

    Full Text Available Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H, and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium.

  16. Diurnal tidal currents attributed to free baroclinic coastal-trapped waves on the Pacific shelf off the southeastern coast of Hokkaido, Japan

    Science.gov (United States)

    Kuroda, Hiroshi; Kusaka, Akira; Isoda, Yutaka; Honda, Satoshi; Ito, Sayaka; Onitsuka, Toshihiro

    2018-04-01

    To understand the properties of tides and tidal currents on the Pacific shelf off the southeastern coast of Hokkaido, Japan, we analyzed time series of 9 current meters that were moored on the shelf for 1 month to 2 years. Diurnal tidal currents such as the K1 and O1 constituents were more dominant than semi-diurnal ones by an order of magnitude. The diurnal tidal currents clearly propagated westward along the coast with a typical phase velocity of 2 m s-1 and wavelength of 200 km. Moreover, the shape and phase of the diurnal currents measured by a bottom-mounted ADCP were vertically homogeneous, except in the vicinity of the bottom boundary layer. These features were very consistent with theoretically estimated properties of free baroclinic coastal-trapped waves of the first mode. An annual (semi-annual) variation was apparent for the phase (amplitude) of the O1 tidal current, which was correlated with density stratification (intensity of an along-shelf current called the Coastal Oyashio). These possible causes are discussed in terms of the propagation and generation of coastal-trapped waves.

  17. Effects of soil moisture on the diurnal pattern of pesticide emission: Comparison of simulations with field measurements

    Science.gov (United States)

    Reichman, Rivka; Yates, Scott R.; Skaggs, Todd H.; Rolston, Dennis E.

    2013-02-01

    Pesticide volatilization from agricultural soils is one of the main pathways in which pesticides are dispersed in the environment and affects ecosystems including human welfare. Thus, it is necessary to have accurate knowledge of the various physical and chemical mechanisms that affect volatilization rates from field soils. A verification of the influence of soil moisture modeling on the simulated volatilization rate, soil temperature and soil-water content is presented. Model simulations are compared with data collected in a field study that measured the effect of soil moisture on diazinon volatilization. These data included diurnal changes in volatilization rate, soil-water content, and soil temperature measured at two depths. The simulations were performed using a comprehensive non-isothermal model, two water retention functions, and two soil surface resistance functions, resulting in four tested models. Results show that the degree of similarity between volatilization curves simulated using the four models depended on the initial water content. Under fairly wet conditions, the simulated curves mainly differ in the magnitude of their deviation from the measured values. However, under intermediate and low moisture conditions, the simulated curves also differed in their pattern (shape). The model prediction accuracy depended on soil moisture. Under normal practices, where initial soil moisture is about field capacity or higher, a combination of Brooks and Corey water retention and the van de Grind and Owe soil surface resistance functions led to the most accurate predictions. However, under extremely dry conditions, when soil-water content in the top 1 cm is below the volumetric threshold value, the use of a full-range water retention function increased prediction accuracy. The different models did not affect the soil temperature predictions, and had a minor effect on the predicted soil-water content of Yolo silty clay soil.

  18. Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand

    Science.gov (United States)

    Ullrich, Maria K.; Pope, James G.; Seward, Terry M.; Wilson, Nathaniel; Planer-Friedrich, Britta

    2013-07-01

    Champagne Pool, a sulfidic hot spring in New Zealand, exhibits distinct diurnal variations in antimony (Sb) and arsenic (As) concentrations, with daytime high and night-time low concentrations. To identify the underlying mobilization mechanisms, five sites along the drainage channel of Champagne Pool were sampled every 2 h during a 24 h period. Temporal variations in elemental concentrations and Sb, As, and sulfur (S) speciation were monitored in the discharging fluid. Total trace element concentrations in filtered and unfiltered samples were analyzed using ICP-MS, and Sb, As and S species were determined by IC-ICP-MS. Sulfur speciation in the drainage channel was dominated by thiosulfate and sulfide at night, while sulfate dominated during the day. The distinct diurnal changes suggest that the transformations are caused by phototrophic sulfur-oxidizing bacteria. These bacteria metabolize thiosulfate and sulfide in daylight to form sulfate and, as suggested by modeling with PhreeqC, elemental sulfur. Sulfide consumption during the day results in undersaturation of antimony sulfides, which triggers the additional release of dissolved Sb. For As, diurnal cycles were much more pronounced in speciation than in total concentrations, with di- and trithioarsenate forming at night due to excess sulfide, and monothioarsenate forming from arsenite and elemental sulfur during the day. Sulfur speciation was thus found to control Sb and As in terms of both solubility and speciation.

  19. Diurnal pattern of serum BDNF before partial sleep deprivation in stress-related mood disorders – an association with therapy response in major depression

    Directory of Open Access Journals (Sweden)

