WorldWideScience

Sample records for distorted toroidal coils

  1. MHD stability of configurations with distorted toroidal coils

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W.A.; Ardela, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-06-01

    We have investigated the local ideal MHD stability properties of a compact tokamak/torsatron configuration that models the proposed EPEIUS device. The {beta} limits imposed by the Mercier criterion and ballooning modes approach 1% in 50 kA peaked toroidal current and in current-free cases. A sequence at {beta}=6.75% is demonstrated to become marginally stable to local modes when the 180 kA toroidal current prescribed becomes sufficiently hollow that the maximum value of the inverse rotational transform q{sub max} exceeds 5 and the minimum value q{sub min} near the plasma edge approaches 2. The stabilisation mechanism is associated with the shape of the flux surface average of the parallel current density {sigma}>. A {sigma}> profile that increases in magnitude radially exercises a strong stabilizing influence on the energy principle. In the outer half of the plasma volume, the Mercier criterion (and to a lesser extent the ballooning eigenvalue) displays very local unstable spikes that align with rational values of 1/(qL). We interpret this as a potential for pressure-driven island formation rather than a strict stability limit. This phenomenon requires more detailed investigation using equilibrium codes that can study magnetic island structures. Global internal and external mode stability properties must also be examined, particularly for hollow current profile cases where the large toroidal plasma current concentrated near the plasma edge could destabilize external modes. (author) 1 fig., 5 refs.

  2. Toroid cavity/coil NMR multi-detector

    Science.gov (United States)

    Gerald, II, Rex E.; Meadows, Alexander D.; Gregar, Joseph S.; Rathke, Jerome W.

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  3. Resistive demountable toroidal-field coils for tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments.

  4. ATLAS-Lowering the first Barrel Toroid coil

    CERN Multimedia

    CERN Audiovisual Unit

    2004-01-01

    Cranes lowered the first of ATLAS's eight Barrel Toroid coils into the cavern. The part is 25 meters long and the cranes had to hold the 100 tonne coil at a sharp angle while it passed through the 18-meter diameter vertical shaft into the cavern. Then they laid the magnet to a horizontal robust platform. Images from Camera 2

  5. ATLAS-Lowering the first Barrel Toroid coil

    CERN Multimedia

    2004-01-01

    Cranes lowered the first of ATLAS's eight Barrel Toroid coils into the cavern. The part is 25 metres long and the cranes had to hold the 100 tonne coil at a sharp angle while it passed through the 18-metre diameter vertical shaft into the cavern. Then they laid the magnet to a horisontal robust platform. Images from Camera 1

  6. First ATLAS Barrel Toroid coil casing arrives at CERN

    CERN Multimedia

    2002-01-01

    The first of eight 25-metre long coil casings for the ATLAS experiment's barrel toroid magnet system arrived at CERN on Saturday 2 March by road from Heidelberg. This structure will be part of the largest superconducting toroid magnet ever made.   The first coil casing for the toroidal magnets of Atlas arrives at Building 180. This is the start of an enormous three-dimensional jigsaw puzzle. Each of the eight sets of double pancake coils will be housed inside aluminium coil casings, which in turn will be held inside a stainless steel vacuum vessel. A huge construction, the casing that arrived at CERN measures 25 metres in length and 5 metres in width. It weighs 20 tones. And this is just the beginning of the toroid jigsaw: by early April a batch of four double pancake coils, which altogether weighs 65 tones, will arrive from Ansaldo in Italy. The first vacuum vessel will also be arriving from Felguera in Spain this month. It will take about two years for all these 25 m long structures of casings, coils a...

  7. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Transporting the coil to the heating table using a special lifting gantry manufactured at JINR-Dubna, Russia in preparation for the 'bladderisation' operation.

  8. First assembly phase for the ATLAS toroid coils

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Use of the overhead travelling crane to hoist the coil up and then tilt it over, the coil frame's metal feet being used as rotational pivots, supporting half the coil's weight. Once it has been turned over, the coil, now with only half the frame, is transported to the heating table using a special lifting gant...

  9. Second Barrel Toroid Coil Installed in ATLAS Cavern

    CERN Multimedia

    Tappern, G.

    The second barrel toroid coil was lowered into the ATLAS Cavern on Friday, 26 November. The operation takes approximately five hours of precision crane and winch operations. Before lowering, several checks are made to ensure that no loose items have been left on the coil which would fall during the lowering down the shaft. This is a very difficult, but very important check, with the first coil in position, and partly below the shaft. After changing the winch tooling on Wednesday December 1st, the coil was lifted, rotated and placed into the feet. The girders which support the coil and the Z direction stops had all been pre-set before putting the coil in the feet. The angle is controlled by an inclinometer. When the final adjustments of position have been made, which will locate the coils at the plus/minus two mm level, the connection beams (voussoirs and struts) will be put in place; this requires a complex shimming procedure. This will lock together the two coils into the feet and forms the foundation for th...

  10. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  11. First qualification of ITER Toroidal Field Coil conductor jacketing

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Kazuya, E-mail: hamada.kazuya@jaea.go.jp [Japan Atomic Energy Agency (Japan); Takahashi, Yoshikazu; Isono, Takaaki; Nunoya, Yoshihiko; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Tsutsumi, Fumiaki; Koizumi, Norikiyo; Nakajima, Hideo; Okuno, Kiyoshi [Japan Atomic Energy Agency (Japan); Matsuda, Hidemitsu; Yano, Yoshitaka [Nippon Steel Engineering Co. Ltd (Japan); Devred, Arnauld; Bessette, Denis [ITER Organization (France)

    2011-10-15

    The Japan Atomic Energy Agency (JAEA) has the responsibility to procure 25% of the ITER Toroidal Field Coil conductors as the Japanese Domestic Agency (JADA) in the ITER project. The TF conductor is a circular shaped, cable-in-conduit conductor, composed of a cable and a stainless steel conduit (jacket). The outer diameter and maximum length of the TF conductor are 43.7 mm and 760 m, respectively. JAEA started to produce strand, cables and jacket sections and to construct a conductor manufacturing (jacketing) facility in 2008. Following preparation in December 2009 of the jacketing facility, the dummy cable, the jacket sections and fabrication procedures, such as welding, cable insertion, compaction and spooling, JAEA manufactured a 760 m long Cu dummy conductor for process qualification. Into the 760 m long Cu dummy conductor jacketing, JAEA successfully inserted the cable with a maximum force of 32 kN. The outer diameter of the cross section of the spooled conductor was 43.7 {+-} 0.15 mm, which complies with the ITER target requirement of 43.7 {+-} 0.3 mm. Following qualification of all manufacturing processes, JAEA has started to fabricate superconducting conductors for the TF coils.

  12. Superconducting toroidal field coil current densities for the TFCX

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, S.S.; Hooper, R.J.

    1985-04-01

    A major goal of the Tokamak Fusion Core Experiment (TFCX) study was to minimize the size of the device and achieve lowest cost. Two key factors influencing the size of the device employing superconducting magnets are toroidal field (TF) winding current density and its nuclear heat load withstand capability. Lower winding current density requires larger radial build of the winding pack. Likewise, lower allowable nuclear heating in the winding requires larger shield thickness between the plasma and coil. In order to achieve a low-cost device, it is essential to maximize the winding's current density and nuclear heating withhstand capability. To meet the above objective, the TFCX design specification adopted as goals a nominal winding current density of 3500 A/cm/sup 2/ with 10-T peak field at the winding and peak nuclear heat load limits of 1 MW/cm/sup 3/ for the nominal design and 50 MW/cm/sup 3/ for an advanced design. This study developed justification for these current density and nuclear heat load limits.

  13. Toroidal modelling of RMP response in ASDEX Upgrade: coil phase scan, q 95 dependence, and toroidal torques

    Science.gov (United States)

    Liu, Yueqiang; Ryan, D.; Kirk, A.; Li, Li; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-05-01

    The plasma response to the vacuum resonant magnetic perturbation (RMP) fields, produced by the ELM control coils in ASDEX Upgrade experiments, is computationally modelled using the MARS-F/K codes (Liu et al 2000 Phys. Plasmas 7 3681, Liu et al 2008 Phys. Plasmas 15 112503). A systematic investigation is carried out, considering various plasma and coil configurations as in the ELM control experiments. The low q plasmas, with {{q}95}˜ 3.8 (q 95 is the safety factor q value at 95% of the equilibrium poloidal flux), responding to low n (n is the toroidal mode number) field perturbations from each single row of the ELM coils, generates a core kink amplification effect. Combining two rows, with different toroidal phasing, thus leads to either cancellation or reinforcement of the core kink response, which in turn determines the poloidal location of the peak plasma surface displacement. The core kink response is typically weak for the n  =  4 coil configuration at low q, and for the n  =  2 configuration but only at high q ({{q}95}˜ 5.5 ). A phase shift of around 60 degrees for low q plasmas, and around 90 degrees for high q plasmas, is found in the coil phasing, between the plasma response field and the vacuum RMP field, that maximizes the edge resonant field component. This leads to an optimal coil phasing of about 100 (-100) degrees for low (high) q plasmas, that maximizes both the edge resonant field component and the plasma surface displacement near the X-point of the separatrix. This optimal phasing closely corresponds to the best ELM mitigation observed in experiments. A strong parallel sound wave damping moderately reduces the core kink response but has minor effect on the edge peeling response. For low q plasmas, modelling shows that both the resonant electromagnetic torque and the neoclassical toroidal viscous (NTV) torque (due to the presence of 3D magnetic field perturbations) contribute to the toroidal flow damping, in particular near the

  14. Active toroidal field ripple compensation and MHD feedback control coils in FAST

    Energy Technology Data Exchange (ETDEWEB)

    Ramogida, G., E-mail: giuseppe.ramogida@enea.it [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Calabrò, G.; Cocilovo, V.; Crescenzi, F.; Crisanti, F.; Cucchiaro, A. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Di Gironimo, G. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Fresa, R. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Fusco, V. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Martin, P. [Associazione Euratom-ENEA, Consorzio RFX, Corso Stati Uniti 4, I-35127, Padova (Italy); Mastrostefano, S. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Mozzillo, R. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Nuzzolese, F. [Università della Basilicata, Via Nazario Sauro 85, I-85100 Potenza (Italy); Renno, F. [Associazione Euratom-ENEA, CREATE – Università di Napoli Federico II, Via Claudio 21, I-80125 Napoli (Italy); Rita, C. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy); Villone, F. [Associazione Euratom-ENEA, CREATE – DIEI Università di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy); Vlad, G. [Associazione Euratom-ENEA sulla Fusione, ENEA – C.R. Frascati, Via E. Fermi 45, I-00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: ► Active Ripple Compensating System (ARCS) consists of 18 off-centre poloidal coils between plasma and Toroidal Field Coils. ► The current in ARCS, adjustable and opposite to that in TFC, reduces the toroidal ripple below 0.2% at any toroidal fields. ► Feedback Active Control System (FACS) consists of two arrays of 9 in-vessel saddle coils fed by an MHD feedback controller. ► FACS allows robust feedback stabilization of low toroidal number MHD modes enabling plasma operations at low safety factor. ► ARCS and FACS are included in the whole FAST model and first engineering assessments show their feasibility and capability. -- Abstract: The Fusion Advanced Study Torus (FAST) has been proposed as a high magnetic field, compact size tokamak providing a flexible integrated environment to study physics and technology issues in ITER and DEMO relevant conditions. FAST has a quite large natural toroidal field ripple (around 1.5%) due to its compactness and to the number of access ports: this ripple must be lowered to an acceptable level to allow safe operations and a good confinement quality. An Active Ripple Compensating System (ARCS) has been designed, based on a set of poloidal coils placed between the plasma chamber and the Toroidal Field Coils (TFCs). These ARCS coils will be fed with adjustable currents, opposite in direction respect to the TFC currents, and will allow lowering the ripple up to zero and beyond. The CAD model of FAST including the ARCS coils has been completed and preliminary electromagnetic and thermal analyses have been carried out. Moreover, a Feedback Active Control System (FACS) composed of two arrays of in-vessel saddle coils has been designed to allow safe high plasma current, low safety factor operation and to mitigate possibly large ELMs effects in FAST. These FACS coils will be fed by a feedback system to control MHD modes: a first engineering assessment of the current requirements has been carried out.

  15. Performance assessment and optimization of the ITER toroidal field coil joints

    NARCIS (Netherlands)

    Rolando, G.; Foussat, A.; Knaster, J.; Illiin, Y.; Nijhuis, A.

    2013-01-01

    The ITER toroidal field (TF) system features eighteen coils that will provide the magnetic field necessary to confine the plasma. Each winding pack is composed of seven double pancakes (DP) connected through praying hands joints. Shaking hands joints are used to interface the terminals of the conduc

  16. Heating requirements for the BARREL toroid coil cryostat of ATLAS in case of vacuum loss

    CERN Document Server

    Vila-Nova-Goncalves, L

    2002-01-01

    The ATLAS Barrel Toroid cryostat external surface has to be heated by means of heating tapes in order to avoid air condensation in case a major vacuum leak occurs in the coil system. The present note concentrates on the evaluation of the strategies for placing the heating tapes as a basis for calculating their necessary overall length. After a brief description of the ATLAS Barrel Toroid system, the problem is described. A 2D model of a representative portion of the vacuum vessel, on which finite element studies will be performed, is then introduced. The results of the simulations and the conclusions will follow.

  17. A titanium dioxide filled toroidal coil for magnetic resonance imaging at high field

    Science.gov (United States)

    Butterworth, Edward J.

    1999-09-01

    This study demonstrates the advantages of filling the resonating cavity of a radio frequency NMR coil with a substance that more closely matches the dielectric properties of human tissue. The chosen design is a toroidal RF coil of reduced aspect ratio, and the dielectric material of choice is powdered titanium dioxide. RF coil performance is limited significantly by the dielectric discontinuity and consequent wavelength discontinuity between the air-filled cavity and human tissue. Filling the coil with titanium dioxide (with a published relative dielectric constant of 114 for randomly oriented rutile crystals and a measured dielectric constant under operating conditions of 70) alters its electromagnetic properties in a way which approximates human tissue (most of which has a dielectric constant between 50 and 70), without introducing spurious magnetic effects. In particular, brain NMR can benefit from these advantages. Analytic expressions for the electric and magnetic fields within the coil are derived here. The physical and electromagnetic parameters of the coil are developed with reference to these computations. The redesigned and filled resonator focuses the magnetic field lines, producing a more uniform B1 field as compared with the unfilled coil, with reduced power requirements. The filled coil has a well-defined imaging zone, in which the magnetic field is relatively uniform and homogeneous. The Q of the coil is significantly higher than that of conventional designs and is not significantly reduced by loading. Test results and images are presented showing these effects.

  18. Strain Measurement on the Toroidal Field (TF) Coil Cases

    Institute of Scientific and Technical Information of China (English)

    Chen Zhuomin; Long Feng; Wu Hao

    2005-01-01

    The stress-strain state of the structure is a matter of interest to designer. The strain measurement of superconducting magnets at cryogenic temperature is a specific technique. Based on strain measurement of TF coil case for EAST, this paper presents a measuring technique at cryogenic temperature and on intense magnetic field. The compensation methods for both temperature and magnetic field effects of the gauges, together with the measured results are involved, and the discussions of the measured results are given in the paper.

  19. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A. (ed.)

    1984-10-01

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.

  20. Integrated Design System of Toroidal Field Coil for CFETR

    Science.gov (United States)

    Luo, Zhiren; Liu, Xufeng; Du, Shuangsong; Wang, Zhongwei; Song, Yuntao

    2016-09-01

    Integrating engineering software is meaningful but challenging for a system code of a fusion device. This issue is seldom considered by system codes currently. Therefore, to discuss the issue, the Integrated Design System of TF Coil (IDS-TFC) has been worked out, which consists of physical calculation, CAD, and Finite Element Analysis (FEA). Furthermore, an Integrated and Automatically Optimized Method (IAOM) has been created to address the integration and interfaces. The method utilizes a geometry parameter to connect each design submodule and achieve automatic optimization. Double-objectives optimization has been realized, confirming it is feasible to integrate and optimize engineering design and physical calculation. Moreover, IDS-TFC can also serve as a useful reference of integrated design processing for subsequent fusion design. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB110000, 2014GB110002)

  1. Thermal-Hydraulic Issues in the ITER Toroidal Field Model Coil (TFMC) Test and Analysis

    Science.gov (United States)

    Zanino, R.; Bagnasco, M.; Fillunger, H.; Heller, R.; Savoldi Richard, L.; Suesser, M.; Zahn, G.

    2004-06-01

    The International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) was tested in the Toska facility of Forschungszentrum Karlsruhe during 2001 (standalone) and 2002 (in the background magnetic field of the LCT coil). The TFMC is a racetrack coil wound in five double pancakes on stainless steel radial plates using Nb3Sn dual-channel cable-in-conduit conductor (CICC) with a thin circular SS jacket. The coil was cooled by supercritical helium in forced convection at nominal 4.5 K and 0.5 MPa. Instrumentation, all outside the coil, included voltage taps, pressure and temperature sensors, as well as flow meters. Additionally, differential pressure drop measurement was available on the two pancakes DP1.1 and DP1.2, equipped with heaters. Two major thermal-hydraulic issues in the TFMC tests will be addressed here: 1) the pressure drop along heated pancakes and the comparison with friction factor correlations; 2) the quench initiation and propagation. Other thermal-hydraulic issues like heat generation and exchange in joints, radial plates, coil case, or the effects of the resistive heaters on the helium dynamics, have been already addressed elsewhere.

  2. Design and analysis of the INTOR toroidal field-coil structural system

    Energy Technology Data Exchange (ETDEWEB)

    O' Toole, J.A.; Brown, T.G.; Shannon, T.E.

    1981-01-01

    The International Tokamak Reactor (INTOR) is a unique collaborative effort among the USA, USSR, EURATOM, and Japan to define the characteristics and objectives of, assess the technical feasibility of, and develop a design for the next major experiment in the world-wide tokamak program. The conceptual design consists of twelve toroidal field (TF) coils, each having a bore of 7.75 X 10.7 meters and a maximum field of 10.8 Tesla. The all-external poloidal field (PF) coil system imposes a very large pulsed field on the TF coil system. The superconducting TF and PF coils are enclosed by a common vacuum cryostat which includes individual enclosures for each TF coil's outer leg. This configuration provides a large window through which a complete torus sector can be withdrawn. The purpose of this study was to develop a feasible TF coil structural system design. The various design criteria and their effects on the design are discussed. The rationale supporting the allowable cyclic stress of 200 MPa (29 ksi) is discussed.

  3. Feasibility Study on Welding Structure of the HT-7U Toroidal Field Coil Case

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Toroidal Field (TF) coil case of the HT-7U superconducting tokamak device is made of austenitic stainless steel 316LN and is designed to operate at cryogenic temperature (4 K). 316LN can retain high strength and fracture toughness at 4 K. Feasibility study on technical process of welding has been experimentally considered as a hopeful joint method for suppression of post-welding deformation and reduction of over-heating. Meanwhile the final range of stress in- tensity and the stress intensity factor (K) for pre-cracks of welding structure have been determined by using J-integral. These related results are optimistic and have shown that there's no problem in strength and fracture toughness at the vicinity of the pre-crack tip. This paper introduces the welding structure of TF coil case in detail.

  4. First full-size ATLAS barrel toroid coil successfully tested up to 22 kA at 4 T

    CERN Document Server

    Dudarev, A; Benoit, P; Berriaud, C P; Broggi, F; Deront, L; Foussat, A; Junker, S; ten Kate, H H J; Kopeykin, N; Olesen, G; Olyunin, A; Pengo, R; Rabbers, J J; Ravat, S; Rey, J M; Sbrissa, E; Shugaev, I; Stepanov, V; Védrine, P; Volpini, Giovanni

    2005-01-01

    The Superconducting Barrel Toroid is providing (together with the two End-Cap Toroids not presented here) the magnetic field for the muon detectors in the ATLAS Experiment at the LHC at CERN. The toroid with outer dimensions of 25 m length and 20 m diameter, is built up from 8 identical racetrack coils. The coils with 120 turns each are wound with an aluminum stabilized NbTi conductor and operate at 20.5 kA at 3.9 T local field in the windings and is conduction cooled at 4.8 K by circulating forced flow helium in cooling tubes attached to the cold mass. The 8 coils of 25 m * 5 m are presently under construction and the first coils have already been fully integrated and tested. Meanwhile the assembly of the toroid 100 m underground in the ATLAS cavern at CERN has started. The 8 coils are individually tested on surface before installation. In this paper the test of the first coil, unique in size and manufacturing technology, is described in detail and the results are compared to the previous experience with the...

  5. The First ATLAS Barrel Toroid Coil Successfully Tested in Hall 180

    CERN Multimedia

    Rabbers, J J

    2004-01-01

    The first Barrel Toroid coil has been successfully tested with magnetic mirror at nominal current I=20.5 kA, up to a maximum current Imax=22 kA. After 14 days of cooling down, BT1 reached 4.5 Kelvin and the test program started on September 2nd. First the instrumentation and safety systems of the coil were tested at relatively low operating currents, up to 5 kA. Since all the systems and the coil were performing well, the current was increased by steps in several runs, while monitoring and evaluating the temperatures, voltages and mechanics. On early Wednesday morning September 8th the current was ramped up to 22 kA, shown by the red curve in the picture shown below: Thereafter the current was ramped down by a slow dump, where the stored energy of about 130 MJ is dissipated in a resistor/diode ramp down unit. This is the regular way of ramping down the current, which takes about one hour. Thereafter the current was ramped up to 22 kA for a second time, this time a so-called fast dump was initiated, ...

  6. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs.

  7. Magnetic Measurement of the Current Center Line of the Toroidal Field Coil of ITER at Room Temperature

    CERN Document Server

    Deniau, L; Buzio, M; Knaster, J; Savary, F

    2012-01-01

    Geometrical deformations and assembly errors in the ITER Toroidal Field (TF) coils will lead to magnetic field perturbations, which could degrade plasma confinement and eventually lead to disruption. Extensive computational studies of the influence of coil deformations and assembly errors on plasma behavior have given the basis for definition of the geometric tolerance of the Current Centre Line (CCL) of the winding pack of the TF coil. This paper describes an analysis method to establish the feasibility to measure the magnetic CCL locus of the final winding pack (WP) with accuracy better than 1 mm. The proposed method is based on arrays of gradient coils accurately mounted with respect to the WP fiducial marks and datum surfaces. The magnetic measurements will be performed at defined locations around the WP perimeter to characterize accurately the CCL locus. The analysis emphases the robustness and sensitivity of the method versus the measurement location and the TF coil 3D geometrical deformation. The analy...

  8. Fabrication of the helical field coil components for the advanced toroidal facility

    Energy Technology Data Exchange (ETDEWEB)

    Cole, M.J.; Whitson, J.C.; Banks, B.J.

    1987-01-01

    The fabrication techniques used to manufacture the major components of the helical field (HF) coil segments for the Advanced Toroidal Facility (ATF) are described. The major components of an HF coil segment are 14 water-cooled, copper conductors and a T-shaped stainless steel support member (or ''tee''). Twenty-four of these segments were used in the fabrication of two coils for the ATF experiment. The helical shape, accurate position requirements, large size, and potential for high cost required unique approaches to the fabrication of these components. One method of fabrication was to use 44-mm-thick (standard size) plate to form the base and leg of the tee and to join the sections by welding. Because of the tolerance requirements, a thicker plate (70 mm) was used and then contour machined to the final shape. The second approach, conducted in parallel with the first, was to cast the tee as a single piece. The first attempts were to make the casting larger than required, then machine it to final size and shape. The cost of machining either the welded tee or the cast tee was extremely high, so several prototypes were fabricated until a cast tee that required no contour machining was produced. The shape and positional requirements were also the major problems in fabricating the copper conductors, or turns. The approach taken was to make an accurate fixture and position the turns in the fixture, then anneal to remove residual stresses and form the copper turns to the shape of the fixture. The lessons learned in pursuing these fabrication methods are presented. 5 refs., 3 figs.

  9. Characterization of high temperature superconductor cables for magnet toroidal field coils of the DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, Christoph M.

    2017-05-01

    Nuclear fusion is a key technology to satisfy the basic demand for electric energy sustainably. The official EUROfusion schedule foresees a first industrial DEMOnstration Fusion Power Plant for 2050. In this work several high temperature superconductor sub-size cables are investigated for their applicability in large scale DEMO toroidal field coils. Main focus lies on the electromechanical stability under the influence of high Lorentz forces at peak magnetic fields of up to 12 T.

  10. Mechanical design of the coils encapsulated of toroidal field of Tokamak TPM1; Diseno mecanico del encapsulado de las bobinas de campo toroidal del Tokamak TPM1

    Energy Technology Data Exchange (ETDEWEB)

    Caldino H, U.; Francois L, J. L., E-mail: ucaldino@outlook.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    The TPM1 is a small Tokamak that belongs to the Centro de Investigacion en Ciencias Aplicadas y Tecnologia Avanzada of Instituto Politecnico Nacional (CICATA-IPN); the project is under construction. Currently it has the vacuum chamber, and is intended that the machine can operate with electric pulses of 10 ms to study the behavior of plasmas in order to provide knowledge in the field of nuclear fusion by magnetic confinement. To achieve this goal is necessary to design the toroidal field coils which operate the Tokamak. This paper presents an analysis which was performed to obtain the correct configuration of coils depending on design parameters for operation of the machine. Once determined this configuration, an analysis of electromagnetic forces present in normal machine operation on one coil was conducted, this to know the stresses in the encapsulation of the same. Considering the pulsed operation, a thickness of 5 mm is determined in the encapsulated, considering fatigue failure based on studies of fatigue failures in epoxy resins. (Author)

  11. Numerical and experimental analysis of harmonic distortion in a moving-coil loudspeaker

    Science.gov (United States)

    Chang, Chun; Wang, Chi-Chang; Shiah, Y. C.; Huang, Jin H.

    2013-07-01

    The nonlinear effect of a moving-coil loudspeaker, originating from its magnetic coupling factor and the system's stiffness, presents a significant impact on the sound quality. For improving the sound quality, this article proposes an approach to reduce the total harmonic distortion (THD) by adjusting the initial position of its voice-coil. First, a mathematical model involving the nonlinearities of force factor, mechanical stiffness, and inductance of voice coil is constructed and then solved using a novel algorithm called the parameter spline difference method (PSD). In the course of pursuing reduction of the corresponding THD of a typical moving-coil loudspeaker, the model was used to analyze the nonlinearity of the THD, revealing itself as a nonlinear function of force factor, the system's stiffness and inductance of voice coil. For various initial positions of the voice-coil, the coupled nonlinear differential equations were solved using the PSD to yield corresponding sound pressure level and THD. To our satisfaction, the loudspeaker driver with its voice-coil optimally tuned for the initial position turns out to have a THD reduction of 10%, which is also consistent with our experimental observations.

  12. Project status of manufacturing of European toroidal coils ITER. Validation tests; Estado del proyecto de fabricacion de las bobinas toroidales european para el ITER. Ensayos de validacion

    Energy Technology Data Exchange (ETDEWEB)

    Pando, F.; Felipe, A.; Madorran, A.; Pallisa, J.; Dormicch, O.; Valle, N.; D' Urzo, C.; Marin, M.; Pesenti, P.; Lucas, J.; Moreno, N.; Bonito-Oliva, A.; Harrison, R.; Bellesia, B.; Cornelis, M.; Cornella, J.

    2015-07-01

    The toroidal field coils are the ITER magnets responsible for confining the plasma inside the vacuum vessel. The consortium formed by IBERDROLA Ingenieria y Construccion, ASG Superconductors y ELYTT Energy is the responsible for the supply of 10 coils that the european agency F4E has to supply for the ITER project. At present, the coils are been manufactured in La Spezia (Italy), after the qualification of all the manufacturing process and the sucessfull manufacturing of a full scale prototype. (Author)

  13. Compensation of the flux modulation distortion using an additional coil in a loudspeaker unit

    DEFF Research Database (Denmark)

    Antonello, Niccoló; Agerkvist, Finn T.

    2014-01-01

    Flux modulation is one of the main causes of distortion in electrodynamic loudspeaker units. A new compensation technique that eliminates this type of non-linearity using an additional compensation coil in the speaker unit is presented. An equivalent circuit model of the device including the comp...... been constructed to test the method on a real device, and the measurements show the method works, also when eddy currents are present....

  14. Compensation of the ux modulation distortion using an additional coil in a loudspeaker unit

    DEFF Research Database (Denmark)

    Antonello, Niccoló; Agerkvist, Finn T.

    2014-01-01

    Flux modulation is one of the main causes of distortion in electrodynamic loudspeaker units. A new com- pensation technique that eliminates this type of non-linearity using an additional compensation coil in the speaker unit is presented. An equivalent circuit model of the device including the co...... constructed to test the method on a real device, and the measurements show the method works, also when eddy currents are present...

  15. Design and manufacture of a D-shape coil-based toroid-type HTS DC reactor using 2nd generation HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Sung, Hae-Jin; Park, Hea-chul; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Jin, Yoon-Su; Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2014-09-15

    Highlights: • The authors designed and fabricated a D-shape coil based toroid-type HTS DC reactor using 2G GdBCO HTS wires. • The toroid-type magnet consisted of 30 D-shape double pancake coil (DDC)s. The total length of the wire was 2.32 km. • The conduction cooling method was adopted for reactor magnet cooling. • The maximum cooling temperature of reactor magnet is 5.5 K. • The inductance was 408 mH in the steady-state condition (300 A operating). - Abstract: This paper describes the design specifications and performance of a real toroid-type high temperature superconducting (HTS) DC reactor. The HTS DC reactor was designed using 2G HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The target inductance of the HTS DC reactor was 400 mH. The expected operating temperature was under 20 K. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. Performances of the toroid-type HTS DC reactor were analyzed through experiments conducted under the steady-state and charge conditions. The fundamental design specifications and the data obtained from this research will be applied to the design of a commercial-type HTS DC reactor.

  16. Status of the cold test facility for the JT-60SA tokamak toroidal field coils

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Maksoud, Walid, E-mail: walid.abdelmaksoud@cea.fr; Bargueden, Patrick; Bouty, André; Dispau, Gilles; Donati, André; Eppelle, Dominique; Genini, Laurent; Guiho, Patrice; Guihard, Quentin; Joubert, Jean-Michel; Kuster, Olivier; Médioni, Damien; Molinié, Frédéric; Sinanna, Armand; Solenne, Nicolas; Somson, Sébastien; Vieillard, Laurence

    2015-10-15

    Highlights: • The 5 K cryogenic loop includes a 500 W refrigerator and a She cold pump. • The coils are energized thanks to a 25.7 kA power supply and HTS current leads. • Temperature margin tests between 5 K and 7.5 K will be made on each coil. • A magnet safety system protects each double pancake of the coil in case of quench. • Instrumentation is monitored on a 1 Hz to 10 kHz fast acquisition system. - Abstract: JT-60SA is a fusion experiment which is jointly constructed by Japan and Europe and which shall contribute to the early realization of fusion energy, by providing support to the operation of ITER, and by addressing key physics issues for ITER and DEMO. In order to achieve these goals, the existing JT-60U experiment will be upgraded to JT-60SA by using superconducting coils. The 18 TF coils of the JT-60SA device will be provided by European industry and tested in a Cold Test Facility (CTF) at CEA Saclay. The coils will be tested at the nominal current of 25.7 kA and will be cooled with supercritical helium between 5 K and 7.5 K to check the temperature margin against a quench. The main objective of these tests is to check the TF coils performance and hence mitigate the fabrication risks. The most important components of the facility are: a 11.5 m × 6.5 m large cryostat in which the TF coils will be thermally insulated by vacuum; a 500 W helium refrigerator and a valve box to cool the coils down to 5 K and circulate 24 g/s of supercritical helium through the winding pack and through the casing; a power supply and HTS current leads to energize the coil; the control and instrumentation equipment (sensors, PLC's, supervision system, fast data acquisition system, etc.) and the Magnet Safety System (MSS) that protects the coils in case of quench. The paper will give an overview of the design of this large facility and the status of its realization.

  17. A Consideration on Increasing Current Density in Normal Conducting Toroidal Field Coil for Spherical Tokamak Power Plant

    Institute of Scientific and Technical Information of China (English)

    Song Yuntao; Satoshi NISHIO

    2005-01-01

    The center post is the most critical component as an inboard part of the toroidal field coil for the low aspect ratio tokamak. During the discharge it endures not only a tremendous ohmic heating owing to its carrying a rather high current but also a large nuclear heating and irradiation owing to the plasma operation. All the severe operating conditions, including the structure stress intensity and the stability of the structure, largely limit the maximum allowable current density. But in order to contain a very high dense plasma, it is hoped that the fusion power plant system can operate with a much high maximum magnetic field BT ≥12 T~15 T in the center post. A new method is presented in this paper to improve the maximum magnetic field up to 17 T and to investigate the possibility of the normal conducting center post to be used in the future fusion tokamak power plant.

  18. Situation of the project of manufacture of 10 european toroidal coils for ITER; Situacion del proyecto de fabricacion de 10 bobinas toroidales europeas para el ITER

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, A.; Mrenio, A.; Pando, F.; Pallisa, J.; Merino, O.; Condado, J. P.; Madorran, A.; Dormicchi, O.; Valle, N.; Presenti, P.; Durzo, C.; Pittaluga, S.; Lucas, J.; Ruiz de Villa, E.; Harrison, R.; Cornelis, M.; Cornella, J.; Poncet, L.; Bonito-Oliva, A.

    2013-07-01

    The toroidal coils are part of the magnetic confinement system, of tool of plasma ITER being them making a significant technological challenge since there is no previous experience of manufacture of similar dimensions superconducting coils (14 m X 9 m). F4E, is the agency responsible for making 10 of these coils, having awarded to the consortium of Iberdrola Ingenieria, ASG Superconductors and Elytt Energy making them. This project is now in the process of manufacture of the first Double Pancake prototype that will serve as a qualification of the manufacturing process.

  19. Mechanical properties of full austenitic welding joint at cryogenic temperature for the ITER toroidal field coil structure

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, M., E-mail: iguchi.masahide@jaea.go.jp [Japan Atomic Energy Agency, ITER Superconducting Magnet Technology Group, 801-1 Mukoyama, Naka, Ibaraki 311-0193 Japan (Japan); Saito, T.; Kawano, K.; Chida, Y.; Nakajima, H. [Japan Atomic Energy Agency, ITER Superconducting Magnet Technology Group, 801-1 Mukoyama, Naka, Ibaraki 311-0193 Japan (Japan); Ogawa, T.; Katayama, Y.; Ogata, H.; Minemura, T. [Toshiba Cooperation, Power Systems Company, 2-4, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 2300-0045 (Japan); Tokai, D.; Niimi, K. [Kawasaki Heavy Industries, LTD., Plant and Infrastructure Company, Production Center, 8, Niijima, Harima-cho, Kako-gun, Hyogo 675-0180 (Japan)

    2013-10-15

    Highlights: • No significant distribution of tensile strengths at 4 K, 77 K and room temperature along welding thickness of 200 mm manufactured by one side narrow gap TIG welding with FMYJJ1. • Tensile strengths at cryogenic temperature of welded joint are increased with increasing of C + N contents of base material. • In the case that welded joint is manufactured by combination of different base materials, strength at 4 K of welded joints are below strength of base material having higher C + N contents. -- Abstract: ITER toroidal field coil (TFC) structures are large welding structures composed of coil case and support structures made of heavy thick high strength and high toughness stainless steels. Japan Atomic Energy Agency plans to apply narrow gap Tungsten Inert Gas (TIG) welding with FMYJJ1 (0.03C–10Mn–12Cr–14Ni–5Mo–0.13N) which is full austenitic stainless filler material. In order to evaluate effect of base material thickness and combinations of base material on tensile properties, tensile tests were performed at room temperature, 77 K and 4 K by using tensile specimens taken from 200 mm thickness welded joints of two combinations of base materials and 40 mm thickness welded joints of four combinations of base materials. As the results, it was confirmed that there were no large distribution of yield and tensile strength along the thickness of welded joints of 200 mm thickness and yield and tensile strengths of welded joints were decreased with decreasing of C + N contents of base material.

  20. Technical aspects and manufacturing methods for JT-60SA toroidal field coil casings

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Cucchiaro, A.; Brolatti, G.; Cocilovo, V.; Ginoulhiac, G.; Polli, G. [ENEA, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Gabriele, M.; Di Muzio, F. [Walter Tosto, Via Erasmo Piaggio, 66100 Chieti (Italy); Philips, G.; Tomarchio, V. [JT-60SA European Home Team, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2014-10-15

    Highlights: • A contract between ENEA and Walter Tosto started on July 2012 for the construction of 18 TF coil casings for JT-60SA. • Design and manufacturing of mock-ups representative of straight and curved legs of the casings have been completed. • Final design of the casings has been completed and manufacturing activities have already started and are ongoing. • The completion of the first three casings will be completed within the end of 2013 and the production of all the 18 casings is foreseen by the end of 2015. - Abstract: JT-60SA is a superconducting tokamak machine to be assembled in Naka site, Japan, designed to contribute to the early realization of fusion energy by supporting the exploitation of ITER and research toward DEMO. In the frame of the Broader Approach Agreement a contract between ENEA and Walter Tosto (Chieti, Italy) started on July 2012 for the construction of 18 TF coil casings for JT-60SA. Two different sets of 9 casings each will be progressively delivered, from 2013 to the end of 2015, to ASG Superconductors (Genoa, Italy) and to Alstom (Belfort, France), where the integration of the winding pack into the casing will be carried out. Each TF coil casing (height 7.5 m and width 4.5 m) consists of four main components: one “Straight Leg Outboard” and one “Curved Leg Outboard” both with their own covers, “Straight Leg Inboard” and “Curved Leg Inboard”. The casing components are segmented in forgings and plates made of FM316LNL. The straight leg outboard is composed of two wings welded to a central core and two elbows welded at the ends with a cooling channel installed inside. Elbows of straight leg outboard are segmented in two half-elbows machined from 1 rough forging and welded to the central core made by plate. Welding of wings to the central core is performed in EBW (electron beam welding) and the straight part is welded to the elbows by NGTIG (TIG narrow gap) process. The curved leg outboard is composed of two

  1. Intelligent shell feedback control in EXTRAP T2R reversed field pinch with partial coverage of the toroidal surface by a discrete active coil array

    Science.gov (United States)

    Yadikin, D.; Brunsell, P. R.; Drake, J. R.

    2006-01-01

    An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m = 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (Nc) directions (Mc × Nc = 2 × 32 and Mc × Nc = 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral-derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional-derivative control for high proportional gain is seen in the experiments.

  2. Statistical analysis of the Nb3Sn strand production for the ITER toroidal field coils

    Science.gov (United States)

    Vostner, A.; Jewell, M.; Pong, I.; Sullivan, N.; Devred, A.; Bessette, D.; Bevillard, G.; Mitchell, N.; Romano, G.; Zhou, C.

    2017-04-01

    The ITER toroidal field (TF) strand procurement initiated the largest Nb3Sn superconducting strand production hitherto. The industrial-scale production started in Japan in 2008 and finished in summer 2015. Six ITER partners (so-called Domestic Agencies, or DAs) are in charge of the procurement and involved eight different strand suppliers all over the world, of which four are using the bronze route (BR) process and four the internal-tin (IT) process. In total more than 500 tons have been produced including excess material covering losses during the conductor manufacturing process, in particular the cabling. The procurement is based on a functional specification where the main strand requirements like critical current, hysteresis losses, Cu ratio and residual resistance ratio are specified but not the strand production process or layout. This paper presents the analysis on the data acquired during the quality control (QC) process that was carried out to ensure the same conductor performance requirements are met by the different strand suppliers regardless of strand design. The strand QC is based on 100% billet testing and on applying statistical process control (SPC) limits. Throughout the production, samples adjacent to the strand pieces tested by the suppliers are cross-checked (‘verified’) by their respective DAs reference labs. The level of verification was lowered from 100% at the beginning of the procurement progressively to approximately 25% during the final phase of production. Based on the complete dataset of the TF strand production, an analysis of the SPC limits of the critical strand parameters is made and the related process capability indices are calculated. In view of the large-scale production and costs, key manufacturing parameters such as billet yield, number of breakages and piece-length distribution are also discussed. The results are compared among all the strand suppliers, focusing on the difference between BR and IT processes. Following

  3. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  4. Study of back quench in the superconducting coils of the barrel toroid of ATLAS due to losses during a "slow" discharge of the magnet

    CERN Document Server

    Sorbi, M

    2001-01-01

    An analysis of the losses in the Al matrix of the conductor and in the casings where the superconducting coils are located, due to a "slow discharge" (heaters of the coils off) of the Barrel Toroid of ATLAS has been carried out. The values of the losses have been calculated and cross checked by means of different analytical and FE approaches, and simple relations have been carried out in order to correlate them with the main electrical parameters of the magnet. With a thermal analysis, the increase of temperature in the superconducting coils due to these extra losses has been calculated. The temperature margin (i.e. difference between current sharing temperature and operating temperature) has been calculated and compared with the temperature margin during the normal run of the magnet. (6 refs).

  5. Proposal for the renegotiation of a contract for the supply of eight coil casings for the barrel toroid magnet of the ATLAS detector

    CERN Document Server

    2001-01-01

    This document concerns the renegotiation of a contract for the supply of eight coil casings for the Barrel Toroid Magnet of the ATLAS detector. The proposal for the award of a contract with ABB ENERTECH (CH) was presented to Finance Committee for information in September 1998 (CERN/FC/4089). In view of the developments outlined in this document, the Finance Committee is invited to agree to the renegotiation of a contract with ALSTOM SWITZERLAND (CH), for the supply of eight coil casings for the ATLAS Barrel Toroid Magnet for a total Ex-works price of 12 580 000 Swiss francs, subject to revision after 31 July 2001, with an option for an extra coil casing for an additional Ex-works price of 1 525 000 Swiss francs, subject to revision after 31 July 2001, bringing the total amount for the supply to 14 105 000 Swiss francs, subject to revision after 31 July 2001. The total amount of the contract, including transport to the integration site, will not exceed 14 490 000 Swiss francs, subject to revision after 31 July...

  6. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 32, Coil assembly documentation. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.M. [Babcock and Wilcox Co., Lynchburg, VA (United States)

    1995-08-18

    This document is intended to address the contract requirement for providing coil assembly documentation, as required in the applicable Statement of Work: `Provide preliminary procedures and preliminary design and supporting analysis of the equipment, fixtures, and hardware required to integrate and align the impregnated coil assemblies with the coil cases and intercoil structure. Each of the three major processes associated with the coil case and intercoil structure (ICS), TF Case Fabrication, Coil Preparation for Case Assembly are examined in detail. The specific requirements, processes, equipment, and technical concerns for each of these assembly processes is presented.

  7. Exploring the limits of a very large Nb{sub 3}Sn conductor: the 80 kA conductor of the ITER toroidal field model coil

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.L.; Ciazynski, D.; Guerber, O.; Park, S.H.; Zani, L. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Fietz, W.H.; Ulbricht, A.; Zahn, G. [Association Euratom-FZK Forschungszentrum, Karlsruhe (Germany)

    2003-07-01

    In Phase II experiment of the International Thermonuclear Experimental Reactor (ITER) Toroidal Field Model Coil (TFMC) the operation limits of its 80 kA Nb{sub 3}Sn conductor were explored. To increase the magnetic field on the conductor, the TFMC was tested in presence of another large coil: the EURATOM-LCT coil. Under these conditions the maximum field reached on the conductor, was around 10 tesla. This exploration has been performed at constant current, by progressively increasing the coil temperature and monitoring the coil voltage drop in the current sharing regime. Such an operation was made possible thanks to the very high stability of the conductor. The aim of these tests was to compare the critical properties of the conductor with expectations and assess the ITER TF conductor design. These expectations are based on the documented critical field and temperature dependent properties of the 720 superconducting strands which compose the conductor. In addition the conductor properties are highly dependent on the strain, due to the compression appearing on Nb{sub 3}Sn during the heat treatment of the pancakes and related to the differential thermal compression between Nb{sub 3}Sn and the stainless steel jacket. No precise model exists to predict this strain, which is therefore the main information, which is expected from these tests. The method to deduce this strain from the different tests is presented, including a thermalhydraulic analysis to identify the temperature of the critical point and a careful estimation of the field map across the conductor. The measured strain has been estimated in the range -0.75% to -0.79 %. This information will be taken into account for ITER design and some adjustment of the ITER conductor design is under examination. (authors)

  8. Samus Toroid Installation Fixture

    Energy Technology Data Exchange (ETDEWEB)

    Stredde, H.; /Fermilab

    1990-06-27

    The SAMUS (Small Angle Muon System) toroids have been designed and fabricated in the USSR and delivered to D0 ready for installation into the D0 detector. These toroids will be installed into the aperture of the EF's (End Toroids). The aperture in the EF's is 72-inch vertically and 66-inch horizontally. The Samus toroid is 70-inch vertically by 64-inch horizontally by 66-inch long and weighs approximately 38 tons. The Samus toroid has a 20-inch by 20-inch aperture in the center and it is through this aperture that the lift fixture must fit. The toroid must be 'threaded' through the EF aperture. Further, the Samus toroid coils are wound about the vertical portion of the aperture and thus limit the area where a lift fixture can make contact and not damage the coils. The fixture is designed to lift along a surface adjacent to the coils, but with clearance to the coil and with contact to the upper steel block of the toroid. The lift and installation will be done with the 50 ton crane at DO. The fixture was tested by lifting the Samus Toroid 2-inch off the floor and holding the weight for 10 minutes. Deflection was as predicted by the design calculations. Enclosed are sketches of the fixture and it relation to both Toroids (Samus and EF), along with hand calculations and an Finite Element Analysis. The PEA work was done by Kay Weber of the Accelerator Engineering Department.

  9. Artificial Neural Networks: a viable tool to design heat load smoothing strategies for the ITER Toroidal Field coils

    Science.gov (United States)

    Froio, A.; Bonifetto, R.; Carli, S.; Quartararo, A.; Savoldi, L.; Zanino, R.

    2015-12-01

    In superconducting tokamaks, cryoplants provide the helium needed to cool the superconducting magnet systems. The evaluation of the heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses induced by the pulsed plasma scenarios is crucial for the operation. Here, a simplified thermal-hydraulic model of an ITER Toroidal Field (TF) magnet, based on Artificial Neural Networks (ANNs), is developed and inserted into a detailed model of the ITER TF winding and casing cooling circuits based on the state-of-the-art 4C code, which also includes active controls. The low computational effort requested by such a model allows performing a fast parametric study, to identify the best smoothing strategy during standard plasma operation. The ANNs are trained using 4C simulations, and the predictive capabilities of the simplified model are assessed against 4C simulations, both with and without active smoothing, in terms of accuracy and computational time.

  10. Starfire poloidal coil systems

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.; Kim, S.H.; Turner, L.R.; Wang, S.T.

