WorldWideScience

Sample records for dispersed flow film

  1. Dispersed flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1989-12-01

    Dispersed flow film boiling is the heat transfer regime that occurs at high void fractions in a heated channel. The way this transfer mode is modelled in the NRC computer codes (RELAP5 and TRAC) and the validity of the assumption and empirical correlations used is discussed. An extensive review of the theoretical and experimental work related with heat transfer to highly dispersed mixtures reveals the basic deficiencies of these models: the investigation refers mostly to the typical conditions of low rate bottom reflooding, since the simulation of this physical situation by the computer codes has often showed poor results. The alternative models that are available in the literature are reviewed, and their merits and limits are highlighted. The modification that could improve the physics of the models implemented in the codes are identified. (author) 13 figs., 123 refs

  2. Heat transfer and hydrodynamics of nonstationary dispersed-film flow in complex shape channels

    International Nuclear Information System (INIS)

    Nigmatulin, B.I.; Klebanov, L.A.; Kroshilin, A.E.; Kroshilin, V.E.

    1980-01-01

    The mathematical model has been used to investigate the dispersed-film regime of a liquid flow and condition for the appearance of heat transfer crisis. One-dimensional motion equations are used for each component of the mixture. The model developed is used to describe the hydrodynamics and the crisis of heat transfer in rod bundles and round tubes under stationary and nonstationary conditions. The account of a separate flow of a liquid film and a vapourdrop nucleus permits to describe the main regularities of a dispersed film flow. A good agreement of calculation and experimental results is obtained [ru

  3. Annular dispersed flow analysis model by Lagrangian method and liquid film cell method

    International Nuclear Information System (INIS)

    Matsuura, K.; Kuchinishi, M.; Kataoka, I.; Serizawa, A.

    2003-01-01

    A new annular dispersed flow analysis model was developed. In this model, both droplet behavior and liquid film behavior were simultaneously analyzed. Droplet behavior in turbulent flow was analyzed by the Lagrangian method with refined stochastic model. On the other hand, liquid film behavior was simulated by the boundary condition of moving rough wall and liquid film cell model, which was used to estimate liquid film flow rate. The height of moving rough wall was estimated by disturbance wave height correlation. In each liquid film cell, liquid film flow rate was calculated by considering droplet deposition and entrainment flow rate. Droplet deposition flow rate was calculated by Lagrangian method and entrainment flow rate was calculated by entrainment correlation. For the verification of moving rough wall model, turbulent flow analysis results under the annular flow condition were compared with the experimental data. Agreement between analysis results and experimental results were fairly good. Furthermore annular dispersed flow experiments were analyzed, in order to verify droplet behavior model and the liquid film cell model. The experimental results of radial distribution of droplet mass flux were compared with analysis results. The agreement was good under low liquid flow rate condition and poor under high liquid flow rate condition. But by modifying entrainment rate correlation, the agreement become good even under high liquid flow rate. This means that basic analysis method of droplet and liquid film behavior was right. In future work, verification calculation should be carried out under different experimental condition and entrainment ratio correlation also should be corrected

  4. Difficulties in modeling dispersed-flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1991-01-01

    Dispersed Flow Film Boiling (DFFB) is characterized by important departures from thermal and velocity equilibrium that make it suitable for modeling with two-fluid models. The fundamental limitations and difficulties imposed by the one-dimensional nature of these models are extensively discussed. The validity of the assumptions and empirical laws used to close the system of conservation equations is critically reviewed, in light of the multidimensional aspects of the problem. Modifications that could improve the physics of the models are identified. (orig.) [de

  5. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    International Nuclear Information System (INIS)

    Matsuura, Keizo; Otake, Hiroshi; Kataoka, Isao; Serizawa, Akimi

    2000-01-01

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  6. A one-dimensional semi-empirical model considering transition boiling effect for dispersed flow film boiling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Jou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Pan, Chin, E-mail: cpan@ess.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2017-05-15

    Highlights: • Seven heat transfer mechanisms are studied numerically by the model. • A semi-empirical method is proposed to account for the transition boiling effect. • The parametric effects on the heat transfer mechanisms are investigated. • The thermal non-equilibrium phenomenon between vapor and droplets is investigated. - Abstract: The objective of this paper is to develop a one-dimensional semi-empirical model for the dispersed flow film boiling considering transition boiling effects. The proposed model consists of conservation equations, i.e., vapor mass, vapor energy, droplet mass and droplet momentum conservation, and a set of closure relations to address the interactions among wall, vapor and droplets. The results show that the transition boiling effect is of vital importance in the dispersed flow film boiling regime, since the flowing situation in the downstream would be influenced by the conditions in the upstream. In addition, the present paper, through evaluating the vapor temperature and the amount of heat transferred to droplets, investigates the thermal non-equilibrium phenomenon under different flowing conditions. Comparison of the wall temperature predictions with the 1394 experimental data in the literature, the present model ranging from system pressure of 30–140 bar, heat flux of 204–1837 kW/m{sup 2} and mass flux of 380–5180 kg/m{sup 2} s, shows very good agreement with RMS of 8.80% and standard deviation of 8.81%. Moreover, the model well depicts the thermal non-equilibrium phenomenon for the dispersed flow film boiling.

  7. Influence of the Fin on Two-Dimensional Characteristics of Dispersed Flow With Wall Liquid Film in the Vicinity of Obstacle

    International Nuclear Information System (INIS)

    Stosic, Zoran V.; Stevanovic, Vladimir D.; Serizawa, Akimi

    2002-01-01

    Spacers have positive effects on the heat transfer enhancement and critical heat flux (CHF) increase downstream of their location in the boiling channel. These effects are further increased by the inclusion of the fin on the spacer rear edge. Numerical simulation of a separation in a high void gas phase and dispersed droplets flow around a spacer, with a liquid film flowing on the wall, is performed. Mechanisms leading to the CHF increase due to the two-phase flow separation and liquid film thickening downstream the spacer are demonstrated. Numerical simulations of gas phase, entrained droplets and wall liquid film flows were performed with the three-fluid model and with the application of the high order numerical scheme for the liquid film surface interface tracking. Predicted is a separation of gas and entrained droplets streams around the spacer without and with a fin inclined 30 and 60 degrees to the wall, as well as a change of wall liquid film thickness in the vicinity of spacer. Results of liquid film dynamic behaviour are compared with the recently obtained experimental results. Multi-dimensional characteristics of surface waves on the liquid film were measured with newly developed ultrasonic transmission technique in a 3 3 rod bundle test section with air-water flow under atmospheric conditions. Obtained numerical results are in good agreement with experimental observations. The presented investigation gives insight into the complex mechanisms of separated two-phase flow with wall liquid film around the spacer and support thermal-hydraulic design and optimisation of flow obstacles in various thermal equipment. (authors)

  8. Magnon dispersion in thin magnetic films

    International Nuclear Information System (INIS)

    Balashov, T; Wulfhekel, W; Buczek, P; Sandratskii, L; Ernst, A

    2014-01-01

    Although the dispersion of magnons has been measured in many bulk materials, few studies deal with the changes in the dispersion when the material is in the form of a thin film, a system that is of interest for applications. Here we review inelastic tunneling spectroscopy studies of magnon dispersion in Mn/Cu 3 Au(1 0 0) and present new studies on Co and Ni thin films on Cu(1 0 0). The dispersion in Mn and Co films closely follows the dispersion of bulk samples with negligible dependence on thickness. The lifetime of magnons depends slightly on film thickness, and decreases considerably as the magnon energy increases. In Ni/Cu(1 0 0) films the thickness dependence of dispersion is much more pronounced. The measurements indicate a considerable mode softening for thinner films. Magnon lifetimes decrease dramatically near the edge of the Brillouin zone due to a close proximity of the Stoner continuum. The experimental study is supported by first-principles calculations. (paper)

  9. Magnon dispersion in thin magnetic films.

    Science.gov (United States)

    Balashov, T; Buczek, P; Sandratskii, L; Ernst, A; Wulfhekel, W

    2014-10-01

    Although the dispersion of magnons has been measured in many bulk materials, few studies deal with the changes in the dispersion when the material is in the form of a thin film, a system that is of interest for applications. Here we review inelastic tunneling spectroscopy studies of magnon dispersion in Mn/Cu3Au(1 0 0) and present new studies on Co and Ni thin films on Cu(1 0 0). The dispersion in Mn and Co films closely follows the dispersion of bulk samples with negligible dependence on thickness. The lifetime of magnons depends slightly on film thickness, and decreases considerably as the magnon energy increases. In Ni/Cu(1 0 0) films the thickness dependence of dispersion is much more pronounced. The measurements indicate a considerable mode softening for thinner films. Magnon lifetimes decrease dramatically near the edge of the Brillouin zone due to a close proximity of the Stoner continuum. The experimental study is supported by first-principles calculations.

  10. Theoretical analysis and experimental research on dispersed-flow boiling heat transfer

    International Nuclear Information System (INIS)

    Yu Zhenwan; Jia Dounan; Li Linjiao; Mu Quanhou

    1989-01-01

    Experiment on dispersed-flow boiling heat transfer at low pressure has been done. The hot patch technique has been used to establish post-dryout conditions. The position of the hot patch can be varied along the test section. The superheated vapor temperatures at different elevations after dryout point are obtained. The experimental data are generally in agreement with the models of predictions of existing nonequilibrium film boiling. A heat transfer model for dispersed-flow boiling heat transfer has been developed. And the model can explain the phenomena of heat transfer near the dryout point. (orig./DG)

  11. Hydrodynamics of annular-dispersed flow

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1982-01-01

    The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data

  12. Waves on radial film flows

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  13. Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples

    Energy Technology Data Exchange (ETDEWEB)

    Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.

    2003-07-01

    This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two

  14. Development of a Laser Dopper Anemometer technique for the measurement of two phase dispersed flow

    International Nuclear Information System (INIS)

    Srinivasan, J.

    1978-05-01

    A new optical technique using Laser-Doppler Anemometry is presented for the measurement of the local number densities and two-dimensional velocity probability densities of a turbulent dilute two-phase dispersion which has a distribution of particle size and a predominant direction of flow. This technique establishes that by a suitable scheme of discrimination on the signal amplitude, residence time and frequency of the Doppler signals caused by the scattered light from individual particles in the probing volume, the size distribution of moderately large particles in a dilute dispersed flow can be determined. The newly developed Laser-Doppler Anemometer (LDA) technique was applied to a solid particle-water two-phase flow and a water droplet-air two-phase flow. Particular emphasis was placed on turbulent two-phase water droplet-air flow inside a vertical rectangular channel. At each of nine different measuring locations along the transverse axis (starting at 250μ from the channel wall), over 20,000 Doppler signals were individually examined. The particle size and number density distributions, and the axial and lateral velocity distributions of both phases are reported. The analysis reveals some interesting features of two-phase dispersed flow. A film of water on the channel wall was formed due to the deposition of droplets from the flow. The water droplet entrainment from the wall film and the subsequent breakup of some of these into the flow are discussed. A discussion of the relationship between the particle distributions and turbulent flow characteristics is presented

  15. Investigation of the propagation characteristics in turbulent dispersed two-phase flow

    International Nuclear Information System (INIS)

    Sami, S.M.

    1980-01-01

    The propagation characteristics of turbulent dispersed two-phase flows have been studied experimentally using the Pitot tube associated with a conical hot-film anemometer. It is found that the mixture velocity increases with decreasing volumetric mixing ratio of the air and water. The void fraction distribution shows homogeneity across the test section in the special case of fully developed boundary layer two-phase flow. An expression is obtained which relates the local mixture velocity to the local void fraction, gas and liquid densities, and volumetric gas-liquid ratio

  16. High-frequency parameters of magnetic films showing magnetization dispersion

    International Nuclear Information System (INIS)

    Sidorenkov, V.V.; Zimin, A.B.; Kornev, Yu.V.

    1988-01-01

    Magnetization dispersion leads to skewed resonance curves shifted towards higher magnetizing fields, together with considerable reduction in the resonant absorption, while the FMR line width is considerably increased. These effects increase considerably with frequency, in contrast to films showing magnetic-anisotropy dispersion, where they decrease. It is concluded that there may be anomalies in the frequency dependence of the resonance parameters for polycrystalline magnetic films

  17. Squirt flow due to interfacial water films in hydrate bearing sediments

    Directory of Open Access Journals (Sweden)

    K. Sell

    2018-05-01

    Full Text Available Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess and water in excess formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image processing procedure to quantify the thicknesses and geometries of the aforementioned interfacial water films. Overall, the water films vary from sub-micrometer to a few micrometers in thickness. In addition, some of the water films interconnect through water bridges. This geometrical analysis is used to propose a new conceptual squirt flow model for hydrate bearing sediments. A series of numerical simulations is performed considering variations of the proposed model to study seismic attenuation caused by such thin water films. Our results support previous speculation that squirt flow can explain high attenuation at seismic frequencies in hydrate bearing sediments, but based on a conceptual squirt flow model which is geometrically different than those previously considered.

  18. Evolution of velocity dispersion along cold collisionless flows

    International Nuclear Information System (INIS)

    Banik, Nilanjan; Sikivie, Pierre

    2016-01-01

    We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results are used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components

  19. Hot-film anemometer measurements in adiabatic two-phase flow through a vertical duct

    International Nuclear Information System (INIS)

    Trabold, T.A.; Moore, W.E.; Morris, W.O.

    1997-06-01

    A hot-film anemometer (HFA) probe was used to obtain local measurements of void fraction and bubble frequency in a vertically oriented, high aspect ratio duct containing R-134a under selected adiabatic two-phase flow conditions. Data were obtained along a narrow dimension scan over the range 0.03 ≤ bar Z ≤ 0.80, where bar Z is the distance from the wall normalized with the duct spacing dimension. The void fraction profiles displayed large gradients in the near-wall regions and broad maxima near the duct centerline. The trends in the bubble frequency data generally follow those for the local void fraction data. However, the relatively large number of bubbles at higher pressure implies a larger magnitude of the interfacial area concentration, for the same cross-sectional average void fraction. For the two annular flow conditions tested, analysis of the HFA output voltage signal enabled identification of three distinct regions of the flow field; liquid film with dispersed bubbles, interfacial waves, and continuous vapor with dispersed droplets

  20. A mechanistic Eulerian-Lagrangian model for dispersed flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1991-01-01

    In this paper a new mechanistic model of heat transfer in the dispersed flow regime is presented. The usual assumptions that render most of the available models unsuitable for the analysis of the reflooding phase of the LOCA are discussed, and a two-dimensional time-independent numerical model is developed. The gas temperature field is solved in a fixed-grid (Eulerian) mesh, with the droplets behaving as mass and energy sources. The histories of a large number of computational droplets are followed in a Lagrangian frame, considering evaporation, break-up and interactions with the vapor and with the wall. comparisons of calculated wall and vapor temperatures with experimental data are shown for two reflooding tests

  1. Marangoni elasticity of flowing soap films

    Science.gov (United States)

    Kim, Ildoo; Mandre, Shreyas

    2017-08-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 mN/m irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed, and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows nondestructive measurement of flowing soap film elasticity and the value 22 mN/m is likely applicable to other similarly constructed flowing soap films.

  2. Stable Nafion-functionalized graphene dispersions for transparent conducting films

    International Nuclear Information System (INIS)

    Liu Yangqiao; Gao Lian; Sun Jing; Wang Yan; Zhang Jing

    2009-01-01

    Nafion was used for the first time to aid in preparing stable graphene dispersions in mixed water/ethanol (1:1) solvents via the reduction of graphite oxide using hydrazine. The dispersion was characterized by ultraviolet-visible (UV-vis) spectra, transmission electron microscopy, zeta potential analysis, etc. It was found that for Nafion-to-graphene ratios higher than 5:1, graphene solutions with concentrations up to 1 mg ml -1 and stabilities of over three months were obtained. It was proposed that the Nafion adsorbed onto the graphene by the hydrophobic interaction of its fluoro-backbones with the graphene layer and imparted stability by an electrosteric mechanism. Furthermore, transparent and conductive films were prepared using these highly stable Nafion-stabilized graphene dispersions. The prepared Nafion-graphene films possess smooth and homogeneous surfaces and the sheet resistance was as low as 30 kΩ/sq for a transmittance of 80% at 550 nm, which was much lower than for other graphene films obtained by chemical reduction. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the p-doping of the graphene by Nafion. It was expected that this p-doping effect, as well as the high dispersing ability of Nafion for graphene and the connection of the sp 2 domains by residual Nafion combined to produce good properties of the Nafion-graphene films.

  3. Influence of nitrogen flow rates on materials properties of CrNx films ...

    Indian Academy of Sciences (India)

    An elemental analysis of the samples was realized by means of energy dispersive spectroscopy. The electrical studies indicated the semiconducting behaviour of the films at the nitrogen flow rate of 15 ... important industrial process which is used to protect base ... than 40 μm can be obtained on a variety of engineering sub-.

  4. Marangoni elasticity of flowing soap films

    OpenAIRE

    Kim, Ildoo; Mandre, Shreyas

    2016-01-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm ...

  5. Dispersed flow film boiling: An investigation of the possibility to improve the models implemented in the NRC computer codes for the reflooding phase of the LOCA

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.; Paul Scherrer Inst.

    1992-08-01

    Dispersed Flow Film Boiling is the heat transfer regime that occurs at high void fractions in a heated channel. The way this heat transfer mode is modelled in the NRC computer codes (RELAP5 and TRAC) and the validity of the assumptions and empirical correlations used is discussed. An extensive review of the theoretical and experimental work related with heat transfer to highly dispersed mixtures reveals the basic deficiencies of these models: the investigation refers mostly to the typical conditions of low rate bottom reflooding, since the simulation of this physical situation by the computer codes has often showed poor results. The alternative models that are available in the literature are reviewed, and their merits and limits are highlighted. The modifications that could improve the physics of the models implemented in the codes are identified

  6. Application of the annular dispersed flow model to two-phase critical flow calculation

    International Nuclear Information System (INIS)

    Ivandaev, A.I.; Nigmatulin, B.I.

    1977-01-01

    The application of the annular dispersed flow model with an effective monodisperse core to the calculation of vapour-liquid mixture maximum rates through long pipes is discussed. An effect of the main dominant parameters such as evaporation intensity, diameter of drops picked out from the film surface and initial drop diameter at the pipe inlet on the outlet critical condition formation process has been investigated. The corresponding model constants have been determined. The calculated and experimental values of critical rates and pressure profiles along the channel have been found to be in a satisfactory agreement in the studied range of parameters. The observed non-conformity of the calculated and experimental values of critical pressures and vapour contents can be due to inadequate accuracy of the experimental techniques

  7. Dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper B.; Christensen, Erik N.

    2017-01-01

    We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also numerica......We numerically demonstrate dispersion tailoring of a silicon strip waveguide employing Titania-Alumina thin-film coating using a finite-difference mode solver. The proposed structure exhibits spectrally-flattened near-zero anomalous dispersion within the telecom wavelength range. We also...

  8. Hydrodynamics of vapor-liquid annular dispersed flows in channels with heated rod clusters under unsteady conditions

    International Nuclear Information System (INIS)

    Kroshilin, A.E.; Kroshilin, V.E.; Nigmatulin, B.I.

    1984-01-01

    A one-dimensional unsteady hydrodynamic model of vapour-liquid disperse-annular flows in channels with heated fuel rod clusters has been constructed. Regularities in the appearance of critical heat transfer due to the dryout of a near-wall liquid film on rod surfaces in such channels are investigated. The model developed takes into account the main flow regularities in the channels with heated rod clusters. The calculations made have shown that the time before crisis appearance agrees satisfactorily with the experimental data

  9. Hierarchical opal grating films prepared by slide coating of colloidal dispersions in binary liquid media.

    Science.gov (United States)

    Lee, Wonmok; Kim, Seulgi; Kim, Seulki; Kim, Jin-Ho; Lee, Hyunjung

    2015-02-15

    There are active researches on well ordered opal films due to their possible applications to various photonic devices. A recently developed slide coating method is capable of rapid fabrication of large area opal films from aqueous colloidal dispersion. In the current study, the slide coating of polystyrene colloidal dispersions in water/i-propanol (IPA) binary media is investigated. Under high IPA content in a dispersing medium, resulting opal film showed a deterioration of long range order, as well as a decreased film thickness due to dilution effect. From the binary liquid, the dried opal films exhibited the unprecedented topological groove patterns with varying periodic distances as a function of alcohol contents in the media. The groove patterns were consisted of the hierarchical structures of the terraced opal layers with periodic thickness variations. The origin of the groove patterns was attributed to a shear-induced periodic instability of colloidal concentration within a thin channel during the coating process which was directly converted to a groove patterns in a resulting opal film due to rapid evaporation of liquid. The groove periods of opal films were in the range of 50-500 μm, and the thickness differences between peak and valley of the groove were significantly large enough to be optically distinguishable, such that the coated films can be utilized as the optical grating film to disperse infra-red light. Utilizing a lowered hydrophilicity of water/IPA dispersant, an opal film could be successfully coated on a flexible Mylar film without significant dewetting problem. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Laser--Doppler anemometry technique applied to two-phase dispersed flows in a rectangular channel

    International Nuclear Information System (INIS)

    Lee, S.L.; Srinivasan, J.

    1979-01-01

    A new optical technique using Laser--Doppler anemometry has been applied to the local measurement of turbulent upward flow of a dilute water droplet--air two-phase dispersion in a vertical rectangular channel. Individually examined were over 20,000 droplet signals coming from each of a total of ten transversely placed measuring points, the closest of which to the channel wall was 250 μ away from the wall. Two flows of different patterns due to different imposed flow conditions were investigated, one with and the other without a liquid film formed on the channel wall. Reported are the size and number density distribution and the axial and lateral velocity distributions for the droplets as well as the axial and lateral velocity distributions for the air

  11. Mathematical modeling of disperse two-phase flows

    CERN Document Server

    Morel, Christophe

    2015-01-01

    This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...

  12. Effect of Graphene-EC on Ag NW-Based Transparent Film Heaters: Optimizing the Stability and Heat Dispersion of Films.

    Science.gov (United States)

    Cao, Minghui; Wang, Minqiang; Li, Le; Qiu, Hengwei; Yang, Zhi

    2018-01-10

    To optimize the performance of silver nanowire (Ag NW) film heaters and explore the effect of graphene on a film, we introduced poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) and graphene modified with ethyl cellulose (graphene-EC) into the film. The high-quality and well-dispersed graphene-EC was synthesized from graphene obtained by electrochemical exfoliation as a precursor. The transparent film heaters were fabricated via spin-coating. With the assistance of graphene-EC, the stability of film heaters was greatly improved, and the conductivity was optimized by adjusting the Ag NW concentration. The film heaters exhibited a fast and accurate response to voltage, accompanied by excellent environmental endurance, and there was no significant performance degradation after being operated for a long period of time. These results indicate that graphene-EC plays a crucial role in optimizing film stability and heat dispersion in the film. The Ag NW/PEDOT:PSS-doped graphene-EC film heaters show a great potential in low-cost indium-tin-oxide-free flexible transparent electrodes, heating systems, and transparent film heaters.

  13. Flow time, flow velocity and longitudinal dispersion in Moselle and Weser rivers; Fliesszeit, Fliessgeschwindigkeit und Longitudinale Dispersion in Mosel und Weser

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W.J.; Krinitzky, T.; Cremer, M. [Bundesanstalt fuer Gewaesserkunde (BfG), Koblenz (Germany)

    2003-07-01

    Since 1980, the Federal Institute of Hydrology has performed dispersion investigations with tritium as a tracer on Federal Waterways. The aim was to establish dispersion prognoses, i.e. forecasts of the longitudinal dispersion of concentrations of noxious substances in the water column. Characteristic parameters like discharge-relevant flow velocities, dispersion and elimination constants of emittent sites and selected river sections will be determined. They will serve as basis for a mathematical model permitting to forecast discharge-relevant flow velocities, expected impact times, concentration maxima and the duration of critical concentration increases. In the following, the results obtained at the Moselle river and the investigations carried out on the Weser river will be shortly described. (orig.)

  14. Studies on dispersive stabilization of porous media flows

    Energy Technology Data Exchange (ETDEWEB)

    Daripa, Prabir, E-mail: prabir.daripa@math.tamu.edu; Gin, Craig [Department of Mathematics, Texas A& M University, College Station, Texas 77843 (United States)

    2016-08-15

    Motivated by a need to improve the performance of chemical enhanced oil recovery (EOR) processes, we investigate dispersive effects on the linear stability of three-layer porous media flow models of EOR for two different types of interfaces: permeable and impermeable interfaces. Results presented are relevant for the design of smarter interfaces in the available parameter space of capillary number, Peclet number, longitudinal and transverse dispersion, and the viscous profile of the middle layer. The stabilization capacity of each of these two interfaces is explored numerically and conditions for complete dispersive stabilization are identified for each of these two types of interfaces. Key results obtained are (i) three-layer porous media flows with permeable interfaces can be almost completely stabilized by diffusion if the optimal viscous profile is chosen, (ii) flows with impermeable interfaces can also be almost completely stabilized for short time, but become more unstable at later times because diffusion flattens out the basic viscous profile, (iii) diffusion stabilizes short waves more than long waves which leads to a “turning point” Peclet number at which short and long waves have the same growth rate, and (iv) mechanical dispersion further stabilizes flows with permeable interfaces but in some cases has a destabilizing effect for flows with impermeable interfaces, which is a surprising result. These results are then used to give a comparison of the two types of interfaces. It is found that for most values of the flow parameters, permeable interfaces suppress flow instability more than impermeable interfaces.

  15. Hypersonic flow past slender bodies in dispersive hydrodynamics

    International Nuclear Information System (INIS)

    El, G.A.; Khodorovskii, V.V.; Tyurina, A.V.

    2004-01-01

    The problem of two-dimensional steady hypersonic flow past a slender body is formulated for dispersive media. It is shown that for the hypersonic flow, the original 2+0 boundary-value problem is asymptotically equivalent to the 1+1 piston problem for the fully nonlinear flow in the same physical system, which allows one to take advantage of the analytic methods developed for one-dimensional systems. This type of equivalence, well known in ideal Euler gas dynamics, has not been established for dispersive hydrodynamics so far. Two examples pertaining to collisionless plasma dynamics are considered

  16. Cylinder wakes in flowing soap films

    International Nuclear Information System (INIS)

    Vorobieff, P.; Ecke, R.E.; Vorobieff, P.

    1999-01-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. copyright 1999 The American Physical Society

  17. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Praveen, E-mail: pmalik100@yahoo.co [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab (India); Raina, K.K. [Liquid Crystal Group, Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala 147004, Punjab (India)

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that approx1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  18. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Malik, Praveen; Raina, K.K.

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that ∼1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  19. Film thickness in gas-liquid two-phase flow, (2)

    International Nuclear Information System (INIS)

    Sekoguchi, Kotohiko; Fukano, Toru; Kawakami, Yasushi; Shimizu, Hideo.

    1977-01-01

    The effect of four rectangular obstacles inserted into a circular tube has been studied in gas-liquid two-phase flow. The obstacles are set on the inner wall of the tube, and the ratio of the opening is 0.6. The water film flows partially through the obstacles. The minimum thickness of water film was measured in relation to flow speed. The serious effect of the obstacles was seen against the formation of water film, and drainage under the obstacles and backward flow play important roles. Since water film can flow partially through the obstacles, the film in case of the rectangular obstacles in thicker than that in case of an orifice when the gas flow speed was slower than 5 m/s. However, when the gas flow speed is over 5 m/s, the film thickness was thinner. The minimum film thickness of downstream of the obstacles was almost same as that in case of no obstacle. The minimum film thickness of up stream depends on the location of measurement due to the effect of drainage. (Kato, T.)

  20. Interaction of Liquid Film Flow of Direct Vessel Injection Under the Cross Directional Gas Flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-sol; Lee, Jae-young [Handong Global University, Pohang (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to obtain a proper scaling law of the flow, local information of the flow was investigated experimentally and also numerically. A series of experiments were conducted in the 1/20 modified linear scaled plate type test rig to analyze a liquid film from ECC water injection through the DVI nozzle to the downcomer wall. The present study investigates liquid film flow generated in a downcomer of direct vessel injection (DVI) system which is employed as an emergency core cooling (ECC) system during a loss of coolant accident in the Korea nuclear power plant APR1400. During the late reflooding, complicated multi-phase flow phenomena including the wavy film flow, film breakup, entrainment, liquid film shift due to interfacial drag and gas jet impingement occur. A confocal chromatic sensor was used to measure the local instantaneous liquid film thickness and a hydraulic jump in the film flow and boundaries of the film flow. It was found that CFD analysis results without surface tension model showed some difference with the data in surface tension dominated flow region. For the interaction between a liquid film and gas shear flow, CFD results make a good agreement with the real liquid film dynamics in the case of low film Reynolds number or low Weber number flow. In the 1/20 scaled plate type experiment and simulation, the deformed spreading profile results seem to accord with each other at the relatively low We and Re regime.

  1. Dispersion and alignment of nanorods in cylindrical block copolymer thin films.

    Science.gov (United States)

    Rasin, Boris; Chao, Huikuan; Jiang, Guoqian; Wang, Dongliang; Riggleman, Robert A; Composto, Russell J

    2016-02-21

    Although significant progress has been made in controlling the dispersion of spherical nanoparticles in block copolymer thin films, our ability to disperse and control the assembly of anisotropic nanoparticles into well-defined structures is lacking in comparison. Here we use a combination of experiments and field theoretic simulations to examine the assembly of gold nanorods (AuNRs) in a block copolymer. Experimentally, poly(2-vinylpyridine)-grafted AuNRs (P2VP-AuNRs) are incorporated into poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) thin films with a vertical cylinder morphology. At sufficiently low concentrations, the AuNRs disperse in the block copolymer thin film. For these dispersed AuNR systems, atomic force microscopy combined with sequential ultraviolet ozone etching indicates that the P2VP-AuNRs segregate to the base of the P2VP cylinders. Furthermore, top-down transmission electron microscopy imaging shows that the P2VP-AuNRs mainly lie parallel to the substrate. Our field theoretic simulations indicate that the NRs are strongly attracted to the cylinder base where they can relieve the local stretching of the minority block of the copolymer. These simulations also indicate conditions that will drive AuNRs to adopt a vertical orientation, namely by increasing nanorod length and/or reducing the wetting of the short block towards the substrate.

  2. Preparation and optical properties of gold-dispersed BaTiO3 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kineri, T; Mori, M [TDK Corp., Tokyo (Japan). R and D Center; Kadono, K; Sakaguchi, T; Miya, M; Wakabayashi, H [Osaka National Research Inst., Osaka (Japan); Tsuchiya, T [Science Univ. of Tokyo, Tokyo (Japan). Faculty of Industrial Science and Technology

    1993-12-01

    Recently, metal or semiconductor-doped glasses were widely studied because of their large resonant third-order nonlinearity. These glasses are utilized in an optical information field as all optical logic devices in the future. The gold-doped glass films or thin layers have a large third-order nonlinear susceptibility [chi] and are prepared by r.f. sputtering method, etc. The optical properties, particularly the refractive index or dielectric constant of the matrix, are very important for the optical nonlinearity of these materials. In this study, gold-dispersed BaTiO3 thin films and gold-dispersed SiO2 thin films are prepared using r.f. magnetron sputtering method, and the optical properties of the films are compared. The [chi] of the films are measured and the effect of the matrix of the films on [chi] is investigated. The headings in the paper are: Introduction, Experimental procedure, Results, Discussion, and Conclusion. 13 refs., 9 figs.

  3. Study of memory effects in polymer dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Han, Jinwoo

    2006-01-01

    In this work, we have studied the memory effects in polymer dispersed liquid crystal films. We found that optical responses, such as the memory effects, of the films depended strongly on the morphology. For example, memory effects were observed for films with polymer ball morphologies; however, only weak hysteresis effects were observed for films with droplet morphologies. In particular, a stronger memory effect was observed for films with more complicated polymer ball structures. Coincidentally, T TE , the temperature at which the memory state is thermally erased, was generally higher for the films exhibiting a stronger memory effect. In addition, studies of the temporal evolution of the films show that the memory effects become stronger after films have been kept on the shelf for a period of time. This change is likely to be associated with a modification of surface anchoring properties at the LC-polymer interface.

  4. Gravity flow and solute dispersion in variably saturated sand

    Science.gov (United States)

    Kumahor, Samuel K.; de Rooij, Gerrit H.; Vogel, Hans-Joerg

    2014-05-01

    Solute dispersion in porous media depends on the structure of the velocity field at the pore scale. Hence, dispersion is expected to change with water content and with mean flow velocity. We performed laboratory experiments using a column of repacked fine-grained quartz sand (0.1-0.3 mm grain size) with a porous plate at the bottom to controle the water potential at the lower boundary. We established gravity flow conditions - i.e. constant matric potential and water content throughout the column - for a number of different irrigation rates. We measured breakthrough curves during unit gradient flow for an inert tracer which could be described by the convection-dispersion equation. As the soil water content decreased we observed an initially gradual increase in dispersivity followed by an abrupt increase below a threshold water content (0.19) and pressure head (-38 hPa). This phenomena can be explained by the geometry of phase distribution which was simulated based on Xray-CT images of the porous structure.

  5. Cytoplasmic Flow Enhances Organelle Dispersion in Eukaryotic Cells

    Science.gov (United States)

    Koslover, Elena; Mogre, Saurabh; Chan, Caleb; Theriot, Julie

    The cytoplasm of a living cell is an active environment through which intracellular components move and mix. We explore, using theoretical modeling coupled with microrheological measurements, the efficiency of particle dispersion via different modes of transport within this active environment. In particular, we focus on the role of cytoplasmic flow over different scales in contributing to organelle transport within two different cell types. In motile neutrophil cells, we show that bulk fluid flow associated with rapid cell deformation enhances particle transport to and from the cell periphery. In narrow fungal hyphae, localized flows due to hydrodynamic entrainment are shown to contribute to optimally efficient organelle dispersion. Our results highlight the importance of non-traditional modes of transport associated with flow of the cytoplasmic fluid in the distribution of organelles throughout eukaryotic cells.

  6. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

    International Nuclear Information System (INIS)

    Prakash, Deo; Shaaban, E.R.; Shapaan, M.; Mohamed, S.H.; Othman, A.A.; Verma, K.D.

    2016-01-01

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

  7. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Deo [School of Computer Science & Engineering, Faculty of Engineering, SMVD University, Kakryal, Katra 182320, J& K (India); Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542 (Egypt); Shapaan, M. [Department of Physics, Faculty of Science, Al-Azahar University, Cairo (Egypt); Mohamed, S.H. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Othman, A.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Verma, K.D., E-mail: kdverma1215868@gmail.com [Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, U.P. (India)

    2016-08-15

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

  8. Numerical study on flow and pollutant dispersion inside street canyons

    OpenAIRE

    Yunkai, Yang

    2013-01-01

    This thesis analyzes the characteristics of flow pattern and vehicle-emitted pollutant dispersion in roughness surface layer. In an urban environment, wind flow and transported-pollutant source interfere strongly with buildings and other roughness elements on the surface ground, which results in complex characteristics of flow pattern and pollutant dispersion in 3D circumstances. The present study intends to simplify the research domain and investigate the fundamental modeling problems that e...

  9. Experimental simulation of corium dispersion phenomena in direct containment heating

    International Nuclear Information System (INIS)

    Wu, Q.

    1996-01-01

    In a direct containment heating (DCH) accident scenario, the degree of corium dispersion is one of the most significant factors responsible for the reactor containment heating and pressurization. To study the mechanisms of the corium dispersion phenomenon, a DCH separate effect test facility of 1:10 linear scale for Zion PWR geometry is constructed. Experiments are carried out with air-water and air-woods metal simulating steam and molten core materials. The physical process of corium dispersion is studied in detail through various instruments, as well as with flow visualization at several locations. The accident transient begins with the liquid jet discharge at the bottom of the reactor pressure vessel. Once the jet impinges on the cavity bottom floor, it immediately spreads out and moves rapidly to the cavity exit as a film flow. Part of the discharged liquid flows out of the cavity before gas blowdown, and the rest is subjected to the entrainment process due to the high speed gas stream. The liquid film and droplet flows from the reactor cavity will then experience subcompartment trapping and re-entrainment. Consequently, the dispersed liquid droplets that follow the gas stream are transported into the containment atmosphere, resulting in containment heating and pressurization in the prototypic condition. Comprehensive measurements are obtained in this study, including the liquid jet velocity, liquid film thickness and velocity transients in the test cavity, gas velocity and velocity profile in the cavity, droplet size distribution and entrainment rate, and the fraction of dispersed liquid in the containment building. These data are of great importance for better understanding of the corium dispersion mechanisms. (orig.)

  10. Horizontal liquid film-mist two phase flow, (1)

    International Nuclear Information System (INIS)

    Akagawa, Koji; Sakaguchi, Tadashi; Fujii, Terushige; Nakatani, Yoji; Nakaseko, Kosaburo.

    1979-01-01

    The characteristics of liquid film in annular spray flow, the generation of droplets from liquid film and the transport of droplets to a wall are the important matters in the planning and design of nuclear reactor cooling system and the channels of steam generators. The study on the liquid film spray flow is scarce, and its characteristics are not yet elucidated. The purpose of this series of studies is to clarify the characteristics of liquid film, the generation, diffusion and distribution of droplets and pressure loss in the liquid film spray flow composed of the liquid film on the lower wall and spraying gas flow in a rectangular, horizontal channel. In this paper, the concentration distribution and the diffusion coefficient of droplets on a cross section in the region of flow completion are reported. The experimental apparatuses and the experimental method, the flow rate of droplets and the velocity distribution of gas phase, the concentration distribution and the diffusion coefficient of droplets, and the diameter of generated droplets are explained. The equation for the concentration distribution of droplets using dimensionless characteristic value was derived. The mean diffusion coefficient of droplets was constant on a cross section, and the effects of gravity and turbulent diffusion can be evaluated. (Kako, I.)

  11. Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows

    Science.gov (United States)

    Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.

    2013-12-01

    In this work, we consider a sinusoidal-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re=449 for which unsteady flow was observed. The longitudinal dispersion observed for the flow was computed using a random walk particle tracking method, and this was compared to the longitudinal dispersion predicted from a volume-averaged macroscopic mass balance using the method of volume averaging; the results of the two methods were consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for both the low-Re, Stokes flow regime and for values of Re representing the steady inertial regime. In the steady inertial regime, a power-law increase in the effective longitudinal dispersion (DL) with Re was found, and this is consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). One unsteady (but non-turbulent) flow case (Re=449) was also examined. For this case, the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion. The observed tailing was further explored through analysis of concentration skewness (third moment) and its assymptotic convergence to conventional advection-dispersion behavior (skewness = 0). The method of volume averaging was

  12. Advection and Taylor-Aris dispersion in rivulet flow

    Science.gov (United States)

    Al Mukahal, F. H. H.; Duffy, B. R.; Wilson, S. K.

    2017-11-01

    Motivated by the need for a better understanding of the transport of solutes in microfluidic flows with free surfaces, the advection and dispersion of a passive solute in steady unidirectional flow of a thin uniform rivulet on an inclined planar substrate driven by gravity and/or a uniform longitudinal surface shear stress are analysed. Firstly, we describe the short-time advection of both an initially semi-infinite and an initially finite slug of solute of uniform concentration. Secondly, we describe the long-time Taylor-Aris dispersion of an initially finite slug of solute. In particular, we obtain the general expression for the effective diffusivity for Taylor-Aris dispersion in such a rivulet, and discuss in detail its different interpretations in the special case of a rivulet on a vertical substrate.

  13. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors.

    Science.gov (United States)

    Croze, Ottavio A; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A; Brandt, Luca

    2013-04-06

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.

  14. Numerical simulation of falling film flow boiling along a vertical wall

    International Nuclear Information System (INIS)

    Chiaki Kino; Tomoaki Kunugi; Akimi Serizawa

    2005-01-01

    Full text of publication follows: When a dryout occurs in film flows with heating from the wall, the wall surface being cooled is no longer in intimate contact with the liquid film. Consequently, the heat transfer will dramatically reduce and the corresponding wall temperature will rise rapidly up to the melting temperature of the heat transfer plate or pipe. It is very important to investigate the heat transfer characteristics of liquid films flowing along a heating wall and the dryout phenomena of the liquid films associated with increasing heat flux in the high heat flux component devices for chemical and mechanical devices and nuclear reactor systems. Many studies have been conducted on the dryout phenomena and it has been shown that the dryout conditions are influenced by several different flow conditions, for instance, subcooled and saturated liquid films and so on. The dryout process of boiling liquid films is different between them: in the case of subcooled liquid films, the process is caused by the local surface-tension variation along the film. On the contrary, in the case of saturated liquid films the surface temperature of boiling films is maintained at a saturation temperature and there can be no variation of surface tension along the film. The process in the case of saturated liquid films is caused by the reduction of film flow rate due to the flow imbalance. This reduction of film flow rate is promoted by the evaporation and the liquid droplets arising from the film surface due to the burst of vapor bubbles. Therefore, it is very important to predict the sputtering rate of liquid droplets and to understand the behavior of vapor bubbles in film flow boiling. In the present study, numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver) developed by one of the authors have been performed in order to understand the dryout of film flow boiling. The film flows along a vertical wall are focused in the present study

  15. Systematic study on intermolecular valence-band dispersion in molecular crystalline films

    International Nuclear Information System (INIS)

    Yamane, Hiroyuki; Kosugi, Nobuhiro

    2015-01-01

    Highlights: • Intermolecular valence-band dispersion of crystalline films of phthalocyanines. • Intermolecular transfer integral versus lattice constant. • Site-specific intermolecular interaction and resultant valence-band dispersion. • Band narrowing effect induced by elevated temperature. - Abstract: Functionalities of organic semiconductors are governed not only by individual properties of constituent molecules but also by solid-state electronic states near the Fermi level such as frontier molecular orbitals, depending on weak intermolecular interactions in various conformations. The individual molecular property has been widely investigated in detail; on the other hand, the weak intermolecular interaction is difficult to investigate precisely due to the presence of the structural and thermal energy broadenings in organic solids. Here we show quite small but essential intermolecular valence band dispersions and their temperature dependence of sub-0.1-eV scale in crystalline films of metal phthalocyanines (H_2Pc, ZnPc, CoPc, MnPc, and F_1_6ZnPc) by using angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. The observed bands show intermolecular and site dependent dispersion widths, phases, and periodicities, for different chemical substitution of terminal groups and central metals in the phthalocyanine molecule. The precise and systematic band-dispersion measurement would be a credible approach toward the comprehensive understanding of intermolecular interactions and resultant charge transport properties as well as their tuning by substituents in organic molecular systems.

  16. Physical modelling of flow and dispersion over complex terrain

    Science.gov (United States)

    Cermak, J. E.

    1984-09-01

    Atmospheric motion and dispersion over topography characterized by irregular (or regular) hill-valley or mountain-valley distributions are strongly dependent upon three general sets of variables. These are variables that describe topographic geometry, synoptic-scale winds and surface-air temperature distributions. In addition, pollutant concentration distributions also depend upon location and physical characteristics of the pollutant source. Overall fluid-flow complexity and variability from site to site have stimulated the development and use of physical modelling for determination of flow and dispersion in many wind-engineering applications. Models with length scales as small as 1:12,000 have been placed in boundary-layer wind tunnels to study flows in which forced convection by synoptic winds is of primary significance. Flows driven primarily by forces arising from temperature differences (gravitational or free convection) have been investigated by small-scale physical models placed in an isolated space (gravitational convection chamber). Similarity criteria and facilities for both forced and gravitational-convection flow studies are discussed. Forced-convection modelling is illustrated by application to dispersion of air pollutants by unstable flow near a paper mill in the state of Maryland and by stable flow over Point Arguello, California. Gravitational-convection modelling is demonstrated by a study of drainage flow and pollutant transport from a proposed mining operation in the Rocky Mountains of Colorado. Other studies in which field data are available for comparison with model data are reviewed.

  17. On almost inviscid film flows

    NARCIS (Netherlands)

    Kuiken, H.K.