    Maria Giese

    2012-09-01

    recorded with a portable EEG. Depression severity using the Hamilton Depression Rating Scale and mood, tiredness and relaxation were assessed with visual analog scales (VASs for psychological functioning at days 1, 2 and 3 (“after recovery night” as well as after one and two weeks of ongoing treatment. Results : Notably, depressive patients who showed an acute HDRS-6 improvement after PSD exhibited a prominent diurnal pattern of serum BDNF levels during the day before PSD whereas acute non-responders did not show such a pattern and BDNF levels were rather constantly expressed. Serum BDNF levels were significantly elevated in acute responders compared to non-responders in the morning at 8.00 am before PSD corrected for Bonferroni (p>0.01. Also responders after two weeks (FU2 exhibited a prominent diurnal serum BDNF pattern before and after PSD on day one and two, while it was more pronounced after PSD. There was no diurnal pattern for non-responders after two weeks before; however, after PSD on day two an even modest diurnal change was visible in this group but less pronounced compared to FU2-responders. We found no association between treatment condition placebo vs. modafinil and response for acute neither response after two weeks. When we linked daily peak BDNF levels from day two at 2 pm with overall HDRS-6 improvement, responders were associated with elevated BDNF levels compared to non-responders on day three after recovery night already. Even after one (FU1 and two (FU2 weeks increased BDNF levels of day two at 2 pm were more prominent in the responder group. This difference between responders and non-responders of peak serum BDNF levels from 2 pm after PSD was statistically significant after two weeks. In addition, HDRS-6 improvement after two weeks of on-going treatment was significantly correlated with elevated serum BDNF levels in all patients. Moreover, peak levels of serum BDNF after PSD on day 2 at 2 pm were correlated with increased relaxation and

  20. Relationship between the cortisol awakening response and other features of the diurnal cortisol rhythm: The Multi-Ethnic Study of Atherosclerosis

    OpenAIRE

    Golden, Sherita Hill; Sánchez, Brisa N.; Wu, Meihua; Champaneri, Shivam; Diez Roux, Ana V.; Seeman, Teresa; Wand, Gary S.

    2013-01-01

    Cumulative cortisol burden is known to influence neuropsychiatric and metabolic disorders. To better understand the relationship between daily cortisol exposure and measures of the diurnal circadian cortisol rhythm, we examined the cross-sectional association of the cortisol awakening response (CAR) with wake-up cortisol, bedtime cortisol, diurnal slope, and total cortisol area under the curve (AUC). Up to 18 salivary cortisol samples were collected over 3 days from 935 White, Hispanic, and B...

  1. [Effects of silicon supply on diurnal variations of physiological properties at rice heading stage under elevated UV-B radiation].

    Science.gov (United States)

    Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was

  2. Effect of average diurnal barn airspace temperatures on prediction of their development during the day

    Directory of Open Access Journals (Sweden)

    Gustav Chládek

    2011-01-01

    Full Text Available A year-round (i.e. 365 days experiment was performed at the Mendel University Training Farm in Žabčice, Czech Republic (GPS 49°0’51.967”N and 16°36’14.614”E, the altitude 179 m with the aim to quantify the effect of the variation of average diurnal barn airspace temperatures on prediction of their changes during the day. Barn airspace temperatures were monitored daily in one-hour intervals and the recorded values were used for calculations of average diurnal temperatures. These were classified into 7 categories (i.e. below 0 °C; 0.1 to 5 °C; 5.1 to 10 °C; 10.1 to 15 °C; 15.1 to 20 °C; 20.1 to 25 °C and above 25 °C. Regarding this classification system, all differences between temperatures measured at identical hours but within various limits were statistically highly significant. The statistical analysis involved also the calculation of the third degree polynomial regression equations, which enabled to characterise the relationship between the temperature and the hour of measurement within the aforementioned categories of diurnal temperatures. Individual equations were markedly different and ranged from y = − 0.0019x3 + 0.0596x2 − 0.3797x − 1.2169 (for temperatures below 0 °C to y = − 0.0108x3 + 0.3297x2 − 1.9367x + 24.3931 (for temperatures above 25 °C. Correlation coefficients (r and coefficients of determination (R2 of these regression equations were generally very high and ranged from 0.872 to 0.976 and from 0.760 to 0.953, respectively. Regarding high values of both coefficients it can be concluded that the calculated equations enable a good and reliable prediction of the diurnal development of barn airspace temperatures.

  3. Diurnal and Intra-Annual Variations in Greenhouse Gases at Fixed Sites in the San Francisco Bay Area

    Science.gov (United States)

    Newman, S.; Guha, A.; Martien, P. T.; Bower, J.; Perkins, I.; Randall, S.; Young, A.; Stevenson, E.; Hilken, H.

    2017-12-01

    The Bay Area Air Quality Management District, the San Francisco Bay Area's air quality regulatory agency, has set a goal to reduce the region's greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050, consistent with the State of California's climate goals. Recently, the Air District's governing board adopted a 2017 Clean Air Plan which lays out the agency's vision and includes actions to put the region on a path towards achieving the 2050 goal while also reducing air pollution and related health impacts. The Plan includes GHG rule-making efforts, policy initiatives, local government partnerships, outreach, grants, and incentives, encompassing over 250 specific implementation actions across all economic sectors to effect ambitious emission reductions in the region. To track trends in atmospheric observations of GHGs and associated species and monitor changes in regional emission patterns, the Air District has established a fixed site network (CO2, CH4, CO) of one generally upwind site (Bodega Bay - on the coast north of Marin County) and three receptor sites (Bethel Island - east of the major refineries, in the Sacramento River Delta; Livermore - east of the bulk of the East Bay cities; and San Martin - south of the major city of San Jose). Having collected over a year of data for each of the fixed sites, the Air District is now investigating spatial and temporal variations in GHG emissions. Concentrating on variations in diurnal cycles, we see the commonly observed pattern of seasonal changes in diurnal amplitude at all sites, with larger variations during the winter than the summer, consistent with seasonally varying daily changes in planetary boundary layer heights. Investigations explore the weekday/weekend effect on the diurnal patterns and the effect of seasonal wind direction changes on the intra-annual variations of the local enhancements. The Air District is beginning to investigate the ways in which the fixed site network reflects the dominant

  4. On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy.

    Science.gov (United States)