    1980-01-01

    The poloidal coils for STARFIRE consists of three systems: (1) equilibrium field (EF) coils; (2) ohmic heating (OH) coils; and (3) correction field (CF) coils. The EF coils are superconducting and lie outside the toroidal field (TF) coils. These coils provide the bulk of the equilibrium field necessary to keep the plasma positioned in the vacuum chamber with the desired cross sectional shape and pressure and current distributions. Having these coils outside of the TF coils requires that they have a larger stored energy and larger currents but eases the assembly, maintenance, and reliability of the coils. The STARFIRE OH system is relatively small compared to tokamaks in which the current is entirely ohmically driven. It is designed to provide sufficient flux in the early startup to raise the plasma current to the point (1 to 2 MA) where the rf current drive can take over.

  11. Quench modeling of the ATLAS superconducting toroids

    CERN Document Server

    Gavrilin, A V; ten Kate, H H J

    2001-01-01

    Details of the normal zone propagation and the temperature distribution in the coils of ATLAS toroids under quench are presented. A tailor-made mathematical model and corresponding computer code enable obtainment of computational results for the propagation process over the coils in transverse (turn-to-turn) and longitudinal directions. The slow electromagnetic diffusion into the pure aluminum stabilizer of the toroid's conductor, as well as the essentially transient heat transfer through inter-turn insulation, is appropriately included in the model. The effect of nonuniform distribution of the magnetic field and the thermal links to the coil casing on the temperature gradients within the coils is analyzed in full. (5 refs).

  12. Beam Transport in Toroidal Magnetic Field

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  13. Lowering the first ATLAS toroid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ATLAS detector on the LHC at CERN will consist of eight toroid magnets, the first of which was lowered into the cavern in these images on 26 October 2004. The coils are supported on platforms where they will be attached to form a giant torus. The platforms will hold about 300 tonnes of ATLAS' muon chambers and will envelop the inner detectors.

  14. Fast Dump of the ATLAS Toroids

    CERN Document Server

    Dudarev, A; Volpini, Giovanni; Dudarev, Alexey; Kate, Herman Ten

    2010-01-01

    The toroidal magnet system of the ATLAS Detector at CERN consists of a Barrel Toroid (BT) and two End Cap Toroids (ECT-A and ECT-C). Each toroid is built up from eight racetrack coils wound with an aluminum stabilized NbTi conductor and indirectly cooled by forced flow liquid helium. The three toroids operate in series at 20.5 kA with a total stored energy of 1.5 GJ. In order to verify the reliability and effectiveness of the quench protection system, series of fast dump tests have been performed first of the single toroids and finally of the entire toroidal magnet system. In this paper a model to simulate the fast dump of the ATLAS toroids in single mode operation and in full system configuration is presented. The model is validated through comparison with measured data extracted from the ramp-and-quench runs. The calculated energy dissipation in the various coils is in very good agreement (within 1-2\\%) with the enthalpy changes estimated from the temperature measurements of the different parts of the cold ...

  15. Transporting the first ATLAS toroid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The first coil for the ATLAS toroid magnet is transported from its assembly hall at the CERN Meyrin site to the storage hall above the ATLAS cavern. This involves driving the massive transportation vehicle first through the Meyrin site and then across a main road only metres from the France-Swiss border. Eight magnets in total will be transported in this way before being lowered into the experimental cavern where they will be mounted in a huge ring surrounding the detector.

  16. Quench propagation and protection analysis of the ATLAS Toroids

    CERN Document Server

    Dudarev, A; ten Kate, H H J; Baynham, D Elwyn; Courthold, M J D; Lesmond, C

    2000-01-01

    The ATLAS superconducting magnet system consists of the Barrel Toroid, two End Cap Toroids and the Central Solenoid. However, the Toroids of eight coils each are magnetically separate systems to the Central Solenoid. The Toroids are electrically connected in series and energized by a single power supply. The quench protection system is based on the use of relatively small external dump resistances in combination with quench-heaters activated after a quench event detection to initiate the internal dump of stored energy in all the coils. A rather strong quench-back effect due to eddy-currents in the coil casings at the transport current decay is beneficial for the quench protection efficiency in the event of heater failures. The quench behaviour of the ATLAS Toroids was computer simulated for normal operation of the quench protection system and its complete non-operation (failure) mode. (3 refs).

  17. ATLAS barrel toroid integration and test area in building 180

    CERN Document Server

    Maximilien Brice

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two 'double-pancake' windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. The barrel toroid is being assembled in building 180 on the Meyrin site. In the first phase of assembly, the coils are packed into their aluminium-alloy casing. These photos show the double-pancake coils from ANSALDO and the coil casings from ALSTOM. In the foreground is the tooling from COSMI used to turn over the coil casings during this first phase. In the right background is the yellow lifting gantry manufactured at JINR-Dubna, Russia which will transport the coil casings to a heating table for prestressing. Two test benches with magnetic mirror are also visible.

  18. ATLAS Barrel Toroid magnet reached nominal field

    CERN Multimedia

    2006-01-01

     On 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph

  19. First ATLAS Barrel Toroid Coil Passes Test

    CERN Multimedia

    2004-01-01

    First they secured anything magnetic: metal tools, nuts and bolts, tables. Then they cleared the magnet assembly building, as big as an airplane hangar, and locked it tight. Before turning on the magnet for its maiden test, they waited till the dead of night so no one else would be around.

  20. Finite Element Analyses and Instrumentation Layout for Single Coil Testing of TF Coils in HT-7U

    Institute of Scientific and Technical Information of China (English)

    陈文革; 翁佩德

    2003-01-01

    The HT-7U tokamak is a magnetically-confined full superconducting fusion device,consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF)coils. These coils are wound with cable-in-conductor (CICC) which is based on UNK NbTi wiresmade in Russian [1]. A single D-shaped toroidal field magnet coil will be tested for large andexpensive magnets systems before assembling them in the toroidal configuration. This paperdescribes the layout of the instrumentation for a superconducting test facility based on the resultsof a finite element modeling of the single coil of toroidal magnetic field (TF) coils in HT-7Utokamak device. At the same time, the design of coil support structure in the test facility isparticularly discussed in some detail.

  1. Toroidal modeling of plasma response to RMP fields in ITER

    Science.gov (United States)

    Li, L.; Liu, Y. Q.; Wang, N.; Kirk, A.; Koslowski, H. R.; Liang, Y.; Loarte, A.; Ryan, D.; Zhong, F. C.

    2017-04-01

    A systematic numerical study is carried out, computing the resistive plasma response to the resonant magnetic perturbation (RMP) fields for ITER plasmas, utilizing the toroidal code MARS-F (Liu et al 2000 Phys. Plasmas 7 3681). A number of factors are taken into account, including the variation of the plasma scenarios (from 15 MA Q = 10 inductive scenario to the 9 MA Q = 5 steady state scenario), the variation of the toroidal spectrum of the applied fields (n = 1, 2, 3, 4, with n being the toroidal mode number), the amplitude and phase variation of the currents in three rows of the RMP coils as designed for ITER, and finally a special case of mixed toroidal spectrum between the n = 3 and n = 4 RMP fields. Two-dimensional parameter scans, for the edge safety factor and the coil phasing between the upper and lower rows of coils, yield ‘optimal’ curves that maximize a set of figures of merit, that are defined in this work to measure the plasma response. Other two-dimensional scans of the relative coil current phasing among three rows of coils, at fixed coil currents amplitude, reveal a single optimum for each coil configuration with a given n number, for the 15 MA ITER inductive plasma. On the other hand, scanning of the coil current amplitude, at fixed coil phasing, shows either synergy or cancellation effect, for the field contributions between the off-middle rows and the middle row of the RMP coils. Finally, the mixed toroidal spectrum, by combining the n = 3 and the n = 4 RMP field, results in a substantial local reduction of the amplitude of the plasma surface displacement.

  2. Next generation toroidal devices

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Shoichi [Princeton Plasma Physics Lab., Princeton Univ., NJ (United States)

    1998-10-01

    A general survey of the possible approach for the next generation toroidal devices was made. Either surprisingly or obviously (depending on one`s view), the technical constraints along with the scientific considerations lead to a fairly limited set of systems for the most favorable approach for the next generation devices. Specifically if the magnetic field strength of 5 T or above is to be created by superconducting coils, it imposes minimum in the aspect ratio for the tokamak which is slightly higher than contemplated now for ITER design. The similar technical constraints make the minimum linear size of a stellarator large. Scientifically, it is indicated that a tokamak of 1.5 times in the linear dimension should be able to produce economically, especially if a hybrid reactor is allowed. For the next stellarator, it is strongly suggested that some kind of helical axis is necessary both for the (almost) absolute confinement of high energy particles and high stability and equilibrium beta limits. The author still favors a heliac most. Although it may not have been clearly stated in the main text, the stability afforded by the shearless layer may be exploited fully in a stellarator. (author)

  3. Evaluation of the Uniform Field Distortions Produced by a Toroidal Dielectric Body / Novērtējums Viendabīga Elektriskā Lauka Izkropļojumiem, Kurus Rada Toroīda Formas Dielektrisks Ķermenis

    Science.gov (United States)

    Krasnitsky, Y. A.; Popov, A. E.; Kalnacs, A.

    2015-08-01

    Distortions of the structure of a uniform electric field when a dielectric body with a toroidal shape is placed in it are considered in the quasi-static approximation. The rate of distortion is proposed to estimate through the effective permittivity of toroid determined by solving the corresponding boundary value problem. Some numerical estimates obtained using specially developed software in the language of Matlab are given. Darbā apskatīts kvazi-statisks tuvinājums viendabīga elektriskā lauka izkropļojumiem gadījumos, kad tajā tiek ievietots dielektrisks toroīda formas ķermenis. Izkropļojumu apmēru tiek piedāvāts novērtēt ar toroīda efektīvo caurlaidību, kas tiek noteikta, atrisinot atbilstošo robežvērtību uzdevumu. Tiek doti skaitliski novērtējumi, kas iegūti, lietojot speciāli valodā Matlab izstrādātu programmatūru.

  4. Effect of a TBM on the Toroidal Magnetic Field Ripple in the ITER and Measures to Reduce the Ripple

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Young Dug; Lee, Dong Won; Kim, Suk Kwon; Hong, Bong Guen

    2008-11-15

    The ITER (International Thermonuclear Experimental Reactor) tokamak has 18 toroidal magnetic field (TF) coils, and the discreteness of these TF coils causes toroidally non-axisymmetric perturbations of the magnetic field. It is called a TF ripple and could lead to losses of high-energy particles, and an unfavorable heat load on the plasma facing components. In the ITER design, a ferromagnetic insert (FI) is employed to reduce the TF ripple, and an optimization of the FI design is ongoing. Also, since test blanket modules (TBMs) will be installed in the ITER, which are made of a ferromagnetic material, they also affect the TF ripple. We assessed the effects of the thickness of the FIs on the TF ripple in order to optimize the FI. And we analyzed how the TBMs distort the TF, and calculated the TF ripple for various amounts of a ferromagnetic material and the positions of the TBMs. A simple correction coil was adopted in order to reduce the TBM induced TF ripple to the required value of 0.3 %. We proposed technically available measures to reduce the TF ripple to the required value.

  5. Sensing with toroidal metamaterial

    Science.gov (United States)

    Gupta, Manoj; Srivastava, Yogesh Kumar; Manjappa, Manukumara; Singh, Ranjan

    2017-03-01

    Localized electromagnetic excitation in the form of toroidal dipoles has recently been observed in metamaterial systems. The origin of the toroidal dipole lies in the currents flowing on the surface of a torus. Thus, the exotic toroidal excitations play an important role in determining the optical properties of a system. Toroidal dipoles also contribute towards enabling high quality factor subwavelength resonances in metamaterial systems which could be an excellent platform for probing the light matter interaction. Here, we demonstrate sensing with toroidal resonance in a two-dimensional terahertz metamaterial in which a pair of mirrored asymmetric Fano resonators possesses anti-aligned magnetic moments at an electromagnetic resonance that gives rise to a toroidal dipole. Our proof of concept demonstration opens up an avenue to explore the interaction of matter with toroidal multipoles that could have strong applications in the sensing of dielectrics and biomolecules.

  6. Mechanical characteristics of the ATLAS B0 model coil

    CERN Document Server

    Foussat, A; Dudarev, A; Mayri, C; Miele, P; Sun, Z; ten Kate, H H J; Volpini, G

    2003-01-01

    The ATLAS B0 model coil has been tested at CERN to verify the design parameters of the Barrel Toroid coils (BT). The mechanical behavior of the B0 superconducting coil and its support structure is reported and compared with coil design calculations. The mechanical stresses and structural force levels during cooling down and excitation phases were monitored using strain gauges, position sensors and capacitive force transducers instrumentation. In the ATLAS magnet test facility, a magnetic mirror is used to reproduce the electromagnetic forces present in the BT coils, once these are assembled in toroid in the underground cavern in 2004. (8 refs).

  7. Mechanical design and construction qualification program on ITER correction coils structures

    Energy Technology Data Exchange (ETDEWEB)

    Foussat, A., E-mail: arnaud.foussat@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Weiyue, Wu; Jing, Wei; Shuangsong, Du [Academy of Science Institute of Plasma Physics, PO 1126, Hefei, Anhui 230031 (China); Sgobba, S. [European Center for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Hongwei, Li [China International Nuclear Fusion Energy Program Execution Center, Ministry of Science and Technology, 15B Fuxing Rd., Beijing 100862 (China); Libeyre, Paul; Jong, Cornelis; Klofac, Kamil; Mitchell, Neil [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-04-01

    The ITER Magnet system consists of 4 main coils sub-systems, i.e. 18 toroidal field coils (TFC), a central solenoid (CS), 6 poloidal field coils (PF) and 3 sets of correction coils (CC). The ITER fusion project has selected the stainless steel 316LN as main material for the magnet structure. The CC contribute to reducing the range of magnetic error fields created by imperfections in the location and geometry of the other coils used to confine, heat, and shape the plasma. During plasma operation, a large number of loading condition scenarios have been considered and structural analysis performed on key items like Cable-In-Conduit Conductor and the coil case. The results obtained are used for both static and fatigue structural assessment defining the present baseline design. For the construction of the structural cases, welding techniques such as GTAW (Gas Tungsten Arc Welding) and techniques resulting in low distortion and shrinkage like EBW (Electron Beam Welding) or Laser Beam Welding (LBW) with filler metal wire have been selected. Those methods are considered for future qualifications to guarantee proper weld parameters and specified weld properties. In order to determine the strength and fracture toughness of 316LN stainless steel welds with respect to design criteria, some mechanical tests have been carried out at 7 K (or 77 K), and room temperature.

  8. ATLAS: Full power for the toroid magnet

    CERN Multimedia

    2006-01-01

    The 9th of November was a memorable day for ATLAS. Just before midnight, the gigantic Barrel toroid magnet reached its nominal field of 4 teslas in the coil windings, with an electrical current of 21000 amperes (21 kA) passing through the eight superconducting coils (as seen on the graph). This achievement was obtained after several weeks of commissioning. The ATLAS Barrel Toroid was first cooled down for about six weeks in July-August to -269°C (4.8 K) and then powered up step-by-step in successive test sessions to 21 kA. This is 0.5 kA above the current required to produce the nominal magnetic field. Afterwards, the current was safely switched off and the stored magnetic energy of 1.1 gigajoules was dissipated in the cold mass, raising its temperature to a safe -218°C (55 K). 'We can now say that the ATLAS Barrel Toroid is ready for physics,' said Herman ten Kate, project leader for the ATLAS magnet system. The ATLAS barrel toroid magnet is the result of a close collaboration between the magnet la...

  9. Linear Rogowski coil

    Science.gov (United States)

    Nassisi, V.; Delle Side, D.

    2017-02-01

    Nowadays, the employment and development of fast current pulses require sophisticated systems to perform measurements. Rogowski coils are used to diagnose cylindrical shaped beams; therefore, they are designed and built with a toroidal structure. Recently, to perform experiments of radiofrequency biophysical stresses, flat transmission lines have been developed. Therefore, in this work we developed a linear Rogowski coil to detect current pulses inside flat conductors. The system is first approached by means of transmission line theory. We found that, if the pulse width to be diagnosed is comparable with the propagation time of the signal in the detector, it is necessary to impose a uniform current as input pulse, or to use short coils. We further analysed the effect of the resistance of the coil and the influence of its magnetic properties. As a result, the device we developed is able to record pulses lasting for some hundreds of nanoseconds, depending on the inductance, load impedance, and resistance of the coil. Furthermore, its response is characterized by a sub-nanosecond rise time (˜100 ps). The attenuation coefficient depends mainly on the turn number of the coil, while the fidelity of the response depends both on the magnetic core characteristics and on the current distribution along the plane conductors.

  10. An important step for the ATLAS toroid magnet

    CERN Multimedia

    2000-01-01

    The ATLAS experiment's prototype toroid coil arrives at CERN from the CEA laboratory in Saclay on 6 October. The world's largest superconducting toroid magnet is under construction for the ATLAS experiment. A nine-metre long fully functional prototype coil was delivered to CERN at the beginning of October and has since been undergoing tests in the West Area. Built mainly by companies in France and Italy under the supervision of engineers from the CEA-Saclay laboratory near Paris and Italy's INFN-LASA, the magnet is a crucial step forward in the construction of the ATLAS superconducting magnet system. Unlike any particle detector that has gone before, the ATLAS detector's magnet system consists of a large toroidal system enclosing a small central solenoid. The barrel part of the toroidal system will use eight toroid coils, each a massive 25 metres in length. These will dwarf the largest toroids in the world when ATLAS was designed, which measure about six metres. So the ATLAS collaboration decided to build a...

  11. Design and Comparison of a 1 MW / 5s HTS SMES with Toroidal and Solenoidal Geometry

    CERN Document Server

    Morandi, Antonio; Gholizad, Babak; Grilli, Francesco; Sirois, Frédéric; Zermeño, Víctor M R

    2015-01-01

    The design of a HTS SMES coil with solenoidal and toroidal geometry is carried out based on a commercially available 2G HTS conductor. A SMES system of practical interest (1 MW / 5 s) is considered. The comparison between ideal toroidal and solenoidal geometry is first discussed and the criteria used for choosing the geometrical parameters of the coils' bore are explained. The design of the real coil is then carried out and the final amount of conductor needed is compared. A preliminary comparison of the two coils in terms of AC loss during one charge discharge cycle is also discussed.

  12. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  13. Calculation of modification to the toroidal magnetic field of the Tokamak Novillo. Part II; Calculo de modificacion al campo magnetico toroidal del Tokamak nivillo. Parte II

    Energy Technology Data Exchange (ETDEWEB)

    Melendez L, L.; Chavez A, E.; Colunga S, S.; Valencia A, R.; Lopez C, R.; Gaytan G, E

    1992-03-15

    In a cylindrical magnetic topology. the confined plasma experiences 'classic' collisional transport phenomena. When bending the cylinder with the purpose of forming a toro, the magnetic field that before was uniform now it has a radial gradient which produces an unbalance in the magnetic pressure that is exercised on the plasma in the transverse section of the toro. This gives place to transport phenomena call 'neo-classicist'. In this work the structure of the toroidal magnetic field produced by toroidal coils of triangular form, to which are added even of coils of compensation with form of half moon is analyzed. With this type of coils it is looked for to minimize the radial gradient of the toroidal magnetic field. The values and characteristics of B (magnetic field) in perpendicular planes to the toro in different angular positions in the toroidal direction, looking for to cover all the cases of importance are exhibited. (Author)

  14. Toroidal optical activity

    CERN Document Server

    Raybould, T A; Papasimakis, N; Kuprov, I; Youngs, I; Chen, W T; Tsai, D P; Zheludev, N I

    2015-01-01

    Optical activity is ubiquitous across natural and artificial media and is conventionally understood in terms of scattering from electric and magnetic moments. Here we demonstrate experimentally and confirm numerically a type of optical activity that cannot be attributed to electric and magnetic multipoles. We show that our observations can only be accounted for by the inclusion of the toroidal dipole moment, the first term of the recently established peculiar family of toroidal multipoles.

  15. Quench Induced Pressure Rise in the Cooling Pipes of the Atlas Barrel Toroid Model

    CERN Document Server

    Haug, F; Broggi, F; Junker, S

    2004-01-01

    The ATLAS superconducting magnet system consists of a Barrel Toroid, two End-Cap Toroids and a Solenoid. Eight individual racetrack coils will be assembled to form the Barrel Toroid with overall dimensions of 26 m length and 20 m diameter. In order to verify the design concept a 9 m long short version of a single Barrel Toroid coil was built. A test program was conducted at the CERN cryogenic test facility which included the evaluation of the pressure rise in the helium cooling channels during quenches of the coil. A specific experimental set-up with cold pressure transducers and capillaries was installed for online measurement of the pressure signals. In addition a computer model was used to simulate these events. The data obtained are presented.

  16. α/β coiled coils.

    Science.gov (United States)

    Hartmann, Marcus D; Mendler, Claudia T; Bassler, Jens; Karamichali, Ioanna; Ridderbusch, Oswin; Lupas, Andrei N; Hernandez Alvarez, Birte

    2016-01-15

    Coiled coils are the best-understood protein fold, as their backbone structure can uniquely be described by parametric equations. This level of understanding has allowed their manipulation in unprecedented detail. They do not seem a likely source of surprises, yet we describe here the unexpected formation of a new type of fiber by the simple insertion of two or six residues into the underlying heptad repeat of a parallel, trimeric coiled coil. These insertions strain the supercoil to the breaking point, causing the local formation of short β-strands, which move the path of the chain by 120° around the trimer axis. The result is an α/β coiled coil, which retains only one backbone hydrogen bond per repeat unit from the parent coiled coil. Our results show that a substantially novel backbone structure is possible within the allowed regions of the Ramachandran space with only minor mutations to a known fold.

  17. Induction Motor with Switchable Number of Poles and Toroidal Winding

    Directory of Open Access Journals (Sweden)

    MUNTEANU, A.

    2011-05-01

    Full Text Available This paper presents a study of an induction motor provided with toroidal stator winding. The ring-type coils offer a higher versatility in obtaining a different number of pole pairs by means of delta/star and series/parallel connections respectively. As consequence, the developed torque can vary within large limits and the motor can be utilized for applications that require, for example, high load torque values for a short time. The study involves experimental tests and FEM simulation for an induction machine with three configurations of pole pairs. The conclusions attest the superiority of the toroidal winding for certain applications such as electric vehicles or lifting machines.

  18. Progress in Compact Toroid Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  19. Modular Coils and Plasma Configurations for Quasi-axisymmetric Stellarators

    Energy Technology Data Exchange (ETDEWEB)

    L.P. Ku and A.H. Boozer

    2010-09-10

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other types of coils to complement modular coils to improve both the physics and the modular coil characteristics.

  20. Barrel Toroid fully charged to nominal field, and it works!

    CERN Document Server

    Herman ten Kate

    After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...

  1. Efficient magnetic fields for supporting toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Landreman, Matt, E-mail: mattland@umd.edu [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-03-15

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However, the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The efficiency of an externally generated magnetic field is a measure of the field's shaping component magnitude at the plasma compared to the magnitude near the coils; the efficiency of a plasma equilibrium can be measured using the efficiency of the required external shaping field. Counterintuitively, plasma shapes with low curvature and spectral width may have low efficiency, whereas plasma shapes with sharp edges may have high efficiency. Two precise measures of magnetic field efficiency, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix yields an efficiency ordered basis for the magnetic field distributions. Calculations are carried out for both tokamak and stellarator cases. For axisymmetric surfaces with circular cross-section, the SVD is calculated analytically, and the range of poloidal and toroidal mode numbers that can be controlled to a given desired level is determined. If formulated properly, these efficiency measures are independent of the coordinates used to parameterize the surfaces.

  2. On the dynamic toroidal multipoles

    CERN Document Server

    Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2015-01-01

    Toroidal multipoles are attracting research attention, particularly in the field of metamaterials. They are often understood as a multipolar family in its own right. The dynamic toroidal multipoles emerge from the separation of one of the two transverse multipoles into two parts, referred to as electric and toroidal. Here, we establish that the dynamic toroidal multipolar components of an electric current distribution cannot be determined by measuring the radiation from the source or its coupling to external electromagnetic waves. We analytically show how the split into electric and toroidal parts causes the appearance of non-radiative components in each of the two parts, which cancel when summed back together. The toroidal multipoles do not have an independent meaning with respect to their interaction with the radiation field. Their formal meaning is clear, however. They are the higher order terms of an expansion of the multipolar coefficients of electric parity with respect to the electromagnetic size of th...

  3. On the Toroidal Leibniz Algebras

    Institute of Scientific and Technical Information of China (English)

    Dong LIU; Lei LIN

    2008-01-01

    Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras gOC[t±11 ,...,t±v1] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.

  4. Parametric design studies of toroidal magnetic energy storage units

    Science.gov (United States)

    Herring, J. Stephen

    Superconducting magnetic energy storage (SMES) units have a number of advantages as storage devices. Electrical current is the input, output and stored medium, allowing for completely solid-state energy conversion. The magnets themselves have no moving parts. The round trip efficiency is higher than those for batteries, compressed air or pumped hydro. Output power can be very high, allowing complete discharge of the unit within a few seconds. Finally, the unit can be designed for a very large number of cycles, limited basically by fatigue in the structural components. A small systems code was written to produce and evaluate self-consistent designs for toroidal superconducting energy storage units. The units can use either low temperature or high temperature superconductors. The coils have D shape where the conductor and its stabilizer/structure is loaded only in tension and the centering forces are borne by a bucking cylinder. The coils are convectively cooled from a cryogenic reservoir in the bore of the coils. The coils are suspended in a cylindrical metal shell which protects the magnet during rail, automotive or shipboard use. It is important to note that the storage unit does not rely on its surroundings for structural support, other than normal gravity and inertial loads. Designs are presented for toroidal energy storage units produced by the systems code. A wide range of several parameters have been considered, resulting in units storing from 1 MJ to 72 GJ. Maximum fields range from 5 T to 20 T. The masses and volumes of the coils, bucking cylinder, coolant, insulation and outer shell are calculated. For unattended use, the allowable operating time using only the boiloff of the cryogenic fluid for refrigeration is calculated. For larger units, the coils were divided into modules suitable for normal truck or rail transport.

  5. The Superconducting Toroid for the New International AXion Observatory (IAXO)

    CERN Document Server

    Shilon, I; Silva, H; Wagner, U; Kate, H H J ten

    2013-01-01

    IAXO, the new International AXion Observatory, will feature the most ambitious detector for solar axions to date. Axions are hypothetical particles which were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. This detector aims at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap toroids, a large superconducting toroid is being designed. The toroid comprises eight, one meter wide and twenty one meters long racetrack coils. The assembled toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250 tons. The useful field in the bores is 2.5 T while the peak magnetic field in the windings is 5....

  6. Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet

    CERN Document Server

    Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H

    2008-01-01

    ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.

  7. Engineering status of the superconducting end cap toroid magnets for the ATLAS experiment at LHC

    CERN Document Server

    Baynham, D Elwyn; Carr, F S; Courthold, M J D; Cragg, D A; Densham, C J; Evans, D; Holtom, E; Rochford, J; Sole, D; Towndrow, Edwin F; Warner, G P

    2000-01-01

    The ATLAS experiment at LHC, CERN will utilise a large, superconducting, air-cored toroid magnet system for precision muon measurements. The magnet system will consist of a long barrel and two end-cap toroids. Each end-cap toroid will contain eight racetrack coils mounted as a single cold mass in cryostat vessel of ~10 m diameter. The project has now moved from the design/specification stage into the fabrication phase. This paper presents the engineering status of the cold masses and vacuum vessels that are under fabrication in industry. Final designs of cold mass supports, cryogenic systems and control/protection systems are presented. Planning for toroid integration, test and installation is described. (3 refs).

  8. Experimental investigation of transitional flow in a toroidal pipe

    CERN Document Server

    Kühnen, J; Hof, B; Kuhlmann, H

    2015-01-01

    The flow instability and further transition to turbulence in a toroidal pipe (torus) with curvature (tube-to-coiling diameter) 0.049 is investigated experimentally. The flow inside the toroidal pipe is driven by a steel sphere fitted to the inner pipe diameter. The sphere is moved with constant azimuthal velocity from outside the torus by a moving magnet. The experiment is designed to investigate curved pipe flow by optical measurement techniques. Using stereoscopic particle image velocimetry, laser Doppler velocimetry and pressure drop measurements, the flow is measured for Reynolds numbers ranging from 1000 to 15000. Time- and space-resolved velocity fields are obtained and analysed. The steady axisymmetric basic flow is strongly influenced by centrifugal effects. On an increase of the Reynolds number we find a sequence of bifurcations. For Re=4075 a supercritical bifurcation to an oscillatory flow is found in which waves travel in the streamwise direction with a phase velocity slightly faster than the mean...

  9. Engineering design and construction of the S-1 spheromak coil systems

    Energy Technology Data Exchange (ETDEWEB)

    Heitzenroeder, P.J.; Helmich, R.C.; Pereira, M.A.; Loesser, G.D.

    1981-01-01

    The Spheromak coil systems consist of a torus-shaped flux core of 1 m. major radius located within the vacuum vessel, and three pairs of euqilibrium field (EF) coils located outside the vessel. The engineering design and fabrication methods of these coil systems are the topics of this pper. Toroidal and poloidal currents are induced by the PF (poloidal field) and TF (toroidal field) windings, located in the flux core. The windings are made of water-cooled copper cables located in grooves in and around a G-10 epoxy-glass torus form.

  10. Coiled-Coil Design: Updated and Upgraded.

    Science.gov (United States)

    Woolfson, Derek N

    2017-01-01

    α-Helical coiled coils are ubiquitous protein-folding and protein-interaction domains in which two or more α-helical chains come together to form bundles. Through a combination of bioinformatics analysis of many thousands of natural coiled-coil sequences and structures, plus empirical protein engineering and design studies, there is now a deep understanding of the sequence-to-structure relationships for this class of protein architecture. This has led to considerable success in rational design and what might be termed in biro de novo design of simple coiled coils, which include homo- and hetero-meric parallel dimers, trimers and tetramers. In turn, these provide a toolkit for directing the assembly of both natural proteins and more complex designs in protein engineering, materials science and synthetic biology. Moving on, the increased and improved use of computational design is allowing access to coiled-coil structures that are rare or even not observed in nature, for example α-helical barrels, which comprise five or more α-helices and have central channels into which different functions may be ported. This chapter reviews all of these advances, outlining improvements in our knowledge of the fundamentals of coiled-coil folding and assembly, and highlighting new coiled coil-based materials and applications that this new understanding is opening up. Despite considerable progress, however, challenges remain in coiled-coil design, and the next decade promises to be as productive and exciting as the last.

  11. Manufacturing aspects of the ATLAS barrel toroid double pancakes

    CERN Document Server

    Drago, G; Gagliardi, P; Laurenti, A; Marabotto, R; Penco, R

    2002-01-01

    In 1999 INFN (Istituto Nazionale di Fisica Nucleare) ordered to ANSALDO the manufacturing of 16 double pancakes for the ATLAS BARREL TOROID. In July 2001 four Double Pancakes have already been completed and shipped to the integration site. In this paper the main aspects of the manufacturing of the largest superconducting coils ever built (5*25 m) are described. The main phases of the manufacturing procedure are reviewed starting from the conductor preparation to the VPI impregnation, including references to the materials used as well as to the relevant customer's requirements. In particular the special winding form and the winding technique are treated. For each phase the most critical aspects and the relevant solutions are pointed out. Particular details about the technical solutions adopted for the impregnation and curing of the Double Pancake, which could not be performed inside an autoclave due to the huge dimension of the coil itself, are reported. Finally the methods used for the dimensional and electri...

  12. RF breakdown by toroidal helicons

    Indian Academy of Sciences (India)

    S K P Tripathi; D Bora; M Mishra

    2001-04-01

    Bounded whistlers are well-known for their efficient plasma production capabilities in thin cylindrical tubes. In this paper we shall present their radio frequency (RF) breakdown and discharge sustaining capabilities in toroidal systems. Pulsed RF power in the electronmagnetohydrodynamic (EMHD) frequency regime is fed to the neutral background medium. After the breakdown stage, discharge is sustained by toroidal bounded whistlers. In these pulsed experiments the behaviour of the time evolution of the discharge could be studied in four distinct phases of RF breakdown, steady state attainment, decay and afterglow. In the steady state average electron density of ≈ 1012 per cc and average electron temperature of ≈ 20 eV are obtained at 10-3 mbar of argon filling pressure. Experimental results on toroidal mode structure, background effects and time evolution of the electron distribution function will be presented and their implications in understanding the breakdown mechanism are discussed.

  13. Prandtl number of toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka (National Inst. for Fusion Science, Nagoya (Japan)); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi; Azumi, Masafumi

    1993-12-01

    Theory of the L-mode confinement in toroidal plasmas is developed. The Prandtl number, the ratio between the ion viscosity and the thermal conductivity is obtained for the anomalous transport process which is caused by the self-sustained turbulence in the toroidal plasma. It is found that the Prandtl number is of order unity both for the ballooning mode turbulence in tokamaks and for the interchange mode turbulence in helical system. The influence on the anomalous transport and fluctuation level is evaluated. Hartmann number and magnetic Prandtl number are also discussed. (author).

  14. Hybrid winding concept for toroids

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold;

    2013-01-01

    This paper proposes a hybrid winding concept for toroids using the traces in a printed circuit board to make connection to bended copper foil cutouts. In a final product a number of strips with a certain thickness would be held by a former and the whole assembly could be placed by pick...... and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...

  15. Designing Stable Antiparallel Coiled Coil Dimers

    Institute of Scientific and Technical Information of China (English)

    曾宪纲; 周海梦

    2001-01-01

    The history of antiparallel coiled coil dimer design is briefly reviewed and the main principles governing the successful designs are explained. They include analysis of the inter-subunit electrostatic repulsion for determining partners for dimerization and of the buried polar interaction for determining the relative orientation of the partners. A theory is proposed to explain the lack of antiparallel coiled coil homodimers in nature.

  16. The complex and unique ATLAS Toroid family

    CERN Multimedia

    2002-01-01

    Big parts for the toroid magnets that will be used in the ATLAS experiment have been continuously arriving at CERN since March. These structures will create the largest superconducting toroid magnet ever.

  17. 3D toroidal physics: Testing the boundaries of symmetry breakinga)

    Science.gov (United States)

    Spong, Donald A.

    2015-05-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  18. 3D toroidal physics: Testing the boundaries of symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Spong, Donald A., E-mail: spongda@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)

    2015-05-15

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  19. Extremely high Q-factor toroidal metamaterials

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N; Ustinov, Alexey V

    2016-01-01

    We demonstrate that, owing to the unique topology of the toroidal dipolar mode, its electric/magnetic field can be spatially confined within subwavelength, externally accessible regions of the metamolecules, which makes the toroidal planar metamaterials a viable platform for high Q-factor resonators due to interfering toroidal and other dipolar modes in metamolecules.

  20. ATLAS End Cap toroid in upstanding position

    CERN Multimedia

    2005-01-01

    End Cap toroid The ATLAS End Cap toroid weights 240-ton and is 12-m diameter high. The parts of this vacuum vessel had to be integrated and tested so that End Cap Toroid has no leaks. After that it could be cooled down to 80 K.

  1. Onsager relaxation of toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Samain, A.; Nguyen, F.

    1997-01-01

    The slow relaxation of isolated toroidal plasmas towards their thermodynamical equilibrium is studied in an Onsager framework based on the entropy metric. The basic tool is a variational principle, equivalent to the kinetic equation, involving the profiles of density, temperature, electric potential, electric current. New minimization procedures are proposed to obtain entropy and entropy production rate functionals. (author). 36 refs.

  2. Hybrid winding concept for toroids

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold;

    2013-01-01

    This paper proposes a hybrid winding concept for toroids using the traces in a printed circuit board to make connection to bended copper foil cutouts. In a final product a number of strips with a certain thickness would be held by a former and the whole assembly could be placed by pick and placem...

  3. Coil Welding Aid

    Science.gov (United States)

    Wiesenbach, W. T.; Clark, M. C.

    1983-01-01

    Positioner holds coil inside cylinder during tack welding. Welding aid spaces turns of coil inside cylinder and applies contact pressure while coil is tack-welded to cylinder. Device facilitates fabrication of heat exchangers and other structures by eliminating hand-positioning and clamping of individual coil turns.

  4. Intrinsic rotation of toroidally confined magnetohydrodynamics.

    Science.gov (United States)

    Morales, Jorge A; Bos, Wouter J T; Schneider, Kai; Montgomery, David C

    2012-10-26

    The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum.

  5. Design and Simulation of Toroidal Twister Model

    Institute of Scientific and Technical Information of China (English)

    TIAN Huifang; LIN Xizhen; ZENG Qinqin

    2006-01-01

    Toroidal composite vessel winded with fiber is a new kind of structural pressure vessels, which not only has high structure efficiency of compound materials pressure vessel, good security and so on, but also has special shape and the property of utilizing toroidal space, and the prospect of the application of toroidal composite vessel winded with fiber is extremely broad. By introducing parameters establishment of toroidal vessel and elaborating the principle of filament winding for toroidal vessel, the design model of filament winding machine for toroidal vessel has been introduced, and the design model has been dynamically simulated by the software of ADAMS, which will give more referrence for the design of real toroidal vessel twister.

  6. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  7. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  8. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  9. Magnetic Properties of 3D Printed Toroids

    Science.gov (United States)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  10. Improved Mirnov Magnetic Coils System for the TCABR Tokamak

    Science.gov (United States)

    Vannucci, Alvaro; Olschewski, Erich; Kuznetsov, Yuri; Kucinski, Mutsuko; Tadeu Degasperi, Francisco; Araujo, Mauro Sergio; Galvao, Ricardo; Okano, Valdir; Nascimento, Ivan

    2000-10-01

    The Mirnov magnetic coils system for the TCABR was recently reconstructed. The most interesting aspect of this system is that the measured experimental signals already incorporate the influence of the toroidal geometry. This means that the usual fast Fourier transform analysis done on the magnetic experimental data is able to indicate, more precisely and in a straightforward way, the MHD mode contribution to the detected signals during a plasma discharge. The influence of the toroidal geometry on the Fourier analysis of the magnetic signals was investigated by carring a series of simulations, considering the Merezhkin correction expressed only as a function of the inverse of the tokamak aspect ratio (calculated at the position of interest). The results obtained clearly showed the existence of a phase modulation on the Mirnov signals which is not usually considered when the magnetic signals are Fourier analyzed in the frame of cylindrical approximation, that is, by neglecting the existing toroidal effect.

  11. Coils and transformers - often used but seldomly explained correctly

    CERN Document Server

    Lenz, Michael

    2011-01-01

    The devices coil and transformer are subjects of interest in numerous schoolbooks, in introductory scientific textbooks of physics and engineering, and in laboratory courses at universities. Many descriptions, however, draw a somewhat distorted picture of the underlying physical mechanisms and provide half-knowledge or even clear misconceptions that should not be left uncommented and are therefore studied in detail: (1) Primary and secondary voltage at a transformer have a different sign. (2) Electromagnetic induction is the only mechanism of importance for coils and transformers. (3) The terminal voltage at coils and transformers is compensated by the so-called "induced voltage" (emf), which explains why Kirchhoff's voltage law also applies to coils and transformers. (4) The cores of coils and transformers are used for their ability to store energy. Energy is transported from the primary to the secondary coil within the magnetic core. (5) The stray magnetic and electric fields are sencondary effects not havi...

  12. Development of toroid-type HTS DC reactor series for HVDC system

    Science.gov (United States)

    Kim, Kwangmin; Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho; Lee, Sangjin; Oh, Yunsang; Park, Minwon; Yu, In-Keun

    2015-11-01

    This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  13. Development of toroid-type HTS DC reactor series for HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwangmin, E-mail: kwangmin81@gmail.com [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Go, Byeong-Soo; Park, Hea-chul; Kim, Sung-kyu; Kim, Seokho [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of); Lee, Sangjin [Uiduk University, Gyeongju 780-713 (Korea, Republic of); Oh, Yunsang [Vector Fields Korea Inc., Pohang 790-834 (Korea, Republic of); Park, Minwon; Yu, In-Keun [Changwon National University, 55306 Sarim-dong, Changwon 641-773 (Korea, Republic of)

    2015-11-15

    Highlights: • The authors developed the 400 mH, 400 A class toroid-type HTS DC reactor system. • The target temperature, inductance and operating current are under 20 K at magnet, 400 mH and 400 A, respectively. All target performances of the HTS DC reactor were achieved. • The HTS DC reactor was conducted through the interconnection operation with a LCC type HVDC system. • Now, the authors are studying the 400 mH, 1500 A class toroid-type HTS DC reactor for the next phase HTS DC reactor. - Abstract: This paper describes design specifications and performance of a toroid-type high-temperature superconducting (HTS) DC reactor. The first phase operation targets of the HTS DC reactor were 400 mH and 400 A. The authors have developed a real HTS DC reactor system during the last three years. The HTS DC reactor was designed using 2G GdBCO HTS wires. The HTS coils of the toroid-type DC reactor magnet were made in the form of a D-shape. The electromagnetic performance of the toroid-type HTS DC reactor magnet was analyzed using the finite element method program. A conduction cooling method was adopted for reactor magnet cooling. The total system has been successfully developed and tested in connection with LCC type HVDC system. Now, the authors are studying a 400 mH, kA class toroid-type HTS DC reactor for the next phase research. The 1500 A class DC reactor system was designed using layered 13 mm GdBCO 2G HTS wire. The expected operating temperature is under 30 K. These fundamental data obtained through both works will usefully be applied to design a real toroid-type HTS DC reactor for grid application.

  14. Hybrid winding concept for toroids

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold

    2013-01-01

    and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...... implementation is simulated using finite element modeling and the DC and AC resistance of the inductors are verified with experimental measurements on prototypes. It is found that commercial available layer thickness of printed circuit boards is a bottleneck for high power applications. Furthermore, the winding...

  15. Review of the ATLAS B0 model coil test program

    CERN Document Server

    Dolgetta, N; Acerbi, E; Berriaud, C; Boxman, H; Broggi, F; Cataneo, F; Daël, A; Delruelle, N; Dudarev, A; Foussat, A; Haug, F; ten Kate, H H J; Mayri, C; Paccalini, A; Pengo, R; Rivoltella, G; Sbrissa, E

    2004-01-01

    The ATLAS B0 model coil has been extensively tested, reproducing the operational conditions of the final ATLAS Barrel Toroid coils. Two test campaigns have taken place on B0, at the CERN facility where the individual BT coils are about to be tested. The first campaign aimed to test the cool-down, warm-up phases and to commission the coil up to its nominal current of 20.5 kA, reproducing Lorentz forces similar to the ones on the BT coil. The second campaign aimed to evaluate the margins above the nominal conditions. The B0 was tested up to 24 kA and specific tests were performed to assess: the coil temperature margin with respect to the design value, the performance of the double pancake internal joints, static and dynamic heat loads, behavior of the coil under quench conditions. The paper reviews the overall test program with emphasis on second campaign results not covered before. 10 Refs.

  16. MANUFACTURING OF MAGNETIC PROBE COILS FOR DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    BOZEK,A.S; STRAIT,E.J

    2003-10-01

    OAK-B135 The magnetic diagnostics program at DIII-D adds to its in-vessel installations of induction-type loops and coils almost every year. The current design of toroidal and poloidal magnetic field coils (45-50 kHz, N {center_dot} A = 0.06 m{sup 2}) has been in existence since 1987. Many coils were installed in DIII-D during that year and are still operating and reliable today. The high reliability of the coils is owing to the use of a continuous length of mineral-insulated cable, eliminating any electrical connections inside the vacuum vessel. The geometry of the probes was designed to achieve a bandwidth of 50 kHz, despite the conducting shell formed by the stainless steel sheath of the mineral-insulated cable. The bandwidth is sensitive to the details of the cable dimensions and winding technique, and care must be taken in the fabrication in order to maintain this specification. With possible future magnetic diagnostics installations IN ITER and other long-pulse machines requiring large numbers of coils and/or multiple layers per coil, the manufacturing scale-up, quality control, and the development of layered coils should all be investigated in addition to the obvious issues such as irradiation effects.

  17. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  18. The B00 model coil in the ATLAS Magnet Test Facility

    CERN Document Server

    Dudarev, A; ten Kate, H H J; Anashkin, O P; Keilin, V E; Lysenko, V V

    2001-01-01

    A 1-m size model coil has been developed to investigate the transport properties of the three aluminum-stabilized superconductors used in the ATLAS magnets. The coil, named B00, is also used for debugging the cryogenic, power and control systems of the ATLAS Magnet Test Facility. The coil comprises two double pancakes made of the barrel toroid and end-cap toroid conductors and a single pancake made of the central solenoid conductor. The pancakes are placed inside an aluminum coil casing. The coil construction and cooling conditions are quite similar to the final design of the ATLAS magnets. The B00 coil is well equipped with various sensors to measure thermal and electrodynamic properties of the conductor inside the coils. Special attention has been paid to the study of the current diffusion process and the normal zone propagation in the ATLAS conductors and windings. Special pick-up coils have been made to measure the diffusion at different currents and magnetic field values. (6 refs).

  19. Electrostatics of a Family of Conducting Toroids

    Science.gov (United States)

    Lekner, John

    2009-01-01

    An exact solution is found for the electrostatic potential of a family of conducting charged toroids. The toroids are characterized by two lengths "a" and "b", with "a" greater than or equal to "2b". They are closed, with no hole in the "doughnut". The results are obtained by considering the potential of two equal charges, displaced from the…

  20. Toroidal effects on drift wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    LeBrun, M.J.; Tajima, T.; Gray, M.G.; Furnish, G.; Horton, W.

    1992-09-23

    The universal drift instability and other drift instabilities driven by density and temperature gradients in a toroidal system are investigated in both linear and nonlinear regimes via particle simulation. Runs in toroidal and cylindrical geometry show dramatic differences in plasma behavior, primarily due to the toroidicity-induced coupling of rational surfaces through the poloidal mode number m. In the toroidal system studied, the eigenmodes are seen to possess (i) an elongated, nearly global radial extent (ii) a higher growth rate than in the corresponding cylindrical system, (iii) an eigenfrequency nearly constant with radius, (iv) a global temperature relaxation and enhancement of thermal heat conduction. Most importantly, the measured Xi shows an increase with radius and an absolute value on the order of that observed in experiment. On the basis of our observations, we argue that the increase in Xi with radius observed in experiment is caused by the global nature of heat convection in the presence of toroidicity-induced mode coupling.

  1. Development of Toroidal Core Transformers

    Energy Technology Data Exchange (ETDEWEB)

    de Leon, Francisco [New York Univ. (NYU), Brooklyn, NY (United States). Dept. of Electrical and Computer Engineering

    2014-08-01

    The original objective of this project was to design, build and test a few prototypes of single-phase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014. The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  2. Development of Toroidal Core Transformers

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Francisco

    2014-05-31

    The original objective of this project was to design, build and test a few prototypes of singlephase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014.The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  3. Equilibrium modeling of the TFCX poloidal field coil system

    Energy Technology Data Exchange (ETDEWEB)

    Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.

    1984-04-01

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed.