    1970-01-01

    This study is concerned with flow of liquid films down inclined plates, which carry an increasing amount of fluid in the downstream direction. It is supposed that by some mechanism, e.g. condensation, the fluid enters the film at its outer edge. The rate at which this mass-addition occurs is

  18. Soap-film flow induced by electric fields in asymmetric frames

    Science.gov (United States)

    Mollaei, S.; Nasiri, M.; Soltanmohammadi, N.; Shirsavar, R.; Ramos, A.; Amjadi, A.

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  19. Reducing the impact of speed dispersion on subway corridor flow.

    Science.gov (United States)

    Qiao, Jing; Sun, Lishan; Liu, Xiaoming; Rong, Jian

    2017-11-01

    The rapid increase in the volume of subway passengers in Beijing has necessitated higher requirements for the safety and efficiency of subway corridors. Speed dispersion is an important factor that affects safety and efficiency. This paper aims to analyze the management control methods for reducing pedestrian speed dispersion in subways. The characteristics of the speed dispersion of pedestrian flow were analyzed according to field videos. The control measurements which were conducted by placing traffic signs, yellow marking, and guardrail were proposed to alleviate speed dispersion. The results showed that the methods of placing traffic signs, yellow marking, and a guardrail improved safety and efficiency for all four volumes of pedestrian traffic flow, and the best-performing control measurement was guardrails. Furthermore, guardrails' optimal position and design measurements were explored. The research findings provide a rationale for subway managers in optimizing pedestrian traffic flow in subway corridors. Copyright © 2017. Published by Elsevier Ltd.

  20. Transient Taylor-Aris dispersion for time-dependent flows in straight channels

    DEFF Research Database (Denmark)

    Vedel, Søren; Bruus, Henrik

    2012-01-01

    Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra–ket forma......Taylor–Aris dispersion, the shear-induced enhancement of solute diffusion in the flow direction of the solvent, has been studied intensely in the past half century for the case of steady flow and single-frequency pulsating flows. Here, combining Aris’s method of moments with Dirac’s bra...

  1. Droplets in annular-dispersed gas-liquid pipe-flows

    NARCIS (Netherlands)

    Van 't Westende, J.M.C.

    2008-01-01

    Annular-dispersed gas-liquid pipe-flows are commonly encountered in many industrial applications, and have already been studied for many decades. However, due to the great complexity of this type of flow, there are still many phenomena that are poorly understood. The aim of this thesis is to shed

  2. Investigation of the liquid film flow rate in an annular two phase flow

    International Nuclear Information System (INIS)

    Chandraker, D.K.; Dasgupta, A.; Vijayan, P.K.; Aritomi, M.

    2011-01-01

    An accurate knowledge of the liquid film flow is essential in most thermal-hydraulic predictions, including the onset of dryout in boiling channels and post-dryout heat transfer during transient and accident scenarios. The determination of the film flow is an important aspect of the dryout analysis in the boiling channel. Dryout is caused due to the disappearance of the liquid film on the heated surface. Mechanistic prediction of dryout involves the modeling of the physical phenomenon of the processes like entrainment and deposition rate of droplets. In the nuclear reactor systems analytical prediction of the thermal hydraulic parameters is always desirable to avoid generation of exhaustive and expensive experimental data for optimizing the design parameters. Good constitutive models for entrainment and deposition are vital for an accurate prediction of the film flow rate and hence dryout in a fuel bundle. This paper attempts a comprehensive review of the dryout analysis involving application of the constitutive models for the film flow rate. Validation of these models against various experimental data has also been presented in this paper. (author)

  3. Analytical solution of velocity for ammonia-water horizontal falling-film flow

    International Nuclear Information System (INIS)

    Zhang, Qiang; Gao, Yide

    2016-01-01

    Highlights: • We built a new falling-film flow model that analyzed the film flow characteristics. • We have obtained a new formula of film thickness over the horizontal tube. • We derived analysis solution to analyze the effect of inertial force to velocity in the entrance region of liquid film. • It described the characters of the ammonia-waterfalling-film film over the horizontal tube. • It is good for falling-film absorption, generation and evaporation to optimizing the design parameters and further improving the capabilities. - Abstract: A new horizontal tube falling film velocity model was built and calculated to analyze the problem of film flow conditions. This model also analyzed the film thickness distribution in horizontal tube falling film flow and considered the effect of the inertial force on velocity. The film thickness and velocity profile can be obtained based on the principle of linear superposition, a method of separation of variables that introduces the effect of variable inertial force on the velocity profile in the process of falling-film absorption. The film flow condition and the film thickness distribution at different fluid Reynolds numbers (Re) and tube diameters were calculated and compared with the results of the Crank–Nicolson numerical solution under the same conditions. The results show that the film flow condition out of a horizontal tube and that the film thickness increases with the fluid Re. At a specific Re and suitable tube diameter, the horizontal tube reaches a more uniform film. Finally, the analysis results have similar trend with the experimental and numerical predicted data in literature.

  4. Experimentally validated dispersion tailoring in a silicon strip waveguide with alumina thin-film coating

    DEFF Research Database (Denmark)

    Guo, Kai; Christensen, Jesper Bjerge; Shi, Xiaodong

    2018-01-01

    We propose a silicon strip waveguide structure with alumina thin-film coating in-between the core and the cladding for group-velocity dispersion tailoring. By carefully designing the core dimension and the coating thickness, a spectrally-flattened near-zero anomalous group-velocity dispersion...

  5. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode

    Czech Academy of Sciences Publication Activity Database

    Kašpárková, V.; Humpolíček, P.; Capáková, Z.; Bober, Patrycja; Stejskal, Jaroslav; Trchová, Miroslava; Rejmontová, P.; Junkar, I.; Lehocký, M.; Mozetič, M.

    2017-01-01

    Roč. 157, 1 September (2017), s. 309-316 ISSN 0927-7765 R&D Projects: GA ČR(CZ) GA17-05095S Institutional support: RVO:61389013 Keywords : polyaniline * conducting films * colloidal dispersions Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.887, year: 2016

  6. Stereoscopic measurements of particle dispersion in microgravity turbulent flow

    Science.gov (United States)

    Groszmann, Daniel Eduardo

    2001-08-01

    The presence of particles in turbulent flows adds complexity to an already difficult subject. The work described in this research dissertation was intended to characterize the effects of inertia, isolated from gravity, on the dispersion of solid particles in a turbulent air flow. The experiment consisted of releasing particles of various sizes in an enclosed box of fan- generated, homogenous, isotropic, and stationary turbulent airflow and examining the particle behavior in a microgravity environment. The turbulence box was characterized in ground-based experiments using laser Doppler velocimetry techniques. Microgravity was established by free-floating the experiment apparatus during the parabolic trajectory of NASA's KC-135 reduced gravity aircraft. The microgravity generally lasted about 20 seconds, with about fifty parabolas per flight and one flight per day over a testing period of four days. To cover a broad range of flow regimes of interest, particles with Stokes numbers (St) of 1 to 300 were released in the turbulence box. The three- dimensional measurements of particle motion were made using a three-camera stereo imaging system with a particle-tracking algorithm. Digital photogrammetric techniques were used to determine the particle locations in three-dimensional space from the calibrated camera images. The epipolar geometry constraint was used to identify matching particles from the three different views and a direct spatial intersection scheme determined the coordinates of particles in three-dimensional space. Using velocity and acceleration constraints, particles in a sequence of frames were matched resulting in particle tracks and dispersion measurements. The goal was to compare the dispersion of different Stokes number particles in zero gravity and decouple the effects of inertia and gravity on the dispersion. Results show that higher inertia particles disperse less in zero gravity, in agreement with current models. Particles with St ~ 200

  7. Falling film flow, heat transfer and breakdown on horizontal tubes

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1980-11-01

    Knowledge of falling film flow and heat transfer characteristics on horizontal tubes is required in the assessment of certain CANDU reactor accident sequences for those CANDU reactors which use moderator dump as one of the shut-down mechanisms. In these reactors, subsequent cooling of the calandria tubes is provided by falling films produced by sprays. This report describes studies of falling film flow and heat transfer characteristics on horizontal tubes. Analyses using integral methods are given for laminar and turbulent flow, ignoring and accounting for momentum effects in the film. Preliminary experiments on film flow stability on horizontal tubes are described and various mechanisms of film breakdown are examined. The work described in this report shows that in LOCA with indefinitely delayed ECI in the NPD or Douglas Point (at 70 percent power) reactors, the falling films on the calandria tubes will not be disrupted by any of the mechanisms considered, provided that the pressure tubes do not sag onto the calandria tubes. However, should the pressure tubes sag onto the calandria tubes, film disruption will probably occur

  8. Film thickness in gas-liquid two-phase flow, (4)

    International Nuclear Information System (INIS)

    Fukano, Toru; Sekoguchi, Kotohiko; Kawakami, Yasushi; Shimizu, Hideo.

    1979-01-01

    This paper reports in detail on the thinning process of water film by means of the drainage that appears directly under an obstacle inserted against the flow into the gas-liquid two-phase flow in a tube. The equipment is the same as that used for the first study, in which the orifice type obstacle of 5 mm long having the area ratio of 0.235 was used. This obstacle is the one for which the most significant drainage was observed in the previous study. The change of liquid film in course of time was measured by the constant current method as described before. First, the premising conditions and duration of the drainage are considered. In the thinning by drainage, water film became about 0.1 mm at the early stage of 0.1 sec from its start, then the whole water film became the flow governed by viscosity (called viscous water film). After this state, the film became thinner very slowly. The viscous film is thicker as it is apart farther from the obstacle. If the flow conditions show significant drainage, the duration of drainage directly under the obstacle is nearly equal to the passing time of gas slug. When the thinning of water film is accelerated by drainage, it might cause the possible disappearance of water film when gas slug passes, even if the thermal load is comparatively low. (Wakatsuki, Y.)

  9. Magnetoresistance and Microstructure of Magnetite Nanocrystals Dispersed in Indium−Tin Oxide Thin Films

    OpenAIRE

    Okada, Koichi; Kohiki, Shigemi; Mitome, Masanori; Tanaka, Hidekazu; Arai, Masao; Mito, Masaki; Deguchi, Hiroyuki

    2009-01-01

    Epitaxial indium−tin oxide (ITO) thin films were fabricated on a yttria-stabilized zirconia (YSZ) substrate by pulsed-laser deposition using magnetite (Fe3O4) nanoparticle dispersed ITO powders as a target. Magnetoresistance of the film at a field of 1 T was 39% at 45 K, and it stayed at 3% above 225 K. The film demonstrated cooling hysteresis in the temperature dependence of direct-current magnetization. Transmission electron microscopy revealed that phase-separated Fe3O4 nanocrystals with w...

  10. Physical and dispersive optical characteristics of ZrON/Si thin-film system

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Yew Hoong [University of Malaya, Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, Kuala Lumpur (Malaysia); University of Malaya, Centre of Advanced Manufacturing and Material Processing, Kuala Lumpur (Malaysia); Atuchin, V.V. [Institute of Semiconductor Physics, SB RAS, Laboratory of Optical Materials and Structures, Novosibirsk (Russian Federation); Kruchinin, V.N. [Institute of Semiconductor Physics, SB RAS, Laboratory for Ellipsometry of Semiconductor Materials and Structures, Novosibirsk (Russian Federation); Cheong, Kuan Yew [Universiti Sains Malaysia, Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Seberang Perai Selatan, Penang (Malaysia)

    2014-06-15

    To date, the complex evaluation of physical and dispersive optical characteristics of the ZrON/Si film system has yet been reported. Hence, ZrON thin films have been formed on Si(100) substrates through oxidation/nitridation of sputtered metallic Zr in N{sub 2}O environment at 500, 700, and 900 C. Physical properties of the deposited films have been characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, reflection high-energy electron diffraction (RHEED), and spectroscopic ellipsometry (SE). It has been shown that ZrON/Si thin films without optical absorption can be prepared by oxidation/nitridation reaction in N{sub 2}O environment at 700-900 C. (orig.)

  11. Flow film boiling heat transfer in water and Freon-113

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Shiotsu, Masahiro; Sakurai, Akira

    2002-01-01

    Experimental apparatus and method for film boiling heat transfer measurement on a horizontal cylinder in forced flow of water and Freon-113 under pressurized and subcooled conditions were developed. The experiments of film boiling heat transfer from single horizontal cylinders with diameters ranging from 0.7 to 5 mm in saturated and subcooled water and Freon-113 flowing upward perpendicular to the cylinders were carried out for the flow velocities ranging from 0 to 1 m/s under system pressures ranging from 100 to 500 kPa. Liquid subcoolings ranged from 0 to 50 K, and the cylinder surface superheats were raised up to 800 K for water and 400 K for Freon-113. The film boiling heat transfer coefficients obtained were depended on surface superheats, flow velocities, liquid subcoolings, system pressures and cylinder diameters. The effects of these parameters were systematically investigated under wider ranges of experimental conditions. It was found that the heat transfer coefficients are higher for higher flow velocities, subcoolings, system pressures, and for smaller cylinder diameters. The observation results of film boiling phenomena were obtained by a high-speed video camera. A new correlation for subcooled flow film boiling heat transfer was derived by modifying authors' correlation for saturated flow film boiling heat transfer with authors' experimental data under wide subcooled conditions. (author)

  12. The effects of a flow obstacle on liquid film flowing concurrently with air in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Fukano, Tohru; Tominaga, Akira; Morikawa, Kengo.

    1986-01-01

    The aspect of a liquid film flowing near a flat plate type obstacle was observed, and the liquid film thickness and the entrainment were measured under a wide range of gas and liquid flow rates. The results are summarized as follows: (1) The configurations of film flows near the obstacle are classified according to whether (a) the liquid film climbs over the obstacle or not, (b) the air flows under the obstacle or not, or (c) the liquid film swells or sinks just upstream or downstream of the obstacle. (2) The lower the liquid flow rate, the larger the effect of the obstacle on the film thickness. (3) The generation of entrainment is regulated by the obstacle when the air volumetric flux is high and by the disturbance wave when it is low. (author)

  13. Experimental study on two-dimensional film flow with local measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-12-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  14. Experimental study on two-dimensional film flow with local measurement methods

    International Nuclear Information System (INIS)

    Yang, Jin-Hwa; Cho, Hyoung-Kyu; Kim, Seok; Euh, Dong-Jin; Park, Goon-Cherl

    2015-01-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  15. A research of vapour-film characteristics of inverted-annular flow film boiling by visual method

    International Nuclear Information System (INIS)

    Xu Jijun; Guo Zhichao; Yan An; Bi Haoran

    1988-01-01

    The vapour-film characteristics are an interesting topic in inverted-annular flow film boiling. A practical set of experimental rig has been designed and constructed for visual observation. Photographic method is adopted for obtaining number of photographs in the conditions of steady state. For references at hands, photographs under steady conditions of water flow film boiling have not been published yet. This paper discusses the typical vapour film characteristics and regards Elias' two-region model summarized from transient visual experiment as reasonable. In addition, under heated conditions, at least, three types of vapour-water interfaces have been observed. They are asymmetric sine waves, symmetic varicose waves, and roll waves offered by Jarlais from an adiabatic simulation. In diabatic conditions a transition of flow pattern to slug flow is usually caused by hydrodynamic instability and/or by thermodynamic instability. The effects of mass velocity, inlet subcooling, heat flux input, initial quality and pressure to vapour-film characteristics are described. An empirical correlation is fitted to 23 sets of tests of discussion

  16. Solid KHT tumor dispersal for flow cytometric cell kinetic analysis

    International Nuclear Information System (INIS)

    Pallavicini, M.G.; Folstad, L.J.; Dunbar, C.

    1981-01-01

    A bacterial neutral protease was used to disperse KHT solid tumors into single cell suspensions suitable for routine cell kinetic analysis by flow cytometry and for clonogenic cell survival. Neutral protease disaggregation under conditions which would be suitable for routine tumor dispersal was compared with a trypsin/DNase procedure. Cell yield, clonogenic cell survival, DNA distributions of untreated and drug-perturbed tumors, rates of radioactive precursor incorporation during the cell cycle, and preferential cell cycle phase-specific cell loss were investigated. Tumors dispersed with neutral protease yielded approximately four times more cells than those dispersed with trypsin/DNase and approximately a 1.5-fold higher plating efficiency in a semisolid agar system. Quantitative analysis of DNA distributions obtained from untreated and cytosine-arabinoside-perturbed tumors produced similar results with both dispersal procedures. The rates of incorporation of tritiated thymidine during the cell cycle were also similar with neutral protease and trypsin/DNase dispersal. Preferential phase-specific cell loss was not obseved with either technique. We find that neutral protease provides good single cell suspensions of the KHT tumor for cell survival measurements and for cell kinetic analysis of drug-induced perturbations by flow cytometry. In addition, the high cell yields facilitate electronic cell sorting where large numbers of cells are often required

  17. Synthesis and investigation of PMMA films with homogeneously dispersed multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Pantoja-Castro, M.A.; Pérez-Robles, J.F.; González-Rodríguez, H.; Vorobiev-Vasilievitch, Y.; Martínez-Tejada, H.V.; Velasco-Santos, C.

    2013-01-01

    Multiwalled carbon nanotubes (MWNT) modified by 2.2′-azoiso-butyronitrile (AIBN) were incorporated into methyl methacrylate (MMA) by sonochemistry method, resulting in homogenous dispersion of MWNT, which makes possible to obtain flexible conductive polymer-matrix nanocomposites films of PMMA, with MWNT concentrations ranging from 0 to 0.5 wt%. Modified MWNT (AIBN-MWNT) were studied by Fourier transform infrared (FT-IR), Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and through visual observations in order to compare the dispersion in 2-propanone and toluene with that of pristine MWNT. Synthesized PMMA-AIBN-MWNT films were studied by FT-IR and Raman spectroscopy. Using FT-IR for the AIBN-MWNT it was not possible to identify any group or groups attached to the nanotubes. Raman spectroscopy shows a small modification in the Lorentzian peaks ratio I D/G of AIBN-MWNT, meanwhile XPS showed that atomic compositions does not change for AIBN-MWNT compared to the pristine nanotubes. Also by impedance it was analyzed the conductivity of PMMA-MWNT films and the results showed a threshold percolation at 0.5 wt%. FT-IR and Raman analyses for PMMA-AIBN-MWNT composite indicate a covalent bonding between PMMA and MWNT due to the opening of π-bonds of the nanotubes, which is related with a possible proposed reaction scheme. - Graphical abstract: Display Omitted - Highlights: • We used sonochemistry-in situ polymerization to disperse MWNT very soon in PMMA. • A high and homogenous dispersion of MWNT in PMMA was achieved. • The modification of MWNT by AIBN was analyzed using Raman. • A covalent bonding between PMMA and MWNT was analyzed by FT-IR and Raman. • According to the results of PMMA-MWNT it was proposed a scheme reaction

  18. Synthesis and investigation of PMMA films with homogeneously dispersed multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Pantoja-Castro, M.A., E-mail: m_pantojaq@yahoo.com.mx [Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Av. J. Múgica S/N Col., Villa Universidad, CP 58040 Morelia, Michoacán (Mexico); Pérez-Robles, J.F. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Libramiento Norponiente #2000, Fracc. Real de Juriquilla, CP 76230 Querétaro (Mexico); González-Rodríguez, H. [Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Av. J. Múgica S/N Col., Villa Universidad, CP 58040 Morelia, Michoacán (Mexico); Vorobiev-Vasilievitch, Y. [Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Libramiento Norponiente #2000, Fracc. Real de Juriquilla, CP 76230 Querétaro (Mexico); Martínez-Tejada, H.V. [Instituto de Energía, Materiales y Medio Ambiente, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Bloque 22, Medellín (Colombia); Velasco-Santos, C. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Autónoma de México, Av. Boulevard Juriquilla, No. 3001 Juriquilla, CP 76230 Querétaro (Mexico)

    2013-07-15

    Multiwalled carbon nanotubes (MWNT) modified by 2.2′-azoiso-butyronitrile (AIBN) were incorporated into methyl methacrylate (MMA) by sonochemistry method, resulting in homogenous dispersion of MWNT, which makes possible to obtain flexible conductive polymer-matrix nanocomposites films of PMMA, with MWNT concentrations ranging from 0 to 0.5 wt%. Modified MWNT (AIBN-MWNT) were studied by Fourier transform infrared (FT-IR), Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and through visual observations in order to compare the dispersion in 2-propanone and toluene with that of pristine MWNT. Synthesized PMMA-AIBN-MWNT films were studied by FT-IR and Raman spectroscopy. Using FT-IR for the AIBN-MWNT it was not possible to identify any group or groups attached to the nanotubes. Raman spectroscopy shows a small modification in the Lorentzian peaks ratio I{sub D/G} of AIBN-MWNT, meanwhile XPS showed that atomic compositions does not change for AIBN-MWNT compared to the pristine nanotubes. Also by impedance it was analyzed the conductivity of PMMA-MWNT films and the results showed a threshold percolation at 0.5 wt%. FT-IR and Raman analyses for PMMA-AIBN-MWNT composite indicate a covalent bonding between PMMA and MWNT due to the opening of π-bonds of the nanotubes, which is related with a possible proposed reaction scheme. - Graphical abstract: Display Omitted - Highlights: • We used sonochemistry-in situ polymerization to disperse MWNT very soon in PMMA. • A high and homogenous dispersion of MWNT in PMMA was achieved. • The modification of MWNT by AIBN was analyzed using Raman. • A covalent bonding between PMMA and MWNT was analyzed by FT-IR and Raman. • According to the results of PMMA-MWNT it was proposed a scheme reaction.

  19. Wavelength Dispersive X-ray Fluorescence Spectrometry for the Analysis of Organic Polymer Film

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Park, Yong Joon; Kim, Jong Yun

    2008-01-01

    Recently, many studies have been focused on the thin films because there are numerous industrial processes relevant to thin films such as fuel cells, sensors, lubricants, coatings, and so on. Physical and chemical properties of solid surface have been modified by ultra-thin coatings such as Langmuir-Blodgett (LB) method with a variety of types of organic functional materials for the specific purposes in many applications. In addition, the layer-by-layer technique using polyelectrolyte films are now of interest as biosensors, electrochromic and electroluminescent devices, etc. In general, several methods such as X-ray or neutron reflectivity, and quartz crystal microbalance (QCM) have been utilized for the thin film analysis. These optical techniques can measure the film thicknesses up to hundreds of nanometers while X-ray photoelectron spectroscopy is widely used to study a few nanometers thick films. Other methods such as X-ray Photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom force microscopy (AFM) have also been used in the film analysis in spite of some disadvantages for each method. X-ray fluorescence (XRF) has long been used as a rapid and simple analytical tool for the analysis of elemental composition of materials. XRF technique is suitable for on-line or in-line real-time monitoring because it is a non-destructive and rapid analysis with good precision and good accuracy at low cost. The aim of this work is to develop a new analytical technique for the quantitative analysis of polymer film on metal substrate. In the present study, Compton peak profile was investigated under different experimental conditions by using wavelength-dispersive XRF (WD-XRF). Compared to energy-dispersive XRF (ED-XRF), WD-XRF is more adequate in an accurate quantitative analysis of thin organic film

  20. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes

    International Nuclear Information System (INIS)

    Kim, Yang-Bae; Park, Sucheol; Hong, Jin-Who

    2009-01-01

    Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film

  1. Comparison of turbulent particle dispersion models in turbulent shear flows

    Directory of Open Access Journals (Sweden)

    S. Laín

    2007-09-01

    Full Text Available This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993, in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001, which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983 experiments, simple shear flow (Hyland et al., 1999 and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987 experiments.

  2. Flow visualization study of post-critical heat flux in inverted flow

    International Nuclear Information System (INIS)

    Babelli, I.; Revankar, S.T.; Ishii, M.

    1994-01-01

    A visual study of film boiling was carried out to determine the flow regime transition in the post-CHF region for a transient bottom reflooding of a hot transparent test section. The effect of test liquid subcooling and inlet velocity on flow transition as well as on the quench front propagation was investigated. The respective ranges for liquid velocity and subcooling were 1.8-26.8 cm/s, and 20-45 C, respectively. The test liquid was Freon 113 which was introduced into the bottom of the quartz test section whose walls were maintained well above the film boiling temperature of the test liquid, via a transparent heat transfer fluid. The flow regimes observed down stream of the upward moving quench front were the rough wavy, the agitated, and the dispersed droplet/ligaments in agreement with a steady state, two-phase core injection study carried on recently by one of the authors. A correlation for the flow regime transition between the inverted annular and the dispersed droplet/ligament flow patterns was developed. The correlation showed a marked dependence on the void fraction at the CHF location and hence on the flow regime encountered in the pre-CHF region. (orig.)

  3. Modeling axisymmetric flows dynamics of films, jets, and drops

    CERN Document Server

    Middleman, Stanley

    1995-01-01

    This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...

  4. Levitation of a drop over a film flow

    Science.gov (United States)

    Sreenivas, K. R.; de, P. K.; Arakeri, Jaywant H.

    1999-02-01

    A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 ml) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.

  5. Effect of pore size distribution and flow segregation on dispersion in porous media

    International Nuclear Information System (INIS)

    Carbonell, R.G.

    1978-11-01

    In order to study the effect of the pore size distribution and flow segregation on dispersion in a porous media, the dispersion of solute in an array of parallel pores is considered. Equations are obtained for the dispersion coefficient in laminar and turbulent flow, as a function of the particle Peclet number. The theory fits quite well cumulative experimental data from various researchers in the Peclet number range from 10 -3 to 10 6 . The model also predicts some trends, backed by experimental data, regarding the effect of particle size, particle size distribution and fluid velocity on dispersion

  6. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode.

    Science.gov (United States)

    Kašpárková, Věra; Humpolíček, Petr; Capáková, Zdenka; Bober, Patrycja; Stejskal, Jaroslav; Trchová, Miroslava; Rejmontová, Petra; Junkar, Ita; Lehocký, Marián; Mozetič, Miran

    2017-09-01

    Conducting polyaniline can be prepared and modified using several procedures, all of which can significantly influence its applicability in different fields of biomedicine or biotechnology. The modifications of surface properties are crucial with respect to the possible applications of this polymer in tissue engineering or as biosensors. Innovative technique for preparing polyaniline films via in-situ polymerization in colloidal dispersion mode using four stabilizers (poly-N-vinylpyrrolidone; sodium dodecylsulfate; Tween 20 and Pluronic F108) was developed. The surface energy, conductivity, spectroscopic features, and cell compatibility of thin polyaniline films were determined using contact-angle measurement, the van der Pauw method, Fourier-transform infrared spectroscopy, and assay conducted on mouse fibroblasts, respectively. The stabilizers significantly influenced not only the surface and electrical properties of the films but also their cell compatibility. Sodium dodecylsulfate seems preferentially to combine both the high conductivity and good cell compatibility. Moreover, the films with sodium dodecylsulfate were non-irritant for skin, which was confirmed by their in-vitro exposure to the 3D-reconstructed human tissue model. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Film thinning in unsaturated superfluid 4He films during persistent flow

    International Nuclear Information System (INIS)

    Ekholm, D.T.; Hallock, R.B.

    1979-01-01

    We report measurements of the thickness of unsaturated superfluid 4 He films in persistent flow as a function of persistent current velocity. Our results are in quantitative agreement with the predictions of Kontorovich, and thus disagree with the conclusion of Rudnick and coworkers that rho/sub s//rho has an enhanced velocity dependence in these films

  8. Relationships of dispersive mass transport and stochastic convective flow through hydrologic systems

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1981-01-01

    Uncertainty in water flow velocity appears to be a major factor in determining the magnitude of contaminant dispersion expected in a ground water system. This report discusses some concepts and mathematical methods relating dispersive contaminant transport to stochastic aspects of ground water flow. The theory developed should not be construed as absolutely rigorous mathematics, but is presented with the intention of clarifying the physical concepts

  9. Development of a micro-thermal flow sensor with thin-film thermocouples

    Science.gov (United States)

    Kim, Tae Hoon; Kim, Sung Jin

    2006-11-01

    A micro-thermal flow sensor is developed using thin-film thermocouples as temperature sensors. A micro-thermal flow sensor consists of a heater and thin-film thermocouples which are deposited on a quartz wafer using stainless steel masks. Thin-film thermocouples are made of standard K-type thermocouple materials. The mass flow rate is measured by detecting the temperature difference of the thin-film thermocouples located in the upstream and downstream sections relative to a heater. The performance of the micro-thermal flow sensor is experimentally evaluated. In addition, a numerical model is presented and verified by experimental results. The effects of mass flow rate, input power, and position of temperature sensors on the performance of the micro-thermal flow sensor are experimentally investigated. At low values, the mass flow rate varies linearly with the temperature difference. The linearity of the micro-thermal flow sensor is shown to be independent of the input power. Finally, the position of the temperature sensors is shown to affect both the sensitivity and the linearity of the micro-thermal flow sensor.

  10. Information flow in a network of dispersed signalers-receivers

    Science.gov (United States)

    Halupka, Konrad

    2017-11-01

    I consider a stochastic model of multi-agent communication in regular network. The model describes how dispersed animals exchange information. Each agent can initiate and transfer the signal to its nearest neighbors, who may pass it farther. For an external observer of busy networks, signaling activity may appear random, even though information flow actually thrives. Only when signal initiation and transfer are at low levels do spatiotemporal autocorrelations emerge as clumping signaling activity in space and pink noise time series. Under such conditions, the costs of signaling are moderate, but the signaler can reach a large audience. I propose that real-world networks of dispersed signalers-receivers may self-organize into this state and the flow of information maintains their integrity.

  11. Free convection film flows and heat transfer

    CERN Document Server

    Shang, Deyi

    2010-01-01

    Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.

  12. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    OpenAIRE

    Yujian Sun; Cuihong Zhang; Le Zhou; Hua Fang; Jianhua Huang; Haipeng Ma; Yi Zhang; Jie Yang; Lan-Ying Zhang; Ping Song; Yanzi Gao; Jiumei Xiao; Fasheng Li; Kexuan Li

    2016-01-01

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found...

  13. Mixed Platoon Flow Dispersion Model Based on Speed-Truncated Gaussian Mixture Distribution

    Directory of Open Access Journals (Sweden)

    Weitiao Wu

    2013-01-01

    Full Text Available A mixed traffic flow feature is presented on urban arterials in China due to a large amount of buses. Based on field data, a macroscopic mixed platoon flow dispersion model (MPFDM was proposed to simulate the platoon dispersion process along the road section between two adjacent intersections from the flow view. More close to field observation, truncated Gaussian mixture distribution was adopted as the speed density distribution for mixed platoon. Expectation maximum (EM algorithm was used for parameters estimation. The relationship between the arriving flow distribution at downstream intersection and the departing flow distribution at upstream intersection was investigated using the proposed model. Comparison analysis using virtual flow data was performed between the Robertson model and the MPFDM. The results confirmed the validity of the proposed model.

  14. Entropy Production in Pipeline Flow of Dispersions of Water in Oil

    Directory of Open Access Journals (Sweden)

    Rajinder Pal

    2014-08-01

    Full Text Available Entropy production in pipeline adiabatic flow of water-in-oil emulsions is investigated experimentally in three different diameter pipes. The dispersed-phase (water droplets concentration of emulsion is varied from 0 to 41% vol. The entropy production rates in emulsion flow are compared with the values expected in single-phase flow of Newtonian fluids with the same properties (viscosity and density. While in the laminar regime the entropy production rates in emulsion flow can be described adequately by the single-phase Newtonian equations, a significant deviation from single-phase flow behavior is observed in the turbulent regime. In the turbulent regime, the entropy production rates in emulsion flow are found to be substantially smaller than those expected on the basis of single-phase equations. For example, the entropy production rate in water-in-oil emulsion flow at a dispersed-phase volume fraction of 0.41 is only 38.4% of that observed in flow of a single-phase Newtonian fluid with the same viscosity and density, when comparison is made at a Reynolds number of 4000. Thus emulsion flow in pipelines is more efficient thermodynamically than single-phase Newtonian flow.

  15. Multiphysics Simulations of Entrained Flow Gasification. Part I: Validating the Nonreacting Flow Solver and the Particle Turbulent Dispersion Model

    KAUST Repository

    Kumar, Mayank

    2012-01-19

    In this two-part paper, we describe the construction, validation, and application of a multiscale model of entrained flow gasification. The accuracy of the model is demonstrated by (1) rigorously constructing and validating the key constituent submodels against relevant canonical test cases from the literature and (2) validating the integrated model against experimental data from laboratory scale and commercial scale gasifiers. In part I, the flow solver and particle turbulent dispersion models are validated against experimental data from nonswirling flow and swirling flow test cases in an axisymmetric sudden expansion geometry and a two-phase flow test case in a cylindrical bluff body geometry. Results show that while the large eddy simulation (LES) performs best among all tested models in predicting both swirling and nonswirling flows, the shear stress transport (SST) k-ω model is the best choice among the commonly used Reynolds-averaged Navier-Stokes (RANS) models. The particle turbulent dispersion model is accurate enough in predicting particle trajectories in complex turbulent flows when the underlying turbulent flow is well predicted. Moreover, a commonly used modeling constant in the particle dispersion model is optimized on the basis of comparisons with particle-phase experimental data for the two-phase flow bluff body case. © 2011 American Chemical Society.

  16. Modeling of corium dispersion in DCH accidents

    International Nuclear Information System (INIS)

    Wu, Q.

    1996-01-01

    A model that governs the dispersion process in the direct containment heating (DCH) reactor accident scenario is developed by a stepwise approach. In this model, the whole transient is subdivided into four phases with an isothermal assumption. These are the liquid and gas discharge, the liquid film flow in the cavity before gas blowdown, the liquid and gas flow in the cavity with droplet entrainment, and the liquid transport and re-entrainment in the subcompartment. In each step, the dominant driving mechanisms are identified to construct the governing equations. By combining all the steps together, the corium dispersion information is obtained in detail. The key parameters are predicted quantitatively. These include the fraction of liquid that flows out of the cavity before gas blowdown, the dispersion fraction and the mean droplet diameter in the cavity, the cavity pressure rise due to the liquid friction force, and the dispersion fractions in the containment via different paths. Compared with the data of the 1:10 scale experiments carried out at Purdue University, fairly good agreement is obtained. A stand-alone prediction of the corium dispersion under prototypic Zion reactor conditions is carried out by assuming an isothermal process without chemical reactions. (orig.)

  17. Effects of germane flow rate in electrical properties of a-SiGe:H films for ambipolar thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Miguel, E-mail: madominguezj@gmail.com [Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla (BUAP), Puebla 72570 (Mexico); Rosales, Pedro, E-mail: prosales@inaoep.mx [National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla 72840 (Mexico); Torres, Alfonso [National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla 72840 (Mexico); Flores, Francisco [Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla (BUAP), Puebla 72570 (Mexico); Molina, Joel; Moreno, Mario [National Institute for Astrophysics, Optics and Electronics (INAOE), Electronics Department, Luis Enrique Erro No. 1, Puebla 72840 (Mexico); Luna, Jose [Centro de Investigaciones en Dispositivos Semiconductores, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla (BUAP), Puebla 72570 (Mexico); Orduña, Abdu [Centro de Investigación en Biotecnología Aplicada (CIBA), IPN, Tlaxcala, Tlaxcala 72197 (Mexico)

    2014-07-01

    In this work, the study of germane flow rate in electrical properties of a-SiGe:H films is presented. The a-SiGe:H films deposited by low frequency plasma-enhanced chemical vapor deposition at 300 °C were characterized by Fourier transform infrared spectroscopy, measurements of temperature dependence of conductivity and UV–visible spectroscopic ellipsometry. After finding the optimum germane flow rate conditions, a-SiGe:H films were deposited at 200 °C and analyzed. The use of a-SiGe:H films at 200 °C as active layer of low-temperature ambipolar thin-film transistors (TFTs) was demonstrated. The inverted staggered a-SiGe:H TFTs with Spin-On Glass as gate insulator were fabricated. These results suggest that there is an optimal Ge content in the a-SiGe:H films that improves its electrical properties. - Highlights: • As the GeH{sub 4} flow rate increases the content of oxygen decreases. • Ge-H bonds show the highest value in a-SiGe:H films with GeH{sub 4} flow of 105 sccm. • Films with GeH{sub 4} flow of 105 sccm show the highest activation energy. • An optimum incorporation of germanium is obtained with GeH{sub 4} flow rate of 105 sccm. • At 200 °C the optimum condition of the a-SiGe:H films remain with no changes.

  18. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  19. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  20. Mixing and axial dispersion in Taylor-Couette flow: experimental and numerical study

    International Nuclear Information System (INIS)

    Nemri, M.

    2013-01-01

    Taylor-Couette flows between two concentric cylinders have great potential applications in chemical engineering. They are particularly convenient for two-phase small scale devices enabling solvent extraction operations. An experimental device was designed with this idea in mind. It consists of two concentric cylinders with the inner one rotating and the outer one fixed. Taylor-Couette flows take place in the annular gap between them, and are known to evolve towards turbulence through a sequence of successive instabilities. Macroscopic quantities, such as axial dispersion and mixing index, are extremely sensitive to these flow structures, which may lead to flawed modelling of the coupling between hydrodynamics and mass transfer. This particular point has been studied both experimentally and numerically. The flow and mixing have been characterized by means of flow visualization and simultaneous PIV (Particle Imaging Velocimetry) and PLIF (Planar Laser Induced Fluorescence) measurements. PLIF visualizations showed clear evidences of different transport mechanisms including 'intra-vortex mixing' and 'inter-vortex mixing'. Under WVF and MWVF regimes, intra-vortex mixing is controlled by chaotic advection, due to the 3D nature of the flow, while inter-vortex transport occurs due to the presence of waves between neighboring vortices. The combination of these two mechanisms results in enhanced axial dispersion. We showed that hysteresis may occur between consecutive regimes depending on flow history and this may have a significant effect on mixing for a given Reynolds number. The axial dispersion coefficient Dx evolution along the successive flow states was investigated thanks to dye Residence Time Distribution measurements (RTD) and particle tracking (DNS). Both experimental and numerical results have confirmed the significant effect of the flow structure and history on axial dispersion. Our study confirmed that the commonly used 1-parameter chemical engineering models (e

  1. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  2. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-01-01

    Highlights: • Investigated the optical properties of BiFeO_3 (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO_3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au"9"+ ions at a fluence of 1 × 10"1"2 ions cm"−"2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  3. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Sharma, Savita [Department of Applied Physics, Delhi Technological University, Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110075 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-07-15

    Highlights: • Investigated the optical properties of BiFeO{sub 3} (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO{sub 3} (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au{sup 9+} ions at a fluence of 1 × 10{sup 12} ions cm{sup −2}. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  4. Surfactant induced flows in thin liquid films : an experimental study

    NARCIS (Netherlands)

    Sinz, D.K.N.

    2012-01-01

    The topic of the experimental work summarized in my thesis is the flow in thin liquid films induced by non-uniformly distributed surfactants. The flow dynamics as a consequence of the deposition of a droplet of an insoluble surfactant onto a thin liquid film covering a solid substrate where

  5. Can we trace biotic dispersals back in time? Introducing backward flow connectivity

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2014-06-01

    Full Text Available Connectivity in ecology deals with the problem of how species dispersal will happen given actual landscape and species presence/absence over such landscape. Hence it can be considered a forward (ahead in time scientific problem. I observe here that a backward theory of connectivity could be of deep interest as well: given the actual species presence/absence on the landscape, where with the highest probability such species is coming from? In other words, can we trace biotic dispersals back in time? Recently I have introduced a modelling and theoretical approach to ecological connectivity that is alternative to circuit theory and is able to fix the weak point of the "from-to" connectivity approach. The proposed approach holds also for mountain and hilly landscapes. In addition, it doesn't assume any intention for a species to go from source points to sink ones, because the expected path for the species is determined locally (pixel by pixel by landscape features. In this paper, I introduce a new theoretical and modelling approach called "backward flow connectivity". While flow connectivity predicts future species dispersal by minimizing at each step the potential energy due to fictional gravity over a frictional landscape, backward flow connectivity does exactly the opposite, i.e. maximizes potential energy at each step sending back the species to higher levels of potential energy due to fictional gravity on the frictional landscape. Using backward flow connectivity, one has at hand a new tool to revert timeline of species dispersal, hence being able to trace backward biotic dispersals. With few modifications, the applications of backward flow connectivity can be countless, for instance tracing back-in-time not only plants and animals but also ancient human migrations and viral paths.

  6. Multi-layer film flow down an inclined plane: experimental investigation

    KAUST Repository

    Henry, Daniel

    2014-11-19

    We report the results from an experimental study of the flow of a film down an inclined plane where the film itself is comprised of up to three layers of different liquids. By measuring the total film thickness for a broad range of parameters including flow rates and liquid physical properties, we provide a thorough and systematic test of the single-layer approximation for multi-layer films for Reynolds numbers Re = ρQ/μ≈0.03-60. In addition, we also measure the change in film thickness of individual layers as a function of flow rates for a variety of experimental configurations. With the aid of high-speed particle tracking, we derive the velocity fields and free-surface velocities to compare to the single-layer approximation. Furthermore, we provide experimental evidence of small capillary ridge formations close to the point where two layers merge and compare our experimental parameter range for the occurrence of this phenomenon to those previously reported.

  7. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    International Nuclear Information System (INIS)

    Peng, Wei; Sun, Xiaokai; Jiang, Peixue; Wang, Jie

    2017-01-01

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  8. Effect of ribbed and smooth coolant cross-flow channel on film cooling

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei; Sun, Xiaokai [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Jiang, Peixue, E-mail: jiangpx@tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Educations, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Wang, Jie [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • Little different for plenum model and the cross-flow model at M = 0.5. • Crossflow model is much better than plenum model at M = 1.0, especially with ribs. • Coolant flow channel with V-shaped ribs has the best adiabatic film cooling. • Film cooling with the plenum model is better at M = 0.5 than at M = 1.0. • Crossflow model is better at M = 0.5 near film hole and at M = 1.0 for downstream. - Abstract: The influence of ribbed and unribbed coolant cross-flow channel on film cooling was investigated with the coolant supply being either a plenum-coolant feed or a coolant cross-flow feed. Validation experiments were conducted with comparison to numerical results using different RANS turbulence models showed that the RNG k–ε turbulence model and the RSM model gave closer predictions to the experimental data than the other RANS models. The results indicate that at a low blowing ratio of M = 0.5, the coolant supply channel structure has little effect on the film cooling. However, at a high blowing ratio of M = 1.0, the adiabatic wall film cooling effectiveness is significantly lower with the plenum feed than with the cross-flow feed, especially for the cases with ribs. The film cooling with the plenum model is better at M = 0.5 than at M = 1.0. The film cooling with the cross-flow model is better at a blowing ratio of M = 0.5 in the near hole region, while further downstream, it is better at M = 1.0. The results also show that the coolant cross-flow channel with V-shaped ribs has the best adiabatic film cooling effectiveness.

  9. Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries

    International Nuclear Information System (INIS)

    Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M.

    2017-01-01

    Highlights: • LiCoO 2 particles can be cycled in carbon-free and binder-free coin cells. • A carbon-free LiCoO 2 suspension is electrochemically oxidized and reduced. • Comparable size LiCoO 2 and Li 4 Ti 5 O 12 suspensions have similar rheological properties. • First demonstration of redox couples with solid suspensions for both electrodes. - Abstract: Semi-solid flow batteries have been reported to have among the highest energy densities for redox flow batteries, however, they rely on percolated carbon networks which increase the electrolyte viscosity significantly. We report the first demonstration of carbon-free redox flow couples comprised of dispersed lithium-ion battery active material suspensions, with sub-micrometer LiCoO 2 (LCO) particles at the cathode and Li 4 Ti 5 O 12 (LTO) particles at the anode. Both electrochemical and rheological properties of the LCO suspensions are reported and compared to previous reports for LTO dispersed electrochemical redox couples. An LTO anode and LCO cathode full cell was constructed and reversible electrochemical redox reaction of the dispersed particles was successfully demonstrated. This carbon-free dispersed lithium-ion active material full cell provides a proof-of-concept for a system that lies between the relatively high viscosity semi-solid flow cells with percolated carbon networks and the relatively low energy density conventional flow cells comprised of dissolved transition metals, providing a system for future study of the trade-off between energy density and viscosity for electrochemical flow cells that rely on solid active materials.