    Montero-Martínez, Guillermo; Rinaldi, Matteo; Gilardoni, Stefania; Giulianelli, Lara; Paglione, Marco; Decesari, Stefano; Fuzzi, Sandro; Facchini, Maria Cristina

    2014-07-01

    The study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water. The largest water soluble organic nitrogen concentrations in the PM1.2 fraction occurred during the diurnal period with mean values of 2.03 and 2.16 μg-N m(-3) (154 and 145 nmol-N m(-3)) at Bologna and San Pietro Capofiume (SPC), respectively. The mean PM10 WSON concentration during diurnal periods at SPC was 2.30 μg-N m(-3) (164 nmol-N m(-3)) while it was 1.34 and 0.82 μg-N m(-3) (95.7 and 58.5 nmol-N m(-3)) in the night and fog water samples, respectively. Aerosol mass distribution profiles obtained during fog changed significantly with respect to those estimated in periods without fog periods due to fog scavenging, which proved to be over 80% efficient. Linear correlations suggested secondary processes related to combustion and, to a lesser extent, biomass burning, as plausible sources of WSON. Regarding the inorganic nitrogen fraction, the results showed that ammonium was the largest soluble inorganic nitrogen component in the samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Geochemistry of water in relation to cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Relations between trace and major element chemistry of drinking water and cardiovascular diseases are reviewed and documented. Several aspects of the problem, related both to the pathway that drinking water takes to man and to its transit through man, are reviewed. Several steps in the pathogenesis of cardiovascular disease that could be affected by water factors were explored. There is little evidence bearing on the contribution from drinking water to human tissue levels of cadmium, chromium, or zinc. Copper and magnesium levels of tissues may be related to drinking water, but confirmatory evidence is needed. Lead levels in blood and other tissues are most certainly affected by lead levels in drinking water in areas where these levels are unusually elevated. There is little evidence that relatively low levels of lead are toxic to the cardiovascular system, except for the causation of cardiomyopathy. The protective action of selenium and zinc applies mainly to cadmium toxicity. The mode of the protective action of silicon, if any, is unclear at present. Some epidemiological associations between the cadmium level or cadmium:zinc ratio and cardiovascular disease have been reported, but are contradictory. Some epidemiological support exists for a protective effect by selenium; results for zinc are equivocal. Interactions within the human system involving calcium and selected trace elements might be very important for the cardiovascular system. Review of the epidemiological literature indicates that there may be a water factor associated with cardiovascular disease. Its effects, if any, must be very weak in comparison with the effects of known risk factors. The reported inverse relationship between mortality from cardiovascular diseases and hardness of local drinking water supplies appears to be considerably less distinctive in small regional studies. (ERB)

  6. Water-related planning and design at energy firms

    International Nuclear Information System (INIS)

    Abbey, D.; Lucero, F.

    1980-11-01

    Water related planning and design at energy firms are examined. By identifying production alternatives and specifying the cost of these alternatives under a variety of conditions, one gains insight into the future pattern of water use in the energy industry and the response of industry to water-related regulation. In Part II, the three principal decisions of industry that affect water allocation are reviewed: where to build plants, where to get water, and how much water to use. The cost of water use alternatives is reviewed. Part III presents empirical data to substantiate the inferences derived from engineering/economic analysis. The source of water, type of cooling system, and pattern of discharge for electric plants constructed during the 1970s or projected to come on line in this decade are reported. In the 1970s in the US, there was a trend away from once-through cooling toward use of evaporative cooling. Freshwater, as a source of supply, and discharge of effluent were standard practice. In the 1980s, almost all new capacity in the states and basins surveyed will use evaporative cooling. It is pointed out that a thorough understanding of industrial water use economics and water markets is a precursor to successful regulation

  7. Study of Diurnal Cycle Variability of Planetary Boundary Layer Characteristics over the Red Sea and Arabian Peninsula

    KAUST Repository

    Li, Weigang

    2012-07-01

    This work is aimed at investigating diurnal cycle variability of the planetary boundary layer characteristics over the Arabian Peninsula and the Red Sea region. To fulfill this goal the downscaling simulations are performed using Weather Research and Forecasting (WRF) model. We analyze planetary boundary layer height, latent and sensible heat fluxes, and surface air temperature. The model results are compared with observations in different areas, for different seasons, and for different model resolutions. The model results are analyzed in order to better quantify the diurnal cycle variability over the Arabian Peninsula and the Red Sea. The specific features of this region are investigated and discussed.

  8. Seasonal Variation of Diurnal Cycle of Rainfall in the Eastern Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pednekar, S.; Katsumata, M.; Antony, M.K.; Kuroda, Y.; Unnikrishnan, A.S.

    The diurnal cycle of rainfall over the eastern equatorial Indian Ocean is studied for the period 23rd October 2001 to 31st October 2003 using the hourly data from the Triton buoy positioned at 1.5°S and 90°E. An analysis of the active and weak...

  9. Diurnal variability of surface fluxes at an oceanic station in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Rao, D.P.

    Diurnal variability of the surface fluxes and ocean heat content was studied using the time-series data on marine surface meteorological parameters and upper ocean temperature collected at an oceanic station in the Bay of Bengal during 1st to 8th...

  10. Comparison of data-driven and model-driven approaches to brightness temperature diurnal cycle interpolation

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2006-01-01

    Full Text Available This paper presents two new schemes for interpolating missing samples in satellite diurnal temperature cycles (DTCs). The first scheme, referred to here as the cosine model, is an improvement of the model proposed in [2] and combines a cosine...