  4. Proto-CIRCUS tilted-coil tokamak–torsatron hybrid: Design and construction

    Energy Technology Data Exchange (ETDEWEB)

    Clark, A.W.; Doumet, M.; Hammond, K.C. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Kornbluth, Y. [Yeshiva University, New York, NY 10033 (United States); Spong, D.A. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Sweeney, R. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Volpe, F.A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States)

    2014-11-15

    Highlights: • A tokamak-like device with tilted toroidal field (TF) coils needs less plasma current than a conventional tokamak. • Rotational transform is partly generated by external coils. Device can be considered a tokamak–torsatron hybrid. • We designed and constructed the first device of this type. • Tilted TF coils are interlinked to each other, which helps to reduce aspect ratio of plasma. • This is a six-coil generalization of CNT stellarator, also at Columbia University, which features two interlinked coils. - Abstract: We present the field-line modeling, design, and construction of a prototype circular-coil tokamak–torsatron hybrid called Proto-CIRCUS. The device has a major radius R = 16 cm and minor radius a < 5 cm. The six “toroidal field” coils are planar as in a tokamak, but they are tilted. This, combined with induced or driven plasma current, is expected to generate rotational transform, as seen in field-line tracing and equilibrium calculations. The device is expected to operate at lower plasma current than a tokamak of comparable size and magnetic field, which might have interesting implications for disruptions and steady-state operation. Additionally, the toroidal magnetic ripple is less pronounced than in an equivalent tokamak in which the coils are not tilted. The tilted coils are interlocked, resulting in a relatively low aspect ratio, and can be moved, both radially and in tilt angle, between discharges. This capability will be exploited for detailed comparisons between calculations and field-line mapping measurements. Such comparisons will reveal whether this relatively simple concept can generate the expected rotational transform.

  5. 3D toroidal physics: testing the boundaries of symmetry breaking

    Science.gov (United States)

    Spong, Don

    2014-10-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE

  6. The normal zone propagation in ATLAS B00 model coil

    CERN Document Server

    Boxman, E W; ten Kate, H H J

    2002-01-01

    The B00 model coil has been successfully tested in the ATLAS Magnet Test Facility at CERN. The coil consists of two double pancakes wound with aluminum stabilized cables of the barrel- and end-cap toroids conductors for the ATLAS detector. The magnet current is applied up to 24 kA and quenches are induced by firing point heaters. The normal zone velocity is measured over a wide range of currents by using pickup coils, voltage taps and superconducting quench detectors. The signals coming from various sensors are presented and analyzed. The results extracted from the various detection methods are in good agreement. It is found that the characteristic velocities vary from 5 to 20 m/s at 15 and 24 kA respectively. In addition, the minimum quench energies at different applied magnet currents are presented. (6 refs).

  7. Liquid nitrogen tests of a Torus coil for the Jefferson Lab 12GeV accelerator upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Fair, Ruben J. [JLAB; Ghoshal, Probir K. [JLAB; Bruhwel, Krister B. [JLAB; Kashy, David H. [JLAB; Machie, Danny [JLAB; Bachimanchi, Ramakrishna [JLAB; Taylor, William; Fischer, John W. [JLAB; Legg, Robert A. [JLAB; Powers, Jacob R. [JLAB

    2015-06-01

    A magnet system consisting of six superconducting trapezoidal racetrack-type coils is being built for the Jefferson Lab 12-GeV accelerator upgrade project. The magnet coils are wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. Each superconducting toroidal coil is force cooled by liquid helium, which circulates in a tube that is in good thermal contact with the inside of the coil. Thin copper sheets are soldered to the helium cooling tube and enclose the superconducting coil, providing cooling to the rest of the coil pack. As part of a rigorous risk mitigation exercise, each of the six coils is cooled with liquid nitrogen (LN2) to 80 K to validate predicted thermal stresses, verify the robustness and integrity of electrical insulation, and evaluate the efficacy of the employed conduction cooling method. This paper describes the test setup, the tests performed, and the findings.

  8. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    Science.gov (United States)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-10-01

    A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  9. Toroidal bubbles with circulation in ideal hydrodynamics: A variational approach

    DEFF Research Database (Denmark)

    Ruban, V.P.; Juul Rasmussen, J.

    2003-01-01

    Incompressible, inviscid, irrotational, unsteady flows with circulation Gamma around a distorted toroidal bubble are considered. A general variational principle that determines the evolution of the bubble shape is formulated. For a two-dimensional (2D) cavity with a constant area A, exact...... pseudodifferential equations of motion are derived, based on variables that determine a conformal mapping of the unit circle exterior into the region occupied by the fluid. A closed expression for the Hamiltonian of the 2D system in terms of canonical variables is obtained. Stability of a stationary drifting 2D...... hollow vortex is demonstrated, when the gravity is small, gA(3/2)/Gamma(2)flows a simplified Lagrangian is suggested, inasmuch as the bubble shape is well described by the center line R(xi,t) and by an approximately circular cross section...

  10. Coil system for plasmoid thruster

    Science.gov (United States)

    Eskridge, Richard H. (Inventor); Lee, Michael H. (Inventor); Martin, Adam K. (Inventor); Fimognari, Peter J. (Inventor)

    2010-01-01

    A coil system for a plasmoid thruster includes a bias coil, a drive coil and field coils. The bias and drive coils are interleaved with one another as they are helically wound about a conical region. A first field coil defines a first passage at one end of the conical region, and is connected in series with the bias coil. A second field coil defines a second passage at an opposing end of the conical region, and is connected in series with the bias coil.

  11. The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet.

    CERN Multimedia

    2006-01-01

    A 3-D event display of a cosmic muon event, showing the path of a muon travelling through three layers of the barrel muon spectrometer. Three of the eight coils of the barrel toroid magnet can be seen in the top half of the drawing.

  12. Thermal distortion test facility

    Science.gov (United States)

    Stapp, James L.

    1995-02-01

    The thermal distortion test facility (TDTF) at Phillips Laboratory provides precise measurements of the distortion of mirrors that occurs when their surfaces are heated. The TDTF has been used for several years to evaluate mirrors being developed for high-power lasers. The facility has recently undergone some significant upgrades to improve the accuracy with which mirrors can be heated and the resulting distortion measured. The facility and its associated instrumentation are discussed.

  13. Conceptual Design of a New Large Superconducting Toroid for IAXO, the New International AXion Observatory

    CERN Document Server

    Shilon, I; Silva, H; Kate, H H J ten

    2013-01-01

    The International AXion Observatory (IAXO) will incorporate a new generation detector for axions, a hypothetical particle, which was postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity to the coupling between axions and photons of one order of magnitude beyond the limits of the current state-of-the-art detector, represented by the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into x-ray photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large superconducting toroidal magnet is currently being designed at CERN to provide the required magnetic field. The new toroid will be built up from eight, one meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in diameter and 22 m in length. It is designed to realize a peak magnetic field of 5.4 T with a ...

  14. Sacral Theater, a code to simulate the propagation of the superconducting magnet LHC atlas barrel toroid transition; Sacral theater, un code pour simuler la propagation de la transition de l'aimant supraconducteur LHC atlas barrel toroid

    Energy Technology Data Exchange (ETDEWEB)

    Gastineau, B

    2000-06-01

    Sacral Theater has been developed for the toroid magnet Atlas of the CERN LHC project. This three dimensional calculations code calculates the propagation of the transition of a superconducting coil in 25 m long hippodrome. Procedures to study low currents have been included. This work is a part of the magnet safety system because the coils protection is made by warmers activating the quench propagation in case of default detection. This allows the complete dissipation of storage energy that can reach 1080 MJ on Atlas. (N.C.)

  15. Liquid rope coiling

    NARCIS (Netherlands)

    N.M. Ribe; M. Habibi; D. Bonn

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes (visco

  16. Tokamak with in situ magnetohydrodynamic generation of toroidal magnetic field

    Science.gov (United States)

    Schaffer, Michael J.

    1986-01-01

    A tokamak apparatus includes an electrically conductive metal pressure vessel for defining a chamber and confining liquid therein. A liner disposed within said chamber defines a toroidal space within the liner and confines gas therein. The metal vessel provides an electrically conductive path linking the toroidal space. Liquid metal is forced outwardly through the chamber outside of the toroidal space to generate electric current in the conductive path and thereby generate a toroidal magnetic field within the toroidal space. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  17. Toroidal horizons in binary black hole mergers

    Science.gov (United States)

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-09-01

    We find the first binary black hole event horizon with a toroidal topology. It has been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology. However, such a phase has never been seen in numerical simulations. Instead, in all previous simulations, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We find a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon, thus reconciling the numerical work with theoretical expectations. The demonstration requires extremely high numerical precision, which is made possible by a new event horizon code described in a companion paper. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  18. Toroidal Horizons in Binary Black Hole Mergers

    CERN Document Server

    Bohn, Andy; Teukolsky, Saul A

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  19. Optimal Bitter Coil Solenoid

    CERN Document Server

    Kobelev, V

    2016-01-01

    Bitter coil is an electromagnet used for the generation of exceptionally strong magnetic fields. The upper bound of magnet flux density is restricted by several factors. One principal restriction is the high stresses due to Lorentz forces in the coil. The Lorentz forces generate the distributed body force, which acts as the pressure of magnetic field. The common radial thickness profile of the Bitter coil is constant. In this paper the possibility of optimization by means of non-constant radial thickness profile of the Bitter coil is studied. The close form expression for optimal thickness profile is obtained. Both designs are compared and the considerable improvement of magnetic flux density is demonstrated. Moreover, the optimal design improves the shape of cooling channels. Namely, the highest cross-section of cooling channel is at the most thermally loaded inner surface of the coil.

  20. Celebrating the Barrel Toroid commissioning

    CERN Multimedia

    Peter Jenni

    ATLAS invited Funding Agency representatives and Laboratory Heads directly related to the funding and construction of the Barrel Toroid for a small ceremony on 13th December 2006 at Point 1, in order to mark the successful first full excitation of the BT (see last eNews). On that date, which was during the December CERN Council week, several of the Funding Agency Heads or their representatives could be present, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. Speeches were delivered by the ATLAS spokesperson Peter Jenni thanking the Funding Partners in the name of the Collaboration, by Magnet Project Leader Herman ten Kate tracing the BT construction history, and by the CERN Director-General Robert Aymar congratulating all those who have contributed to the successful project. Herman ten Kate addressing the delegates. The text of the introductory address by Peter Jenni is reproduced here. "It is a great pleasure for me to welcome you all here...

  1. Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER

    Science.gov (United States)

    Liu, Yueqiang; Äkäslompolo, Simppa; Cavinato, Mario; Koechl, Florian; Kurki-Suonio, Taina; Li, Li; Parail, Vassili; Saibene, Gabriella; Särkimäki, Konsta; Sipilä, Seppo; Varje, Jari

    2016-06-01

    Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n  =  1-6 field components are computed and compared. The plasma response is found to be weak for the high-n (n  >  4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n  =  1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n  =  1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.

  2. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ met

  3. Toroidal eigenmodes in all-dielectric metamolecules

    Science.gov (United States)

    Tasolamprou, Anna C.; Tsilipakos, Odysseas; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.

    2016-11-01

    We present a thorough investigation of the electromagnetic resonant modes supported by systems of polaritonic rods placed at the vertices of canonical polygons. The study is conducted with rigorous finite-element eigenvalue simulations. To provide physical insight, the simulations are complemented with coupled mode theory (the analog of LCAO in molecular and solid state physics) and a lumped wire model capturing the coupling-caused reorganizations of the currents in each rod. The systems of rods, which form all-dielectric cyclic metamolecules, are found to support the unconventional toroidal dipole mode, consisting of the magnetic dipole mode in each rod. Besides the toroidal modes, the spectrally adjacent collective modes are identified. The evolution of all resonant frequencies with rod separation is examined. They are found to oscillate about the single-rod magnetic dipole resonance, a feature attributed to the leaky nature of the constituent modes. Importantly, we observe that ensembles of an odd number of rods produce larger frequency separation between the toroidal mode and its neighbor than the ones with an even number of rods. This increased spectral isolation, along with the low quality factor exhibited by the toroidal mode, favors the coupling of the commonly silent toroidal dipole to the outside world, rendering the proposed structure a prime candidate for controlling the observation of toroidal excitations and their interaction with the usually present electric dipole.

  4. Low-n shear Alfven spectra in axisymmetric toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Chance, M.S.

    1985-11-01

    In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.

  5. Design and manufacturing status of trim coils for the Wendelstein 7-X stellarator experiment

    Energy Technology Data Exchange (ETDEWEB)

    Riße, K., E-mail: konrad.risse@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Rummel, Th.; Freundt, S.; Dudek, A.; Renard, S.; Bykov, V.; Köppen, M. [Max-Planck-Institut für Plasmaphysik, Greifswald (Germany); Langish, S.; Neilson, G.H.; Brown, Th.; Chrzanowski, J.; Mardenfeld, M.; Malinowski, F.; Khodak, A.; Zhao, X. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Eksaa, G. [Everson Tesla Inc., Nazareth, PA (United States)

    2013-10-15

    Highlights: ► The trim coil system will fine tune the main magnetic field during plasma operation by reducing the magnetic field errors. ► The coil design and operational parameters are fixed, the manufacturing is running. ► The coils are equipped with temperature sensors and a voltage tap system to monitor the coil temperature. ► The max. operational deflection is in the order of 4.5 mm; the max. shearing stress across bond planes is of order 16 MPa. ► Special clamps equipped with elastomeric pads allow fixing the coils on the outer cryostat wall. -- Abstract: The stellarator fusion experiment Wendelstein 7-X (W7-X) is currently under construction at the Max-Planck-Institut für Plasmaphysik in Greifswald, Germany. The main magnetic field will be provided by a superconducting magnet system which generates a fivefold toroidal periodic magnetic field. However, unavoidable tolerances can result in small deviations of the magnetic field which disturb the toroidal periodicity. In order to have a tool to influence these field errors five additional normal conducting trim coils were designed to allow fine tuning of the main magnetic field during plasma operation. In the frame of an international cooperation the trim coils will be contributed by the US partners. Princeton Plasma Physics Laboratory has accomplished several tasks to develop the final design ready for manufacturing e.g. detailed manufacturing design for the winding and for the coil connection area. The design work was accompanied by a detailed analysis of resulting forces and moments to prove the design. The manufacturing of the coils is running at Everson Tesla Inc; the first two coils were received at IPP.

  6. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  7. Conceptual studies of toroidal field magnets for the tokamak experimental power reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buncher, B.R.; Chi, J.W.H.; Fernandez, R.

    1976-10-26

    This report documents the principal results of a Conceptual Design Study for the Superconducting Toroidal Field System for a Tokamak Experimental Power Reactor. Two concepts are described for peak operating fields at the windings of 8 tesla, and 12 tesla, respectively. The design and manufacturing considerations are treated in sufficient detail that cost and schedule estimates could be developed. Major uncertainties in the design are identified and their potential impact discussed, along with recommendations for the necessary research and development programs to minimize these uncertainties. The minimum dimensions of a sub-size test coil for experimental qualification of the full size design are developed and a test program is recommended.

  8. Design and Performance of a Novel Pancake Rogowski Coil for Measuring Pulse Currents%Design and Performance of a Novel Pancake Rogowski Coil for Measuring Pulse Currents

    Institute of Scientific and Technical Information of China (English)

    王春杰; 汲胜昌; 聂济宇; 欧小波; 韩钟健; 张乔根

    2011-01-01

    A novel pancake Rogowski coil without magnetic core is introduced in this paper. Owing to its special pancake winding structure, the coil is of low self-resistance and high self-inductance, and thus has excellent low frequency characteristic in the self-integral mode. Moreover, because of its unique installation method, the coil has a flexible sensitivity and can be applied under situations where toroidal air-core Rogowski coils or printed aircuit board (PCB) coils are not available. The parameters and performance of the pancake Rogowski coil are presented, and the principle of shielding is given. Measurements of step pulse current and oscillating pulse current by the coil are studied experimentally to illustrate its good linearity, reliable and flexible sensitivity and excellent frequency characteristic, especially its advantage in low frequency characteristic. The pancake Rogowski coil can be designed to assume round, square or rectangle shape, and has thus broad prospects in its application to the current measurement in such areas as plasma physics and pulsed power technology.

  9. Analysis of an HTS coil for large scale superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Young; Lee, Se Yeon; Choi, Kyeong Dal; Park, Sang Ho; Hong, Gye Won; Kim, Sung Soo; Kim, Woo Seok [Korea Polytechnic University, Siheung (Korea, Republic of); Lee, Ji Kwang [Woosuk University, Wanju (Korea, Republic of)

    2015-06-15

    It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

  10. Optical force on toroidal nanostructures: toroidal dipole versus renormalized electric dipole

    CERN Document Server

    Zhang, Xu-Lin; Lin, Zhifang; Sun, Hong-Bo; Chan, C T

    2015-01-01

    We study the optical forces acting on toroidal nanostructures. A great enhancement of optical force is unambiguously identified as originating from the toroidal dipole resonance based on the source-representation, where the distribution of the induced charges and currents is characterized by the three families of electric, magnetic, and toroidal multipoles. On the other hand, the resonant optical force can also be completely attributed to an electric dipole resonance in the alternative field-representation, where the electromagnetic fields in the source-free region are expressed by two sets of electric and magnetic multipole fields based on symmetry. The confusion is resolved by conceptually introducing the irreducible electric dipole, toroidal dipole, and renormalized electric dipole. We demonstrate that the optical force is a powerful tool to identify toroidal response even when its scattering intensity is dwarfed by the conventional electric and magnetic multipoles.

  11. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  12. LHCb magnet coils arrive

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Each of the two coils for the LHCb magnet comprises 15 individual monolayer 'pancakes' of identical trapezoidal racetrack shape, and is bent at 45 degrees on the two transverse sides. Each pancake consists of eight turns of conductor, wound from a single length (approx. 290 m) of extruded aluminium. The coils have arrived at CERN; one of them is seen here being unloaded above the LHCb experimental cavern.

  13. Stabilization of the vertical instability by non-axisymmetric coils

    Science.gov (United States)

    Turnbull, A. D.; Reiman, A. H.; Lao, L. L.; Cooper, W. A.; Ferraro, N. M.; Buttery, R. J.

    2016-08-01

    In a published Physical Review Letter (Reiman 2007 Phys. Rev. Lett. 99 135007), it was shown that axisymmetric (or vertical) stability can be improved by placing a set of parallelogram coils above and below the plasma oriented at an angle to the constant toroidal planes. The physics of this stabilization can be understood as providing an effective additional positive stability index. The original work was based on a simplified model of a straight tokamak and is not straightforwardly applicable to a finite aspect ratio, strongly shaped plasma such as in DIII-D. Numerical calculations were performed in a real DIII-D -like configuration to provide a proof of principal that 3-D fields can, in fact raise the elongation limits as predicted. A four field period trapezioid-shaped coil set was developed in toroidal geometry and 3D equilibria were computed using trapezium coil currents of 10 kA , 100 kA , and 500 kA . The ideal magnetohydrodynamics growth rates were computed as a function of the conformal wall position for the n = 0 symmetry-preserving family. The results show an insignificant relative improvement in the stabilizing wall location for the two lower coil current cases, of the order of 10-3 and less. In contrast, the marginal wall position is increased by 7% as the coil current is increased to 500 kA , confirming the main prediction from the original study in a real geometry case. In DIII-D the shift in marginal wall position of 7% would correspond to being able to move the existing wall outward by 5 to 10 cm. While the predicted effect on the axisymmetric stability is real, it appears to require higher coil currents than could be provided in an upgrade to existing facilities. Additional optimization over the pitch of the coils, the number of field periods and the coil positions, as well as plasma parameters, such as the internal inductivity {{\\ell}\\text{i}} , β , and {{q}95} would mitigate this but seem unlikely to change the conclusion.

  14. Coiling of yield stress fluids

    NARCIS (Netherlands)

    Y. Rahmani; M. Habibi; A. Javadi; D. Bonn

    2011-01-01

    We present an experimental investigation of the coiling of a filament of a yield stress fluid falling on a solid surface. We use two kinds of yield stress fluids, shaving foam and hair gel, and show that the coiling of the foam is similar to the coiling of an elastic rope. Two regimes of coiling (el

  15. The design study of the JT-60SU device. No. 3. The superconductor-coils of JT-60SU

    Energy Technology Data Exchange (ETDEWEB)

    Ushigusa, Kenkichi; Mori, Katsuharu; Nakagawa, Syouji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    The superconducting coil systems and the cryogenic system for the JT-60 Super Upgrade (JT-60SU) has been designed. Both Nb{sub 3}Al and NbTi as a superconducting wire material are employed in the toroidal coils (D-shaped 18 coils) to realize a high field magnet with a low cost. Significant reduction of the coil weight (150 tons/coil) without losing the coil rigidity has been achieved by connecting two toroidal coils with shear panels. Validity of this design is confirmed by the detailed structural analysis and thermohydraulic analysis. The poloidal coil system consists of 4 central solenoid coils with (NbTi){sub 3}Sn and 6 outer equilibrium field coils with NbTi. This system has an enough capability to supply the flux of 170Vs to produce a 10MA discharge with 200s of flat-top and to make various plasma configurations. The construction procedure of the poloidal coil system is also established under the constraint of the JT-60 site. Two sets of race-track shaped superconducting coils mounted on the top of the machine is designed to compensate the error field inside the vessel by supplying helical (m=2/n=1) magnetic field. By using cryogenic system with a 36kW of cooling capacity, the total cold weight of around 4000tons can be cooled down to 4.5K within one month, and steady heat load of 6.5kW and transient heat load of 9.0MJ can be removed within 30 minutes of discharge repetition rate. (author)

  16. Universal Sampling Rate Distortion

    OpenAIRE

    Boda, Vinay Praneeth; Narayan, Prakash

    2017-01-01

    We examine the coordinated and universal rate-efficient sampling of a subset of correlated discrete memoryless sources followed by lossy compression of the sampled sources. The goal is to reconstruct a predesignated subset of sources within a specified level of distortion. The combined sampling mechanism and rate distortion code are universal in that they are devised to perform robustly without exact knowledge of the underlying joint probability distribution of the sources. In Bayesian as wel...

  17. Spherical Redshift Distortions

    OpenAIRE

    1995-01-01

    Peculiar velocities induce apparent line of sight displacements of galaxies in redshift space, distorting the pattern of clustering in the radial versus transverse directions. On large scales, the amplitude of the distortion yields a measure of the dimensionless linear growth rate $\\beta \\approx \\Omega^{0.6}/b$, where $\\Omega$ is the cosmological density and $b$ the linear bias factor. To make the maximum statistical use of the data in a wide angle redshift survey, and for the greatest accura...

  18. Ferroic nature of magnetic toroidal order.

    Science.gov (United States)

    Zimmermann, Anne S; Meier, Dennis; Fiebig, Manfred

    2014-09-05

    Electric dipoles and ferroelectricity violate spatial inversion symmetry, and magnetic dipoles and ferromagnetism break time-inversion symmetry. Breaking both symmetries favours magnetoelectric charge-spin coupling effects of enormous interest, such as multiferroics, skyrmions, polar superconductors, topological insulators or dynamic phenomena such as electromagnons. Extending the rationale, a novel type of ferroic order violating space- and time-inversion symmetry with a single order parameter should exist. This existence is fundamental and the inherent magnetoelectric coupling is technologically interesting. A uniform alignment of magnetic vortices, called ferrotoroidicity, was proposed to represent this state. Here we demonstrate that the magnetic vortex pattern identified in LiCoPO4 exhibits the indispensable hallmark of such a ferroic state, namely hysteretic poling of ferrotoroidic domains in the conjugate toroidal field, along with a distinction of toroidal from non-toroidal poling effects. This consolidates ferrotoroidicity as fourth form of ferroic order.

  19. Hall MHD Equilibrium of Accelerated Compact Toroids

    Science.gov (United States)

    Howard, S. J.; Hwang, D. Q.; Horton, R. D.; Evans, R. W.; Brockington, S. J.

    2007-11-01

    We examine the structure and dynamics of the compact toroid's magnetic field. The compact toroid is dramatically accelerated by a large rail-gun Lorentz force density equal to j xB. We use magnetic data from the Compact Toroid Injection Experiment to answer the question of exactly where in the system j xB has nonzero values, and to what extent we can apply the standard model of force-free equilibrium. In particular we present a method of analysis of the magnetic field probe signals that allows direct comparison to the predictions of the Woltjer-Taylor force-free model and Turner's generalization of magnetic relaxation in the presence of a non-zero Hall term and fluid vorticity.

  20. Packing of charged chains on toroidal geometries

    Science.gov (United States)

    Yao, Zhenwei; de la Cruz, Monica Olvera

    2013-01-01

    We study a strongly adsorbed flexible polyelectrolyte chain on tori. In this generalized Thomson problem, the patterns of the adsorbed chain are analyzed in the space of the toroidal coordinates and in terms of the orientation of each chain segment. Various patterns are found, including double spirals, disclination-like structures, Janus tori, and uniform wrappings, arising from the long-range electrostatic interaction and the toroidal geometry. Their broken mirror symmetry is quantitatively characterized by introducing an order parameter, an integral of the torsion. The uniform packing, which breaks the mirror symmetry the least, has the lowest value of the order parameter. In addition, it is found that the electrostatic energy of confined chains on tori conforms to a power law regardless of the screening effect in some typical cases studied. Furthermore, we study random walks on tori that generate chain configurations in the large screening limit or at large thermal fluctuation; some features associated with the toroidal geometry are discussed.

  1. Toroidal cores of Mn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}/PAA nanocomposites with potential applications in antennas

    Energy Technology Data Exchange (ETDEWEB)

    Alcalá, Olgi [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas, 1020-A (Venezuela, Bolivarian Republic of); Briceño, Sarah [Laboratorio de Materiales, Centro de Ingenieria de Materiales y Nanotecnología, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas, 1020-A (Venezuela, Bolivarian Republic of); Brämer-Escamilla, Werner [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas, 1020-A (Venezuela, Bolivarian Republic of); Silva, Pedro, E-mail: pejosi@gmail.com [Laboratorio de Física de la Materia Condensada, Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas, 1020-A (Venezuela, Bolivarian Republic of)

    2017-05-01

    In this work, we study the electrical response of toroidal coils with cores of mixed ferrites magnetic nanoparticles (MNPs) embedded in a polyacrylamide matrix (Mn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}/PAA, 0 ≤ x ≤ 1). The MNPs were synthesized by thermal decomposition of molecular precursors and Mn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}/PAA toroidal cores were constructed by using the method of copolymerization of MNPs with acrylamide and bis-acrylamide. X-Ray Diffraction (XRD) patterns of MNPs correspond to the cubic spinel phase. The MNPs average size obtained by using Transmission Electron Microscopy (TEM) ranges from 6 to 12 nm. In order to compare our results we measure the characteristics of a commercial toroidal coil and we found that the impedance curves show a resonance peak for each configuration (commercial and Laboratory-made coils) around 75 MHz; the signal intensity of the Laboratory-made coil increases by one order of magnitude with respect to the commercial coil. We found that both, magnetic and electrical measurements, are related to the manganese concentration. The advantage of the designed Mn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}/PAA toroidal coils system lies in the fact that versatile combinations of Mn{sup 2+} and Co{sup 2+} components can bring facile tuning of the electrical and magnetic properties to optimize the impedance of the coils. - Highlights: • We prepare Mn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} nanoparticles (MNPs) using a thermal decomposition method. • Mn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}/PAA nanocomposite were prepared embedding the MNPs in a Polyacrylamide matrix. • Toroidal coils with cores of the Mn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}/PAA nanocomposite were prepared. • We Compare Impedance measurements in our cores with that of a commercial core T50. • The intensity peak around 75 MHz was one order of magnitude greater in our cores.

  2. Some properties of toroidal isodynamic magnetostatic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Aly, J.-J. [AIM, Unite Mixte de Recherche CEA, CNRS, Universite Paris VII, UMR no 7158, Centre d' Etudes de Saclay, F-91191 Gif sur Yvette Cedex (France)

    2011-09-15

    We establish some general properties of a 3D isodynamic magnetostatic equilibrium admitting a family of nested toroidal flux surfaces. In particular, we use the virial theorem to prove a simple relation between the total pressure (magnetic + thermal) and the magnetic pressure on each flux surface, and we derive some useful consequences of the latter. We also show the constancy on each rational surface of two integrals along magnetic lines. As a simple application of our results, we show the nonexistence of an equilibrium with vanishing toroidal current, and of an equilibrium with closed lines.

  3. Toroidal Precession as a Geometric Phase

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  4. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments

    OpenAIRE

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major...

  5. Coiled coils and SAH domains in cytoskeletal molecular motors.

    Science.gov (United States)

    Peckham, Michelle

    2011-10-01

    Cytoskeletal motors include myosins, kinesins and dyneins. Myosins move along tracks of actin filaments, whereas kinesins and dyneins move along microtubules. Many of these motors are involved in trafficking cargo in cells. However, myosins are mostly monomeric, whereas kinesins are mostly dimeric, owing to the presence of a coiled coil. Some myosins (myosins 6, 7 and 10) contain an SAH (single α-helical) domain, which was originally thought to be a coiled coil. These myosins are now known to be monomers, not dimers. The differences between SAH domains and coiled coils are described and the potential roles of SAH domains in molecular motors are discussed.

  6. Quench evolution and hot spot temperature in the ATLAS B0 model coil

    CERN Document Server

    Dudarev, A; Boxman, H; Broggi, F; Dolgetta, N; Juster, F P; Tetteroo, M; ten Kate, H H J

    2004-01-01

    The 9-m long superconducting model coil B0 was built to verify design parameters and exercise the construction of the Barrel Toroid magnet of ATLAS Detector. The model coil has been successfully tested at CERN. An intensive test program to study quench propagation through the coil windings as well as the temperature distribution has been carried out. The coil is well equipped with pickup coils, voltage taps, superconducting quench detectors and temperature sensors. The current is applied up to 24 kA and about forty quenches have been induced by firing internal heaters. Characteristic numbers at full current of 24 kA are a normal zone propagation of 15 m/s in the conductor leading to a turn-to-turn propagation of 0.1 m/s, the entire coil in normal state within 5.5 s and a safe peak temperature in the windings of 85 K. The paper summarizes the quench performance of the B0 coil. Based on this experience the full-size coils are now under construction and first test results are awaited by early 2004. 7 Refs.

  7. New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory

    CERN Document Server

    Shilon, I; Silva, H; Wagner, U; Kate, H H J ten

    2013-01-01

    Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will incorporate the most promising solar axions detector to date, which is designed to enhance the sensitivity to the axion-photon coupling by one order of magnitude beyond the limits of the current state-of-the-art detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field distributed over a very large volume to convert solar axions into X-ray photons. Inspired by the successful realization of the ATLAS barrel and end-cap toroids, a very large superconducting toroid is currently designed at CERN to provide the required magnetic field. This toroid will comprise eight, one meter wide and twenty one meter long, racetrack coils. The system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field is 5.4 T with a stored e...

  8. Development of Compact Toroid Injector for C-2 FRCs

    Science.gov (United States)

    Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team

    2014-10-01

    Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.

  9. Control of Compact-Toroid Characteristics by External Copper Shell

    Science.gov (United States)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.

  10. Design of a new toroidal shell and support structure for RFX

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W.; Dal Bello, S. E-mail: dalbello@igi.pd.cnr.it; Marcuzzi, D.; Sonato, P.; Zaccaria, P

    2002-12-01

    The physics results obtained from RFP experiments at high current (0.8-1 MA) indicate the need for a better control of the plasma MHD modes, which grow rapidly and lock to the wall during the pulse. The modifications planned for the RFX machine have been designed to guarantee both a passive and an active control of these modes. The present 65 mm thick aluminium shell will be replaced by a 3 mm thick copper shell which is assembled on the vacuum vessel, closer to the plasma edge. In addition 192 saddle coils will be installed to actively control the main mode spectrum of RFX. As a result of these modifications, a new toroidal support structure will be required, which carries out the mechanical functions of the previous shell and supports the new saddle coils. This paper deals with the design of the thin shell and toroidal structure. The solutions which guarantee the required safety level, from a mechanical and thermal point of view, and the technological details of the electrical insulation systems for the various components are highlighted.

  11. The CERN cryogenic test facility for the ATLAS barrel toroid magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    2000-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m/sup 2/ experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and i...

  12. The CERN Cryogenic Test Facility for the Atlas Barrel Toroid Magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    1999-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m2 experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and its ins...

  13. The common cryogenic test facility for the ATLAS barrel and end-cap toroid magnets

    CERN Document Server

    Delruelle, N; Junker, S; Passardi, Giorgio; Pengo, R; Pirotte, O

    2004-01-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requ...

  14. The Common Cryogenic Test Facility for the Atlas Barrel and End-Cap Toroid Magnet

    CERN Document Server

    Delruelle, N; Junker, S; Passardi, Giorgio; Pengo, R; Pirotte, O

    2004-01-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific re...

  15. Comparative investigation of ELM control based on toroidal modelling of plasma response to RMP fields

    Science.gov (United States)

    Liu, Yueqiang

    2016-10-01

    The type-I edge localized mode (ELM), bursting at low frequency and with large amplitude, can channel a substantial amount of the plasma thermal energy into the surrounding plasma-facing components in tokamak devices operating at the high-confinement mode, potentially causing severe material damages. Learning effective ways of controlling this instability is thus an urgent issue in fusion research, in particular in view of the next generation large devices such as ITER and DEMO. Among other means, externally applied, three-dimensional resonant magnetic perturbation (RMP) fields have been experimentally demonstrated to be successful in mitigating or suppressing the type-I ELM, in multiple existing devices. In this work, we shall report results of a comparative study of ELM control using RMPs. Comparison is made between the modelled plasma response to the 3D external fields and the observed change of the ELM behaviour on multiple devices, including MAST, ASDEX Upgrade, EAST, DIII-D, JET, and KSTAR. We show that toroidal modelling of the plasma response, based on linear and quasi-linear magnetohydrodynamic (MHD) models, provides essential insights that are useful in interpreting and guiding the ELM control experiments. In particular, linear toroidal modelling results, using the MARS-F code, reveal the crucial role of the edge localized peeling-tearing mode response during ELM mitigation/suppression on all these devices. Such response often leads to strong peaking of the plasma surface displacement near the region of weak equilibrium poloidal field (e.g. the X-point), and this provides an alternative practical criterion for ELM control, as opposed to the vacuum field based Chirikov criteria. Quasi-linear modelling using MARS-Q provides quantitative interpretation of the side effects due to the ELM control coils, on the plasma toroidal momentum and particle confinements. The particular role of the momentum and particle fluxes, associated with the neoclassical toroidal

  16. Toroidal Automorphic Forms for Function Fields

    NARCIS (Netherlands)

    Lorscheid, O.

    2008-01-01

    The definition of a toroidal automorphic form is due to Don Zagier, who showed in a paper in 1979 that the vanishing of certain integrals of Eisenstein series over tori in GL(2) is related to the vanishing of the Riemann zeta function at the weight of the Eisenstein series; and thus a relation betwe

  17. Celebration for the ATLAS Barrel Toroid magnet

    CERN Multimedia

    2007-01-01

    Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...

  18. Quantum toroidal algebras and their vertex representations

    CERN Document Server

    Saitô, Y

    1996-01-01

    We construct the vertex representations of the quantum toroidal algebras $U_q({\\frak {sl}}_{n+1,tor})$. In the classical case the vertex representations are not irreducible. However in the quantum case they are irreducible. For n=1, we construct a set of finitely many generators of $U_q({\\frak {sl}}_{2,tor})$.

  19. Tearing Mode Stability with Sheared Toroidal Flows

    Science.gov (United States)

    White, Ryan; Coppi, Bruno

    2016-10-01

    Toroidal plasma flow induced by neutral beam heating has been found to increase the stability of tearing modes in tokamak plasmas. The need to extrapolate current (experimentally-based) knowledge of tearing mode onset to future machines, requiresa better understanding of the essential physics. We consider the physics of flow near the rational surfaces. For realistic flow profiles, the velocity shear near the rational surface can be treated as a perturbation, and is found to amplify the dominant stabilizing effect of magnetic curvature. This effect can be seen using a cylindrical model if large-aspect-ratio corrections to the magnetic curvature are incorporated. On the other hand, the physical effects of toroidal rotation are completely absent in a cylinder, and require a fully-toroidal calculation to study. The toroidal rotation near the rational surface is found to couple to a geometrical parameter which vanishes for up-down symmetric profiles. Physically, the dominant effects of rotation arise from a Coriolis force, leading to flow directional dependence. This work is supported by the US DOE.

  20. Toroidal surfaces compared with spherocylindrical surfaces

    Science.gov (United States)

    Malacara-Doblado, Daniel; Malacara-Hernandez, Daniel; Garcia-Marquez, Jorge L.

    1995-08-01

    Toroidal and sphero-cylindrical optical surfaces are two different kinds of surfaces (Menchaca and Malacara, 1986), but they are almost identical in the vicinity of the optical axis. The separation between these two surfaces increases when the distance to the optical axis increases. In this work the separation between these two surfaces outside of the central region is analytically studied.

  1. Reduced Magnetohydrodynamic Equations in Toroidal Geometry

    Institute of Scientific and Technical Information of China (English)

    REN Shen-Ming; YU Guo-Yang

    2001-01-01

    By applying a new assumption of density, I.e. R2 p = const, the continuity equation is satisfied to the order ofe2`+with e being the inverse aspect ratio. In the case of large aspect ratio, a set of reduced magnetohydrodynamicequations in toroidal geometry are obtained. The new assumption about the density is supported by experimentalobservation to some extent.

  2. Trapped ion mode in toroidally rotating plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Artun, M.; Tang, W.M.; Rewoldt, G.

    1995-04-01

    The influence of radially sheared toroidal flows on the Trapped Ion Mode (TIM) is investigated using a two-dimensional eigenmode code. These radially extended toroidal microinstabilities could significantly influence the interpretation of confinement scaling trends and associated fluctuation properties observed in recent tokamak experiments. In the present analysis, the electrostatic drift kinetic equation is obtained from the general nonlinear gyrokinetic equation in rotating plasmas. In the long perpendicular wavelength limit k{sub {tau}}{rho}{sub bi} {much_lt} 1, where {rho}{sub bi} is the average trapped-ion banana width, the resulting eigenmode equation becomes a coupled system of second order differential equations nmo for the poloidal harmonics. These equations are solved using finite element methods. Numerical results from the analysis of low and medium toroidal mode number instabilities are presented using representative TFTR L-mode input parameters. To illustrate the effects of mode coupling, a case is presented where the poloidal mode coupling is suppressed. The influence of toroidal rotation on a TFTR L-mode shot is also analyzed by including a beam species with considerable larger temperature. A discussion of the numerical results is presented.

  3. TESLA Coil Research

    Science.gov (United States)

    1992-05-01

    Sloan’s work was actually predated by the earlier work of Nikola Tesla . Sloan mistakenly identified " Tesla Coils" as lumped tuned resonators. The...Lefvw WsnJ L REPORT o]i 3. REPRT TYPE AND OATES COVEIRD May 1992 Special/Aug 1992 - May 1992 Z TITLE AND 5U§nUT S. FUNDING NUMIHRS Tesla Coil Research...STATEMENT 1211. ’ISTRIUUTION COOD Approved for public release; dis~ribution is unlimited 13. ABSTRACT (Masrmum 200 worw) High repetition rate Tesla

  4. Zonal flow driven by energetic particle during magneto-hydro-dynamic burst in a toroidal plasma

    Science.gov (United States)

    Ohshima, S.; Fujisawa, A.; Shimizu, A.; Nakano, H.; Iguchi, H.; Yoshimura, Y.; Nagaoka, K.; Minami, T.; Isobe, M.; Nishimura, S.; Suzuki, C.; Akiyama, T.; Takahashi, C.; Takeuchi, M.; Ito, T.; Watari, T.; Kumazawa, R.; Itoh, S.-I.; Itoh, K.; Matsuoka, K.; Okamura, S.

    2007-11-01

    The internal structural measurements of electric field and density using twin heavy ion beam probes have been performed to elucidate the nonlinear evolution of the magneto-hydro-dynamic (MHD) bursty phenomenon driven by the interaction with high-energy particles in a toroidal plasma. The results have given the finest observation of the internal structure of plasma quantities, such as electric field, density and magnetic field distortion, which nonlinearly develop during the MHD phenomenon. In particular, the finding of a new kind of oscillating zonal flow driven by interaction between energetic particles and MHD modes should be emphasized for burning state plasmas.

  5. Meiosis specific coiled-coil proteins in Shizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Okuzaki Daisuke

    2007-05-01

    Full Text Available Abstract Many meiosis-specific proteins in Schizosaccharomyces pombe contain coiled-coil motifs which play essential roles for meiotic progression. For example, the coiled-coil motifs present in Meu13 and Mcp7 are required for their function as a putative recombinase cofactor complex during meiotic recombination. Mcp6/Hrs1 and Mcp5/Num1 control horsetail chromosome movement by astral microtubule organization and anchoring dynein respectively. Dhc1 and Ssm4 are also required for horsetail chromosome movement. It is clear from these examples that the coiled-coil motif in these proteins plays an important role during the progression of cells through meiosis. However, there are still many unanswered questions on how these proteins operate. In this paper, we briefly review recent studies on the meiotic coiled-coil proteins in Sz. pombe.

  6. Dynamical model for the toroidal sporadic meteors

    Energy Technology Data Exchange (ETDEWEB)

    Pokorný, Petr; Vokrouhlický, David [Institute of Astronomy, Charles University, V Holešovičkách 2, CZ-18000 Prague 8 (Czech Republic); Nesvorný, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Campbell-Brown, Margaret; Brown, Peter, E-mail: petr.pokorny@volny.cz, E-mail: vokrouhl@cesnet.cz, E-mail: davidn@boulder.swri.edu, E-mail: margaret.campbell@uwo.ca, E-mail: pbrown@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada)

    2014-07-01

    More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper modeling of the toroidal sources has not to date been accomplished. Here, we develop a steady-state model for the toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period) comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including the most troublesome low-eccentricity component, which is due to a combination of two effects: particles' ability to decouple from Jupiter and circularize by the Poynting-Robertson effect, and large collision probability for orbits similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust in space and check the flux necessary to maintain the cloud in a steady state.

  7. Distortion dependent intersystem crossing

    DEFF Research Database (Denmark)

    Stephansen, Anne Boutrup; Sølling, Theis Ivan

    2017-01-01

    The competition between ultrafast intersystem crossing and internal conversion in benzene, toluene, and p-xylene is investigated with time-resolved photoelectron spectroscopy and quantum chemical calculations. By exciting to S2 out-of-plane symmetry breaking, distortions are activated at early ti...

  8. Physics design of a saddle coil system for TCV

    Energy Technology Data Exchange (ETDEWEB)

    Rossel, J.X., E-mail: jonathan.rossel@epfl.ch; Moret, J.-M.; Martin, Y.; Pochon, G.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The design of a saddle coil system for TCV is presented. Black-Right-Pointing-Pointer The system is designed for ELM control, error field correction and vertical control. Black-Right-Pointing-Pointer The issue of optimal design determination is addressed. Black-Right-Pointing-Pointer Electrical properties in the presence of a conducting wall are quantified. Black-Right-Pointing-Pointer Coil heating due to Joule effect and impact of plasma disruptions are considered. - Abstract: The upgrade project for TCV (Tokamak a Configuration Variable) includes the installation of a set of saddle coils, namely the saddle coil system (SCS), located and powered such as to create a helical magnetic perturbation. Using independent power supplies, the toroidal periodicity of this perturbation is tunable, allowing simultaneously edge localized modes (ELM) control through resonant magnetic perturbation (RMP), error field correction and vertical control. Other experimental applications, like resistive wall mode and rotation control, are also in view. In this article, the adequacy of two SCS designs, an in-vessel one and an ex-vessel one, is assessed with respect to the desired experimental applications. The current requirements and the system performances are also characterized. The conducting vessel wall is accounted for in a model used to determine the coupled response functions of the SCS, the screening of the magnetic perturbation by the wall, the induced voltages and currents during a plasma disruption and the maximal magnetic forces exerted on the SCS. A scaling of the SCS parameters with the number of coil turns is presented and the issue of coil heating and cooling is discussed.

  9. Joule heating of the ITER TF cold structure: Effects of vertical control coil currents and ELMS

    Energy Technology Data Exchange (ETDEWEB)

    Radovinsky, A.; Pillsbury, R.D. Jr.

    1993-11-09

    The toroidal field coil and support structures for ITER are maintained at cryogenic temperatures. The time-varying currents in the poloidal field coil system will induce eddy currents in these structures. The associated Joule dissipation will cause local heating and require heat removal which will show up as a load on the cryogenic system. Studies of Joule heating of the ITER TF cold structure (TFCS) due to the currents in the poloidal field coil system are presented. The two regimes considered in this study are the plasma vertical stability control and the Edge Loss Mode (ELM) events. The 3-D, thin-shell, eddy current program, EDDYCUFF was used to analyze the eddy currents and Joule losses in the cold structure. The current versus time scenarios were defined. Four control coil options were studied. All schemes use coils external to the TF cold structure. Analyses of power depositions during the plasma vertical stability control were performed for each of the four options. For each of these options three different recovery times were assumed. The times were 3, 1, and 1/3 seconds. Sets of four sequential ELMs, as well as isolated ELMs have been studied for various sets of active PF coils. The results showed that the lowest average power dissipation in the TF cold structure occurs when a subset of PF2 and PF7 are active, and all the other PF coils are passive. The general conclusion is that to minimize power dissipation in the TF cold structure it is preferable that only coils PF2 and PF7 are active. The other coils (PF3-PF6) should be passive and driven by a condition of constant flux. It is recommended in particular, that coils PF3 and PF5 be allowed to change currents to conserve flux, since they provide the maximum shielding of the TFCS from the fields caused by the active coils.

  10. Planar, monolithically integrated coil

    NARCIS (Netherlands)

    Roozeboom, F.; Reefman, D.; Klootwijk, J.H.; Tiemeijer, L.F.; Ruigrok, J.

    2013-01-01

    The present invention provides a means to integrate planar coils on silicon, while providing a high inductance. This high inductance is achieved through a special back- and front sided shielding of a material. In many applications, high-value inductors are a necessity. In particular, this holds for

  11. An orientable search coil

    Science.gov (United States)

    Holt, P. J.; Poblocki, M.

    2017-01-01

    We provide a design for a low cost orientable search coil that can be used to investigate the variation of magnetic flux with angle. This experiment is one of the required practical activities in the current A level physics specification for the AQA examination board in the UK. We demonstrate its performance and suggest other suitable investigations that can be undertaken.

  12. Toroidal dipole excitations in metamolecules formed by interacting plasmonic nanorods

    CERN Document Server

    Watson, Derek W; Ruostekoski, Janne; Fedotov, Vassili A; Zheludev, Nikolay I

    2015-01-01

    We show how the elusive toroidal dipole moment appears as a radiative excitation eigenmode in a metamolecule resonator that is formed by pairs of plasmonic nanorods. We analyze one such nanorod configuration - a toroidal metamolecule. We find that the radiative interactions in the toroidal metamolecule can be qualitatively represented by a theoretical model based on an electric point dipole arrangement. Both a finite-size rod model and the point dipole approximation demonstrate how the toroidal dipole moment is subradiant and difficult to excite by incident light. By means of breaking the geometric symmetry of the metamolecule, the toroidal mode can be excited by linearly polarized light and we provide simple optimization protocols for maximizing the toroidal dipole mode excitation. This opens up possibilities for simplified control and driving of metamaterial arrays consisting of toroidal dipole unit-cell resonators.