  10. Application of a film flow model to predicting burnout under transient conditions

    International Nuclear Information System (INIS)

    Leslie, D.C.; Kirby, G.J.

    1967-08-01

    The film flow model developed previously has been generalised to transient situations by assuming that only convection is changed by the transient; evaporation, deposition and entrainment are assumed to be unaffected. A computer code TRABUT computes the time behaviour of the mass velocity and the quality by the method of characteristics, and then integrates the film flow equations along the same characteristics until the point of burn-out or zero film flow is reached. The time delay between the onset of a transient and burn-out has been computed both for flux and flow transients. These computations have been compared with those made using the standard local conditions hypothesis. The film flow model gives shorter delays in almost all cases, but the difference would not be detectable with present experimental techniques. (author)

  11. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    Science.gov (United States)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  12. Experimental study on flow characteristics of a vertically falling film flow of liquid metal NaK in a transverse magnetic field

    International Nuclear Information System (INIS)

    Li Fengchen; Serizawa, Akimi

    2004-01-01

    Experimental study was carried out on the characteristics of a vertically falling film flow of liquid metal sodium-potassium alloy (NaK-78) in a vertical square duct in the presence of a transverse magnetic field. The magnitude of the applied magnetic field was up to 0.7 T. The Reynolds number, defined by the hydraulic diameter based on the wetted perimeter length and the liquid average velocity, ranged from 8.0x10 3 to 3.0x10 4 . The free surfaces of the falling film flows in both a stainless steel and an acrylic resin channels were visualized. The instantaneous film thickness of the falling film flow in the acrylic resin channel was then measured by means of the ultrasonic transmission technique. Magnetohydrodynamic (MHD) effects on the characteristics of the falling film flow were investigated by the visualization and the statistical analysis of the measured film thickness. It was found that the falling liquid NaK film was thickened and the flow was stabilized remarkably by a strong transverse magnetic field. A bifurcation of the film was recovered by the applied magnetic field. The turbulence of the flow was substantially suppressed

  13. Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models

    Energy Technology Data Exchange (ETDEWEB)

    Min, June Kee [Pusan National University, Busan (Korea, Republic of); Park, Il Seouk [Kyungpook National University, Daegu (Korea, Republic of)

    2014-05-15

    Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors.

  14. Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models

    International Nuclear Information System (INIS)

    Min, June Kee; Park, Il Seouk

    2014-01-01

    Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors

  15. Design, synthesis, and film formation of stimuli-responsive colloidal dispersions containing phospholipids

    Science.gov (United States)

    Lestage, David Jackson

    These studies were undertaken to further understand the design of colloidal dispersions containing bio-active phospholipids (PL) as stabilizing agents and their stimuli-responsive behaviors during film formation. Methyl methacrylate (MMA) and n-butyl acrylate (nBA) dispersions were synthesized using anionic surfactants and PL, and the surface-responsiveness of coalesced films was monitored at the film-air (F-A) and film-substrate (F-S) interfaces after exposure to temperature, UV, pH, ionic strength, and enzymatic stimuli. Using spectroscopic molecular-level probes such as attenuated total reflectance (ATR) and internal reflection IR imaging (IRIRI), these studies show that structural features of PL and surfactants significantly affect stimuli-responsiveness of polymeric films. MMA/nBA homopolymer, blend, copolymer, and core-shell particle coalescence studies indicated that controlled permeability is influenced by particle composition and sodium dioctyl sulfosuccinate (SDOSS) mobility to the F-A interface is enhanced in response to temperature. Utilization of hydrogenated soybean phosphocholine (HSPC) as a co-surfactant with SDOSS resulted in bimodal p-MMA/nBA colloidal particles, and experiments showed that ionic interactions with HSPC inhibit SDOSS mobility. However, the controlled release of individual species is detected in the presence of Ca2+ ionic strength stimuli. Utilizing 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DCPC), cocklebur-shape particle morphologies were obtained and using transmission electron microscopy (TEM), self-assembled tubules were detected at particle interfaces, but not in the presence of Ca 2+. At altered concentration levels of DCPC, surface localized ionic clusters (SLICs) composed of SDOSS and DCPC form at the F-A and F-S interfaces in response to temperature and ionic strength stimuli. Micelle formation of 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine (MHPC) stabilizes unimodal p-MMA/nBA colloidal particles

  16. The energy-dispersive reflectometer at BESSY II: a challenge for thin film analysis

    CERN Document Server

    Pietsch, U; Geue, T; Neissendorfer, F; Brezsesinski, G; Symietz, C; Moehwald, H; Gudat, W

    2001-01-01

    Installed in 1999 the energy-dispersive reflectometer at the 13.2 bending magnet employs the exponentially decaying white X-ray emission spectrum of the 1.7 GeV storage ring of BESSY II outside the vacuum. Using an energy-dispersive detector specular and longitudinal-diffuse reflectivity spectra of thin films can be recorded simultaneously between 0.2 A sup - sup 1 films at room temperature and its change during annealing. At T=70 deg. C we observe an instantaneous decay of specular Bragg peaks accompanied with an increase of the diffuse scattering. This indicates the onset of the melting of 2D-ordered acid domains. The vertical diffusion coefficient is estimated to be about 2x10 sup - sup 2 sup 4 m sup 2 /s.

  17. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  18. Critical heat flux and exit film flow rate in a flow boiling system

    International Nuclear Information System (INIS)

    Ueda, Tatsuhiro; Isayama, Yasushi

    1981-01-01

    The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)

  19. A computer model for dispersed fluid-solid turbulent flows

    International Nuclear Information System (INIS)

    Liu, C.H.; Tulig, T.J.

    1985-01-01

    A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows

  20. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    Science.gov (United States)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  1. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    Science.gov (United States)

    Liu, Chong

    2017-10-01

    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  2. Flows in films and over flippers

    Science.gov (United States)

    van Nierop, Ernst Adriaan

    Three topics in fluid mechanics are dealt with in this dissertation, namely (i) reactive spreading and recoil of oil on water, (ii) free film formation theory and experiment, and (iii) how humpback whale flippers delay stall. Reactive spreading of an oil droplet on water is described in Chapter 1. Small amounts of acid and base were added to the oil and water respectively, such that a surfactant was produced at the interface between the oil and the water, greatly enhancing spreading rates. After the oil drop spreads out to some maximum radius, the drop recoils on a timescale that is indicative of a diffusive process redistributing the surfactant over the entire volume of water. In Chapter 2, the theory of soap film formation by withdrawal from a bath of soapy liquid is reviewed, and the assumptions supporting Frankel's law are challenged. Stress balances that describe film evolution in either extensional or shear flow are rigorously derived and we find that the strength of surface stress terms pick the resulting flow type. With this background in mind, we describe in Chapter 3 how films were made using aqueous solutions of poly(ethylene oxide) or PEO with and without surfactant. The initial thickness of these films agrees well with existing data in the literature for overlapping ranges of the capillary number Ca. For larger Ca numbers, we observe that (i) the addition of SDS results in thinner films, (ii) films can be made that are thicker than the wire thickness, and (iii) films swell in thickness when the withdrawal process stops. Some potential mechanisms are described to explain the novel swelling phenomenon. Finally, in Chapter 4, we model the bumpy flipper of a humpback whale as a perturbed elliptic wing with Joukowski profiles of varying chord length, and combine this with lifting line theory as well as experimental stall characteristics of smooth wings. This model shows that the perturbations rearrange the downwash distribution on the wing, smoothing the

  3. Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution

    Science.gov (United States)

    Wang, Huilin; Huai, Wenxin

    2018-02-01

    The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.

  4. Investigation of grid-enhanced two-phase convective heat transfer in the dispersed flow film boiling regime

    International Nuclear Information System (INIS)

    Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

    2013-01-01

    Highlights: • Experiments were done in the RBHT facility to study the droplet flow in rod bundle. • The presence of a droplet field was found to greatly enhance heat transfer. • A second-stage augmentation was observed downstream of a spacer grid. • This augmentation is due to the breakup of liquid ligaments downstream of the grid. - Abstract: A two-phase dispersed droplet flow investigation of the grid-enhanced heat transfer augmentation has been done using steam cooling with droplet injection experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. The RBHT facility is a vertical, full length, 7 × 7-rod bundle heat transfer facility having 45 electrically heated fuel rod simulators of 9.5 mm (0.374-in.) diameter on a 12.6 mm (0.496-in.) pitch which simulates a portion of a PWR fuel assembly. The facility operates at low pressure, up to 4 bars (60 psia) and has over 500 channels of instrumentation including heater rod thermocouples, spacer grid thermocouples, closely-spaced differential pressure cells along the test section, several fluid temperature measurements within the rod bundle flow area, inlet and exit flows, absolute pressure, and the bundle power. A series of carefully controlled and well instrumented steam cooling with droplet injection experiments were performed over a range of Reynolds numbers and droplet injection flow rates. The experimental results were analyzed to obtain the axial variation of the local heat transfer coefficients along the rod bundle. At the spacer grid location, the flow was found to be substantially disrupted, with the hydrodynamic and thermal boundary layers undergoing redevelopment. Owing to this flow restructuring, the heat transfer downstream of a grid spacer was found to be augmented above the fully developed flow heat transfer as a result of flow disruption induced by the grid. Furthermore, the presence of a droplet field further enhanced the heat transfer as compared to single

  5. Unsteady Flow in a Horizontal Double-Sided Symmetric Thin Liquid Films

    Directory of Open Access Journals (Sweden)

    Joseph G. ABDULAHAD

    2017-06-01

    Full Text Available In this paper a mathematical model is constructed to describe a two dimensional incompressible flow in a symmetric horizontal thin liquid film for unsteadies flow. We apply the Navier-Stokes equations with specified boundary conditions and we obtain the equation of the film thickness by using the similarity method in which we can isolate the explicit time dependence and then the shape of the film will depend on one variable only.

  6. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used

  7. Soap film flows: Statistics of two-dimensional turbulence

    International Nuclear Information System (INIS)

    Vorobieff, P.; Rivera, M.; Ecke, R.E.

    1999-01-01

    Soap film flows provide a very convenient laboratory model for studies of two-dimensional (2-D) hydrodynamics including turbulence. For a gravity-driven soap film channel with a grid of equally spaced cylinders inserted in the flow, we have measured the simultaneous velocity and thickness fields in the irregular flow downstream from the cylinders. The velocity field is determined by a modified digital particle image velocimetry method and the thickness from the light scattered by the particles in the film. From these measurements, we compute the decay of mean energy, enstrophy, and thickness fluctuations with downstream distance, and the structure functions of velocity, vorticity, thickness fluctuation, and vorticity flux. From these quantities we determine the microscale Reynolds number of the flow R λ ∼100 and the integral and dissipation scales of 2D turbulence. We also obtain quantitative measures of the degree to which our flow can be considered incompressible and isotropic as a function of downstream distance. We find coarsening of characteristic spatial scales, qualitative correspondence of the decay of energy and enstrophy with the Batchelor model, scaling of energy in k space consistent with the k -3 spectrum of the Kraichnan endash Batchelor enstrophy-scaling picture, and power-law scalings of the structure functions of velocity, vorticity, vorticity flux, and thickness. These results are compared with models of 2-D turbulence and with numerical simulations. copyright 1999 American Institute of Physics

  8. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    Science.gov (United States)

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films

    Science.gov (United States)

    Janantha, P. A. Praveen; Sprenger, Patrick; Hoefer, Mark A.; Wu, Mingzhong

    2017-07-01

    The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic Y3Fe5O12 thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.

  10. Paraffin dispersant application for cleaning subsea flow lines in the deep water Gulf of Mexico cottonwood development

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, David; White, Jake; Pogoson, Oje [Baker Hughes Inc., Houston, TX (United States); Barros, Dalmo; Ramachandran, Kartik; Bonin, George; Waltrich, Paulo; Shecaira, Farid [PETROBRAS America, Houston, TX (United States); Ziglio, Claudio [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento

    2012-07-01

    This paper discusses a paraffin dispersant (in seawater) application to clean paraffin deposition from a severely restricted 17.4-mile dual subsea flow line system in the Gulf of Mexico Cottonwood development. In principle, dispersant treatments are simple processes requiring effective dispersant packages and agitation to break-up and disperse deposition. Dispersants have been used onshore for treating wax deposition for decades. Implementation of a treatment in a long deep water production system, however, poses numerous challenges. The Cottonwood application was one of the first ever deep water dispersant applications. The application was designed in four separate phases: pre-treatment displacement for hydrate protection, dispersant treatment for paraffin deposition removal, pigging sequence for final flow line cleaning, and post-treatment displacement for hydrate protection. In addition, considerable job planning was performed to ensure the application was executed in a safe and environmentally responsible manner. Two dynamically positioned marine vessels were used for pumping fluids and capturing returns. The application was extremely successful in restoring the deep water flow lines back to near pre-production state. Final pigging operations confirmed the flow lines were cleaned of all restrictions. Significant paraffin deposition was removed in the application. Approximately 900 bbls of paraffin sludge was recovered from the 4000 bbl internal volume flow line loop. Furthermore, the application was completed with zero discharge of fluids. The application provided significant value for the Cottonwood development. It allowed production from wells to be brought on-line at a higher capacity, thereby generating increased revenue. It also allowed resumption of routine pigging operations. As such, the Cottonwood dispersant application illustrates that with proper planning and execution, paraffin dispersant treatments can be highly effective solutions for cleaning

  11. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  12. Experimental study and theoretical modelling of two-phase flow in a converging diverging nozzle

    International Nuclear Information System (INIS)

    Selmer-Olsen, Stale

    1991-01-01

    A theoretical and experimental study of high quality two-phase flows in converging-diverging nozzles is presented. The main objectives are the prediction of critical (choked) flow rates and the evolution of characteristic parameters towards the nozzle outlet. First, a thorough analysis of available models shows the importance of a correct modelling of the mechanical and thermal interactions between the gas and liquid phases. As a second step, a purely dispersed flow model is considered. The solution algorithm which is utilized describes accurately the critical (choked) flow conditions as well as the topology of the solutions. The dispersed flow model accounts for effects on the gas flow rate of the upstream and the downstream pressures, the liquid flow rate and the nozzle geometry. The pressure profile along the nozzle and the location of the critical cross-section are also well predicted. The flow is shown to switch from critical to sub-critical when the liquid flow rate is increased, all other control parameters at the inlet and the outlet maintained. This new finding is interpreted as a result of the possible location of the critical cross-section anywhere in the diverging part of the nozzle. Moreover, the experiments show that the critical (choked) gas flow rate depends on the inlet configuration of gas/liquid. In the third step, a careful analysis of the data is used as a basis for proposing a new dispersed-annular flow model. This model accounts for the liquid flowing both as a liquid film and as entrained droplets in the core, non-developed flow is accounted for as well as flow separation in the diffuser. Finally, advanced local measuring techniques of pressure, film thickness and film velocity have been developed in the course of the work. In particular film thickness measurements allowed the development of the flow structure to be understood. (author) [fr

  13. Persistent flow and third-sound waves in the He-II film

    International Nuclear Information System (INIS)

    Verbeek, H.J.

    1980-01-01

    The author describes experiments performed on persistent film-flow in He-II film. Data obtained using the third-sound technique is presented. The experiments demonstrate unequivocally the reality of persistent currents in the He-II film. (Auth.)

  14. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT

    Directory of Open Access Journals (Sweden)

    Franziska Greifzu

    2016-01-01

    Full Text Available In the present study two benchmark problems for turbulent dispersed particle-laden flow are investigated with computational fluid dynamics (CFD. How the CFD programs OpenFOAM and ANSYS FLUENT model these flows is tested and compared. The numerical results obtained with Lagrangian–Eulerian (LE point-particle (PP models for Reynolds-averaged Navier–Stokes (RANS simulations of the fluid flow in steady state and transient modes are compared with the experimental data available in the literature. The effect of the dispersion model on the particle motion is investigated in particular, as well as the order of coupling between the continuous carrier phase and the dispersed phase. First, a backward-facing step (BFS case is validated. As a second case, the confined bluff body (CBB is used. The simulated fluid flows correspond well with the experimental data for both test cases. The results for the dispersed solid phase reveal a good accordance between the simulation results and the experiments. It seems that particle dispersion is slightly under-predicted when ANSYS FLUENT is used, whereas the applied solver in OpenFOAM overestimates the dispersion somewhat. Only minor differences between the coupling schemes are detected due to the low volume fractions and mass loadings that are investigated. In the BFS test case the importance of the spatial dimension of the numerical model is demonstrated. Even if it is reasonable to assume a two-dimensional fluid flow structure, it is crucial to simulate the turbulent particle-laden flow with a three-dimensional model since the turbulent dispersion of the particles is three-dimensional.

  15. Flow visualization study of post critical heat flux region for inverted bubbly, slug and annular flow regimes

    International Nuclear Information System (INIS)

    Denten, J.G.; Ishii, M.

    1988-11-01

    A visual study of film boiling using still photographic and high- speed motion picture methods was carried out in order to analyze the post-CHF hydrodynamics for steady-state inlet pre-CHF two-phase flow regimes. Pre-CHF two-phase flow regimes were established by introducing Freon 113 liquid and nitrogen gas into a jet core injection nozzle. An idealized, post-CHF two-phase core initial flow geometry (cylindrical multiphase jet core surrounded by a coaxial annulus of gas) was established at the nozzle exit by introducing nitrogen gas into the annular gap between the jet nozzle two-phase effluent and the heated test section inlet. For the present study three basic post-CHF flow regimes have been observed: the rough wavy regime (inverted annular flow preliminary break down), the agitated regime (transition between inverted annular and dispersed droplet flow), and the dispersed ligament/droplet regime. For pre-CHF bubbly flow in the jet nozzle, the post-CHF flow (beginning from jet nozzle exit/heated test section inlet) consists of the rough wavy regime, followed by the agitated and then the dispersed ligament/droplet regime. In the same way, for pre-CHF slug flow in the jet core, the post-CHF flow is comprised of the agitated regime at the nozzle exit, followed by the dispersed regime. Pre-CHF annular jet core flow results in a small, depleted post-CHF agitated flow regime at the nozzle exit, immediately followed by the dispersed ligament/droplet regime. Observed post dryout hydrodynamic behavior is reported, with particular attention given to the transition flow pattern between inverted annular and dispersed droplet flow. 43 refs., 20 figs., 5 tabs

  16. Behaviour of liquid films and flooding in counter-current two-phase flow, (1)

    International Nuclear Information System (INIS)

    Suzuki, Shin-ichi; Ueda, Tatsuhiro.

    1978-01-01

    This paper reports on the results of study of the behavior of liquid film and flooding in counter-current two phase flow, and the flow speed of gas phase was measured over the wide ranges of tube diameter, tube length, amount of liquid flow, viscosity and surface tension. Liquid samples used for this experiment were water, glycerol, and second octyl alcohol. The phenomena were observed with a high speed camera. The maximum thickness of liquid film was measured, and the effects of various factors on the flooding were investigated. The results of investigation were as follows. The big waves which cause the flooding were developed by the interaction of one of the waves on liquid film surface with gas phase flow. The flow speed of gas phase at the time of beginning of flooding increases with the reduction of amount of liquid flow and the increase of tube diameter. The flooding flow speed is reduced with the increase of tube length. The larger maximum film thickness at the time of no gas phase flow causes flooding at low gas phase flow speed. (Kato, T.)

  17. Dispersion-convolution model for simulating peaks in a flow injection system.

    Science.gov (United States)

    Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing

    2007-01-12

    A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.

  18. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John

    2012-04-01

    The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.

  19. Studies on turbulence structure and liquid film behavior in annular two-phase flow flowing in a throat section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu

    2004-01-01

    Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)

  20. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  1. Self-similarity of solitary waves on inertia-dominated falling liquid films.

    Science.gov (United States)

    Denner, Fabian; Pradas, Marc; Charogiannis, Alexandros; Markides, Christos N; van Wachem, Berend G M; Kalliadasis, Serafim

    2016-03-01

    We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves. Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume framework for interfacial flows in an open domain that was previously validated against experimental film-flow data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary waves on 34 different water films with Reynolds numbers Re=20-120 and surface tension coefficients σ=0.0512-0.072 N m(-1) on substrates with inclination angles β=19°-90°. Following a detailed analysis of these cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and gravity having a negligible influence.

  2. A film-based wall shear stress sensor for wall-bounded turbulent flows

    Science.gov (United States)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  3. Design of Capillary Flows with Spatially Graded Porous Films

    Science.gov (United States)

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen

    2013-11-01

    We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.

  4. Strongly coupled single-phase flow problems: Effects of density variation, hydrodynamic dispersion, and first order decay

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Pruess, K. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    We have developed TOUGH2 modules for strongly coupled flow and transport that include full hydrodynamic dispersion. T2DM models tow-dimensional flow and transport in systems with variable salinity, while T32DMR includes radionuclide transport with first-order decay of a parent-daughter chain of radionuclide components in variable salinity systems. T2DM has been applied to a variety of coupled flow problems including the pure solutal convection problem of Elder and the mixed free and forced convection salt-dome flow problem. In the Elder and salt-dome flow problems, density changes of up to 20% caused by brine concentration variations lead to strong coupling between the velocity and brine concentration fields. T2DM efficiently calculates flow and transport for these problems. We have applied T2DMR to the dispersive transport and decay of radionuclide tracers in flow fields with permeability heterogeneities and recirculating flows. Coupling in these problems occurs by velocity-dependent hydrodynamic dispersion. Our results show that the maximum daughter species concentration may occur fully within a recirculating or low-velocity region. In all of the problems, we observe very efficient handling of the strongly coupled flow and transport processes.

  5. Field studies of transport and dispersion of atmospheric tracers in nocturnal drainage flows

    Science.gov (United States)

    Paul H. Gudiksen; Gilbert J. Ferber; Malcolm M. Fowler; Wynn L. Eberhard; Michael A. Fosberg; William R. Knuth

    1984-01-01

    A series of tracer experiments were carried out as part of the Atmospheric Studies in Complex Terrain (ASCOT) program to evaluate pollutant transport and dispersion characteristics of nocturnal drainage flows within a valley in northern California. The results indicate that the degree of interaction of the drainage flows with the larger scale regional flows are...

  6. Film flow analysis for a vertical evaporating tube with inner evaporation and outer condensation

    International Nuclear Information System (INIS)

    Park, Il Seouk

    2008-01-01

    A numerical study for the flow, heat and mass transfer characteristics of the evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation occurs at the free surface of the inside film. The transport equations for momentum and energy are parabolized by the boundary-layer approximation and solved by using the marching technique. The calculation domain of 2 film flow regions (evaporating and condensation films at the inside and outside tube wall respectively) and tube wall is solved simultaneously. The coupling technique for the problem with the 3 different regions and the 2 interfaces of them has been developed to calculated the temperature field. The velocity and temperature fields and the amount of the condensed and evaporated mass as well as the position where the evaporating film is completely dried out are successfully predicted for various inside pressures and inside film inlet flow rates

  7. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films.

    Science.gov (United States)

    Paudel, Amrit; Nies, Erik; Van den Mooter, Guy

    2012-11-05

    In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.

  8. Improvement of Dispersion and Color Effect of Organic Pigments in Polymeric Films via Microencapsulation by the Miniemulsion Technique

    Directory of Open Access Journals (Sweden)

    Dongming Qi

    2013-01-01

    Full Text Available Three primary pigment/poly(n-butyl acrylate-co-styrene (P(BA+St nanocomposites were prepared via encapsulation of the corresponding organic pigments via the miniemulsion technique. The resulting latexes of the P(BA+St/pigment nanocomposites were filmed in a PTFE mould or printed onto cotton fabric. The morphology of the P(BA+St/pigment nanocomposites and the dispersion of pigment particles in the latex film and on the printed fabric surface, as well as the adhesion between pigment and adhesive film, were evaluated by transmission electron microscopy (TEM, field emission scanning electron microscopy (FESEM, 3D digital microscope system (3D-POM, and printing results tests. Attributing to the preprotection of adhesive polymer shell, the self-adhesive P(BA+St/pigment nanocomposites were homogeneously and firmly dispersed both in the thin latex film and in the adhesive layer on the fiber surface. As a result, the color strength, color fastness, and handle of the fabrics printed by the P(BA+St/pigment nanocomposites latex were significantly improved, compared to the fabrics printed by the conventional pigment blended latex.

  9. Downflow film boiling in a rod bundle at low pressure

    International Nuclear Information System (INIS)

    Hochreiter, L.E.; Rosal, E.R.; Fayfich, R.R.

    1978-01-01

    A series of low pressure downflow film boiling heat transfer experiments were conducted in a 14-foot (4.27 m) long electrically heater rod bundle containing 336 heater rods. The resulting data was compared with the Dougall-Rohsenow dispersed flow film boiling correlation. The data was found to lie below this correlation as the quality was increased. It is believed that buoyancy effects decreased the heat transfer in downflow film boiling. (author)

  10. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a finite volume method

  11. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a

  12. Two-Fluid Models for Simulating Dispersed Multiphase Flows-A Review

    Directory of Open Access Journals (Sweden)

    L.X. Zhou

    2009-01-01

    Full Text Available The development of two-fluid models for simulating dispersed multiphase flows (gas-particle, gas-droplet, bubble-liquid, liquid-particle flows by the present author within the last 20 years is systematically reviewed. The two-fluid models based on Reynolds expansion, time averaging and mass-weighed averaging, and also PDF transport equations are described. Different versions of two-phase turbulence models, including the unified second-order moment (USM and k-ε-kp models, the DSM-PDF model, the SOM-MC model, the nonlinear k-e-kp model, and the USM-Θ model for dense gas-particle flows and their application and experimental validation are discussed.

  13. The flow and hydrodynamic stability of a liquid film on a rotating disc

    International Nuclear Information System (INIS)

    Kim, Tae-Sung; Kim, Moon-Uhn

    2009-01-01

    The flow of a liquid film on a rotating disc is investigated in the case where a liquid is supplied at a constant flow rate. We propose thin film equations by the integral method with a simple approach to satisfy the boundary conditions on a disc and a free surface, and the results are compared with those of the Navier-Stokes equations. The radial film velocity is assumed to be a quartic profile in our analysis, whereas it was assumed to be a quadratic one, neglecting the inertia force so that the boundary conditions were not completely satisfied, in the analysis of Sisoev et al (2003 J. Fluid Mech. 229 531-54). The basic flow and its stability are analyzed using the thin film equations even in the region where the inertia force is not negligible. A local stability analysis of the flow is conducted using the linearized disturbance equations and correctly predicts Needham's simple instability criterion. The present thin film equations give a good approximation of the Navier-Stokes equations.

  14. Ultrabroadband THz Time-Domain Spectroscopy of a Free-Flowing Water Film

    DEFF Research Database (Denmark)

    Wang, Tianwu; Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2014-01-01

    of liquid water using two different THz-TDS setups. The extracted absorption coefficient and refractive index of water are in agreement with previous results reported in the literature. With this we show that the thin free-flowing liquid film is a versatile tool for windowless, ultrabroadband THz......We demonstrate quantitative ultrabroadband THz time-domain spectroscopy (THz-TDS) of water by application of a 17-$\\mu$m thick gravity-driven wire-guided flow jet of water. The thickness and stability of the water film is accurately measured by an optical intensity crosscorrelator, and the standard...... deviation of the film thickness is less than 500 nm. The cross section of the water film is found to have a biconcave cylindrical lens shape. By transmitting through such a thin film, we perform the first ultrabroadband (0.2–30 THz) THz-TDS across the strongest absorbing part of the infrared spectrum...

  15. Flow-Cell-Induced Dispersion in Flow-through Absorbance Detection Systems: True Column Effluent Peak Variance.

    Science.gov (United States)

    Dasgupta, Purnendu K; Shelor, Charles Phillip; Kadjo, Akinde Florence; Kraiczek, Karsten G

    2018-02-06

    Following a brief overview of the emergence of absorbance detection in liquid chromatography, we focus on the dispersion caused by the absorbance measurement cell and its inlet. A simple experiment is proposed wherein chromatographic flow and conditions are held constant but a variable portion of the column effluent is directed into the detector. The temporal peak variance (σ t,obs 2 ), which increases as the flow rate (F) through the detector decreases, is found to be well-described as a quadratic function of 1 / F . This allows the extrapolation of the results to zero residence time in the detector and thence the determination of the true variance of the peak prior to the detector (this includes contribution of all preceding components). This general approach should be equally applicable to detection systems other than absorbance. We also experiment where the inlet/outlet system remains the same but the path length is varied. This allows one to assess the individual contributions of the cell itself and the inlet/outlet system.to the total observed peak. The dispersion in the cell itself has often been modeled as a flow-independent parameter, dependent only on the cell volume. Except for very long path/large volume cells, this paradigm is simply incorrect.

  16. Determination and analysis of dispersive optical constants of CuIn3S5 thin films

    International Nuclear Information System (INIS)

    Khemiri, N.; Sinaoui, A.; Kanzari, M.

    2011-01-01

    CuIn 3 S 5 thin films were prepared from powder by thermal evaporation under vacuum (10 -6 mbar) onto glass substrates. The glass substrates were heated from 30 to 200 o C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E 0 and dispersion energy E d of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan.

  17. Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells

    Science.gov (United States)

    Williams, Bryce Arthur

    A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis

  18. Dispersion in cylindrical channels on the laminar flow at low Fourier numbers.

    Science.gov (United States)

    Kucza, Witold; Dąbrowa, Juliusz; Nawara, Katarzyna

    2015-06-30

    A numerical solution of the uniform dispersion model in cylindrical channels at low Fourier numbers is presented. The presented setup allowed to eliminate experimental non-idealities interfering the laminar flow. Double-humped responses measured in a flow injection system with impedance detection agreed with those predicted by theory. Simulated concentration profiles as well as flow injection analysis (FIA) responses show the predictive and descriptive power of the numerical approach. A strong dependence of peak shapes on Fourier numbers, at its low values, makes the approach suitable for determination of diffusion coefficients. In the work, the uniform dispersion model coupled with the Levenberg-Marquardt method of optimization allowed to determine the salt diffusion coefficient for KCl, NaCl, KMnO4 and CuSO4 in water. The determined values (1.83, 1.53, 1.57 and 0.90)×10(-9)m(2)s(-1), respectively, agree well with the literature data. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Instability of flow of liquid film over a heated surface

    International Nuclear Information System (INIS)

    Sha, W.T.

    1994-01-01

    Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident

  20. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    Directory of Open Access Journals (Sweden)

    Yujian Sun

    2016-12-01

    Full Text Available Polymer-dispersed liquid crystal (PDLC films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  1. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films.

    Science.gov (United States)

    Sun, Yujian; Zhang, Cuihong; Zhou, Le; Fang, Hua; Huang, Jianhua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Zhang, Lan-Ying; Song, Ping; Gao, Yanzi; Xiao, Jiumei; Li, Fasheng; Li, Kexuan

    2016-12-30

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  2. Hindered bacterial mobility in porous media flow enhances dispersion

    Science.gov (United States)

    Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey

    2017-11-01

    Swimming bacteria live in porous environments characterized by dynamic fluid flows, where they play a crucial role in processes ranging from the bioremediation to the spread of infections. We study bacterial transport in a quasi-two-dimensional porous microfluidic device, which is complemented by Langevin simulations. The cell trajectories reveal filamentous patterns of high cell concentration, which result from the accumulation of bacteria in the high-shear regions of the flow and their subsequent advection. Moreover, the effective diffusion coefficient of the motile bacteria is severely hindered in the transverse direction to the flow due to decorrelation of the cells' persistent random walk by shear-induced rotation. The hindered lateral diffusion has the surprising consequence of strongly enhancing the longitudinal bacterial transport through a dispersion effect. These results demonstrate the significant role of the flow and geometry in bacterial transport through porous media with potential implications for understanding ecosystem dynamics and engineering bioreactors. NSF CBET-1511340, NSF CAREER-1554095.

  3. Falling liquid film flow along cascade-typed first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, T.; Nakai, T.; Kawara, Z.

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a 'cascade-typed' first wall with a falling liquid film flow is proposed as the 'liquid wall' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the STREAM code and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ρu 2 δ/σ: ρ is density, u is velocity, δ is film thickness, σ is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant water-head located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same structure and the same height as the reactor design

  4. Experimental study of interfacial wave on a liquid film in vertical annular flow

    International Nuclear Information System (INIS)

    Hazuku, T.; Fukamachi, N.; Takamasa, T.; Matsumoto, Y.

    2003-01-01

    In this study, a precise database of microscopic interfacial wave-structure for annular flow developing in a vertical pipe was obtained using a new measuring technique with a laser focus displacement meter. Adiabatic upward annular air-water flow experiments were conducted using a 3-m-long, 11- mm-ID pipe. Measurements of interfacial waves were conducted at 21 axial locations, spaced 110 mm apart, in the pipe. The axial distances from the inlet (L) normalized by the pipe diameter (D) varied over L/D = 50 to 250. Data were collected for predetermined gas and liquid flow conditions and for Reynolds numbers ranging from Reg = 31,800 to 98,300 for the gas phase and Ref = 1,050 to 9,430 for the liquid phase. Using this new technique, we obtained such local properties as the minimum thickness, maximum thickness, and passing frequency of the waves. The results revealed that the maximum film thickness and passing frequency of disturbance waves decreased gradually, with some oscillations, as flow developed. The flow development, i.e., decreases of film thickness and passing frequency, existed until the pipe exit, which means that the flow might never reach a fully developed condition. Minimum thickness of the film decreased with flow development and with increasing gas flow rate. These results are discussed, taking into account the buffer layer calculated from Karman's three-layer model. Correlation is proposed for the minimum film thickness obtained in regard to interfacial shear stress and the Reynolds number of the liquid. This correlation expresses the minimum film thickness obtained from the experiment within a 5% deviation

  5. Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2011-03-01

    Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu

  6. Views on the calculation of flow and dispersion processes in fractured rock

    International Nuclear Information System (INIS)

    Joensson, Lennart

    1990-03-01

    In the report some basic aspects on model types, physical processes, determination of parameters are discussed in relation to a description of flow and dispersion processes in fractured rocks. As far as model types concern it is shown that Darcy's law and the dispersion equation are not especially applicable. These equations can only describe an average situation of flow and spreading while in reality very large deviations could exist between an average situation and the flow and concentration distribution for a certain fracture geometry. The reason for this is primarily the relation between the length scales for the repository and the near field and the fracture system respectively and the poor connectivity between fractures or expressed in another way - the geosphere can not be treated as a continuous medium. The statistical properties of the fractures and the fracture geometry cause large uncertainties in at least two respects: * boundary conditions as to groundwater flow at the repository and thus the mass flow of radioactive material * distribution of flows and concentrations in planes in the geosphere on different distances from the repository. A realistic evaluation of transport and spreading of radioactive material by the groundwater in the geosphere thus requires that the possible variation or uncertainty of the water conducting characteristics of the fracture system is considered. A possible approach is then to describe flow in the geosphere on the basic of the flow in single fractures which are hydraulically connected to each other so that a flow in a fracture system is obtained. The discussion on physical processes which might influence the flow description in single fractures is concentrated to three aspects - factors driving the flow besides the ordinary hydraulic gradient, the viscous properties of water in a very small space (such as a fracture), the influence on the flow of heat release from the repository. (42 figs., 28 refs.)

  7. A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD

    Energy Technology Data Exchange (ETDEWEB)

    Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr

    2017-02-15

    The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.

  8. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    Directory of Open Access Journals (Sweden)

    Jin J.H.

    2013-05-01

    Full Text Available A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe∼102 which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  9. Equations governing the liquid-film flow over a plane with heat flux and interfacial phase change

    International Nuclear Information System (INIS)

    Spindler, B.

    1983-01-01

    The purpose of the study is to find a system of equations which can be used to study the linear stability of a liquid film flow over a plane exhibiting wall heat flux and interfacial phase change. The flow of such a film is governed by four groups of equations: the equations for mass balance, momentum and energy in the liquid; equations for the balance in the steam; equations for the balance at the liquid-steam interface; and the boundary conditions. Two flow patterns are considered - flow with upstream film and film condensation. Stability is studied by perturbation methods

  10. Equations governing the liquid-film flow over a plane with heat flux and interfacial phase change

    Science.gov (United States)

    Spindler, B.

    1983-08-01

    The purpose of the study is to find a system of equations which can be used to study the linear stability of a liquid film flow over a plane exhibiting wall heat flux and interfacial phase change. The flow of such a film is governed by four groups of equations: the equations for mass balance, momentum and energy in the liquid; equations for the balance in the steam; equations for the balance at the liquid-steam interface; and the boundary conditions. Two flow patterns are considered - flow with upstream film and film condensation. Stability is studied by perturbation methods.

  11. Thin liquid films with time-dependent chemical reactions sheared by an ambient gas flow

    Science.gov (United States)

    Bender, Achim; Stephan, Peter; Gambaryan-Roisman, Tatiana

    2017-08-01

    Chemical reactions in thin liquid films are found in many industrial applications, e.g., in combustion chambers of internal combustion engines where a fuel film can develop on pistons or cylinder walls. The reactions within the film and the turbulent outer gas flow influence film stability and lead to film breakup, which in turn can lead to deposit formation. In this work we examine the evolution and stability of a thin liquid film in the presence of a first-order chemical reaction and under the influence of a turbulent gas flow. Long-wave theory with a double perturbation analysis is used to reduce the complexity of the problem and obtain an evolution equation for the film thickness. The chemical reaction is assumed to be slow compared to film evolution and the amount of reactant in the film is limited, which means that the reaction rate decreases with time as the reactant is consumed. A linear stability analysis is performed to identify the influence of reaction parameters, material properties, and environmental conditions on the film stability limits. Results indicate that exothermic reactions have a stabilizing effect whereas endothermic reactions destabilize the film and can lead to rupture. It is shown that an initially unstable film can become stable with time as the reaction rate decreases. The shearing of the film by the external gas flow leads to the appearance of traveling waves. The shear stress magnitude has a nonmonotonic influence on film stability.

  12. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Neil B. [Univ. of California, Los Angeles, CA (United States)

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along {rvec B}. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization.

  13. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    International Nuclear Information System (INIS)

    Morley, N.B.

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along rvec B. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization

  14. Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids.

    KAUST Repository

    Fernandes, Nikhil J; Akbarzadeh, Johanna; Peterlik, Herwig; Giannelis, Emmanuel P

    2013-01-01

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent.

  15. Synthesis and properties of highly dispersed ionic silica-poly(ethylene oxide) nanohybrids.

    KAUST Repository

    Fernandes, Nikhil J

    2013-02-04

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent.

  16. Thin film plasma coatings from dielectric free-flowing materials

    International Nuclear Information System (INIS)

    Timofeeva, L.A.; Katrich, S.A.; Solntsev, L.A.

    1994-01-01

    Fabrication of thin film plasma coatings from insulating free-flowing materials is considered. Molybdenum-tart ammonium coating of 3...5 μ thickness deposited on glassy carbon, aluminium, silicon, nickel, cast iron and steel substrates in 'Bulat-ZT' machine using insulating free-flowing materials cathod was found to form due to adsorption, absorption and dissuasion processes. The use of insulating free-flowing materials coatings allow to exclude pure metals cathods in plasma-plating process

  17. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  18. Derivation of simplified basic equations of gas-liquid two-phase dispersed flow based on two-fluid model

    International Nuclear Information System (INIS)

    Kataoka, Isao; Tomiyama, Akio

    2004-01-01

    The simplified and physically reasonable basic equations for the gas-liquid dispersed flow were developed based on some appropriate assumptions and the treatment of dispersed phase as isothermal rigid particles. Based on the local instant formulation of mass, momentum and energy conservation of the dispersed flow, time-averaged equations were obtained assuming that physical quantities in the dispersed phase are uniform. These assumptions are approximately valid when phase change rate and/or chemical reaction rate are not so large at gas-liquid interface and there is no heat generation in within the dispersed phase. Detailed discussions were made on the characteristics of obtained basic equations and physical meanings of terms consisting the basic equations. It is shown that, in the derived averaged momentum equation, the terms of pressure gradient and viscous momentum diffusion do not appear and, in the energy equation, the term of molecular thermal diffusion heat flux does not appear. These characteristics of the derived equations were shown to be very consistent concerning the physical interpretation of the gas-liquid dispersed flow. Furthermore, the obtained basic equations are consistent with experiments for the dispersed flow where most of averaged physical quantities are obtained assuming that the distributions of those are uniform within the dispersed phase. Investigation was made on the problem whether the obtained basic equations are well-posed or ill-posed for the initial value problem. The eigenvalues of the simplified mass and momentum equations are calculated for basic equations obtained here and previous two-fluid basic equations with one pressure model. Well-posedness and ill-posedness are judged whether the eigenvalues are real or imaginary. The result indicated the newly developed basic equations always constitute the well-posed initial value problem while the previous two-fluid basic equations based on one pressure model constitutes ill

  19. Determination of flow times, flow velocities and longitudinal dispersion in the Middle and Lower Rhine River using 3HHO as a tracer

    International Nuclear Information System (INIS)

    Krause, J.; Mundschenk, H.

    1994-01-01

    Flow times, flow velocities and parameters describing the longitudinal dispersion in the Middle and Lower Rhine river under natural conditions were determined by use of intermittent emissions of tritated wastewater from nuclear power plants during normal operation situated on the Upper Rhine. In cases of accidental releases of radioactive materials, these data would be the basis of prognoses by which the dispersion behaviour of contaminated sections along the course of river Rhine can be described and radiological consequences within the socalled critical impact areas estimated. (orig.) [de

  20. YBa2Cu3O7-δ thin films deposited by MOCVD vertical reactor with a flow guide

    International Nuclear Information System (INIS)

    Sujiono, E.H.; Negeri Makassar; Sani, R.A.; Saragi, T.; Arifin, P.; Barmawi, M.

    2001-01-01

    The effect of a flow guide in a vertical MOCVD reactor on the deposition uniformity and growth rate of thin YBCO films has been studied. Without the flow guide the growth rates are low, have a poor uniformity and the film composition is not stoichiometric. The growth rate of the films grown using a reactor with the flow guide was approximately twice that without the flow guide. Using this flow guide the growth rates were 0.4-0.7 μm/h for growth temperatures varying between 600 and 750 C, and the crystalline quality as well as the surface morphology of YBCO films on MgO substrates is improved. For films grown at temperatures above 650 C the composition of Y:Ba:Cu is 1:2:3, as confirmed by EDAX spectra. Films deposited without and with the flow guide at 700 C have critical temperatures around 85 and 88 K, respectively. The reduction in ΔT c (T c,zero -T c,onset ) also shows an improvement of the superconducting properties of YBCO thin films deposited with a flow guide. (orig.)

  1. LDA measurement of droplet behavior across tie plate during dispersed flow portion of loca reflood

    International Nuclear Information System (INIS)

    Lee, S.L.; Srinivasan, J.; Cho, S.K.

    1980-01-01

    The flow of an air-water droplet dispersion in a simulated 3-D test section in the reflood portion of LOCA was studied. For this purpose, a new scheme of Laser-Doppler Anemometry for the simultaneous measurement of size and velocity of large-size [0.5 mm-6 mm] droplets was developed and utilized. It was observed that the size distribution of the reentrained droplets depends mainly on the flow regimes and is essentially independent of that of the incoming dispersion below the tie plate. 8 refs

  2. A soap film shock tube to study two-dimensional compressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.Y.; Chen, Y.M.; Chang-Jian, S.K. [Dept. of Mechanical Engineering, Da-Yeh University Chang-Hwa (Taiwan)

    2001-07-01

    A new experimental approach to the study of the two-dimensional compressible flow phenomena is presented. In this technique, a variety of compressible flows were generated by bursting plane vertical soap films. An aureole and a ''shock wave'' preceding the rim of the expanding hole were clearly observed using traditional high-speed flash photography and a fast line-scan charge coupled device (CCD) camera. The moving shock wave images obtained from the line-scan CCD camera were similar to the x-t diagrams in gas dynamics. The moving shock waves cause thickness jumps and induce supersonic flows. Photographs of the supersonic flows over a cylinder and a wedge are presented. The results suggest clearly the feasibility of the ''soap film shock tube''. (orig.)