  11. Pulse pressure and diurnal blood pressure variation

    DEFF Research Database (Denmark)

    Knudsen, Søren Tang; Poulsen, Per Løgstrup; Hansen, Klavs Würgler

    2002-01-01

    retinopathy, nephropathy, macrovascular disease, PP, and diurnal BP variation in a group of type 2 diabetic patients. METHODS: In 80 type 2 diabetic patients we performed 24-h ambulatory BP (AMBP) and fundus photographs. Urinary albumin excretion was evaluated by urinary albumin/creatinine ratio. Presence...... or absence of macrovascular disease was assessed by an independent physician. RESULTS: Forty-nine patients had no detectable retinal changes (grade 1), 13 had grade 2 retinopathy, and 18 had more advanced retinopathy (grades 3-6). Compared to patients without retinopathy (grade 1), patients with grades 2......BACKGROUND: In nondiabetic subjects pulse pressure (PP) is an independent predictor of cardiovascular disease and microalbuminuria. Reduced circadian blood pressure (BP) variation is a potential risk factor for the development of diabetic complications. We investigated the association between...

  12. Influences of the ENSO, oscillation Madden-Julian, waves of the east, hurricanes and moon phases on the diurnal cycle of precipitation at the tropical Andes of Colombia

    International Nuclear Information System (INIS)

    Poveda, German; Mesa, Oscar; Agudelo, Paula; Alvarez, Juan; Arias, Paola; Moreno, Hernan; Salazar, Luis; Toro, Vladimir; Vieira, Sara

    2002-01-01

    We study the effects of large-scale ocean-atmospheric, astronomic phenomena on the diurnal cycle of precipitation at the tropical Andes of Colombia. Such phenomena include both phases of El Nino/Southern Oscillation (ENSO), namely El Nino and La Nina, the intra seasonal Madden-Julian oscillation, tropical easterly waves (4-8 days), moon phases and hurricanes over the Atlantic and eastern pacific oceans. We found a clear-cut effect of both ENSO phases: El Nino is associated with a diminished rainfall diurnal cycle, and La Nina intensifies it. Thus, ENSO modulates precipitation in Colombia at timescales ranging from hours to decades. We identified a close association with different phases of the Madden-Julian oscillation, as the diurnal cycle is intensified (larger amplitude) during its westerly phase, but it gets decreased during its easterly phase. For both ENSO and the Madden-Julian oscillation we identified a clear-cut influence on the amplitude of the diurnal cycle, yet the phase is conserved for the most part. Tropical easterly waves appear to affect the diurnal cycle, but no clear overall signal is pervasive throughout the region. We al so found a significant statistical association with hurricanes occurring over the northeastern pacific ocean with the diurnal cycle of precipitation at rain gages located over the eastern slope of the eastern range of the Colombian Andes. Rainfall at all the remaining slopes of the Andes is statistically associated with hurricanes occurring at the tropical north Atlantic and the Caribbean Sea. Moon phases are not statistically associated with the diurnal cycle and daily total rainfall

  13. Plant water status relationships among major floodplain sites of the Flathead River, Montana

    Science.gov (United States)

    Lee, L.C.; Hinckley, T.M.; Scott, M.L.

    1985-01-01

    Water status measurements of dominant species from major floodplain plant community types of the North Fork Flathead River, Montana were used to test the accuracy of site moisture gradient relationships postulated from floristic ordinations and site water balance estimates. Analysis of variance tests showed significant differences among the average predawn xylem pressure potential (ψp) of species in several community types. However, additional analyses failed to indicate a significant degree of association between averaged predawn Yp measurements and either floristic ordination or site water balance results. Sixty eight percent of 22 trials comparing the diurnal average ψp of the same species in different community types on the same day were less negative for a species in the wetter community types as predicted by floristic ordinations. Similarly, 64% of the trials indicated that the diurnal average stomatal conductance was higher for a species in the wetter type. These results suggest that although a floodplain moisture gradient exists, it alone does not limit the distribution of floodplain plant communities in the North Fork.

  14. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies1[OPEN

    Science.gov (United States)

    Quick, W. Paul; von Caemmerer, Susanne; Furbank, Robert

    2017-01-01

    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. PMID:27895208

  15. Diurnal radon-222 concentrations in the outflow of a complex basin

    International Nuclear Information System (INIS)

    Clements, W.E.; Wilkening, M.

    1981-01-01

    Radon 222 concentrations were monitored continuously in the outflow from the Anderson and Putah Creek air drainage basin as part of the Department of Energy's Atmospheric Studies in Complex Terrain September 1980 field studies. Radon 222, an inert gas having a half-life of 3.8 days, can be considered to be exhaled uniformly at a constant rate from the earth's surface throughout the basin. The contribution to the total radon budget from vented steam from geothermal wells in the Geysers area is neglected. Hence, radon in this application is used as an extended-source atmospheric tracer in contrast with point-source release of tracer materials. One of the purposes of this study is to help classify drainage flow nights in terms of the diurnal patterns of radon concentration. As cool slope winds move along the terrain and into the valley, the air masses involved accumulate radon through the night until morning instabilities mix it to greater depths. Hence, the measured diurnal trend of radon in the outflow of the basin reflects the integrated behavior of nocturnal flows in the basin and subsequent breakup in the morning. The use of this technique to classify drainage flows has been used by Wilkening and Rust

  16. Very high elevation water ice clouds on Mars: Their morphology and temporal behavior

    Science.gov (United States)

    Jaquin, Fred

    1988-01-01

    Quantitative analysis of Viking images of the martian planetary limb has uncovered the existence and temporal behavior of water ice clouds that form between 50 and 90 km elevation. These clouds show a seasonal behavior that may be correlated with lower atmosphere dynamics. Enhanced vertical mixing of the atmosphere as Mars nears perihelion is hypothesized as the cause of the seasonal dependence, and the diurnal dependence is explained by the temporal behavior of the martian diurnal thermal tide. Viking images also provide a data set of the vertical distribution of aerosols in the martian atmosphere. The temporal and spatial distribution of aerosols are characterized.