  13. Tailoring the multipoles in THz toroidal metamaterials

    Science.gov (United States)

    Cong, Longqing; Srivastava, Yogesh Kumar; Singh, Ranjan

    2017-08-01

    The multipoles play a significant role in determining the resonant behavior of subwavelength resonators that form the basis of metamaterial and plasmonic systems. Here, we study the impact of multipoles including toroidal dipole on the resonance intensity and linewidth of the fundamental inductive-capacitance (LC) resonance of a metamaterial array. The dominant multipoles that strongly contribute to the resonances are tailored by spatial rearrangement of the neighboring resonators such that the mutual interactions between the magnetic, electric, and toroidal configurations lead to enormous change in the linewidth as well as the resonance intensity of the LC mode. Manipulation of the multipoles in a metamaterial array provides a general strategy for the optimization of the quality factor of metamaterial resonances, which is fundamental to its applications in broad areas of sensing, lasing and nonlinear optics where stronger field confinement plays a significant role.

  14. Reynolds stress of localized toroidal modes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.Z. [International Center for Theoretical Studies, Trieste (Italy); Mahajan, S.M. [Univ. of Texas, Austin, TX (United States). Institute for Fusion Studies

    1995-02-01

    An investigation of the 2D toroidal eigenmode problem reveals the possibility of a new consistent 2D structure, the dissipative BM-II mode. In contrast to the conventional ballooning mode, the new mode is poloidally localized at {pi}/2 (or -{pi}/2), and possesses significant radial asymmetry. The radial asymmetry, in turn, allows the dissipative BM-II to generate considerably larger Reynolds stress as compared to the standard slab drift type modes. It is also shown that a wide class of localized dissipative toroidal modes are likely to be of the dissipative BM-II nature, suggesting that at the tokamak edge, the fluctuation generated Reynolds stress (a possible source of poloidal flow) can be significant.

  15. Solar concentrator with a toroidal relay module.

    Science.gov (United States)

    Lin, Jhe-Syuan; Liang, Chao-Wen

    2015-10-01

    III-V multijunction solar cells require solar concentrators with a high concentration ratio to reduce per watt cost and to increase solar energy transforming efficiency. This paper discusses a novel solar concentrator design that features a high concentration ratio, high transfer efficiency, thin profile design, and a high solar acceptance angle. The optical design of the concentrator utilizes a toroidal relay module, which includes both the off-axis relay lens and field lens design in a single concentric toroidal lens shape. The optical design concept of the concentrator is discussed and the simulation results are shown. The given exemplary design has an aspect ratio of 0.24, a high averaged optical concentration ratio 1230×, a maximum efficiency of 76.8%, and the solar acceptance angle of ±0.9°.

  16. METHODS TO DEVELOP A TOROIDAL SURFACE

    Directory of Open Access Journals (Sweden)

    DANAILA Ligia

    2017-05-01

    Full Text Available The paper work presents two practical methods to draw the development of a surface unable to be developed applying classical methods of Descriptive Geometry, the toroidal surface, frequently met in technical practice. The described methods are approximate ones; the development is obtained with the help of points. The accuracy of the methods is given by the number of points used when drawing. As for any other approximate method, when practically manufactured the development may need to be adjusted on site.

  17. Physics of collapses in toroidal helical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi

    1998-12-31

    Theoretical model for the collapse events in toroidal helical plasmas with magnetic hill is presented. There exists a turbulent-turbulent transition at a critical pressure gradient, leading to a sudden increase of the anomalous transport. When the magnetic shear is low, the nonlinear excitation of the global mode is possible. This model explains an abrupt growth of the perturbations, i.e., the trigger phenomena. Achievable limit of the plasma beta value is discussed. (author)

  18. Aspects of Tokamak toroidal magnet protection

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.W.; Kazimi, M.S.

    1979-07-01

    Simple but conservative geometric models are used to estimate the potential for damage to a Tokamak reactor inner wall and blanket due to a toroidal magnet field collapse. The only potential hazard found to exist is due to the MHD pressure rise in a lithium blanket. A survey is made of proposed protection methods for superconducting toroidal magnets. It is found that the two general classifications of protection methods are thermal and electrical. Computer programs were developed which allow the toroidal magnet set to be modeled as a set of circular filaments. A simple thermal model of the conductor was used which allows heat transfer to the magnet structure and which includes the effect of temperature dependent properties. To be effective in large magnets an electrical protection system should remove at least 50% of the stored energy in the protection circuit assuming that all of the superconductor in the circuit quenches when the circuit is activated. A protection system design procedure based on this criterion was developed.

  19. Minimax Current Density Coil Design

    CERN Document Server

    Poole, Michael; Lopez, Hector Sanchez; Ng, Michael; Crozier, Stuart; 10.1088/0022-3727/43/9/095001

    2010-01-01

    'Coil design' is an inverse problem in which arrangements of wire are designed to generate a prescribed magnetic field when energized with electric current. The design of gradient and shim coils for magnetic resonance imaging (MRI) are important examples of coil design. The magnetic fields that these coils generate are usually required to be both strong and accurate. Other electromagnetic properties of the coils, such as inductance, may be considered in the design process, which becomes an optimization problem. The maximum current density is additionally optimized in this work and the resultant coils are investigated for performance and practicality. Coils with minimax current density were found to exhibit maximally spread wires and may help disperse localized regions of Joule heating. They also produce the highest possible magnetic field strength per unit current for any given surface and wire size. Three different flavours of boundary element method that employ different basis functions (triangular elements...

  20. Conceptual studies of toroidal field magnets for the tokamak (fusion) experimental power reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1976-11-01

    This report presents the results of ''Conceptual Studies of Toroidal Field Magnets for the Tokamak Experimental Power Reactor'' performed for the Energy Research and Development Administration, Oak Ridge Operations. Two conceptual coil designs are developed. One design approach to produce a specified 8 Tesla maximum field uses a novel NbTi superconductor design cooled by pool-boiling liquid helium. For a highest practicable field design, a unique NbSn/sub 3/ conductor is used with forced-flow, single-phase liquid helium cooling to achieve a 12 Tesla peak field. Fabrication requirements are also developed for these approximately 7 meter horizontal bore by 11 meter vertical bore coils. Cryostat design approaches are analyzed and a hybrid cryostat approach selected. Structural analyses are performed for approaches to support in-plane and out-of-plane loads and a structural approach selected. In addition to the conceptual design studies, cost estimates and schedules are prepared for each of the design approaches, major uncertainties and recommendations for research and development identified, and test coil size for demonstration recommended.

  1. The feasibility of low-mass conductors for toroidal superconducting magnets for SSC (Superconducting Super Collider) detectors

    Energy Technology Data Exchange (ETDEWEB)

    Luton, J.N.

    1990-01-01

    An earlier study by Luton and Bonanos concluded that the design and fabrication of superconducting toroidal bending magnets would require a major effort but would be feasible. This study is an extension to examine the feasibility of low-mass conductors for such use. It included a literature search, consultations, with conductor manufacturers, and design calculations, but no experimental work. An unoptimized sample design that used a residual resistivity ratio for aluminum of 1360 and a current density of 3.5 kA/cm{sup 2} over the uninsulated conductor for a 4.5-T toroid with 1 GJ of stored energy obtained a hot-spot temperature of 120 K with a maximum dump voltage of 3.6 kV and 24% of the initial current inductively transferred into the shorted aluminum structure. The stability margin was 200 mJ/cm{sup 3} of cable space. Limiting the quench pressure to 360 atm to give conservative stresses in the sheath and assuming that the whole flow path quenched immediately resulted in helium taps that could be a kilometer apart if the flow friction factor were the same as that experienced in the Westinghouse (W) Large Coil Task (LCT) coil. This indicates that the 520-m conductor length of each of the 72 individual coil segments of a toroid would be a single flow path. If some practical uncertainties can be favorably resolved by producing and testing sample conductors, the use of a conductor with clad-aluminum stabilizer and extruded aluminum-alloy sheath should be feasible and economical. 9 refs., 3 figs.

  2. Proto-CIRCUS Tilted-Coil Tokamak-Torsatron Hybrid: Design and Construction

    CERN Document Server

    Clark, A W; Hammond, K C; Kornbluth, Y; Spong, D A; Sweeney, R; Volpe, F A

    2014-01-01

    We present the field-line modeling, design and construction of a prototype circular-coil tokamak-torsatron hybrid called Proto-CIRCUS. The device has a major radius R = 16 cm and minor radius a < 5 cm. The six "toroidal field" coils are planar as in a tokamak, but they are tilted. This, combined with induced or driven plasma current, is expected to generate rotational transform, as seen in field-line tracing and equilibrium calculations. The device is expected to operate at lower plasma current than a tokamak of comparable size and magnetic field, which might have interesting implications for disruptions and steady-state operation. Additionally, the toroidal magnetic ripple is less pronounced than in an equivalent tokamak in which the coils are not tilted. The tilted coils are interlocked, resulting in a relatively low aspect ratio, and can be moved, both radially and in tilt angle, between discharges. This capability will be exploited for detailed comparisons between calculations and field-line mapping me...

  3. Efficient magnetic fields for supporting toroidal plasmas

    CERN Document Server

    Landreman, Matt

    2016-01-01

    The magnetic field that supports tokamak and stellarator plasmas must be produced by coils well separated from the plasma. However the larger the separation, the more difficult it is to produce a given magnetic field in the plasma region, so plasma configurations should be chosen that can be supported as efficiently as possible by distant coils. The properties of curl-free magnetic fields allow magnetic field distributions to be ranked in order of their difficulty of production from a distance. Plasma shapes with low curvature and spectral width may be difficult to support, whereas plasma shapes with sharp edges may be efficiently supported by distant coils. Two measures of difficulty, which correctly identify such differences in difficulty, will be examined. These measures, which can be expressed as matrices, relate the externally-produced normal magnetic field on the plasma surface to the either the normal field or current on a distant control surface. A singular value decomposition (SVD) of either matrix y...

  4. Macroscopic electromagnetic response of metamaterials with toroidal resonances

    CERN Document Server

    Savinov, V; Zheludev, N I

    2013-01-01

    Toroidal dipole, first described by Ia. B. Zeldovich [Sov. Phys. JETP 33, 1184 (1957)], is a distinct electromagnetic excitation that differs both from the electric and the magnetic dipoles. It has a number of intriguing properties: static toroidal nuclear dipole is responsible for parity violation in atomic spectra; interactions between static toroidal dipole and oscillating magnetic dipole are claimed to violate Newton's Third Law while non-stationary charge-current configurations involving toroidal multipoles have been predicted to produce vector potential in the absence of electromagnetic fields. Existence of the toroidal response in metamaterials was recently demonstrated and is now a growing field of research. However, no direct analytical link has yet been established between the transmission and reflection of macroscopic electromagnetic media and toroidal dipole excitations. To address this essential gap in electromagnetic theory we have developed an analytical approach linking microscopic and macrosc...

  5. An overview on research developments of toroidal continuously variable transmissions

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    As environmental protection agencies enact new regulations for automotive fuel economy and emission, the toroidal continuously variable transmissions (CVTs) keep on contribute to the advent of system technologies for better fuel consumption of automobiles with internal combustion engines (ICE). Toroidal CVTs use infinitely adjustable drive ratios instead of stepped gears to achieve optimal performance. Toroidal CVTs are one of the earliest patents to the automotive world but their torque capacities and reliability have limitations in the past. New developments and implementations in the control strategies, and several key technologies have led to development of more robust toroidal CVTs, which enables more extensive automotive application of toroidal CTVs. This paper concerns with the current development, upcoming and progress set in the context of the past development and the traditional problems associated with toroidal CVTs.

  6. Transient behaviour of a resistive joint in the ATLAS toroids during the magnet ramp-up and discharge

    CERN Document Server

    Volpini, G

    2000-01-01

    Several resistive joints are foreseen inside the coils of the ATLAS Barrel Toroid. Here we investigate the problems linked to nonstationary effects: during the magnet charge and dump discharge the magnetic field induces eddy-currents inside the joints, increasing the Joule dissipation and possibly exceeding the conductor's critical current. We have developed an electrical model of the joint to predict the current distribution under nonstationary conditions and consequent heat dissipation; this model allowed us to compute the optimum length of these joints in order to minimise the heat dissipation and the eddy-currents. (5 refs).

  7. Toroidal mode number estimation of the edge-localized modes using the KSTAR 3-D electron cyclotron emission imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Yun, G. S., E-mail: gunsu@postech.ac.kr; Lee, J. E.; Kim, M.; Choi, M. J.; Lee, W. [Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Park, H. K. [Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Domier, C. W.; Luhmann, N. C. [University of California at Davis, Davis, California 95616 (United States); Sabbagh, S. A.; Park, Y. S. [Columbia University, New York, New York 10027 (United States); Lee, S. G.; Bak, J. G. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

    2014-06-15

    A new and more accurate technique is presented for determining the toroidal mode number n of edge-localized modes (ELMs) using two independent electron cyclotron emission imaging (ECEI) systems in the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The technique involves the measurement of the poloidal spacing between adjacent ELM filaments, and of the pitch angle α{sub *} of filaments at the plasma outboard midplane. Equilibrium reconstruction verifies that α{sub *} is nearly constant and thus well-defined at the midplane edge. Estimates of n obtained using two ECEI systems agree well with n measured by the conventional technique employing an array of Mirnov coils.

  8. Landau damping of geodesic acoustic mode in toroidally rotating tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Haijun, E-mail: hjren@ustc.edu.cn [CAS Key Laboratory of Geospace Environment, The Collaborative Innovation Center for Advanced Fusion Energy and Plasma Science, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Cao, Jintao [Bejing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-06-15

    Geodesic acoustic mode (GAM) is analyzed by using modified gyro-kinetic (MGK) equation applicable to low-frequency microinstabilities in a rotating axisymmetric plasma. Dispersion relation of GAM in the presence of arbitrary toroidal Mach number is analytically derived. The effects of toroidal rotation on the GAM frequency and damping rate do not depend on the orientation of equilibrium flow. It is shown that the toroidal Mach number M increases the GAM frequency and dramatically decreases the Landau damping rate.

  9. Numerical Simulation of Non-Inductive Startup of the Pegasus Toroidal Experiment

    Science.gov (United States)

    O'Bryan, John B.

    The dynamics and relaxation of magnetic flux ropes produced during non-inductive startup of the Pegasus Toroidal Experiment are simulated with nonlinear magnetohydrodynamic and two-fluid plasma models. A current filament is produced by a single injector and directed along multiple passes by toroidal and vertical vacuum magnetic field components. Adjacent passes of the current filament merge and reconnect, releasing an axisymmetric current ring from the driven channel. Squashing degree analysis indicates the presence of a quasi-separatrix layer (QSL) during ring formation, but the QSL does not solely correspond to magnetic reconnection. Chaotic scattering is also apparent from the distribution of magnetic field-line lengths. The merging of adjacent passes constitutes coherent dynamo action that affects the toroidally-averaged magnetic-field distribution. The MHD dynamo--primarily from the vertical displacement of the current channel--concentrates symmetric poloidal flux and transfers significant energy to the forming flux-rope ring. Accumulation of poloidal flux over many reconnection events contributes to the development of a poloidal magnetic field null near the central column that redirects the driven current filament, such that its path traces a toroidal surface. After cessation of the simulated current drive, temperature and current profiles broaden and closed flux surfaces form rapidly and encompass a large plasma volume. High toroidal-mode number harmonics of the magnetic energy decay preferentially, leaving a tokamak-like plasma suitable for transition to other forms of current drive. Computations with the two-fluid terms in Ohm's Law produce qualitatively similar plasma evolution to the MHD computations. However, for the computations with the two-fluid plasma model, the ion fluid significantly decouples from the electron fluid, weakening the dynamics during magnetic reconnection. This effect is quantified by comparing global and local plasma parameters in

  10. Sub-nanoliter nuclear magnetic resonance coils fabricated with multilayer soft lithography

    Science.gov (United States)

    Lam, Matthew H. C.; Homenuke, Mark A.; Michal, Carl A.; Hansen, Carl L.

    2009-09-01

    We describe the fabrication and characterization of sub-nanoliter volume nuclear magnetic resonance (NMR) transceiver coils that are easily amenable to integration within PDMS-based microfluidics. NMR coils were constructed by the injection of liquid metal into solenoidal cavities created around a microchannel using consecutive replica molding and bonding of PDMS layers. This construction technique permits the integration of NMR coils with solenoidal, toroidal or other three-dimensional geometries within highly integrated microfluidic systems and are one step toward NMR-based chemical screening and analysis on chip. The current proof-of-principle implementation displays limited sensitivity and resolution due to the conductivity and magnetic susceptibilities of the construction materials. However, NMR measurements and finite-element simulations made with the current device geometry indicate that optimization of these materials will allow for the collection of spectra from sub-millimolar concentration samples in less than 1 nL of solution.

  11. Room Temperature Magnetic Determination of the Current Center Line for the ITER TF Coils

    CERN Document Server

    Lerch, Philippe; Buzio, Marco; Negrazus, Marco; Baynham, Elwyn; Sanfilippo, Stephane; Foussat, Arnaud

    2014-01-01

    The ITER tokamak includes 18 superconducting D-shaped toroidal field (IT) coils. Unavoidable shape deformations as well as assembly errors will lead to field errors, which can be modeled with the knowledge of the current center line (CCL). Accurate survey during the entire manufacturing and assembly process, including transfer of survey points, is complex. In order to increase the level of confidence, a room temperature magnetic measurement of the CCL on assembled and closed winding packs is foreseen, prior to insertion into their cold case. In this contribution, we discuss the principle of the CCL determination and present a low frequency ac measurement system under development at PSI, within an ITER framework contract. The largest current allowed to flow in the TF coil at room temperature and the precision requirements for the determination of the CCL loci of the coil are hard boundaries. Eddy currents in the radial plates, the winding pack enclosures, and possibly from iron in the reinforced concrete floor...

  12. Introduction to COIL

    OpenAIRE

    Kane, David

    2008-01-01

    By reciprocal arrangement between WIT and the National College of Ireland, you are now able to access their collection directly - more than 100,000 items. This form of direct consortial borrowing has never been tried before in Ireland. Before you borrow your first book, you will have to set up a COIL account, which is straightforward. The items which you reserve online will be posted to us, for you to collect, at the front desk in the Luke Wadding library, afterwards. The Initiat...

  13. Permanent magnetic toroidal drive with half stator

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2017-01-01

    Full Text Available A permanent magnetic toroidal drive with a half stator is proposed that avoids noise and mechanical vibrations. The effects of the system parameters on the output torque of the drive were investigated. A model machine was designed and produced. The output torque and speed fluctuation of the drive system were measured, and the calculated and measured output torque were compared. The tests demonstrated that the drive system could operate continuously without noise, and the system achieved a given speed ratio. The drive system had high load-carrying ability and a maximum output torque of 0.15 N m when certain parameter values were used.

  14. Toroidal membrane vesicles in spherical confinement

    CERN Document Server

    Bouzar, Lila; Müller, Martin Michael

    2015-01-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  15. Toroidal membrane vesicles in spherical confinement

    Science.gov (United States)

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.

  16. Polar interface phonons in ionic toroidal systems.

    Science.gov (United States)

    Nguyen, N D; Evrard, R; Stroscio, Michael A

    2016-09-01

    We use the dielectric continuum model to obtain the polar (Fuchs-Kliewer like) interface vibration modes of toroids made of ionic materials either embedded in a different material or in vacuum, with applications to nanotoroids specially in mind. We report the frequencies of these modes and describe the electric potential they produce. We establish the quantum-mechanical Hamiltonian appropriate for their interaction with electric charges. This Hamiltonian can be used to describe the effect of this interaction on different types of charged particles either inside or outside the torus.

  17. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  18. Distorted Fingerprint Verification System

    Directory of Open Access Journals (Sweden)

    Divya KARTHIKAESHWARAN

    2011-01-01

    Full Text Available Fingerprint verification is one of the most reliable personal identification methods. Fingerprint matching is affected by non-linear distortion introduced in fingerprint impression during the image acquisition process. This non-linear deformation changes both the position and orientation of minutiae. The proposed system operates in three stages: alignment based fingerprint matching, fuzzy clustering and classifier framework. First, an enhanced input fingerprint image has been aligned with the template fingerprint image and matching score is computed. To improve the performance of the system, a fuzzy clustering based on distance and density has been used to cluster the feature set obtained from the fingerprint matcher. Finally a classifier framework has been developed and found that cost sensitive classifier produces better results. The system has been evaluated on fingerprint database and the experimental result shows that system produces a verification rate of 96%. This system plays an important role in forensic and civilian applications.

  19. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  20. Dynamic equilibria and magnetohydrodynamic instabilities in toroidal plasmas with non-uniform transport coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Futatani, Shimpei; Bos, Wouter J. T. [LMFA-CNRS UMR 5509, Ecole Centrale de Lyon, Université de Lyon, 69134 Ecully (France); Morales, Jorge A. [CEA Cadarache, St. Paul Lez Durance (France)

    2015-05-15

    It can be shown that in the presence of a toroidal magnetic field induced by poloidal coils, combined with the electromagnetic field induced by a central solenoid, no static equilibrium is possible within the MHD description, as soon as non-zero resistivity is assumed. The resulting dynamic equilibrium was previously discussed for the case of spatially homogeneous resisitivity. In the present work, it is shown how a spatial inhomogeneity of the viscosity and resisitivity coefficients influences this equilibrium. Parameters in both the stable, tokamak-like regime and unstable, reversed field pinch-like regime are considered. It is shown that, whereas the magnitudes of the velocity and magnetic field fluctuations are strongly modified by the spatial variation of the transport coefficients, the qualitative flow behaviour remains largely unaffected.

  1. Absence of toroidal moments in 'aromagnetic' anthracene

    Science.gov (United States)

    Alborghetti, S.; Puppin, E.; Brenna, M.; Pinotti, E.; Zanni, P.; Coey, J. M. D.

    2008-06-01

    Colloidal suspensions of anthracene and other aromatic compounds have been shown to respond to a magnetic field as if they possessed a permanent magnetic moment. This phenomenon was named 'aromagnetism' by Spartakov and Tolstoi, and it was subsequently attributed to the interaction of an electric toroidal moment with a time-varying magnetic field. However, there has been no independent confirmation of the original work. Here, we have selected purified anthracene crystallites which respond to a low magnetic field and investigate how this response depends on the gradient and the time derivative of the field. We conclude that the anomaly cannot be attributed to a toroidal interaction but is due to a constant magnetic moment of the particles. Close examinations using magnetometry and scanning electron microscopy reveal metallic clusters of Fe and Ni up to a few hundred nanometres in size embedded in the anomalous crystallites. These inclusions represent 1.8 ppm by weight of the sample. The observed presence of ferromagnetic inclusions in the ppm range is sufficient to explain the anomalous magnetic properties of micron-sized anthracene crystals, including the reported optical properties of the colloidal suspensions.

  2. Asymmetric toroidal eddy currents (ATEC) to explain sideways forces at JET

    Science.gov (United States)

    Roccella, R.; Roccella, M.; Riccardo, V.; Chiocchio, S.; Contributors, JET

    2016-10-01

    During some JET vertical displacement events (VDEs) plasma current and position are found to be toroidally asymmetric. When asymmetries lock, the vessel has been observed to move horizontally, consequently strong horizontal forces are expected following plasma asymmetries, whether locked or rotating. The cause of horizontal forces is, as already identified in previous works, the asymmetric circulation of current in the structures. The physics mechanism responsible for these asymmetric currents is instead an open issue and it is the object of the present analysis. In particular it will be shown that the asymmetry is not due to a direct exchange of current between plasma and structure (as in the case of halo currents) but to asymmetric conductive paths which arise, in the structures, when the plasma column asymmetrically wets the wall. Simulations of this phenomenon using finite element (FE) models have been conducted to reproduce the JET observation during locked and rotating asymmetric VDEs. Estimated sideways force, asymmetry (I\\text{p}\\text{asym} ) and normalized asymmetry (A\\text{p}\\text{asym} ) of plasma current, vertical position at different toroidal locations during the disruption and halo current asymmetry have been compared with measurements done at JET during upward AVDEs. The substantial match between experiments and simulations confirms the soundness of the assumptions. Furthermore, the same physical model applied to downward VDEs shows that divertor support and coils, together with the geometry of the limiting surfaces, considerably lessen asymmetric loads as experienced at JET after installing those components.

  3. Inlet flow distortion in turbomachinery

    Science.gov (United States)

    Seidel, B. S.; Matwey, M. D.; Adamczyk, J. J.

    1980-01-01

    A single stage axial compressor with distorted inflow is studied. The inflow distortion occurs far upstream and may be a distortion in stagnation temperature, stagnation pressure or both. The blade rows are modeled as semi-actuator disks. Losses, quasi-steady deviation angles, and reference incidence correlations are included in the analysis. Both subsonic and transonic relative Mach numbers are considered. A parameter study is made to determine the influence of such variables as Mach number and swirl angle on the attenuation of the distortion.

  4. Toroidal and magnetic Fano resonances in planar THz metamaterials

    Science.gov (United States)

    Han, Song; Gupta, Manoj; Cong, Longqing; Srivastava, Yogesh Kumar; Singh, Ranjan

    2017-09-01

    The toroidal dipole moment, a localized electromagnetic excitation of torus magnetic fields, has been observed experimentally in metamaterials. However, the metamaterial based toroidal moment was restricted at higher frequencies by the complex three-dimensional structure. Recently, it has been shown that toroidal moment could also be excited in a planar metamaterial structure. Here, we use asymmetric Fano resonators to illustrate theoretically and experimentally the underlying physics of the toroidal coupling in an array of planar metamaterials. It is observed that the anti-parallel magnetic moment configuration shows toroidal excitation with higher quality (Q) factor Fano resonance, while the parallel magnetic moment shows relatively lower Q factor resonance. Moreover, the electric and toroidal dipole interferes destructively to give rise to an anapole excitation. The magnetic dipole-dipole interaction is employed to understand the differences between the toroidal and magnetic Fano resonances. We further study the impact of intra unit-cell coupling between the Fano resonator pairs in the mirrored and non-mirrored arrangements. The numerical and theoretical approach for modelling the near-field effects and experimental demonstration of toroidal and magnetic Fano resonances in planar systems are particularly promising for tailoring the loss in metamaterials across a broad range of the electromagnetic spectrum.

  5. Performance of a Folded-Strip Toroidally Wound Induction Machine

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Jack, Alan G.; Atkinson, Glynn J.

    2011-01-01

    This paper presents the measured experimental results from a four-pole toroidally wound induction machine, where the stator is constructed as a pre-wound foldable strip. It shows that if the machine is axially restricted in length, the toroidally wound induction machine can have substantially...

  6. Formation of a compact toroid for enhanced efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mozgovoy, A. G. [P.N. Lebedev Physical Institute, Moscow 119991 (Russian Federation); Romadanov, I. V.; Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2014-02-15

    We report here our results on the formation of a plasma configuration with the generic name of compact toroid (CT). A method of compact toroid formation to confine, heat and compress a plasma is investigated. Formation of a compact torus using an additional toroidal magnetic field helps to increase the plasma current to a maintainable level of the original magnetic field. We design the Compact Toroid Challenge (CTC) experiment in order to improve the magnetic flux trapping during field reversal in the formation of a compact toroid. The level of the magnetic field immersed in the plasma about 70% of the primary field is achieved. The CTC device and scheme of high level capturing of magnetic flux are presented.

  7. Design of plasmonic toroidal metamaterials at optical frequencies.

    Science.gov (United States)

    Huang, Yao-Wei; Chen, Wei Ting; Wu, Pin Chieh; Fedotov, Vassili; Savinov, Vassili; Ho, You Zhe; Chau, Yuan-Fong; Zheludev, Nikolay I; Tsai, Din Ping

    2012-01-16

    Toroidal multipoles are the subject of growing interest because of their unusual electromagnetic properties different from the electric and magnetic multipoles. In this paper, we present two new related classes of plasmonic metamaterial composed of purposely arranged of four U-shaped split ring resonators (SRRs) that show profound resonant toroidal responses at optical frequencies. The toroidal and magnetic responses were investigated by the finite-element simulations. A phenomenon of reversed toroidal responses at higher and lower resonant frequencies has also been reported between this two related metamaterials which results from the electric and magnetic dipoles interaction. Finally, we propose a physical model based on coupled LC circuits to quantitatively analyze the coupled system of the plasmonic toroidal metamaterials.

  8. Structural and biochemical characterizations of an intramolecular tandem coiled coil protein.

    Science.gov (United States)

    Shin, Donghyuk; Kim, Gwanho; Kim, Gyuhee; Zheng, Xu; Kim, Yang-Gyun; Lee, Sangho

    2014-12-12

    Coiled coil has served as an excellent model system for studying protein folding and developing protein-based biomaterials. Most designed coiled coils function as oligomers, namely intermolecular coiled coils. However, less is known about structural and biochemical behavior of intramolecular coiled coils where coiled coil domains are covalently linked in one polypeptide. Here we prepare a protein which harbors three coiled coil domains with two short linkers, termed intramolecular tandem coiled coil (ITCC) and characterize its structural and biochemical behavior in solution. ITCC consists of three coiled coil domains whose sequences are derived from Coil-Ser and its domain swapped dimer. Modifications include positioning E (Glu) residue at "e" and K (Lys) at "g" positions throughout heptad repeats to enhance ionic interaction among its constituent coiled coil domains. Molecular modeling of ITCC suggests a compact triple helical bundle structure with the second and the third coiled coil domains forming a canonical coiled coil. ITCC exists as a mixture of monomeric and dimeric species in solution. Small-angle X-ray scattering reveals ellipsoidal molecular envelopes for both dimeric and monomeric ITCC in solution. The theoretically modeled structures of ITCC dock well into the envelopes of both species. Higher ionic strength shifts the equilibrium into monomer with apparently more compact structure while secondary structure remains unchanged. Taken together, our results suggest that our designed ITCC is predominantly monomeric structure through the enhanced ionic interactions, and its conformation is affected by the concentration of ionic species in the buffer.

  9. Analysis Of Overlay Distortion Patterns

    Science.gov (United States)

    Armitage, John D.; Kirk, Joseph P.

    1988-01-01

    A comprehensive geometrical approach is presented for the least-squares analysis of overlay distortion patterns into useful, physically meaningful systematic distortion subpatterns and an essentially non-systematic residue. A scheme of generally useful distortion sub-patterns is presented in graphic and algorithmic form; some of these sub-patterns are additions to those already in widespread use. A graphic and geometric approach is emphasized rather than an algebraic or statistical approach, and an example illustrates the value in utilizing the pattern-detecting ability of the eye-brain system. The conditions are described under which different distortion sub-patterns may interact, possibly leading to misleading or erroneous conclusions about the types and amounts of different distortions present. Examples of typical interaction situations are given, and recommendations are made for analytic procedures to avoid misinterpretation. It is noted that the lower-order distortion patterns preserve straight-line linearity, but that higher-order distortion may result in straight lines becoming curved. The principle of least-squares analysis is outlined and a simple polynomial data-fitting example is used to illustrate the method. Algorithms are presented for least-squares distortion analysis of overlay patterns, and an APL2 program is given to show how this may easily be implemented on a digital computer. The appendix extends the treatment to cases where small-angle approximation is not permissible.

  10. Plasma response based RMP coil geometry optimization for an ITER plasma

    Science.gov (United States)

    Zhou, Lina; Liu, Yueqiang; Liu, Yue; Yang, Xu

    2016-11-01

    Based on an ITER 15MA Q  =  10 inductive scenario, a systematic numerical investigation is carried out in order to understand the effect of varying the geometry of the magnetic coils, used for controlling the edge localized modes in tokamaks, on the plasma response to the resonant magnetic perturbation (RMP) fields produced by these coils. Toroidal computations show that both of the plasma response based figures of merit—one is the pitch resonant radial field component near the plasma edge and the other is the plasma displacement near the X-point of the separatrix—consistently yield the same prediction for the optimal coil geometry. With a couple of exceptions, the presently designed poloidal location of the ITER upper and lower rows of RMP coils is close to the optimum, according to the plasma response based criteria. This holds for different coil current configurations with n  =  2, 3, 4, as well as different coil phasing between the upper and lower rows. The coils poloidal width from the present design, on the other hand, is sub-optimal for the upper and lower rows. Modelling also finds that the plasma response amplitude sharply decreases by moving the middle row RMP coils of ITER from the designed radial location (just inside the inner vacuum vessel) outwards (outside the outer vacuum vessel). The decay rate is sensitively affected by the middle row coils’ poloidal coverage for low-n (n  =  1, 2) RMP fields, but not for high-n (n  =  4) fields.

  11. Algebraic Lens Distortion Model Estimation

    Directory of Open Access Journals (Sweden)

    Luis Alvarez

    2010-07-01

    Full Text Available A very important property of the usual pinhole model for camera projection is that 3D lines in the scene are projected to 2D lines. Unfortunately, wide-angle lenses (specially low-cost lenses may introduce a strong barrel distortion, which makes the usual pinhole model fail. Lens distortion models try to correct such distortion. We propose an algebraic approach to the estimation of the lens distortion parameters based on the rectification of lines in the image. Using the proposed method, the lens distortion parameters are obtained by minimizing a 4 total-degree polynomial in several variables. We perform numerical experiments using calibration patterns and real scenes to show the performance of the proposed method.

  12. The theory of toroidally confined plasmas

    CERN Document Server

    White, Roscoe B

    2014-01-01

    This graduate level textbook develops the theory of magnetically confined plasma, with the aim of bringing the reader to the level of current research in the field of thermonuclear fusion. It begins with the basic concepts of magnetic field description, plasma equilibria and stability, and goes on to derive the equations for guiding center particle motion in an equilibrium field. Topics include linear and nonlinear ideal and resistive modes and particle transport. It is of use to workers in the field of fusion both for its wide-ranging account of tokamak physics and as a kind of handbook or formulary. This edition has been extended in a number of ways. The material on mode-particle interactions has been reformulated and much new information added, including methodology for Monte Carlo implementation of mode destabilization. These results give explicit means of carrying out mode destabilization analysis, in particular for the dangerous fishbone mode. A new chapter on cyclotron motion in toroidal geometry has ...

  13. Shear-dependant toroidal vortex flow

    Energy Technology Data Exchange (ETDEWEB)

    Khorasani, Nariman Ashrafi; Haghighi, Habib Karimi [Payame Noor University, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Pseudoplastic circular Couette flow in annulus is investigated. The flow viscosity is dependent on the shear rate, which directly affects the conservation equations that are solved in the present study by the spectral method in the present study. The pseudoplastic model adopted here is shown to be a suitable representative of nonlinear fluids. Unlike the previous studies, where only the square of shear rate term in the viscosity expression was considered to ease the numerical manipulations, in the present study takes the term containing the quadratic power into account. The curved streamlines of the circular Couette flow can cause a centrifugal instability leading to toroidal vortices, known as Taylor vortices. It is further found that the critical Taylor number becomes lower as the pseudoplastic effect increases. Comparison with existing measurements on pseudoplastic circular Couette flow results in good agreement.

  14. Helicity of the toroidal vortex with swirl

    CERN Document Server

    Bannikova, Elena Yu; Poslavsky, Sergey A

    2016-01-01

    On the basis of solutions of the Bragg-Hawthorne equations we discuss the helicity of thin toroidal vortices with the swirl - the orbital motion along the torus diretrix. It is shown that relationship of the helicity with circulations along the small and large linked circles - directrix and generatrix of the torus - depends on distribution of the azimuthal velocity in the core of the swirling vortex ring. In the case of non-homogeneous swirl this relationship differs from the well-known Moffat relationship - the doubled product of such circulations multiplied by the number of links. The results can be applied to vortices in planetary atmospheres and to vortex movements in the vicinity of active galactic nuclei.

  15. Inductive Eigenmodes of a resistive toroidal surface in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lo Surdo, C. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione

    1999-07-01

    In this paper it has been studied the Electro-Magnetic (EM) Eigenmodes, sufficiently slow as to legitimate the pre-Maxwell approximation of Maxwell's system (or inductive Eigenmodes), of a given smooth, toroidal-un knotted, electrically resistive surface {tau} with given smooth (surface) resistivity 0 < {rho}{sub d}egree < {infinity}, and lying in the (empty) R{sup 3}. Within the above limitations (to be made more precise), the geometry of {tau} is arbitrary. With the eigenvalue associated with the generic Eigenmode being defined as the opposite of its logarithmic time-derivative, one expects that the resulting spectrum be discrete and strictly positive. It shall be interested into the degenerate case where {tau} be cut (i.e. electrically broken) along one or more of its irreducible cycles. This case will be analyzed autonomously, rather than as a limit (for {rho}{sub d}egree {yields} {infinity} along the cuts) of the regular case. Without cuts, the Eigenproblem under consideration is nothing but the two-dimensional (2-dim) generalization of the classical case of a smooth, unknotted, electrically conductive, simple coil in infinite vacuum. Its analysis hinges on the classical potential theory, and turns out to be a special application of the linear, integrodifferential (elliptic) equation theory on a compact, multiply connected, 2-dim manifold. The attention and approach will be confined to strong (or classical) solutions, both in {tau} and C {tau} = R{sup 3} / {tau}. This study is divided in two parts: a General Part (Sects 1 divided 4) is devoted to the case of generic {tau} and {rho}{sub d}egree (within the convenient smoothness requirements), whereas a Special Part (Sects 5 divided 7) deals with the (more or less formal) discussion of a couple of particular cases ({tau} {identical_to} a canonical torus), both of which with uniform {rho}{sub d}egree. Some propaedeutical/supplementary information is provided in a number of Appendices. [Italian] Il presente

  16. Concept design of the cassette toroidal mover

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, H., E-mail: harri.makinen@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Jaervenpaeae, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Valkama, P.; Vaeyrynen, J.; Amjad, F. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Mattila, J. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Semeraro, L.; Esque, S. [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain)

    2011-10-15

    A full scale physical development and test facility, Divertor Test Platform 2 (DTP2), has been established in Finland for the purpose of demonstrating and developing the remote handling (RH) equipment designs for ITER using prototypes and virtual models. The major objective of the DTP2 environment is to verify and develop ITER divertor RH devices and operations. In practice this means various test trials and measurements of performance characteristics. This paper describes the design process of the Cassette Toroidal Mover (CTM). The main purpose of this design task was the development of the CTM concept. The goal of the design process was to achieve compatibility between CTM and the latest ITER divertor design. The design process was based on using a variety of tools, i.e. Catia V5, Delmia, Ansys, Mathcad and project management tools. Applicable European Standards were applied to the concept design. CTM is the cassette transporter, which carries divertor cassettes on the toroidal rails inside the ITER Vacuum Vessel (VV) during the divertor maintenance. The operation environment differs from a common industrial environment. Radiation level is 100 Gy/h. The temperature during RH operations can be 50 {sup o}C. Clearances are less than 20 mm and the loads carried weigh 9000 kg. These conditions require special solutions during the product development process. The design process consisted of defining and developing of the CTM operational sequence. This sequence includes the procedure of how the CTM - with it is onboard manipulator - prepares for and handles the divertor cassettes during RH operations. RH operations are essential part when defining CTM functions. High reliability is required in order to carry out RH tasks successfully. The recoverability of CTM is also an important design criteria. This paper describes the design process and the structure of the CTM concept.

  17. Damping of toroidal ion temperature gradient modes

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-04-01

    The temporal evolution of linear toroidal ion temperature gradient (ITG) modes is studied based on a kinetic integral equation including an initial condition. It is shown how to evaluate the analytic continuation of the integral kernel as a function of a complex-valued frequency, which is useful for analytical and numerical calculations of the asymptotic damping behavior of the ITG mode. In the presence of the toroidal {nabla}B-curvature drift, the temporal dependence of the density and potential perturbations consists of normal modes and a continuum mode, which correspond to contributions from poles and from an integral along a branch cut, respectively, of the Laplace-transformed potential function of the complex-valued frequency. The normal modes have exponential time dependence with frequencies and growth rates determined by the dispersion relation while the continuum mode, which has a ballooning structure, shows a power law decay {proportional_to} t{sup -2} in the asymptotic limit, where t is the time variable. Therefore, the continuum mode dominantly describes the long-time asymptotic behavior of the density and potential perturbations for the stable system where all normal modes have negative growth rates. By performing proper analytic continuation for the homogeneous version of the kinetic integral equation, dependences of the normal modes` growth rate, real frequency, and eigenfunction on {eta}{sub i} (the ratio of the ion temperature gradient to the density gradient), k{sub {theta}} (the poloidal wavenumber), s (the magnetic shear parameter), and {theta}{sub k} (the ballooning angle corresponding to the minimum radial wavenumber) are numerically obtained for both stable and unstable cases. (author)

  18. Petascale Parallelization of the Gyrokinetic Toroidal Code

    Energy Technology Data Exchange (ETDEWEB)

    Ethier, Stephane; Adams, Mark; Carter, Jonathan; Oliker, Leonid

    2010-05-01

    The Gyrokinetic Toroidal Code (GTC) is a global, three-dimensional particle-in-cell application developed to study microturbulence in tokamak fusion devices. The global capability of GTC is unique, allowing researchers to systematically analyze important dynamics such as turbulence spreading. In this work we examine a new radial domain decomposition approach to allow scalability onto the latest generation of petascale systems. Extensive performance evaluation is conducted on three high performance computing systems: the IBM BG/P, the Cray XT4, and an Intel Xeon Cluster. Overall results show that the radial decomposition approach dramatically increases scalability, while reducing the memory footprint - allowing for fusion device simulations at an unprecedented scale. After a decade where high-end computing (HEC) was dominated by the rapid pace of improvements to processor frequencies, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs is a key step towards making effective petascale computing a reality. In this work, we examine a new parallelization scheme for the Gyrokinetic Toroidal Code (GTC) [?] micro-turbulence fusion application. Extensive scalability results and analysis are presented on three HEC systems: the IBM BlueGene/P (BG/P) at Argonne National Laboratory, the Cray XT4 at Lawrence Berkeley National Laboratory, and an Intel Xeon cluster at Lawrence Livermore National Laboratory. Overall results indicate that the new radial decomposition approach successfully attains unprecedented scalability to 131,072 BG/P cores by overcoming the memory limitations of the previous approach. The new version is well suited to utilize emerging petascale resources to access new regimes of physical phenomena.

  19. European cryogenic material testing program for ITER coils and intercoil structures

    Science.gov (United States)

    Nyilas, A.; Portone, A.; Kiesel, H.

    2002-05-01

    The following materials were characterized for the use in the magnet structures of ITER: 1) Type 316LN cast materials having a modified chemistry used for a Model of the TF (Toroidal Field) outer intercoil structure were investigated with respect to tensile, fracture, fatigue crack growth rate (FCGR), and fatigue life behavior between 7 and 4 K. 2) For Type 316LN 80 mm thick plate used for the TFMC (T_oroidal F_ield M_odel C_oil) structure a complete cryogenic mechanical materials characterization was established. 3) For full size coil case mockups, repair weld properties of 240 mm thick narrow-gap welds were investigated to determine their tensile and fracture behavior. 4) For CSMC (C_enter S_olenoid M_odel C_oil) superconductor jackets, the fatigue lives of orbital butt welds made of Incoloy 908 and Type 316LN (aged and unaged) materials were determined up to one million cycles at 7 K. The results reveal to date that the FCGR of aged Type 316LN is inferior to Incoloy 908 material, whilst the fatigue life properties are comparable. However, for Type 316LN jacket structure considerable improvement of FCGR could be achieved by a solution heat treatment process. In addition, tensile and fatigue life tests performed with a new cryogenic mechanical test facility (630 kN capacity) are presented.

  20. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders;

    2009-01-01

    MOTIVATION: The widespread coiled-coil structural motif in proteins is known to mediate a variety of biological interactions. Recognizing a coiled-coil containing sequence and locating its coiled-coil domains are key steps towards the determination of the protein structure and function. Different...... tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  1. Coiled-coil conformation of a pentamidine-DNA complex.

    Science.gov (United States)

    Moreno, Tadeo; Pous, Joan; Subirana, Juan A; Campos, J Lourdes

    2010-03-01

    The coiled-coil structure formed by the complex of the DNA duplex d(ATATATATAT)(2) with pentamidine is presented. The duplex was found to have a mixed structure containing Watson-Crick and Hoogsteen base pairs. The drug stabilizes the coiled coil through the formation of cross-links between neighbouring duplexes. The central part of the drug is found in the minor groove as expected, whereas the charged terminal amidine groups protrude and interact with phosphates from neighbouring molecules. The formation of cross-links may be related to the biological effects of pentamidine, which is used as an antiprotozoal agent in trypanosomiasis, leishmaniasis and pneumonias associated with AIDS. The DNA sequence that was used is highly abundant in most eukaryotic genomes. However, very few data are available on DNA sequences which only contain A.T base pairs.

  2. Summary of US-Japan Exchange 2004 New Directions and Physics for Compact Toroids

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, T; Nagata, M; Hoffman, A; Guo, H; Steinhauer, L; Ryutov, D; Miller, R; Okada, S

    2005-08-15

    This exchange workshop was an open meeting coordinated by the P-24 Plasma Physics Group at Los Alamos National Laboratory. We brought together scientists from institutions in the US and Japan who are researching the various and complementary types of Compact Toroids (CT). Many concepts, including both experimental and theoretical investigations, are represented. The range spans Field Reversed Configuration (FRC), spheromak, Reversed Field Pinch (RFP), spherical tokamaks, linear devices dedicated to fundamental physics studies, and hybrid transitions that bridge multiple configurations. The participants represent facilities on which significant experiments are now underway: FRC Injection experiment (FIX), Translation Confinement experiment (TCS), Nihon-University Compact Torus Experiment (NUCTE), HITSI (Helicity Injection experiment, Steady Inductive Helicity Injection (HIT-SIHI)), Field Reversed Configuration experiment-Liner (FRX-L), TS-3/4, Sustained Spheromak Experiment (SSPX), Relaxation Scaling Experiment (RSX), HIST, Caltech Spheromak, or in the design process such as MRX-FRC (PPPL), Pulsed High Density experiment (PHD at UW). Several new directions and results in compact toroid (CT) research have recently emerged, including neutral-beam injection, rotating magnetic fields, flux build up from Ohmic boost coils, electrostatic helicity injection techniques, CT injection into other large devices, and high density configurations for applications to magnetized target fusion and translational compression of CT's. CT experimental programs in both the US and Japan have also shown substantial progress in the control and sustainment of CT's. Both in theory and experiment, there is increased emphasis on 3D dynamics, which is also related to astrophysical and space physics issues. 3D data visualization is now frequently used for experimental data display. There was much discussion of the effects of weak toroidal fields in FRC's and possible implications

  3. Space-deployed, thin-walled enclosure for a cryogenically-cooled high temperature superconducting coil

    Science.gov (United States)

    Porter, Allison K.