  3. Method of critical power prediction based on film flow model coupled with subchannel analysis

    International Nuclear Information System (INIS)

    Tomiyama, Akio; Yokomizo, Osamu; Yoshimoto, Yuichiro; Sugawara, Satoshi.

    1988-01-01

    A new method was developed to predict critical powers for a wide variety of BWR fuel bundle designs. This method couples subchannel analysis with a liquid film flow model, instead of taking the conventional way which couples subchannel analysis with critical heat flux correlations. Flow and quality distributions in a bundle are estimated by the subchannel analysis. Using these distributions, film flow rates along fuel rods are then calculated with the film flow model. Dryout is assumed to occur where one of the film flows disappears. This method is expected to give much better adaptability to variations in geometry, heat flux, flow rate and quality distributions than the conventional methods. In order to verify the method, critical power data under BWR conditions were analyzed. Measured and calculated critical powers agreed to within ±7%. Furthermore critical power data for a tight-latticed bundle obtained by LeTourneau et al. were compared with critical powers calculated by the present method and two conventional methods, CISE correlation and subchannel analysis coupled with the CISE correlation. It was confirmed that the present method can predict critical powers more accurately than the conventional methods. (author)

  4. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    Science.gov (United States)

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  5. Stress modeling in colloidal dispersions undergoing non-viscometric flows

    Science.gov (United States)

    Dolata, Benjamin; Zia, Roseanna

    2017-11-01

    We present a theoretical study of the stress tensor for a colloidal dispersion undergoing non-viscometric flow. In such flows, the non-homogeneous suspension stress depends on not only the local average total stresslet-the sum of symmetric first moments of both the hydrodynamic traction and the interparticle force-but also on the average quadrupole, octupole, and higher-order moments. To compute the average moments, we formulate a six dimensional Smoluchowski equation governing the microstructural evolution of a suspension in an arbitrary fluid velocity field. Under the conditions of rheologically slow flow, where the Brownian relaxation of the particles is much faster than the spatiotemporal evolution of the flow, the Smoluchowski equation permits asymptotic solution, revealing a suspension stress that follows a second-order fluid constitutive model. We obtain a reciprocal theorem and utilize it to show that all constitutive parameters of the second-order fluid model may be obtained from two simpler linear-response problems: a suspension undergoing simple shear and a suspension undergoing isotropic expansion. The consequences of relaxing the assumption of rheologically slow flow, including the appearance of memory and microcontinuum behaviors, are discussed.

  6. An electrochemical study of the flow rate effect on the oxide film of SA106 Gr.C piping

    International Nuclear Information System (INIS)

    Hong, S. M.; Kim, J. H.; Kim, I. S.

    2002-01-01

    Effect of water flow rate on the oxide film of SA106 Gr.C piping was evaluated quantitatively through electrochemical method. It was carried out with weight change experiments, polarization tests, and EIS tests with rig that simulates water flow. Without water flow, the oxide film is so stable that it effectively blocks current exchange. With water flow, the oxide film was damaged and electrochemical current density and oxide film properties, C dl and R p were significantly changed

  7. Dry-out heat fluxes of falling film and low-mass flux upward-flow in heated tubes

    International Nuclear Information System (INIS)

    Koizumi, Yasuo; Ueda, Tatsuhiro; Matsuo, Teruyuki; Miyota, Yukio

    1998-01-01

    Dry-out heat fluxes were investigated experimentally for a film flow falling down on the inner surface of vertical heated-tubes and for a low mass flux forced-upward flow in the tubes using R 113. This work followed the study on those for a two-phase natural circulation system. For the falling film boiling, flow state observation tests were also performed, where dry-patches appearing and disappearing repeatedly were observed near the exit end of the heated section at the dry-out heat flux conditions. Relation between the dry-out heat flux and the liquid film flow rate is analyzed. The dry-out heat fluxes of the low mass flux upflow are expressed well by the correlation proposed in the previous work. The relation for the falling film boiling shows a similar trend to that for the upflow boiling, however, the dry-out heat fluxes of the falling film are much lower, approximately one third, than those of the upward flow. (author)

  8. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2

    Science.gov (United States)

    Sanandres, Luis

    1994-01-01

    The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.

  9. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film

    Science.gov (United States)

    Chen, Guo; Zhang, Bin; Zhao, Jun

    2015-01-01

    The cellulose sulfate (CS) is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA) content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w). The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w) CS, 0.3% (w/w) glycerol and 0.3% (w/w) OA, showed good properties of mechanic, barrier to moisture and homogeneity.

  10. GROWTH RATE DISPERSION (GRD OF THE (010 FACE OF BORAX CRYSTALS IN FLOWING SOLUTION

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The growth rates of borax crystals from aqueous solutions in the (010 direction at various flow rates were measured. The observed variations of the growth rate can be represented by a normal distribution.  It was found that there is no correlation between growth rate distribution and solution flow under these experimental conditions.   Keywords: Growth rate dispersion (GRD, borax, flow rate

  11. Theory for source-responsive and free-surface film modeling of unsaturated flow

    Science.gov (United States)

    Nimmo, J.R.

    2010-01-01

    A new model explicitly incorporates the possibility of rapid response, across significant distance, to substantial water input. It is useful for unsaturated flow processes that are not inherently diffusive, or that do not progress through a series of equilibrium states. The term source-responsive is used to mean that flow responds sensitively to changing conditions at the source of water input (e.g., rainfall, irrigation, or ponded infiltration). The domain of preferential flow can be conceptualized as laminar flow in free-surface films along the walls of pores. These films may be considered to have uniform thickness, as suggested by field evidence that preferential flow moves at an approximately uniform rate when generated by a continuous and ample water supply. An effective facial area per unit volume quantitatively characterizes the medium with respect to source-responsive flow. A flow-intensity factor dependent on conditions within the medium represents the amount of source-responsive flow at a given time and position. Laminar flow theory provides relations for the velocity and thickness of flowing source-responsive films. Combination with the Darcy-Buckingham law and the continuity equation leads to expressions for both fluxes and dynamic water contents. Where preferential flow is sometimes or always significant, the interactive combination of source-responsive and diffuse flow has the potential to improve prediction of unsaturated-zone fluxes in response to hydraulic inputs and the evolving distribution of soil moisture. Examples for which this approach is efficient and physically plausible include (i) rainstorm-generated rapid fluctuations of a deep water table and (ii) space- and time-dependent soil water content response to infiltration in a macroporous soil. ?? Soil Science Society of America.

  12. THE INFLUENCE OF BUOYANCY ON FLOW AND POLLUTANT DISPERSION IN STREET CANYONS

    OpenAIRE

    Buccolieri, Riccardo; Pulvirenti, Beatrice; Di Sabatino, Silvana; Britter, Rex

    2008-01-01

    Abstract: In this paper, the effect of buoyancy on flow and pollutant dispersion within street canyons is studied by means of computational fluid dynamics simulations. We consider a neutral boundary layer approaching a 3D street canyon assuming a wind direction perpendicular to the street canyon. The Boussinesq hypothesis for incompressible fluids is chosen for modelling buoyancy. We distinguish three cases: leeward, ground and windward wall heating. Thermal effects on both the flow ...

  13. Visualization study of interaction with 2-D film flow on the vertical plate and lateral air velocity for DVI system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sol; Lee, Jae Young [Handong Global University, Pohang (Korea, Republic of); Euh, Dong Jin; Kim, Jong Rok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The present study investigates liquid film flow generated in a downcomer of direct vessel injection (DVI) system which is employed as an emergency core cooling (ECC) system during a loss of coolant accident in the Korea nuclear power plant APR1400. During the late reflooding, complicated multi-phase flow phenomena including the wavy film flow, film breakup, entrainment, liquid film shift due to interfacial drag and gas jet impingement occur. In order to obtain a proper scaling law of the flow, local information of the flow was investigated experimentally and also numerically. A series of experiments were conducted in the 1/20 modified linear scaled plate type test rig to analyze a liquid film from ECC water injection through the DVI nozzle to the downcomer wall. A confocal chromatic sensor was used to measure the local instantaneous liquid film thickness. In this study, the average flow information of the downcomer was analyzed through the information about the thickness, speed, droplet size and speed of highly precise liquid film flow in the structure that occurs in a 2-dimensional liquid film flow, rather than film flow, onset of entrainment, droplet velocity, and size which have been studied in 1-dimension of the existing annular flow. The multi-dimensional flow characteristic information of downcomer can be utilized as the basic data for nuclear safety analysis in the future.

  14. Advanced modeling of the size poly-dispersion of boiling flows

    International Nuclear Information System (INIS)

    Ruyer, Pierre; Seiler, Nathalie

    2008-01-01

    Full text of publication follows: This work has been performed within the Institut de Radioprotection et de Surete Nucleaire that leads research programs concerning safety analysis of nuclear power plants. During a LOCA (Loss Of Coolant Accident), in-vessel pressure decreases and temperature increases, leading to the onset of nucleate boiling. The present study focuses on the numerical simulation of the local topology of the boiling flow. There is experimental evidence of a local and statistical large spectra of possible bubble sizes. The relative importance of the correct description of this poly-dispersion in size is due to the dependency of (i) main hydrodynamic forces, like lift, as well as of (ii) transfer area with respect to the individual bubble size. We study the corresponding CFD model in the framework of an ensemble averaged description of the dispersed two-phase flow. The transport equations of the main statistical moment densities of the population size distribution are derived and models for the mass, momentum and heat transfers at the bubble scale as well as for bubble coalescence are achieved. This model introduced within NEPTUNE-CFD code of the NEPTUNE thermal-hydraulic platform, a joint project of CEA, EDF, IRSN and AREVA, has been tested on boiling flows obtained on the DEBORA facility of the CEA at Grenoble. These numerical simulations provide a validation and attest the impact of the proposed model. (authors) [fr

  15. Statistical characteristics of falling-film flows: A synergistic approach at the crossroads of direct numerical simulations and experiments

    Science.gov (United States)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.

    2017-12-01

    We scrutinize the statistical characteristics of liquid films flowing over an inclined planar surface based on film height and velocity measurements that are recovered simultaneously by application of planar laser-induced fluorescence (PLIF) and particle tracking velocimetry (PTV), respectively. Our experiments are complemented by direct numerical simulations (DNSs) of liquid films simulated for different conditions so as to expand the parameter space of our investigation. Our statistical analysis builds upon a Reynolds-like decomposition of the time-varying flow rate that was presented in our previous research effort on falling films in [Charogiannis et al., Phys. Rev. Fluids 2, 014002 (2017), 10.1103/PhysRevFluids.2.014002], and which reveals that the dimensionless ratio of the unsteady term to the mean flow rate increases linearly with the product of the coefficients of variation of the film height and bulk velocity, as well as with the ratio of the Nusselt height to the mean film height, both at the same upstream PLIF/PTV measurement location. Based on relations that are derived to describe these results, a methodology for predicting the mass-transfer capability (through the mean and standard deviation of the bulk flow speed) of these flows is developed in terms of the mean and standard deviation of the film thickness and the mean flow rate, which are considerably easier to obtain experimentally than velocity profiles. The errors associated with these predictions are estimated at ≈1.5 % and 8% respectively in the experiments and at <1 % and <2 % respectively in the DNSs. Beyond the generation of these relations for the prediction of important film flow characteristics based on simple flow information, the data provided can be used to design improved heat- and mass-transfer equipment reactors or other process operation units which exploit film flows, but also to develop and validate multiphase flow models in other physical and technological settings.

  16. Wave structure in the radial film flow with a circular hydraulic jump

    Science.gov (United States)

    Rao, A.; Arakeri, J. H.

    A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates.

  17. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Behavior of fine droplet flow. JAERI's nuclear research promotion program, H10-027-7. Contract research

    International Nuclear Information System (INIS)

    Kataoka, Isao; Yoshida, Kenji; Matsuura, Keizo

    2002-03-01

    Analytical and experimental researches were carried out on the behavior of fine droplet flow in relation to the fundamental phenomena of thermohydraulics in severe accident. Simulation program of fine droplet behavior in turbulent gas flow was developed based on the eddy interaction model with improvement of Graham's stochastic model on eddy lifetime and eddy size. Furthermore, the developed program are capable of simulating the droplet behavior in annular dispersed flow based on the models of droplet entrainment from liquid film and turbulence modification of gas phase by liquid film. This program was confirmed by the various experimental data on droplet diffusion, deposition. Furthermore, this program was applied to the three dimensional droplet flow with the satisfactory agreement of experimental data. This means the developed program can be used as a simulation program for analysis of severe accident. Experimental research was carried out on the effect of liquid film on the turbulence field of gas flow in annular and annular dispersed flow. Averaged and turbulent velocity of gas phase were measured under various gas and liquid film flow rates. Turbulent velocity of gas phase in annular flow increased compared with single phase gas flow. This is due to turbulence generation by waves in liquid film. Corresponding to the turbulence modification by liquid film, distribution of averaged velocity of gas phase became flattened compared with single phase gas flow. (author)

  18. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-01-01

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  19. NUMERICAL SOLUTION OF STEADY STATE DISPERSION FLOW MODEL FOR LACTOSE-LACTASE HYDROLYSIS WITH DIFFERENT KINETICS IN FIXED BED

    Directory of Open Access Journals (Sweden)

    OLAOSEBIKAN ABIDOYE OLAFADEHAN

    2010-06-01

    Full Text Available A detailed computational procedure for evaluating lactose hydrolysis with immobilized enzyme in a packed bed tubular reactor under dispersion flow conditions is presented. The dispersion flow model for lactose hydrolysis using different kinetics, taking cognizance of external mass transfer resistances, was solved by the method of orthogonal collocation. The reliability of model simulations was tested using experimental data from a laboratory packed bed column, where the -galactosidase of Kluyveromyces fragilis was immobilized on spherical chitosan beads. Comparison of the simulated results with experimental exit conversion shows that the dispersion flow model and using Michaelis-Menten kinetics with competitive product (galactose inhibition are appropriate to interpret the experimental results and simulate the process of lactose hydrolysis in a fixed bed.

  20. Direct measurements of liquid film roughness for the prediction of annular flow pressure drop

    International Nuclear Information System (INIS)

    Ashwood, Andrea C.; Schubring, DuWayne; Shedd, Timothy A.

    2009-01-01

    A vertical two-phase (air-water) test section has been constructed to allow for detailed visualization of flow phenomena in the annular regime. The total internal reflection (TIR) technique for film thickness estimation, originally developed by Shedd and Newell (1998), has been adapted for use in this test section. This technique uses the pattern of diffuse light reflected from the gas-liquid interface to estimate the base film thickness, i.e., the thickness between large liquid waves. Measurement of base film thickness separately from the average film thickness, which couples base film and wave behavior, allows for consideration of separate effects from each of the two zones. A modified Hurlburt-Newell (2000) correlation that separates the flow into these two zones has been generated. Data regarding the relationship between average base film thickness and wave height, along with verification of the base film thickness measured from the TIR technique, were provided by planar laser-induced fluorescence (PLIF). For the present vertical air-water up flows with liquid superficial velocities ranging from 4 to 34 cm s -1 and gas superficial velocities from 35 to 85 m s -1 , the modified Hurlburt-Newell correlation predicts pressure loss to within 10%. (author)

  1. Direct measurements of liquid film roughness for the prediction of annular flow pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, Andrea C; Schubring, DuWayne; Shedd, Timothy A. [University of Wisconsin, Madison, WI (United States)], e-mail: cashwood@wisc.edu, e-mail: dlschubring@wisc.edu, e-mail: shedd@engr.wisc.edu

    2009-07-01

    A vertical two-phase (air-water) test section has been constructed to allow for detailed visualization of flow phenomena in the annular regime. The total internal reflection (TIR) technique for film thickness estimation, originally developed by Shedd and Newell (1998), has been adapted for use in this test section. This technique uses the pattern of diffuse light reflected from the gas-liquid interface to estimate the base film thickness, i.e., the thickness between large liquid waves. Measurement of base film thickness separately from the average film thickness, which couples base film and wave behavior, allows for consideration of separate effects from each of the two zones. A modified Hurlburt-Newell (2000) correlation that separates the flow into these two zones has been generated. Data regarding the relationship between average base film thickness and wave height, along with verification of the base film thickness measured from the TIR technique, were provided by planar laser-induced fluorescence (PLIF). For the present vertical air-water up flows with liquid superficial velocities ranging from 4 to 34 cm s{sup -1} and gas superficial velocities from 35 to 85 m s{sup -1}, the modified Hurlburt-Newell correlation predicts pressure loss to within 10%. (author)

  2. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    NARCIS (Netherlands)

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using

  3. Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD

    Directory of Open Access Journals (Sweden)

    T. S. Santra

    2012-06-01

    Full Text Available Diamond-like nanocomposite (DLN thin films were deposited on pyrex glass substrate using different flow rate of haxamethyldisiloxane (HMDSO based liquid precursor with nitrogen gas as a glow discharged decomposition by plasma enhanced chemical vapor deposition (PECVD technique. The significant influence of different precursor flow rates on refractive index and thickness of the DLN films was measured by using spectroscopic filmatrics and DEKTAK profilometer. Optical transparency of the DLN thin films was analyzed by UV-VIS-NIR spectrometer. FTIR spectroscopy, provides the information about shifted bonds like SiC2, Si-C, Si-O, C-C, Si-H, C-H, N-H, and O-H with different precursor flow rate. We have estimated the hardness of the DLN films from Raman spectroscopy using Gaussian deconvolution method and tried to investigate the correlation between hardness, refractive index and thickness of the films with different precursor flow rates. The composition and surface morphology of the DLN films were investigated by X-ray photo electron spectroscopy (XPS and atomic force microscopy (AFM respectively. We have analyzed the hardness by intensity ratio (ID/IG of D and G peaks and correlates with hardness measurement by nanoindentation test where hardness increases from 27.8 μl/min to 80.6μl/min and then decreases with increase of flow rate from 80.6μl/min to 149.5μl/min. Finally, we correlates different parameters of structural, optical and tribological properties like film-thickness, refractive index, light transmission, hardness, surface roughness, modulus of elasticity, contact angle etc. with different precursor flow rates of DLN films.

  4. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Science.gov (United States)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-07-01

    Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol-gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au9+ ions at a fluence of 1 × 1012 ions cm-2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  5. Performance assessment of adding Cu-ultrafine particles into falling film desiccant

    International Nuclear Information System (INIS)

    Al-Mulla Ali, A.

    2006-01-01

    The concept of dehumidification between air and liquid desiccant for the improvement of the efficiency of heating and cooling fluids in industrial applications was discussed. The use of solid/liquid desiccants has received much attention in recent years because liquid desiccants can take moisture from surrounding air at low temperature and then release the moisture at high temperature to provide a continuous process of dehumidification of air and regeneration of liquid desiccant. This process can be used with conventional vapor compression cycles. This paper presented a comparative numerical study between parallel and counter flow configurations that examined the effects of various parameters on heat and mass transfer for the dehumidification and cooling processes of air and regeneration rate of liquid desiccant. Ultrafine particles were added to the falling film desiccant to investigate heat and mass transfer enhancement for both parallel and counter flow channels. The Cu-volume fraction in the falling film desiccant and dispersion effect were the important parameters. A mathematical model was therefore developed to account for the addition of Cu-ultrafine particles into the film desiccant. The dehumidification and cooling rate processes were found to improve with an increase in the Cu-ultrafine particles and dispersion effect. The new hybrid AC system was shown to improve indoor air quality, reduce energy consumption, and be environmentally safe. It was concluded that although the volume fraction and dispersion factor improve the dehumidification and cooling processes of the air, the improvements are not significant due to the small thickness of the falling-film desiccant. The regeneration process did not improve for either controlling parameter because of the small thickness of the film desiccant. 14 refs., 10 figs

  6. Influence of air flow rate on structural and electrical properties of undoped indium oxide thin films

    International Nuclear Information System (INIS)

    Mirzapour, S.; Rozati, S.M.; Takwale, M.G.; Marathe, B.R.; Bhide, V.G.

    1993-01-01

    Using the spray pyrolysis technique thin films of indium oxide were prepared on Corning glass (7059) at a substrate temperature of 425 C at different flow rates. The electrical and structural properties of these films were studied. The Hall measurements at room temperature showed that the films prepared in an air flow rate of 7 litre min -1 have the highest mobility of 47 cm 2 V -1 s -1 and a minimum resistivity of 1.125 x 10 -3 Ω cm. The X-ray diffraction patterns showed that the films have a preferred orientation of [400] which peaks at the air flow rate of 7 litre min -1 . (orig.)

  7. Wave structure in the radial film flow with a circular hydraulic jump

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A.; Arakeri, J.H. [Indian Inst. of Science, Bangalore (India). Dept. of Mechanical Engineering

    2001-11-01

    A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates. (orig.)

  8. Nanocomposites from Stable Dispersions of Carbon Nanotubes in Polymeric Matrices Using Dispersion Interaction

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2016-01-01

    Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

  9. Effect of oxygen to argon flow ratio on the properties of Al-doped ZnO films for amorphous silicon thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yang-Shih [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Lien, Shui-Yang, E-mail: syl@mdu.edu.tw [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Huang, Yung-Chuan [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Wang, Chao-Chun [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Liu, Chueh-Yang [Department of Materials Science and Engineering, MingDao University, ChangHua 52345, Taiwan, ROC (China); Nautiyal, Asheesh [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chungli, 320 Taoyuan, Taiwan, ROC (China); Wuu, Dong-Sing [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC (China); Lee, Shuo-Jun [Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chungli, 320 Taoyuan, Taiwan, ROC (China)

    2013-02-01

    Transparent conductive oxide thin films in solar cell fabrication have attracted much attention due to their high conductivity and transmittance. In this paper, we have investigated the aluminum-doped zinc oxide (AZO) thin films prepared by radiofrequency magnetron sputtering on Asahi U-type SnO{sub 2} glass with different O{sub 2}/Ar flow ratios in vacuum chamber. Furthermore, the micro-structural, electrical, and optical properties of AZO/SnO{sub 2} films were studied. The change in O{sub 2}/Ar flow ratios is found to significantly affect the haze value, and slightly affect electrical resistivity and transmittance of the films. Afterward, the fabricated AZO thin films with different O{sub 2}/Ar flow ratios were used for building the solar cell devices. The current–voltage and external quantum efficiency characteristics were investigated for the solar cell devices. The optimized O{sub 2}/Ar flow ratio of 3 for solar device shows the best efficiency of 10.41%, and a 20% increase in short-circuit current density compared to typical Asahi solar cells. - Highlights: ► A thin Al-doped zinc oxide (AZO) film has been deposited on SnO{sub 2} substrates. ► The AZO film deposited at an O{sub 2}/Ar ratio of 3 shows low resistivity and high haze. ► The AZO film contains tiny grains that enhance light scattering. ► The amorphous silicon solar cell with the AZO layer shows a 20% increase in Jsc.

  10. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Behavior of fine droplet flow. JAERI's nuclear research promotion program, H10-027-7. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Isao; Yoshida, Kenji [Osaka Univ., Graduate School of Engineering, Osaka (Japan); Matsuura, Keizo [Nuclear Fuel Industry, Co., Ltd., Tokyo (Japan)

    2002-03-01

    Analytical and experimental researches were carried out on the behavior of fine droplet flow in relation to the fundamental phenomena of thermohydraulics in severe accident. Simulation program of fine droplet behavior in turbulent gas flow was developed based on the eddy interaction model with improvement of Graham's stochastic model on eddy lifetime and eddy size. Furthermore, the developed program are capable of simulating the droplet behavior in annular dispersed flow based on the models of droplet entrainment from liquid film and turbulence modification of gas phase by liquid film. This program was confirmed by the various experimental data on droplet diffusion, deposition. Furthermore, this program was applied to the three dimensional droplet flow with the satisfactory agreement of experimental data. This means the developed program can be used as a simulation program for analysis of severe accident. Experimental research was carried out on the effect of liquid film on the turbulence field of gas flow in annular and annular dispersed flow. Averaged and turbulent velocity of gas phase were measured under various gas and liquid film flow rates. Turbulent velocity of gas phase in annular flow increased compared with single phase gas flow. This is due to turbulence generation by waves in liquid film. Corresponding to the turbulence modification by liquid film, distribution of averaged velocity of gas phase became flattened compared with single phase gas flow. (author)

  11. Hot-film anemometry in air-water flow

    International Nuclear Information System (INIS)

    Delahaye, J.M.; Galaup, J.P.

    1975-01-01

    Local measurements of void fraction and liquid velocity in a steady-state air-water bubbly flow at atmospheric pressure are presented. Use was made of a constant temperature anemometer and of a conical hot-film probe. The signal was processed with a multi-channel analyzer. Void fraction and liquid velocities are determined from the amplitude histogram of the signal. The integrated void fraction over a diameter is compared with the average void fraction along the same diameter obtained with a γ-ray absorption method. The liquid volumetric flow-rate is calculated from the void fraction and liquid velocity profiles and compared with the indication given by a turbine flowmeter [fr

  12. Modeling of flow conditions in down draft gasifiers using tin film models

    DEFF Research Database (Denmark)

    Jensen, Torben Kvist; Gøbel, Benny; Henriksen, Ulrik Birk

    2003-01-01

    In order to examine how an inhomogeneous char bed affects the gas flow through the bed, a dynamic model have been developed to describe the flow distribution in a down draft gasifier. The gas flow distribution through the bed was determined using a thin film model approach. The temperatures...

  13. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. The review of existing data indicates further research is needed in the areas of basic hydrodynamics related to liquid core disintegration mechanisms, slug and droplet formation, entrainment, and droplet size distributions. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. The test section consists of two coaxial quartz tubes. The annular gap between these two tubes is filled with a hot, clear fluid (syltherm 800) so as to maintain film boiling temperatures and heat transfer rates at the inner quartz tube wall. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs (3 μsec) are used

  14. PIV Analysis of Ludwig Prandtl's Historic Flow Visualization Films

    OpenAIRE

    Willert, Christian; Kompenhans, Jürgen

    2010-01-01

    Around 1930 Ludwig Prandtl and his colleagues O. Tietjens and W. M\\"uller published two films with visualizations of flows around surface piercing obstacles to illustrate the unsteady process of flow separation. These visualizations were achieved by recording the motion of fine particles sprinkled onto the water surface in water channels. The resulting images meet the relevant criteria of properly seeded recordings for particle image velocimetry (PIV). Processing these image sequences with mo...

  15. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1987-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used. The inlet section consists of specially designed coaxial nozzles for gas and liquid such that the ideal inverted annular flow can be generated. The roll wave formation, droplet entrainment from wave crests, agitated sections with large interfacial areas, classical sinuous jet instability, jet break-up into multiple liquid ligaments and drop formation from liquid ligaments have been observed in detail. (orig.)

  16. Influence of gamma ray irradiation and annealing temperature on the optical constants and spectral dispersion parameters of metal-free and zinc tetraphenylporphyrin thin films: A comparative study.

    Science.gov (United States)

    Zeyada, H M; Makhlouf, M M; El-Nahass, M M

    2015-09-05

    In this work, we report on the effect of γ-ray irradiation and annealing temperature on the optical properties of metal-free tetraphenylporphyrin, H2TPP, and zinc tetraphenylporphyrin, ZnTPP, thin films. Thin films of H2TPP and ZnTPP were successfully prepared by the thermal evaporation technique. The optical properties of H2TPP and ZnTPP films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The absorption spectra of H2TPP showed four absorption bands, namely the Q, B, N and M bands. The effect of inserting Zn atom into the cavity of porphyrin macrocycle in ZnTPP molecule distorted the Q and B bands, reduced the width of absorption region and influenced the optical constants and dispersion parameters. In all conditions, the type of electron transition is indirect allowed transition. Anomalous dispersion is observed in the absorption region but normal dispersion occurs in the transparent region of spectra. We adopted multi-oscillator model and the single oscillator model to interpret the anomalous and normal dispersion, respectively. We have found that the annealing temperature has mostly the opposite effect of γ-ray irradiation on absorption and dispersion characteristics of these films. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Attempt to produce both thick and thinned flowing superfluid films

    International Nuclear Information System (INIS)

    Kwoh, D.S.W.; Goodstein, D.L.

    1977-01-01

    As discussed in the preceding paper by Graham, a controversy has arisen over conflicting reports of whether a superfluid film becomes thinned when it is set into motion. We have performed an experiment designed to reproduce as nearly as possible two previous measurements giving opposite results. Our experiment is also designed to test directly a theory proposed by Goodstein and Saffman which would have reconciled the apparently contradictory observations. We are unable to reproduce the thick-film result, finding kinetic thinning in all cases, even where the Goodstein--Saffman theory would lead us to expect a thick film. We conclude, in agreement with Graham, that the film is always thinned when it flows, and that the theory is therefore unnecessary

  18. Improved diode performance of Ag nanoparticle dispersed Er doped In2O3 film

    Science.gov (United States)

    Ghosh, Anupam; Dwivedi, Shyam Murli Manohar Dhar; Chakrabartty, Shubhro; Mondal, Aniruddha

    2018-04-01

    Ag nanoparticle(NP) dispersedEr doped In2O3 film was prepared by sol-gel method followed by thermal evaporation cum glancing angle deposition technique. The Schottky contact based devicecontaining Ag NPs shows ideality factor of ˜180 at 10 K and ˜5 at 300 K, which is lesser as compared to the device that does not contain Ag NPs. The lower ideality factor value all over the temperature range makes the diode more reliable.

  19. Direct writing of conductive silver micropatterns on flexible polyimide film by laser-induced pyrolysis of silver nanoparticle-dispersed film

    International Nuclear Information System (INIS)

    Aminuzzaman, Mohammod; Watanabe, Akira; Miyashita, Tokuji

    2010-01-01

    This article describes fabrication of Ag micropatterns on a flexible polyimide (PI) film by laser direct writing using an Ag nanoparticle-dispersed film as a precursor. Ag micropatterns are characterized by optical microscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), surface profilometry, and resistivity measurements. The line width of Ag micropatterns can be effectively controlled by altering the experimental parameters of laser direct writing especially laser intensity, objective lens, and laser beam scanning speed etc. Using an objective lens of 100x and laser intensity of 170.50 kW/cm 2 , Ag micropatterns with a line width of about 6 μm have been achieved. The Ag micropatterns show strong adhesion to polyimide surface as evaluated by Scotch-tape test. The resistivity of the Ag micropatterns is determined to be 4.1 x 10 -6 Ω cm using two-point probe method. This value is comparable with the resistivity of bulk Ag (1.6 x 10 -6 Ω cm).

  20. Dispersion modeling by kinematic simulation: Cloud dispersion model

    International Nuclear Information System (INIS)

    Fung, J C H; Perkins, R J

    2008-01-01

    A new technique has been developed to compute mean and fluctuating concentrations in complex turbulent flows (tidal current near a coast and deep ocean). An initial distribution of material is discretized into any small clouds which are advected by a combination of the mean flow and large scale turbulence. The turbulence can be simulated either by kinematic simulation (KS) or direct numerical simulation. The clouds also diffuse relative to their centroids; the statistics for this are obtained from a separate calculation of the growth of individual clouds in small scale turbulence, generated by KS. The ensemble of discrete clouds is periodically re-discretized, to limit the size of the small clouds and prevent overlapping. The model is illustrated with simulations of dispersion in uniform flow, and the results are compared with analytic, steady state solutions. The aim of this study is to understand how pollutants disperses in a turbulent flow through a numerical simulation of fluid particle motion in a random flow field generated by Fourier modes. Although this homogeneous turbulent is rather a 'simple' flow, it represents a building block toward understanding pollutant dispersion in more complex flow. The results presented here are preliminary in nature, but we expect that similar qualitative results should be observed in a genuine turbulent flow.

  1. Particle morphology as a control of permeation in polymer films obtained from MMA/nBA colloidal dispersions.

    Science.gov (United States)

    Lestage, David J; Urban, Marek W

    2004-07-20

    The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films. Copyright 2004 American Chemical Society

  2. Film boiling from spheres in single- and two-phase flow

    International Nuclear Information System (INIS)

    Liu, C.; Theofanous, T.G.; Yuen, W.W.

    1992-01-01

    Experimental data on film boiling heat transfer from single, inductively heated, spheres in single- and two-phase flow (saturated water and steam, respectively) are presented. In the single-phase-flow experiments water velocities ranged from 0.1 to 2.0 m/s; in the two-phase-flow experiments superficial water and steam velocities covered 0.1 to 0.6 m/s and 4 to 10 m/s, respectively. All experiments were run at atmospheric pressure and with sphere temperatures from 900C down to quenching. Limited interpretations of the single-phase- flow data are possible, but the two-phase-flow data are new and unique

  3. Measurement and simulation of the turbulent dispersion of a radioactive tracer in a two-phase flow system

    Energy Technology Data Exchange (ETDEWEB)

    Hensel, F; Rohde, U

    1998-10-01

    The turbulent dispersion of a radiotracer in an experimental setup with a natural convection liquid-gaseous flow was investigated. A liquid-gaseous bubbly flow was generated in a narrow tank by injection of pressurized air into water or by catalytic disintegration of H{sub 2}O{sub 2}. Turbulent Prandtl numbers for gas and tracer dispersion were varied. In the case of higher gas superficial velocities (J{sub gas}{approx}5-15 mm/s), a reasonable agreement was achieved between calculated and measured tracer transport velocity and dispersion coefficient values. A nearly linear correlation between j{sub gas} and D was found in agreement with other authors. The calculation results contribute to a better understanding of the phenomena and interpretation of the measurement results as well as to the validation of the CFD code for turbulent two-phase flow applications. Further investigations are necessary to improve the agreement in the cases of H{sub 2}O{sub 2} disintegration and low gas superficial velocities. (orig.)

  4. Measurement and simulation of the turbulent dispersion of a radioactive tracer in a two-phase flow system

    International Nuclear Information System (INIS)

    Hensel, F.; Rohde, U.

    1998-01-01

    The turbulent dispersion of a radiotracer in an experimental setup with a natural convection liquid-gaseous flow was investigated. A liquid-gaseous bubbly flow was generated in a narrow tank by injection of pressurized air into water or by catalytic disintegration of H 2 O 2 . Turbulent Prandtl numbers for gas and tracer dispersion were varied. In the case of higher gas superficial velocities (J gas ∼5-15 mm/s), a reasonable agreement was achieved between calculated and measured tracer transport velocity and dispersion coefficient values. A nearly linear correlation between j gas and D was found in agreement with other authors. The calculation results contribute to a better understanding of the phenomena and interpretation of the measurement results as well as to the validation of the CFD code for turbulent two-phase flow applications. Further investigations are necessary to improve the agreement in the cases of H 2 O 2 disintegration and low gas superficial velocities. (orig.)

  5. Numerical analysis of hypersonic turbulent film cooling flows

    Science.gov (United States)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  6. Investigation of film flow of a conducting fluid in a transverse magnetic field, (1)

    International Nuclear Information System (INIS)

    Oshima, Shuzo; Yamane, Ryuichiro; Mochimaru, Yoshihiro; Sudo, Kouzo.

    1985-01-01

    Accompanying the development of large electromagnetic pumps transporting liquid metals used as the heat transfer media for nuclear power plants and the electromagnetic flow meters of large capacity, many researches have been carried out on the flow of liquid metals under the action of magnetic field. The utilization of electromagnetic force for continuous casting facilities seems very effective for the total processes from refining to solidification. Hereafter, it will be a technologically important problem to clarify the behavior of electro-conductive fluid with free surface under the action of magnetic field concerning the non-contact control of the interface form of molten metals as well as the cooling problem in nuclear fusion reactors. In this study, first the flow phenomena of MHD liquid film flow in a magnetic field with intensity gradient was analytically examined, and the effect of magnetic field gradient exerted on liquid film thickness and liquid surface form was clarified. Next, the experiment using mercury was carried out. For liquid film flow, magnetic field gradient acted as a kind of non-contact weir. (Kako, I.)

  7. An improved liquid film model to predict the CHF based on the influence of churn flow

    International Nuclear Information System (INIS)

    Wang, Ke; Bai, Bofeng; Ma, Weimin

    2014-01-01

    The critical heat flux (CHF) for boiling crisis is one of the most important parameters in thermal management and safe operation of many engineering systems. Traditionally, the liquid film flow model for “dryout” mechanism shows a good prediction in heated annular two-phase flow. However, a general assumption that the initial entrained fraction at the onset of annular flow shows a lack of reasonable physical interpretation. Since the droplets have great momentum and the length of churn flow is short, the droplets in churn flow show an inevitable effect on the downstream annular flow. To address this, we considered the effect of churn flow and developed the original liquid film flow model in vertical upward flow by suggesting that calculation starts from the onset of churn flow rather than annular flow. The results indicated satisfactory predictions with the experimental data and the developed model provided a better understanding about the effect of flow pattern on the CHF prediction. - Highlights: •The general assumption of initial entrained fraction is unreasonable. •The droplets in churn flow show an inevitable effect on downstream annular flow. •The original liquid film flow model for prediction of CHF was developed. •The integration process was modified to start from the onset of churn flow

  8. Laminar dispersion in parallel plate sections of flowing systems used in analytical chemistry and chemical engineering

    NARCIS (Netherlands)

    Kolev, S.D.; Kolev, Spas D.; van der Linden, W.E.

    1991-01-01

    An exact solution of the convective-diffusion equation for fully developed parallel plate laminar flow was obtained. It allows the derivation of theoretical relationships for calculating the Peclet number in the axially dispersed plug flow model and the concentration distribution perpendicular to

  9. Investigation of cascade-typed falling liquid film flow along first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Nakai, Tadakatsu; Kawara, Zensaku

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a ''cascade-typed'' falling liquid film flow is proposed as the ''liquid wall'' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the commercial code (STREAM: unsteady three-dimensional general purpose thermofluid code) and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ru 2 d/s: r is density, u is velocity, d is film thickness, s is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant waterhead located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same

  10. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    Science.gov (United States)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the

  11. Study on cocurrent downtake gas-liquid flow in a vertical channel

    International Nuclear Information System (INIS)

    Lozovetskij, V.V.

    1978-01-01

    Hydraulic resistance and liquid stall from the film surface at cocurrent film and gas downflow in vertical channel in measurement range of reynolds number from 100 to 1260 for the film and from 1.2x10 4 to 10 5 for gas are studied. For downflow two regimes are characteristic: purely annular, that is separate phase flow regime, and the regime of stall and carrying liquid droplets from the film surface, that is annular dispersed flow regime. The existence boundaries of both regimes are determined and criterial equations for pressure drop calculation are obtained. It is established experimentally that at sufficient range from the liquid input place on the working zone the established two-phase flow takes place. In their nucleus two areas can be singled out, which differ by the flow density values of stalled liquid: central, having the permanent flow density value and area adjacent to the film surface, the liquid in the combs of waves making a significant contribution to the flow density value. At equal flooding density with the relative gas speed increase, the flow density value of stalled liquid in the channel central part increase. A similar result also takes place at flooding density increase at permanent relative speed. Flooding density and relative speed increase leads to levelling stalled liquid distribution about the channel cross section

  12. Determination and analysis of dispersive optical constants of CuIn{sub 3}S{sub 5} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khemiri, N., E-mail: naoufel_khemiri@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semiconducteurs-ENIT, Universite Tunis, ElManar BP 37, Le belvedere, 1002 Tunis (Tunisia); Sinaoui, A.; Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semiconducteurs-ENIT, Universite Tunis, ElManar BP 37, Le belvedere, 1002 Tunis (Tunisia)

    2011-04-15

    CuIn{sub 3}S{sub 5} thin films were prepared from powder by thermal evaporation under vacuum (10{sup -6} mbar) onto glass substrates. The glass substrates were heated from 30 to 200 {sup o}C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E{sub 0} and dispersion energy E{sub d} of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan.

  13. Falling Liquid Films

    CERN Document Server

    Kalliadasis, S; Scheid, B

    2012-01-01

    This research monograph gives a detailed review of the state-of-the-art theoretical methodologies for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar, inclined substrate. This prototype is an open-flow hydrodynamic instability representing an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. Whenever possible, the link between theory and experiments is illustrated and the development of order-of-magnitude estimates and scaling arguments is used to facilitate the

  14. Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow

    KAUST Repository

    Icardi, Matteo; Marchisio, Daniele Luca; Chidambaram, Narayanan; Fox, Rodney O.

    2013-01-01

    An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.

  15. Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow

    KAUST Repository

    Icardi, Matteo

    2013-04-01

    An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.

  16. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    Science.gov (United States)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  17. Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate.

    Science.gov (United States)

    Parikh, Tapan; Gupta, Simerdeep Singh; Meena, Anuprabha K; Vitez, Imre; Mahajan, Nidhi; Serajuddin, Abu T M

    2015-07-01

    Determination of drug-polymer miscibility is critical for successful development of solid dispersions. This report details a practical method to predict miscibility and physical stability of drug with various polymers in solid dispersion and, especially, in melt extrudates by applying a film-casting technique. Mixtures of itraconazole (ITZ) with hydroxypropylmethylcellulose phthalate (HPMCP), Kollidon(®) VA 64, Eudragit(®) E PO, and Soluplus(®) were film-casted, exposed to 40°C/75% RH for 1 month and then analyzed using differential scanning calorimetry (DSC), powder X-ray diffractometry, and polarized light microscopy (PLM). ITZ had the highest miscibility with HPMCP, being miscible at drug to polymer ratio of 6:4 (w/w). There was a downward trend of lower miscibility with Soluplus(®) (miscible at 3:7, w/w, and a few microcrystals present at 4:6, w/w), Kollidon(®) VA 64 (2:8, w/w) and Eudragit(®) E PO (casting and hot-melt extrusion (HME) using a twin screw extruder. For ITZ-Soluplus(®) mixtures, HME at 4:6 (w/w) resulted in a single phase, whereas drug crystallization was observed at higher drug load. HME of ITZ-Kollidon(®) VA 64 mixtures also correlated well with the miscibility predicted by film casting. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling

    Directory of Open Access Journals (Sweden)

    Mohamed Sellam

    2015-01-01

    Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.

  19. Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery

    International Nuclear Information System (INIS)

    Chang Fang; Hu Changwei; Liu Xiaojiang; Liu Lian; Zhang Jianwen

    2012-01-01

    Coulter dispersants were investigated as the additive into the positive electrolyte (more than 1.8 M vanadium ions) of vanadium redox flow battery (VRB). The electrolyte stability tests showed that, at 45, 50 and 60 °C, the addition of 0.050–0.10 w/w Coulter dispersant IIIA (mainly containing coconut oil amine adduct with 15 ethylene oxide groups) into the positive electrolyte of VRB could significantly delay the time of precipitate formation from 1.8–12.3 h to 30.3 h ∼ 19.3 days. Moreover, the trace amount of Coulter dispersant IIIA as the additive can enhance the electrolyte stability without changing the valence state of vanadium ions, reducing the reversibility of the redox reactions and incurring other side reactions at the electrode. Using the Coulter IIIA dispersant as the additive also improved the energy efficiency of the VRB. The UV–vis spectra confirmed that the trace amount of Coulter IIIA dispersant did not chemically react with V(V) to form new substances. The synergy of Coulombic repulsion and steric hindrance between the macromolecular cationic surfactant additive and the solution reduced the aggregation of vanadium ions into V 2 O 5 and increased the supersaturation of V 2 O 5 crystal in the solution.

  20. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    Science.gov (United States)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases

  1. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    Science.gov (United States)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  2. Measurement of thickness of thin water film in two-phase flow by capacitance method

    International Nuclear Information System (INIS)

    Sun, R.K.; Kolbe, W.F.; Leskovar, B.; Turko, B.