  17. Dopa-sensitive progressive dystonia of childhood with diurnal fluctuations of symptoms: a case report

    Directory of Open Access Journals (Sweden)

    José Luiz Dias Gherpelli

    1995-06-01

    Full Text Available Progressive dystonia with diurnal fluctuations sensitive to levodopa, also known as Segawa's disease, is a rare form of autosomal dominant extrapyramidal disease in the pediatric age group. The dystonic and Parkinson-like symptoms are the main clinical features of the disease and, characteristically but not in all cases, show a diurnal variation. They are absent or present to a lesser extent in the morning, worsening during the day. Treatment with small doses of levodopa results in remission or marked improvement of the symptomatology. We present the case of a 11 years old female patient that developed a dystonic posture in her feet that led her to a tip-toe walking pattern, since the age of 2. Diurnal fluctuations of the symptomatology were noticed by her mother. At 7 years of age she developed a left deviation of the head and an abnormal flexor posture of the left arm. In the next years the symptoms progressed and the fluctuations became less evident. At the age of 10, they were present soon after she woke up in the morning. The neurological examination disclosed a dystonic posturing of the head and left arm, a generalized rigidity of the extremities and a palpebral tremor. Laboratory examinations, including copper and ceruloplasmin, and neuro-imaging studies were negative. She was started on levodopa 150 mg/day with prompt disappearance of the symptomatology. After one-year follow-up she is symptom-free with only 100 mg/day of levodopa. No adverse effect was observed so far.

  18. From dusk till dawn: nocturnal and diurnal pollination in the epiphyte Tillandsia heterophylla (Bromeliaceae).

    Science.gov (United States)

    Aguilar-Rodríguez, P A; Krömer, T; García-Franco, J G; MacSwiney G, M C

    2016-01-01

    In order to compare the effectiveness of diurnal and nocturnal pollinators, we studied the reproductive biology and pollinators of Tillandsia heterophylla E. Morren, an epiphytic tank bromeliad endemic to southeastern Mexico. Since anthesis in T. heterophylla is predominantly nocturnal but lasts until the following day, we hypothesised that this bromeliad would receive visits from both diurnal and nocturnal visitors, but that nocturnal visitors would be the most effective pollinators, since they arrive first to the receptive flower, and that bats would be the most frequent nocturnal visitors, given the characteristics of the nectar. Flowering of T. heterophylla began in May and lasted until July. The species is fully self-compatible, with an anthesis that lasts for ca. 15-16 h. Mean volume of nectar produced per flower was 82.21 μl, with a mean sugar concentration of 6.33%. The highest volume and concentration of nectar were found at 20:00 h, with a subsequent decline in both to almost zero over the following 12-h period. T. heterophylla has a generalist pollination system, since at least four different morphospecies of visitors pollinate its flowers: bats, moths, hummingbirds and bees. Most of the pollinating visits corresponded to bats and took place in the early evening, when stigma receptivity had already begun; making bats the probable pollinator on most occasions. However, diurnal pollinators may be important as a 'fail-safe' system by which to guarantee the pollination of T. heterophylla. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. The influence of diurnal temperature range on the incidence of respiratory syncytial virus in Japan.

    Science.gov (United States)

    Onozuka, D

    2015-03-01

    The incidence of respiratory syncytial virus (RSV) has been reported to exhibit seasonal variation. However, the impact of diurnal temperature range (DTR) on RSV has not been investigated. After acquiring data related to cases of RSV and weather parameters of DTR in Fukuoka, Japan, between 2006 and 2012, we used negative binomial generalized linear models and distributed lag nonlinear models to assess the possible relationship between DTR and RSV cases, adjusting for confounding factors. Our analysis revealed that the weekly number of RSV cases increased with a relative risk of 3·30 (95% confidence interval 1·65-6·60) for every 1°C increase in DTR. Our study provides quantitative evidence that the number of RSV cases increased significantly with increasing DTR. We suggest that preventive measures for limiting the spread of RSV should be considered during extended periods of high DTR.

  20. On the relation between water pools and water holding capacity in cod muscle

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Jørgensen, Bo

    2004-01-01

    Low-field 1H nuclear magnetic resonance (NMR) relaxations were measured on muscle, minced muscle and centrifuged mince from cod that had been treated under various frozen and chill storage conditions. By using multi-way chemometrics, uni-exponential profiles were obtained, from which the transverse...... relaxation times (T2-values) and the water pool sizes (m- values) were determined. Three pools of water were identified with the different relaxation times and m-values in the centrifuged samples reflecting the removal of loosely bound water. The m-values and the full NMR-signal decays were correlated to two...... measures of water holding capacity (WHC) in a way that WHC related to the original water content could be predicted well for the whole and the minced muscle. The centrifuged samples gave optimal predictions of WHC related to the dry matter content, probably because the centrifuged samples are similar...

  1. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons.

    Science.gov (United States)

    Tong, Nelson Y O; Leung, Dennis Y C

    2012-01-01

    A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.

  2. Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement.