    The interaction of magnetic fields generated by large superconducting coils has multiple applications in space, including actuation of spacecraft or spacecraft components, wireless power transfer, and shielding of spacecraft from radiation and high energy particles. These applications require coils with major diameters as large as 20 meters and a thermal management system to maintain the superconducting material of the coil below its critical temperature. Since a rigid thermal management system, such as a heat pipe, is unsuitable for compact stowage inside a 5 meter payload fairing, a thin-walled thermal enclosure is proposed. A 1.85 meter diameter test article consisting of a bladder layer for containing chilled nitrogen vapor, a restraint layer, and multilayer insulation was tested in a custom toroidal vacuum chamber. The material properties found during laboratory testing are used to predict the performance of the test article in low Earth orbit. Deployment motion of the same test article was measured using a motion capture system and the results are used to predict the deployment in space. A 20 meter major diameter and coil current of 6.7 MA is selected as a point design case. This design point represents a single coil in a high energy particle shielding system. Sizing of the thermal and structural components of the enclosure is completed. The thermal and deployment performance is predicted.

  4. Metamaterials with toroidal fano-response (Conference Presentation)

    Science.gov (United States)

    Kozhokar, Maria V.; Basharin, Alexey A.

    2017-05-01

    The static toroidal dipole was predicted by Zeldovich, which appears due to the static currents in atomic nuclei and explain disturbance of parity in the weak interaction. Physically, toroidal dipole is separated element of multipole expansion that corresponds to electrical currents circulating on a surface of gedanken torus along its meridians. Recently, the demonstration of dynamic toroidal dipolar response became possible in metamaterials composed of metamolecules of toroidal topology. Metamaterials with toroidal dipolar response allow to demonstrate a number of special properties such as novel type of EIT, optical activity, extremely strongly localized fields and anapole. We are interested in another property of toroidal metamaterials - magnetic Fano-type response caused by toroidal and magnetic moments in a particular metamolecule. In this paper we demonstrate theoretically and experimentally in microwave at the first time Fano-excitation in toroidal metamaterials. We suggested metamaterials based on a special structure of two types of planar metamolecules separated by dielectric layer. One of them "Electric" type metamolecule is a planar conductive structure consisting of two symmetric split loops. The incident plane wave excites circular currents along the loops leading to a circulating magnetic moment and, as a result, to a toroidal moment. Moreover, due to the central gap electric moment can be excited in metamolecule. At the same time, destructive/constructive interference between toroidal and electric dipolar moments gives us unique effect as very strong E- field localization inside the central gap and anapole mode. "Magnetic" type metamolecule is the inverted and rotated variant of the first structure. In contrast to the first case, here we expect very strong localization of magnetic field instead electric field. The magnetic field lines are whirling around the central junction of the metamolecule due to interference between toroidal and magnetic

  5. Plasmastatic model of toroidal trap “Galatea-belt”

    Science.gov (United States)

    Brushlinskii, K. V.; Goldich, A. S.

    2017-01-01

    Magnetic galatea-traps for thermonuclear plasma confinement with current carrying conductors immersed into the plasma volume, are represented by an example of the toroidal trap “The Belt” with two circular conductors. Numerical models of equilibrium plasma and field configurations are investigated in straightened into cylinder analogues of some toroidal galateas in a series of works by the authors. This paper presents a plasmastatic model of configurations in the toroidal variant of “The Belt” in terms of a boundary problem with the Grad-Shafranov equation. Distinctions of their geometry and quantitative characteristics from the cylindrical analogues and their dependence of parameters are determined in computation.

  6. Can Magnetic Coil Ease Tinnitus?

    Science.gov (United States)

    ... Research Updates Technology Horizons Can magnetic coil ease tinnitus? VA trial aims to find out February 3, ... pain. See, for example, this 2009 review study . Tinnitus and Veterans Tinnitus has been one of the ...

  7. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  8. Adjustable Induction-Heating Coil

    Science.gov (United States)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  9. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  10. Nylon screws make inexpensive coil forms

    Science.gov (United States)

    Aucoin, G.; Rosenthal, C.

    1978-01-01

    Standard nylon screws act as coil form copper wire laid down in spiral thread. Completed coil may be bonded to printed-circuit board. However, it is impossible to tune coil by adjusting spacing between windings, technique sometimes used with air-core coils.

  11. HELMHOLTZ COILS FOR MEASURING MAGNETIC MOMENTS

    Directory of Open Access Journals (Sweden)

    P. N. Dobrodeyev

    2013-01-01

    Full Text Available The optimal configuration of the double Helmholtz coils for measuring of the magnetic dipole moments was defined. It was determined that measuring coils should have round shape and compensative coils – the square one. Analytically confirmed the feasibility of the proposed configuration of these coils as primary transmitters of magnetic dipole moments.

  12. Gaseous toroid around Saturn. [Saturnian ring system for atomic hydrogen trapping in Titan atmospheric model

    Science.gov (United States)

    Mcdonough, T. R.

    1974-01-01

    The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles.

  13. Triangulation in Random Refractive Distortions.

    Science.gov (United States)

    Alterman, Marina; Schechner, Yoav Y; Swirski, Yohay

    2017-03-01

    Random refraction occurs in turbulence and through a wavy water-air interface. It creates distortion that changes in space, time and with viewpoint. Localizing objects in three dimensions (3D) despite this random distortion is important to some predators and also to submariners avoiding the salient use of periscopes. We take a multiview approach to this task. Refracted distortion statistics induce a probabilistic relation between any pixel location and a line of sight in space. Measurements of an object's random projection from multiple views and times lead to a likelihood function of the object's 3D location. The likelihood leads to estimates of the 3D location and its uncertainty. Furthermore, multiview images acquired simultaneously in a wide stereo baseline have uncorrelated distortions. This helps reduce the acquisition time needed for localization. The method is demonstrated in stereoscopic video sequences, both in a lab and a swimming pool.

  14. Analysis of the discharge of the ATLAS barrel toroid and end cap toroids with different configurations of the protection circuit

    CERN Document Server

    Acerbi, E; Broggi, F; Sorbi, M; Volpini, G

    2001-01-01

    An analysis of the discharge of the barrel toroid and end cap toroids with different protection circuits has been carried out in order to verify the possibility of a new simplified and cheaper configuration of the components of the circuit. In the study also the presence of short circuits has been considered. The comparison of the results and the analysis of the advantages and risks of the different configurations should allow the choice of the best solution for the economy and safety of the toroids. (4 refs).

  15. Influence of toroidal rotation on resistive tearing modes in tokamaks

    Science.gov (United States)

    Wang, S.; Ma, Z. W.

    2015-12-01

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  16. Influence of toroidal rotation on resistive tearing modes in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

    2015-12-15

    Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.

  17. Toroidicity Dependence of Tokamak Edge Safety Factor and Shear

    Institute of Scientific and Technical Information of China (English)

    SHIBingren

    2002-01-01

    In large tokamak device and reactor designs, the relationship between the toroidal current and the edge safety factor is very important because this will determine the eventual device or reactor size according to MHD stability requirements. In many preliminary

  18. Ballooning mode spectrum in general toroidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, R.L.; Glasser, A.H.

    1982-04-01

    A WKB formalism for constructing normal modes of short-wavelength ideal hydromagnetic, pressure-driven instabilities (ballooning modes) in general toroidal magnetic containment devices with sheared magnetic fields is developed. No incompressibility approximation is made. A dispersion relation is obtained from the eigenvalues of a fourth order system of ordinary differential equations to be solved by integrating along a line of force. Higher order calculations are performed to find the amplitude equation and the phase change at a caustic. These conform to typical WKB results. In axisymmetric systems, the ray equations are integrable, and semiclassical quantization leads to a growth rate spectrum consisting of an infinity of discrete eigenvalues, bounded above by an accumulation point. However, each eigenvalue is infinitely degenerate. In the nonaxisymmetric case, the rays are unbounded in a four dimensional phase space, and semiclassical quantization breaks down, leading to broadening of the discrete eigenvalues and accumulation point of the axisymmetric case into continuum bands. Analysis of a model problem indicates that the broadening of the discrete eigenvalues is numerically very small, the dominant effect being broadening of the accumulation point.

  19. Turbulent Equipartition Theory of Toroidal Momentum Pinch

    Energy Technology Data Exchange (ETDEWEB)

    T.S. Hahm, P.H. Diamond, O.D. Gurcan, and G. Rewaldt

    2008-01-31

    The mode-independet part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14,072302 (2007)] which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmi U|| R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustratd that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  20. Turbulent equipartition theory of toroidal momentum pincha)

    Science.gov (United States)

    Hahm, T. S.; Diamond, P. H.; Gurcan, O. D.; Rewoldt, G.

    2008-05-01

    The mode-independent part of the magnetic curvature driven turbulent convective (TurCo) pinch of the angular momentum density [Hahm et al., Phys. Plasmas 14, 072302 (2007)], which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of "magnetically weighted angular momentum density," nmiU∥R/B2, and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms that exist in a simpler geometry.

  1. Sawtooth Instability in the Compact Toroidal Hybrid

    Science.gov (United States)

    Herfindal, J. L.; Maurer, D. A.; Hartwell, G. J.; Ennis, D. A.; Knowlton, S. F.

    2015-11-01

    Sawtooth instabilities have been observed in the Compact Toroidal Hybrid (CTH), a current-carrying stellarator/tokamak hybrid device. The sawtooth instability is driven by ohmic heating of the core plasma until the safety factor drops below unity resulting in the growth of an m = 1 kink-tearing mode. Experiments varying the vacuum rotational transform from 0.02 to 0.13 are being conducted to study sawtooth property dependance on vacuum flux surface structure. The frequency of the sawtooth oscillations increase from 2 kHz to 2.8 kHz solely due the decrease in rise time of the oscillation, the crash time is unchanged. CTH has three two-color SXR cameras, a three-channel 1mm interferometer, and a new bolometer system capable of detecting the signatures of sawtooth instabilities. The new bolometer system consists of two cameras, each containing a pair of diode arrays viewing the plasma directly or through a beryllium filter. Electron temperature measurements are found with the two-color SXR cameras through a ratio of the SXR intensities. Impurity radiation can drastically affect the electron temperature measurement, therefore new filters consisting of aluminum and carbon were selected to avoid problematic line radiation while maximizing the signal for a 100 eV plasma. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  2. 3D blob dynamics in toroidal geometry

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Reiser, Dirk

    In this paper we study the simple case of the dynamics of a density perturbation localized in the edge region of a medium sized tokamak in a full 3D geometry. The 2D evolution of such a perturbation has been studied in details on the low-field side, where the gradient of the magnetic field always...... dynamics in a full 3D tokamak geometry including the edge and SOL region as well. Previous studies with the ATTEMPT code proved that density blobs appear for typical parameters in the TEXTOR tokamak. The code has been prepared for flux driven simulations with detailed control of the blob initial state....... The DIESEL code is an extension of the ESEL code [1]. It solves a simple interchange model in full 3D tokamak geometry, where the toroidal direction is divided into a number of drift planes. On each drift plane the equations are solved in a domain corresponding to the full 2D cross section of the tokamak...

  3. 3D blob dynamics in toroidal geometry

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Reiser, Dirk

    . The DIESEL code is an extension of the ESEL code [1]. It solves a simple interchange model in full 3D tokamak geometry, where the toroidal direction is divided into a number of drift planes. On each drift plane the equations are solved in a domain corresponding to the full 2D cross section of the tokamak......In this paper we study the simple case of the dynamics of a density perturbation localized in the edge region of a medium sized tokamak in a full 3D geometry. The 2D evolution of such a perturbation has been studied in details on the low-field side, where the gradient of the magnetic field always...... point radial inward, see e.g. [1-2]. Here, the initial condition is implemented in two very different 3D numerical codes, ATTEMPT [3], and a new developed code, DIESEL (Disk version of ESEL), and the results are compared and discussed in detail. The ATTEMPT code has been employed to study the blob...

  4. Compact toroid injection into C-2U

    Science.gov (United States)

    Roche, Thomas; Gota, H.; Garate, E.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; Putvinski, S.; Allfrey, I.; Beall, M.; Cordero, M.; Granstedt, E.; Kinley, J.; Morehouse, M.; Sheftman, D.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    Sustainment of an advanced neutral beam-driven FRC for a period in excess of 5 ms is the primary goal of the C-2U machine at Tri Alpha Energy. In addition, a criteria for long-term global sustainment of any magnetically confined fusion reactor is particle refueling. To this end, a magnetized coaxial plasma-gun has been developed. Compact toroids (CT) are to be injected perpendicular to the axial magnetic field of C-2U. To simulate this environment, an experimental test-stand has been constructed. A transverse magnetic field of B ~ 1 kG is established (comparable to the C-2U axial field) and CTs are fired across it. As a minimal requirement, the CT must have energy density greater than that of the magnetic field it is to penetrate, i.e., 1/2 ρv2 >=B2 / 2μ0 . This criteria is easily met and indeed the CTs traverse the test-stand field. A preliminary experiment on C-2U shows the CT also capable of penetrating into FRC plasmas and refueling is observed resulting in a 20 - 30% increase in total particle number per single-pulsed CT injection. Results from test-stand and C-2U experiments will be presented.

  5. Electric disruption in a hydrogen toroidal plasma; Ruptura eletrica em um plasma toroidal em hidrogenio

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, M. [UNESP, Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Fisica; Silva, C.A.B. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados; Goes, L.C.S.; Sudano, J.P. [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica

    1990-12-31

    By using a zero-dimensional model the ionizing initial phase of a toroidal plasma produced in hydrogen was investigated. The model consists on describing the plasma time evolution through the density and particle temperature space averaged on the plasma volume. The involved equations are energy and particles balance equations (electrons and ions). The electron loss is due to ambipolar diffusion in the presence of magnetic field. The electron energy loss is due to ionizing, processes of Coulomb interaction and diffusion. The ohmic heating transformer gives a initial voltage necessary to the breaking 11 refs., 2 figs.

  6. Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma.

    Science.gov (United States)

    Peeters, A G; Angioni, C; Strintzi, D

    2007-06-29

    In this Letter, the influence of the "Coriolis drift" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments.

  7. A Hybrid Heating Method for the HT-7U Coils during Vacuum-Pressure Impregnation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The HT-7U superconducting tokamak is a full-superconducting magnetically confined fusion device, The toroidal magnet system of HT-7U is a very important part of the device.In VPI (Vacuum-Pressure Impregnation) process the magnet coils must be heated and degassed before impregnating and must be heated to the gel temperature and then the curing temperature,and keep the two kinds of temperatures for a long period of time after impregnating. Thus the heating method of VPI is critical. In this paper, a hybrid method of combining the internal and external heating for the coils is analyzed, especially the possibility of the internal heating method is proved.

  8. Thermal-hydraulic analysis of LTS cables for the DEMO TF coil using simplified models

    Directory of Open Access Journals (Sweden)

    Lewandowska Monika

    2017-03-01

    Full Text Available The conceptual design activities for the DEMOnstration reactor (DEMO – the prototype fusion power plant – are conducted in Europe by the EUROfusion Consortium. In 2015, three design concepts of the DEMO toroidal field (TF coil were proposed by Swiss Plasma Center (EPFL-SPC, PSI Villigen, Italian National Agency for New Technologies (ENEA Frascati, and Atomic Energy and Alternative Energies Commission (CEA Cadarache. The proposed conductor designs were subjected to complete mechanical, electromagnetic, and thermal-hydraulic analyses. The present study is focused on the thermal-hydraulic analysis of the candidate conductor designs using simplified models. It includes (a hydraulic analysis, (b heat removal analysis, and (c assessment of the maximum temperature and the maximum pressure in each conductor during quench. The performed analysis, aimed at verification whether the proposed design concepts fulfil the established acceptance criteria, provides the information for further improvements of the coil and conductors design.

  9. Computational analysis of residue contributions to coiled-coil topology.

    Science.gov (United States)

    Ramos, Jorge; Lazaridis, Themis

    2011-11-01

    A variety of features are thought to contribute to the oligomeric and topological specificity of coiled coils. In previous work, we examined the determinants of oligomeric state. Here, we examine the energetic basis for the tendency of six coiled-coil peptides to align their α-helices in antiparallel orientation using molecular dynamics simulations with implicit solvation (EEF1.1). We also examine the effect of mutations known to disrupt the topology of these peptides. In agreement with experiment, ARG or LYS at a or d positions were found to stabilize the antiparallel configuration. The modeling suggests that this is not due to a-a' or d-d' repulsions but due to interactions with e' and g' residues. TRP at core positions also favors the antiparallel configuration. Residues that disfavor parallel dimers, such as ILE at d, are better tolerated in, and thus favor the antiparallel configuration. Salt bridge networks were found to be more stabilizing in the antiparallel configuration for geometric reasons: antiparallel helices point amino acid side chains in opposite directions. However, the structure with the largest number of salt bridges was not always the most stable, due to desolvation and configurational entropy contributions. In tetramers, the extent of stabilization of the antiparallel topology by core residues is influenced by the e' residue on a neighboring helix. Residues at b and c positions in some cases also contribute to stabilization of antiparallel tetramers. This work provides useful rules toward the goal of designing coiled coils with a well-defined and predictable three-dimensional structure.

  10. Effects of rippled fields due to ferritic inserts and ELM mitigation coils on energetic ion losses in a 15 MA inductive scenario in ITER

    Science.gov (United States)

    Shinohara, K.; Tani, K.; Oikawa, T.; Putvinski, S.; Schaffer, M.; Loarte, A.

    2012-09-01

    The energetic ion loss has been assessed using the F3D-OFMC code for a 15 MA inductive scenario with Q = 10 and the latest information on the first wall geometry, the implementation of ferritic inserts (FI) and the ELM mitigation/control coils. Alpha particles and NB ions generated by the neutral beam injectors with the injection energy of 1 MeV are well confined and the heat load on the first wall is negligibly small and allowable for the magnetic background by the toroidal field coils and FI. However, an increase in the loss of these energetic ions is observed when the magnetic field by the ELM coils is applied. The increase in the loss fraction is larger for NB ions than for alpha particles under the ELM coil field. The origin of the expelled NB ions is dominantly trapped ions generated in the peripheral region due to a high-density plasma of the 15 MA scenario.

  11. The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins

    Energy Technology Data Exchange (ETDEWEB)

    Caillat, Christophe; Fish, Alexander [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands); Pefani, Dafni-Eleftheria; Taraviras, Stavros; Lygerou, Zoi [University of Patras, 26505 Rio, Patras (Greece); Perrakis, Anastassis, E-mail: a.perrakis@nki.nl [The Netherlands Cancer Institute, 1066 CX Amsterdam (Netherlands)

    2015-10-31

    The GemC1 coiled-coil structure has subtle differences compared with its homologues Geminin and Idas. Co-expression experiments in cells and biophysical stability analysis of the Geminin-family coiled coils suggest that the GemC1 coiled coil alone is unstable. GemC1, together with Idas and Geminin, an important regulator of DNA-replication licensing and differentiation decisions, constitute a superfamily sharing a homologous central coiled-coil domain. To better understand this family of proteins, the crystal structure of a GemC1 coiled-coil domain variant engineered for better solubility was determined to 2.2 Å resolution. GemC1 shows a less typical coiled coil compared with the Geminin homodimer and the Geminin–Idas heterodimer structures. It is also shown that both in vitro and in cells GemC1 interacts with Geminin through its coiled-coil domain, forming a heterodimer that is more stable that the GemC1 homodimer. Comparative analysis of the thermal stability of all of the possible superfamily complexes, using circular dichroism to follow the unfolding of the entire helix of the coiled coil, or intrinsic tryptophan fluorescence of a unique conserved N-terminal tryptophan, shows that the unfolding of the coiled coil is likely to take place from the C-terminus towards the N-terminus. It is also shown that homodimers show a single-state unfolding, while heterodimers show a two-state unfolding, suggesting that the dimer first falls apart and the helices then unfold according to the stability of each protein. The findings argue that Geminin-family members form homodimers and heterodimers between them, and this ability is likely to be important for modulating their function in cycling and differentiating cells.

  12. Deformation of Linked Polymer Coils

    Institute of Scientific and Technical Information of China (English)

    董朝霞; 李明远; 吴肇亮; 林梅钦

    2003-01-01

    Linked polymer solution (LPS) is defined as the solution of linked polymer coils (LPCs) dispersed in water, composed of low concentration partially hydrolyzed polyacrylamide (HPAM) and aluminum citrate (crosslinker). In the work, the conformational changes of LPCs under different conditions were investigated by the methods of membrane filtering under low pressure, dynamic light scattering and core flooding experiments. The results showed that in some conditions the LPCs could be compressed mechanically to 1/158.5 of their original volume because of relatively lower HPAM cross-linking. The hydration property of LPCs was similar to that of normal polymer coils. The deformation of LPCs was more restricted than that of ordinary polymer coils under the flow shear stress or the shift of hydration equilibrium caused in the variation of the electrolyte concentration which is responsible for the effective plugging in the throats of porous media when LPCs are used for deep diverting.

  13. An Improved Distortion Operator for Insurance Risks

    Institute of Scientific and Technical Information of China (English)

    GAO Jian-wei; QIU Wan-hua

    2002-01-01

    This paper reviews the distortion function approach developed in the actuarial literature for insurance risks. The main aim of this paper is to derive an extensive distortion operator, and to propose a new premium principle based on this extensive distortion operator. Furthermore, the non-robustness of general distortion operator is also discussed. Examples are provided using Bernoulli, Pareto, Lognormal and Gamma distribution assumptions.

  14. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    for different tape parameters Ici, ni and Ci, where Ici, ni and Ci are critical current, n - value and price of the ith tape respectively and i=1, 2, 3…, further optimization with respect to cost vs. HTS losses has been performed. Allowing for different types of HTS tapes in the coils, a guidance to which tape....... The proposed coil design is optimized with respect to minimizing the perpendicular field while still maximizing the amplitude of fundamental space harmonic. This guarantees the lowest HTS loss density and best utilization of expensive HTS material in the field winding of the SM. Additionally, accounting...

  15. Electromagnetic Gun With Commutated Coils

    Science.gov (United States)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  16. [Two Cases of Ruptured Cerebral Aneurysm Complicated with Delayed Coil Protrusion after Coil Embolization].

    Science.gov (United States)

    Furukawa, Takashi; Ogata, Atsushi; Ebashi, Ryo; Takase, Yukinori; Masuoka, Jun; Kawashima, Masatou; Abe, Tatsuya

    2016-07-01

    We report two cases of delayed coil protrusion after coil embolization for ruptured cerebral aneurysms. Case 1:An 82-year-old woman with a subarachnoid hemorrhage due to a ruptured small anterior communicating artery aneurysm underwent successful coil embolization. Eighteen days after the procedure, coil protrusion from the aneurysm into the right anterior cerebral artery was observed without any symptoms. Further coil protrusion did not develop after 28 days. Case 2:A 78-year-old woman with a subarachnoid hemorrhage due to a ruptured small left middle cerebral artery aneurysm underwent successful coil embolization. Twenty days after the procedure, coil protrusion from the aneurysm into the left middle cerebral artery was observed, with a transient ischemic attack. Further coil protrusion did not develop. Both patients recovered with antithrombotic treatment. Even though delayed coil protrusion after coil embolization is rare, it should be recognized as a long-term complication of coil embolization for cerebral aneurysms.

  17. Starting the production of the CEA JT-60SA TF coils at Alstom

    Energy Technology Data Exchange (ETDEWEB)

    Decool, P., E-mail: patrick.decool@cea.fr [CEA, IRFM, F-13108 St-Paul-Lez-Durance Cedex (France); Cloez, H.; Gros, G.; Jiolat, G.; Marechal, J.L.; Nicollet, S.; Torre, A.; Verger, J.M. [CEA, IRFM, F-13108 St-Paul-Lez-Durance Cedex (France); Nusbaum, M.; Billotte, G.; Crepel, B.; Bourquard, A.; Schweitzer, M. [Alstom Power Systems STTG Magnets, 90018 Belfort (France); Davis, S.; Phillips, G. [Fusion for Energy, Boltzmannstr 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • We describe the status of the JT-60SA TF coils manufacture at Alstom. • The manufacturing workflow and related tooling are described. • Completion of qualification activities has allowed to start the coils production. • Production of the first winding up to its impregnation is described. • Winding of following coils is started. - Abstract: Within the framework of the Broader Approach, the French voluntary contributor represented by CEA awarded a contract for the production of 9 toroidal field coils for the JT-60SA project to Alstom, Belfort, France in mid-2011. A first preparatory phase was led to establish the team, produce the manufacture drawings, define the manufacturing process, procure the required tooling and prepare the quality documentation. In parallel, a qualification phase on the critical major processes has proved Alstom's ability to master the processes and reach the requirements. After reviewing of the qualification results and modification of the processes and tooling to overcome the encountered difficulties, a Production Readiness Review has authorized Alstom to start the production winding. A prototype double pancake was wound as the first of series. In addition to complying with the pancake width all around the D shape, the straightness of the centreline in the critical straight leg part was correct. The production of the successive double pancakes to constitute the first winding pack was then completed and the joints and terminals were manufactured. The paper describes the completion of the last qualifications and the status of the winding production.

  18. Characteristics of geometric distortion correction with increasing field-of-view in open-configuration MRI.

    Science.gov (United States)

    Hong, Cheolpyo; Lee, Dong-Hoon; Han, Bong Soo

    2014-07-01

    Open-configuration magnetic resonance imaging (MRI) systems are becoming increasingly desirable for musculoskeletal imaging and image-guided radiotherapy because of their non-claustrophobic configuration. However, geometric image distortion in large fields-of-view (FOV) due to field inhomogeneity and gradient nonlinearity hinders the practical applications of open-type MRI. We demonstrated the use of geometric distortion correction for increasing FOV in open MRI. Geometric distortion was modeled and corrected as a global polynomial function. The appropriate polynomial order was identified as the minimum difference between the coordinates of control points in the distorted MR image space and those predicted by polynomial modeling. The sixth order polynomial function was found to give the optimal value for geometric distortion correction. The area of maximum distortion was<1 pixel with an FOV of 285mm. The correction performance error was increased at most 1.2% and 2.9% for FOVs of 340mm and~400mm compared with the FOV of 285mm. In particular, unresolved distortion was generated by local deformation near the gradient coil center. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Volterra Series Based Distortion Effect

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2010-01-01

    A large part of the characteristic sound of the electric guitar comes from nonlinearities in the signal path. Such nonlinearities may come from the input- or output-stage of the amplier, which is often equipped with vacuum tubes or a dedicated distortion pedal. In this paper the Volterra series e...

  20. Coupled Coils, Magnets and Lenz's Law

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    Great scientists in the past have experimented with coils and magnets. Here we have a variation where coupling occurs between two coils and the oscillatory motion of two magnets to give somewhat surprising results. (Contains 6 figures and 1 footnote.)

  1. Generalization of Helmholtz coil problem

    Directory of Open Access Journals (Sweden)

    Petković Dejan M.

    2015-01-01

    Full Text Available The primary intent of this work is to propose a simple analytical method for designing coil systems for homogeneous and gradient magnetostatic field generation. Coil system consists of two identical coaxial (regular polygonal current loops. In the space between the loops, there is nearly homogeneous or nearly linear distribution of the magnetic field along the axes depending on the currents' direction. First, we derived a suitable, simple and general expression for the magnetic field along the axes due to a polygonal current loop. We emphasize the importance of the role of this expression for further analysis. The total on-axes magnetic field is the result of superposition of the magnetic fields that each loop generates separately. The proper distance between the loops and the current orientation make the system to become either Helmholtz coil or anti-Helmholtz coil. In this paper we give exact, analytical and general expression for this optimal distance that provides the magnetic field to be homogeneous (linear as much as possible. We based our study on Taylor series expansion of the total magnetic field, demanding that the first contaminating term must be canceled, in both, symmetric and asymmetric case.

  2. Rotor assembly including superconducting magnetic coil

    Energy Technology Data Exchange (ETDEWEB)

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  3. Braking due to non-resonant magnetic perturbations and comparison with neoclassical toroidal viscosity torque in EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Sun, Y.; Fridström, R.; Menmuir, S.; Olofsson, K. E. J.; Brunsell, P. R.; Khan, M. W. M.; Liang, Y.; Drake, J. R.

    2015-09-01

    The non-resonant magnetic perturbation (MP) braking is studied in the EXTRAP T2R reversed-field pinch (RFP) and the experimental braking torque is compared with the torque expected by the neoclassical toroidal viscosity (NTV) theory. The EXTRAP T2R active coils can apply magnetic perturbations with a single harmonic, either resonant or non-resonant. The non-resonant MP produces velocity braking with an experimental torque that affects a large part of the core region. The experimental torque is clearly related to the plasma displacement, consistent with a quadratic dependence as expected by the NTV theory. The work show a good qualitative agreement between the experimental torque in a RFP machine and NTV torque concerning both the torque density radial profile and the dependence on the non-resonant MP harmonic.

  4. Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure

    CERN Document Server

    Kuiroukidis, Ap; Tasso, H

    2015-01-01

    By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e. the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis.

  5. Analytical solutions for Tokamak equilibria with reversed toroidal current

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Caroline G. L.; Roberto, M.; Braga, F. L. [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, Sao Paulo 12228-900 (Brazil); Caldas, I. L. [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil)

    2011-08-15

    In tokamaks, an advanced plasma confinement regime has been investigated with a central hollow electric current with negative density which gives rise to non-nested magnetic surfaces. We present analytical solutions for the magnetohydrodynamic equilibria of this regime in terms of non-orthogonal toroidal polar coordinates. These solutions are obtained for large aspect ratio tokamaks and they are valid for any kind of reversed hollow current density profiles. The zero order solution of the poloidal magnetic flux function describes nested toroidal magnetic surfaces with a magnetic axis displaced due to the toroidal geometry. The first order correction introduces a poloidal field asymmetry and, consequently, magnetic islands arise around the zero order surface with null poloidal magnetic flux gradient. An analytic expression for the magnetic island width is deduced in terms of the equilibrium parameters. We give examples of the equilibrium plasma profiles and islands obtained for a class of current density profile.

  6. Compact Toroid Propagation in a Magnetized Drift Tube

    Science.gov (United States)

    Horton, Robert D.; Baker, Kevin L.; Hwang, David Q.; Evans, Russell W.

    2000-10-01

    Injection of a spheromak-like compact toroid (SCT) plasma into a toroidal plasma confinement device may require the SCT to propagate through a drift tube region occupied by a pre-existing magnetic field. This field is expected to extert a retarding force on the SCT, but may also result in a beneficial compression. The effects of transverse and longitudinal magnetic fields will be measured using the CTIX compact-toroid injector, together with a fast framing camera with an axial view of the formation, coaxial, and drift-tube regions. In the case of longitudinal magnetic field, comparisons will be made with the predictions of two-dimensional numerical simulation. The use of localized magnetic field to reduce plasma bridging of the insulating gap will also be investigated.

  7. Stellar dynamo models with prominent surface toroidal fields

    CERN Document Server

    Bonanno, Alfio

    2016-01-01

    Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular it is argued that the observed increase in the toroidal energy in low mass fast rotating stars can be naturally explained with an underlying $\\alpha\\Omega$ mechanism.

  8. Stellar Dynamo Models with Prominent Surface Toroidal Fields

    Science.gov (United States)

    Bonanno, Alfio

    2016-12-01

    Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy in low-mass fast-rotating stars can be naturally explained with an underlying αΩ mechanism.

  9. Efficiency of Wave-Driven Rigid Body Rotation Toroidal Confinement

    CERN Document Server

    Rax, J -M; Fisch, N J

    2016-01-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared to compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  10. Ultra-high-Q toroidal microresonators for cavity quantum electrodynamics

    CERN Document Server

    Spillane, S M; Vahala, K J; Goh, K W; Wilcut, E; Kimble, H J

    2004-01-01

    We investigate the suitability of toroidal microcavities for strong-coupling cavity quantum electrodynamics (QED). Numerical modeling of the optical modes demonstrate a significant reduction of modal volume with respect to the whispering gallery modes of dielectric spheres, while retaining the high quality factors representative of spherical cavities. The extra degree of freedom of toroid microcavities can be used to achieve improved cavity QED characteristics. Numerical results for atom-cavity coupling strength, critical atom number N_0 and critical photon number n_0 for cesium are calculated and shown to exceed values currently possible using Fabry-Perot cavities. Modeling predicts coupling rates g/(2*pi) exceeding 700 MHz and critical atom numbers approaching 10^{-7} in optimized structures. Furthermore, preliminary experimental measurements of toroidal cavities at a wavelength of 852 nm indicate that quality factors in excess of 100 million can be obtained in a 50 micron principal diameter cavity, which w...

  11. Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S.P. Gerhardt

    2012-09-27

    This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While. The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to 7 toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extend of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event.

  12. Profiling compact toroid plasma density on CTIX with laser deflection

    Science.gov (United States)

    Brockington, Samuel Joseph Erwin

    A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.

  13. Axion Haloscopes with Toroidal Geometry at CAPP/IBS

    CERN Document Server

    Ko, B R

    2016-01-01

    The present state of the art axion haloscope employs a cylindrical resonant cavity in a solenoidal field. We, the Center for Axion and Precision Physics Research (CAPP) of the Institute for Basic Science (IBS) in Korea, are also pursuing halo axion discovery using this cylindrical geometry. However, the presence of end caps of cavities increases challenges as we explore higher frequency regions for the axion at above 2 GHz. To overcome these challenges we exploit a toroidal design of cavity and magnetic field. A toroidal geometry offers several advantages, two of which are a larger volume for a given space and greatly reduced fringe fields which interfere with our preamps, in particular the planned quantum-based devices. We introduce the concept of toroidal axion haloscopes and present ongoing research activities and plans at CAPP/IBS.

  14. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous...

  15. The many types of interhelical ionic interactions in coiled coils - an overview.

    Science.gov (United States)

    Meier, Markus; Stetefeld, Jörg; Burkhard, Peter

    2010-05-01

    Coiled coils represent the most frequent protein oligomerization motif in nature and are involved in many important biological processes. The prototype interhelical ionic interaction for coiled coils described in literature is an i to i+5 ionic interaction from heptad position g to e', but other possible ionic interactions have also been described. Here we use a statistical approach to systematically analyze all high-quality coiled-coil structures in the RCSB protein database for their interhelical ionic interactions. We provide a complete listing of all possible arrangements and analyze the frequency of their occurrence in the primary sequence together with their probability of formation in the quaternary structure of the coiled coils. We show that the classical i to i+5 ionic interaction is indeed characteristic for parallel dimeric and trimeric coiled coils. But we also show that there are many more i to i+2 ionic interactions in parallel tetrameric and pentameric coiled coils, and in antiparallel coiled coils the classical i to i+5 ionic interaction is in none of the oligomerizations states the most frequently observed ionic interaction. We also demonstrate that many ionic interactions involve residues at the core positions that are usually occupied by hydrophobic residues and that such interhelical ionic interactions are a hallmark feature of dimeric coiled coils.

  16. A cradle-shaped gradient coil to expand the clear-bore width of an animal MRI scanner.

    Science.gov (United States)

    Gilbert, K M; Gati, J S; Klassen, L M; Menon, R S

    2010-01-21

    The never ending quest for higher magnetic field strengths in MRI and MRS has led to small and medium bore scanners at 9.4 T and above for both human and animal use; however, these bore diameters restrict the size of object that can be accommodated when using a conventional gradient coil. By replacing a cylindrical gradient-coil insert with a single-sided gradient coil, the scanner's functionality can be extended to include localized imaging of wider samples. As a prototype, a three-axis, cradle-shaped gradient coil was designed, fabricated and implemented in a 9.4 T animal MRI scanner. Since gradient fields are required only to be monotonic over the desired field of view, the cradle gradient coil was designed to produce high gradient efficiencies (up to 2.25 mT m(-1) A(-1) over a 5 cm imaging region) at the expense of gradient linearity. A dedicated three-dimensional algorithm was developed to correct the resultant image distortion. Preliminary images of a grid phantom and a mouse demonstrated the fidelity of the algorithm in correcting image distortion of greater than 200%. Eddy currents were measured along each gradient axis. A large 65.2 (Hz mT(-1) m) B(0) eddy current was produced by the y-axis, suggesting potential limitations of single-sided gradient coils.

  17. TPC track distortions IV: post tenebras lux

    CERN Document Server

    Ammosov, V; Boyko, I; Chelkov, G; Dedovitch, D; Dydak, F; Elagin, A; Gostkin, M; Guskov, A; Koreshev, V; Krumshtein, Z; Nefedov, Y; Nikolaev, K; Wotschack, J; Zhemchugov, A

    2007-01-01

    We present a comprehensive discussion and summary of static and dynamic track distortions in the HARP TPC in terms of physical origin, mathematical modelling and correction algorithms. `Static' distortions are constant with time, while `dynamic' distortions are distortions that occur only during the 400 ms long accelerator spill. The measurement of dynamic distortions, their mathematical modelling and the correction algorithms build on our understanding of static distortions. In the course of corroborating the validity of our static distortion corrections, their reliability and precision was further improved. Dynamic TPC distortions originate dominantly from the `stalactite' effect: a column of positive-ion charge starts growing at the begin of the accelerator spill, and continues growing with nearly constant velocity out from the sense-wire plane into the active TPC volume. However, the `stalactite' effect is not able to describe the distortions that are present already at the start of the spill and which ha...

  18. Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks

    Science.gov (United States)

    Lanctot, M. J.; Park, J.-K.; Piovesan, P.; Sun, Y.; Buttery, R. J.; Frassinetti, L.; Grierson, B. A.; Hanson, J. M.; Haskey, S. R.; In, Y.; Jeon, Y. M.; La Haye, R. J.; Logan, N. C.; Marrelli, L.; Orlov, D. M.; Paz-Soldan, C.; Wang, H. H.; Strait, E. J.

    2017-05-01

    In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ˜ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the "overlap" field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the "critical overlap fields" at which magnetic islands form are similar for applied n = 1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).

  19. Design of a shielded coil element of a matrix gradient coil

    Science.gov (United States)

    Jia, Feng; Littin, Sebastian; Layton, Kelvin J.; Kroboth, Stefan; Yu, Huijun; Zaitsev, Maxim

    2017-08-01

    The increasing interest in spatial encoding with non-linear magnetic fields has intensified the need for coils that generates such fields. Matrix coils consisting of multiple coil elements appear to offer a high flexibility in generating customized encoding fields and are particularly promising for localized high resolution imaging applications. However, coil elements of existing matrix coils were primarily designed and constructed for better shimming and therefore are not expected to achieve an optimal performance for local spatial encoding. Moreover, eddy current properties of such coil elements were not fully explored. In this work, an optimization problem is formulated based on the requirement of local non-linear encoding and eddy current reduction that results in novel designs of coil elements for an actively-shielded matrix gradient coil. Two metrics are proposed to assess the performance of different coil element designs. The results are analyzed to reveal new insights into coil element design.

  20. Scaffolds, levers, rods and springs: diverse cellular functions of long coiled-coil proteins.

    Science.gov (United States)

    Rose, A; Meier, I

    2004-08-01

    Long alpha-helical coiled-coil proteins are involved in a variety of organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems, motors, levers, rotating arms and possibly springs. A growing number of human diseases are found to be caused by mutations in long coiled-coil proteins. This review summarizes our current understanding of the multifaceted group of long coiled-coil proteins in the cytoskeleton, nucleus, Golgi and cell division apparatus. The biophysical features of coiled-coil domains provide first clues toward their contribution to the diverse protein functions and promise potential future applications in the area of nanotechnology. Combining the power of fully sequenced genomes and structure prediction algorithms, it is now possible to comprehensively summarize and compare the complete inventory of coiled-coil proteins of different organisms.

  1. Toroidal and poloidal momentum transport studies in JET

    DEFF Research Database (Denmark)

    Tala, T.; Andrew, Y.; Crombe, K.

    2007-01-01

    of toroidal velocity using the Weiland model and GLF23 also confirm that the ratio chi(phi)/chi(i) approximate to 0.4 reproduces the core toroidal velocity profiles well and similar accuracy with the ion temperature profiles. Concerning poloidal velocities on JET, the experimental measurements show...... that the carbon poloidal velocity can be an order of magnitude above the neo-classical estimate within the ITB. This significantly affects the calculated radial electric field and therefore, the E x B flow shear used for example in transport simulations. Both the Weiland model and GLF23 reproduce the onset...

  2. Toroidal vortices as a solution to the dust migration problem

    CERN Document Server

    Loren-Aguilar, Pablo

    2015-01-01

    In an earlier letter, we reported that dust settling in protoplanetary discs may lead to a dynamical dust-gas instability that produces global toroidal vortices. In this letter, we investigate the evolution of a dusty protoplanetary disc with two different dust species (1 mm and 50 cm dust grains), under the presence of the instability. We show how toroidal vortices, triggered by the interaction of mm grains with the gas, stop the radial migration of metre-sized dust, potentially offering a natural and efficient solution to the dust migration problem.

  3. Reevaluation of the Braginskii viscous force for toroidal plasma

    CERN Document Server

    Johnson, Robert W

    2009-01-01

    The model by Braginskii for the viscous stress tensor is used to determine the shear and gyroviscous forces acting within a toroidally confined plasma. Comparison is made to previous evaluations which contain an inconsistent treatment of the radial derivative and neglect the effect of the pitch angle. A radial gyroviscous force is found to survive the limit of constant density and rigid toroidal rotation of the flux surface, and a radial shear viscous force may develop for sufficient vertical asymmetry to the ion velocity profile.

  4. Development and verification of printed circuit board toroidal transformer model

    DEFF Research Database (Denmark)

    Pejtersen, Jens; Mønster, Jakob Døllner; Knott, Arnold

    2013-01-01

    by comparing calculated parameters with 3D finite element simulations and experimental measurement results. The developed transformer model shows good agreement with the simulated and measured results. The model can be used to predict the parameters of printed circuit board toroidal transformer configurations......An analytical model of an air core printed circuit board embedded toroidal transformer configuration is presented. The transformer has been developed for galvanic isolation of very high frequency switch-mode dc-dc power converter applications. The theoretical model is developed and verified...

  5. Ion temperature gradient modes in toroidal helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [Graduate University for Advanced Studies, Toki, Gifu (Japan); Sugama, H.; Kanno, R.; Okamoto, M.

    2000-04-01

    Linear properties of ion temperature gradient (ITG) modes in helical systems are studied. The real frequency, growth rate, and eigenfunction are obtained for both stable and unstable cases by solving a kinetic integral equation with proper analytic continuation performed in the complex frequency plane. Based on the model magnetic configuration for toroidal helical systems like the Large Helical Device (LHD), dependences of the ITG mode properties on various plasma equilibrium parameters are investigated. Particularly, relative effects of {nabla}B-curvature drifts driven by the toroidicity and by the helical ripples are examined in order to compare the ITG modes in helical systems with those in tokamaks. (author)

  6. Comparative study between toroidal coordinates and the magnetic dipole field

    CERN Document Server

    Chávez-Alarcón, Esteban

    2012-01-01

    There is a similar behaviour between the toroidal coordinates and the dipole magnetic field produced by a circular loop. In this work we evaluate up to what extent the former can be used as a representation of the latter. While the tori in the toroidal coordinates have circular cross sections, those of the circular loop magnetic field are nearly elliptical ovoids, but they are very similar for large aspect ratios.The centres of the latter displace from the axis faster than the former. By making a comparison between tori of similar aspect ratios, we find quantitative criteria to evaluate the accuracy of the approximation.

  7. Repeats in transforming acidic coiled-coil (TACC) genes.

    Science.gov (United States)

    Trivedi, Seema

    2013-06-01

    Transforming acidic coiled-coil proteins (TACC1, 2, and 3) are essential proteins associated with the assembly of spindle microtubules and maintenance of bipolarity. Dysregulation of TACCs is associated with tumorigenesis, but studies of microsatellite instability in TACC genes have not been extensive. Microsatellite or simple sequence repeat instability is known to cause many types of cancer. The present in silico analysis of SSRs in human TACC gene sequences shows the presence of mono- to hexa-nucleotide repeats, with the highest densities found for mono- and di-nucleotide repeats. Density of repeats is higher in introns than in exons. Some of the repeats are present in regulatory regions and retained introns. Human TACC genes show conservation of many repeat classes. Microsatellites in TACC genes could be valuable markers for monitoring numerical chromosomal aberrations and or cancer.

  8. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  9. Effects of Toroidal Rotation Sshear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Podesta, M; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Heidbrink, W W; Crocker, N A; Kubota, S

    2010-08-19

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 557 (2000)]. The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  10. Transport and Dynamics in Toroidal Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sovinec, Carl [Univ. of Wisconsin, Madison, WI (United States)

    2016-09-07

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposed electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where

  11. Controlling the toroidal excitations in metamaterials for high-Q response

    CERN Document Server

    Fan, Yuancheng; Fu, Quanhong; Wei, Zeyong; Li, Hongqiang

    2016-01-01

    The excitation of toroidal multipoles in metamaterials was investigated for high-Q response at a subwavelength scale. In this study, we explored the optimization of toroidal excitations in a planar metamaterial comprised of asymmetric split ring resonators (ASRRs). It was found that the scattering power of toroidal dipole can be remarkably strengthened by adjusting the characteristic parameter of ASRRs: asymmetric factor. Interestingly, the improvement in toroidal excitation accompanies increasing of the Q-factor of the toroidal metamaterial, it is shown that both the scattering power of toroidal dipole and the Q-factor were increased near one order by changing the asymmetric factor of ASRRs. The optimization in excitation of toroidal multipoles provide opportunity to further increase the Q-factor of toroidal metamaterial and boost light-matter interactions at the subwavelength scale for potential applications in low-power nonlinear processing and sensitive photonic applications.

  12. Mobile Watermarking against Geometrical Distortions

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-08-01

    Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.

  13. Performance evaluation of matrix gradient coils.

    Science.gov (United States)

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  14. Quenching in coupled adiabatic coils

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.C.

    1985-03-01

    The prediction of the effects of a quench on stress and temperature is an important aspect of the design of superconducting magnets. Of particular interest, and the exclusive topic of this study, is the prediction of the effects of quenching in coupled adiabatic coils, such as the multi-section windings of a high field NMR spectrometer magnet. The predictive methods used here are based on the measurement of the time of propagation of quench between turns. From this measurement an approximate algorithum for the propagation time is used in a code which solves the linear differential equations for the coil currents and calculates the movement of normal zone boundaries and hence the associated winding resistance.

  15. Starch gelatinization in coiled heaters.

    Science.gov (United States)

    Kelder, J D H; Ptasinski, K J; Kerkhof, P J A M

    2004-01-01

    A gelatinizing model food derived from a 5% w/w cross-linked waxy maize starch suspension was simulated in coiled heaters to assess the impact of centrifugal forces on flow and heat transfer. For four coil diameters (D = 0.25, 1, 2.5, and infinity m) and three flow rates (w = 0.5, 1, and 2 m/s), heat transfer, viscous development, and the severity of channeling were evaluated. Increasing curvature proved to suppress channeling as a result of more uniform heating and gelatinization. The maximum attainable viscosity was also higher, implying a lower starch consumption for a target viscosity. Higher flow rates necessitated longer heaters, and the maximum viscosity decreased. Moderate product velocities are therefore recommended.

  16. Coiled transmission line pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  17. Homogeneous Construction of the Toroidal Lie Algebra of Type A1

    Institute of Scientific and Technical Information of China (English)

    Haifeng Lian; Cui Chen; Qinzhu Wen

    2007-01-01

    In this paper,we consider an analogue of the level two homogeneous construc-tion of the affine Kac-Moody algebra A1(1) by vertex operators.We construct modules for the toroidal Lie algebra and the extended toroidal Lie algebra of type A1.We also prove that the module is completely reducible for the extended toroidal Lie algebra.