    1981-09-01

    A technique has been developed for measuring water film thickness in a two-phase annular flow system by the capacitance method. An experimental model of the flow system with two types of electrodes mounted on the inner wall of a cylindrical tube has been constructed and evaluated. The apparatus and its ability to observe fluctuations and wave motions of the water film passing over the electrodes is described in some detail

  3. Wind tunnel experimental study on effect of inland nuclear power plant cooling tower on air flow and dispersion of pollutant

    International Nuclear Information System (INIS)

    Qiao Qingdang; Yao Rentai; Guo Zhanjie; Wang Ruiying; Fan Dan; Guo Dongping; Hou Xiaofei; Wen Yunchao

    2011-01-01

    A wind tunnel experiment for the effect of the cooling tower at Taohuajiang nuclear power plant on air flow and dispersion of pollutant was introduced in paper. Measurements of air mean flow and turbulence structure in different directions of cooling tower and other buildings were made by using an X-array hot wire probe. The effects of the cooling tower and its drift on dispersion of pollutant from the stack were investigated through tracer experiments. The results show that the effect of cooling tower on flow and dispersion obviously depends on the relative position of stack to cooling towers, especially significant for the cooling tower parallel to stack along wind direction. The variation law of normalized maximum velocity deficit and perturbations in longitudinal turbulent intensity in cooling tower wake was highly in accordance with the result of isolated mountain measured by Arya and Gadiyaram. Dispersion of pollutant in near field is significantly enhanced and plume trajectory is changed due to the cooling towers and its drift. Meanwhile, the effect of cooling tower on dispersion of pollutant depends on the height of release. (authors)

  4. Design, Validation, and Testing of a Hot-Film Anemometer for Hypersonic Flow

    Science.gov (United States)

    Sheplak, Mark

    The application of constant-temperature hot-film anemometry to hypersonic flow has been reviewed and extended in this thesis. The objective of this investigation was to develop a measurement tool capable of yielding continuous, high-bandwidth, quantitative, normal mass-flux and total -temperature measurements in moderate-enthalpy environments. This research has produced a probe design that represents a significant advancement over existing designs, offering the following improvements: (1) a five-fold increase in bandwidth; (2) true stagnation-line sensor placement; (3) a two order-of-magnitude decrease in sensor volume; and (4) over a 70% increase in maximum film temperature. These improvements were achieved through substrate design, sensor placement, the use of high-temperature materials, and state -of-the-art microphotolithographic fabrication techniques. The experimental study to characterize the probe was performed in four different hypersonic wind tunnels at NASA-Langley Research Center. The initial test consisted of traversing the hot film through a Mach 6, flat-plate, turbulent boundary layer in air. The detailed static-calibration measurements that followed were performed in two different hypersonic flows: a Mach 11 helium flow and Mach 6 air flow. The final test of this thesis consisted of traversing the probe through the Mach 6 wake of a 70^ circ blunt body. The goal of this test was to determine the state (i.e., laminar or turbulent) of the wake. These studies indicate that substrate conduction effects result in instrumentation characteristics that prevent the hot-film anemometer from being used as a quantitative tool. The extension of this technique to providing quantitative information is dependent upon the development of lower thermal-conductivity substrate materials. However, the probe durability, absence of strain gauging, and high bandwidth represent significant improvements over the hot-wire technique for making qualitative measurements. Potential

  5. Liquid flow rate effects during partial evaporation in a falling film micro contactor

    NARCIS (Netherlands)

    Moschou, P.; Croon, de M.H.J.M.; Schaaf, van der J.; Schouten, J.C.

    2013-01-01

    The focus of this study is the investigation of the effect of liquid flow rate on partial evaporation, enhanced by convective nitrogen flow, in a falling film micro contactor. Experiments are performed at different flow rates and for a certain heating liquid temperature. The temperatures of the gas

  6. Determination of flow times and longitudinal dispersion coefficients in the Main river using 3HHO as tracer

    International Nuclear Information System (INIS)

    Krause, W.J.; Mundschenk, H.

    1989-01-01

    Single discharges from nuclear power plants as well as discrete labeling with tritiated water are used to determine flow times, flow velocities and longitudinal dispersion coefficients in German rivers as shown here, for example, for the Main river. (orig.)

  7. Forming of film surface of very viscous liquid flowing with gas in pipes

    Directory of Open Access Journals (Sweden)

    Czernek Krystian

    2017-01-01

    Full Text Available The study presents the possible use of optoelectronic system for the measurement of the values, which are specific for hydrodynamics of two-phase gas liquid flow in vertical pipes, where a very-high-viscosity liquid forms a falling film in a pipe. The experimental method was provided, and the findings were presented and analysed for selected values, which characterize the two-phase flow. Attempt was also made to evaluate the effects of flow parameters and properties of the liquid on the gas-liquid interface value, which is decisive for the conditions of heat exchange and mass transfer in falling film equipment. The nature and form of created waves at various velocities were also described.

  8. Evolution of dispersion coefficient in the single rough-walled fracture before and after circulated flow near the wall

    Science.gov (United States)

    Lee, S.; Yeo, I.; Lee, K.

    2012-12-01

    Understanding detailed solute transport mechanism in a single fracture is required to expand it to the complex fractured medium. Dispersion in the variable-aperture fractures occurs by combined effects of molecular diffusion, macro dispersion and Taylor dispersion. It has been reported that Taylor dispersion which is proportional to the square of the velocity dominates for the high velocity, while macro dispersion is proportional to the velocity. Contributions of each scheme are different as the velocity changes. To investigate relationship between Reynolds number and dispersion coefficient, single acrylic rough-walled fracture which has 20 cm length and 1.03 mm average aperture was designed. In this experiment, dispersion coefficient was calculated at the middle of the fracture and at the edge of the fracture via moment analysis using breakthrough curve (BTC) of fluorescent solute under the Reynolds number 0.08, 0.28, 2.78, 8.2 and 16.4. In the results, distinct dispersion regime was observed at the highly rough-walled fracture, which is inconsistent with the model that was suggested by previous research. In the range of Re 2.78. The reason of this transition zone was related to the generation of circulated flow near the wall. It can flush the trapped contaminant out to the main flow channel, which makes tailing effect diminished. Also, these circulation zones were visualized using microscope, CCD camera and fluorescent particles.

  9. Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow

    Energy Technology Data Exchange (ETDEWEB)

    Elashnikov, Roman [Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Repuiblic (Czech Republic); Fitl, Premysl [Department of Physics and Measurements, University of Chemistry and Technology, 16628 Prague, Czech Repuiblic (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Repuiblic (Czech Republic); Lyutakov, Oleksiy, E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Repuiblic (Czech Republic)

    2017-02-01

    Highlights: • The preparation of periodical structures on the polymer surface using photo-directing of Marangoni flow is described. • The surface tension gradient appears due to the spatial distribution of energy in the laser beam and leads to the creation of periodical structures. • The method allows the creation of surface structures with different symmetry, from simple line array to more complex geometries. - Abstract: Laser heating and Marangoni flow result in the formation of surface structures with different geometries and shape on thin polymer films. By laser beam irradiation combined with a sample movement the solid polymethylmethacrylate (PMMA) films are heated and undergo phase transition which leads to a material flow. Since the laser beam has a non-linear distribution of energy, the PMMA film is heated inhomogeneously and a surface tension gradient in a lateral direction is introduced. During this procedure additional phenomena such as “reversible” or cyclic polymer flow also take place. The careful choice of experimental conditions enables the preparation of patterns with sophisticated geometries and with hierarchical pattern organization. Depending on initial PMMA film thickness and speed of the sample movement line arrays are created, which can subsequently be transformed into the crimped lines or system of circular holes. In addition, the introduction of a constant acceleration in the sample movement or a laser beam distortion enables the preparation of regularly crimped lines, ordered hexagonal holes or overlapped plates.

  10. Studies of Tracer Dispersion and Fluid Flow in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Rage, T.

    1996-12-31

    This doctoral thesis explores the connection between the topology of a porous medium and its macroscopic transport properties and is based on computerized simulation. In porous media, both diffusion and convection contribute to the dispersion of a tracer and their combined effect is emphasized. The governing equations are solved numerically, using finite differences and Monte Carlo technique. The influence of finite Reynolds number on the outcome of echo-experiments is discussed. Comparing experiments and simulations it is found that nonlinear inertial forces lead to a visible deformation of a returned tracer at surprisingly small Reynolds numbers. In a study of tracer dispersion and fluid flow in periodic arrays of discs it is demonstrated that the mechanisms of mechanical dispersion in periodic media and in natural (non-periodic) porous media are essentially different. Measurements of the percolation probability distribution of a sandstone sample is presented. Local porosity theory predicts that this simple geometric function of a porous medium is of dominant importance for its macroscopic transport properties. It is demonstrated that many aspects of transport through fractures can be studied by using simple but realistic models and readily available computer resources. An example may be the transport of hydrocarbon fluids from the source rock to a reservoir. 165 refs., 44 figs., 1 table

  11. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  12. Initial liquid metal magnetohydrodynamic thin film flow experiments in the MeGA-loop facility at UCLA

    International Nuclear Information System (INIS)

    Morley, N.B.; Gaizer, A.A.; Tillack, M.S.; Abdou, M.A.

    1995-01-01

    Free surface thin film flows of liquid metal were investigated experimentally in the presence of a coplanar magnetic field. This investigation was performed in a new magnetohydrodynamic (MHD) flow facility, the MeGA-loop, utilizing a low melting temperature lead-bismuth alloy as the working metal. Owing to the relatively low magnetic field produced by the present field coil system, the ordinary hydrodynamic and low MHD interaction regimes only were investigated. At the high flow speeds necessary for self cooling, the importance of a well designed and constructed channel becomes obvious. Partial MHD drag, increasing the film height, is observed as Haβ 2 becomes greater than unity. MHD laminarization of the turbulent film flows is observed when Haβ/Re>0.002, but fully laminar flow was not reached. Suggestions for facility upgrades to achieve greater MHD interaction are presented in the context of these initial results. (orig.)

  13. A Numerical Study on Characteristics of Flow and Reactive Pollutant Dispersion in Step‒up Street Canyons

    Science.gov (United States)

    Kim, E. R.; Kim, J.

    2014-12-01

    For decades, many metro‒ and/or mega‒cities have grown and densities of population and building have increased. Because pollutants released from sources near ground surface such as vehicles are not easy to escape from street canyons which are spaces between buildings standing along streets pedestrians, drivers and residents are likely to be exposed to high concentrations of hazardous pollutants. Therefore, it is important to understand characteristics of flow and pollutant dispersion in street canyons. In this study, step‒up street canyons with higher downwind buildings are considered for understanding flow and reactive pollutants' dispersion characteristics there as a basic step to understand the characteristics in wider urban areas. This study used a CFD model coupled to a chemistry module. Detailed flow and air pollutant concentration are analyzed in step‒up street canyons with different upwind building heights.

  14. Incompressible flows of superfluid films on multiply-connected surfaces

    International Nuclear Information System (INIS)

    Corrada-Emmanuel, A.

    1989-01-01

    The theory of Riemann surfaces is applied to the problem of constructing quantized vortex flows in closed surfaces of arbitrary but finite genus. An in principle procedure for obtaining the lowest energy flow is presented. It is shown that quantized vortices in non-zero genus surfaces are, in general, not isomorphic to a Coulomb gas. This failure has a geometrical origin: the appearance in non-zero genus surfaces of closed curves that are not the boundary of any area. A theorem of Riemann is applied to the genus one surface, the torus, to show quantitatively how to construct the quantized vortices. Because of the breakdown in the isomorphism between quantized vortices and charges, a novel effect is possible: the violation of Earnshaw's theorem. On a torus a single vortex can be placed in local stable equilibrium. The uniform flows around the holes of the torus also lead to a new result: a non-vortex mechanism for the destruction of superfluidity in the film. An explicit formula is derived showing this effect by considering the response of a helium film to a rotation of the torus. The author predicts that torii of dissimilar proportions will exhibit different superfluid densities at the same temperature

  15. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    Science.gov (United States)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  16. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

    Science.gov (United States)

    Khan, T. M.; Pokle, A.; Lunney, J. G.

    2018-04-01

    Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

  17. One-dimensional analysis of plane and radial thin film flows including solid-body rotation

    Science.gov (United States)

    Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.

    1989-01-01

    The flow of a thin liquid film with a free surface along a horizontal plate which emanates from a pressurized vessel is examined by integrating the equations of motion across the thin liquid layer and discretizing the integrated equations using finite difference techniques. The effects of 0-g and solid-body rotation will be discussed. The two cases of interest are plane flow and radial flow. In plane flow, the liquid is considered to be flowing along a channel with no change in the width of the channel, whereas in radial flow the liquid spreads out radially over a disk, so that the area changes along the radius. It is desired to determine the height of the liquid film at any location along the plate of disk, so that the heat transfer from the plate or disk can be found. The possibility that the flow could encounter a hydraulic jump is accounted for.

  18. Intercomparison of dispersed radiation readings among film dosimetry, electronic and OSL with X-rays for low dose

    International Nuclear Information System (INIS)

    Andisco, D.; Blanco, S.; Bourel, V.; Schmidt, L.; Di Risio, C.

    2014-08-01

    One of the personal dosimetry methods more used for several decades is the dosimetry type film, characterized to possess readings with certain margin of trust. Today other methods exist that many times are presupposed more reliable due to the nature of the detection like the electronic dosimeters or the OSL (Optically Stimulated Luminescence) dosimetry. With the purpose of comparing different methods and to can determining the existent differences among each method has been carried out an intercomparison assay. The different dosimeters have been exposed to dispersed radiation generated by a Hemodynamics equipment of the type -arch in C- and a dispersing system of the primary beam. Film dosimeters have been used; OSL (In Light), OSL (Nano Dots) and Electronic with the purpose of knowing and to valorize the existent differences among its readings. Always, the intercomparison exercises have demonstrated to be an useful tool when establishing the measurement capacity and the quality of the results emitted by the laboratories of personal dosimetry services. Also, this type of assays allows obtaining quality indicators of the laboratory performance and they are habitual part of the procedures for accreditation of the same ones. The Optically Stimulated Luminescence is a technology that has grown in Argentina so much in the area of personal dosimetry as in dosimetry in vivo (radiotherapy area). In this intercomparison study, the answers corresponding to each technology were looked for oneself irradiation of the disperse type, that is to say, of very low energy. (Author)

  19. Porous plug phase separator and superfluid film flow suppression system for the soft x-ray spectrometer onboard Hitomi

    Science.gov (United States)

    Ezoe, Yuichiro; DiPirro, Michael; Fujimoto, Ryuichi; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kanao, Kenichi; Kimball, Mark; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Murakami, Masahide; Noda, Hirofumi; Ohashi, Takaya; Okamoto, Atsushi; Satoh, Yohichi; Sato, Kosuke; Shirron, Peter; Tsunematsu, Shoji; Yamaguchi, Hiroya; Yoshida, Seiji

    2018-01-01

    When using superfluid helium in low-gravity environments, porous plug phase separators are commonly used to vent boil-off gas while confining the bulk liquid to the tank. Invariably, there is a flow of superfluid film from the perimeter of the porous plug down the vent line. For the soft x-ray spectrometer onboard ASTRO-H (Hitomi), its approximately 30-liter helium supply has a lifetime requirement of more than 3 years. A nominal vent rate is estimated as ˜30 μg/s, equivalent to ˜0.7 mW heat load. It is, therefore, critical to suppress any film flow whose evaporation would not provide direct cooling of the remaining liquid helium. That is, the porous plug vent system must be designed to both minimize film flow and to ensure maximum extraction of latent heat from the film. The design goal for Hitomi is to reduce the film flow losses to knife-edge devices. Design, on-ground testing results, and in-orbit performance are described.

  20. Determination of optical constant and dispersion parameters of Se{sub 75}Sb{sub 10}In{sub 15} thin film characterized by wide band gap

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrahman, M.I.; Abu-Sehly, A.A.; El-sonbaty, Sherouk Sh.; Hafiz, M.M. [Assiut University, Physics Department, Faculty of Science, Assiut (Egypt)

    2017-02-15

    Chalcogenide Se{sub 75}Sb{sub 10}In{sub 15} thin films of different thickness (50-300 nm) are deposited using thermal evaporation technique. The thermogram of the chalcogenide bulk Se{sub 75}Sb{sub 10}In{sub 15} is obtained using a differential scanning calorimetry (DSC). The crystallization temperature T{sub c}, peak crystallization temperature T{sub p} and melting temperature T{sub m}, are identified. The X-ray diffraction (XRD) examination indicates the crystallinity of the as-deposited film decreases with increasing of thickness. Optical transmission and reflection spectra are recorded in the wavelength range of the incident photons from 250 to 2500 nm. It is found that the film thickness affects the absorption coefficient, refractive index, extinction coefficient and the width of the tails of localized states in the gap region. The absorption mechanism of the as-deposited films is a direct allowed transition. The optical band gap energy (E{sub g}) decreases from 3.31 to 2.51 eV with increasing the film thickness from 50 to 300 nm. The behavior of E{sub g} is explained on the basis of the structure disorders in the thicker films. The effect of the film thickness on the single-oscillator and dispersion energies is studied by the dispersion analyses of the refractive index. (orig.)

  1. Measurement of phase interaction in dispersed gas-particle two-phase flow by phase-doppler anemometry

    OpenAIRE

    Mergheni Ali Mohamed; Ben Ticha Hmaied; Sautet Jen-Charles; Godard Gille; Ben Nasrallah Sassi

    2008-01-01

    For simultaneous measurement of size and velocity distributions of continuous and dispersed phases in a two-phase flow a technique phase-Doppler anemometry was used. Spherical glass particles with a particle diameter range from 102 up to 212 µm were used. In this two-phase flow an experimental results are presented which indicate a significant influence of the solid particles on the flow characteristics. The height of influence of these effects depends on the local position in the jet. Near t...

  2. Flow-Angle and Airspeed Sensor System (FASS) Using Flush-Mounted Hot-Films, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Micron-thin surface hot-film signatures will be used to simultaneously obtain airspeed and flow direction. The flow-angle and airspeed sensor system (FASS) will...

  3. Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)

    Science.gov (United States)

    Hidema, R.; Yamada, N.; Furukawa, H.

    2012-04-01

    In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.

  4. On angled bounce-off impact of a drop impinging on a flowing soap film

    Science.gov (United States)

    Basu, Saikat; Yawar, Ali; Concha, Andres; Bandi, M. M.

    2017-12-01

    Small drops impinging obliquely on thin flowing soap films frequently demonstrate the rare emergence of bulk elastic effects working in-tandem with the more commonplace hydrodynamic interactions. Three collision regimes are observable: (a) drop piercing through the film, (b) it coalescing with the flow, and (c) it bouncing off the film surface. During impact, the drop deforms along with a bulk elastic deformation of the film. For impacts that are close-to-tangential, the bounce-off regime predominates. We outline a reduced order analytical framework assuming a deformable drop and a deformable three-dimensional film, and the idealization invokes a phase-based parametric study. Angular inclination of the film and the ratio of post and pre-impact drop sizes entail the phase parameters. We also perform experiments with vertically descending droplets (constituted from deionized water) impacting against an inclined soap film, flowing under constant pressure head. Model-predicted phase domain for bounce-off compares well to our experimental findings. Additionally, the experiments exhibit momentum transfer to the film in the form of shed vortex dipoles, along with propagation of free surface waves. On consulting prior published work, we note that for locomotion of water-walking insects using an impulsive action, the momentum distribution to the shed vortices and waves are both significant, taking up respectively 2/3 and 1/3 of the imparted streamwise momentum. Considering the visually similar impulse actions, this theory, despite its assumption of a quiescent liquid bath of infinite depth, is applied to the drop bounce-off experiments, and the resultant shed vortex dipole momenta are compared to the momenta of the coherent vortex structures computed from particle imaging velocimetry data. The magnitudes reveal identical order (10-7 N s), suggesting that notwithstanding the disparities, the bounce-off regime may be tapped as a toy analog for impulse-based interfacial

  5. A CFD model for particle dispersion in turbulent boundary layer flows

    International Nuclear Information System (INIS)

    Dehbi, A.

    2008-01-01

    In Lagrangian particle dispersion modeling, the assumption that turbulence is isotropic everywhere yields erroneous predictions of particle deposition rates on walls, even in simple geometries. In this investigation, the stochastic particle tracking model in Fluent 6.2 is modified to include a better treatment of particle-turbulence interactions close to walls where anisotropic effects are significant. The fluid rms velocities in the boundary layer are computed using fits of DNS data obtained in channel flow. The new model is tested against correlations for particle removal rates in turbulent pipe flow and 90 o bends. Comparison with experimental data is much better than with the default model. The model is also assessed against data of particle removal in the human mouth-throat geometry where the flow is decidedly three-dimensional. Here, the agreement with the data is reasonable, especially in view of the fact that the DNS fits used are those of channel flows, for lack of better alternatives. The CFD Best Practice Guidelines are followed to a large extent, in particular by using multiple grid resolutions and at least second order discretization schemes

  6. Shear stress from hot-film sensors in unsteady gas flow

    International Nuclear Information System (INIS)

    Cole, K.D.

    1991-01-01

    In this paper a data analysis procedure is proposed for obtaining unsteady wall shear stress from flush-mounted hot-film anemometer measurements. The method is based on a two-dimensional heat transfer model of the unsteady heat transfer in both the hot-film sensor and in the gas flow. The sensor thermal properties are found from preliminary calibration experiments at zero flow. Numerical experiments are used to demonstrate the data analysis method using simulated sensor signals that are corrupted with noise. The numerical experiments show that noise in the data propagates into the results so that data smoothing may be important in analyzing experimental data. Because the data analysis procedure is linear, a linear digital filter is constructed that could be used for processing large amounts of experimental data. However, further refinements will be needed before the method can be applied to experimental data

  7. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H., E-mail: hlh@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huo, R.; Yang, D. [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  8. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  9. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    International Nuclear Information System (INIS)

    Hu, L.H.; Huo, R.; Yang, D.

    2009-01-01

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  10. Analysis of Turbine Blade Relative Cooling Flow Factor Used in the Subroutine Coolit Based on Film Cooling Correlations

    Science.gov (United States)

    Schneider, Steven J.

    2015-01-01

    Heat transfer correlations of data on flat plates are used to explore the parameters in the Coolit program used for calculating the quantity of cooling air for controlling turbine blade temperature. Correlations for both convection and film cooling are explored for their relevance to predicting blade temperature as a function of a total cooling flow which is split between external film and internal convection flows. Similar trends to those in Coolit are predicted as a function of the percent of the total cooling flow that is in the film. The exceptions are that no film or 100 percent convection is predicted to not be able to control blade temperature, while leaving less than 25 percent of the cooling flow in the convection path results in nearing a limit on convection cooling as predicted by a thermal effectiveness parameter not presently used in Coolit.

  11. A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Thomas P., E-mail: thomas.p.mcgrath@navy.mil [Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, 4013 Fowler Rd., Indian Head, Maryland 20640 (United States); St Clair, Jeffrey G. [Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, 4013 Fowler Rd., Indian Head, Maryland 20640 (United States); Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611 (United States); Balachandar, S. [Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611 (United States)

    2016-05-07

    Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian–Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force is well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.

  12. Numerical simulations of rarefied gas flows in thin film processes

    NARCIS (Netherlands)

    Dorsman, R.

    2007-01-01

    Many processes exist in which a thin film is deposited from the gas phase, e.g. Chemical Vapor Deposition (CVD). These processes are operated at ever decreasing reactor operating pressures and with ever decreasing wafer feature dimensions, reaching into the rarefied flow regime. As numerical

  13. Glacial dispersal and flow history, East Arm area of Great Slave Lake, NWT, Canada

    Science.gov (United States)

    Sharpe, D. R.; Kjarsgaard, B. A.; Knight, R. D.; Russell, H. A. J.; Kerr, D. E.

    2017-06-01

    Little work has been completed on paleo-ice-sheet flow indicators of the Laurentide Ice Sheet, west of the Keewatin Ice Divide. Field mapping, sampling and analysis of glaciogenic sediment (∼500 sample sites) in a ∼33,000 km2 region near the East Arm of Great Slave Lake in northwestern Canada, provided a rare opportunity to improve understanding of sediment erosion and transport patterns. Glacially-eroded bedrock and sedimentary landforms record east to west flow with NW and SW divergence, mapped within a portion of the Great Slave Lake flow tract. Transported till reflects a similar divergent flow pattern based on dispersal geometries for multiple indicators (e.g., heavy minerals and lithic fragments), which are aligned with the dominant and latest ice flow direction. Glaciofluvial erosion (e.g., s-forms and till removal), transport, and deposition (mainly as esker sediment) are set within 0.3-3 km wide meltwater erosional corridors, spaced regularly at 10-15 km intervals. Transport paths and distances are comparable in till and esker sediment, however, distances appear to be greater (∼5-25 km) in some esker constituents and indicator minerals are typically more concentrated in esker sediment than in till. Corridors form a divergent array identical to the pattern of ice-flow features. The congruence of ice and meltwater flow features is interpreted to be a response to a similar ice sheet gradient, and close timing of events (late dominant glacial ice flow and meltwater flow). The similarity in glacial and glaciofluvial flow patterns has important ramifications for event reconstruction and for exploration geologists utilizing mineral and geochemical tracing methods in this region, and possibly other parts of northern Canada. The correspondence between East Arm dispersal patterns, landforms and flow indicators supports interpretation of a simple and predictable single flow divergence model. This is in contrast to previous, multi-flow models, in which fan

  14. Superhard nanocomposite nc-TiC/a-C:H film fabricated by filtered cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    Wang Yaohui; Zhang Xu; Wu Xianying; Zhang Huixing; Zhang Xiaoji

    2008-01-01

    Superhard nanocomposite nc-TiC/a-C:H films, with an excellent combination of high elastic recovery, low friction coefficient and good H/E ratio, were prepared by filtered cathodic vacuum arc technique using the C 2 H 2 gas as the precursor. The effect of C 2 H 2 flow rate on the microstructure, phase composition, mechanical and tribological properties of nanocomposite nc-TiC/a-C:H films have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy disperse spectroscopy (EDS), microindentation and tribotester measurements. It was observed that the C 2 H 2 flow rate significantly affected the Ti content and hardness of films. Furthermore, by selecting the proper value for C 2 H 2 flow rate, 20 sccm, one can deposit the nanocomposite film nc-TiC/a-C:H with excellent properties such as superhardness (66.4 GPa), high elastic recovery (83.3%) and high H/E ratio (0.13)

  15. Expandable and retractable self-rolled structures based on metal/polymer thin film for flow sensing

    Science.gov (United States)

    Zhu, Jianzhong; White, Carl; Saadat, Mehdi; Bart-Smith, Hilary

    2015-11-01

    Most aquatic animals such as fish rely heavily on their ability of detect and respond to ambient flows in order to explore and inhabit various habitats or survive predator-prey encounters. Fish utilize neuromasts in their skin surface and lateral lines in their bodies to align themselves while swimming upstream for migration, avoid obstacles, reduce locomotion cost, and detect flow variations caused by potential predators. In this study, a thin film MEMS sensor analogous to a fish neuromast has been designed for flow sensing. Residual stress arises in many thin film materials during processing. Metal and polymer thin film materials with a significant difference in elastic modular were chosen to form a multiple-layer structure. Upon releasing, the structure rolls into a tube due to mechanical property mismatch. The self-rolled tube can expand or retract, depending on the existence of external force such as flow. An embedded strain sensor detects the deformation of the tube and hence senses the ambient flow. Numerical simulations were conducted to optimize the structural design. Experiments were performed in a flow tank to quantify the performance of the sensor. This research is supported by the Office of Naval Research under the MURI Grant N00014-14-1-0533.

  16. Development of porous plug phase separator and superfluid film flow suppression system for the Soft X-ray Spectrometer onboard ASTRO-H

    Science.gov (United States)

    Ezoe, Yuichiro; Ishikawa, Kumi; Ohashi, Takaya; Yamaguchi, Hiroya; Mitsuda, Kazuhisa; Fujimoto, Ryuichi; Murakami, Masahide; Kanao, Kenichi; Yoshida, Seiji; Tsunematsu, Shoji; DiPirro, Michael; Shirron, Peter; the SXS Team

    2012-04-01

    ASTRO-H is the sixth Japanese astronomy satellite scheduled for launch in 2014. The Soft X-ray Spectrometer instrument is onboard ASTRO-H. This is a 6 × 6 array of X-ray microcalorimeters with an energy resolution of gravity, a porous plug phase separator made of sintered stainless is used. Since the vapor mass flow rate is only 29 μg/s, any additional superfluid film loss influences the lifetime of the liquid helium. Therefore, a film flow suppression system consisting of an orifice, a heat exchanger, and knife edge devices is adopted based on the design used for the X-ray Spectrometer onboard Suzaku. The film flow will be suppressed to <2 μg/s, sufficiently smaller than the vapor flow rate. In the present investigation, the design and ground experiments of a helium vent system composed of the porous plug and film flow suppression system are presented. The results show that the phase separation and the film flow suppression are satisfactorily achieved.

  17. PIV study of non-Marangoni surface flows in thin liquid films induced by single- and multi-point thermodes

    Science.gov (United States)

    Cui, Nai-Yi; Wang, Song-Po

    2018-03-01

    The non-Marangoni directional flows, which can occur in only very thin liquid films, have been studied using particle image velocimetry techniques. Single- and multi-point thermodes have been used in this study for generating the flows. The results show that the direction of these flows is governed by the variation trend of the thickness of the film and the shape of the temperature profile. A hot thermode always drives a thick-to-thin flow, whereas a cold thermode always drives a flow in the opposite direction. Increasing the temperature difference between the thermode and the ambience, or decreasing the thickness of the liquid film, can accelerate the flow speed. However, the flow speed cannot exceed an upper limit. When more than one thermode was used, different flow patterns, including thick-to-thin streams driven by hot thermodes and thin-to-thick streams driven by cold thermodes, could be formed. The experimental results strongly suggest that these flows were not driven by thermo-capillary forces but by a newly proposed thermo-dynamic mechanism.

  18. Quantifying the effect of squirt flow dispersion from compliant clay porosity in clay bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2013-01-01

    Compliant porosity in the form of cracks is known to cause significant attenuation and velocity dispersion through pore pressure gradients and consequent relaxation, dubbed squirt flow. Squirt flow from cracks vanish at high confining stress due to crack closing. Studies on clay bearing sandstones......-squirt flow on the bulk modulus of a clay bearing sandstone. The predicted magnitude of the clay-squirt effect on the bulk modulus is compared with experimental data. The clay-squirt effect is found to possibly account for a significant portion of the deviances from Gassmann fluid substitution in claybearing...... sandstones....

  19. Tracer dispersion - experiment and CFD

    International Nuclear Information System (INIS)

    Zitny, R.

    2004-01-01

    Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)

  20. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    Science.gov (United States)

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. In-situ studies of the recrystallization process of CuInS2 thin films by energy dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Thomas, D.; Mainz, R.; Rodriguez-Alvarez, H.; Marsen, B.; Abou-Ras, D.; Klaus, M.; Genzel, Ch.; Schock, H.-W.

    2011-01-01

    Recrystallization processes during the sulfurization of CuInS 2 (CIS) thin films have been studied in-situ using energy dispersive X-ray diffraction (EDXRD) with synchrotron radiation. In order to observe the recrystallization isolated from other reactions occurring during film growth, Cu-poor, small grained CIS layers covered with CuS on top were heated in a vacuum chamber equipped with windows for synchrotron radiation in order to analyze the grain growth mechanism within the CIS layer. In-situ monitoring of the grain size based on diffraction line profile analysis of the CIS-112 reflection was utilized to interrupt the recrystallization process at different points. Ex-situ studies by electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX) performed on samples of intermediate recrystallization states reveal that during the heat treatment Cu and In interdiffuse inside the layer indicating the importance of the mobility of these two elements during CuInS 2 grain growth.

  2. Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Gao Hong-Yue; Liu Pan; Zeng Chao; Yao Qiu-Xiang; Zheng Zhiqiang; Liu Jicheng; Zheng Huadong; Yu Ying-Jie; Zeng Zhen-Xiang; Sun Tao

    2016-01-01

    We present holographic storage of three-dimensional (3D) images and data in a photopolymer film without any applied electric field. Its absorption and diffraction efficiency are measured, and reflective analog hologram of real object and image of digital information are recorded in the films. The photopolymer is compared with polymer dispersed liquid crystals as holographic materials. Besides holographic diffraction efficiency of the former is little lower than that of the latter, this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field. Therefore, our study proposes a potential holographic storage material to apply in large size static 3D holographic displays, including analog hologram displays, digital hologram prints, and holographic disks. (special topic)

  3. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

    Science.gov (United States)

    Thomas, S.; Faghri, A.; Hankey, W.

    1991-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

  4. Development of local-scale high-resolution atmospheric dispersion model using large-eddy simulation. Part 3: turbulent flow and plume dispersion in building arrays

    Czech Academy of Sciences Publication Activity Database

    Nakayama, H.; Jurčáková, Klára; Nagai, H.

    2013-01-01

    Roč. 50, č. 5 (2013), s. 503-519 ISSN 0022-3131 Institutional support: RVO:61388998 Keywords : local-scale high-resolution dispersion model * nuclear emergency response system * large-eddy simulation * spatially developing turbulent boundary layer flow Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.452, year: 2013

  5. Operating range, hold-up, droplet size and axial mixing of pulsed plate columns in highly disperse and low-continuity volume flows

    International Nuclear Information System (INIS)

    Schmidt, H.; Miller, H.

    Operating behavior, hold-up, droplet size and axial mixing are investigated in highly disperse and slightly continuous volume flows in a pulsed plate column. The geometry of the column of 4-m length and 10-cm inside diameter was held constant. The hole shape of the column bases was changed, wherby the cylindrical, sharp-edge drilled hole is compared with the punched, nozzle-shaped hole in their effects on the fluid-dynamic behavior. In this case we varied the volume flows, the ratio of volume flows, the pulse frequency and the operating temperature. The operation was held constant for the aqueous, the organic, the continuous and the disperse phases. The objective was to demonstrate the applicability of pulsed plate columns with very large differences between the organic disperse and the aqueous continuous volume flow, to obtain design data for such columns and to perform a scale-up to industrial reprocessing plant-size. 18 references, 11 figures, 3 tables

  6. Hydrodynamic dispersion in a combined magnetohydrodynamic- electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials

    Science.gov (United States)

    Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F.

    2017-09-01

    The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls.

  7. Theoretical model based on the memory effect for the strange photoisomerization kinetics of diarylethene derivatives dispersed on polymer films

    International Nuclear Information System (INIS)

    Seki, Kazuhiko; Tachiya, M.

    2007-01-01

    In the present paper the authors present a theoretical model to explain the kinetics involving the induction period observed by Irie et al. [Nature (London) 420, 759 (2002)] for photoisomerization of diarylethene derivatives dispersed on polymer films at a single molecular level. In the model we assume that both ground state and excited state free energy landscapes which result from the interaction between the photochromic molecule and the surrounding polymer are rugged and have several local minima along the pathway to the critical point at which isomerization actually occurs. We assume that after one photoexcitation a fraction of the photochromic molecule moves to a new local minimum and stays there, although the other fraction returns to the original local minimum. The former effect is referred to as the memory effect. After repeated photoexcitations the photochromic molecule moves gradually from one local minimum to another in the pathway to the isomerization point. It finally reaches the isomerization point, where isomerization occurs. Their model successfully reproduces the kinetics of photoisomerization of diarylethene derivatives dispersed on polymer films observed experimentally

  8. Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films

    Science.gov (United States)

    Arya, Anil; Sharma, A. L.

    2018-01-01

    Free-standing solid polymer nanocomposite (PEO-PVC)  +  LiPF6-TiO2 films have been prepared through a standard solution-cast technique. The improvement in structural, microstructural and electrochemical properties has been observed on the dispersion of nanofiller in polymer salt complex. X-ray diffraction studies clearly reflect the formation of complex formation, as no corresponding salt peak appeared in the diffractograms. The Fourier transform infrared analysis suggested clear and convincing evidence of polymer-ion, ion-ion and polymer-ion-nanofiller interaction. The highest ionic conductivity of the prepared solid polymer electrolyte (SPE) films is ~5  ×  10-5 S cm-1 for 7 wt.% TiO2. The linear sweep voltammetry provides the electrochemical stability window of the prepared SPE films, about ~3.5 V. The ion transference number has been estimated, t ion  =  0.99 through the DC polarization technique. Dielectric spectroscopic studies were performed to understand the ion transport process in polymer electrolytes. All solid polymer electrolytes possess good thermal stability up to 300 °C. Differential scanning calorimetry analysis confirms the decrease of the melting temperature and signal of glass transition temperature with the addition of nanofiller, which indicates the decrease of crystallinity of the polymer matrix. An absolute correlation between diffusion coefficient (D), ion mobility (µ), number density (n), double-layer capacitance (C dl), glass transition temperature, melting temperature (T m), free ion area (%) and conductivity (σ) has been observed. A convincing model to study the role of nanofiller in a polymer salt complex has been proposed, which supports the experimental findings. The prepared polymer electrolyte system with significant ionic conductivity, high ionic transference number, and good thermal and voltage stability could be suggested as a potential candidate as electrolyte cum separator for the fabrication of a

  9. Modelling and simulation of temperature and concentration dispersion in a couple stress nanofluid flow through stenotic tapered arteries

    Science.gov (United States)

    Ramana Reddy, J. V.; Srikanth, D.; Das, Samir K.

    2017-08-01

    A couple stress fluid model with the suspension of silver nanoparticles is proposed in order to investigate theoretically the natural convection of temperature and concentration. In particular, the flow is considered in an artery with an obstruction wherein the rheology of blood is taken as a couple stress fluid. The effects of the permeability of the stenosis and the treatment procedure involving a catheter are also considered in the model. The obtained non-linear momentum, temperature and concentration equations are solved using the homotopy perturbation method. Nanoparticles and the two viscosities of the couple stress fluid seem to play a significant role in the flow regime. The pressure drop, flow rate, resistance to the fluid flow and shear stress are computed and their effects are analyzed with respect to various fluids and geometric parameters. Convergence of the temperature and its dependency on the degree of deformation is effectively depicted. It is observed that the Nusselt number increases as the volume fraction increases. Hence magnification of molecular thermal dispersion can be achieved by increasing the nanoparticle concentration. It is also observed that concentration dispersion is greater for severe stenosis and it is maximum at the first extrema. The secondary flow of the axial velocity in the stenotic region is observed and is asymmetric in the tapered artery. The obtained results can be utilized in understanding the increase in heat transfer and enhancement of mass dispersion, which could be used for drug delivery in the treatment of stenotic conditions.

  10. Effect of N_2 flow rate on the properties of N doped TiO_2 films deposited by DC coupled RF magnetron sputtering

    International Nuclear Information System (INIS)

    Peng, Shou; Yang, Yong; Li, Gang; Jiang, Jiwen; Jin, Kewu; Yao, TingTing; Zhang, Kuanxiang; Cao, Xin; Wang, Yun; Xu, Genbao

    2016-01-01

    N doped TiO_2 films were deposited on glass substrates at room temperature using DC coupled RF magnetron sputtering with a TiO_2 ceramic target. The influences of N_2 flow rate on the deposition rate, crystal structure, chemical composition and band gap of the deposited films were investigated by Optical profiler, X-ray diffraction, X-ray photoelectron spectroscope and ultraviolet-visible spectrophotometer. The film growth rate gradually decreased with increasing N_2 flow rate. As N_2 flow rate increased, the crystallization of the films deteriorated, and the films tended to form amorphous structure. XPS analysis revealed that N dopant atoms were added at the substitutional sites into TiO_2 lattice structure. FE-SEM results showed that the grain size of the film decreased and the crystallinity degraded as N_2 flow rate increases. In addition, N doping caused an obvious red shift in the optical absorption edge. - Highlights: • N doped TiO_2 films were deposited by DC coupled RF magnetron reactive sputtering. • As N_2 flow rate increases, the crystallization of the deposited films degrades. • The higher N_2 flow rate is beneficial to form more substituted N in the film. • N doping causes an obvious red shift in the absorption wavelength.

  11. Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves.

    Science.gov (United States)

    von Kameke, A; Huhn, F; Fernández-García, G; Muñuzuri, A P; Pérez-Muñuzuri, V

    2011-08-12

    We report the experimental observation of Richardson dispersion and a double cascade in a thin horizontal fluid flow induced by Faraday waves. The energy spectra and the mean spectral energy flux obtained from particle image velocimetry data suggest an inverse energy cascade with Kolmogorov type scaling E(k) ∝ k(γ), γ ≈ -5/3 and an E(k) ∝ k(γ), γ ≈ -3 enstrophy cascade. Particle transport is studied analyzing absolute and relative dispersion as well as the finite size Lyapunov exponent (FSLE) via the direct tracking of real particles and numerical advection of virtual particles. Richardson dispersion with ∝ t(3) is observed and is also reflected in the slopes of the FSLE (Λ ∝ ΔR(-2/3)) for virtual and real particles.

  12. Gold film-catalysed benzannulation by Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS

    Directory of Open Access Journals (Sweden)

    Gjergji Shore

    2009-07-01

    Full Text Available Methodology has been developed for laying down a thin gold-on-silver film on the inner surface of glass capillaries for the purpose of catalysing benzannulation reactions. The cycloaddition precursors are flowed through these capillaries while the metal film is being heated to high temperatures using microwave irradiation. The transformation can be optimized rapidly, tolerates a wide number of functional groups, is highly regioselective, and proceeds in good to excellent conversion.

  13. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  14. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    Science.gov (United States)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  15. Liquid flow deposited spinel (Ni,Mn){sub 3}O{sub 4} thin films for microbolometer applications

    Energy Technology Data Exchange (ETDEWEB)

    Le, Duc Thang, E-mail: ducthang36@skku.edu [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jeon, Chang Jun; Lee, Kui Woong; Jeong, Young Hun; Yun, Ji Sun [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Yoon, Dae Ho, E-mail: dhyoon@skku.edu [School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, Jeong Ho, E-mail: goedc@kicet.re.kr [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

    2015-03-01

    Highlights: • Highly quality (Ni,Mn){sub 3}O{sub 4} thin films were grown using liquid flow deposited (LFD) technique. • It is possible to deposit multi–component manganite–oxide thin films by LFD at low temperatures. • Nickel–manganite films showed a good negative temperature coefficient (NTC) characteristic. • Liquid flow deposited (Ni,Mn){sub 3}O{sub 4} thin films are very potential for microbolometer applications. - Abstract: A liquid flow deposition (LFD) technique was initially used for the fabrication of single-component Mn{sub 3}O{sub 4} thin films onto Si wafer substrates at a range of substrate temperatures of 30–80 °C, with the introduction of an oxidizing reagent (H{sub 2}O{sub 2}). As a result, solid thin films were well formed from an aqueous solution. An X-ray diffraction (XRD) analysis showed typical characteristics of hausmannite Mn{sub 3}O{sub 4} with a spinel tetragonal phase. Field-emission scanning electron microscopy (FE-SEM) observations revealed nano-sized grains arranged uniformly on a dense and smooth surface for all of the as-deposited films. On the other hand, the LFD method was then extended to prepare two-component nickel–manganite films according to the binary chemical composition of Ni{sub x}Mn{sub 3−x}O{sub 4} with x = 0.02–0.2. The as-grown nickel–manganite films showed a surface with a good quality with a spherical bead-like architecture when x ≤ 0.10, while a conversion from spherical grains into highly porous nanowalls in the microstructure was noted in films when x ≥ 0.12. These results signify that it is possible to fabricate various multi-component manganite-oxide thin films at a low temperature. In addition, the dependences of the room-temperature electrical resistivity (ρ) and the temperature coefficient of resistance (TCR) on the Ni substitution level (x) were investigated on films annealed at 400 °C.

  16. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    KAUST Repository

    Wang, Shuo

    2017-07-20

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges x = 0.06 to 0.16, closely following gas-flow ratios. Transmission electron microscopy indicates the sole presence of wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B+Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films.The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B+Al) gas-flow ratios that we used, which is significantly higher than previously thought.