    Directory of Open Access Journals (Sweden)

    Colleen T O'Rourke

    Full Text Available BACKGROUND: Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. METHODOLOGY/PRINCIPAL FINDINGS: We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33° and wide blind areas (∼82°, but intermediate degree of eye movement (∼5°, which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°, small blind areas (∼60°, and high degree of eye movement (∼8°, which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1° may help stabilize the image when hovering above prey before an attack. CONCLUSIONS: We conclude that: (a there are between-species differences in visual field configuration in these diurnal raptors; (b these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats; (c variations in the degree of eye movement between species appear associated with foraging strategies; and (d the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence

  3. Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement.

    Science.gov (United States)

    O'Rourke, Colleen T; Hall, Margaret I; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-09-22

    Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while

  4. Coupling diffusion and maximum entropy models to estimate thermal inertia

    Science.gov (United States)

    Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...

  5. When land breezes collide: Converging diurnal winds over small bodies of water

    OpenAIRE

    Gille, ST; Llewellyn Smith, SG

    2014-01-01

    © 2013 Royal Meteorological Society. Over enclosed and semi-enclosed bodies of water, the land-breeze/sea-breeze circulation is expected to be modified by the presence of opposing coastlines. These effects are studied using satellite scatterometer surface wind observations from the QuikSCAT and ADEOS-2 tandem mission from April-October 2003. Winds are studied for six bodies of water: the Red Sea, the Gulf of California, the Mediterranean, the Adriatic Sea, the Black Sea and the Caspian Sea. T...

  6. Diurnal global variability of the Earth's magnetic field during geomagnetically quiet conditions

    Science.gov (United States)

    Klausner, V.

    2012-12-01

    This work proposes a methodology (or treatment) to establish a representative signal of the global magnetic diurnal variation. It is based on a spatial distribution in both longitude and latitude of a set of magnetic stations as well as their magnetic behavior on a time basis. We apply the Principal Component Analysis (PCA) technique using gapped wavelet transform and wavelet correlation. This new approach was used to describe the characteristics of the magnetic variations at Vassouras (Brazil) and 12 other magnetic stations spread around the terrestrial globe. Using magnetograms from 2007, we have investigated the global dominant pattern of the Sq variation as a function of low solar activity. This year was divided into two seasons for seasonal variation analysis: solstices (June and December) and equinoxes (March and September). We aim to reconstruct the original geomagnetic data series of the H component taking into account only the diurnal variations with periods of 24 hours on geomagnetically quiet days. We advance a proposal to reconstruct the Sq baseline using only the PCA first mode. The first interpretation of the results suggests that PCA/wavelet method could be used to the reconstruction of the Sq baseline.

  7. Diurnal rhythmicity in biological processes involved in bioavailability of functional food factors.

    Science.gov (United States)

    Tsurusaki, Takashi; Sakakibara, Hiroyuki; Aoshima, Yoshiki; Yamazaki, Shunsuke; Sakono, Masanobu; Shimoi, Kayoko

    2013-05-01

    In the past few decades, many types of functional factors have been identified in dietary foods; for example, flavonoids are major groups widely distributed in the plant kingdom. However, the absorption rates of the functional food factors are usually low, and many of these are difficult to be absorbed in the intact forms because of metabolization by biological processes during absorption. To gain adequate beneficial effects, it is therefore mandatory to know whether functional food factors are absorbed in sufficient quantity, and then reach target organs while maintaining beneficial effects. These are the reasons why the bioavailability of functional food factors has been well investigated using rodent models. Recently, many of the biological processes have been reported to follow diurnal rhythms recurring every 24 h. Therefore, absorption and metabolism of functional food factors influenced by the biological processes may vary with time of day. Consequently, the evaluation of the bioavailability of functional food factors using rodent models should take into consideration the timing of consumption. In this review, we provide a perspective overview of the diurnal rhythm of biological processes involved in the bioavailability of functional food factors, particularly flavonoids.

  8. Hawk eyes II: diurnal raptors differ in head movement strategies when scanning from perches.

    Science.gov (United States)

    O'Rourke, Colleen T; Pitlik, Todd; Hoover, Melissa; Fernández-Juricic, Esteban

    2010-09-22

    Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper's Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. Cooper's Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction.

  9. Range of monthly mean hourly land surface air temperature diurnal cycle over high northern latitudes

    Science.gov (United States)

    Wang, Aihui; Zeng, Xubin

    2014-05-01

    Daily maximum and minimum temperatures over global land are fundamental climate variables, and their difference represents the diurnal temperature range (DTR). While the differences between the monthly averaged DTR (MDTR) and the range of monthly averaged hourly temperature diurnal cycle (RMDT) are easy to understand qualitatively, their differences have not been quantified over global land areas. Based on our newly developed in situ data (Climatic Research Unit) reanalysis (Modern-Era Retrospective analysis for Research and Applications) merged hourly temperature data from 1979 to 2009, RMDT in January is found to be much smaller than that in July over high northern latitudes, as it is much more affected by the diurnal radiative forcing than by the horizontal advection of temperature. In contrast, MDTR in January is comparable to that in July over high northern latitudes, but it is much larger than January RMDT, as it primarily reflects the movement of lower frequency synoptic weather systems. The area-averaged RMDT trends north of 40°N are near zero in November, December, and January, while the trends of MDTR are negative. These results suggest the need to use both the traditional MDTR and RMDT suggested here in future observational and modeling studies. Furthermore, MDTR and its trend are more sensitive to the starting hour of a 24 h day used in the calculations than those for RMDT, and this factor also needs to be considered in model evaluations using observational data.