  18. Observing and modelling the poloidal and toroidal magnetic fields of the global dynamo

    Science.gov (United States)

    Cameron, Robert; Duvall, Thomas; Schüssler, Manfred; Schunker, Hannah

    2017-08-01

    The large scale solar dynamo is a cycle where poloidal flux is generated from toroidal flux, and toroidal flux is generated from poloidal flux. The toroidal and poloidal fields can be inferred from observations, and the Babcock-Leighton model shows how differential rotation and flux emergence explain the observed evolution of the fields.

  19. Flat-band assembly for toroidal transformer cores

    Science.gov (United States)

    Mclyman, W. T.

    1973-01-01

    Toroidal transformer cores are often banded together by means of strap. Spot welds secure strap. Proper tension is obtained by use of special fixture in conjunction with winding of wire which is placed temporarily on core; winding is excited by dc current to hold core halves together magnetically during alignment.

  20. Theory of the M = 1 Kink Mode in Toroidal Plasma

    NARCIS (Netherlands)

    de Blank, H. J.; Schep, T. J.

    1991-01-01

    The energy principle of ideal magnetohydrodynamics (MHD) is used to study the ideal MHD stability of the m = 1 internal kink mode in a toroidal plasma. The equilibrium configurations that are considered allow for a broad region where the safety factor q is close to unity. This region may extend to t

  1. Plasma Processes : Minimum dissipative relaxed states in toroidal plasmas

    Indian Academy of Sciences (India)

    R Bhattacharyya; M S Janaki; B Dasgupta

    2000-11-01

    Relaxation of toroidal discharges is described by the principle of minimum energy dissipation together with the constraint of conserved global helicity. The resulting Euler-Lagrange equation is solved in toroidal coordinates for an axisymmetric torus by expressing the solutions in terms of Chandrasekhar-Kendall (C-K) eigenfunctions analytically continued in the complex domain. The C-K eigenfunctions are obtained as hypergeometric functions that are solutions of scalar Helmholtz equation in toroidal coordinates in the large aspect-ratio approximation. Equilibria are constructed by assuming the current to vanish at the edge of plasma. For the = 0; = 0 ( and are the poloidal and toroidal mode numbers respectively) relaxed states, the magnetic field, current, (safety factor) and pressure profiles are calculated for a given value of aspect-ratio of the torus and for different values of the eigenvalue 0. The new feature of the present model is that solutions allow for both tokamak as well as RFP-like behaviour with increase in the values of 0, which is related directly to volt-sec in the experiment.

  2. Stability of toroidal magnetic fields in stellar interiors

    CERN Document Server

    Ibañez-Mejia, Juan C

    2015-01-01

    We present 3D MHD simulations of purely toroidal and mixed poloidal-toroidal magnetic field configurations to study the behavior of the Tayler instability. For the first time the simultaneous action of rotation and magnetic diffusion are taken into account and the effects of a poloidal field on the dynamic evolution of unstable toroidal magnetic fields is included. In the absence of diffusion, fast rotation (rotation rate compared to Alfv\\'en frequency) is able to suppress the instability when the rotation and magnetic axes are aligned and when the radial field strength gradient p 1.5, rapid rotation does not suppress the instability but instead introduces a damping factor to the growth rate in agreement with the analytic predictions. For the mixed poloidal-toroidal fields we find an unstable axisymmetric mode, not predicted analytically, right at the stability threshold for the non-axisymmetric modes; it has been argued that an axisymmetric mode is necessary for the closure of the Tayler-Spruit dynamo loop.

  3. Theoretical studies of non inductive current drive in compact toroids

    NARCIS (Netherlands)

    Farengo, R; Lifschitz, AF; Caputi, KI; Arista, NR; Clemente, RA

    2002-01-01

    Three non inductive current drive methods that can be applied to compact toroids axe studied. The use of neutral beams to drive current in field reversed configurations and spheromaks is studied using a Monte Carlo code that includes a complete ionization package and follows the exact particle orbit

  4. Poloidal and toroidal plasmons and fields of multilayer nanorings

    Science.gov (United States)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.

    2017-04-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  5. Approximations for the natural logarithm from solenoid-toroid correspondence

    CERN Document Server

    Semiz, Ibrahim

    2015-01-01

    It seems reasonable that a toroid can be thought of approximately as a solenoid bent into a circle. The correspondence of the inductances of these two objects gives an approximation for the natural logarithm in terms of the average of two numbers. Different ways of averaging give different approximants. They are expressions simpler than Taylor polynomials, and are meaningful over a wider domain.

  6. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    DEFF Research Database (Denmark)

    Tala, T.; Zastrow, K.-D.; Ferreira, J.

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude an...

  7. Toroidal equilibrium in an iron-core reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.

    1984-04-01

    An analytical theory of toroidal equilibrium in the ZT-40M reversed field pinch is obtained, including effects of iron cores and resistive shell. The iron cores alter the form of the equilibrium condition and cause the equilibrium to be unstable on the shell resistive time scale.

  8. Speech distortion measure based on auditory properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo; HU Xiulin; ZHANG Yunyu; ZHU Yaoting

    2000-01-01

    The Perceptual Spectrum Distortion (PSD), based on auditory properties of human being, is presented to measure speech distortion. The PSD measure calculates the speech distortion distance by simulating the auditory properties of human being and converting short-time speech power spectrum to auditory perceptual spectrum. Preliminary simulative experiments in comparison with the Itakura measure have been done. The results show that the PSD measure is a perferable speech distortion measure and more consistent with subjective assessment of speech quality.

  9. Self-correction coil: operation mechanism of self-correction coil

    Energy Technology Data Exchange (ETDEWEB)

    Hosoyama, K.

    1983-06-01

    We discuss here the operation mechanism of self-correction coil with a simple model. At the first stage, for the ideal self-correction coil case we calculate the self-inductance L of self-correction coil, the mutual inductance M between the error field coil and the self-correction coil, and using the model the induced curent in the self-correction coil by the external magnetic error field and induced magnetic field by the self-correction coil. And at the second stage, we extend this calculation method to non-ideal self-correction coil case, there we realize that the wire distribution of self-correction coil is important to get the high enough self-correction effect. For measure of completeness of self-correction effect, we introduce the efficiency eta of self-correction coil by the ratio of induced magnetic field by the self-correction coil and error field. As for the examples, we calculate L, M and eta for two cases; one is a single block approximation of self-correction coil winding and the other is a two block approximation case. By choosing the adequate angles of self-correction coil winding, we can get about 98% efficiency for single block approximation case and 99.8% for two block approximation case. This means that by using the self-correction coil we can improve the field quality about two orders.

  10. SITMILARITY LAW FOR HYDRAULIC DISTORTED MODEL

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Newton's general similarity criterion was applied to the distorted model. The results for the similarities of gravity force, drag force and pressure force are identical with those derived from relevant differential equations of fluid flow. And the selected limits of the distorted ratio were studied and the simulation of roughness coefficient of distorted model was conducted by means of hydraulic test.

  11. Stability of the toroidicity-induced Alfven eigenmode in axisymmetric toroidal equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Fu, G.Y.; Cheng, C.Z.; Wong, K.L.

    1993-09-01

    The stability of toroidicity-induced Alfven eigenmodes (TAE) is investigated in general tokamak equilibria with finite aspect ratio and finite plasma beta. The finite orbit width of the hot particles and the collisional damping of the trapped electrons are included. For the trapped hot particles, the finite orbit width is found to be stabilizing. For the circulating hot particles, the finite orbit width effect is stabilizing for larger values of v{sub h}/v{sub A} (> 1) and destabilizing for smaller values of v{sub h}/v{sub A} (< 1), where v{sub h} is the hot particle speed and v{sub A} is the Alfven speed. The collisional damping of the trapped electrons is found to have a much weaker dependence on the collision frequency than the previous analytic results. The contribution of the curvature term to the trapped electron collisional damping is negligible compared to that of the parallel electric field term for typical parameters. The calculated critical hot particle beta values for the TAE instability are consistent with the experimental measurements.

  12. Coiled-coil protein composition of 22 proteomes – differences and common themes in subcellular infrastructure and traffic control

    Directory of Open Access Journals (Sweden)

    Meier Iris

    2005-11-01

    Full Text Available Abstract Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Results Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. Conclusion MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell.

  13. Mosquito coil emissions and health implications.

    Science.gov (United States)

    Liu, Weili; Zhang, Junfeng; Hashim, Jamal H; Jalaludin, Juliana; Hashim, Zailina; Goldstein, Bernard D

    2003-09-01

    Burning mosquito coils indoors generates smoke that can control mosquitoes effectively. This practice is currently used in numerous households in Asia, Africa, and South America. However, the smoke may contain pollutants of health concern. We conducted the present study to characterize the emissions from four common brands of mosquito coils from China and two common brands from Malaysia. We used mass balance equations to determine emission rates of fine particles (particulate matter pollutant concentrations resulting from burning mosquito coils could substantially exceed health-based air quality standards or guidelines. Under the same combustion conditions, the tested Malaysian mosquito coils generated more measured pollutants than did the tested Chinese mosquito coils. We also identified a large suite of volatile organic compounds, including carcinogens and suspected carcinogens, in the coil smoke. In a set of experiments conducted in a room, we examined the size distribution of particulate matter contained in the coil smoke and found that the particles were ultrafine and fine. The findings from the present study suggest that exposure to the smoke of mosquito coils similar to the tested ones can pose significant acute and chronic health risks. For example, burning one mosquito coil would release the same amount of PM(2.5) mass as burning 75-137 cigarettes. The emission of formaldehyde from burning one coil can be as high as that released from burning 51 cigarettes.

  14. Long-range magnetic response of toroidal boron structures: B16 and [Co@B16](-/3-) species.

    Science.gov (United States)

    Muñoz-Castro, Alvaro; Popov, Ivan A; Boldyrev, Alexander I

    2017-09-20

    A correlation between the long-range characteristics of the magnetic response of toroidal boron-based structures is given, involving the uncoordinated B16 cluster and the hypercoordinated [Co@B16](-/3-) counterparts. It is found that the perfectly symmetrical doubly aromatic systems share common features, involving a continuous shielding region for the orientation-averaged response (isotropic), and a long-ranged shielding cone under a perpendicularly oriented applied field (B). In contrast, the conflicting aromatic structure given by the slightly distorted species, exhibits an enhanced deshielding cone under B, which dominates the isotropic character of the response. In addition, [Mn@B16](-) and [Cu@B16](-) clusters were evaluated, denoting the role of the coordinated metal atom in such property. This information is valuable to account for a global magnetic response driven by the bonding pattern acting in each respective compound, and for the possible characterization of intermolecular aggregates or extended structures via NMR experiments.

  15. Science with CMB spectral distortions

    CERN Document Server

    Chluba, Jens

    2014-01-01

    The measurements of COBE/FIRAS have shown that the CMB spectrum is extremely close to a perfect blackbody. There are, however, a number of processes in the early Universe that should create spectral distortions at a level which is within reach of present day technology. In this talk, I will give a brief overview of recent theoretical and experimental developments, explaining why future measurements of the CMB spectrum will open up an unexplored window to early-universe and particle physics with possible non-standard surprises but also several guaranteed signals awaiting us.

  16. Harmonic Distortion in CMOS Current Mirrors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1998-01-01

    One of the origins of harmonic distortion in CMOS current mirrors is the inevitable mismatch between the MOS transistors involved. In this paper we examine both single current mirrors and complementary class AB current mirrors and develop an analytical model for the mismatch induced harmonic...... distortion. This analytical model is verified through simulations and is used for a discussion of the impact of mismatch on harmonic distortion properties of CMOS current mirrors. It is found that distortion levels somewhat below 1% can be attained by carefully matching the mirror transistors but ultra low...... distortion is not achievable with CMOS current mirrors...

  17. Analysis of Brown camera distortion model

    Science.gov (United States)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  18. Efficient excitation and tuning of toroidal dipoles within individual homogenous nanoparticles

    CERN Document Server

    Liu, Wei; Lei, Bing; Hu, Haojun; Miroshnichenko, Andrey E

    2015-01-01

    We revisit the fundamental topic of light scattering by single homogenous nanoparticles from the new perspective of excitation and manipulation of toroidal dipoles. It is revealed that besides within all-dielectric particles, toroidal dipoles can also be efficiently excited within homogenous metallic nanoparticles. Moreover, we show that those toroidal dipoles excited can be spectrally tuned through adjusting the radial anisotropy parameters of the materials, which paves the way for further more flexible manipulations of the toroidal responses within photonic systems. The study into toroidal multipole excitation and tuning within nanoparticles deepens our understanding of the seminal problem of light scattering, and may incubate many scattering related fundamental researches and applications.

  19. The coiled coils of cohesin are conserved in animals, but not in yeast.

    Directory of Open Access Journals (Sweden)

    Glenn E White

    Full Text Available BACKGROUND: The SMC proteins are involved in DNA repair, chromosome condensation, and sister chromatid cohesion throughout Eukaryota. Long, anti-parallel coiled coils are a prominent feature of SMC proteins, and are thought to serve as spacer rods to provide an elongated structure and to separate domains. We reported recently that the coiled coils of mammalian condensin (SMC2/4 showed moderate sequence divergence (approximately 10-15% consistent with their functioning as spacer rods. The coiled coils of mammalian cohesins (SMC1/3, however, were very highly constrained, with amino acid sequence divergence typically <0.5%. These coiled coils are among the most highly conserved mammalian proteins, suggesting that they make extensive contacts over their entire surface. METHODOLOGY/PRINCIPAL FINDINGS: Here, we broaden our initial analysis of condensin and cohesin to include additional vertebrate and invertebrate organisms and multiple species of yeast. We found that the coiled coils of SMC1/3 are highly constrained in Drosophila and other insects, and more generally across all animal species. However, in yeast they are no more constrained than the coils of SMC2/4 and Ndc80/Nuf2p, suggesting that they are serving primarily as spacer rods. CONCLUSIONS/SIGNIFICANCE: SMC1/3 functions for sister chromatid cohesion in all species. Since its coiled coils apparently serve only as spacer rods in yeast, it is likely that this is sufficient for sister chromatid cohesion in all species. This suggests an additional function in animals that constrains the sequence of the coiled coils. Several recent studies have demonstrated that cohesin has a role in gene expression in post-mitotic neurons of Drosophila, and other animal cells. Some variants of human Cornelia de Lange Syndrome involve mutations in human SMC1/3. We suggest that the role of cohesin in gene expression may involve intimate contact of the coiled coils of SMC1/3, and impose the constraint on sequence

  20. Optimum coil insertion speed of various coils in brain aneurysm embolization in vitro.

    Science.gov (United States)

    Konishi, Yoshifumi; Takeuchi, Masataka; Fukasaku, Kazuaki

    2016-10-01

    A coil must comprise material with shape memory to perform optimal coil embolization. To achieve this, the alloy characteristics of the coil (hardness, shape, and thickness) must be understood. In this experiment, a catheter was fixed in the bright position and the movement of the coil was observed under a constant rate of insertion; the optimal insertion rate during clinical use was investigated. The first coil insertion speed was evaluated using simulated aneurysms in an in vivo arterial model. The results showed that the insertion force relates to the deployment shape of the coil, that the feedback through the force indicator using sound is very effective, and that the recorder is useful for analysis of coil embolization. The inserted coils during aneurysm embolization were able to wind uniformly within the aneurysm due to a variety of factors (guiding or micro-catheter position and kick-back phenomenon such as delivery wire). Optimal speed is achieved with proper coil design, which allows the coil to be inserted into the aneurysm. The shape and size of the aneurysm can help determine the necessary size and design of the coil that should be used during the optimal speed range. Aneurysm wall and coil characteristics are considered, along with the friction state of the coil (hardness, shape, and thickness), leading to improvements in safety during the insertion procedure at optimum speed.

  1. Optimization of Plasma Performance by RWM Stabilization Using the I-Coil in DIII-D

    Science.gov (United States)

    Garofalo, A. M.; Navratil, G. A.; Reimerdes, H.; Jackson, G. L.; Jensen, T. H.; Schaffer, M. J.; Scoville, J. T.; Strait, E. J.; Turnbull, A. D.; Jayakumar, R. J.; Okabayashi, M.

    2003-10-01

    Stabilization of the resistive wall mode by plasma rotation has opened access to reliable tokamak operation at β above the n=1 no-wall limit. In order to maintain the fluid rotation speed that is necessary to stabilize the RWM, it is critical to avoid the braking produced by magnetic field asymmetries in this β regime. RWM feedback operation at high stable gain using the C-coil in DIII-D provided a method to determine the optimal correction of these magnetic field errors. The working paradigm was that the feedback system senses and opposes the resonant response of the stable RWM to the field asymmetries. The new internal control coil in DIII-D, the I-coil, has afforded us additional degrees of freedom for the poloidal and toroidal spectra of the external fields. Comparing the optimized magnetic configurations obtained with different spectra provides both a new test of our paradigm and information that can illustrate the mechanism by which field asymmetries interact with the plasma.

  2. A new meshless approach to map electromagnetic loads for FEM analysis on DEMO TF coil system

    Energy Technology Data Exchange (ETDEWEB)

    Biancolini, Marco Evangelos, E-mail: biancolini@ing.uniroma2.it [Università di Roma Tor Vergata, Dip. Ingegneria dell’Impresa “Mario Lucertini”, Via del Politecnico 1, 00133 Roma (Italy); Brutti, Carlo, E-mail: brutti@uniroma2.it [Università di Roma Tor Vergata, Dip. Ingegneria dell’Impresa “Mario Lucertini”, Via del Politecnico 1, 00133 Roma (Italy); Giorgetti, Francesco, E-mail: francesco.giorgetti@uniroma2.it [Università di Roma Tor Vergata, Dip. Ingegneria dell’Impresa “Mario Lucertini”, Via del Politecnico 1, 00133 Roma (Italy); Muzzi, Luigi, E-mail: luigi.muzzi@enea.it [ENEA, Laboratorio Superconduttività, Unità Tecnica Fusione, Via E. Fermi 45, 00044 Frascati (RM) (Italy); Turtù, Simonetta, E-mail: simonetta.turtu@enea.it [ENEA, Laboratorio Superconduttività, Unità Tecnica Fusione, Via E. Fermi 45, 00044 Frascati (RM) (Italy); Anemona, Alessandro, E-mail: alessandro.anemona@enea.it [ENEA, Laboratorio Superconduttività, Unità Tecnica Fusione, Via E. Fermi 45, 00044 Frascati (RM) (Italy)

    2015-11-15

    Graphical abstract: - Highlights: • Generation and mapping of magnetic load on DEMO using radial basis function. • Good agreement between RBF interpolation and EM TOSCA computations. • Resultant forces are stable with respect to the target mesh used. • Stress results are robust and accurate even if a coarse cloud is used for RBF interpolation. - Abstract: Demonstration fusion reactors (DEMO) are being envisaged to be able to produce commercial electrical power. The design of the DEMO magnets and of the constituting conductors is a crucial issue in the overall engineering design of such a large fusion machine. In the frame of the EU roadmap of the so-called fast track approach, mechanical studies of preliminary DEMO toroidal field (TF) coil system conceptual designs are being enforced. The magnetic field load acting on the DEMO TF coil conductor has to be evaluated as input in the FEM model mesh, in order to evaluate the stresses on the mechanical structure. To gain flexibility, a novel approach based on the meshless method of radial basis functions (RBF) has been implemented. The present paper describes this original and flexible approach for the generation and mapping of magnetic load on DEMO TF coil system.

  3. TFTR D&D Project: Final Examination and Testing of the TFTR TF-Coils

    Energy Technology Data Exchange (ETDEWEB)

    Irving J. Zatz

    2003-01-31

    In operation for nearly 15 years, TFTR (Tokamak Fusion Test Reactor) was not only a fusion science milestone, but a milestone of achievement in engineering as well. The TFTR D&D (Decommissioning and Decontamination) program provided a rare opportunity to examine machine components that had been exposed to a unique performance environment of greater than 100,000 mechanical and thermal load cycles. In particular, the possible examination of the TFTR toroidal-field (TF) coils, which met, then exceeded, the 5.2 Tesla magnetic field machine specification, could supply the answers to many questions that have been asked and debated since the coils were originally designed and built. A test program conducted in parallel with the D&D effort was the chance to look inside and examine, in detail, the TFTR TF coils for the first time since they were delivered encased to PPPL (Princeton Plasma Physics Laboratory). The results from such a program would provide data and insight that would not only be nefit PPPL and the fusion community, but the broader scientific community as well.

  4. TFTR D&D Project: Final Examination and Testing of the TFTR TF-Coils

    Energy Technology Data Exchange (ETDEWEB)

    Irving J. Zatz

    2003-01-31

    In operation for nearly 15 years, TFTR (Tokamak Fusion Test Reactor) was not only a fusion science milestone, but a milestone of achievement in engineering as well. The TFTR D&D (Decommissioning and Decontamination) program provided a rare opportunity to examine machine components that had been exposed to a unique performance environment of greater than 100,000 mechanical and thermal load cycles. In particular, the possible examination of the TFTR toroidal-field (TF) coils, which met, then exceeded, the 5.2 Tesla magnetic field machine specification, could supply the answers to many questions that have been asked and debated since the coils were originally designed and built. A test program conducted in parallel with the D&D effort was the chance to look inside and examine, in detail, the TFTR TF coils for the first time since they were delivered encased to PPPL (Princeton Plasma Physics Laboratory). The results from such a program would provide data and insight that would not only be nefit PPPL and the fusion community, but the broader scientific community as well.

  5. Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors

    Energy Technology Data Exchange (ETDEWEB)

    Tresemer, K. R.

    2015-07-01

    ITER is an international project under construction in France that will demonstrate nuclear fusion at a power plant-relevant scale. The Toroidal Interferometer and Polarimeter (TIP) Diagnostic will be used to measure the plasma electron line density along 5 laser-beam chords. This line-averaged density measurement will be input to the ITER feedback-control system. The TIP is considered the primary diagnostic for these measurements, which are needed for basic ITER machine control. Therefore, system reliability & accuracy is a critical element in TIP’s design. There are two major challenges to the reliability of the TIP system. First is the survivability and performance of in-vessel optics and second is maintaining optical alignment over long optical paths and large vessel movements. Both of these issues greatly depend on minimizing the overall distortion due to neutron & gamma heating of the Corner Cube Retroreflectors (CCRs). These are small optical mirrors embedded in five first wall locations around the vacuum vessel, corresponding to certain plasma tangency radii. During the development of the design and location of these CCRs, several iterations of neutronics analyses were performed to determine and minimize the total distortion due to nuclear heating of the CCRs. The CCR corresponding to TIP Channel 2 was chosen for analysis as a good middle-road case, being an average distance from the plasma (of the five channels) and having moderate neutron shielding from its blanket shield housing. Results show that Channel 2 meets the requirements of the TIP Diagnostic, but barely. These results suggest other CCRs might be at risk of exceeding thermal deformation due to nuclear heating.

  6. Unusually Stable Helical Coil Allotrope of Phosphorus.

    Science.gov (United States)

    Liu, Dan; Guan, Jie; Jiang, Jingwei; Tománek, David

    2016-12-14

    We have identified an unusually stable helical coil allotrope of phosphorus. Our ab initio density functional theory calculations indicate that the uncoiled, isolated straight one-dimensional chain is equally stable as a monolayer of black phosphorus dubbed phosphorene. The coiling tendency and the attraction between adjacent coil segments add an extra stabilization energy of ∼12 meV/atom to the coil allotrope, similar in value to the ∼16 meV/atom interlayer attraction in bulk black phosphorus. Thus, the helical coil structure is essentially as stable as black phosphorus, the most stable phosphorus allotrope known to date. With an optimum radius of 2.4 nm, the helical coil of phosphorus may fit well and even form inside wide carbon nanotubes.

  7. The Golgin Family of Coiled-Coil Tethering Proteins

    Directory of Open Access Journals (Sweden)

    Tomasz M Witkos

    2016-01-01

    Full Text Available The golgins are a family of predominantly coiled-coil proteins that are localized to the Golgi apparatus. Golgins are present in all eukaryotes, suggesting an evolutionary conserved function. Golgins are anchored to the Golgi membrane by their carboxy terminus and are predicted to adopt an extended conformation that projects into the surrounding cytoplasm. This arrangement is ideal for the capture or tethering of nearby membranes or cytoskeletal elements. Golgin-mediated tethering is thought to be important for vesicular traffic at the Golgi apparatus, the maintenance of Golgi architecture, as well as the positioning of the Golgi apparatus within cells. In addition to acting as tethers, some golgins can also sequester various factors at the Golgi membrane, allowing for the spatiotemporal regulation of downstream cellular functions. Although it is now established that golgins are membrane and cytoskeleton tethers, the mechanisms underlying tethering remain poorly defined. Moreover, the importance of golgin-mediated tethering in a physiological context remains to be fully explored. This review will describe our current understanding of golgin function, highlighting recent progress that has been made, and goes on to discuss outstanding questions and potential avenues for future research with regard to this family of conserved Golgi-associated proteins.

  8. Force modulated conductance of artificial coiled-coil protein monolayers.

    Science.gov (United States)

    Atanassov, Alexander; Hendler, Ziv; Berkovich, Inbal; Ashkenasy, Gonen; Ashkenasy, Nurit

    2013-01-01

    Studies of charge transport through proteins bridged between two electrodes have been the subject of intense research in recent years. However, the complex structure of proteins makes it difficult to elucidate transport mechanisms, and the use of simple peptide oligomers may be an over simplified model of the proteins. To bridge this structural gap, we present here studies of charge transport through artificial parallel coiled-coil proteins conducted in dry environment. Protein monolayers uniaxially oriented at an angle of ∼ 30° with respect to the surface normal were prepared. Current voltage measurements, obtained using conductive-probe atomic force microscopy, revealed the mechano-electronic behavior of the protein films. It was found that the low voltage conductance of the protein monolayer increases linearly with applied force, mainly due to increase in the tip contact area. Negligible compression of the films for loads below 26 nN allowed estimating a tunneling attenuation factor, β(0) , of 0.5-0.6 Å(-1) , which is akin to charge transfer by tunneling mechanism, despite the comparably large charge transport distance. These studies show that mechano-electronic behavior of proteins can shed light on their complex charge transport mechanisms, and on how these mechanisms depend on the detailed structure of the proteins. Such studies may provide insightful information on charge transfer in biological systems.

  9. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Cryogenic performance and numerical modeling of a helium refrigerator for the JT-60SA coil test facility

    Science.gov (United States)

    Serrand, Alexandre; Abdel-Maksoud, Walid; Genini, Laurent; Juster, François-Paul

    2014-01-01

    In the framework of the JT-60SA project, a cryogenic loop, dedicated to the tests of the JT-60SA Toroidal Field Coils, is planned to be installed at CEA Saclay. To analyze the dynamic thermal behavior of the cryogenic loop and to optimize the cryogenic process control of the coil test facility, dynamic simulations will be carried out with the software EcosimPro. This paper deals with the validation of the software. Experimental power measurements in pure refrigeration on a helium refrigerator have been compared to computations. Results are close and allow validating the software. The modeling of the JT-60SA CTF cryogenic test loop is also described in order to give an overview of the next computations.

  11. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    Science.gov (United States)

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  12. Multiple scattering expansion with distortion

    Science.gov (United States)

    Tandy, P. C.; Thaler, R. M.

    1980-12-01

    A multiple scattering description of elastic scattering is formulated in terms of impulsive scatterings from single target nucleons and pairs of target nucleons. In this description, distortion effects on the projectile from the residual medium are also described by multiple scattering in terms of the same single and pair amplitudes. At the level of single scattering, this procedure yields the first order optical potential result of Kerman, McManus, and Thaler. When scattering from both single nucleons and pairs of nucleons is included, the method leads to a one-body integral equation which requires the physical projectile-nucleon and projectile-pair transition amplitudes as input. This input is similar, but not exactly equivalent to that required by the spectator expansion for the optical potential truncated at second order. A principal advantage of the present formulation is that there need be no explicit dependence upon the projection operator Q which projects off the target ground state. This feature introduces a scaling which appears to be a direct extension of the first order Kerman, McManus, and Thaler type of scaling. We follow up suggestions arising in the foregoing to show that the exact optical potential to second order in the spectator expansion can also be cast into a form having no explicit dependence upon Q, and requiring physical projectile-nucleon and projectile-pair transition amplitudes as input. NUCLEAR REACTIONS Multiple scattering from single nucleons, pairs of nucleons in nucleus. Distortion from residual medium. Optical potential. spectator expansion.

  13. Biological motion distorts size perception

    Science.gov (United States)

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.

    2017-02-01

    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions - stimuli whose size is consistently misperceived - do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size.

  14. Biological motion distorts size perception

    Science.gov (United States)

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.

    2017-01-01

    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions – stimuli whose size is consistently misperceived – do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size. PMID:28205639

  15. Lens distortion calibration by explicit straight-line to distorted-line geometric mapping

    Science.gov (United States)

    Wu, Xianghai; Kofman, Jonathan

    2004-10-01

    Medium and wide-angle off-shelf cameras are often used in computer-vision applications despite their large lens distortion. Algorithms to correct for radial and tangential distortion are available; however, they often use non-linear optimization search methods that rely on carefully chosen starting points. This paper presents a method to correct for both radial symmetric lens distortion and decentering lens distortion using an iterative geometric approach to find the distortion center, and a closed-form solution for all other distortion parameters. The method is based on deriving an equivalent radial symmetric distortion model that accounts for both radial and tangential distortion. The technique uses the simple geometric relationship between a straight line and its distorted counterpart under this distortion model. The distortion calibration involves firstly determining the axis of symmetry of several distorted lines. The intersection of these axes is then computed and considered as the point of best radial symmetry (PBRS). The inclinations of the axes of symmetry of the distorted lines are then used in a closed-form solution to determine the distortion coefficients. One advantage of this approach is that higher-order coefficients can be included as needed, with their computation still achieved in closed form. The simplicity of the lens distortion calibration technique has been demonstrated in a simulation using synthetic images.

  16. An Experimental Study on Constraint Cooling Process of Hot-rolled CoilS

    Institute of Scientific and Technical Information of China (English)

    Lijuan WANG; Chunli ZHANG

    2003-01-01

    In order to master mechanical property, surface quality and microstructure of constraint cooling (CC) coils undervarious water cooling parameters, more than 100 coils cooling experiments were done with real production process,of which is designed a coolin

  17. Transport vesicle tethering at the trans Golgi network: coiled coil proteins in action

    Directory of Open Access Journals (Sweden)

    Pak-yan Patricia Cheung

    2016-03-01

    Full Text Available The Golgi complex is decorated with so-called Golgin proteins that share a common feature: a large proportion of their amino acid sequences are predicted to form coiled-coil structures. The possible presence of extensive coiled coils implies that these proteins are highly elongated molecules that can extend a significant distance from the Golgi surface. This property would help them to capture or trap inbound transport vesicles and to tether Golgi mini-stacks together. This review will summarize our current understanding of coiled coil tethers that are needed for the receipt of transport vesicles at the trans Golgi network. How do long tethering proteins actually catch vesicles? Golgi-associated, coiled coil tethers contain numerous binding sites for small GTPases, SNARE proteins, and vesicle coat proteins. How are these interactions coordinated and are any or all of them important for the tethering process? Progress towards understanding these questions and remaining, unresolved mysteries will be discussed.

  18. Numerically derived parametrisation of optimal RMP coil phase as a guide to experiments on ASDEX Upgrade

    Science.gov (United States)

    Ryan, D. A.; Liu, Y. Q.; Li, L.; Kirk, A.; Dunne, M.; Dudson, B.; Piovesan, P.; Suttrop, W.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    Edge localised modes (ELMs) are a repetitive MHD instability, which may be mitigated or suppressed by the application of resonant magnetic perturbations (RMPs). In tokamaks which have an upper and lower set of RMP coils, the applied spectrum of the RMPs can be tuned for optimal ELM control, by introducing a toroidal phase difference {{Δ }}{{Φ }} between the upper and lower rows. The magnitude of the outermost resonant component of the RMP field | {b}{{res}}1| (other proposed criteria are discussed herein) has been shown experimentally to correlate with mitigated ELM frequency, and to be controllable by {{Δ }}{{Φ }} (Kirk et al 2013 Plasma Phys. Control. Fusion 53 043007). This suggests that ELM mitigation may be optimised by choosing {{Δ }}{{Φ }}={{Δ }}{{{Φ }}}{{opt}}, such that | {b}{{res}}1| is maximised. However it is currently impractical to compute {{Δ }}{{{Φ }}}{{opt}} in advance of experiments. This motivates this computational study of the dependence of the optimal coil phase difference {{Δ }}{{{Φ }}}{{opt}}, on global plasma parameters {β }N and q 95, in order to produce a simple parametrisation of {{Δ }}{{{Φ }}}{{opt}}. In this work, a set of tokamak equilibria spanning a wide range of ({β }N, q 95) is produced, based on a reference equilibrium from an ASDEX Upgrade experiment. The MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681) is then used to compute {{Δ }}{{{Φ }}}{{opt}} across this equilibrium set for toroidal mode numbers n = 1-4, both for the vacuum field and including the plasma response. The computational scan finds that for fixed plasma boundary shape, rotation profiles and toroidal mode number n, {{Δ }}{{{Φ }}}{{opt}} is a smoothly varying function of ({β }N, q 95). A 2D quadratic function in ({β }N, q 95) is used to parametrise {{Δ }}{{{Φ }}}{{opt}}, such that for given ({β }N, q 95) and n, an estimate of {{Δ }}{{{Φ }}}{{opt}} may be made without requiring a plasma response computation. To quantify the uncertainty

  19. Suspension of a field-cooled BiPbSrCaCuO high-T sub c superconductor under a toroidal permanent magnet

    CERN Document Server

    Lee, S H; Choe, W; Lee, T S

    2002-01-01

    Magnetic flux measurements of a toroidal magnet revealed a concave-shaped field distribution with a single minimum and a null field along the axis of the torus at the point where the field reversed. The non-linear magnetic field of the toroidal magnet perpendicular to the Ag sub 2 O-doped superconducting disc sample with trapped magnetic flux distorted the field line distribution. As a result, the interaction force between the magnet and the sample exhibited regions of repulsive, null, attractive, null and finally repulsive force. The asymmetrical concave-shaped force pattern along the axis with two null force points indicates that the force exerted on the sample changes direction, the transition from repulsive to attractive at the null force point, and the force becomes repulsive again beyond the second null force point as the distance along the axis increases. The magnetic field simulation using the Poisson numerical code for the toroidal magnet of 46 mm OD, 12 mm ID and 10 mm thickness was in close agreeme...

  20. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  1. Quasars a supermassive rotating toroidal black hole interpretation

    CERN Document Server

    Spivey, R J

    2000-01-01

    A supermassive rotating toroidal black hole (TBH) is proposed as the fundamental structure of quasars and other jet-producing active galactic nuclei. Rotating protogalaxies gather matter from the central gaseous region leading to the birth of massive toroidal stars whose internal nuclear reactions proceed very rapidly. Once the nuclear fuel is spent, gravitational collapse produces a slender ring-shaped TBH remnant. These events are typically the first supernovae of the host galaxies. Given time the TBH mass increases through continued accretion by several orders of magnitude, the event horizon swells whilst the central aperture shrinks. The difference in angular velocities between the accreting matter and the TBH induces a magnetic field that is strongest in the region of the central aperture and innermost ergoregion. Due to the presence of negative energy states when such a gravitational vortex is immersed in an electromagnetic field, circumstances are near ideal for energy extraction via non-thermal radiat...

  2. Initial value problem of the toroidal ion temperature gradient mode

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T.; Sugama, H.; Kanno, R.; Okamoto, M. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W.

    1998-06-01

    The initial value problem of the toroidal ion temperature gradient mode is studied based on the Laplace transform of the ion gyrokinetic equation and the electron Boltzmann relation with the charge neutrality condition. Due to the toroidal magnetic drift, the Laplace-transformed density and potential perturbations have a branch cut as well as poles on the complex-frequency plane. The inverse Laplace transform shows that the temporal evolution of the density and potential perturbations consists of the normal modes and the continuum mode, which correspond to contributions from the poles and the branch cut, respectively. The normal modes have exponential time dependence with the eigenfrequencies determined by the dispersion relation while the continuum mode shows power-law decay oscillation. For the stable case, the long-time asymptotic behavior of the potential and density perturbations is dominated by the continuum mode which decays slower than the normal modes. (author)

  3. Low-frequency fluctuations in a pure toroidal magnetized plasma

    Indian Academy of Sciences (India)

    P K Sharma; R Singh; D Bora

    2009-12-01

    A magnetized, low- plasma in pure toroidal configuration is formed and extensively studied with ion mass as control parameter. Xenon, krypton and argon plasmas are formed at a fixed toroidal magnetic field of 0.024 T, with a peak density of ∼ 1011 cm-3, ∼ 4 × 1010 cm-3 and ∼ 2 × 1010 cm−3 respectively. The experimental investigation of time-averaged plasma parameter reveals that their profiles remain insensitive to ion mass and suggests that saturated slab equilibrium is obtained. Low-frequency (LF) coherent fluctuations ( < ci) are observed and identified as flute modes. Here ci represents ion cyclotron frequency. Our results indicate that these modes get reduced with ion mass. The frequency of the fluctuating mode decreases with increase in the ion mass. Further, an attempt has been made to discuss the theory of flute modes to understand the relevance of some of our experimental observations.

  4. Toroidal magnetized iron neutrino detector for a neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Bross, A.; Wands, R.; Bayes, R.; Laing, A.; Soler, F. J. P.; Cervera Villanueva, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Burguet-Castell, J.

    2013-08-01

    A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mass. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $\\theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $\\delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $\\delta_{CP}$.

  5. Turbulent acceleration and heating in toroidal magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Garbet, X.; Esteve, D.; Sarazin, Y.; Abiteboul, J.; Bourdelle, C.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G. [CEA, IRFM, F-13108 St. Paul-lez-Durance cedex (France); Smolyakov, A. [Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2 (Canada)

    2013-07-15

    It is shown that turbulence is responsible for a source of momentum, which cannot be recast as a divergence of a momentum flux. This process is similar to turbulent heating, with similar properties. The sum over all species vanishes up to polarization contributions. Hence, toroidal momentum is transferred from species to species, mediated by turbulence. As for momentum flux, symmetry breaking is needed. Flow shear is investigated as a source of symmetry breaking, leading to a source of momentum proportional to the shear rate. Turbulent acceleration is significant for ion species. It is found that it is proportional to the charge number Z, while turbulent heating scales as Z{sup 2}/A, where A is the mass number. It is maximum in the edge, where the E × B flow shear rate and turbulence intensity are maximum. When both are large enough, the turbulent torque may overcome the collisional friction between impurities and main ions, thus leading to different toroidal velocities.

  6. Turbulent acceleration and heating in toroidal magnetized plasmas

    Science.gov (United States)

    Garbet, X.; Esteve, D.; Sarazin, Y.; Abiteboul, J.; Bourdelle, C.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.

    2013-07-01

    It is shown that turbulence is responsible for a source of momentum, which cannot be recast as a divergence of a momentum flux. This process is similar to turbulent heating, with similar properties. The sum over all species vanishes up to polarization contributions. Hence, toroidal momentum is transferred from species to species, mediated by turbulence. As for momentum flux, symmetry breaking is needed. Flow shear is investigated as a source of symmetry breaking, leading to a source of momentum proportional to the shear rate. Turbulent acceleration is significant for ion species. It is found that it is proportional to the charge number Z, while turbulent heating scales as Z2/A, where A is the mass number. It is maximum in the edge, where the E × B flow shear rate and turbulence intensity are maximum. When both are large enough, the turbulent torque may overcome the collisional friction between impurities and main ions, thus leading to different toroidal velocities.

  7. Reevaluation of the Braginskii viscous force for toroidal plasma

    Science.gov (United States)

    Johnson, Robert W.

    2011-12-01

    The model by Braginskii [1] (Braginskii, S. I. 1965 Transport processes in plasma. In: Review of Plasma Physics, Vol. 1 (ed. M.A. Leontovich). New York, NY: Consultants Bureau, pp. 205-311) for the viscous stress tensor is used to determine the shear and gyroviscous forces acting within a toroidally confined plasma. Comparison is made to a previous evaluation, which contains an inconsistent treatment of the radial derivative and neglects the effect of the pitch angle. Parallel viscosity contributes a radial shear viscous force, which may develop for sufficient vertical asymmetry to the ion velocity profile. An evaluation is performed of this radial viscous force for a tokamak near equilibrium, which indicates qualitative agreement between theory and measurement for impure plasma discharges with strong toroidal flow.

  8. Precession of Toroidally Passing Particles in Tokamaks and Spherical Tori

    Energy Technology Data Exchange (ETDEWEB)

    Ya.I. Kolesnichenko; R.B.White; Yu.V. Yakovenko

    2003-01-30

    The toroidal precession of the well-circulating particles and particles that are passing toroidally but trapped poloidally is studied. Expressions for the precession frequency, which are convenient for practical use, are obtained and analyzed. It is found that the key parameters that determine the magnitude and the direction of the precession velocity are the plasma elongation, the magnitudes and profiles of the safety factor and beta defined as the ratio of the local plasma pressure to the magnetic field pressure at the magnetic axis. An important role of the ''paramagnetic'' precession in highly elongated plasmas is revealed. The analysis carried out is based on the obtained expressions for the equilibrium magnetic field strength and the field line curvature.

  9. Radial transport of toroidal angular momentum in tokamaks

    CERN Document Server

    Calvo, Ivan

    2014-01-01

    The radial flux of toroidal angular momentum is needed to determine tokamak intrinsic rotation profiles. Its computation requires knowledge of the gyrokinetic distribution functions and turbulent electrostatic potential to second-order in $\\epsilon = \\rho/L$, where $\\rho$ is the ion Larmor radius and $L$ is the variation length of the magnetic field. In this article, a complete set of equations to calculate the radial transport of toroidal angular momentum in any tokamak is presented. In particular, the $O(\\epsilon^2)$ equations for the turbulent components of the distribution functions and electrostatic potential are given for the first time without assuming that the poloidal magnetic field over the magnetic field strength is small.

  10. Modelling of density limit phenomena in toroidal helical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, S.-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Giannone, L. [Max Planck Institut fuer Plasmaphysik, EURATOM-IPP Association, Garching (Germany)

    2000-03-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the W7-AS stellarator. (author)

  11. Modelling of density limit phenomena in toroidal helical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Giannone, Louis [EURATOM-IPP Association, Max Planck Institut fuer Plasmaphysik, Garching (Germany)

    2001-11-01

    The physics of density limit phenomena in toroidal helical plasmas based on an analytic point model of toroidal plasmas is discussed. The combined mechanism of the transport and radiation loss of energy is analyzed, and the achievable density is derived. A scaling law of the density limit is discussed. The dependence of the critical density on the heating power, magnetic field, plasma size and safety factor in the case of L-mode energy confinement is explained. The dynamic evolution of the plasma energy and radiation loss is discussed. Assuming a simple model of density evolution, of a sudden loss of density if the temperature becomes lower than critical value, then a limit cycle oscillation is shown to occur. A condition that divides the limit cycle oscillation and the complete radiation collapse is discussed. This model seems to explain the density limit oscillation that has been observed on the Wendelstein 7-AS (W7-AS) stellarator. (author)

  12. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  13. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, Jeremy D., E-mail: jwilbur@msg.ucsf.edu [Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States); Hwang, Peter K. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Brodsky, Frances M. [The G. W. Hooper Foundation, Departments of Microbiology and Immunology and of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Fletterick, Robert J. [Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 (United States); Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143 (United States); Graduate Program in Biophysics, University of California, San Francisco, California 94143 (United States)

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  14. Miniature anastigmatic spectrometer design with a concave toroidal mirror.

    Science.gov (United States)

    Dong, Jianing; Chen, He; Zhang, Yinchao; Chen, Siying; Guo, Pan

    2016-03-01

    An advanced optical design for a low-cost and astigmatism-corrected spectrometer with a high resolution is presented. The theory and method of astigmatism correction are determined with the use of a concave toroidal mirror. The performances of a modified spectrometer and a traditional spectrometer are compared, and the analysis is verified. Experimentally, the limiting resolution of our spectrometer is 0.1 nm full width at half-maximum, as measured for 579.1 nm.

  15. Radial Eigenmodes for a Toroidal Waveguide with Rectangular Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Rui Li

    2012-07-01

    In applying mode expansion to solve the CSR impedance for a section of toroidal vacuum chamber with rectangular cross section, we identify the eigenvalue problem for the radial eigenmodes which is different from that for cylindrical structures. In this paper, we present the general expressions of the radial eigenmodes, and discuss the properties of the eigenvalues on the basis of the Sturm-Liouville theory.

  16. Dynamic Dazzle Distorts Speed Perception.

    Directory of Open Access Journals (Sweden)

    Joanna R Hall

    Full Text Available Static high contrast ('dazzle' patterns, such as zigzags, have been shown to reduce the perceived speed of an object. It has not escaped our notice that this effect has possible military applications and here we report a series of experiments on humans, designed to establish whether dynamic dazzle patterns can cause distortions of perceived speed sufficient to provide effective defence in the field, and the extent to which these effects are robust to a battery of manipulations. Dynamic stripe patterns moving in the same direction as the target are found to increase the perceived speed of that target, whilst dynamic stripes moving in the opposite direction to the target reduce the perceived speed. We establish the optimum position for such dazzle patches; confirm that reduced contrast and the addition of colour do not affect the performance of the dynamic dazzle, and finally, using the CO2 challenge, show that the effect is robust to stressful conditions.

  17. Toroidal Continuously Variable Transmission Systems: Terminology and Present Studies

    Directory of Open Access Journals (Sweden)

    Ahmet YILDIZ

    2014-04-01

    Full Text Available The use of continuously variable transmission systems in many different areas such as aerospace, robotics, machinery and automotive industries as an alternative to conventional speed changers with constant ratio becomes widely.Especially in the automotive industry, these systems have been used increasingly, since they enable that internal combustion engines in vehicles run at optimal speeds, and consequently provide considerable fuel savings and therefore lower emission values and also they provide powerful acceleration and quiet working. CVT systems have several constructive variants such as belted, chained, balled, toroidal etc. In this paper, toroidal CVT systems based on elastohydrodynamic principles are concerned with, and fundamental works of last two decades in this field are reviewed. However, the relevant terminology and dynamics along with the control of these systems are briefly treated for better understanding of the literature mentioned. Attention is drawn to the lack of some significant issues in present research works, and potential future works are pointed out. This paper, to the authors’ knowledge, will be the first review on toroidal CVT systems in Turkish literature

  18. The Geometry on Smooth Toroidal Compactifications of Siegel varieties

    CERN Document Server

    Yau, Shing-Tung

    2012-01-01

    This is a part of our joint program. The purpose of this paper is to study smooth toroidal compactifications of Siegel varieties and their applications, we also try to understand the K\\"ahler-Einstein metrics on Siegel varieties through the compactifications. Let $A_{g,\\Gamma}:=H_g/\\Gamma$ be a Siegel variety, where $H_g$ is the genus-$g$ Siegel space and $\\Gamma$ is an arithmetic subgroup in $\\Aut(H_g)$. There are four aspects of this paper : 1.There is a correspondence between the category of degenerations of Abelian varieties and the category of limits of weight one Hodge structures. We show that any cusp of Siegel space $\\frak{H}_g$ can be identified with the set of certain weight one polarized mixed Hodge structures. 2.In general, the boundary of a smooth toroidal compactification $\\bar{A}_{g,\\Gamma}$ of $A_{g,\\Gamma}$ has self-intersections.For most geometric applications, we would like to have a nice toroidal compactification such that the added infinity boundary $D_\\infty =\\bar{A}_{g,\\Gamma}-A_{g,\\Gam...