  17. Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow

    KAUST Repository

    Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.

    2017-01-01

    We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 oC, with B/(B+Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges x = 0.06 to 0.16, closely following gas-flow ratios. Transmission electron microscopy indicates the sole presence of wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B+Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films.The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B+Al) gas-flow ratios that we used, which is significantly higher than previously thought.

  18. Two-phase flow characteristic of inverted bubbly, slug and annular flow in post-critical heat flux region

    International Nuclear Information System (INIS)

    Ishii, M.; Denten, J.P.

    1988-01-01

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-CHF flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point. 45 refs., 9 figs., 4 tabs

  19. Two-phase flow characteristic of inverted bubbly, slug, and annular flow in post-critical heat flux region

    International Nuclear Information System (INIS)

    Ishii, M.; Denten, J.P.

    1989-01-01

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-critical heat flux (CHF) flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point

  20. Program determines two-phase flow

    International Nuclear Information System (INIS)

    Yamashiro, C.E.; Espiell, L.G.S.; Farina, I.H.

    1986-01-01

    When a mixture of a gas and a liquid flows along a horizontal pipe, it is possible to have up to seven different flow patterns. These flow patterns are: 1. Dispersed. When nearly all the liquid is entrained as spray by the gas; 2. Annular. The liquid forms a film around the inside wall of the pipe, and the gas flows at a high velocity as a central core; 3. Bubble. Bubbles of gas move along at about the same velocity as the liquid; 4. Stratified. The liquid flows along the bottom of the pipe and the gas flows above over a smooth gas-liquid interface; 5. Wave. Is similar to stratified except the interface is disturbed by waves moving in the direction of flow; 6. Slug. Waves are picked up periodically in the form of frothy slugs that move at a much greater velocity than the average liquid velocity; 7. Plug. Alternate plugs of liquid and gas move along the pipe

  1. Liquid dispersion in trickle-bed reactors with gas-liquid cocurrent downflow

    International Nuclear Information System (INIS)

    Chu, C.F.; Ng, K.M.

    1986-01-01

    The flow pattern can deviate from ideal plug flow in both trickling and pulsing flows. The liquid dispersion in those flow regimes are investigated separately, as the mechanisms causing the deviation of flow pattern from plug flow are different. In trickling flow, the dispersion of the liquid phase occurs in the flow path which is determined with computer-generated packed column. Dispersion in pulsing flow is studied with a combination of the method of characteristics and analysis of liquid dispersion in the liquid slug and gas pulse. The axial dispersion coefficients are then determined based on Monte Carlo simulation. Finally, liquid dispersion in trickle beds containing porous packings is also discussed

  2. Hydromagnetic thin film flow: Linear stability

    KAUST Repository

    Amaouche, Mustapha

    2013-08-30

    This paper deals with the long wave instability of an electroconductor fluid film, flowing down an inclined plane at small to moderate Reynolds numbers, under the action of electromagnetic fields. A coherent second order long wave model and two simplified versions of it, referred to as first and second reduced models (FRM and SRM), are proposed to describe the nonlinear behavior of the flow. The modeling procedure consists of a combination of the lubrication theory and the weighted residual approach using an appropriate projection basis. A suitable choice of weighting functions allows a significant reduction of the dimension of the problem. The full model is naturally unique, i.e., independent of the particular form of the trial functions. The linear stability of the problem is investigated, and the influence of electromagnetic field on the flow stability is analyzed. Two cases are considered: the applied magnetic field is either normal or parallel to the fluid flow direction, while the electric field is transversal. The numerical solution of the Orr-Sommerfeld (OS) eigenvalue problem and those of the depth averaging model are used to assess the accuracy of the reduced models. It is found that the current models have the advantage of the Benney-like model, which is known to asymptote the exact solution near criticality. Moreover, far from the instability threshold, the current reduced models continue to follow the OS solution up to moderate Reynolds numbers, while the averaging model diverges rapidly. The model SRM gives better results than FRM beyond sufficiently high Reynolds numbers.

  3. The effect of a tall tower on flow and dispersion through a model urban neighborhood: part 2. Pollutant dispersion.

    Science.gov (United States)

    Brixey, Laurie A; Heist, David K; Richmond-Bryant, Jennifer; Bowker, George E; Perry, Steven G; Wiener, Russell W

    2009-12-01

    This article is the second in a two-paper series presenting results from wind tunnel and computational fluid dynamics (CFD) simulations of flow and dispersion in an idealized model urban neighborhood. Pollutant dispersion results are presented and discussed for a model neighborhood that was characterized by regular city blocks of three-story row houses with a single 12-story tower located at the downwind edge of one of these blocks. The tower had three significant effects on pollutant dispersion in the surrounding street canyons: drawing the plume laterally towards the tower, greatly enhancing the vertical dispersion of the plume in the wake of the tower, and significantly decreasing the residence time of pollutants in the wake of the tower. In the wind tunnel, tracer gas released in the avenue lee of the tower, but several blocks away laterally, was pulled towards the tower and lifted in the wake of the tower. The same lateral movement of the pollutant was seen in the next avenue, which was approximately 2.5 tower heights downwind of the tower. The tower also served to ventilate the street canyon directly in its wake more rapidly than the surrounding areas. This was evidenced by CFD simulations of concentration decay where the residence time of pollutants lee of the 12-story tower was found to be less than half the residence time behind a neighboring three-story building. This same phenomenon of rapid vertical dispersion lee of a tower among an array of smaller buildings was also demonstrated in a separate set of wind tunnel experiments using an array of cubical blocks. A similar decrease in the residence time was observed when the height of one block was increased.

  4. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  5. TREAT experimental data base regarding fuel dispersals in LMFBR loss-of-flow accidents

    International Nuclear Information System (INIS)

    Simms, R.; Fink, C.L.; Stanford, G.S.; Regis, J.P.

    1981-01-01

    The reactivity feedback from fuel relocation is a central issue in the analysis of loss-of-flow (LOF) accidents in LMFBRs. Fuel relocation has been studied in a number of LOF simulations in the TREAT reactor. In this paper the results of these tests are analyzed, using, as the principal figure of merit, the changes in equivalent fuel worth associated with the fuel motion. The equivalent fuel worth was calculated from the measured axial fuel distributions by weighting the data with a typical LMFBR fuel-worth function. At nominal power, the initial fuel relocation resulted in increases in equivalent fuel worth. Above nominal power the fuel motion was dispersive, but the dispersive driving forces could not unequivocally be identified from the experimental data

  6. Surface self-assembly of fluorosurfactants during film formation of MMA/nBA colloidal dispersions.

    Science.gov (United States)

    Dreher, W R; Urban, M W

    2004-11-23

    These studies focus on the behavior of fluorosurfactants (FS) containing hydrophobic and ionic entities in the presence of methyl methacrylate/n-butyl acrylate (MMA/nBA) colloidal dispersions stabilized by sodium dodecyl sulfate (SDS). The presence of FS significantly not only alters the mobility of SDS in MMA/nBA films, but their hydrophobic and ionic nature results in self-assembly near the film-air (F-A) interface leading to different surface morphologies. Spherical islands and rodlike morphologies are formed which diminish the kinetic coefficient of friction of films by at least 3 orders of magnitude, and the presence of dual hydrophobic tails and an anionic head appears to have the largest effect on the surface friction. Using internal reflection IR imaging, these studies show that structural and chemical features of FS are directly related to their ability to migrate to the F-A interface and self-assemble to form specific morphological features. While the anionic nature of FS allows for SDS migration to the F-A interface and the formation of stable domains across the surface, intermolecular cohesion of nonionic FS allows for the formation of rodlike structures due to inability to form mixed micelles with SDS. These studies also establish the relationship between surface morphologies, kinetic coefficient of friction, and structural features of surfactants in the complex environments.

  7. Measurement of multi-dimensional flow structure for flow boiling in a tube

    International Nuclear Information System (INIS)

    Adachi, Yu; Ito, Daisuke; Saito, Yasushi

    2014-01-01

    With an aim of the measurement of multi-dimensional flow structure of in-tube boiling two-phase flow, the authors built their own wire mesh measurement system based on electrical conductivity measurement, and examined the relationship between the electrical conductivity obtained by the wire mesh sensor and the void fraction. In addition, the authors measured the void fraction using neutron radiography, and compared the result with the measured value using the wire mesh sensor. From the comparison with neutron radiography, it was found that the new method underestimated the void fraction in the flow in the vicinity of the void fraction of 0.2-0.5, similarly to the conventional result. In addition, since the wire mesh sensor cannot measure dispersed droplets, it tends to overestimate the void fraction in the high void fraction region, such as churn flow accompanied by droplet generation. In the electrical conductivity wire-mesh sensor method, it is necessary to correctly take into account the effect of liquid film or droplets. The authors also built a measurement system based on the capacitance wire mesh sensor method using the difference in dielectric constant, performed the confirmation of transmission and reception signals using deionized water as a medium, and showed the validity of the system. As for the dispersed droplets, the capacitance method has a potential to be able to measure them. (A.O.)

  8. First-principle-based full-dispersion Monte Carlo simulation of the anisotropic phonon transport in the wurtzite GaN thin film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ruikang; Hu, Run, E-mail: hurun@hust.edu.cn, E-mail: luoxb@hust.edu.cn; Luo, Xiaobing, E-mail: hurun@hust.edu.cn, E-mail: luoxb@hust.edu.cn [State Key Laboratory of Coal Combustion and Thermal Packaging Laboratory, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-04-14

    In this study, we developed a first-principle-based full-dispersion Monte Carlo simulation method to study the anisotropic phonon transport in wurtzite GaN thin film. The input data of thermal properties in MC simulations were calculated based on the first-principle method. The anisotropy of thermal conductivity in bulk wurtzite GaN is found to be strengthened by isotopic scatterings and reduced temperature, and the anisotropy reaches 40.08% for natural bulk GaN at 100 K. With the GaN thin film thickness decreasing, the anisotropy of the out-of-plane thermal conductivity is heavily reduced due to both the ballistic transport and the less importance of the low-frequency phonons with anisotropic group velocities. On the contrary, it is observed that the in-plane thermal conductivity anisotropy of the GaN thin film is strengthened by reducing the film thickness. And the anisotropy reaches 35.63% when the natural GaN thin film thickness reduces to 50 nm at 300 K with the degree of specularity being zero. The anisotropy is also improved by increasing the surface roughness of the GaN thin film.

  9. Study of the role of film flows in three-phase displacement mechanisms in porous media; Etude du role des ecoulements par film dans les mecanismes de deplacement triphasique en milieux poreux

    Energy Technology Data Exchange (ETDEWEB)

    Bataillon, D

    1996-12-11

    The determination of the role of liquid films in three phase flows in porous media is very important for enhanced oil recovery by gas injection in a petroleum reservoir. The existence of liquid films (water, oil), their thickness and their stability, control the distribution of fluids and the displacement of these fluids in the reservoir. The target of this research is to obtain, from experimental observations, the microscopic rules of flow by films taking into account the elementary mechanisms controlling the displacement of fluids. For this, a method of liquid film flow thickness measurement is developed in a quartz Hele-Shaw cell. It is based on infrared spectrometry, used for the first time to our knowledge for such an application, which gives the possibility to follow the drainage kinetics of oil and water in the presence of gas. When the thick oil film is initially stable on water in the presence of gas, it slowly drains until it reaches a constant thickness of about 20 nm. This film may breaks down into micro droplets of less than few micrometers in diameter. When this thick oil film is not initially stable, it immediately breaks down into droplets of 10 to 20 {mu}m in diameter prevents any oil flow. For spreading conditions, the initial oil thickness of about 200 nm is calculated form the Ca capillary number. The flow kinetics of this film is then determined when macroscopic forces are predominant. Finally, for the estimation of the stabilisation thickness, disjoining pressure isotherms, based on long-scale intermolecular forces (VdW), are calculated for pure n-alkanes. In order to study the macroscopic flow parameters, gravity drainage experiments are carried out in a 2D glass network (micro-model). Measurements of oil production (weight) and residual saturations (image analysis) show clearly the influence of the initial stability of oil, coating water in the presence of gas, on the flow mechanisms. (author) 73 refs.

  10. Approximate Dispersion Relations for Waves on Arbitrary Shear Flows

    Science.gov (United States)

    Ellingsen, S. À.; Li, Y.

    2017-12-01

    An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.Plain Language SummaryIn order to answer key questions such as how the ocean surface affects the climate, erodes the coastline and transports nutrients, we must understand how waves move. This is not so easy when depth varying currents are present, as they often are in coastal waters. We have developed a modeling tool for accurately predicting wave properties in such situations, ready for use, for example, in the complex oceanographic computer models. Our

  11. On the dependence of structural and sensing properties of sputtered MoO{sub 3} thin films on argon gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Khojier, K., E-mail: k_khojier@yahoo.com [Department of Physics, Chalous Branch, Islamic Azad University, Chalous (Iran, Islamic Republic of); Savaloni, H. [Department of Physics, University of Tehran, North Kargar Street, Tehran (Iran, Islamic Republic of); Zolghadr, S. [Department of Physics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • MoO{sub 3} thin films are sputter coated and their structure are analyzed. • Effect of argon gas flow on the structural and some properties is studied. • CO sensing ability of MoO{sub 3} increases with argon gas flow. • MoO{sub 3} nano-strain decreases with argon gas flow. - Abstract: Nitrogen and carbon oxides (CO, NO and NO{sub 2}), released from combustion facilities and automobiles, are known to be extremely harmful to the human body and also are the main cause of air pollution. Therefore, effective methods to monitor and suppress the carbon and nitrogen oxides have been highly demanded for atmospheric environmental measurements and controls. It is known that molybdenum oxide (MoO{sub 3}) can be a good semiconductor material for use as a gas sensor in monitoring CO, NO and NO{sub 2}. In this paper we report the structural characteristics and sensing properties of the sputtered MoO{sub 3} thin films as a function of argon gas flow. MoO{sub 3} thin films were deposited by DC reactive magnetron sputtering technique on glass substrates at different argon gas flows in the range of 5–20 sccm. X-ray diffraction (XRD) analysis was used for studying crystallographic structure. XRD results showed that all of our films were of polycrystalline structure and of α-MoO{sub 3} stable orthorhombic phase. Results also showed that crystallite size increases while compressive nano-strain in the structure of the films decreases with increasing the argon gas flow. Atomic force microscope and the field emission scanning electron microscope studies showed granular structures for all samples, which increased in size consistent with the XRD results, with argon gas flow, while the surface roughness of the films also increased with argon gas flow. Chemical composition study showed optimum reaction between oxygen and molybdenum atoms for films produced at 15 sccm flow of argon gas. The electrical response of samples was measured in the vacuum and the CO

  12. One-dimensional analysis of the hydrodynamic and thermal characteristics of thin film flows including the hydraulic jump and rotation

    Science.gov (United States)

    Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.

    1990-01-01

    The flow of a thin liquid film with a free surface along a horizontal plane that emanates from a pressurized vessel is examined numerically. In one g, a hydraulic jump was predicted in both plane and radial flow, which could be forced away from the inlet by increasing the inlet Froude number or Reynolds number. In zero g, the hydraulic jump was not predicted. The effect of solid-body rotation for radial flow in one g was to 'wash out' the hydraulic jump and to decrease the film height on the disk. The liquid film heights under one g and zero g were equal under solid-body rotation because the effect of centrifugal force was much greater than that of the gravitational force. The heat transfer to a film on a rotating disk was predicted to be greater than that of a stationary disk because the liquid film is extremely thin and is moving with a very high velocity.

  13. Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd{sub 50}S{sub 50−x}Se{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hassanien, A.S., E-mail: a.s.hassanien@gmail.com [Engineering Mathematics and Physics Dept., Faculty of Engineering (Shoubra), Benha University (Egypt); Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia); Akl, Alaa A. [Physics Department, Faculty of Science and Humanities in Ad-Dawadmi, Shaqra University, 11911 (Saudi Arabia)

    2015-11-05

    Non-crystalline thin films of chalcogenide Cd{sub 50}S{sub 50−x}Se{sub x} system (30 ≤ x ≤ 50) were obtained by thermal evaporation technique onto a pre-cleaned glass substrate at a vacuum of 8.2 × 10{sup −4} Pa. The deposition rate and film thickness were kept constant at about 8 nm/s and 200 nm, respectively. Amorphous/crystalline nature and chemical composition of films have been checked using X-ray diffraction and energy dispersive X-ray spectroscopy (EDX). Optical properties of thin films were investigated and studied using the corrected transmittance, T(λ) and corrected reflectance, R(λ) measurements. Obtained data reveal that, the indirect optical energy gap (E{sub g}) was decreased from 2.21 to 1.57 eV. On the contrary, Urbach energy (band tail width), E{sub U} was found to be increased from 0.29 to 0.45 eV. This behavior is believed to be associated with the increase of Se-content instead of S-content in the thin films of Cd{sub 50}S{sub 50−x}Se{sub x} system. Chemical bond approach model, CBA was used to analyze the obtained values of E{sub g} and E{sub U}. Optical density, skin depth, extinction coefficient, refractive index and optical conductivity of chalcogenide CdSSe thin films were discussed as functions of Se-content. Using Wemple-DiDomenico single oscillator model, the refractive index dispersion and energy parameters and their dependence on Se content were studied. - Highlights: • Amorphous thin films of thickness 200 nm of Cd{sub 50}S{sub 50−x}Se{sub x} (30 ≤ x ≤ 50) have prepared. • Optical properties, indirect optical energy gap and band tail width were studied. • Chemical bond approach, CBA was used to analyze the obtained values of E{sub g} and E{sub U}. • New data of dispersion refractive index parameters were investigated and discussed.

  14. Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi-Firouzjah, Marzieh [Semnan Science and Technology Park, 3614933578, Shahrood (Iran, Islamic Republic of); Shokri, Babak, E-mail: b-shokri@sbu.ac.ir [Laser & Plasma Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 1983963113 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, G.C., Evin, Tehran 1983963113 (Iran, Islamic Republic of)

    2015-02-27

    Structural and optical properties of low refractive index fluorinated silica (SiO{sub x}C{sub y}F{sub z}) films were investigated. The films were deposited on p-type silicon and polycarbonate substrates by radio frequency plasma enhanced chemical vapor deposition method at low temperatures. A mixture of tetraethoxysilane vapor, oxygen, and CF{sub 4} was used for deposition of the films. The influence of oxygen flow rate on the elemental compositions, chemical bonding states and surface roughness of the films was studied using energy dispersive X-ray analyzer, Fourier transform infrared spectroscopy in reflectance mode and atomic force microscopy, respectively. Effects of chemical bonds of the film matrix on optical properties and chemical stability were discussed. Energy dispersive spectroscopy showed high fluorine content in the SiO{sub x}C{sub y}F{sub z} film matrix which is in the range of 7.6–11.3%. It was concluded that in fluorine content lower than a certain limit, chemical stability of the film enhances, while higher contents of fluorine heighten moisture absorption followed by increasing refractive index. All of the deposited films were highly transparent. Finally, it was found that the refractive index of the SiO{sub x}C{sub y}F{sub z} film was continuously decreased with the increase of the O{sub 2} flow rate down to the minimum value of 1.16 ± 0.01 (at 632.8 nm) having the most ordered and nano-void structure and the least organic impurities. This sample also had the most chemical stability against moisture absorption. - Highlights: • Low deposition temperature and organic precursor led to higher film fluorination. • High fluorine and nanovoid structure led to drastic decrease in the refractive index. • Silica based thin film with ultralow refractive index of 1.16 was produced. • The produced ultralow-n film is highly stable against moisture absorption.

  15. Process Parameter Identification in Thin Film Flows Driven by a Stretching Surface

    Directory of Open Access Journals (Sweden)

    Satyananda Panda

    2014-01-01

    Full Text Available The flow of a thin liquid film over a heated stretching surface is considered in this study. Due to a potential nonuniform temperature distribution on the stretching sheet, a temperature gradient occurs in the fluid which produces surface tension gradient at the free surface of the thin film. As a result, the free surface deforms and these deformations are advected by the flow in the stretching direction. This work focuses on the inverse problem of reconstructing the sheet temperature distribution and the sheet stretch rate from observed free surface variations. This work builds on the analysis of Santra and Dandapat (2009 who, based on the long-wave expansion of the Navier-Stokes equations, formulate a partial differential equation which describes the evolution of the thickness of a film over a nonisothermal stretched surface. In this work, we show that after algebraic manipulation of a discrete form of the governing equations, it is possible to reconstruct either the unknown temperature field on the sheet and hence the resulting heat transfer or the stretching rate of the underlying surface. We illustrate the proposed methodology and test its applicability on a range of test problems.

  16. Polarization holographic recording in Disperse Red1 doped polyurethane polymer film

    Energy Technology Data Exchange (ETDEWEB)

    Aleksejeva, J; Gerbreders, A; Gertners, U; Reinfelde, M; Teteris, J, E-mail: aleksejeva.jelena@gmail.com [Institute of Solid State Physics, University of Latvia, Kengaraga street 8, Riga (Latvia)

    2011-06-23

    In this report holographic recording of polarisation and surface relief gratings in Disperse Red 1 (DR1) doped polyurethane polymer films was studied. In this material DR1 is chemically bounded to polyurethane polymer main chain. Polarization holographic recording was performed by two orthogonal circularly polarized 532 nm laser beams. Photoinduced birefringence is a precondition for polarization holograms recording, therefore a detailed study of a photoinduced birefringence and changes of optical properties was performed. The lasers with wavelengths of 375nm, 448nm, 532 nm and 632.8 nm were used as pumping beam for sample excitation. The photoinduced birefringence {Delta}n was measured at 532 nm and 632.8 nm wavelengths. The photoinduced birefringence dependence on the pumping beam wavelength and intensity was investigated. Surface relief grating (SRG) formation was observed during polarization holographic recording process. A profile of SRG was studied by AFM. A relationship between SRG formation and photoinduced birefringence has been discussed.

  17. Transport of temperature-velocity covariance in gas-solid flow and its relation to the axial dispersion coefficient

    Science.gov (United States)

    Subramaniam, Shankar; Sun, Bo

    2015-11-01

    The presence of solid particles in a steady laminar flow generates velocity fluctuations with respect to the mean fluid velocity that are termed pseudo-turbulence. The level of these pseudo-turbulent velocity fluctuations has been characterized in statistically homogeneous fixed particle assemblies and freely evolving suspensions using particle-resolved direct numerical simulation (PR-DNS) by Mehrabadi et al. (JFM, 2015), and it is found to be a significant contribution to the total kinetic energy associated with the flow. The correlation of these velocity fluctuations with temperature (or a passive scalar) generates a flux term that appears in the transport equation for the average fluid temperature (or average scalar concentration). The magnitude of this transport of temperature-velocity covariance is quantified using PR-DNS of thermally fully developed flow past a statistically homogeneous fixed assembly of particles, and the budget of the average fluid temperature equation is presented. The relation of this transport term to the axial dispersion coefficient (Brenner, Phil. Trans. Roy. Soc. A, 1980) is established. The simulation results are then interpreted in the context of our understanding of axial dispersion in gas-solid flow. NSF CBET 1336941.

  18. On the possibility of high-dispersed composite material obtaining in impulsive high-enthalpy flow

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Brodyagin, A.G.; Ivanov, A.V.

    1987-01-01

    Thermodynamic possibility for the formation of TiC-Mo composite dispersed material in 1200-2800 K temperature interval and effect of H/Cl, C/Ti relation on the composite material composition are demonstrated. Investigation into the plasmo-chemical process of producing high-dispersed composite material in the pulsed regime has pointed out to a possibility of the product chemical composition regulation by changing the energy, flow-rate parameters and by conditions of component introduction into the plasmochemical reactor. Molybdenum-carbide composition powders produced are characterized by the particle size of ∼ 10 nm and high Mo and TiC distribution steadyness which allows one to exclude the stage of a long-term component mixing under the composition production

  19. Stabilising falling liquid film flows using feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Alice B., E-mail: alice.thompson1@imperial.ac.uk; Gomes, Susana N.; Pavliotis, Grigorios A.; Papageorgiou, Demetrios T. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-01-15

    Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for the fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.

  20. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    Science.gov (United States)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued

  1. Analytical Solutions of Heat Transfer and Film Thickness with Slip Condition Effect in Thin-Film Evaporation for Two-Phase Flow in Microchannel

    Directory of Open Access Journals (Sweden)

    Ahmed Jassim Shkarah

    2015-01-01

    Full Text Available Physical and mathematical model has been developed to predict the two-phase flow and heat transfer in a microchannel with evaporative heat transfer. Sample solutions to the model were obtained for both analytical analysis and numerical analysis. It is assumed that the capillary pressure is neglected (Morris, 2003. Results are provided for liquid film thickness, total heat flux, and evaporating heat flux distribution. In addition to the sample calculations that were used to illustrate the transport characteristics, computations based on the current model were performed to generate results for comparisons with the analytical results of Wang et al. (2008 and Wayner Jr. et al. (1976. The calculated results from the current model match closely with those of analytical results of Wang et al. (2008 and Wayner Jr. et al. (1976. This work will lead to a better understanding of heat transfer and fluid flow occurring in the evaporating film region and develop an analytical equation for evaporating liquid film thickness.

  2. Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor–acceptor bulk heterojunction

    Science.gov (United States)

    Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen

    2018-05-01

    7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate–adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2‧:5‧,2″:5″,2″‧-quaterthiophene (4T), a 4T:TAT donor–acceptor bulk heterojunction with a considerable HOMO-level offset at the donor–acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.

  3. Magnetic field dependence of the current flowing in the spin-coated chlorophyll thin films

    Science.gov (United States)

    Aji, J. R. P.; Kusumandari; Purnama, B.

    2018-03-01

    The magnetic dependence of the current flowing in the spin coated chlorophyll films on a patterned Cu PCB substrate has been presented. Chlorophyll was isolated from Spirulina sp and deposited by spin coated methods. The reducing of current by the change of magnetic field (magneto conductance effect) was performed by inducing the magnetic field parallel to the inplane of film at room temp. The magnetoconductance ratio decreases as the increase of voltage. It was indicated that the origin of carrier charge in chlorophyll films should be different with the carrier charge injection (electron).

  4. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    Science.gov (United States)

    Tsvelodub, O. Yu; Bocharov, A. A.

    2017-09-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. The paper studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. The periodic and soliton steady-state traveling solutions of this equation have been numerically found. The analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that this model equation has solutions in the form of solitons-humps.

  5. Analysis of thermal dispersion in an array of parallel plates with fully-developed laminar flow

    International Nuclear Information System (INIS)

    Xu Jiaying; Lu Tianjian; Hodson, Howard P.; Fleck, Norman A.

    2010-01-01

    The effect of thermal dispersion upon heat transfer across a periodic array of parallel plates is studied. Three basic heat transfer problems are addressed, each for steady, fully-developed, laminar fluid flow: (a) transient heat transfer due to an arbitrary initial temperature distribution within the fluid, (b) steady heat transfer with constant heat flux on all plate surfaces, and (c) steady heat transfer with constant wall temperatures. For problems (a) and (b), the effective thermal dispersivity scales with the Peclet number Pe according to 1 + CPe 2 , where the coefficient C is independent of Pe. For problem (c) the coefficient C is a function of Pe.

  6. CVFEM for Multiphase Flow with Disperse and Interface Tracking, and Algorithms Performances

    Directory of Open Access Journals (Sweden)

    M. Milanez

    2015-12-01

    Full Text Available A Control-Volume Finite-Element Method (CVFEM is newly formulated within Eulerian and spatial averaging frameworks for effective simulation of disperse transport, deposit distribution and interface tracking. Their algorithms are implemented alongside an existing continuous phase algorithm. Flow terms are newly implemented for a control volume (CV fixed in a space, and the CVs' equations are assembled based on a finite element method (FEM. Upon impacting stationary and moving boundaries, the disperse phase changes its phase and the solver triggers identification of CVs with excess deposit and their neighboring CVs for its accommodation in front of an interface. The solver then updates boundary conditions on the moving interface as well as domain conditions on the accumulating deposit. Corroboration of the algorithms' performances is conducted on illustrative simulations with novel and existing Eulerian and Lagrangian solutions, such as (- other, i. e. external methods with analytical and physical experimental formulations, and (- characteristics internal to CVFEM.

  7. Film-cooled turbine endwall in a transonic flow field; Filmgekuehlte Turbinenplattform in transsonischem Stroemungsfeld

    Energy Technology Data Exchange (ETDEWEB)

    Nicklas, M.

    2000-11-01

    Aero and thermodynamic measurements at the endwall of a turbine nozzle guide vane were carried out. These investigations are the first where the complete blade passage at the endwall in a transonic flow field is analysed for heat transfer and adiabatic film-cooling effectiveness. The aerodynamic measurements identify an intensive interaction between the coolant air and the secondary flow field. Similarly strong variations in heat transfer and film-cooling effectiveness were found. Analysis of the heat transfer measurements indicates that the heat transfer represents an indispensable tool for the evaluation of platform film-cooling design. On the basis of infrared temperature measurements, a procedure for accurate analysis of heat transfer and film-cooling effectiveness in a complex transonic flow field was developed. This measurement technique combines high accuracy with flexibility of application. These investigations have led to design improvements for film-cooling systems at the platform. (orig.) [German] Aero- und thermodynamische Messungen an einer Plattform eines Turbinenleitrads werden beschrieben. Erstmals wird in einem transsonischen Stroemungsfeld die komplette Seitenwand bezueglich des Waermeuebergangs und der adiabaten Filmkuehleffektivitaet untersucht. Die aerodynamischen Messungen zeigen eine intensive Wechselwirkung der Kuehlluft mit dem Sekundaerstroemungsfeld. Daraus resultierend treten starke Aenderungen des Waermeuebergangs und der Filmkuehleffektivitaet auf. Die Resultate der Waermeuebergangsmessungen zeigen, dass der Waermeuebergang eine wichtige Groesse fuer die Bewertung eines Filmkuehldesigns an einer Plattform darstellt. Ein Messverfahren auf der Grundlage von Infrarot-Temperaturmessungen fuer eine genaue Analyse des Waermeuebergangs und der Filmkuehleffektivitaet in den komplexen Verhaeltnissen einer transsonischen Stroemung wurde entwickelt. Mit der verwendeten Messtechnik wird eine hohe Genauigkeit bei der Ermittlung der quantitativen

  8. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Huang, Mingju [Henan University, Key Lab of Informational Opto-Electronical Materials and Apparatus, School of Physics and Electronics, Kaifeng (China); Zhang, Angran [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, Guangzhou (China)

    2017-03-15

    High-quality vanadium oxide (VO{sub 2}) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO{sub 2} has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO{sub 2} thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm. (orig.)

  9. Effect of N{sub 2} flow rate on the properties of N doped TiO{sub 2} films deposited by DC coupled RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shou [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430000 (China); State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Yang, Yong, E-mail: 88087113@163.com [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Li, Gang; Jiang, Jiwen; Jin, Kewu; Yao, TingTing; Zhang, Kuanxiang [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); Cao, Xin [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China); School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116000 (China); Wang, Yun; Xu, Genbao [State Key Laboratory of Advanced Technology for Float Glass, Bengbu Design & Research Institute for Glass Industry, Bengbu 233000 (China)

    2016-09-05

    N doped TiO{sub 2} films were deposited on glass substrates at room temperature using DC coupled RF magnetron sputtering with a TiO{sub 2} ceramic target. The influences of N{sub 2} flow rate on the deposition rate, crystal structure, chemical composition and band gap of the deposited films were investigated by Optical profiler, X-ray diffraction, X-ray photoelectron spectroscope and ultraviolet-visible spectrophotometer. The film growth rate gradually decreased with increasing N{sub 2} flow rate. As N{sub 2} flow rate increased, the crystallization of the films deteriorated, and the films tended to form amorphous structure. XPS analysis revealed that N dopant atoms were added at the substitutional sites into TiO{sub 2} lattice structure. FE-SEM results showed that the grain size of the film decreased and the crystallinity degraded as N{sub 2} flow rate increases. In addition, N doping caused an obvious red shift in the optical absorption edge. - Highlights: • N doped TiO{sub 2} films were deposited by DC coupled RF magnetron reactive sputtering. • As N{sub 2} flow rate increases, the crystallization of the deposited films degrades. • The higher N{sub 2} flow rate is beneficial to form more substituted N in the film. • N doping causes an obvious red shift in the absorption wavelength.

  10. A Novel A Posteriori Investigation of Scalar Flux Models for Passive Scalar Dispersion in Compressible Boundary Layer Flows

    Science.gov (United States)

    Braman, Kalen; Raman, Venkat

    2011-11-01

    A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.

  11. Impact of polymer film thickness and cavity size on polymer flow during embossing : towards process design rules for nanoimprint lithography.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; King, William P. (Georgia Institute of Technology, Atlanta, GA); Sun, Amy Cha-Tien; Rowland, Harry D. (Georgia Institute of Technology, Atlanta, GA)

    2006-08-01

    This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measures polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.

  12. Electrocatalytic oxidation of methanol on (Pb) lead modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) film

    Energy Technology Data Exchange (ETDEWEB)

    Golikand, Ahmad Nozad; Maragheh, Mohammad Ghannadi; Irannejad, Leila [Jaber Ibn Hayan Research Lab., Atomic Energy Organization of Iran (AEOI), Tehran (Iran); Golabi, Seyed Mehdi [Electroanalytical Chemistry Lab., Faculty of Chemistry, University of Tabriz, Tabriz (Iran)

    2005-08-18

    The electrocatalytic oxidation of methanol at a (Pb) lead electrode modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) (PoPD) film has been investigated using cyclic voltammetry as analytical technique and 0.5M sulfuric acid as supporting electrolyte. It has been shown that the presence of PoPD film increases considerably the efficiency of deposited Pt and Pt alloys microparticles toward the electrocatalytic oxidation of methanol. The catalytic activity of Pt particles is further enhanced when Ru and especially Sn, is co-deposited in the polymer film. The effects of various parameters such as concentration of methanol, medium temperature as well as the long term stability of modified electrodes have also been investigated. (author)

  13. Onset of entrainment and degree of dispersion in dual continuous horizontal oil-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Al-Wahaibi, Talal [Department of Petroleum and Chemical Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud, P.C. 123 (Oman); Angeli, Panagiota [Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2009-04-15

    The transition from stratified to dual continuous oil-water flow (where each phase retains its continuity but there is dispersion of one phase into the other) as well as the dispersed phase fractions in the layers of the dual continuous pattern, were studied experimentally. Transition to this pattern from stratified flow occurs when drops of one phase appear into the other (onset of entrainment). The studies were carried out in a 38 mm ID horizontal stainless steel test section using two different inlet geometries, a T- and a Y-junction. The patterns were visualized through a transparent acrylic section located at 7 m from the inlet using a high speed video camera. Phase distribution measurements in a pipe cross section were obtained just before the acrylic section with a local impedance probe and the results were used to calculate the volume fraction of each phase entrained into the other. The onset of entrainment was found to occur at lower superficial water velocities as the oil superficial velocities increased. However, the inlet geometry did not affect significantly the transition line. During dual continuous flow, the dispersion of one phase into the opposite was found to extend further away from the interface with increasing water superficial velocity for a certain oil superficial velocity. An increase in the superficial water velocity increased the entrained fraction of water in oil (E{sub w/o}) but there was no trend with the oil velocity. Similarly, an increase in the superficial oil velocity increased the fraction of oil drops in water (E{sub o/w}) but the water velocity had no clear effect. The entrainment fractions were affected by the inlet geometry, with the T-inlet resulting in higher entrainment than the Y-inlet, perhaps because of the increased mixing induced by the T-inlet. The difference between the two inlets increased as the oil and water velocities increased. (author)

  14. Liquid film and interfacial wave behavior in air-water countercurrent flow through vertical short multi-tube geometries

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Giot, M.

    1992-01-01

    A series of experiments has been performed on air-water countercurrent flow through short multi-tube geometries (tube number n = 3, diameter d = 36mm, length I = 2d, 10d and 20d). The time-varying thicknesses of the liquid films trickling down the individual tubes are measured by means of conductance probes mounted flush at different locations of the inner wall surfaces. Detailed time series analyses of the measured film thicknesses provide some useful information about the film flow behavior as well as the interfacial wave characteristics in individual tubes, which can be used as some guidelines for developing more general predictive flooding models. 18 refs., 18 figs., 1 tabs

  15. Single-molecule tracking studies of flow-induced microdomain alignment in cylinder-forming polystyrene-poly(ethylene oxide) diblock copolymer films.

    Science.gov (United States)

    Tran-Ba, Khanh-Hoa; Higgins, Daniel A; Ito, Takashi

    2014-09-25

    Flow-based approaches are promising routes to preparation of aligned block copolymer microdomains within confined spaces. An in-depth characterization of such nanoscale morphologies within macroscopically nonuniform materials under ambient conditions is, however, often challenging. In this study, single-molecule tracking (SMT) methods were employed to probe the flow-induced alignment of cylindrical microdomains (ca. 22 nm in diameter) in polystyrene-poly(ethylene oxide) diblock copolymer (PS-b-PEO) films. Films of micrometer-scale thicknesses were prepared by overlaying a benzene solution droplet on a glass coverslip with a rectangular glass plate, followed by solvent evaporation under a nitrogen atmosphere. The microdomain alignment was quantitatively assessed from SMT data exhibiting the diffusional motions of individual sulforhodamine B fluorescent probes that preferentially partitioned into cylindrical PEO microdomains. Better overall microdomain orientation along the flow direction was observed near the substrate interface in films prepared at a higher flow rate, suggesting that the microdomain alignment was primarily induced by shear flow. The SMT data also revealed the presence of micrometer-scale grains consisting of highly ordered microdomains with coherent orientation. The results of this study provide insights into shear-based preparation of aligned cylindrical microdomains in block copolymer films from solutions within confined spaces.

  16. Film behaviour of vertical gas-liquid flow in a large diameter pipe

    OpenAIRE

    Zangana, Mohammed Haseeb Sedeeq

    2011-01-01

    Gas-liquid flow commonly occurs in oil and gas production and processing system. Large diameter vertical pipes can reduce pressure drops and so minimize operating costs. However, there is a need for research on two-phase flow in large diameter pipes to provide confidence to designers of equipments such as deep water risers. In this study a number of experimental campaigns were carried out to measure pressure drop, liquid film thickness and wall shear in 127mm vertical pipe. Total pressur...

  17. Determination and analysis of the dispersive optical constants of the 5,5',6,6'-tetraphenyl-2,2'-bi([1,3]dithiolo[4,5-b][1,4]dithiinylidene)-DDQ complex thin film

    International Nuclear Information System (INIS)

    Atalay, Y.; Basoglu, A.; Avci, D.; Arslan, M.; Ozturk, T.; Ertas, E.

    2008-01-01

    The synthesis and optical properties of the 5,5',6,6'-tetraphenyl-2,2'-bi([1,3]dithiolo [4,5-b] [1,4]dithiinylidene)-2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) complex thin film were investigated by the optical characterization. The optical constants such as refractive index, extinction coefficient and absorption coefficient were determined using the transmittance T(λ) and reflectance R(λ) spectra and the refractive index dispersion was analyzed using single oscillator of Wemple-Didomenico model. The single oscillator energy E 0 and the dispersion energy E d were calculated. The effect of temperature on refractive dispersion and optical band gap E g is also discussed. As a result, the annealing temperatures have an important effect on refractive index of thin film

  18. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

    KAUST Repository

    Icardi, Matteo

    2014-07-31

    In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing together, with standard ballistic physics, irregular and polydisperse objects. Emphasis is placed on numerical issues related to mesh generation and spatial discretization, which play an important role in determining the final accuracy of the finite-volume scheme and are often overlooked. The simulations performed are then analyzed in terms of velocity distributions and dispersion rates in a wider range of operating conditions, when compared with other works carried out by solving the Stokes equation. Results show that dispersion within the analyzed porous medium is adequately described by classical power laws obtained by analytic homogenization. Eventually the validity of Fickian diffusion to treat dispersion in porous media is also assessed. © 2014 American Physical Society.

  19. Measurement of flow phenomena in the vicinity of a PWR tie plate geometry. Final report

    International Nuclear Information System (INIS)

    Lee, R.S.L.; Srinivasan, J.; Cho, S.K.; Wang, J.L.

    1981-01-01

    The flow of an air-water droplet dispersion in a simulated 3D test section in the reflood portion of LOCA is studied. For this purpose, a new scheme of Laser-Doppler Anemometry for the simultaneous measurement of size and velocity of large-size (0.5mm-6mm) droplets has been developed and utilized. In terms of droplet reentrainment from the tie-plate, three flow regimes have been identified, depending on the velocity level of the flow; the dome formation stage, the oscillating dome stage and the wall film breaking up stage. Detailed measurements have been made in these regimes to obtain the local droplet sizes, droplet velocity distribution, air velocity distributions and momentum flux of both incoming and outgoing dispersion through the tie-plate. It has been observed that the size distribution of the reentrained droplets depends mainly on the flow regimes and is essentially independent of that of the incoming dispersion below the tie-plate. These reentrained droplets are found to be mostly in the neighborhood of 1mm in size and their trajectories on leaving the tie-plate essentially oriented close to the vertical direction. Also the momentum flux of outgoing dispersion differs from that of the incoming dispersion. The measuring technique, the experimental set-up, on-line data acquisition system and the results of the measurements are reported

  20. Effects of Fetch on Turbulent Flow and Pollutant Dispersion Within a Cubical Canopy

    Science.gov (United States)

    Michioka, Takenobu; Takimoto, Hiroshi; Ono, Hiroki; Sato, Ayumu

    2018-03-01

    The effects of fetch on turbulent flow and pollutant dispersion within a canopy formed by regularly-spaced cubical objects is investigated using large-eddy simulation. Six tracer gases are simultaneously released from a ground-level continuous pollutant line source placed parallel to the spanwise axis at the first, second, third, fifth, seventh and tenth rows. Beyond the seventh row, the standard deviations of the fluctuations in the velocity components and the Reynolds shear stresses reach nearly equivalent states. Low-frequency turbulent flow is generated near the bottom surface around the first row and develops as the fetch increases. The turbulent flow eventually passes through the canopy at a near-constant interval. The mean concentration within the canopy reaches a near-constant value beyond the seventh row. In the first and second rows, narrow coherent structures frequently affect the pollutant escape from the top of the canopy. These structures increase in width as the fetch increases, and they mainly affect the removal of pollutants from the canopy.

  1. Vortex wakes of a flapping foil in a flowing soap film

    DEFF Research Database (Denmark)

    We present an experimental study of an oscillating, symmetric foil in a vertically flowing soap film. By varying frequency and amplitude of the oscillation we explore and visualize a variety of wake structures, including von K´arm´an wake, reverse von K´arm´an wake, 2P wake, and 2P+2S wake. We...

  2. Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow

    NARCIS (Netherlands)

    Roes, A.W.M.; van Swaaij, Willibrordus Petrus Maria

    1979-01-01

    Axial dispersion of gas and solid phases in a gas—solid packed column at trickle flow, a promising new countercurrent operation, was evaluated using residence time distribution (RTD) experiments. The column was packed with dumped Pall rings, the gas phase was air at ambient conditions and the solid

  3. Hydrodynamic disperser

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.

    1980-01-15

    A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.