  10. The impact of diurnal sleep on the consolidation of a complex gross motor adaptation task

    Science.gov (United States)

    Hoedlmoser, Kerstin; Birklbauer, Juergen; Schabus, Manuel; Eibenberger, Patrick; Rigler, Sandra; Mueller, Erich

    2015-01-01

    Diurnal sleep effects on consolidation of a complex, ecological valid gross motor adaptation task were examined using a bicycle with an inverse steering device. We tested 24 male subjects aged between 20 and 29 years using a between-subjects design. Participants were trained to adapt to the inverse steering bicycle during 45 min. Performance was tested before (TEST1) and after (TEST2) training, as well as after a 2 h retention interval (TEST3). During retention, participants either slept or remained awake. To assess gross motor performance, subjects had to ride the inverse steering bicycle 3 × 30 m straight-line and 3 × 30 m through a slalom. Beyond riding time, we sophisticatedly measured performance accuracy (standard deviation of steering angle) in both conditions using a rotatory potentiometer. A significant decrease of accuracy during straight-line riding after nap and wakefulness was shown. Accuracy during slalom riding remained stable after wakefulness but was reduced after sleep. We found that the duration of rapid eye movement sleep as well as sleep spindle activity are negatively related with gross motor performance changes over sleep. Together these findings suggest that the consolidation of adaptation to a new steering device does not benefit from a 2 h midday nap. We speculate that in case of strongly overlearned motor patterns such as normal cycling, diurnal sleep spindles and rapid eye movement sleep might even help to protect everyday needed skills, and to rapidly forget newly acquired, interfering and irrelevant material. PMID:25256866

  11. Evaluation of convection-resolving models using satellite data: The diurnal cycle of summer convection over the Alps

    Directory of Open Access Journals (Sweden)

    Michael Keller

    2016-05-01

    Full Text Available Diurnal moist convection is an important element of summer precipitation over Central Europe and the Alps. It is poorly represented in models using parameterized convection. In this study, we investigate the diurnal cycle of convection during 11 days in June 2007 using the COSMO model. The numerical simulations are compared with satellite measurements of GERB and SEVIRI, AVHRR satellite-based cloud properties and ground-based precipitation and temperature measurements. The simulations use horizontal resolutions of 12 km (convection-parameterizing model, CPM and 2 km (convection-resolving model, CRM and either a one-moment microphysics scheme (1M or a two-moment microphysics scheme (2M.They are conducted for a computational domain that covers an extended Alpine area from Northern Italy to Northern Germany. The CPM with 1M exhibits a significant overestimation of high cloud cover. This results in a compensation effect in the top of the atmosphere energy budget due to an underestimation of outgoing longwave radiation (OLR and an overestimation of reflected solar radiation (RSR. The CRM reduces high cloud cover and improves the OLR bias from a domain mean of −20.1 to −2.6 W/m2. When using 2M with ice sedimentation in the CRM, high cloud cover is further reduced. The stronger diurnal cycle of high cloud cover and associated convection over the Alps, compared to less mountainous regions, is well represented by the CRM but underestimated by the CPM. Despite substantial differences in high cloud cover, the use of a 2M has no significant impact on the diurnal cycle of precipitation. Furthermore, a negative mid-level cloud bias is found for all simulations.

  12. Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon

    Science.gov (United States)

    Dodson, Jason B.; Taylor, Patrick C.

    2015-01-01

    The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.

  13. Measurement of hepatic sterol synthesis in the Mongolian gerbil in vivo using [3H]water: diurnal variation and effect of type of dietary fat

    International Nuclear Information System (INIS)

    Mercer, N.J.; Holub, B.J.

    1981-01-01

    The hepatic synthesis of sterol was measured in the male Mongolian gerbil (Meriones unguiculatus) in vivo following the administration of [ 3 H]water by monitoring the incorporation of radioactivity into digitonin-precipitable sterol. A diurnal rhythm in cholesterol synthesis was exhibited under conditions of ad libitum feeding with alternating 12-hour periods of light (0200 to 1400 hr) and dark (1400 to 0200 hr). The zenith was reached between 1500 and 2100 hr and the nadir approximately 10-12 hours later between 0200 and 0400 hr, which provided a zenith/nadir ratio of 9.6 to 1.0. The in vivo rates of hepatic sterol synthesis and plasma cholesterol levels were measured in gerbils fed semi-purified diets containing either 19.5% beef tallow + 0.5% safflower, 20% lard, or 20% safflower oil and widely differing ratios of polyunsaturated: saturated fatty acids. All diets were equalized to contain 0.01% cholesterol and 0.05% plant sterol. After 3 days on the experimental diets, the mean rates of cholesterol synthesis (nmol/g liver per hr) were 41.5, 26.6, and 13.8 for animals fed the diets containing beef tallow, lard, and safflower oil, respectively. After 7 and 14 days, synthetic rates were lowest in the gerbils fed safflower oil as were also the plasma cholesterol levels. These results indicate that the type of dietary lipid can significantly influence the in vivo rate of sterol biosynthesis in gerbil liver. This response may contribute, at least in part, to the observed differences in plasma cholesterol levels

  14. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  15. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    Science.gov (United States)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest

  16. Diurnal cycles control the fate of contaminants at an Andean river confluence impacted by legacy mining

    Science.gov (United States)

    Pasten, P.; Guerra, P. A.; Simonson, K.; Bonilla, C.; Pizarro, G. E.; Escauriaza, C. R.; González, C.