  19. Microscopic distorted wave theory of inelastic scattering

    Science.gov (United States)

    Picklesimer, A.; Tandy, P. C.; Thaler, R. M.

    1982-03-01

    An exact microscopic distorted wave theory of inelastic scattering is formulated which contains the physical picture usually associated with distorted wave approximations without the usual redundancy. This formulation encompasses the inelastic scattering of two fragments, elementary or composite (both with or without the full complexity of interfragment Pauli symmetries). The fact that these considerations need not be based upon elementary potential interactions is an indication of the generality of the approach and supports its applicability to inelastic meson scattering. The theory also maintains a description of inelastic scattering which is a natural extension of the description of elastic scattering and it provides a general basis for obtaining truncation models with an explicit distorted wave structure. The distorted wave impulse approximation is presented as an example of a particular truncation/approximation encompassed by this theory and the nature of the distorted waves is explicated. NUCLEAR REACTIONS Distorted wave theory, inelastic scattering, multiple scattering, spectator expansion, Pauli exclusion principle, composite particles, unitarity structure.

  20. 49 CFR 236.730 - Coil, receiver.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Coil, receiver. 236.730 Section 236.730 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Coil, receiver. Concentric layers of insulated wire wound around the core of a receiver of an...

  1. Operator coil monitoring Acceptance Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Erhart, M.F.

    1995-05-16

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software`s ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ``ENABLE`` and ``DISABLE`` controls from the Master and RSS stations function correctly, and only with the use of proper passwords.

  2. Evidence-based pathology: umbilical cord coiling.

    Science.gov (United States)

    Khong, T Y

    2010-12-01

    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  3. Coil Optimization for High Temperature Superconductor Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    2011-01-01

    This paper presents topology optimization of HTS racetrack coils for large HTS synchronous machines. The topology optimization is used to acquire optimal coil designs for the excitation system of 3 T HTS machines. Several tapes are evaluated and the optimization results are discussed. The optimiz...

  4. Functional investigation of the plant-specific long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Sowmya Venkatakrishnan

    Full Text Available We have identified and characterized two Arabidopsis long coiled-coil proteins PAMP-INDUCED COILED-COIL (PICC and PICC-LIKE (PICL. PICC (147 kDa and PICL (87 kDa are paralogs that consist predominantly of a long coiled-coil domain (expanded in PICC, with a predicted transmembrane domain at the immediate C-terminus. Orthologs of PICC and PICL were found exclusively in vascular plants. PICC and PICL GFP fusion proteins are anchored to the cytoplasmic surface of the endoplasmic reticulum (ER membrane by a C-terminal transmembrane domain and a short tail domain, via a tail-anchoring mechanism. T-DNA-insertion mutants of PICC and PICL as well as the double mutant show an increased sensitivity to the plant abiotic stress hormone abscisic acid (ABA in a post-germination growth response. PICC, but not PICL gene expression is induced by the bacterial pathogen-associated molecular pattern (PAMP flg22. T-DNA insertion alleles of PICC, but not PICL, show increased susceptibility to the non-virulent strain P. syringae pv. tomato DC3000 hrcC, but not to the virulent strain P. syringae pv. tomato DC3000. This suggests that PICC mutants are compromised in PAMP-triggered immunity (PTI. The data presented here provide first evidence for the involvement of a plant long coiled-coil protein in a plant defense response.

  5. Magnetic Fields at the Center of Coils

    Science.gov (United States)

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  6. Cognitive Distortions, Humor Styles, and Depression

    Directory of Open Access Journals (Sweden)

    Katerina Rnic

    2016-08-01

    Full Text Available Cognitive distortions are negative biases in thinking that are theorized to represent vulnerability factors for depression and dysphoria. Despite the emphasis placed on cognitive distortions in the context of cognitive behavioural theory and practice, a paucity of research has examined the mechanisms through which they impact depressive symptomatology. Both adaptive and maladaptive styles of humor represent coping strategies that may mediate the relation between cognitive distortions and depressive symptoms. The current study examined the correlations between the frequency and impact of cognitive distortions across both social and achievement-related contexts and types of humor. Cognitive distortions were associated with reduced use of adaptive Affiliative and Self-Enhancing humor styles and increased use of maladaptive Aggressive and Self-Defeating humor. Reduced use of Self-Enhancing humor mediated the relationship between most types of cognitive distortions and depressed mood, indicating that distorted negative thinking may interfere with an individual’s ability to adopt a humorous and cheerful outlook on life (i.e., use Self-Enhancing humor as a way of regulating emotions and coping with stress, thereby resulting in elevated depressive symptoms. Similarly, Self-Defeating humor mediated the association of the social impact of cognitive distortions with depression, such that this humor style may be used as a coping strategy for dealing with distorted thinking that ultimately backfires and results in increased dysphoria.

  7. Cognitive Distortions, Humor Styles, and Depression

    Science.gov (United States)

    Rnic, Katerina; Dozois, David J. A.; Martin, Rod A.

    2016-01-01

    Cognitive distortions are negative biases in thinking that are theorized to represent vulnerability factors for depression and dysphoria. Despite the emphasis placed on cognitive distortions in the context of cognitive behavioural theory and practice, a paucity of research has examined the mechanisms through which they impact depressive symptomatology. Both adaptive and maladaptive styles of humor represent coping strategies that may mediate the relation between cognitive distortions and depressive symptoms. The current study examined the correlations between the frequency and impact of cognitive distortions across both social and achievement-related contexts and types of humor. Cognitive distortions were associated with reduced use of adaptive Affiliative and Self-Enhancing humor styles and increased use of maladaptive Aggressive and Self-Defeating humor. Reduced use of Self-Enhancing humor mediated the relationship between most types of cognitive distortions and depressed mood, indicating that distorted negative thinking may interfere with an individual’s ability to adopt a humorous and cheerful outlook on life (i.e., use Self-Enhancing humor) as a way of regulating emotions and coping with stress, thereby resulting in elevated depressive symptoms. Similarly, Self-Defeating humor mediated the association of the social impact of cognitive distortions with depression, such that this humor style may be used as a coping strategy for dealing with distorted thinking that ultimately backfires and results in increased dysphoria. PMID:27547253

  8. NMR local coil with adjustable spacing

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, G.T.

    1988-03-22

    A local coil assembly for use in NMR imaging is described which comprises: a base; a first local coil module mounted to the base and extending upward therefrom; sockets disposed in the base, each at a different distance from the first local coil module; a second local coil module having a connector therein which mates with each of the sockets to enable the second local coil module to be connected to the base at any one of the sockets; and a set of reactive components. The values of the respective reactive components are selected such that the second local oil module may be connected to any of the sockets without any substantial change in the resonant frequency of the assembly.

  9. A study on geometry effect of transmission coil for micro size magnetic induction coil

    Science.gov (United States)

    Lee, Kyung Hwa; Jun, Byoung Ok; Kim, Seunguk; Lee, Gwang Jun; Ryu, Mingyu; Choi, Ji-Woong; Jang, Jae Eun

    2016-05-01

    The effects of transmission (Tx) coil structure have been studied for micro-size magnetic induction coil. The size of the receiving (Rx) coil should be shrunk to the micrometer level for the various new applications such as micro-robot and wireless body implanted devices. In case of the macro-scale magnetic induction coil, the power transmission efficiency is generally considered to be higher as the inductance of the transmission coil became larger; however, the large size difference between macro-size Tx coil and micro-size Rx coil can decrease the power transmission efficiency due to the difference of resonance frequency. Here, we study a correlation of the power transmission with the size and distance between the macro-size Tx and micro-size Rx coils using magnetic induction technique. The maximum power efficiency was 0.28/0.23/0.13/0.12% at the distance of 0.3/1/3/5 cm between Rx and Tx coil. In addition, more efficient wireless power transferring method is suggested with a floating coil for the body implantable devices. The voltage output increased up to 5.4 mV than the original one Tx coil system. The results demonstrated the foundational wireless power transferring system with enhanced power efficiency.

  10. Detection of alpha-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C-terminus.

    Science.gov (United States)

    Hillar, Alexander; Tripet, Brian; Zoetewey, David; Wood, Janet M; Hodges, Robert S; Boggs, Joan M

    2003-12-30

    Electron paramagnetic resonance spectroscopy was used to determine relative peptide orientation within homodimeric, alpha-helical coiled-coil structures. Introduction of cysteine (Cys) residues into peptides/proteins for spin labeling allows detection of their oligomerization from exchange broadening or dipolar interactions between residues within 25 A of each other. Two synthetic peptides containing Cys substitutions were used: a 35-residue model peptide and the 30-residue ProP peptide. The model peptide is known to form a stable, parallel homodimeric coiled coil, which is partially destabilized by Cys substitutions at heptad a and d positions (peptides C30a and C33d). The ProP peptide, a 30-residue synthetic peptide, corresponds to residues 468-497 of osmoregulatory transporter ProP from Escherichia coli. It forms a relatively unstable, homodimeric coiled coil that is predicted to be antiparallel in orientation. Cys was introduced in heptad g positions of the ProP peptide, near the N-terminus (K473C, creating peptide C473g) or closer to the center of the sequence (E480C, creating peptide C480g). In contrast to the destabilizing effect of Cys substitution at the core heptad a or d positions of model peptides C30a and C33d, circular dichroism spectroscopy showed that Cys substitutions at the heptad g positions of the ProP peptide had little or no effect on coiled-coil stability. Thermal denaturation analysis showed that spin labeling increased the stability of the coiled coil for all peptides. Strong exchange broadening was detected for both C30a and C33d, in agreement with a parallel structure. EPR spectra of C480g had a large hyperfine splitting of about 90 G, indicative of strong dipole-dipole interactions and a distance between spin-labeled residues of less than 9 A. Spin-spin interactions were much weaker for C473g. These results supported the hypothesis that the ProP peptide primarily formed an antiparallel coiled coil, since formation of a parallel dimer

  11. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems

    Science.gov (United States)

    Hekmati, Arsalan; Hekmati, Rasoul

    2016-12-01

    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  12. Current diffusion and normal zone propagation inside the aluminum stabilized superconductor of ATLAS model coil

    CERN Document Server

    Boxman, E W; Pellegatta, M; ten Kate, H H J

    2003-01-01

    The normal zone propagation inside the B/sub O/ model coil of the ATLAS Toroidal magnet has been measured over a large range of applied currents. Typical values for the longitudinal propagation vary from 0.3 to 15 m/s at 8 and 24 kA, respectively. A new analytical expression for the longitudinal quench propagation inside superconducting cables is presented. It describes the propagation inside superconducting wires as well as the propagation inside large stabilized superconductors. It is found that in the limit case of high currents, the stabilizer functions only as a heat-sink. The model is compared to experimental data and a good correlation is found. (10 refs).

  13. Influence of reactor irradiation on the mechanical behavior of ITER TF coil candidate insulation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bittner-Rohrhofer, K. E-mail: kbittner@ati.ac.at; Humer, K.; Fillunger, H.; Maix, R.K.; Wang, Z.D.; Weber, H.W

    2003-09-01

    Extensive material tests have to be performed in order to obtain information on the radiation induced change in the mechanical behavior of insulating materials for the ITER Toroidal Field (TF) coil. The investigated insulation systems are R-glass fiber reinforced tapes, vacuum impregnated with a DGEBA epoxy resin and interleafed with Kapton H-foils. According to the actual operating conditions of ITER-FEAT, the systems were irradiated in the TRIGA reactor (Vienna, Austria) to neutron fluences of 5x10{sup 21} and 1x10{sup 22} m{sup -2} (E>0.1 MeV). Static tensile, short-beam-shear (SBS) as well as double-lap-shear (DLS) tests were carried out at 77 K prior to and after irradiation. Furthermore, results on swelling and weight loss as well as on the material properties under tension-tension fatigue loading conditions are presented.

  14. Integrated RF/shim coil array for parallel reception and localized B0 shimming in the human brain.

    Science.gov (United States)

    Truong, Trong-Kha; Darnell, Dean; Song, Allen W

    2014-12-01

    The purpose of this work was to develop a novel integrated radiofrequency and shim (RF/shim) coil array that can perform parallel reception and localized B0 shimming in the human brain with the same coils, thereby maximizing both the signal-to-noise ratio and shimming efficiency. A 32-channel receive-only head coil array was modified to enable both RF currents (for signal reception) and direct currents (for B0 shimming) to flow in individual coil elements. Its in vivo performance was assessed in the frontal brain region, which is affected by large susceptibility-induced B0 inhomogeneities. The coil modifications did not reduce their quality factor or signal-to-noise ratio. Axial B0 maps and echo-planar images acquired in vivo with direct currents optimized to shim specific slices showed substantially reduced B0 inhomogeneities and image distortions in the frontal brain region. The B0 root-mean-square error in the anterior half of the brain was reduced by 60.3% as compared to that obtained with second-order spherical harmonic shimming. These results demonstrate that the integrated RF/shim coil array can perform parallel reception and localized B0 shimming in the human brain and provide a much more effective shimming than conventional spherical harmonic shimming alone, without taking up additional space in the magnet bore and without compromising the signal-to-noise ratio or shimming performance.

  15. The Quadratic Gaussian Rate-Distortion Function for Source Uncorrelated Distortions

    CERN Document Server

    Derpich, Milan S; Goodwin, Graham C

    2008-01-01

    We characterize the rate-distortion function for zero-mean stationary Gaussian sources under the MSE fidelity criterion and subject to the additional constraint that the distortion is uncorrelated to the input. The solution is given by two equations coupled through a single scalar parameter. This has a structure similar to the well known water-filling solution obtained without the uncorrelated distortion restriction. Our results fully characterize the unique statistics of the optimal distortion. We also show that, for all positive distortions, the minimum achievable rate subject to the uncorrelation constraint is strictly larger than that given by the un-constrained rate-distortion function. This gap increases with the distortion and tends to infinity and zero, respectively, as the distortion tends to zero and infinity.

  16. Toroidal cell and battery. [storage battery for high amp-hour load applications

    Science.gov (United States)

    Nagle, W. J. (Inventor)

    1981-01-01

    A toroidal storage battery designed to handle relatively high amp-hour loads is described. The cell includes a wound core disposed within a pair of toroidal channel shaped electrodes spaced apart by nylon insulator. The shape of the case electrodes of this toroidal cell allows a first planar doughnut shaped surface and the inner cylindrical case wall to be used as a first electrode and a second planar doughnut shaped surface and the outer cylindrical case wall to be used as a second electrode. Connectors may be used to stack two or more toroidal cells together by connecting substantially the entire surface area of the first electrode of a first cell to substantially the entire surface area of the second electrode of a second cell. The central cavity of each toroidal cell may be used as a conduit for pumping a fluid through the toroidal cell to thereby cool the cell.

  17. Studies on Mixed Slab-Toroidal Electron Temperature Gradient Mode Instabilities in the Columbia Linear Machine

    Science.gov (United States)

    Balbaky, Abed

    This thesis investigates the behavior of electron temperature gradient (ETG) driven instabilities in the Columbia Linear Machine (CLM). Building on prior work in CLM, the primary goal of this research is to produce, identify, and illuminate the basic physics of these instabilities, and explore the behavior of these instabilities under the presence of trapping and curved magnetic field lines. The first part of this thesis is focused on studying the saturated ETG mode, and the general behavior of the mode under varying levels of magnetic curvature. Measuring ETG modes can be problematic since they have large real frequencies, fast growth rates (~MHz) and small spatial scales, but carefully designed probe diagnostics can overcome these limits. In order to produce curved magnetic field lines, we modified CLM to operate with an internal movable mirror coil. We determined the temperature and density profiles under varying curvature, and measured changes in the mode structure and frequency. We found small changes in the azimuthal/poloidal structure and frequency, characterized by an increase in the m-number (mslab˜10-13 and Deltam˜1), along with small changes in the axial/toroidal structure (k∥∥, curvature reactors, where these is a continued push for energy efficiency. A specially designed triple probe has been developed, which can measure fluctuations in temperature and potential simultaneously, with a high frequency and special resolution suitable for ETG studies. We present an experimental scaling of radial transport as a function of magnetic field curvature, again one of the first of its kind. Our findings indicate a modest increase in radial transport (˜2x) with increased curvature, but unlike saturated mode amplitudes, we find that radial transport saturates for higher levels of curvature in CLM.

  18. Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices

    Science.gov (United States)

    Evans, T. E.

    2015-12-01

    Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δ b\\bot\\text{ext}≈ {{10}-4}\\to {{10}-3}~\\text{T} ). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes (ELMs). At the same time, theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design (Loarte et al 2014 Nucl. Fusion 54 033007). This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.

  19. The distorted tropane of scopoline.

    Science.gov (United States)

    Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Basterretxea, Francisco J; Fernández, José A; Castaño, Fernando

    2013-06-24

    The structural isomerization of scopine into scopoline (oscine) has been observed in a supersonic jet expansion using microwave spectroscopy. The rotational spectrum evidences a single structure in the gas phase, providing a first description of the (three-ring) structurally distorted tropane in scopoline. The absence of rotational signatures of any scopine conformation suggests a practically quantitative isomerization at the vaporization temperatures of the experiment (ca. 90 °C). The determined rotational parameters of scopoline reveal the structural consequences of the intramolecular cyclation of scopine, which breaks the original epoxy group and creates a new ether bridge and a 7β-hydroxytropane configuration. The hydroxy group further stabilizes the molecule by an O-H⋅⋅⋅N intramolecular hydrogen bond, which, in turn, forces the N-methyl group to the less stable axial form. Supporting ab initio (MP2) and DFT (B3LYP, M06-2X) calculations are included. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Traversable wormholes in distorted gravity

    Science.gov (United States)

    Garattini, Remo

    2015-07-01

    In this paper, we consider the effects of distorted gravity on the traversability of the wormholes. In particular, we consider configurations which are sustained by their own gravitational quantum fluctuations. The Ultraviolet divergences appearing to one loop are taken under control with the help of a Noncommutative geometry representation and gravity's rainbow. In this context, it will be shown that for every framework, the self-sustained equation will produce a Wheeler wormhole, namely a wormhole of Planckian size. This means that, from the point of view of traversability, the wormhole will be traversable in principle, but not in practice. For this purpose, in the context of gravity's rainbow we have considered different proposals of rainbow's functions to see if the smallness of the wormhole is dependent on the chosen form of the rainbow's function. Unfortunately, we discover that this is not the case and we suggest that the self-sustained equation can be improved to see if the wormhole radius can be enlarged or not. Some consequences on topology change are discussed.

  1. Traversable Wormholes in Distorted Gravity

    CERN Document Server

    Garattini, Remo

    2015-01-01

    We consider the effects of Distorted Gravity on the traversability of the wormholes. In particular, we consider configurations which are sustained by their own gravitational quantum fluctuations. The Ultra-Violet divergences appearing to one loop are taken under control with the help of a Noncommutative geometry representation and Gravity's Rainbow. In this context, it will be shown that for every framework, the self-sustained equation will produce a Wheeler wormhole, namely a wormhole of Planckian size. This means that, from the point of view of traversability, the wormhole will be traversable in principle, but not in practice. To this purpose, in the context of Gravity's Rainbow we have considered different proposals of rainbow's functions to see if the smallness of the wormhole is dependent on the chosen form of the rainbow's function. Unfortunately, we discover that this is not the case and we suggest that the self-sustained equation can be improved to see if the wormhole radius can be enlarged or not. So...

  2. Simultaneous formation of right- and left-handed anti-parallel coiled-coil interfaces by a coil2 fragment of human lamin A.

    Science.gov (United States)

    Kapinos, Larisa E; Burkhard, Peter; Herrmann, Harald; Aebi, Ueli; Strelkov, Sergei V

    2011-04-22

    The elementary building block of all intermediate filaments (IFs) is a dimer featuring a central α-helical rod domain flanked by the N- and C-terminal end domains. In nuclear IF proteins (lamins), the rod domain consists of two coiled-coil segments, coil1 and coil2, that are connected by a short non-helical linker. Coil1 and the C-terminal part of coil2 contain the two highly conserved IF consensus motifs involved in the longitudinal assembly of dimers. The previously solved crystal structure of a lamin A fragment (residues 305-387) corresponding to the second half of coil2 has yielded a parallel left-handed coiled coil. Here, we present the crystal structure and solution properties of another human lamin A fragment (residues 328-398), which is largely overlapping with fragment 305-387 but harbors a short segment of the tail domain. Unexpectedly, no parallel coiled coil forms within the crystal. Instead, the α-helices are arranged such that two anti-parallel coiled-coil interfaces are formed. The most significant interface has a right-handed geometry, which is accounted for by a characteristic 15-residue repeat pattern that overlays with the canonical heptad repeat pattern. The second interface is a left-handed anti-parallel coiled coil based on the predicted heptad repeat pattern. In solution, the fragment reveals only a weak dimerization propensity. We speculate that the C-terminus of coil2 might unzip, thereby allowing for a right-handed coiled-coil interface to form between two laterally aligned dimers. Such an interface might co-exist with a heterotetrameric left-handed coiled-coil assembly, which is expected to be responsible for the longitudinal A(CN) contact.

  3. PARTICLE-HOLE NATURE OF THE LIGHT HIGH-SPIN TOROIDAL ISOMERS

    Energy Technology Data Exchange (ETDEWEB)

    Staszczak, A. [Maria Curie-Sklodowska University, Poland; Wong, Cheuk-Yin [ORNL

    2015-01-01

    Nuclei under non-collective rotation with a large angular momentum above some threshold can assume a toroidal shape. In our previous work, we showed by using cranked Skyrme Hartree Fock approach that even even, N = Z, high-K, toroidal isomeric states may have general occurrences for light nuclei with 28 < A < 52. We present here some additional results and systematics on the particle-hole nature of these high-spin toroidal isomers.

  4. N@a and N@d: Oligomer and Partner Specification by Asparagine in Coiled-Coil Interfaces.

    Science.gov (United States)

    Fletcher, Jordan M; Bartlett, Gail J; Boyle, Aimee L; Danon, Jonathan J; Rush, Laura E; Lupas, Andrei N; Woolfson, Derek N

    2017-02-17

    The α-helical coiled coil is one of the best-studied protein-protein interaction motifs. As a result, sequence-to-structure relationships are available for the prediction of natural coiled-coil sequences and the de novo design of new ones. However, coiled coils adopt a wide range of oligomeric states and topologies, and our understanding of the specification of these and the discrimination between them remains incomplete. Gaps in our knowledge assume more importance as coiled coils are used increasingly to construct biomimetic systems of higher complexity; for this, coiled-coil components need to be robust, orthogonal, and transferable between contexts. Here, we explore how the polar side chain asparagine (Asn, N) is tolerated within otherwise hydrophobic helix-helix interfaces of coiled coils. The long-held view is that Asn placed at certain sites of the coiled-coil sequence repeat selects one oligomer state over others, which is rationalized by the ability of the side chain to make hydrogen bonds, or interactions with chelated ions within the coiled-coil interior of the favored state. We test this with experiments on de novo peptide sequences traditionally considered as directing parallel dimers and trimers, and more widely through bioinformatics analysis of natural coiled-coil sequences and structures. We find that when located centrally, rather than near the termini of such coiled-coil sequences, Asn does exert the anticipated oligomer-specifying influence. However, outside of these bounds, Asn is observed less frequently in the natural sequences, and the synthetic peptides are hyperthermostable and lose oligomer-state specificity. These findings highlight that not all regions of coiled-coil repeat sequences are equivalent, and that care is needed when designing coiled-coil interfaces.

  5. Self-Compassion and Interpersonal Cognitive Distortions

    Science.gov (United States)

    Akin, Ahmet

    2010-01-01

    The purpose of this study is to examine the relationships between self-compassion and interpersonal cognitive distortions. Participants were 338 university students. In this study, the Self-compassion Scale and the Interpersonal Cognitive Distortions Scale were used. The relationships between self-compassion and interpersonal cognitive distortions…

  6. Spaced-based search coil magnetometers

    Science.gov (United States)

    Hospodarsky, George B.

    2016-12-01

    Search coil magnetometers are one of the primary tools used to study the magnetic component of low-frequency electromagnetic waves in space. Their relatively small size, mass, and power consumption, coupled with a good frequency range and sensitivity, make them ideal for spaceflight applications. The basic design of a search coil magnetometer consists of many thousands of turns of wire wound on a high permeability core. When a time-varying magnetic field passes through the coil, a time-varying voltage is induced due to Faraday's law of magnetic induction. The output of the coil is usually attached to a preamplifier, which amplifies the induced voltage and conditions the signal for transmission to the main electronics (usually a low-frequency radio receiver). Search coil magnetometers are usually used in conjunction with electric field antenna to measure electromagnetic plasma waves in the frequency range of a few hertz to a few tens of kilohertzs. Search coil magnetometers are used to determine the properties of waves, such as comparing the relative electric and magnetic field amplitudes of the waves, or to investigate wave propagation parameters, such as Poynting flux and wave normal vectors. On a spinning spacecraft, they are also sometimes used to determine the background magnetic field. This paper presents some of the basic design criteria of search coil magnetometers and discusses design characteristics of sensors flown on a number of spacecraft.

  7. Switching transients in a superconducting coil

    Energy Technology Data Exchange (ETDEWEB)

    Owen, E.W.; Shimer, D.W.

    1983-11-18

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed.

  8. Microscopic distorted wave theory of inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Picklesimer, A.; Tandy, P.C.; Thaler, R.M.

    1982-03-01

    An exact microscopic distorted wave theory of inelastic scattering is formulated which contains the physical picture usually associated with distorted wave approximations without the usual redundancy. This formulation encompasses the inelastic scattering of two fragments, elementary or composit (both with or without the full complexity of interfragment Pauli symmetries). The fact that these considerations need not be based upon elementary potential interactions is an indication of the generality of the approach and supports its applicability to inelastic meson scattering. This theory also maintains a description of inelastic scattering which is a natural extension of the description of elastic scattering and it provides a general basis for obtaining truncation models with an explicit distorted wave structure. This distorted wave impulse approximation is presented as an example of a particular truncation/approximation encompassed by this theory and the nature of the distorted waves is explicated.

  9. Hybrid distortion function for JPEG steganography

    Science.gov (United States)

    Wang, Zichi; Zhang, Xinpeng; Yin, Zhaoxia

    2016-09-01

    A hybrid distortion function for JPEG steganography exploiting block fluctuation and quantization steps is proposed. To resist multidomain steganalysis, both spatial domain and discrete cosine transformation (DCT) domain are involved in the proposed distortion function. In spatial domain, a distortion value is allotted for each 8×8 block according to block fluctuation. In DCT domain, quantization steps are employed to allot distortion values for DCT coefficients in a block. The two elements, block distortion and quantization steps, are combined together to measure the embedding risk. By employing the syndrome trellis coding to embed secret data, the embedding changes are constrained in complex regions, where modifications are hard to be detected. When compared to current state-of-the-art steganographic methods for JPEG images, the proposed method presents less detectable artifacts.

  10. TPC track distortions III: fiat lux

    CERN Document Server

    Boyko, I; Dydak, F; Elagin, A; Gostkin, M; Guskov, A; Koreshev, V; Nefedov, Y; Nikolaev, K; Veenhof, R; Wotschack, J; Zhemchugov, A

    2005-01-01

    We present a comprehensive overview and final summary of all four types of static track distortions seen in the HARP TPC, in terms of physical origins, mathematical modelling, and correction algorithms. 'Static'™ distortions are defined as not depending on the event time within the 400 ms long accelerator spill. Calculated static distortions are compared with measurements from cosmic-muon tracks. We characterize track distortions by the r phi residuals of cluster positions with respect to the transverse projection of a helical trajectory constrained by hits in the RPC overlap regions. This method provides a fixed TPC-external reference system (by contrast to the co-moving coordinate system associated with a fit) which solely permits to identify individually, and measure quantitatively, the static TPC track distortions arising from (i) the inhomogeneity of the solenoidal magnetic field, (ii) the inhomogeneity of the electric field from the high-voltage mismatch between the inner and outer TPC field cages, (...

  11. Crystal structure of a coiled-coil domain from human ROCK I.

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    Full Text Available The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK, participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535-700. The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620 are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.

  12. Crystal Structure of the Central Coiled-Coil Domain from Human Liprin-[beta]2

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, Ryan L.; Tang, Ming-Yun; Sawaya, Michael R.; Phillips, Martin L.; Bowie, James U. (UCLA)

    2012-02-07

    Liprins are a conserved family of scaffolding proteins important for the proper regulation and development of neuronal synapses. Humans have four liprin-{alpha}s and two liprin-{beta}s which all contain long coiled-coil domains followed by three tandem SAM domains. Complex interactions between the coiled-coil and SAM domains are thought to create liprin scaffolds, but the structural and biochemical properties of these domains remain largely uncharacterized. In this study we find that the human liprin-{beta}2 coiled-coil forms an extended dimer. Several protease-resistant subdomains within the liprin-{beta}1 and liprin-{beta}2 coiled-coils were also identified. A 2.0 {angstrom} crystal structure of the central, protease-resistant core of the liprin-{beta}2 coiled-coil reveals a parallel helix orientation. These studies represent an initial step toward determining the overall architecture of liprin scaffolds and understanding the molecular basis for their synaptic functions.

  13. Coil migration after endovascular coil occlusion of internal carotid artery pseudoaneurysms within the sphenoid sinus.

    Science.gov (United States)

    Struffert, T; Buhk, J H; Buchfelder, M; Rohde, V; Doerfler, A; Knauth, M

    2009-04-01

    We report two cases of coil migration after endovascular treatment of pseudoaneurysm of the internal carotid artery within the sphenoid sinus with coils and noncovered stents. Two patients underwent sphenoid sinus exposure for pituitary adenoma and chronic infection, respectively. As a complication pseudoaneurysms of the internal carotid artery within the sphenoid sinus developed. One patient was treated with stent and coils, the second with coils alone. Both patients experienced coil migration after 9 and 26 months, respectively, with the necessity for further treatment. Imaging was performed using flat detector computed tomography (FD-CT). Literature review revealed two additional cases of coil migration and four patients with the same treatment in stable condition. Pseudoaneurysms of the internal carotid artery are a special entity and the environment of the aneurysm within the sphenoid sinus may change over a long time. Coil embolization may lead to the late onset complication of coil migration with the possible risk of acute epistaxis. As a consequence, these patients need a careful and prolonged follow up. FD-CT is an appropriate technique to visualize the implanted coils and if present the migration of coil material.

  14. The comparative analysis of the different mechanisms of toroidal rotation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sabot, R. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Parail, V. [Kurchatov Institute, Moscow (Russian Federation)

    1994-07-01

    The toroidal plasma rotation appears as one the possible mechanism for suppression of plasma turbulence. Several mechanisms are believed to contribute to the toroidal plasma rotation. The results of numerical simulation of the toroidal rotation on JET are presented, where are taken into consideration the following effects: the neoclassical viscosity due to banana and ripple trapped particles, the anomalous viscosity due to plasma turbulence, the momentum input by NBI (neutron beam injection) and ion momentum loss near the separatrix due to prompt ion losses. The NBI appeared to be the principal source of toroidal plasma rotation. 6 refs., 2 figs.

  15. Scattering integral equations for distorted transition operators

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K.L.; Siciliano, E.R.; Thaler, R.M.

    1978-11-01

    Methods for embedding phenomenological distorted-wave techniques for rearrangement and inelastic scattering within well-defined theories of multiparticle scattering are developed. The essential point of contact between the two approaches is in the definition and choice of distorting potential. It is shown that the concept of a channel coupling scheme allows a comparative freedom of choice for these potentials; if they are connected operators, such as optical potentials, then it is possible to obtain connected-kernel equations for the distorted transition operators. The latter are introduced in the course of exploiting the two-potential formula for the full transition operator and have the property that their matrix elements with respect to distorted waves are the physical scattering amplitudes. It is found that the distorted counterparts of the Kouri, Levin, and Tobocman and the Bencze-Redish integral equations maintain their connected-kernel and minimally coupled properties. These equations can be used to derive other integral equations with the same properties for the distorted-wave operators which consist of the product of the distorted transition operators and the wave operators corresponding to distorted waves. These simplifications are not realized for arbitrary channel coupling schemes. In order to deal with the general situation an alternative approach employing a subtraction technique which involves projections on the bound two-cluster channel states is introduced. When the distorting potentials are essentially the optical potentials in the entrance and exit channels a set of multichannel two-particle Lippmann-Schwinger integral equations for the two-cluster distorted-wave transition operators are obtained. Input into these two-particle integral equations involves the solution of a modified N-particle equation. Approximations to the latter are discussed in the particular cases of the Kouri, Levin, and Tobocman and Bencze-Redish channel coupling schemes.

  16. Distortion-free magnetic resonance imaging in the zero-field limit.

    Science.gov (United States)

    Kelso, Nathan; Lee, Seung-Kyun; Bouchard, Louis-S; Demas, Vasiliki; Mück, Michael; Pines, Alexander; Clarke, John

    2009-10-01

    MRI is a powerful technique for clinical diagnosis and materials characterization. Images are acquired in a homogeneous static magnetic field much higher than the fields generated across the field of view by the spatially encoding field gradients. Without such a high field, the concomitant components of the field gradient dictated by Maxwell's equations lead to severe distortions that make imaging impossible with conventional MRI encoding. In this paper, we present a distortion-free image of a phantom acquired with a fundamentally different methodology in which the applied static field approaches zero. Our technique involves encoding with pulses of uniform and gradient field, and acquiring the magnetic field signals with a SQUID. The method can be extended to weak ambient fields, potentially enabling imaging in the Earth's field without cancellation coils or shielding. Other potential applications include quantum information processing and fundamental studies of long-range ferromagnetic interactions.

  17. Distortion-free magnetic resonance imaging in the zero-field limit

    Energy Technology Data Exchange (ETDEWEB)

    Kelso, Nathan; Lee, Seung-Kyun; Bouchard, Louis-S.; Demas, Vasiliki; Muck, Michael; Pines, Alexander; Clarke, John

    2009-07-09

    MRI is a powerful technique for clinical diagnosis and materials characterization. Images are acquired in a homogeneous static magnetic field much higher than the fields generated across the field of view by the spatially encoding field gradients. Without such a high field, the concomitant components of the field gradient dictated by Maxwell's equations lead to severe distortions that make imaging impossible with conventional MRI encoding. In this paper, we present a distortion-free image of a phantom acquired with a fundamentally different methodology in which the applied static field approaches zero. Our technique involves encoding with pulses of uniform and gradient field, and acquiring the magnetic field signals with a SQUID. The method can be extended to weak ambient fields, potentially enabling imaging in the Earth's field without cancellation coils or shielding. Other potential applications include quantum information processing and fundamental studies of long-range ferromagnetic interactions.

  18. Observation of Central Toroidal Rotation Induced by ICRF on EAST

    Science.gov (United States)

    Pan, Xiayun; Wang, Fudi; Zhang, Xinjun; Lyu, Bo; Chen, Jun; Li, Yingying; Fu, Jia; Shi, Yuejiang; Yu, Yi; Ye, Minyou; Wan, Baonian

    2016-02-01

    Core plasma rotation of both L-mode and H-mode discharges with ion cyclotron range of frequency (ICRF) minority heating (MH) scheme was measured with a tangential X-ray imaging crystal spectrometer on EAST (Experimental Advanced Superconducting Tokamak). Co-current central impurity toroidal rotation change was observed in ICRF-heated L- and H-mode plasmas. Rotation increment as high as 30 km/s was generated at ∼1.7 MW ICRF power. Scaling results showed similar trend as the Rice scaling but with significant scattering, especially in L-mode plasmas. We varied the plasma current, toroidal field and magnetic configuration individually to study their effect on L-mode plasma rotation, while keeping the other major plasma parameters and heating unchanged during the scanning. It was found that larger plasma current could induce plasma rotation more efficiently. A scan of the toroidal magnetic field indicated that the largest rotation was obtained for on-axis ICRF heating. A comparison between lower-single-null (LSN) and double-null (DN) configurations showed that LSN discharges rendered a larger rotation change for the same power input and plasma parameters. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB112004 and 2015GB103002), National Natural Science Foundation of China (Nos. 11175208, 11305212, 11375235, 11405212 and 11261140328), the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2014FXCX003) and Brain Korea 21 Program for Leading Universities & Students (BK21 PLUS)

  19. Superconducting coil development and motor demonstration: Overview

    Science.gov (United States)

    Gubser, D. U.

    1995-12-01

    Superconducting bismuth-cuprate wires, coils, and magnets are being produced by industry as part of a program to test the viability of using such magnets in Naval systems. Tests of prototype magnets, coils, and wires reveal progress in commercially produced products. The larger magnets will be installed in an existing superconducting homopolar motor and operated initially at 4.2K to test the performance. It is anticipated that approximately 400 Hp will be achieved by the motor. This article reports on the initial tests of the magnets, coils, and wires as well as the development program to improve their performance.

  20. Magnetic field mapper based on rotating coils

    CERN Document Server

    AUTHOR|(CDS)2087244; Arpaia, Pasquale

    This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.

  1. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    Science.gov (United States)

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects.

  2. Position indicating split toroid for the RACE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, B. [Nuclear Engineering Teaching Laboratory, University of Texas, 10100 Burnet Road, Austin, TX 78758 (United States)]. E-mail: bhurst@mail.utexas.edu; Folkman, K. [Idaho Accelerator Center, Idaho State University, Pocatello, ID 83201 (United States)

    2007-08-15

    Aspects of the recent reactor accelerator coupled experiments (RACE) carried out at University of Texas Nuclear Engineering Teaching Laboratory will be discussed. In particular, a compact instrument that allowed a continuous non-invasive means of determining the relative electron beam position was developed. The operation of the instrument is similar to an inductive current pick up toroid except that the core is sectioned radially, which allows spatial information to be derived from the induced voltages. Results of initial tests, both in beam and with a pulser, will be presented along with plans to optimize future designs.

  3. Fabrication of toroidal composite pressure vessels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, W.G.; Escalona, A.

    1996-11-24

    A method for fabricating composite pressure vessels having toroidal geometry was evaluated. Eight units were fabricated using fibrous graphite material wrapped over a thin-walled aluminum liner. The material was wrapped using a machine designed for wrapping, the graphite material was impregnated with an epoxy resin that was subsequently thermally cured. The units were fabricated using various winding patterns. They were hydrostatically tested to determine their performance. The method of fabrication was demonstrated. However, the improvement in performance to weight ratio over that obtainable by an all metal vessel probably does not justify the extra cost of fabrication.

  4. Stationary motion of a self gravitating toroidal incompressible liquid layer

    CERN Document Server

    Fusco, Giorgio; Oliva, Waldyr M

    2012-01-01

    We consider an incompressible fluid contained in a toroidal stratum which is only subjected to Newtonian self-attraction. Under the assumption of infinitesimal tickness of the stratum we show the existence of stationary motions during which the stratum is approximatly a round torus (with radii r, R and R>>r) that rotates around its axis and at the same time rolls on itself. Therefore each particle of the stratum describes an helix-like trajectory around the circumference of radius R that connects the centers of the cross sections of the torus.

  5. Total and paired domination numbers of toroidal meshes

    CERN Document Server

    Hu, Fu-Tao

    2011-01-01

    Let $G$ be a graph without isolated vertices. The total domination number of $G$ is the minimum number of vertices that can dominate all vertices in $G$, and the paired domination number of $G$ is the minimum number of vertices in a dominating set whose induced subgraph contains a perfect matching. This paper determines the total domination number and the paired domination number of the toroidal meshes, i.e., the Cartesian product of two cycles $C_n$ and $C_m$ for any $n\\ge 3$ and $m\\in\\{3,4\\}$, and gives some upper bounds for $n, m\\ge 5$.

  6. Experimental observation of crystalline particle flows in toroidal dust clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Jochen, E-mail: wilms@physik.uni-kiel.de; Piel, Alexander [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany); Reichstein, Torben [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany); DME, Kiel University of Applied Sciences, Grenzstr. 3, D-24147 Kiel (Germany)

    2015-06-15

    The dust flow in a toroidal dust trap is studied experimentally. The flow is driven by the Hall component of the ion drag force in a magnetized plasma. Dust density waves are found in a torus with a large minor radius a, which allows for several wavelength, 2a>5λ, in the (mostly) radial direction of the ion flow. Beyond an intermediate state with radial sloshing oscillations, a crystalline dust flow with suppressed wave activity could be realized for 2a<2λ. The particles arrange themselves in distinct layers with hexagonal-like local order. Smooth transitions between states with different numbers of layers are found in the inhomogeneous flow.

  7. Simulation of dust streaming in toroidal traps: Stationary flows

    Energy Technology Data Exchange (ETDEWEB)

    Reichstein, Torben; Piel, Alexander [IEAP, Christian-Albrechts-Universitaet, D-24098 Kiel (Germany)

    2011-08-15

    Molecular-dynamic simulations were performed to study dust motion in a toroidal trap under the influence of the ion drag force driven by a Hall motion of the ions in E x B direction, gravity, inter-particle forces, and friction with the neutral gas. This article is focused on the inhomogeneous stationary streaming motion. Depending on the strength of friction, the spontaneous formation of a stationary shock or a spatial bifurcation into a fast flow and a slow vortex flow is observed. In the quiescent streaming region, the particle flow features a shell structure which undergoes a structural phase transition along the flow direction.

  8. Toroidal equilibrium with low frequency wave driven currents

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.A.

    1984-12-01

    In the absence of an emf the parallel current, j/sub parallel/, in a steady state tokamak will consist of a neoclassical portion plus a wave-driven contribution. Using the drift kinetic equation, the quasilinear (wave-driven) current is computed for high phase speed waves in a torus, and this is combined with the neoclassical term to obtain the general expression for the flux surface average . For a given pressure profile this technique fully determines the MHD equilibrium, permitting the study of a new class of toroidal equilibria.

  9. D{sup -} energy spectrum in toroidal quantum ring

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, C A; Gutierrez, W; Garcia, L F [Universidad Industrial de Santander, Bucaramanga (Colombia); Marin, J H, E-mail: jhmarin@unal.edu.c [Universidad Nacional-Colombia, Medellin-Colombia, AA3840 (Colombia)

    2009-05-01

    The structure of energy spectrum of the negative donor centre in a toroidal-shaped quantum ring with two different morphologies of the cross-section is analyzed. By using the adiabatic procedure we have deduced a one-dimensional wave equation with periodic conditions which describes the low-lying energy levels related to the electrons rotation around the symmetry axis. Our results are in good agreement with those previously obtained as the size of the ring cross-section tends to zero.

  10. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    Science.gov (United States)

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.

  11. A toroidal inductor integrated in a standard CMOS process

    DEFF Research Database (Denmark)

    Vandi, Luca; Andreani, Pietro; Temporiti, Enrico

    2007-01-01

    are followed and the results are compared; this comparison provides useful guidelines for the design of the device. A very simple PI model for low frequencies is derived from 1-port and 2-port measurements, and a good matching with general theory is observed. The coil exhibits an inductance between 0.9 n...

  12. Helical coil thermal hydraulic model

    Science.gov (United States)

    Caramello, M.; Bertani, C.; De Salve, M.; Panella, B.

    2014-11-01

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model.

  13. Coil measurement data acquisition and curing press control system for SSC dipole magnet coils

    Energy Technology Data Exchange (ETDEWEB)

    Dickey, C.E.

    1989-03-01

    A coil matching program, similar in theory to the methods used to match Tevatron coils, is being developed at Fermilab. Modulus of elasticity and absolute coil size will be determined at 18-inch intervals along the coils while in the coil curing press immediately following the curing process. A data acquisition system is under construction to automatically acquire and manage the large quantities of data that result. Data files will be transferred to Fermilab's VAX Cluster for long-term storage and actual coil matching. The data acquisition system will also provide the control algorithm for the curing press hydraulic system. A description of the SSC Curing Press Data Acquisition and Controls System will be reported. 20 figs.

  14. Coil geometry effects on scanning single-coil magnetic induction tomography

    Science.gov (United States)

    Feldkamp, Joe R.; Quirk, Stephen

    2017-09-01

    Alternative coil designs for single coil magnetic induction tomography are considered in this work, with the intention of improving upon the standard design used previously. In particular, we note that the blind spot associated with this coil type, a portion of space along its axis where eddy current generation can be very weak, has an important effect on performance. The seven designs tested here vary considerably in the size of their blind spot. To provide the most discerning test possible, we use laboratory phantoms containing feature dimensions similar to blind spot size. Furthermore, conductivity contrasts are set higher than what would occur naturally in biological systems, which has the effect of weakening eddy current generation at coil locations that straddle the border between high and low conductivity features. Image reconstruction results for the various coils show that coils with smaller blind spots give markedly better performance, though improvements in signal-to-noise ratio could alter that conclusion.

  15. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.

    Science.gov (United States)

    Ha, Yong H; Han, Byung H; Lee, Soo Y

    2010-02-01

    We introduce a square coil system for remote magnetic navigation of a magnetic device without any physical movements of the coils. We used three square-Helmholtz coils and a square-Maxwell coil for magnetic propulsion of a small magnet along the desired path. All the square coils are mountable on a cubic frame that has an opening to accommodate a living subject. The square-Helmholtz coils control the magnetic propulsion direction by generating uniform magnetic field along the desired direction while the square-Maxwell coil controls the propulsion force by generating magnetic gradient field. We performed magnetic propulsion experiments with a down-scaled coil set and a three-channel coil driver. Experimental results demonstrate that we can use the square coil set for magnetic navigation of a magnetic device without any physical movements of the coils.

  16. Spectral distortions of the CMB dipole

    CERN Document Server

    Balashev, S A; Chluba, J; Ivanchik, A V; Varshalovich, D A

    2015-01-01

    We consider the distortions of the CMB dipole anisotropy related to the primordial recombination radiation (PRR) and primordial $y$- and $\\mu$-distortions. The signals arise due to our motion relative to the CMB restframe and appear as a frequency-dependent distortion of the CMB temperature dipole. To leading order, the expected relative distortion of CMB dipole does not depend on the particular observation directions and reaches the level of $10^{-6}$ for the PRR- and $\\mu$-distortions and $10^{-5}$ for the $y$-distortion in the frequency range 1 $-$ 700 GHz. The temperature differences arising from the dipole anisotropy of the relic CMB distortions depend on observation directions. For mutually opposite directions, collinear to the CMB dipole axis, the temperature differences because of the PRR- and $\\mu$-dipole anisotropy attain values $\\Delta T\\simeq 10\\,$nK in the considered range. The temperature difference arising from the $y$-dipole anisotropy may reach values up to $1\\,\\mu$K. The key features of the ...

  17. Quantification of local geometric distortion in structural magnetic resonance images: Application to ultra-high fields.