  4. Fabrication and characterization of 6,13-bis(triisopropylsilylethynyl)-pentacene active semiconductor thin films prepared by flow-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Khairul Anuar; Rusnan, Fara Naila; Seria, Dzulfahmi Mohd Husin; Saad, Ismail; Alias, Afishah [Nano Engineering & Materials (NEMs) Research Group, Faculty of Engineering Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah (Malaysia); Katsuhiro, Uesugi; Hisashi, Fukuda [Division of Engineering for Composite Functions, Muroran Institute of Technology 27-1 Mizumoto, Muroran 050-8585 Hokkaido (Japan)

    2015-08-28

    Investigation on the physical characterization and comparison of organic thin film based on a soluble 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene is reported. Oriented thin-films of pentacene have been successfully deposited by flow-coating method, in which the chloroform solution is sandwiched between a transparent substrate and a slide glass, followed by slow-drawing of the substrate with respect to the slide glass. Molecular orientation of flow-coated TIPS-pentacene is comparable to that of the thermal-evaporated pentacene thin film by the X-ray diffraction (XRD) results. XRD results showed that the morphology of flow-coated soluble pentacene is similar to that of the thermal-evaporated pentacene thin films in series of (00l) diffraction peaks where the (001) diffraction peaks are strongest in the nominally out-of-plane intensity and interplanar spacing located at approximately 2θ = 5.33° (d-spacing, d{sub 001} = 16 Å). Following that, ITO/p-TIPS-pentacene/n-ZnO/Au vertical diode was fabricated. The diode exhibited almost linear characteristics at low voltage with nonlinear characteristics at higher voltage which similar to a pn junction behavior. The results indicated that the TIPS-pentacene semiconductor active thin films can be used as a hole injection layer for fabrication of a vertical organic transistor.

  5. On the origin of burnout in tubes during subheated water and wet steam flow

    International Nuclear Information System (INIS)

    Doroshchuk, V.E.

    1980-01-01

    Mecahnisms of arising the burnouts of the first and second kinds during water and steam-water mixture flow in a tube have been studied. It is shown that the burnout of the first kind arises in the cases when the main part is palyed by the thermal processes providing a possibility of the film boiling or destruction of near-wall liquid film. The high value of critical heat flux qsub(cr) is typical for this kind of burnout. In arising the burnout of the second kind the determining part is played by the hydrodynamic processes in the channel but not by the thermal ones. In this case the burnout is related with the formation of disperse structure of the flow in the pipe. The thermal load does not play the determining part in this case. The burnout arises at any q value (within the limits qsub(cr)sup(0)>q>qsub(gr)sup(0)) but always at the certain steam content. On the base of the analysis of conditions of burnout in steam-generating tubes it is concluded that determination of the two-phase flow structure in heating tubes, determination of the regularities of flow rate and film thickness changes in annular flows, investigation of the moisture carrying out by bubbles from a near-wall liquid film are of the greatest importance

  6. Flowchart on Choosing Optimal Method of Observing Transverse Dispersion Coefficient for Solute Transport in Open Channel Flow

    Directory of Open Access Journals (Sweden)

    Kyong Oh Baek

    2018-04-01

    Full Text Available There are a number of methods for observing and estimating the transverse dispersion coefficient in an analysis of the solute transport in open channel flow. It may be difficult to select an optimal method to calculate dispersion coefficients from tracer data among numerous methodologies. A flowchart was proposed in this study to select an appropriate method under the transport situation of either time-variant or steady condition. When making the flowchart, the strengths and limitations of the methods were evaluated based on its derivation procedure which was conducted under specific assumptions. Additionally, application examples of these methods on experimental data were illustrated using previous works. Furthermore, the observed dispersion coefficients in a laboratory channel were validated by using transport numerical modeling, and the simulation results were compared with the experimental results from tracer tests. This flowchart may assist in choosing the better methods for determining the transverse dispersion coefficient in various river mixing situations.

  7. Film cooling effects on the tip flow characteristics of a gas turbine blade

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-03-01

    Full Text Available An experimental investigation of the tip flow characteristics between a gas turbine blade tip and the shroud was conducted by a pressure-test system and a particle image velocimetry (PIV system. A three-times scaled profile of the GE-E3 blade with five film cooling holes was used as specimen. The effects on flow characteristics by the rim width and the groove depth of the squealer tip were revealed. The rim widths were (a 0.9%, (b 2.1%, and (c 3.0% of the axial chord, and the groove depths were (a 2.8%, (b 4.8%, and (c 10% of the blade span. Several pressure taps on the top plate above the blades were connected to pressure gauges. By a CCD camera the PIV system recorded the velocity field around the leading edge zone including the five cooling holes. The flow distributions both in the tip clearance and in the passage were revealed, and the influence of the inlet velocity was determined. In this work, the tip flow characteristics with and without film cooling were investigated. The effects of different global blowing ratios of M=0.5, 1.0, 1.3 and 2.5 were established. It was found that decreasing the rim width resulted in a lower mass flow rate of the leakage flow, and the pressure distributions from the leading edge to the trailing edge showed a linearly increasing trend. It was also found that if the inlet velocity was less than 1.5 m/s, the flow field in the passage far away from the suction side appeared as a stagnation zone.

  8. Development and Characterization of an Amorphous Solid Dispersion of Furosemide in the Form of a Sublingual Bioadhesive Film to Enhance Bioavailability.

    Science.gov (United States)

    De Caro, Viviana; Ajovalasit, Alessia; Sutera, Flavia Maria; Murgia, Denise; Sabatino, Maria Antonietta; Dispenza, Clelia

    2017-06-24

    Administered by an oral route, Furosemide (FUR), a diuretic used in several edematous states and hypertension, presents bioavailability problems, reported as a consequence of an erratic gastrointestinal absorption due to various existing polymorphic forms and low and pH-dependent solubility. A mucoadhesive sublingual fast-dissolving FUR based film has been developed and evaluated in order to optimize the bioavailability of FUR by increasing solubility and guaranteeing a good dissolution reproducibility. The Differential Scanning Calorimetry (DSC) analyses confirmed that the film prepared using the solvent casting method entrapped FUR in the amorphous state. As a solid dispersion, FUR increases its solubility up to 28.36 mg/mL. Drug content, thickness, and weight uniformity of film were also evaluated. The measured Young's Modulus, yield strength, and relative elongation of break percentage (EB%) allowed for the classification of the drug-loaded film as an elastomer. Mucoadhesive strength tests showed that the force to detach film from mucosa grew exponentially with increasing contact time up to 7667 N/m². FUR was quickly discharged from the film following a trend well fitted with the Weibull kinetic model. When applied on sublingual mucosa, the new formulation produced a massive drug flux in the systemic compartment. Overall, the proposed sublingual film enhances drug solubility and absorption, allowing for the prediction of a rapid onset of action and reproducible bioavailability in its clinical application.

  9. Porous squeeze-film flow

    KAUST Repository

    Knox, D. J.

    2013-11-14

    © 2013 © The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. The squeeze-film flow of a thin layer of Newtonian fluid filling the gap between a flat impermeable surface moving under a prescribed constant load and a flat thin porous bed coating a stationary flat impermeable surface is considered. Unlike in the classical case of an impermeable bed, in which an infinite time is required for the two surfaces to touch, for a porous bed contact occurs in a finite contact time. Using a lubrication approximation, an implicit expression for the fluid layer thickness and an explicit expression for the contact time are obtained and analysed. In addition, the fluid particle paths are calculated, and the penetration depths of fluid particles into the porous bed are determined. In particular, the behaviour in the asymptotic limit of small permeability, in which the contact time is large but finite, is investigated. Finally, the results are interpreted in the context of lubrication in the human knee joint, and some conclusions are drawn about the contact time of the cartilage-coated femoral condyles and tibial plateau and the penetration of nutrients into the cartilage.

  10. Numerical predictions of particle dispersed two-phase flows, using the LSD and SSF models

    International Nuclear Information System (INIS)

    Avila, R.; Cervantes de Gortari, J.; Universidad Nacional Autonoma de Mexico, Mexico City. Facultad de Ingenieria)

    1988-01-01

    A modified version of a numerical scheme which is suitable to predict parabolic dispersed two-phase flow, is presented. The original version of this scheme was used to predict the test cases discussed during the 3rd workshop on TPF predictions in Belgrade, 1986. In this paper, two particle dispersion models are included which use the Lagrangian approach predicting test case 1 and 3 of the 4th workshop. For the prediction of test case 1 the Lagrangian Stochastic Deterministic model (LSD) is used providing acceptable good results of mean and turbulent quantities for both solid and gas phases; however, the computed void fraction distribution is not in agreement with the measurements at locations away from the inlet, especially near the walls. Test case 3 is predicted using both the LSD and the Stochastic Separated Flow (SSF) models. It was found that the effects of turbulence modulation are large when the LSD model is used, whereas the particles have a negligible influence on the continuous phase if the SSF model is utilized for the computations. Predictions of gas phase properties based on both models agree well with measurements; however, the agreement between calculated and measured solid phase properties is less satisfactory. (orig.)

  11. High-order optical nonlinearities in nanocomposite films dispersed with semiconductor quantum dots at high concentrations

    International Nuclear Information System (INIS)

    Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing

    2017-01-01

    We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process. (paper)

  12. Study of nonequilibrium dispersed two phase flow

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.

    1986-01-01

    Understanding the behavior of liquid droplets in a superheated steam environment is essential to the accurate prediction of nuclear fuel rod surface temperatures during the blowdown and reflood phase of a loss-of-coolant-accident (LOCA). In response to this need, this treatise presents several original and significant contributions to the field of thermofluid physics. The research contained herein presents a statistical derivation of the two-phase mass, momentum, and energy-conservation equations using a droplet continuity equation analogous to that used in the Kinetic Theory of Gases. Unlike the Eulerian volume and time-averaged conservation equations generally used to describe dispersed two-phase flow behavior, this statistical averaging approach results in an additional mass momentum or energy term in each of the respective conservation equations. Further, this study demonstrates that current definitions of the volumetric vapor generation rate used in the mass conservation equation are inappropriate results under certain circumstances. The mass conservation equation derived herein is used to obtain a new definition for the volumetric vapor-generation rate. Last, a simple two phase phenomenological model, based on the statistically averaged conservation equations, is presented and solved analytically. It is shown that the actual quality and vapor temperature, under these circumstances, depend on a single dimensionless group

  13. Composition and crystal structure of N doped TiO2 film deposited at different O2 flow rate by direct current sputtering.

    Science.gov (United States)

    Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2011-06-01

    N doped Ti02 films were deposited by direct current pulse magnetron sputtering system at room temperature. The influence of 02 flow rate on the crystal structure of deposited films was studied by Stylus profilometer, X-ray photoelectron spectroscopy, and X-ray diffractometer. The results indicate that the 02 flow rate strongly controls the growth behavior and crystal structure of N doped Ti02 film. It is found that N element mainly exists as substitutional doped state and the chemical stiochiometry is near to TiO1.68±0.06N0.11±0.01 for all film samples. N doped Ti02 film deposited with 2 sccm (standard-state cubic centimeter per minute) 02 flow rate is amorphous structure with high growth rate, which contains both anatase phase and rutile phase crystal nucleuses. In this case, the film displays the mix-phase of anatase and rutile after annealing treatment. While N doped Ti02 film deposited with 12 cm(3)/min 02 flow rate displays anatase phase before and after annealing treatment. And it should be noticed that no TiN phase appears for all samples before and after annealing treatment. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  14. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    International Nuclear Information System (INIS)

    Nigmatulin, R.I.

    1995-01-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered

  15. Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube

    Energy Technology Data Exchange (ETDEWEB)

    Nigmatulin, R.I.

    1995-09-01

    The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.

  16. Measuring a film flowing down a tube inner wall using a laser focus displacement meter and an image-processing method

    International Nuclear Information System (INIS)

    Takamasa, Tomoji; Kobayashi, Kenji

    1999-01-01

    To elucidate details of the fascinating nonlinear phenomena of waves on a film, spatial temporal knowledge of the interfacial waves is essential. This paper presents an experimental study on waves on a film flowing down a vertical tube inner wall measured with a laser focus displacement meter (LFD) and an image-processing method. As a result, the film thickness was measured within a 1% margin of error by LFD, and the wave velocity was measured within a 10% margin of error by the image-processing. The experimental results are summarized as follows: At entry length L = 900 mm, the wave becomes a two-wave system. In the entry region, L = 216 mm, and 400 mm, the wave amplitude decreases as the flow rate increases, in the same manner as that in a film flowing down a plate wall. The velocity measured by the image processing agreed well with that calculated using Nusselt's theoretical equation and the Ito-Sasaki empirical equation for Reynolds numbers < 250. (author)

  17. Key factors for UV curable pigment dispersions

    International Nuclear Information System (INIS)

    Magny, B.; Pezron, E.; Ciceron, P.H.; Askienazy, A.

    1999-01-01

    UV oligomers with good pigment dispersion are needed to allow good formulation flexibility and possibility to apply thinner films. Pigment dispersion mainly depends on three phenomena: the wetting of agglomerates, the breakage of agglomerates by mechanical stress and the stabilization of smaller agglomerates and primary particles against flocculation. It has been shown that oligomers with low viscosity and low surface tension induce a good pigment wetting. Examples of monomers and oligomers for good pigment dispersion are given

  18. Fabrication of CNT Dispersion Fluid by Wet-Jet Milling Method for Coating on Bipolar Plate of Fuel Cell

    Directory of Open Access Journals (Sweden)

    Anas Almowarai

    2015-01-01

    Full Text Available Water based carbon nanotube (CNT dispersion was produced by wet-jet milling method. Commercial CNT was originally agglomerated at the particle size of less than 1 mm. The wet-jet milling process exfoliated CNTs from the agglomerates and dispersed them into water. Sedimentation of the CNTs in the dispersion fluid was not observed for more than a month. The produced CNT dispersion was characterized by the SEM and the viscometer. CNT/PTFE composite film was formed with the CNT dispersion in this study. The electrical conductivity of the composite film increased to 10 times when the CNT dispersion, which was produced by the wet-jet milling method, was used as a constituent of the film. Moreover, the composite film was applied to bipolar plate of fuel cell and increased the output power of the fuel cell to 1.3 times.

  19. A New Appraoch to Modeling Immiscible Two-phase Flow in Porous Media

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    In this work we present a systematic literature review regarding the macroscopic approaches to modeling immiscible two-phase flow in porous media, the formulation process of the incorporate PDE based on Film Model(viscous coupling), the calculation of saturation profile around the transition zone...... to modeling immiscible two-phase flow in porous media. The suggested approach to immiscible two-phase flow in porous media describes the dispersed mesoscopic fluids’ interfaces which are highly influenced by the injected interfacial energy and the local interfacial energy capacity. It reveals a new...... possibility of modeling two-phase flow through energy balance. The saturation profile generated through the suggested approach is different from those through other approaches....

  20. Preparation and layer-by-layer solution deposition of Cu(In,GaO2 nanoparticles with conversion to Cu(In,GaS2 films.

    Directory of Open Access Journals (Sweden)

    Walter J Dressick

    Full Text Available We present a method of Cu(In,GaS2 (CIGS thin film formation via conversion of layer-by-layer (LbL assembled Cu-In-Ga oxide (CIGO nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH, and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA or polystyrenesulfonate (PSS and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization.

  1. Aero-thermal optimization of film cooling flow parameters on the suction surface of a high pressure turbine blade

    Science.gov (United States)

    El Ayoubi, Carole; Hassan, Ibrahim; Ghaly, Wahid

    2012-11-01

    This paper aims to optimize film coolant flow parameters on the suction surface of a high-pressure gas turbine blade in order to obtain an optimum compromise between a superior cooling performance and a minimum aerodynamic penalty. An optimization algorithm coupled with three-dimensional Reynolds-averaged Navier Stokes analysis is used to determine the optimum film cooling configuration. The VKI blade with two staggered rows of axially oriented, conically flared, film cooling holes on its suction surface is considered. Two design variables are selected; the coolant to mainstream temperature ratio and total pressure ratio. The optimization objective consists of maximizing the spatially averaged film cooling effectiveness and minimizing the aerodynamic penalty produced by film cooling. The effect of varying the coolant flow parameters on the film cooling effectiveness and the aerodynamic loss is analyzed using an optimization method and three dimensional steady CFD simulations. The optimization process consists of a genetic algorithm and a response surface approximation of the artificial neural network type to provide low-fidelity predictions of the objective function. The CFD simulations are performed using the commercial software CFX. The numerical predictions of the aero-thermal performance is validated against a well-established experimental database.

  2. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    International Nuclear Information System (INIS)

    Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-01-01

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h

  3. The effect of the solution flow rate on the properties of zinc oxide (ZnO) thin films deposited by ultrasonic spray

    Science.gov (United States)

    Attaf, A.; Benkhetta, Y.; Saidi, H.; Bouhdjar, A.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-03-01

    In this work, we used a system based on ultrasonic spray pyrolysis technique. By witch, we have deposited thin films of zinc oxide (ZnO) with the variation of solution flow rate from 50 ml / h to 150 ml / h, and set other parameters such as the concentration of the solution, the deposition time, substrate temperature and the nozzel -substrate distance. In order to study the influence of the solution flow rate on the properties of the films produced, we have several characterization techniques such as X-ray diffraction to determine the films structure, the scanning electron microscopy SEM for the morphology of the surfaces, EDS spectroscopy for the chemical composition, UV-Visible-Nir spectroscopy for determination the optical proprieties of thin films.The experimental results show that: the films have hexagonal structure at the type (wurtzite), the average size of grains varies from 20.11 to 32.45 nm, the transmittance of the films equals 80% in visible rang and the band gap is varied between 3.274 and 3.282 eV, when the solution flow rate increases from 50 to 150 ml/h.

  4. Flux flow and flux creep in thick films of YBCO. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Rickets, J.; Vinen, W.F.; Abell, J.S.; Shields, T.C. (Superconductivity Research Group, Univ. of Birmingham (United Kingdom))

    1991-12-01

    The results are described of new experiments designed to study flux creep and flux flow along a single flux percolation path in thick films of YBCO. The flux flow regime is studied by a four-point resistive technique using pulsed currents, and the flux creep regime by observing the rate at which flux enters a superconducting loop in parallel with the resistance that is associated with the flux percolation path. (orig.).

  5. Characterisation of DLC films deposited using titanium isopropoxide (TIPOT) at different flow rates.

    Science.gov (United States)

    Said, R; Ali, N; Ghumman, C A A; Teodoro, O M N D; Ahmed, W

    2009-07-01

    In recent years, there has been growing interest in the search for advanced biomaterials for biomedical applications, such as human implants and surgical cutting tools. It is known that both carbon and titanium exhibit good biocompatibility and have been used as implants in the human body. It is highly desirable to deposit biocompatible thin films onto a range of components in order to impart biocompatibility and to minimise wear in implants. Diamond like carbon (DLC) is a good candidate material for achieving biocompatibility and low wear rates. In this study, thin films of diamond-like-carbon DLC were deposited onto stainless steel (316) substrates using C2H2, argon and titanium isopropoxide (TIPOT) precursors. Argon was used to generate the plasma in the plasma enhanced vapour deposition (PECVD) system. A critical coating feature governing the performance of the component during service is film thickness. The as-grown films were in the thickness range 90-100 nm and were found to be dependent on TIPOT flow rate. Atomic force microscopy (AFM) was used to characterise the surface roughness of the samples. As the flow rate of TIPOT increased the average roughness was found to increase in conjunction with the film thickness. Raman spectroscopy was used to investigate the chemical structure of amorphous carbon matrix. Surface tension values were calculated using contact angle measurements. In general, the trend of the surface tension results exhibited an opposite trend to that of the contact angle. The elemental composition of the samples was characterised using a VG ToF SIMS (IX23LS) instrument and X-ray photoelectron spectroscopy (XPS). Surprisingly, SIMS and XPS results showed that the DLC samples did not show evidence of titanium since no peaks representing to titanium appeared on the SIMS/XPS spectra.

  6. Influence of Cd-content on structural and optical dispersion characteristics of nanocrystalline Zn1−xCdxS (0 ⩽ x ⩽ 0.9) films

    International Nuclear Information System (INIS)

    Farag, A.A.M.; Abdel Rafea, M.; Roushdy, N.; El-Shazly, O.; El-Wahidy, E.F.

    2015-01-01

    Highlights: • Highly uniform and good adhesion of nanocrystalline Zn 1−x Cd x S films were synthesized. • Small magnitude of optical electronegativity was calculated. • Third-order nonlinear optical susceptibility and molar polarizability were considered. - Abstract: Low cost dip coating technique was successfully used to deposit highly uniform and good adhesive nanocrystalline Zn 1−x Cd x S (0 ⩽ x ⩽ 0.9) thin films. The surface morphology and crystalline structural characteristics of Zn 1−x Cd x S were achieved by using atomic force microscopy (AFM) and transmission electron microscopy (TEM), respectively. Transmission spectra show red shifting of absorption edge as the Cd content increased. The optical constants were accurately determined by using reflectance and transmittance spectra. The effect of Cd-content on refractive index, extinction index and other optical dispersion parameters were also investigated. The dispersion of the refractive index was discussed in terms of single oscillator model. In addition, the ratio of free carrier concentration to its effective mass was estimated. The calculated value of oscillator energy E o obeys the empirical relation (E o ≈ 2 E g ), obtained from single oscillator model. Small magnitude of optical electronegativity (χ ∗ ) for Zn 1−x Cd x S (0 ⩽ x ⩽ 0.9) thin films and relatively high refractive index can be attributed to covalent nature, in agreement with β value, obtained from dispersion energy analysis. Moreover, molar polarizability and third-order nonlinear optical susceptibility were also considered

  7. Clay squirt: Local flow dispersion in shale-bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke

    2017-01-01

    Dispersion of elastic-wave velocity is common in sandstone and larger in shaly sandstone than in clean sandstone. Dispersion in fluid-saturated shaly sandstone often exceeds the level expected from the stress-dependent elastic moduli of dry sandstone. The large dispersion has been coined clay...... squirt and is proposed to originate from a pressure gradient between the clay microporosity and the effective porosity. We have formulated a simple model that quantifies the clay-squirt effect on bulk moduli of sandstone with homogeneously distributed shale laminae or dispersed shale. The model...... predictions were compared with the literature data. For sandstones with dispersed shale, agreement was found, whereas other sandstones have larger fluid-saturated bulk modulus, possibly due to partially load-bearing shales or heterogeneous shale distribution. The data that agree with the clay-squirt model...

  8. Application results of a prototype ultrasonic liquid film sensor to a 7 MPa steam-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Aoyama, Goro; Fujimoto, Kiyoshi; Katono, Kenichi; Nagayoshi, Takuji; Baba, Atsushi; Yasuda, Kenichi

    2016-01-01

    A prototype ultrasonic liquid film sensor was applied to a high-temperature steam-water two-phase flow experiment. The liquid film sensor was vertically installed in a loop which was connected to HUSTLE, a multi-purpose steam source test facility. The hydraulic diameter of the measurement section was 9.4 mm. The output waveforms of the sensor were acquired with a digital oscilloscope. The fluid temperature and system pressure were kept at 288°C and 7.2 MPa, respectively, during the experiment. The pulse-echo method was used to calculate the liquid film thickness. The cross-correlation calculation was utilized to determine the time difference between the pulse reflected at the sensor surface and the pulse reflected at the liquid film surface. The time-averaged liquid film thicknesses were less than 0.055 mm in the annular flow condition. The increase of the time-averaged thickness was small with the change of the gas momentum flux. The film thicknesses measured with the sensor were compared with the past experimental results; the former were smaller than one-fourth of the thickness estimated as the mean film thickness. The comparison results suggested that the continuous liquid sublayer thickness was measured with the liquid film sensor. (author)

  9. An Amorphous Network Model for Capillary Flow and Dispersion in a Partially Saturated Porous Medium

    Science.gov (United States)

    Simmons, C. S.; Rockhold, M. L.

    2013-12-01

    randomly generate network and for a directly measured porous medium structure, by means of xray-CT scan. A randomly generated network has the benefit of providing ensemble averages for sample replicates of a medium's properties, whereas network structure measurements are expected to be more predictive. Dispersion of solute in a network flow is calculate by using particle tracking to determine the travel time breakthrough between inflow and outflow boundaries. The travel time distribution can exhibit substantial skewness that reflects both network velocity variability and mixing dilution at junctions. When local diffusion is not included, and transport is strictly advective, then the skew breakthrough is not due to mobile-immobile flow region behavior. The approach of dispersivity to its asymptotic value with sample size is examined, and may be only an indicator of particular stochastic flow variation. It is not proven that a simplified network flow model can accurately predict the hydraulic properties of a sufficiently large-size medium sample, but such a model can at least demonstrate macroscopic flow resulting from the interaction of physical processes at pore scales.

  10. Measurement of phase interaction in dispersed gas-particle two-phase flow by phase-doppler anemometry

    Directory of Open Access Journals (Sweden)

    Mergheni Ali Mohamed

    2008-01-01

    Full Text Available For simultaneous measurement of size and velocity distributions of continuous and dispersed phases in a two-phase flow a technique phase-Doppler anemometry was used. Spherical glass particles with a particle diameter range from 102 up to 212 µm were used. In this two-phase flow an experimental results are presented which indicate a significant influence of the solid particles on the flow characteristics. The height of influence of these effects depends on the local position in the jet. Near the nozzle exit high gas velocity gradients exist and therefore high turbulence production in the shear layer of the jet is observed. Here the turbulence intensity in the two-phase jet is decreased compared to the single-phase jet. In the developed zone the velocity gradient in the shear layer is lower and the turbulence intensity reduction is higher. .

  11. Axial Dispersion Model for Solid Flow in Liquid Suspension in System of Two Mixers in Total Recycle

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Jiřina; Scargiali, F.; Siyakatshana, N.; Kudrna, V.; Brucato, A.; Machoň, V.

    2006-01-01

    Roč. 117, č. 2 (2006), s. 101-107 ISSN 1385-8947 R&D Projects: GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : residence time distribution * dispersion model * flow mixer Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.594, year: 2006

  12. Free convection film flows and heat transfer laminar free convection of phase flows and models for heat-transfer analysis

    CERN Document Server

    Shang, De-Yi

    2012-01-01

    This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...

  13. All-organic polymer-dispersed liquid crystal light-valves integrated with electroactive anthraquinone-2-sulfonate-doped polypyrrole thin films as driving electrodes

    International Nuclear Information System (INIS)

    Wang, Pen-Cheng; Yu, Jing-Yu; Li, Kuan-Hsun

    2011-01-01

    Highlights: → Fabrication of flexible semi-transparent all-polymer electrodes under ambient conditions without using a CVD system. → Characterization of the above electrodes based on anthraquinone-2-sulfonate-doped polypyrrole thin films. → Demonstration of all-organic liquid crystal light-valves with polypyrrole thin films as the driving electrodes. - Abstract: All-organic PDLC (polymer-dispersed liquid crystal) light-valves using all-polymer conductive substrates containing thin films of polypyrrole doped with anthraquinone-2-sulfonate (AQSA - ) as the driving electrodes were fabricated in this study. The all-polymer conductive substrates were prepared under ambient conditions by in situ depositing polypyrrole thin films on blank flexible poly(ethylene terephthalate), or PET, substrates from aqueous media in which oxidative polymerization of pyrrole was taking place. The obtained flexible all-polymer conductive substrates were semi-transparent with cohesive coatings of AQSA - doped polypyrrole thin films (thickness ∼55 nm). The all-polymer flexible conductive substrates had sheet resistivity ∼40 kΩ □ -1 and T% transparency against air ∼78% at 600 nm. The light-valves fabricated using the above all-polymer conductive substrates showed ∼50% transparency against air at 600 nm when 4 V μm -1 electric field was applied.

  14. Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, A.K.; Wu, G.M., E-mail: wu@mail.cgu.edu.tw

    2016-04-30

    In this report, amorphous indium gallium zinc oxide (a-IGZO) thin films were deposited on glass substrates using different argon flow rates (AFRs). The impact on the electrical properties of the a-IGZO thin-film transistors with various AFRs during film growth has been carefully investigated. The AFR varied 20–60 sccm while the oxygen flow rate was maintained at 1 sccm. All a-IGZO films achieved transmittance higher than 80% in the wavelength range of 350–1000 nm, and it increased slightly with increasing AFR in the higher wavelength region. The rise in partial pressure due to increased AFR could affect the performance, in particular by increasing the current on/off ratio, and changes in electron mobility, sub-threshold swing voltage and threshold voltage. The optimal results were attained at AFR of 50 sccm. The field effect mobility, sub-threshold swing, ratio of on-current to the off-current, interfacial trap density and threshold voltage are 27.7 cm{sup 2}/V·s, 0.11 V/dec, 2.9 × 10{sup 8}, 1.1 × 10{sup 12} cm{sup −2} eV{sup −1} and 0.84 V, respectively. In addition, good electrical properties were achieved using dielectric SiO{sub 2} prepared by simple, low-cost electron beam evaporator system. - Highlights: • IGZO thin films RF-sputtered on glass substrates under various Ar to oxygen flow rates • The electrical performances and thin film quality of a-IGZO TFT were characterized. • High mobility 27.7 cm{sup 2}/V·s and very small sub-threshold voltage 0.11 V/decade obtained. • Simple and low cost electron-beam deposited SiO{sub 2} used as gate dielectric. • Ohmic behavior of source–drain with channel material has been achieved.

  15. Effects of argon flow rate on electrical properties of amorphous indium gallium zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Sahoo, A.K.; Wu, G.M.

    2016-01-01

    In this report, amorphous indium gallium zinc oxide (a-IGZO) thin films were deposited on glass substrates using different argon flow rates (AFRs). The impact on the electrical properties of the a-IGZO thin-film transistors with various AFRs during film growth has been carefully investigated. The AFR varied 20–60 sccm while the oxygen flow rate was maintained at 1 sccm. All a-IGZO films achieved transmittance higher than 80% in the wavelength range of 350–1000 nm, and it increased slightly with increasing AFR in the higher wavelength region. The rise in partial pressure due to increased AFR could affect the performance, in particular by increasing the current on/off ratio, and changes in electron mobility, sub-threshold swing voltage and threshold voltage. The optimal results were attained at AFR of 50 sccm. The field effect mobility, sub-threshold swing, ratio of on-current to the off-current, interfacial trap density and threshold voltage are 27.7 cm"2/V·s, 0.11 V/dec, 2.9 × 10"8, 1.1 × 10"1"2 cm"−"2 eV"−"1 and 0.84 V, respectively. In addition, good electrical properties were achieved using dielectric SiO_2 prepared by simple, low-cost electron beam evaporator system. - Highlights: • IGZO thin films RF-sputtered on glass substrates under various Ar to oxygen flow rates • The electrical performances and thin film quality of a-IGZO TFT were characterized. • High mobility 27.7 cm"2/V·s and very small sub-threshold voltage 0.11 V/decade obtained. • Simple and low cost electron-beam deposited SiO_2 used as gate dielectric. • Ohmic behavior of source–drain with channel material has been achieved.

  16. Evaluation of Antibacterial Enrofloxacin in Eggs by Matrix Solid Phase Dispersion-Flow Injection Chemiluminescence

    Directory of Open Access Journals (Sweden)

    Xiaocui Duan

    2014-01-01

    Full Text Available The study based on the chemiluminescence (CL reaction of potassium ferricyanide and luminol in sodium hydroxide medium, enrofloxacin (ENRO could dramatically enhance CL intensities and incorporated with matrix solid-phase dispersion (MSPD technique (Florisil used as dispersant, dichloromethane eluted the target compounds. A simple flow injection chemiluminescence (FL-CL method with MSPD technique for determination of ENRO in eggs was described. Under optimal conditions, the CL intensities were linearly related to ENRO concentration ranging from 4.0×10-8 g.L−1 to 5.0×10-5 g.L−1, with a correlation coefficient of 0.9989 and detection limit of 5.0×10-9 g.L−1. The relative standard deviation was 3.6% at an ENRO concentration of 2.0×10-6 g.L−1. Our testing technique can help ensure food safety, and thus, protect public health.

  17. Plastic flow and preferred orientation in molybdenum and zirconium films

    International Nuclear Information System (INIS)

    Window, B.

    1989-01-01

    X-ray diffraction measurements on samples of molybdenum and zirconium growth with ion assistance at low temperatures support the occurrence of plastic flow during growth, provided the level of bombardment is high enough. As the energy of the argon ions was increased, the lattice strain in the growth direction increased to a maximum before decreasing slowly. That this is a plastic flow transition is shown by the independence of the maximum strain on preparation conditions and by the changes in microstructure. In particular, the grain size in the growth direction decreased and the preferred orientation favored the usual wire drawing textures of these metals. For the zirconium films this involved a change in preferred orientation from a (00.2) to a (10.0) texture. A reduction in strain is observed at high bombardment levels

  18. Vapor generation rate model for dispersed drop flow

    International Nuclear Information System (INIS)

    Unal, C.; Tuzla, K.; Cokmez-Tuzla, A.F.; Chen, J.C.

    1991-01-01

    A comparison of predictions of existing nonequilibrium post-CHF heat transfer models with the recently obtained rod bundle data has been performed. The models used the experimental conditions and wall temperatures to predict the heat flux and vapor temperatures at the location of interest. No existing model was able to reasonably predict the vapor superheat and the wall heat flux simultaneously. Most of the models, except Chen-Sundaram-Ozkaynak, failed to predict the wall heat flux, while all of the models could not predict the vapor superheat data or trends. A recently developed two-region heat transfer model, the Webb-Chen two-region model, did not give a reasonable prediction of the vapor generation rate in the far field of the CHF point. A new correlation was formulated to predict the vapor generation rate in convective dispersed droplet flow in terms of thermal-hydraulic parameters and thermodynamic properties. A comparison of predictions of the two-region heat transfer model, with the use of a presently developed correlation, with all the existing post-CHF data, including single-tube and rod bundle, showed significant improvements in predicting the vapor superheat and tube wall heat flux trends. (orig.)

  19. Using Radiochromic Films to Characterize the Dispersion of ZrO{sub 2} Nano-sized Grain Clusters in Protective Polymer Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C.C.P.; Nolasco, A.V. [Depto. de Engenharia Nuclear - DEN / UFMG - MG, Av. Antonio Carlos 6627, 31270-970 Belo Horizonte, MG (Brazil); Santos, A.P.; Faria, L.O. [Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, C.P. 941, 30270-901, Belo Horizonte, MG (Brazil)

    2015-07-01

    . This result is discussed in terms of the high Z halides added to the sensitive layer of EB3 film, once the main components are C (42.3%), H (39.7%) and O (16.0%)1-2. Based on the above results, we have speculated about the abilities of XR-AQ films in the detection of the distribution of nano-sized particles that has high mass-energy attenuation coefficients for low energy x-rays, in polymer composites. In another investigation we tested the ability of XR-QA2 Gafchromic{sup R} films to evaluate the dispersion of ZrO{sub 2} nano-sized grain clusters in protective composites. The P(VDFTrFE)/ ZrO{sub 2} film was sandwiched between two XR-QA2 radiochromic films. In this setup, one radiochromic film is directly exposed to 100 mGy of the x-rays beam and another one measures the attenuated beam. After storage for 24 hours at room temperature under no light conditions, the irradiated radiochromic films were scanned under the same conditions in order to obtain a more reliable result. All films were scanned using the same size ROI in high resolution mode and saved as tagged image file format (TIFF). The untreated scanned image of the XR-AQ2 film directed exposed to the X-ray beam and the correspondent treated image with digital filters are shown. The untreated and treated image of the XR-AQ2 film that was exposed to the attenuated x-ray beam is shown. The image treated with digital filters seems to reproduce the dispersion of ZrO{sub 2} nano-sized grain clusters in the P(VDF-TrFE) copolymer matrix. This result is also discussed in terms of the high Z halides added to the sensitive layer of XR-AQ2 film and compared to the MEV images obtained from the P(VDF-TrFE)/ZrO{sub 2} composites. The results indicate a clear correlation between the 2D radiochromic image and the MEV photography.

  20. Properties of Nitrogen-Doped Zinc Telluride Films for Back Contact to Cadmium Telluride Photovoltaics

    Science.gov (United States)

    Shimpi, Tushar M.; Drayton, Jennifer; Swanson, Drew E.; Sampath, Walajabad S.

    2017-08-01

    Zinc telluride (ZnTe) films have been deposited onto uncoated glass superstrates by reactive radiofrequency (RF) sputtering with different amounts of nitrogen introduced into the process gas, and the structural and electronic transport properties of the resulting nitrogen-doped ZnTe (ZnTe:N) films characterized. Based on transmission and x-ray diffraction measurements, it was observed that the crystalline quality of the ZnTe:N films decreased with increasing nitrogen in the deposition process. The bulk carrier concentration of the ZnTe:N films determined from Hall-effect measurements showed a slight decrease at 4% nitrogen flow rate. The effect of ZnTe:N films as back contact to cadmium telluride (CdTe) solar cells was also investigated. ZnTe:N films were deposited before or after CdCl2 passivation on CdTe/CdS samples. Small-area devices were characterized for their electronic properties. Glancing-angle x-ray diffraction measurements and energy-dispersive spectroscopy analysis confirmed substantial loss of zinc from the samples where CdCl2 passivation was carried out after ZnTe:N film deposition.

  1. Liquid film thickness and interfacial wave propagate in venturi scrubber for filtered venting

    International Nuclear Information System (INIS)

    Nakao, Yasuhiro; Horiguchi, Naoki; Kanagawa, Tetsuya; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2016-01-01

    As one of filtered venting systems which should be installed in light water reactors from the viewpoint of protecting a containment vessel and suppressing the diffusion of radioactive materials, there is a system composed of venturi scrubbers. The radioactive materials in the contaminated gas are collected into liquid. By forming dispersed flow in the venturi scrubber, interfacial area between liquid and gas is enhanced, finally, large decontamination factor is realized. In evaluation for the decontamination performance of the venturi scrubber, interface characteristics of droplets and liquid film are important. In this study, as a part of evaluation method of the interfacial area, the liquid film thickness in the venturi scrubber was measured. And evaluate the results of investigation experimentally for each ruffling average thickness and liquid film in a fluidized condition. The cross section area of a venturi scrubber is a rectangular one manufactured a transparent acrylic for visualization. In the venturi scrubber, a pressure drop occurs in the throat part by the inflow of air from the compressor. Water flows from the tank by a pressure difference between a suctioned hole with head pressure and a throat part. An annular spray flow is then formed in the venturi scrubber. (author)

  2. Burn-out, Circumferential Film Flow Distribution and Pressure Drop for an Eccentric Annulus with Heated Rod

    DEFF Research Database (Denmark)

    Andersen, P. S.; Jensen, A.; Mannov, G.

    1974-01-01

    Measurements of (1) burn-out, (2) circumferential film flow distribution, and (3) pressure drop in a 17 × 27.2 × 3500 mm concentric and eccentric annulus geometry are presented. The eccentric displacement was varied between 0 and 3 mm. The working fluid was water. Burn-out curves at 70 bar...... flow variation on burn-out is discussed....

  3. Approximate solution of oil film load-carrying capacity of turbulent journal bearing with couple stress flow

    Science.gov (United States)

    Zhang, Yongfang; Wu, Peng; Guo, Bo; Lü, Yanjun; Liu, Fuxi; Yu, Yingtian

    2015-01-01

    The instability of the rotor dynamic system supported by oil journal bearing is encountered frequently, such as the half-speed whirl of the rotor, which is caused by oil film lubricant with nonlinearity. Currently, more attention is paid to the physical characteristics of oil film due to an oil-lubricated journal bearing being the important supporting component of the bearing-rotor systems and its nonlinear nature. In order to analyze the lubrication characteristics of journal bearings efficiently and save computational efforts, an approximate solution of nonlinear oil film forces of a finite length turbulent journal bearing with couple stress flow is proposed based on Sommerfeld and Ocvirk numbers. Reynolds equation in lubrication of a finite length turbulent journal bearing is solved based on multi-parametric principle. Load-carrying capacity of nonlinear oil film is obtained, and the results obtained by different methods are compared. The validation of the proposed method is verified, meanwhile, the relationships of load-carrying capacity versus eccentricity ratio and width-to-diameter ratio under turbulent and couple stress working conditions are analyzed. The numerical results show that both couple stress flow and eccentricity ratio have obvious influence on oil film pressure distribution, and the proposed method approximates the load-carrying capacity of turbulent journal bearings efficiently with various width-to-diameter ratios. This research proposes an approximate solution of oil film load-carrying capacity of turbulent journal bearings with different width-to-diameter ratios, which are suitable for high eccentricity ratios and heavy loads.

  4. The effect of the gas-liquid density ratio on the liquid film thickness in vertical upward annular flow

    International Nuclear Information System (INIS)

    Mori, Shoji; Okuyama, Kunito

    2010-01-01

    Annular two phase flow is encountered in many industrial equipments, including flow near nuclear fuel rods in boiling water reactor (BWR). Especially, disturbance waves play important roles in the pressure drop, the generation of entrainments, and the dryout of the liquid film. Therefore, it is important to clarify the behavior of disturbance waves and base film. However, most of the previous studies have been performed under atmospheric pressure conditions that provide the properties of liquid and gas which are significantly different from those of a BWR. Therefore, the effect of properties in gas and liquid on liquid film characteristics should be clarified. In this paper we focus on the effect of gas-liquid density ratio on liquid film thickness characteristics. The experiments have been conducted at four density ratio conditions (ρ L /ρ G =763, 451, 231, and 31). As a result, it was found that liquid film thickness characteristics including the effect of liquid/gas density ratios were well correlated with a gas Weber number and the liquid Reynolds number in the wide range of experimental conditions (ρ L /ρ G : 31-763, We: 10-1800, Re L : 500-2200). (author)

  5. Microstructure and magnetic properties of Co-doped ZnO films deposited by gas flow sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, H., E-mail: hsakuma@cc.utsunomiya-u.ac.jp [Research Division of Functional Materials Design, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585 (Japan); Watanabe, Y. [Research Division of Functional Materials Design, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585 (Japan); Aramaki, K.; Yun, K.S. [Sony Chemical and Information Device Corporation, 1078 Kamiishikawa, Kanuma 322-8503 (Japan); Ishii, K. [Research Division of Functional Materials Design, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585 (Japan); Ikeda, Y.; Kondo, H. [Sony Chemical and Information Device Corporation, 1078 Kamiishikawa, Kanuma 322-8503 (Japan)

    2010-10-15

    Co-doped ZnO films with a Co concentration of 8-20 at.% were fabricated using the low-energy process of gas flow sputtering. X-ray diffraction, X-ray photoelectron spectroscopy, and optical absorption measurements revealed that the Co ions replace Zn ions in the ZnO matrix and that the Co ions have an oxidation state of 2+. The magnetic properties of the film depend on the Co concentration. The plots of magnetization and inverse susceptibility vs. temperature indicate that the film with a high Co concentration (20 at.%) contains a ferromagnetic component, while that with a low Co concentration (8 at.%) contains an antiferromagnetic component. The film with an intermediate Co concentration (10 at.%) contains a ferromagnetic component with a low Curie temperature. Hysteresis was not found in magnetization curves for all the samples, including the sample at 5 K. The films exhibited a high resistivity of 4 x 10{sup 7}-2 x 10{sup 8} {Omega} cm at room temperature, and carrier-mediated magnetism is not likely to be applicable for the mechanisms of the magnetism in the films.

  6. Microstructure and magnetic properties of Co-doped ZnO films deposited by gas flow sputtering

    International Nuclear Information System (INIS)

    Sakuma, H.; Watanabe, Y.; Aramaki, K.; Yun, K.S.; Ishii, K.; Ikeda, Y.; Kondo, H.

    2010-01-01

    Co-doped ZnO films with a Co concentration of 8-20 at.% were fabricated using the low-energy process of gas flow sputtering. X-ray diffraction, X-ray photoelectron spectroscopy, and optical absorption measurements revealed that the Co ions replace Zn ions in the ZnO matrix and that the Co ions have an oxidation state of 2+. The magnetic properties of the film depend on the Co concentration. The plots of magnetization and inverse susceptibility vs. temperature indicate that the film with a high Co concentration (20 at.%) contains a ferromagnetic component, while that with a low Co concentration (8 at.%) contains an antiferromagnetic component. The film with an intermediate Co concentration (10 at.%) contains a ferromagnetic component with a low Curie temperature. Hysteresis was not found in magnetization curves for all the samples, including the sample at 5 K. The films exhibited a high resistivity of 4 x 10 7 -2 x 10 8 Ω cm at room temperature, and carrier-mediated magnetism is not likely to be applicable for the mechanisms of the magnetism in the films.

  7. Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank.