    2014-12-01

    The importance of hydrologic-geochemical interactions in arid environments is a controlling factor in quality and quantity of water available for human consumption and agriculture. When acid drainage affects these watersheds, water quality is gravely degraded. Despite its effect on watersheds, the relationship between time changes in hydrological variables and water quality in arid regions has not been studied thoroughly. Temporal variations in acid drainage can control when the transport of toxic elements is increased. We performed field work at the Azufre River (pH 2, E.C~10.9 mS/cm) and Caracarani River (pH 8.7, E.C~1.2 mS/cm) confluence, located in the Northern Chilean Altiplano (at 4000 m asl). We registered stream flowrates (total flowrate~430 L/s), temperature and electric conductivity (E.C) hourly using in-stream data loggers during one year. We also measured turbidity and pH during one field survey at different distances from the junction, as a proxy of the formation of iron-aluminum particles that cycle trace elements in these environments. We found turbidity-pH diurnal cycles were caused by upstream hourly changes in upstream flowrate: when the Caracarani River flowrate reached its daily peak, particle formation occurred, while the dissolution of particles occurred when the Azufre River reached its maximum value. This last process occurred due to upstream freeze-thaw cycles. This study shows how the dynamics of natural confluences determines chemical transport. The formation of particles enriched in toxic elements can promote settling as a natural attenuation process, while their dissolution will produce their release and transport long distances downstream. It is important to consider time as an important variable in water quality monitoring and in water management infrastructure where pulses of contamination can have potentially negative effects in its use. Acknowledgements: Funding was provided by "Proyecto Fondecyt 1130936" and "CONICYT

  17. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  18. Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area

    Science.gov (United States)

    Xueref-Remy, Irène; Dieudonné, Elsa; Vuillemin, Cyrille; Lopez, Morgan; Lac, Christine; Schmidt, Martina; Delmotte, Marc; Chevallier, Frédéric; Ravetta, François; Perrussel, Olivier; Ciais, Philippe; Bréon, François-Marie; Broquet, Grégoire; Ramonet, Michel; Spain, T. Gerard; Ampe, Christophe

    2018-03-01

    the season, ranging from a few tenths of ppm during daytime to several ppm during nighttime. The CO2 seasonal cycle inferred from monthly means at our regional sites is driven by the biospheric and anthropogenic CO2 flux seasonal cycles, the ABLH seasonal cycle and also synoptic variations. Enhancements of several ppm are observed at peri-urban stations compared to rural ones, mostly from the influence of urban emissions that are in the footprint of the peri-urban station. The seasonal cycle observed at the urban station (EIF) is specific and very sensitive to the ABLH cycle. At both the diurnal and the seasonal scales, noticeable differences of several ppm are observed between the measurements made at regional rural stations and the remote measurements made at MHD, that are shown not to define background concentrations appropriately for quantifying the regional ( ˜ 100 km) atmospheric impact of urban CO2 emissions. For wind speeds less than 3 m s-1, the accumulation of local CO2 emissions in the urban atmosphere forms a dome of several tens of ppm at the peri-urban stations, mostly under the influence of relatively local emissions including those from the Charles de Gaulle (CDG) Airport facility and from aircraft in flight. When wind speed increases, ventilation transforms the CO2 dome into a plume. Higher CO2 background concentrations of several ppm are advected from the remote Benelux-Ruhr and London regions, impacting concentrations at the five stations of the network even at wind speeds higher than 9 m s-1. For wind speeds ranging between 3 and 8 m s-1, the impact of Paris emissions can be detected in the peri-urban stations when they are downwind of the city, while the rural stations often seem disconnected from the city emission plume. As a conclusion, our study highlights a high sensitivity of the stations to wind speed and direction, to their distance from the city, but also to the ABLH cycle depending on their elevation. We learn some lessons regarding the

  19. Diurnal temperature range trend over North Carolina and the associated mechanisms

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Mekonnen, Ademe; Jha, Manoj K.

    2015-06-01

    This study seeks to investigate the variability and presence of trend in the diurnal surface air temperature range (DTR) over North Carolina (NC) for the period 1950-2009. The significance trend test and the magnitude of trends were determined using the non-parametric Mann-Kendall test and the Theil-Sen approach, respectively. Statewide significant trends (p < 0.05) of decreasing DTR were found in all seasons and annually during the analysis period. Highest (lowest) temporal DTR trends of magnitude - 0.19 (- 0.031) °C/decade were found in summer (winter). Potential mechanisms for the presence/absence of trend in DTR have been highlighted. Historical data sets of the three main moisture components (precipitation, total cloud cover (TCC), and soil moisture) and the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for correlation analysis. The DTRs were found to be negatively correlated with the precipitation, TCC and soil moisture across the state for all the seasons and annual basis. It appears that the moisture components related better to the DTR than to the atmospheric circulation modes.

  20. Melatonin and Angelman Syndrome: Implications and Mathematical Model of Diurnal Secretion

    Directory of Open Access Journals (Sweden)

    Justyna Paprocka

    2017-01-01

    Full Text Available The main aim of the study was to compare the melatonin rhythms in subjects with Angelman syndrome (n=9 and in children with (n=80 and without (n=40 epilepsy (nonepileptic patients diagnosed with peripheral nerve palsies, myopathy, and back pain using our mathematical model of melatonin circadian secretion. The characteristics describing the diurnal hormone secretion such as minimum melatonin concentration, release amplitude, phase shift of melatonin release, and sleep duration as well as the dim light melatonin onset (DLMO of melatonin secretion and the γ shape parameter allow analyzing the fit and deducing about how much the measured melatonin profile differs from a physiological bell-shaped secretion. The estimated sleep duration and phase shift of melatonin release as well as the DMLO offsets at 25% and 50% relative thresholds are the key characteristic of Angelman syndrome children. As revealed from the γ shape parameter, the melatonin secretion profiles are disturbed in majority of the AG subjects revealing rather a triangular course instead of the bell-like one.