    Science.gov (United States)

    Lau, Jonathan C; Khan, Ali R; Zeng, Tony Y; MacDougall, Keith W; Parrent, Andrew G; Peters, Terry M

    2017-01-06

    Ultra-high field magnetic resonance imaging (MRI) provides superior visualization of brain structures compared to lower fields, but images may be prone to severe geometric inhomogeneity. We propose to quantify local geometric distortion at ultra-high fields in in vivo datasets of human subjects scanned at both ultra-high field and lower fields. By using the displacement field derived from nonlinear image registration between images of the same subject, focal areas of spatial uncertainty are quantified. Through group and subject-specific analysis, we were able to identify regions systematically affected by geometric distortion at air-tissue interfaces prone to magnetic susceptibility, where the gradient coil non-linearity occurs in the occipital and suboccipital regions, as well as with distance from image isocenter. The derived displacement maps, quantified in millimeters, can be used to prospectively evaluate subject-specific local spatial uncertainty that should be taken into account in neuroimaging studies, and also for clinical applications like stereotactic neurosurgery where accuracy is critical. Validation with manual fiducial displacement demonstrated excellent correlation and agreement. Our results point to the need for site-specific calibration of geometric inhomogeneity. Our methodology provides a framework to permit prospective evaluation of the effect of MRI sequences, distortion correction techniques, and scanner hardware/software upgrades on geometric distortion. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Functional Analysis of the Bacteriophage T4 Rad50 Homolog (gp46) Coiled-coil Domain.

    Science.gov (United States)

    Barfoot, Tasida; Herdendorf, Timothy J; Behning, Bryanna R; Stohr, Bradley A; Gao, Yang; Kreuzer, Kenneth N; Nelson, Scott W

    2015-09-25

    Rad50 and Mre11 form a complex involved in the detection and processing of DNA double strand breaks. Rad50 contains an anti-parallel coiled-coil with two absolutely conserved cysteine residues at its apex. These cysteine residues serve as a dimerization domain and bind a Zn(2+) cation in a tetrathiolate coordination complex known as the zinc-hook. Mutation of the zinc-hook in bacteriophage T4 is lethal, indicating the ability to bind Zn(2+) is critical for the functioning of the MR complex. In vitro, we found that complex formation between Rad50 and a peptide corresponding to the C-terminal domain of Mre11 enhances the ATPase activity of Rad50, supporting the hypothesis that the coiled-coil is a major conduit for communication between Mre11 and Rad50. We constructed mutations to perturb this domain in the bacteriophage T4 Rad50 homolog. Deletion of the Rad50 coiled-coil and zinc-hook eliminates Mre11 binding and ATPase activation but does not affect its basal activity. Mutation of the zinc-hook or disruption of the coiled-coil does not affect Mre11 or DNA binding, but their activation of Rad50 ATPase activity is abolished. Although these mutants excise a single nucleotide at a normal rate, they lack processivity and have reduced repetitive exonuclease rates. Restricting the mobility of the coiled-coil eliminates ATPase activation and repetitive exonuclease activity, but the ability to support single nucleotide excision is retained. These results suggest that the coiled-coiled domain adopts at least two conformations throughout the ATPase/nuclease cycle, with one conformation supporting enhanced ATPase activity and processivity and the other supporting nucleotide excision.

  19. A Calibrating Device for Rogowski Coil Development

    Institute of Scientific and Technical Information of China (English)

    LV Liang; LI Junhao; HUANG Jianjun; JI Shengchang; LI Yanming

    2007-01-01

    A calibrating device for the Rogowski coil is developed,which can be used to calibrate the Rogowski coil having a partial response time within tens of nanoseconds.Its key component is a step current generator,which can generate the output with a rise time of less than 2 ns and a duration of larger than 300 ns.The step current generator is composed by a pulse forming line(PFL)and a pulse transmission line(PTL).A TEM(transverse electromagnetic mode)coaxial measurement unit is used as PTL,and the coil to be calibrated and the referenced standard Rogowski coil can be fixed in the unit.The effect of the dimensions of the TEM unit is discussed theoretically as well as experimentally.

  20. Screen-printed flexible MRI receive coils.

    Science.gov (United States)

    Corea, Joseph R; Flynn, Anita M; Lechêne, Balthazar; Scott, Greig; Reed, Galen D; Shin, Peter J; Lustig, Michael; Arias, Ana C

    2016-03-10

    Magnetic resonance imaging is an inherently signal-to-noise-starved technique that limits the spatial resolution, diagnostic image quality and results in typically long acquisition times that are prone to motion artefacts. This limitation is exacerbated when receive coils have poor fit due to lack of flexibility or need for padding for patient comfort. Here, we report a new approach that uses printing for fabricating receive coils. Our approach enables highly flexible, extremely lightweight conforming devices. We show that these devices exhibit similar to higher signal-to-noise ratio than conventional ones, in clinical scenarios when coils could be displaced more than 18 mm away from the body. In addition, we provide detailed material properties and components performance analysis. Prototype arrays are incorporated within infant blankets for in vivo studies. This work presents the first fully functional, printed coils for 1.5- and 3-T clinical scanners.

  1. Coiling Temperature Control in Hot Strip Mill

    Science.gov (United States)

    Imanari, Hiroyuki; Fujiyama, Hiroaki

    Coiling temperature is one of the most significant factors in products of hot strip mill to determine material properties such as strength, toughness of steel, so it is very important to achieve accurate coiling temperature control (CTC). Usually there are a few pyrometers on the run out table in hot strip mill, therefore temperature model and its adapting system have large influences on the accuracy of CTC. Also unscheduled change of rolling speed has a bad effect to keep coiling temperature as its target. Newly developed CTC system is able to get very accurate coiling temperature against uncertain factors and disturbances by adopting easily identified temperature model, learning method and dynamic set up function. The features of the CTC system are discussed with actual data, and the effectiveness of the system is shown by actual control results.

  2. MR angiography after coiling of intracranial aneurysms

    NARCIS (Netherlands)

    Schaafsma, J.D.

    2012-01-01

    Introduction Endovascular occlusion with detachable coils has become an alternative treatment to neurosurgical clipping of intracranial aneurysms over the last two decades. Its minimal invasiveness is the most important advantage of this treatment compared to clipping. The disadvantage of occlusion

  3. Mechanical resonances of helically coiled carbon nanowires

    National Research Council Canada - National Science Library

    Saini, D; Behlow, H; Podila, R; Dickel, D; Pillai, B; Skove, M J; Serkiz, S M; Rao, A M

    2014-01-01

    ...) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining...

  4. The Magnetic Field of Helmholtz Coils

    Science.gov (United States)

    Berridge, H. J. J.

    1975-01-01

    Describes the magnetic field of Helmholtz coils qualitatively and then provides the basis for a quantitative expression. Since the mathematical calculations are very involved, a computer program for solving the mathematical expression is presented and explained. (GS)

  5. Constraint Cooling of Hot Rolled Coil

    Institute of Scientific and Technical Information of China (English)

    WANG Li-juan; ZHANG Chun-li

    2004-01-01

    The layer thermal conductivity during constraint cooling of hot rolled coil was described by using equivalent thermal conductivity model and finite element method. Two radial stress concentration zones in constraint cooled coil were shown by numerical analysis, and the tension stress was assumed to be the main factor to induce stress corrosion. The experimental results show that the longer the water cooling time is, the smaller the grain size and the more uniform the grains are.

  6. NUMERICAL INVESTIGATION FOR THE HEAT TRANSFER ENHANCEMENT IN HELICAL CONE COILS OVER ORDINARY HELICAL COILS

    Directory of Open Access Journals (Sweden)

    M. M. ABO ELAZM

    2013-02-01

    Full Text Available This numerical research is introducing the concept of helical cone coils and their enhanced heat transfer characteristics compared to the ordinary helical coils. Helical and spiral coils are known to have better heat and mass transfer than straight tubes, which is attributed to the generation of a vortex at the helical coil known as Dean Vortex. The Dean number which is a dimensionless number used to describe the Dean vortex is a function of Reynolds number and the square root of the curvature ratio, so varying the curvature ratio for the same coil would vary the Dean number. Two scenarios were adopted to study the effect of changing the taper angle (curvature ratio on the heat transfer characteristics of the coil; the commercial software FLUENT was used in the investigation. It was found that Nusselt number increased with increasing the taper angle. A MATLAB code was built based on empirical correlation of Manlapaz and Churchill for ordinary helical coils to calculate the Nusselt number at each coil turn, and then calculate the average Nusselt number for the entire coil turns, the CFD simulation results were found acceptable when compared with the MATLAB results.

  7. AC loss measurements in HTS coil assemblies with hybrid coil structures

    Science.gov (United States)

    Jiang, Zhenan; Long, Nicholas J.; Staines, Mike; Badcock, Rodney A.; Bumby, Chris W.; Buckley, Robert G.; Amemiya, Naoyuki

    2016-09-01

    Both AC loss and wire cost in coil windings are critical factors for high temperature superconductor (HTS) AC machinery applications. We present AC loss measurement results in three HTS coil assemblies at 77 K and 65 K which have a hybrid coil structure comprising one central winding (CW) and two end windings (EWs) wound with ReBCO and BSCCO wires with different self-field I c values at 77 K. All AC loss results in the coil assemblies are hysteretic and the normalized AC losses in the coil assemblies at different temperatures can be scaled with the I c value of the coil assemblies. The normalised results show that AC loss in a coil assembly with BSCCO CW can be reduced by using EWs wound with high I c ReBCO wires, whilst further AC loss reduction can be achieved by replacing the BSCCO CW with ReBCO CW. The results imply that a flexible hybrid coil structure is possible which considers both AC loss and wire cost in coil assemblies.

  8. Predictive Simulations of ITER Including Neutral Beam Driven Toroidal Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, Federico D.; Kritz, Arnold H.; Bateman, Glenn; Pankin, Alexei Y.; Budny, Robert V.; McCune, Douglas C.

    2008-06-16

    Predictive simulations of ITER [R. Aymar et al., Plasma Phys. Control. Fusion 44, 519 2002] discharges are carried out for the 15 MA high confinement mode (H-mode) scenario using PTRANSP, the predictive version of the TRANSP code. The thermal and toroidal momentum transport equations are evolved using turbulent and neoclassical transport models. A predictive model is used to compute the temperature and width of the H-mode pedestal. The ITER simulations are carried out for neutral beam injection (NBI) heated plasmas, for ion cyclotron resonant frequency (ICRF) heated plasmas, and for plasmas heated with a mix of NBI and ICRF. It is shown that neutral beam injection drives toroidal rotation that improves the confinement and fusion power production in ITER. The scaling of fusion power with respect to the input power and to the pedestal temperature is studied. It is observed that, in simulations carried out using the momentum transport diffusivity computed using the GLF23 model [R.Waltz et al., Phys. Plasmas 4, 2482 (1997)], the fusion power increases with increasing injected beam power and central rotation frequency. It is found that the ITER target fusion power of 500 MW is produced with 20 MW of NBI power when the pedesta temperature is 3.5 keV. 2008 American Institute of Physics. [DOI: 10.1063/1.2931037

  9. Absence of toroidal moments in 'aromagnetic' anthracene

    Energy Technology Data Exchange (ETDEWEB)

    Alborghetti, S; Coey, J M D [School of Physics, Trinity College, Dublin 2 (Ireland); Puppin, E; Brenna, M; Pinotti, E; Zanni, P [Dipartimento di Fisica, Politecnico di Milano, Milano (Italy)], E-mail: alborgs@tcd.ie

    2008-06-15

    Colloidal suspensions of anthracene and other aromatic compounds have been shown to respond to a magnetic field as if they possessed a permanent magnetic moment. This phenomenon was named 'aromagnetism' by Spartakov and Tolstoi, and it was subsequently attributed to the interaction of an electric toroidal moment with a time-varying magnetic field. However, there has been no independent confirmation of the original work. Here, we have selected purified anthracene crystallites which respond to a low magnetic field and investigate how this response depends on the gradient and the time derivative of the field. We conclude that the anomaly cannot be attributed to a toroidal interaction but is due to a constant magnetic moment of the particles. Close examinations using magnetometry and scanning electron microscopy reveal metallic clusters of Fe and Ni up to a few hundred nanometres in size embedded in the anomalous crystallites. These inclusions represent 1.8 ppm by weight of the sample. The observed presence of ferromagnetic inclusions in the ppm range is sufficient to explain the anomalous magnetic properties of micron-sized anthracene crystals, including the reported optical properties of the colloidal suspensions.

  10. Instability of toroidal magnetic field in jets and plerions

    CERN Document Server

    Begelman, M C

    1997-01-01

    Jets and pulsar-fed supernova remnants (plerions) tend to develop highly organized toroidal magnetic field. Such a field structure could explain the polarization properties of some jets, and contribute to their lateral confinement. A toroidal field geometry is also central to models for the Crab Nebula - the archetypal plerion - and leads to the deduction that the Crab pulsar's wind must have a weak magnetic field. Yet this `Z-pinch' field configuration is well known to be locally unstable, even when the magnetic field is weak and/or boundary conditions slow or suppress global modes. Thus, the magnetic field structures imputed to the interiors of jets and plerions are unlikely to persist. To demonstrate this, I present a local analysis of Z-pinch instabilities for relativistic fluids in the ideal MHD limit. Kink instabilities dominate, destroying the concentric field structure and probably driving the system toward a more chaotic state in which the mean field strength is independent of radius (and in which re...

  11. Baryonic torii: Toroidal baryons in a generalized Skyrme model

    Science.gov (United States)

    Gudnason, Sven Bjarke; Nitta, Muneto

    2015-02-01

    We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model: the first is the Skyrme model, and the second has a sixth-order derivative term instead of the Skyrme term, both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions, and they are characterized by two integers P and Q , representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B =P Q . We find stable Skyrmion solutions for P =1 ,2 ,3 ,4 ,5 with Q =1 , while for P =6 and Q =1 , it is only metastable. We further find that configurations with higher Q >1 are all unstable and split into Q configurations with Q =1 . Finally we discover a phase transition, possibly of first order, in the mass parameter of the potential under study.

  12. Last End Cap Toroid installation : The Pharaonic enterprise

    CERN Multimedia

    Arnaud Foussat

    After the successful and impressive transport feat from Building 191 to Point 1 was carried out by the Friderici crew on 28th June, the second and last Toroid End Cap, ECT-C, was transferred into the surface building, SX1, on 2nd July. The ECT-C was installed in the ATLAS cavern on the C-side on 12th July. As the person responsible for the project, in my opinion, one of the crucial points of this project was to design all the tooling and installation sequences taking into account the building infrastructure dimensional constraints. View of the ECT installation tooling and preparation for the ECT-C descent into the ATLAS 80m-shaft by the ATLAS magnet group and DBS teams. The movement of the 240-ton magnet and 12-m diameter toroid end-cap was achieved in collaboration with SCALES, a subcontractor company, using a hydraulic gantry able to lower the ECT inside the shaft by 5m below the floor level . This allowed the DBS team to attach the end-cap with the 2 x 140 tons overhead crane and lower it onto the c...

  13. Inversion of the Abel equation for toroidal density distributions

    CERN Document Server

    Ciotti, L

    1999-01-01

    In this paper I present three new results of astronomical interest concerning the theory of Abel inversion. 1) I show that in the case of a spatial emissivity that is constant on toroidal surfaces and projected along the symmetry axis perpendicular to the torus' equatorial plane, it is possible to invert the projection integral. From the surface (i.e. projected) brightness profile one then formally recovers the original spatial distribution as a function of the toroidal radius. 2) By applying the above-described inversion formula, I show that if the projected profile is described by a truncated off-center gaussian, the functional form of the related spatial emissivity is very simple and - most important - nowhere negative for any value of the gaussian parameters, a property which is not guaranteed - in general - by Abel inversion. 3) Finally, I show how a generic multimodal centrally symmetric brightness distribution can be deprojected using a sum of truncated off-center gaussians, recovering the spatial emis...

  14. Rotation shear induced fluctuation decorrelation in a toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, T.S.

    1994-06-01

    The enhanced decorrelation of fluctuations by the combined effects of the E {times} B flow (V{sub E}) shear, the parallel flow (V{sub {parallel}}) shear, and the magnetic shear is studied in toroidal geometry. A two-point nonlinear analysis previously utilized in a cylindrical model shows that the reduction of the radial correlation length below its ambient turbulence value ({Delta}r{sub 0}) is characterized by the ratio between the shearing rate {omega}{sub s} and the ambient turbulence scattering rate {Delta}{omega}{sub T}. The derived shearing rate is given by {omega}{sub s}{sup 2} = ({Delta}r{sub 0}){sup 2}[1/{Delta}{phi}{sup 2}{l_brace}{partial_derivative}/{partial_derivative}r(qV{sub E}/r){r_brace}{sup 2} + 1/{Delta}{eta}{sup 2}{l_brace}{partial_derivative}/{partial_derivative}r(V{parallel}/qR){r_brace}{sup 2}], where {Delta}{phi} and {Delta}{eta} are the correlation angles of the ambient turbulence along the toroidal and parallel directions. This result deviates significantly from the cylindrical result for high magnetic shear or for ballooning-like fluctuations. For suppression of flute-like fluctuations, only the radial shear of qV{sub E}/r contributes, and the radial shear of V{parallel}/qR is irrelevant regardless of the plasma rotation direction.

  15. Distortional Modes of Thin-Walled Beams

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Andreassen, Michael Joachim

    2009-01-01

    The classic thin-walled beam theory for open and closed cross-sections can be generalized by including distortional displacement modes. The introduction of additional displacement modes leads to coupled differential equations, which seems to have prohibited the use of exact shape functions...... in the modelling of coupled torsion and distortion. However, if the distortional displacement modes are chosen as those which decouple the differential equations as in non proportionally damped modal dynamic analysis then it may be possible to use exact shape functions and perform analysis on a reduced problem...

  16. Testing for Distortions in Performance Measures

    DEFF Research Database (Denmark)

    Sloof, Randolph; Van Praag, Mirjam

    Distorted performance measures in compensation contracts elicit suboptimal behavioral responses that may even prove to be dysfunctional (gaming). This paper applies the empirical test developed by Courty and Marschke (2008) to detect whether the widely used class of Residual Income based...... performance measures —such as Economic Value Added (EVA)— is distorted, leading to unintended agent behavior. The paper uses a difference-in-differences approach to account for changes in economic circumstances and the self-selection of firms using EVA. Our findings indicate that EVA is a distorted...... performance measure that elicits the gaming response....

  17. Testing for Distortions in Performance Measures

    DEFF Research Database (Denmark)

    Sloof, Randolph; Van Praag, Mirjam

    2015-01-01

    used class of residual income-based performance measures-such as economic value added (EVA)-is distorted, leading to unintended agent behavior. The paper uses a difference-in-differences approach to account for changes in economic circumstances and the self-selection of firms using EVA. Our findings......Distorted performance measures in compensation contracts elicit suboptimal behavioral responses that may even prove to be dysfunctional (gaming). This paper applies the empirical test developed by Courty and Marschke (Review of Economics and Statistics, 90, 428-441) to detect whether the widely...... indicate that EVA is a distorted performance measure that elicits the gaming response....

  18. Lattice distortion in disordered antiferromagnetic XY models

    Institute of Scientific and Technical Information of China (English)

    Li Peng-Fei; Cao Hai-Jing

    2012-01-01

    The behavior of lattice distortion in spin 1/2 antiferromagnetic XY models with random magnetic modulation is investigated with the consideration of spin-phonon coupling in the adiabatic limit.It is found that lattice distortion relies on the strength of the random modulation.For strong or weak enough spin-phonon couplings,the average lattice distortion may decrease or increase as the random modulation is strengthened.This may be the result of competition between the random magnetic modulation and the spin-phonon coupling.

  19. A Condition for a Translation Quiver to Be a Coil

    Institute of Scientific and Technical Information of China (English)

    Bin ZHU; Zong Yi HU

    2003-01-01

    We single out a class of translation quivers and prove combinatorially that the translationquivers in this class are coils. These coils form a class of special coils. They are easier to visualize, butstill show all the strange behaviour of general coils, and contain quasi-stable tubes as special examples.

  20. A classic zinc finger from friend of GATA mediates an interaction with the coiled-coil of transforming acidic coiled-coil 3.

    Science.gov (United States)

    Simpson, Raina J Y; Yi Lee, Stella Hoi; Bartle, Natalie; Sum, Eleanor Y; Visvader, Jane E; Matthews, Jacqueline M; Mackay, Joel P; Crossley, Merlin

    2004-09-17

    Classic zinc finger domains (cZFs) consist of a beta-hairpin followed by an alpha-helix. They are among the most abundant of all protein domains and are often found in tandem arrays in DNA-binding proteins, with each finger contributing an alpha-helix to effect sequence-specific DNA recognition. Lone cZFs, not found in tandem arrays, have been postulated to function in protein interactions. We have studied the transcriptional co-regulator Friend of GATA (FOG), which contains nine zinc fingers. We have discovered that the third cZF of FOG contacts a coiled-coil domain in the centrosomal protein transforming acidic coiled-coil 3 (TACC3). Although FOG-ZF3 exhibited low solubility, we have used a combination of mutational mapping and protein engineering to generate a derivative that was suitable for in vitro and structural analysis. We report that the alpha-helix of FOG-ZF3 recognizes a C-terminal portion of the TACC3 coiled-coil. Remarkably, the alpha-helical surface utilized by FOG-ZF3 is the same surface responsible for the well established sequence-specific DNA-binding properties of many other cZFs. Our data demonstrate the versatility of cZFs and have implications for the analysis of many as yet uncharacterized cZF proteins.

  1. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  2. Advanced examination techniques applied to the qualification of critical welds for the ITER correction coils

    CERN Document Server

    Sgobba, Stefano; Libeyre, Paul; Marcinek, Dawid Jaroslaw; Piguiet, Aline; Cécillon, Alexandre

    2015-01-01

    The ITER correction coils (CCs) consist of three sets of six coils located in between the toroidal (TF) and poloidal field (PF) magnets. The CCs rely on a Cable-in-Conduit Conductor (CICC), whose supercritical cooling at 4.5 K is provided by helium inlets and outlets. The assembly of the nozzles to the stainless steel conductor conduit includes fillet welds requiring full penetration through the thickness of the nozzle. Static and cyclic stresses have to be sustained by the inlet welds during operation. The entire volume of helium inlet and outlet welds, that are submitted to the most stringent quality levels of imperfections according to standards in force, is virtually uninspectable with sufficient resolution by conventional or computed radiography or by Ultrasonic Testing. On the other hand, X-ray computed tomography (CT) was successfully applied to inspect the full weld volume of several dozens of helium inlet qualification samples. The extensive use of CT techniques allowed a significant progress in the ...

  3. Solid catalytic growth mechanism of micro-coiled carbon fibers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Micro-coiled carbon fibers were prepared by catalytic pyrolysisof acetylene with nano-sized nickel powder catalyst using the substrate method. The morphology of micro-coiled carbon fibers was observed through field emission scanning electron microscopy. It was found that the fiber and coil diameter of the obtained micro-coiled carbon fibers is about 500—600 nm and 4—5 μm, respectively. Most of the micro-coiled carbon fibers obtained were regular double carbon coils, but a few irregular ones were also observed. On the basis of the experimental observation, a solid catalytic growth mechanism of micro-coiled carbon fibers was proposed.

  4. Minimum Inductance Optimal Design for the Gradient Coil

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In MRI (Magnetic Resonance Imaging), a crucial role of gradient coils is to image organism, meanwhile the inductance of the coils determines the speed of imaging. So it is of great importance to optimize designs of the gradient coils. The target field approach is an effective method to design the gradient coils. Having applied this method and performing many numerical tests, we achieved the designs of the x-、y-、z- gradient coils , with the linearity of the fields generated by the coils in a sphere of radius 0.30 m less than 5%, in which the inductance and resistance of the coils also meet the requirements.

  5. Investigation of toroidal acceleration and potential acceleration forces in EAST and J-TEXT plasmas

    CERN Document Server

    Wang, Fudi; Pan, Xiayun; Cheng, Zhifeng; Chen, Jun; Cao, Guangming; Wang, Yuming; Han, Xiang; Li, Hao; Wu, Bin; Chen, Zhongyong; Bitter, Manfred; Hill, Kenneth; Rice, John; Morita, Shigeru; Li, Yadong; Zhuang, Ge; Ye, Minyou; Wan, Baonian; Shi, Yuejiang

    2014-01-01

    In order to produce intrinsic rotation, bulk plasmas must be collectively accelerated by the net force exerted on them, which results from both driving and damping forces. So, to study the possible mechanisms of intrinsic rotation generation, it is only needed to understand characteristics of driving and damping terms because the toroidal driving and damping forces induce net acceleration which generates intrinsic rotation. Experiments were performed on EAST and J-TEXT for ohmic plasmas with net counter- and co-current toroidal acceleration generated by density ramping up and ramping down. Additionally on EAST, net co-current toroidal acceleration was also formed by LHCD or ICRF. For the current experimental results, toroidal acceleration was between - 50 km/s^2 in counter-current direction and 70 km/s^2 in co-current direction. According to toroidal momentum equation, toroidal electric field (E\\-(\\g(f))), electron-ion toroidal friction, and toroidal viscous force etc. may play roles in the evolution of toroi...

  6. Geodesic Acoustic Mode in Toroidally Axisymmetric Plasmas with Non-Circular Cross Sections

    Institute of Scientific and Technical Information of China (English)

    SHI Bing-Ren; LI Ji-Quan; DONG Jia-Qi

    2005-01-01

    @@ The geodesic acoustic mode in general toroidally axisymmetric plasmas such as Tokamak and spherical torus is studied in detail. The mode structure is found and the dispersion equation is derived and solved for arbitrary toroidally axi-symmetric plasmas. Besides the finite aspect ratio, effects of elongation and triangularity on this mode are clarified.

  7. Properties of the distorted Kerr black hole

    CERN Document Server

    Abdolrahimi, Shohreh; Nedkova, Petya; Tzounis, Christos

    2015-01-01

    We investigate the properties of the ergoregion and the location of the curvature singularities for the Kerr black hole distorted by the gravitational field of external sources. The particular cases of quadrupole and octupole distortion are studied in detail. We also investigate the scalar curvature invariants of the horizon and compare their behaviour with the case of the isolated Kerr black hole. In a certain region of the parameter space the ergoregion consists of a compact region encompassing the horizon and a disconnected part extending to infinity. The curvature singularities in the domain of outer communication, when they exist, are always located on the boundary of the ergoregion. We present arguments that they do not lie on the compact ergosurface. For quadrupole distortion the compact ergoregion size is negatively correlated with the horizon angular momentum when the external sources are varied. For octupole distortion infinitely many ergoregion configurations can exist for a certain horizon angular...

  8. Perceived Coding Distortion Assessment for Streaming Video

    Directory of Open Access Journals (Sweden)

    Fuzheng Yang

    2010-04-01

    Full Text Available For applications involving video streaming, full decoding is usually not acceptable for quality assessment. To address the inherent challenges, an efficient method for coding distortion assessment is proposed in this paper. Building on empirical analysis, the proposed method employs a linear model to assess the coding distortion using the quantization scale. Furthermore, the characteristics of the human visual system are exploited by taking into account the spatial and temporal masking. To estimate the required spatial and temporal complexities in absence of sufficient information, a rate-distortion model is theoretically derived to formulate their relationship with the coding bit-rate. Extensive experimental results have demonstrated the effectiveness of the proposed method for quality assessment with respect to perceived coding distortion.

  9. Molecular structure and centrifugal distortion in methylthioethyne

    NARCIS (Netherlands)

    Engelsen, D. den

    1969-01-01

    The investigation of the microwave spectra of five isotopic species of methylthioethyne, HCCSCH3 enabled a fairly reliable calculation to be made of bond lengths and angles. The centrifugal distortion parameters are related to molecular vibrations.

  10. Surgical management of an ACM aneurysm eight years after coiling.

    Science.gov (United States)

    Pogády, P; Fellner, F; Trenkler, J; Wurm, G

    2007-04-01

    The authors present a case report on rebleeding of a medial cerebral aneurysm (MCA) eight years after complete endovascular coiling. The primarily successfully coiled MCA aneurysm showed a local regrowth which, however, was not the source of the rebleeding. The angiogram demonstrated no evidence of contrast filling of the coiled segment, but according to intraoperative findings (haematoma location, displacement of coils, evident place of rupture) there is no doubt that the coiled segment of the aneurysm was responsible for the haemorrhage.

  11. Coulomb Distortion in the Inelastic Regime

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Solvignon, Dave Gaskell, John Arrington

    2009-09-01

    The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.

  12. Domestic Distortions and the Deindustrialization Hypothesis

    OpenAIRE

    Paul Krugman

    1996-01-01

    It is widely believed that U.S. trade deficits have displaced workers from highly paid manufacturing jobs into less well-paid service employment, contributing to declining incomes for the nation as a whole. Although proponents of this view do not usually think of it this way, this analysis falls squarely into the `domestic distortions' framework pioneered by Jagdish Bhagwati. This paper models the deindustrialization hypothesis explicitly as a domestic distortions issue, and shows that while ...

  13. Welding distortion of aluminium structural members

    Energy Technology Data Exchange (ETDEWEB)

    Goglio, L. [Politecnico di Torino (Italy). Dept. of Mech.; Gugliotta, A. [Politecnico di Torino (Italy). Dept. of Mech.; Pasquino, D. [Politecnico di Torino (Italy). Dept. of Mech.

    1996-12-31

    The paper deals with the angular distortion induced in aluminium tubular beams during welding to prepare T junctions. The research, based on experimental measurements, makes use of statistical methods to identify the parameters (beam section, weld length, welding direction, etc.) that influence the angular change. The results are discussed also considering a model known from the literature. It is found that the distortion is generally low and can be minimized by a proper welding process. (orig.)

  14. Advanced Machining Toolpath for Low Distortion

    Science.gov (United States)

    2017-02-28

    modeling software packages. Efforts in Production Module consisted of setting up an analysis of cutting forces across the fatigue coupon toolpath and...in the distortion modeling software focused on simulating final part distortion due to the initial bulk stress in the aluminum stock material. TWS...process. In each plot, the red force trace is the original toolpath and the green force trace is the optimized toolpath. In both toolpaths, cutting

  15. Harmonic distortion in microwave photonic filters.

    Science.gov (United States)

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  16. Straight line feature based image distortion correction

    Institute of Scientific and Technical Information of China (English)

    Zhang Haofeng; Zhao Chunxia; Lu Jianfeng; Tang Zhenmin; Yang Jingyu

    2008-01-01

    An image distortion correction method is proposed, which uses the straight line features. Many parallel lines of different direction from different images were extracted, and then were used to optimize the distortion parameters by nonlinear least square. The thought of step by step was added when the optimization method working. 3D world coordi-nation is not need to know, and the method is easy to implement. The experiment result shows its high accuracy.

  17. CMB distortions from superconducting cosmic strings

    Science.gov (United States)

    Tashiro, Hiroyuki; Sabancilar, Eray; Vachaspati, Tanmay

    2012-05-01

    We reconsider the effect of electromagnetic radiation from superconducting strings on cosmic microwave background μ and y distortions and derive present (COBE-FIRAS) and future (PIXIE) constraints on the string tension, μs, and electric current, I. We show that absence of distortions of the cosmic microwave background in PIXIE will impose strong constraints on μs and I, leaving the possibility of light strings (Gμs≲10-18) or relatively weak currents (I≲10TeV).

  18. Enhanced toroidal flow stabilization of edge localized modes with increased plasma density

    Science.gov (United States)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2017-09-01

    Toroidal flow alone is generally thought to have an important influence on tokamak edge pedestal stability, even though theoretical analysis often predicts merely a weak stabilizing effect of toroidal flow on the edge localized modes (ELMs) in experimental parameter regimes. For the first time, we find from two-fluid MHD calculations that such a stabilization, however, can be significantly enhanced by increasing the edge plasma density. Our finding resolves a long-standing mystery whether or how toroidal rotation can indeed have an effective influence on ELMs, and explains why the ELM mitigation and suppression by toroidal rotation are more favorably achieved in higher collisionality regime in recent experiments. The finding suggests a new control scheme on modulating toroidal flow stabilization of ELMs with plasma density, along with a new additional constraint on the optimal level of plasma density for the desired edge plasma conditions.

  19. Toroidally Asymmetric Distributions of Hydrocarbon (CD) Emission and Chemical Sputtering Sources in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Groth, M; Brooks, N H; Fenstermacher, M E; Lasnier, C J; McLean, A G; Watkins, J G

    2006-05-16

    Measurements in DIII-D show that the carbon chemical sputtering sources along the inner divertor and center post are toroidally periodic and highest at the upstream tile edge. Imaging with a tangentially viewing camera and visible spectroscopy were used to monitor the emission from molecular hydrocarbons (CH/CD) at 430.8 nm and deuterium neutrals in attached and partially detached divertors of low-confinement mode plasmas. In contrast to the toroidally periodic CD distribution, emission from deuterium neutrals was observed to be toroidally symmetric along the inner strike zone. The toroidal distribution of the measured tile surface temperature in the inner divertor correlates with that of the CD emission, suggesting larger parallel particle and heat fluxes to the upstream tile edge, either due to toroidal tile gaps or height steps between adjacent tiles.

  20. The Experiment of Modulated Toroidal Current on HT-7 and HT-6M Tokamak

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Experiments of Modulated Toroidal Current were done on the HT-6M tokamakand HT-7 superconducting tokamak. The toroidal current was modulated by programming theOhmic heating field. Modulation of the plasma current has been used successfully to suppressMHD activity in discharges near the density limit where large MHD m = 2 tearing modes weresuppressed by sufficiently large plasma current oscillations. The improved Ohmic confinementphase was observed during modulating toroidal current (MTC) on the Hefei Tokamak-6M (HT-6M) and Hefei superconducting Tokamak-7 (HT-7). A toroidal frequency-modulated current,induced by a modulated loop voltage, was added on the plasma equilibrium current. The ratio ofA.C. amplitude of plasma current to the main plasma current △Ip/Ip is about 12% ~ 30%. Thedifferent formats of the frequency-modulated toroidal current were compared.

  1. Toroidal high-spin isomers in light nuclei with N not equal to Z

    CERN Document Server

    Staszczak, Andrzej

    2014-01-01

    The combined considerations of both the bulk liquid-drop-type behavior and the quantized aligned rotation with cranked Skyrme-Hartree-Fock approach revealed previously that even-even, N=Z, toroidal high-spin isomeric states have general occurrences for light nuclei with A between 28 and 52. We find that in this mass region there are in addition N not equal to Z toroidal high-spin isomers when the single-particle shells for neutrons and protons occur at the same cranked frequency $\\hbar \\omega$. Examples of N not equal to Z toroidal high-spin isomers, $^{36}_{16}$S$_{20}$($I$=74$\\hbar$) and $^{40}_{18}$Ar$_{22}$($I$=80,102$\\hbar$), are located and examined. The systematic properties of these N not equal to Z toroidal high-spin isomers fall into the same regular (muti-particle)-(muti-hole) patterns as other N=Z toroidal high-spin isomers.

  2. Modulating toroidal flow stabilization of edge localized modes with plasma density

    CERN Document Server

    Cheng, Shikui; Banerjee, Debabrata

    2016-01-01

    Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high-$n$ edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high-$n$ modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high-$n$ modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in recent EAST experiments.

  3. Transport of parallel momentum induced by current-symmetry breaking in toroidal plasmas.

    Science.gov (United States)

    Camenen, Y; Peeters, A G; Angioni, C; Casson, F J; Hornsby, W A; Snodin, A P; Strintzi, D

    2009-03-27

    The symmetry of a physical system strongly impacts on its properties. In toroidal plasmas, the symmetry along a magnetic field line usually constrains the radial flux of parallel momentum to zero in the absence of background flows. By breaking the up-down symmetry of the toroidal currents, this constraint can be relaxed. The parallel asymmetry in the magnetic configuration then leads to an incomplete cancellation of the turbulent momentum flux across a flux surface. The magnitude of the subsequent toroidal rotation increases with the up-down asymmetry and its sign depends on the direction of the toroidal magnetic field and plasma current. Such a mechanism offers new insights in the interpretation and control of the intrinsic toroidal rotation in present day experiments.

  4. An Air Jet Distortion Generation System

    Directory of Open Access Journals (Sweden)

    M. Sivapragasam

    2014-01-01

    Full Text Available An air jet distortion generation system is developed to simulate the distorted flow field ahead of gas turbine engines in ground test facility. The flow field of a system of four jets arranged circumferentially and issuing into a confined counterflow was studied experimentally and numerically. The total pressure distortion parameters were evaluated at the Aerodynamic Interface Plane (AIP for several values of mass flow ratios. Since the total pressure loss distribution at the AIP is characteristically “V” shaped, the number of jets was increased to obtain total pressure distributions as required for gas turbine engine testing. With this understanding, a methodology has been developed to generate a target total pressure distortion pattern at the AIP. Turbulent flow computations are used to iteratively progress towards the target distribution. This methodology was demonstrated for a distortion flow pattern typical of use in gas turbine engine testing using twenty jets, which is a smaller number than reported in the literature. The procedure converges with a root-mean-square error of 3.836% and is able to reproduce the target pattern and other distortion parameters.

  5. Low distortion laser welding of cylindrical components

    Science.gov (United States)

    Kittel, Sonja

    2011-02-01

    Automotive components are for the most part cylindrical and thus the weld seams are of radial shape. Radial weld seams are usually produced by starting at a point on the component's surface rotating the component resulting in an overlap zone at the start/end of the weld. In this research, it is shown that the component's distortion strongly depends on the overlap of weld start and end. A correlation between overlap zone and distortion is verified by an experimental study. In order to reduce distortion generated by the overlap zone a special optics is used which allows shaping the laser beam into a ring shape which is then focused on the cylindrical surface and produces a radial ring weld seam simultaneously by one laser pulse. In doing this, the overlap zone is eliminated and distortion can be reduced. Radial weld seams are applied on precision samples and distortion is measured after welding. The distortion of the precision samples is measured by a tactile measuring method and a comparison of the results of welding with the ring optics to reference welds is done.

  6. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device.

    Science.gov (United States)

    Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T

    2016-05-01

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.

  7. Quench Protection of DI-BSCCO Coil

    Science.gov (United States)

    Yamaguchi, T.; Ueno, E.; Kato, T.; Hayashi, K.

    Quench protection is one of the most important requirements for the practical application of high-temperature-superconducting (HTS) coils. Quench protection requires that early detection of a developing quench event is followed by rapid reduction of the operating current. However, such quench detection is very difficult because HTS wire produces heat only locally due to the very slow propagation velocity of a normal zone. Excellent high voltage insulation performance is required if the current is to be reduced rapidly in a large-scale superconducting application with very large inductance. Thus it is important to investigate the behavior of coils with various decay time constants, and to detect voltages on very short time scales. This goal remains to be achieved. In the present study we built test coil and a full-scale pole coil for a 20 MW motor for use in experiments on quench protection, and parameterized the relation between the decay time constant and the detecting voltage, using a conventional balance circuit to detect the quench, which was generated by gradually raising the temperature of the coils. The results verify that a balance circuit can be used for quench detection. For example, when the current decay time constant is 4 seconds, the test coil can be protected even with a detecting voltage of 0.15 volts, despite a significant heat production rate of 126 W. We also confirmed that the full-scale pole coil, with a decay time constant of 20 seconds, can be protected with a detecting voltage of 0.06 V.

  8. In vitro and in vivo delivery of functionalized nanoparticles via coiled-coil interactions

    NARCIS (Netherlands)

    Yang, J.

    2016-01-01

    This thesis presents another approach for direct cytosolic delivery via membrane fusion. This approach is based on a complementary pair of coiled-coil forming peptides, K (KIAALKE)4 and E (EIAALEK)4 and is mimicking the action of the SNARE-complex. The SNARE-complex is responsible for fusion between

  9. Growth Factor Tethering to Protein Nanoparticles via Coiled-Coil Formation for Targeted Drug Delivery.

    Science.gov (United States)

    Assal, Yasmine; Mizuguchi, Yoshinori; Mie, Masayasu; Kobatake, Eiry

    2015-08-19

    Protein-based nanoparticles are attractive carriers for drug delivery because they are biodegradable and can be genetically designed. Moreover, modification of protein-based nanoparticles with cell-specific ligands allows for active targeting abilities. Previously, we developed protein nanoparticles comprising genetically engineered elastin-like polypeptides (ELPs) with fused polyaspartic acid tails (ELP-D). Epidermal growth factor (EGF) was displayed on the surface of the ELP-D nanoparticles via genetic design to allow for active cell-targeting abilities. Herein, we focused on the coiled-coil structural motif as a means for noncovalent tethering of growth factor to ELP-D. Specifically, two peptides known to form a heterodimer via a coiled-coil structural motif were fused to ELP-D and single-chain vascular endothelial growth factor (scVEGF121), to facilitate noncovalent tethering upon formation of the heterodimer coiled-coil structure. Drug-loaded growth factor-tethered ELP-Ds were found to be effective against cancer cells by provoking cell apoptosis. These results demonstrate that tethering growth factor to protein nanoparticles through coiled-coil formation yields a promising biomaterial candidate for targeted drug delivery.

  10. An iterative method for coil sensitivity estimation in multi-coil MRI systems.

    Science.gov (United States)

    Ling, Qiang; Li, Zhaohui; Song, Kaikai; Li, Feng

    2014-12-01

    This paper presents an iterative coil sensitivity estimation method for multi-coil MRI systems. The proposed method works with coil images in the magnitude image domain. It determines a region of support (RoS), a region being composed of the same type of tissues, by a region growing algorithm, which makes use of both intensities and intensity gradients of pixels. By repeating this procedure, it can determine multiple regions of support, which together cover most of the concerned image area. The union of these regions of support provides a rough estimate of the sensitivity of each coil through dividing the intensities of pixels by the average intensity inside every region of support. The obtained rough coil sensitivity estimate is further approached with the product of multiple low-order polynomials, rather than a single one. The product of these polynomials provides a smooth estimate of the sensitivity of each coil. With the obtained sensitivities of coils, it can produce a better reconstructed image, which determines more correct regions of support and yields preciser estimates of the sensitivities of coils. In other words, the method can be iteratively implemented to improve the estimation performance. The proposed method was verified through both simulated data and clinical data from different body parts. The experimental results confirm the superiority of our method to some conventional methods.

  11. A coiled-coil domain acts as a molecular ruler in LPS chain length regulation

    Science.gov (United States)

    Tuukkanen, Anne; Danciu, Iulia; Svergun, Dmitri I.; Hussain, Rohanah; Liu, Huanting; Whitfield, Chris; Naismith, James H.

    2014-01-01

    Long-chain bacterial polysaccharides play important roles in pathogenicity. In Escherichia coli O9a, a model for ABC transporter dependent polysaccharide assembly, a large extracellular carbohydrate with a narrow distribution of size is polymerized from monosaccharides by a complex of two proteins, WbdA (polymerase) and WbdD (terminating protein). Such careful control of polymerization is recurring theme in biology. Combining crystallography and small angle X-ray scattering, we show that the C-terminal domain of WbdD contains an extended coiled-coil that physically separates WbdA from the catalytic domain of WbdD. The effects of insertions and deletions within the coiled-coil region were analyzed in vivo, revealing that polymer size is controlled by varying the length of the coiled-coil domain. Thus, the coiled-coil domain of WbdD functions as a molecular ruler that, along with WbdA:WbdD stoichiometry, controls the chain length of a model bacterial polysaccharide. PMID:25504321

  12. Minimax current density gradient coils: analysis of coil performance and heating.

    Science.gov (United States)

    Poole, Michael S; While, Peter T; Lopez, Hector Sanchez; Crozier, Stuart

    2012-08-01

    Standard gradient coils are designed by minimizing the inductance or resistance for an acceptable level of gradient field nonlinearity. Recently, a new method was proposed to minimize the maximum value of the current density in a coil additionally. The stated aim of that method was to increase the minimum wire spacing and to reduce the peak temperature in a coil for fixed efficiency. These claims are tested in this study with experimental measurements of magnetic field and temperature as well as simulations of the performance of many coils. Experimental results show a 90% increase in minimum wire spacing and 40% reduction in peak temperature for equal coil efficiency and field linearity. Simulations of many more coils indicate increase in minimum wire spacing of between 50 and 340% for the coils studied here. This method is shown to be able to increase coil efficiency when constrained by minimum wire spacing rather than switching times or total power dissipation. This increase in efficiency could be used to increase gradient strength, duty cycle, or buildability.

  13. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  14. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain golgin

  15. Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide

    NARCIS (Netherlands)

    Pagel, K; Seeger, K; Seiwert, B; Villa, Alessandra; Mark, AE; Berger, S; Koksch, B

    2005-01-01

    We report here an advanced approach for the characterization of the folding pattern of a de novo designed antiparallel coiled coil peptide by high-resolution methods. Incorporation of two fluorescence labels at the C- and N-terminus of the peptide chain as well as modi. cation of two hydrophobic cor

  16. A high-resolution structure that provides insight into coiled-coil thiodepsipeptide dynamic chemistry.

    Science.gov (United States)

    Dadon, Zehavit; Samiappan, Manickasundaram; Shahar, Anat; Zarivach, Raz; Ashkenasy, Gonen

    2013-09-16

    Stable and reactive: A crystal structure at 1.35 Å of a thioester coiled-coil protein reveals high similarity to all-peptide-bond proteins. In these assemblies, the thioester bonds are kept reactive towards thiol molecules in the mixture. This enables efficient domain exchange between proteins in response to changes in folding conditions or introduction of external templates.

  17. Allosteric effects in coiled-coil proteins folding and lanthanide-ion binding.

    Science.gov (United States)

    Samiappan, Manickasundaram; Alasibi, Samaa; Cohen-Luria, Rivka; Shanzer, Abraham; Ashkenasy, Gonen

    2012-10-07

    Peptide sequences modified with lanthanide-chelating groups at their N-termini, or at their lysine side chains, were synthesized, and new Ln(III) complexes were characterized. We show that partial folding of the conjugates to form trimer coiled coil structures induces coordination of lanthanides to the ligand, which in turn further stabilizes the 3D structure.

  18. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    Energy Technology Data Exchange (ETDEWEB)

    Siemon, R.E. (comp.)

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  19. Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

    Directory of Open Access Journals (Sweden)

    Golestan karami

    2013-03-01

    Full Text Available Introduction Echo-planar imaging (EPI is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that causes more geometric distortion in phase encoding direction. This inhomogeneity is induced mainly by the magnetic susceptibility differences between various structures within the object placed inside the scanner, often at air-tissue or bone-tissue interfaces. Methods of reducing EPI distortion are mainly based on decreasing steps of the phase encoding. Reducing steps of phase encoding can be applied by reducing field of view, slice thickness, and/or the use of parallel acquisition technique. Materials and Methods We obtained three data acquisitions with different FOVs including: conventional low resolution, conventional high resolution, and zoomed high resolution EPIs. Moreover we used SENSE technique for phase encoding reduction. All experiments were carried out on three Tesla scanners (Siemens, TIM, and Germany equipped with 12 channel head coil. Ten subjects participated in the experiments. Results The data were processed by FSL software and were evaluated by ANOVA. Distortion was assessed by obtaining low displacement voxels map, and calculated from a field map image. Conclusion We showed that image distortion can be reduced by decreasing slice thickness and phase encoding steps. Distortion reduction in zoomed technique resulted the lowest level, but at the cost of signal-to-noise loss. Moreover, the SENSE technique was shown to decrease the amount of image distortion, efficiently.

  20. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.