    Science.gov (United States)

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2010-09-01

    The effectiveness of chemical dispersants (Corexit 9500 and SPC 1000) on heavy fuel oil (IFO180 as test oil) has been evaluated under different wave conditions in a flow-through wave tank. The dispersant effectiveness was determined by measuring oil concentrations and droplet size distributions. An analysis of covariance (ANCOVA) model indicated that wave type and temperature significantly (p or = 400 microm). Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Effects of metal and 'magnetic wall' on the dispersion characteristic of magnetostatic waves

    International Nuclear Information System (INIS)

    Lock, Edwin H.; Vashkovsky, Anatoly V.

    2006-01-01

    The dispersion relation of magnetostatic waves tangentially magnetized to saturation ferrite film, with a 'magnetic wall' condition (tangential component of microwave magnetic field is equal to zero) on one of the film surface and with a metal condition on the opposite surface is analyzed. The dispersion characteristics show that unidirectional magnetostatic waves appear in this structure: they can transfer energy in one direction only and fundamentally cannot transfer energy in the opposite direction. The dispersion-free propagation of magnetostatic waves also is possible in the structure in a wide frequency interval

  9. Methods for estimating wake flow and effluent dispersion near simple block-like buildings

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1981-05-01

    This report is intended as an interim guide for those who routinely face air quality problems associated with near-building exhaust stack placement and height, and the resulting concentration patterns. Available data and methods for estimating wake flow and effluent dispersion near isolated block-like structures are consolidated. The near-building and wake flows are described, and quantitative estimates for frontal eddy size, height and extent of roof and wake cavities, and far wake behavior are provided. Concentration calculation methods for upwind, near-building, and downwind pollutant sources are given. For an upwind source, it is possible to estimate the required stack height, and to place upper limits on the likely near-building concentration. The influences of near-building source location and characteristics relative to the building geometry and orientation are considered. Methods to estimate effective stack height, upper limits for concentration due to flush roof vents, and the effect of changes in rooftop stack height are summarized. Current wake and wake cavity models are presented. Numerous graphs of important expressions have been prepared to facilitate computations and quick estimates of flow patterns and concentration levels for specific simple buildings. Detailed recommendations for additional work are given

  10. "Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow

    Science.gov (United States)

    Gorokhovski, M.; Chtab, A.

    2003-01-01

    The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.

  11. PETROLEUM-COLLECTING AND DISPERSING CHEMICALS FOR ...

    African Journals Online (AJOL)

    Preferred Customer

    Films of petroleum origin reflecting sunlight rays hinder absorption of energy by water necessary for life ... Dispersing chemicals like mechanical clean-up methods have their own place in fighting oil spills. They are ... yellow color, and filtered.

  12. Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows

    Science.gov (United States)

    Minier, Jean-Pierre; Profeta, Christophe

    2015-11-01

    This article analyzes the status of two classical one-particle probability density function (PDF) descriptions of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the process made up by particle position and velocity Zp=(xp,Up) and is represented by its PDF p (t ;yp,Vp) which is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem. The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity seen by particles Zp=(xp,Up,Us) , and, consequently, handles an extended PDF p (t ;yp,Vp,Vs) which is the solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that well-posed PDF descriptions are essentially due to a proper choice of the variables selected to describe physical systems

  13. Hydrogen reduction in GaAsN thin films by flow rate modulated chemical beam epitaxy

    International Nuclear Information System (INIS)

    Saito, K.; Nishimura, K.; Suzuki, H.; Ohshita, Y.; Yamaguchi, M.

    2008-01-01

    The amount of residual H in the GaAsN film grown by chemical beam epitaxy (CBE) can be decreased by flow rate modulation growth. Many H atoms in the films grown by CBE exist as N-H or N-H 2 structures. Although a higher growth temperature was required for decreasing the H concentration ([H]), it caused a decrease in the N concentration ([N]). A reduction in [H] while keeping [N] constant was necessary. By providing an intermittent supply of Ga source while continuously supplying As and N sources, [H] effectively decreased in comparison with the [H] value in the film grown at the same temperature by conventional CBE without reducing [N

  14. Analysis of the fluid flow and heat transfer in a thin liquid film in the presence and absence of gravity

    Science.gov (United States)

    Rahman, M. M.; Hankey, W. L.; Faghri, A.

    1991-01-01

    The hydrodynamic and thermal behavior of a thin liquid film flowing over a solid horizontal surface is analyzed for both plane and radially spreading flows. The situations where the gravitational force is completely absent and where it is significant are analyzed separately and their practical relevance to a micro-gravity environment is discussed. In the presence of gravity, in addition to Reynolds number, the Froude number of the film is found to be an important parameter that determines the supercritical and subcritical flow regimes and any associated hydraulic jump. A closed-form solution is possible under some flow situations, whereas others require numerical integration of ordinary differential equations. The approximate analytical results are found to compare well with the available two-dimensional numerical solutions.

  15. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  16. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering

    Science.gov (United States)

    Sarkar, S.; Das, N. S.; Chattopadhyay, K. K.

    2014-07-01

    BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV-Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.

  17. Effect of oxygen flow rate on ITO thin films deposited by facing targets sputtering

    International Nuclear Information System (INIS)

    Kim, Youn J.; Jin, Su B.; Kim, Sung I.; Choi, Yoon S.; Choi, In S.; Han, Jeon G.

    2010-01-01

    Tin-doped indium oxide (ITO) thin films were deposited on glass substrates at various oxygen flow rates using a planar magnetron sputtering system with facing targets. In this system, the strong internal magnets inside the target holders confine the plasma between the targets. High resolution transmission electron microscopy revealed a combination of amorphous and crystalline phases on the glass substrate. X-ray photoelectron spectroscopy suggested that the decrease in carrier concentration and increase in mobility were caused by a decrease in the concentration of Sn 4+ states. The electrical and optical properties of the ITO films were examined by Hall measurements and UV-visible spectroscopy, which showed a film resistivity and transmittance of 4.26 x l0 -4 Ω cm, and > 80% in the visible region, respectively.

  18. Characterization of non equilibrium effects on high quality critical flows

    International Nuclear Information System (INIS)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J.

    1995-01-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness

  19. Characterization of non equilibrium effects on high quality critical flows

    Energy Technology Data Exchange (ETDEWEB)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J. [Commissariat a l Energie Atomique, Grenoble (France)] [and others

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  20. A free-flowing soap film combined with cavity ring-down spectroscopy as a detection system for liquid chromatography.

    Science.gov (United States)

    Vogelsang, Markus; Welsch, Thomas; Jones, Harold

    2010-05-07

    We have shown that a free-flowing soap film has sufficiently high-quality optical properties to allow it to be used in the cavity of a ring-down spectrometer (CRDS). The flow rates required to maintain a stable soap film were similar to those used in liquid chromatography and thus allowed interfacing with an HPLC system for use as an optical detector. We have investigated the properties of the system in a relevant analytical application. The soap film/CRDS combination was used at 355 nm as a detector for the separation of a mixture of nitroarenes. These compounds play a role in the residue analysis of areas contaminated with explosives and their decomposition products. In spite of the short absorption path length (9 microm) obtained by the soap film, the high-sensitivity of CRDS allowed a limit of detection of 4 x 10(-6) in absorption units (AU) or less than 17 fmol in the detection volume to be achieved. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. The effect of a flat-plate-type obstacle on the thin liquid film accompanied by a high speed gas flow

    International Nuclear Information System (INIS)

    Fukano, Tohru; Kadoguchi, Katsuhiko; Kanamori, Mikio; Tominaga, Akira.

    1989-01-01

    A flatplate-type obstacle, which simulates a grid-type spacer in a nuclear reactor, is set in an air-water cocurrent stratified flow to investigate liquid film breakdown occurring near the obstacle. We made detailed visual observations and measurements of the velocity profile of the air flow and the axial distributions of liquid film thickness and static pressure near the obstacle. Experimental parameters were the inclination of the rectangular duct, the configuration of the obstacle, i.e., with and without a projection and a hole, which is bored in order to delay the onset of dry patch formation near the obstacle and the gap between the plate and the lower-wall surface. The results show that the plate itself does not promote dry patch formation but the projection, even if it is in contact with the wall surface at only one point, has a strong effect on the liquid film breakdown. In general the film breakdown occurs in front of the projection in a wide range of flow conditions due to the leading edge down-wash of the stream and due also to the rejection of water by gravitational force in the case of the upward flow in the inclined duct. By setting a hole in or in front of the projection the occurrence of the dry patch formation is delayed. (author)

  2. Experimental convective heat transfer characterization of pulsating jet in cross flow: influence of Strouhal number excitation on film cooling effectiveness

    International Nuclear Information System (INIS)

    Lalizel, Gildas; Sultan, Qaiser; Fénot, Matthieu; Dorignac, Eva

    2012-01-01

    In actual gas turbine system, unsteadiness of the mainstream flow influences heat transfer and surface pressure distribution on the blade. In order to simulate these conditions, an experimental film cooling study with externally imposed pulsation is performed with purpose of characterizing both effects of turbine unsteadiness on film cooling (with frequency ranges typical to actual turbine), and also to figure out the range of Strouhal number pulsation under various blowing conditions, which could possibly deliver a performance improvement in film cooling. Influence of injection flow pulsation on adiabatic effectiveness and convective heat transfer coefficient are determined from IR-thermography of the wall for distances to the hole exit between 0 and 30 D.

  3. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  4. Two-phase heat and mass transfer in turbulent parallel and countercurrent flows of liquid film and gas

    International Nuclear Information System (INIS)

    Kholpanov, L.P.; Babak, T.B.; Babak, V.N.; Malyusov, V.A.; Zhavoronkov, N.M.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1980-01-01

    To determine the ways of intensification of heat and mass transfer processes, the direct flow and counterflow heat and mass transfer is analytically investigated during the turbulent flow of a liquid and gas film on the basis of solving the energy equation for liquid and gas film, i.e. the two-phase film heat transfer is investigated from the position of a conjugate task. The analysis of the two-phase heat transfer has shown that it is necessary to know the position of each point in a plane before using this or that formula. Depending on its position on this plane, the heat transfer process will be determined by one or two phases only. It is found, that in the case of a single-phase heat transfer the temperature on the surface remains stable over the channel length. In the case of a two-phase heat transfer it can significantly change over the channel length [ru

  5. On the relative importance of vegetation terms in computational fluid dynamics on flow and Dispersion in the urban environment

    NARCIS (Netherlands)

    Gromke, C.B.; Blocken, B.J.E.

    2013-01-01

    The relative importance of vegetation terms was analysed for flow and dispersion in an urban street canyon with avenue-trees. To this end, simulations with three k-e turbulence models and different approaches to model vegetation were performed. The different approaches resulted in rather slight

  6. Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Beisel, A. M.; Ferrari, A.; Thome, J. R.

    2017-11-01

    The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca = 0.001- 0.5 and Re = 0.1- 2000 . Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We = Ca Re , is the parameter that best describes the dynamics of the interfacial waves. When We 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil.

  7. Current flow in a 3-terminal thin film contact with dissimilar materials and general geometric aspect ratios

    International Nuclear Information System (INIS)

    Zhang Peng; Hung, Derek M H; Lau, Y Y

    2013-01-01

    The current flow pattern, together with the contact resistance, is calculated analytically in a Cartesian 3-terminal thin film contact with dissimilar materials. The resistivities and the geometric dimensions in the individual contact members, as well as the terminal voltages, may assume arbitrary values. We show that the current flow patterns and the contact resistance may be conveniently decomposed into the even and odd solution. The even solution gives exclusively and totally the current flowing from the source to the gate. The odd solution gives exclusively and totally the current flowing from the source to the drain. Current crowding at the edges, and current partition in different regions are displayed. The analytic solutions are validated using a simulation code. The bounds on the variation of the contact resistance are given. This paper may be considered as the generalization of the transmission line model and the Kennedy-Murley model that were used extensively in the characterization of thin-film devices. For completeness, we include the general results for the cylindrical geometry, which are qualitatively similar to the even solution of the Cartesian geometry.

  8. Modification of gellan gum films by halloysite: physicochemical evaluation and drug permeation properties.

    Science.gov (United States)

    Sakloetsakun, Duangkamon; Pongjanyakul, Thaned

    2017-03-01

    The aim of this study was to determine the potential of gellan gum (GG) and halloysite (HS) dispersions at different mixing ratios and to investigate the potential of GG-HS dispersions in film formation. To this end, the dispersions and films were characterized. The dispersions formed films with large particles ranging from 3 to 4 μm in size, with a zeta potential of ∼-35 mV. The GG-HS films were fabricated using a solvent-casting technique, which generated films with a white opaque appearance and rough surface. The GG-HS films were formed via hydrogen bonding and electrostatic interactions at the inner cavity and outer surface, as confirmed by ATR-FTIR spectroscopy and X-ray diffractometry. The %water uptake and erosion of the GG-HS film decreased with increasing HS content, whereas both puncture strength and elongation were increased in the GG-HS ratios of 1:0.4 and 1:1.2. Moreover, addition of HS into the GG films could possibly decrease drug permeability coefficient when using higher HS ratio in acidic and neutral media. These results suggested that HS modifies the characteristics of the GG used to coat modified-release tablets.

  9. Effect of annealing time and NH3 flow on GaN films deposited on amorphous SiO2 by MOCVD

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Xu, Bingshe

    2018-05-01

    GaN polycrystalline films were successfully grown on amorphous SiO2 by metal-organic chemical vapour deposition to fabricate transferable devices using inorganic films. Field-emission scanning electron microscopy images show that by prolonging the annealing time, re-evaporation is enhanced, which reduced the uniformity of the nucleation layer and GaN films. X-ray diffraction patterns indicate that the decomposition rate of the nucleation layer increases when the annealing flow rate of NH3 is 500 sccm, which makes the unstable plane and amorphous domains decompose rapidly, thereby improving the crystallinity of the GaN films. Photoluminescence spectra also indicate the presence of fewer defects when the annealing flow rate of NH3 is 500 sccm. The excellent crystal structure of the GaN films grown under optimized conditions was revealed by transmission electron microscopy analysis. More importantly, the crystal structure and orientation of GaN grown on SiO2 are the same as that of GaN grown on conventional sapphire substrate when a buffer layer is used. This work can aid in the development of transferable devices using GaN films.

  10. Intercomparison of dispersed radiation readings among film dosimetry, electronic and OSL with X-rays for low dose; Intercomparacion de lecturas de radiacion dispersa entre dosimetria film, electronica y OSL con rayos X para dosis bajas

    Energy Technology Data Exchange (ETDEWEB)

    Andisco, D. [Universidad de Buenos Aires, Facultad de Medicina, Paraguay 2155, C1121AAA Buenos Aires (Argentina); Blanco, S. [CONICET, Saavedra 15, C1083ACA Buenos Aires (Argentina); Bourel, V.; Schmidt, L. [Universidad Favaloro, Facultad de Ciencias e Ingenieria, Solis 453, C1078AAI, Buenos Aires (Argentina); Di Risio, C., E-mail: dandisco@fmed.uba.ar [Universidad de Belgrano, Facultad de Ingenieria, Zabala 1837, C1426DQG, Buenos Aires (Argentina)

    2014-08-15

    One of the personal dosimetry methods more used for several decades is the dosimetry type film, characterized to possess readings with certain margin of trust. Today other methods exist that many times are presupposed more reliable due to the nature of the detection like the electronic dosimeters or the OSL (Optically Stimulated Luminescence) dosimetry. With the purpose of comparing different methods and to can determining the existent differences among each method has been carried out an intercomparison assay. The different dosimeters have been exposed to dispersed radiation generated by a Hemodynamics equipment of the type -arch in C- and a dispersing system of the primary beam. Film dosimeters have been used; OSL (In Light), OSL (Nano Dots) and Electronic with the purpose of knowing and to valorize the existent differences among its readings. Always, the intercomparison exercises have demonstrated to be an useful tool when establishing the measurement capacity and the quality of the results emitted by the laboratories of personal dosimetry services. Also, this type of assays allows obtaining quality indicators of the laboratory performance and they are habitual part of the procedures for accreditation of the same ones. The Optically Stimulated Luminescence is a technology that has grown in Argentina so much in the area of personal dosimetry as in dosimetry in vivo (radiotherapy area). In this intercomparison study, the answers corresponding to each technology were looked for oneself irradiation of the disperse type, that is to say, of very low energy. (Author)

  11. HCl Flow-Induced Phase Change of α-, β-, and ε-Ga2O3 Films Grown by MOCVD

    KAUST Repository

    Sun, Haiding

    2018-03-06

    Precise control of the heteroepitaxy on a low-cost foreign substrate is often the key to drive the success of fabricating semiconductor devices in scale when a large low-cost native substrate is not available. Here, we successfully synthesized three different phases of Ga2O3 (α, β, and ε) films on c-plane sapphire by only tuning the flow rate of HCl along with other precursors in an MOCVD reactor. A 3-fold increase in the growth rate of pure β-Ga2O3 was achieved by introducing only 5 sccm of HCl flow. With continuously increased HCl flow, a mixture of β- and ε-Ga2O3 was observed, until the Ga2O3 film transformed completely to a pure ε-Ga2O3 with a smooth surface and the highest growth rate (∼1 μm/h) at a flow rate of 30 sccm. At 60 sccm, we found that the film tended to have a mixture of α- and ε-Ga2O3 with a dominant α-Ga2O3, while the growth rate dropped significantly (∼0.4 μm/h). The film became rough as a result of the mixture phases since the growth rate of ε-Ga2O3 is much higher than that of α-Ga2O3. In this HCl-enhanced MOCVD mode, the Cl impurity concentration was almost identical among the investigated samples. On the basis of our density functional theory calculation, we found that the relative energy between β-, ε-, and α-Ga2O3 became smaller, thus inducing the phase change by increasing the HCl flow in the reactor. Thus, it is plausible that the HCl acted as a catalyst during the phase transformation process. Furthermore, we revealed the microstructure and the epitaxial relationship between Ga2O3 with different phases and the c-plane sapphire substrates. Our HCl-enhanced MOCVD approach paves the way to achieving highly controllable heteroepitaxy of Ga2O3 films with different phases for device applications.

  12. Effect of various nitrogen flow ratios on the optical properties of (Hf:N-DLC films prepared by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Meng Qi

    2017-08-01

    Full Text Available Hf and N co-doped diamond-like carbon [(Hf:N-DLC] films were deposited on 316L stainless steel and glass substrates through reactive magnetron sputtering of hafnium and carbon targets at various nitrogen flow ratios (R=N2/[N2+CH4+Ar]. The effects of chemical composition and crystal structure on the optical properties of the (Hf:N-DLC films were studied. The obtained films consist of uniform HfN nanocrystallines embedded into the DLC matrix. The size of the graphite clusters with sp2 bonds (La and the ID/IG ratio increase to 2.47 nm and 3.37, respectively, with increasing R. The optical band gap of the films decreases from 2.01 eV to 1.84 eV with increasing R. This finding is consistent with the trends of structural transformations and could be related to the increase in the density of π-bonds due to nitrogen incorporation. This paper reports the influence of nitrogen flow ratio on the correlation among the chemical composition, crystal structure, and optical properties of (Hf:N-DLC films.

  13. Carbon nanotube-TiO(2) hybrid films for detecting traces of O(2).

    Science.gov (United States)

    Llobet, E; Espinosa, E H; Sotter, E; Ionescu, R; Vilanova, X; Torres, J; Felten, A; Pireaux, J J; Ke, X; Van Tendeloo, G; Renaux, F; Paint, Y; Hecq, M; Bittencourt, C

    2008-09-17

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO(2) films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. ≤10 ppm) in a flow of CO(2), which is of interest for the beverage industry.

  14. Carbon nanotube-TiO2 hybrid films for detecting traces of O2

    International Nuclear Information System (INIS)

    Llobet, E; Espinosa, E H; Sotter, E; Ionescu, R; Vilanova, X; Torres, J; Felten, A; Pireaux, J J; Ke, X; Tendeloo, G Van; Renaux, F; Paint, Y; Hecq, M; Bittencourt, C

    2008-01-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO 2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. ≤10 ppm) in a flow of CO 2 , which is of interest for the beverage industry

  15. Flow induced dispersion analysis rapidly quantifies proteins in human plasma samples

    DEFF Research Database (Denmark)

    Poulsen, Nicklas N; Andersen, Nina Z; Østergaard, Jesper

    2015-01-01

    Rapid and sensitive quantification of protein based biomarkers and drugs is a substantial challenge in diagnostics and biopharmaceutical drug development. Current technologies, such as ELISA, are characterized by being slow (hours), requiring relatively large amounts of sample and being subject...... to cumbersome and expensive assay development. In this work a new approach for quantification based on changes in diffusivity is presented. The apparent diffusivity of an indicator molecule interacting with the protein of interest is determined by Taylor Dispersion Analysis (TDA) in a hydrodynamic flow system...... in a blood plasma matrix), fully automated, and being subject to a simple assay development. FIDA is demonstrated for quantification of the protein Human Serum Albumin (HSA) in human plasma as well as for quantification of an antibody against HSA. The sensitivity of the FIDA assay depends on the indicator...

  16. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xiangjun, Lu [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, Jiangsu (China); Dou Hui, E-mail: dh_msc@nuaa.edu.cn [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, Jiangsu (China); Bo, Gao [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, Jiangsu (China); Changzhou, Yuan [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Yang, Sudong; Liang, Hao; Laifa, Shen [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, Jiangsu (China); Zhang Xiaogang, E-mail: azhangxg@nuaa.edu.cn [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, Jiangsu (China)

    2011-05-30

    Highlights: > A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film fabricated by flow-directed assembly and hydrazine to reduce. > The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets. > The freestanding GN/MWCNT film has a potential application in flexible energy storage devices. - Abstract: A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film has been fabricated by flow-directed assembly from a complex dispersion of graphite oxide (GO) and pristine MWCNTs followed by the use of gas-based hydrazine to reduce the GO into GN sheets. The GN/MWCNT (16 wt.% MWCNTs) film characterized by Fourier transformation infrared spectra, X-ray diffraction and scanning electron microscope has a layered structure with MWCNTs uniformly sandwiched between the GN sheets. The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets, increasing electrolyte/electrode contact area and facilitating transportation of electrolyte ion and electron into the inner region of electrode. Electrochemical data demonstrate that the GN/MWCNT film possesses a specific capacitance of 265 F g{sup -1} at 0.1 A g{sup -1} and a good rate capability (49% capacity retention at 50 A g{sup -1}), and displays an excellent specific capacitance retention of 97% after 2000 continuous charge/discharge cycles. The results of electrochemical measurements indicate that the freestanding GN/MWCNT film has a potential application in flexible energy storage devices.

  17. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors

    International Nuclear Information System (INIS)

    Lu Xiangjun; Dou Hui; Gao Bo; Yuan Changzhou; Yang, Sudong; Hao Liang; Shen Laifa; Zhang Xiaogang

    2011-01-01

    Highlights: → A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film fabricated by flow-directed assembly and hydrazine to reduce. → The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets. → The freestanding GN/MWCNT film has a potential application in flexible energy storage devices. - Abstract: A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film has been fabricated by flow-directed assembly from a complex dispersion of graphite oxide (GO) and pristine MWCNTs followed by the use of gas-based hydrazine to reduce the GO into GN sheets. The GN/MWCNT (16 wt.% MWCNTs) film characterized by Fourier transformation infrared spectra, X-ray diffraction and scanning electron microscope has a layered structure with MWCNTs uniformly sandwiched between the GN sheets. The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets, increasing electrolyte/electrode contact area and facilitating transportation of electrolyte ion and electron into the inner region of electrode. Electrochemical data demonstrate that the GN/MWCNT film possesses a specific capacitance of 265 F g -1 at 0.1 A g -1 and a good rate capability (49% capacity retention at 50 A g -1 ), and displays an excellent specific capacitance retention of 97% after 2000 continuous charge/discharge cycles. The results of electrochemical measurements indicate that the freestanding GN/MWCNT film has a potential application in flexible energy storage devices.

  18. A study of the dispersed flow interfacial heat transfer model of RELAP5/MOD2.5 and RELAP5/MOD3

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, M. [Swiss Federal Institute of Technology, Zurich (Switzerland); Analytis, G.T.; Aksan, S.N. [Paul Scherrer Institute, Villigen (Switzerland)

    1995-09-01

    The model of interfacial heat transfer for the dispersed flow regime used in the RELAP5 computer codes is investigated in the present paper. Short-transient calculations of two low flooding rate tube reflooding experiments have been performed, where the hydraulic conditions and the heat input to the vapour in the post-dryout region were controlled for the predetermined position of the quench front. Both RELAP5/MOD2.5 and RELAP5/MOD3 substantially underpredicted the exit vapour temperature. The mass flow rate and quality, however, were correct and the heat input to the vapour was larger than the actual one. As the vapour superheat at the tube exit depends on the balance between the heat input from the wall and the heat exchange with the droplets, the discrepancy between the calculated and the measured exit vapour temperature suggested that the inability of both codes to predict the vapour superheat in the dispersed flow region is due to the overprediction of the interfacial heat transfer rate.

  19. Tuning the optical properties of RF-PECVD grown μc-Si:H thin films using different hydrogen flow rate

    Science.gov (United States)

    Dushaq, Ghada; Nayfeh, Ammar; Rasras, Mahmoud

    2017-07-01

    In this paper we study the effect of H2/SiH4 dilution ratio (R) on the structural and optical properties of hydrogenated microcrystalline silicon embedded in amorphous matrix thin films. The thin films are prepared using standard RF-PECVD process at substrate temperature of 200 °C. The effect of hydrogen dilution ratio on the optical index of refraction and the absorption coefficient were investigated. It was observed that by incorporating higher hydrogen flow rate in the films with low SiH4 concentration, the optical index of refraction can be tuned over a broad range of wavelengths due to the variation of crystalline properties of the produced films. By varying the hydrogen flow of μc-Si:H samples, ∼8% and 12% reduction in the index of refraction at 400 nm and at 1500 nm can be achieved, respectively. In addition a 78% reduction in surface roughness is obtained when 60sccm of H2 is used in the deposition compared to the sample without any H2 incorporation.

  20. Large Eddy Simulation of Turbulence Modification and Particle Dispersion in a Fully-Developed Pipe Flow

    Science.gov (United States)

    Rani, Sarma; Pratap Vanka, Surya

    1999-11-01

    A LES study of the modification of turbulence in a fully-developed turbulent pipe flow by dispersed heavy particles at Re_τ = 360 is presented. A 64 (radial) x 64 (azimuthal) x 128 (axial) grid has been used. An Eulerian-Lagrangian approach has been used for treating the continuous and the dispersed phases respectively. The particle equation of motion included only the drag force. Three different LES models are used in the continuous fluid simulation: (i) A “No-Model” LES (coarse-grid DNS) (ii) Smagorinsky’s model and (iii) Schumann’s model . The motivation behind employing the Schumann’s model is to study the impact of sub-grid-scale fluctuations on the particle motion and their (SGS fluctuations) modulation, in turn, by the particles. The effect of particles on fluid turbulence is investigated by tracking 100000 particles of different diameters. Our studies confirm the preferential concentration of particles in the near wall region. It is observed that the inclusion of two-way coupling reduces the preferential concentration of particles. In addition, it was found that two-way coupling attenuates the fluid turbulence. However, we expect the above trends to differ depending upon the particle diameter, volumetric and mass fractions. The effect of SGS fluctuations on the particle dispersion and turbulence modulation is also being investigated. Other relevant statistics for the continuous and the dispersed phases are collected for the cases of one-way and two-way coupling. These statistics are compared to study the modulation of turbulence by the particles.

  1. An interfacial shear term evaluation study for adiabatic dispersed air–water two-phase flow with the two-fluid model using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Schlegel, J.P. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Buchanan, J.R.; Hogan, K.J. [Bettis Laboratory, Naval Nuclear Laboratory, West Mifflin, PA (United States); Guilbert, P.W. [ANSYS UK Ltd, Oxfordshire (United Kingdom)

    2017-02-15

    Highlights: • Closure form of the interfacial shear term in three-dimensional form is investigated. • Assessment against adiabatic upward bubbly air–water flow data using CFD. • Effect of addition of the interfacial shear term on the phase distribution. - Abstract: In commercially available Computational Fluid Dynamics (CFD) codes such as ANSYS CFX and Fluent, the interfacial shear term is missing in the field momentum equations. The derivation of the two-fluid model (Ishii and Hibiki, 2011) indicates the presence of this term as a momentum source in the right hand side of the field momentum equation. The inclusion of this term is considered important for proper modeling of the interfacial momentum coupling between phases. For separated flows, such as annular flow, the importance of the shear term is understood in the one-dimensional (1-D) form as the major mechanism by which the wall shear is transferred to the gas phase (Ishii and Mishima, 1984). For gas dispersed two-phase flow CFD simulations, it is important to assess the significance of this term in the prediction of phase distributions. In the first part of this work, the closure of this term in three-dimensional (3-D) form in a CFD code is investigated. For dispersed gas–liquid flow, such as bubbly or churn-turbulent flow, bubbles are dispersed in the shear layer of the continuous phase. The continuous phase shear stress is mainly due to the presence of the wall and the modeling of turbulence through the Boussinesq hypothesis. In a 3-D simulation, the continuous phase shear stress can be calculated from the continuous fluid velocity gradient, so that the interfacial shear term can be closed using the local values of the volume fraction and the total stress of liquid phase. This form also assures that the term acts as an action-reaction force for multiple phases. In the second part of this work, the effect of this term on the volume fraction distribution is investigated. For testing the model two

  2. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseeva, Yu. V., E-mail: fedoseeva@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Pozdnyakov, G.A. [Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk 630090 (Russian Federation); Okotrub, A.V.; Kanygin, M.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nastaushev, Yu. V. [Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Vilkov, O.Y. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-11-01

    Highlights: • A deposition of supersonic methane plasma flow on silicon substrate produces amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) film. • The thickness, composition, and wettability of the film depend on the substrate temperature. • A rise of the substrate temperature from 500 to 700 °C promotes the sp{sup 3}-hybridization carbon formation. - Abstract: Since amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of CO{sub x}H{sub y} films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the CO{sub x}H{sub y} films, deposited at 300 and 500 °C, were mainly composed of the sp{sup 2}-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  3. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a stationary and rotating disk and comparison with experimental data

    Science.gov (United States)

    Faghri, Amir; Swanson, Theodore D.

    1990-01-01

    In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.

  4. Surface energy of amorphous carbon films containing iron

    International Nuclear Information System (INIS)

    Chen, J. S.; Lau, S. P.; Tay, B. K.; Chen, G. Y.; Sun, Z.; Tan, Y. Y.; Tan, G.; Chai, J. W.

    2001-01-01

    Iron containing diamond-like amorphous carbon (a-C:Fe) films were deposited by filtered cathodic vacuum arc technique. The influences of Fe content and substrate bias on the surface energy of the films were investigated. The surface energy of a-C:Fe films was determined by the contact angle measurement. Atomic force microscopy, Raman spectroscopy, and x-ray induced photoelectron spectroscopy were employed to analyze the origin of the variation of surface energy with various Fe content and substrate bias. It is found that the contact angle for water increases significantly after incorporating Fe into the films and the films become hydrophobic. The roughness of these films has no effect on the contact angle. The surface energy is reduced from 42.8 to 25 dyne/cm after incorporating Fe into the a-C film (10% Fe in the target), which is due to the reduction of both dispersive and polar component. The reduction in dispersive component is ascribed to the decrease of atomic density of the a-C:Fe films due to the increase in sp 2 bonded carbon. When sp 2 content increases to some extent, the atomic density remains constant and hence dispersive component does not change. The absorption of oxygen on the surface plays an important role in the reduction of the polar component for the a-C:Fe films. It is proposed that such network as (C n - O - Fe) - O - (Fe - O - C n ) may be formed and responsible for the reduction of polar component. [copyright] 2001 American Institute of Physics

  5. Determination of the diffusivity, dispersion, skewness and kurtosis in heterogeneous porous flow. Part I: Analytical solutions with the extended method of moments.

    Science.gov (United States)

    Ginzburg, Irina; Vikhansky, Alexander

    2018-05-01

    The extended method of moments (EMM) is elaborated in recursive algorithmic form for the prediction of the effective diffusivity, the Taylor dispersion dyadic and the associated longitudinal high-order coefficients in mean-concentration profiles and residence-time distributions. The method applies in any streamwise-periodic stationary d-dimensional velocity field resolved in the piecewise continuous heterogeneous porosity field. It is demonstrated that EMM reduces to the method of moments and the volume-averaging formulation in microscopic velocity field and homogeneous soil, respectively. The EMM simultaneously constructs two systems of moments, the spatial and the temporal, without resorting to solving of the high-order upscaled PDE. At the same time, the EMM is supported with the reconstruction of distribution from its moments, allowing to visualize the deviation from the classical ADE solution. The EMM can be handled by any linear advection-diffusion solver with explicit mass-source and diffusive-flux jump condition on the solid boundary and permeable interface. The prediction of the first four moments is decisive in the optimization of the dispersion, asymmetry, peakedness and heavy-tails of the solute distributions, through an adequate design of the composite materials, wetlands, chemical devices or oil recovery. The symbolic solutions for dispersion, skewness and kurtosis are constructed in basic configurations: diffusion process and Darcy flow through two porous blocks in "series", straight and radial Poiseuille flow, porous flow governed by the Stokes-Brinkman-Darcy channel equation and a fracture surrounded by penetrable diffusive matrix or embedded in porous flow. We examine the moments dependency upon porosity contrast, aspect ratio, Péclet and Darcy numbers, but also for their response on the effective Brinkman viscosity applied in flow modeling. Two numerical Lattice Boltzmann algorithms, a direct solver of the microscopic ADE in heterogeneous

  6. Numerical modeling of flows and pollutant dispersion within and above urban street canyons under unstable thermal stratification by large-eddy simulation

    Science.gov (United States)

    Chan, Ming-Chung; Liu, Chun-Ho

    2013-04-01

    Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the

  7. Effect of Annealing Temperature and Oxygen Flow in the Properties of Ion Beam Sputtered SnO-₂x Thin Films.

    Science.gov (United States)

    Wang, Chun-Min; Huang, Chun-Chieh; Kuo, Jui-Chao; Sahu, Dipti Ranjan; Huang, Jow-Lay

    2015-08-14

    Tin oxide (SnO 2-x ) thin films were prepared under various flow ratios of O₂/(O₂ + Ar) on unheated glass substrate using the ion beam sputtering (IBS) deposition technique. This work studied the effects of the flow ratio of O₂/(O₂ + Ar), chamber pressures and post-annealing treatment on the physical properties of SnO₂ thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. In addition, the surface RMS roughness was measured with atomic force microscopy (AFM). Auger electron spectroscopy (AES) analysis was used to obtain the changes of elemental distribution between tin and oxygen atomic concentration. The electrical property is discussed with attention to the structure factor.

  8. Film Cooling Optimization Using Numerical Computation of the Compressible Viscous Flow Equations and Simplex Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmed M. Elsayed

    2013-01-01

    Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.

  9. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  10. Tracer dispersion in planar multipole flows

    International Nuclear Information System (INIS)

    Koplik, J.; Redner, S.; Hinch, E.J.

    1994-01-01

    We study the motion of passive Brownian tracer particles in steady two-dimensional potential flows between sources and sinks. Our primary focus is understanding the long-time properties of the transit time probability distribution for the tracer to reach the sink p(t) and the influence of the flow geometry on this probability. A variety of illustrative case studies is considered. For radial potential flow in an annular region, competition between convection and diffusion leads to nonuniversal decay of the transit time probability. Dipolar and higher multipole flows are found to exhibit generic features, such as a power-law decay in p(t) with an exponent determined by the multipole moment, an exponential cutoff related to stagnation points, and a ''shoulder'' in p(t) that is related to reflection from the system boundaries. For spatially extended sinks, it is also shown that the spatial distribution of the collected tracer is independent of the overall magnitude of the flow field and that p(t) decays as a power law with a geometry-dependent exponent. Our results may offer the possibility of using tracer measurements to characterize the flow geometry of porous media

  11. Preparation and Characterization of Space Durable Polymer Nanocomposite Films from Functionalized Carbon Nanotubes

    Science.gov (United States)

    Delozier, D. M.; Connell, J. W.; Smith, J. G.; Watson, K. A.

    2003-01-01

    Low color, flexible, space durable polyimide films with inherent, robust electrical conductivity have been under investigation as part of a continuing materials development activity for future NASA space missions involving Gossamer structures. Electrical conductivity is needed in these films to dissipate electrostatic charge build-up that occurs due to the orbital environment. One method of imparting conductivity is through the use of single walled carbon nanotubes (SWNTs). However, the incompatibility and insolubility of the SWNTs severely hampers their dispersion in polymeric matrices. In an attempt to improve their dispersability, SWNTs were functionalized by the reaction with an alkyl hydrazone. After this functionalization, the SWNTs were soluble in select solvents and dispersed more readily in the polymer matrix. The functionalized SWNTs were characterized by Raman spectroscopy and thermogravimetric analysis (TGA). The functionalized nanotubes were dispersed in the bulk of the films using a solution technique. The functionalized nanotubes were also applied to the surface of polyimide films using a spray coating technique. The resultant polyimide nanocomposite films were evaluated for nanotube dispersion, electrical conductivity, mechanical, and optical properties and compared with previously prepared polyimide-SWNT samples to assess the effects of SWNT functionalization.

  12. Longitudinal dispersion of radioactive substances in Federal waterways

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W.J. [Bundesanstalt fuer Gewaesserkunde (BfG), Koblenz (Germany); Speer, W.; Luellwitz, T.; Cremer, M.; Tolksdorf, W.

    2007-08-15

    In the context of radioactivity monitoring in German Federal Waterways (BWStr) by the Federal Institute of Hydrology (BfG) according to the Precautionary Radiation Protection Act (StrVG), the prediction of the dispersion of radioactive substances in water is one of the key tasks. The aim is the forecasting of the longitudinal dispersion of concentrations of soluble hazardous substances in flowing water. These predictions are based on the so-called dispersion tests with tritium as a tracer that the BfG has performed since 1980. Characteristic parameters like discharge-dependent flow velocities, dispersion and elimination constants related to emission sources or selected river sections are determined. They will serve as basis for a mathematical model to forecast discharge-dependent flow velocities, expected impact times, concentration maxima, and the duration of critical increases in concentrations. In the following, the results obtained till now from three investigation campaigns on the River Weser and its source rivers Werra and Fulda are described. (orig.)

  13. Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi; Fukano, Tatsuo; Ohta, Shingo; Seno, Yoshiki; Katagiri, Hironori; Jimbo, Kazuo

    2012-01-01

    Highlights: ► Cu 2 ZnSnS 4 thin films as a solar cell material were synthesized. ► The wavelength dependences of the diffraction intensity were measured. ► The crystal structures were clearly identified as kesterite structure for all samples. ► Crystal structure analysis revealed that the atomic compositions were Cu/(Zn + Sn) = 0.97 and Zn/Sn = 1.42 for the sample synthesized using stoichiometric amount of starting materials. - Abstract: The crystal structure of Cu 2 ZnSnS 4 (CZTS) thin films fabricated by vapor-phase sulfurization was determined using X-ray anomalous dispersion. High statistic synchrotron radiation X-ray diffraction data were collected from very small amounts of powder. By analyzing the wavelength dependencies of the diffraction peak intensities, the crystal structure was clearly identified as kesterite. Rietveld analysis revealed that the atomic composition deviated from stoichiometric composition, and the compositions were Cu/(Zn + Sn) = 0.97, and Zn/Sn = 1.42.

  14. Effects of experimental snowmelt and rain on dispersal of six plant species

    NARCIS (Netherlands)

    Sarneel, J. M.

    2016-01-01

    Water flows affect dispersal of propagules of many plant species, and rivers and streams are therefore very important dispersal vectors. However, small water flows such as trough rain and snowmelt are much more common, but their effects on dispersal are barely studied. The importance of this form of

  15. Manipulation and control of instabilities for surfactant-laden liquid film flowing down an inclined plane using a deformable solid layer

    Science.gov (United States)

    Tomar, Dharmendra S.; Sharma, Gaurav

    2018-01-01

    We analyzed the linear stability of surfactant-laden liquid film with a free surface flowing down an inclined plane under the action of gravity when the inclined plane is coated with a deformable solid layer. For a flow past a rigid incline and in the presence of inertia, the gas-liquid (GL) interface is prone to the free surface instability and the presence of surfactant is known to stabilize the free surface mode when the Marangoni number increases above a critical value. The rigid surface configuration also admits a surfactant induced Marangoni mode which remains stable for film flows with a free surface. This Marangoni mode was observed to become unstable for a surfactant covered film flow past a flexible inclined plane in a creeping flow limit when the wall is made sufficiently deformable. In view of these observations, we investigate the following two aspects. First, what is the effect of inertia on Marangoni mode instability induced by wall deformability? Second, and more importantly, whether it is possible to use a deformable solid coating to obtain stable flow for the surfactant covered film for cases when the Marangoni number is below the critical value required for stabilization of free surface instability. In order to explore the first question, we continued the growth rates for the Marangoni mode from the creeping flow limit to finite Reynolds numbers (Re) and observed that while the increase in Reynolds number has a small stabilizing effect on growth rates, the Marangoni mode still remains unstable for finite Reynolds numbers as long as the wall is sufficiently deformable. The Marangoni mode remains the dominant mode for zero and small Reynolds numbers until the GL mode also becomes unstable with the increase in Re. Thus, for a given set of parameters and beyond a critical Re, there is an exchange of dominant mode of instability from the Marangoni to free surface GL mode. With respect to the second important aspect, our results clearly demonstrate

  16. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I. [Universidade Federal de Itajuba (UNIFEI), Itajuba (Brazil); Neves, F. Jr. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba (Brazil); Franca, F.A. [Universidade Estadual de Campinas (UNICAMP), Campinas (Brazil)

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  17. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    Energy Technology Data Exchange (ETDEWEB)

    Deen, I. [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Zhitomirsky, I., E-mail: zhitom@mcmaster.ca [Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2014-02-15

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties.

  18. Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films

    International Nuclear Information System (INIS)

    Deen, I.; Zhitomirsky, I.

    2014-01-01

    Highlights: ► Composite halloysite nanotubes–hydroxyapatite–hyaluronic acid films were prepared. ► Electrophoretic deposition method was used for deposition. ► Natural hyaluronic acid was used as a dispersing, charging and film forming agent. ► Film composition and deposition yield can be varied. ► The films can be used for biomedical implants with controlled release of drugs. -- Abstract: Electrophoretic deposition method has been developed for the deposition of biocomposite films containing halloysite nanotubes (HNTs), hydroxyapatite (HA) and hyaluronic acid. The method is based on the use of natural hyaluronate biopolymer as a dispersing and charging agent for HNT and HA and film forming agent for the fabrication of the composite films. The deposition kinetics was studied by the quartz crystal microbalance method. The composite films were studied by X-ray diffraction, thermogravimetric analysis, differential thermal analysis and electron microscopy. The composite films are promising materials for the fabrication of biomedical implants with advanced functional properties

  19. Short-term gas dispersion in idealised urban canopy in street parallel with flow direction

    Science.gov (United States)

    Chaloupecká, Hana; Jaňour, Zbyněk; Nosek, Štěpán

    2016-03-01

    Chemical attacks (e.g. Syria 2014-15 chlorine, 2013 sarine or Iraq 2006-7 chlorine) as well as chemical plant disasters (e.g. Spain 2015 nitric oxide, ferric chloride; Texas 2014 methyl mercaptan) threaten mankind. In these crisis situations, gas clouds are released. Dispersion of gas clouds is the issue of interest investigated in this paper. The paper describes wind tunnel experiments of dispersion from ground level point gas source. The source is situated in a model of an idealised urban canopy. The short duration releases of passive contaminant ethane are created by an electromagnetic valve. The gas cloud concentrations are measured in individual places at the height of the human breathing zone within a street parallel with flow direction by Fast-response Ionisation Detector. The simulations of the gas release for each measurement position are repeated many times under the same experimental set up to obtain representative datasets. These datasets are analysed to compute puff characteristics (arrival, leaving time and duration). The results indicate that the mean value of the dimensionless arrival time can be described as a growing linear function of the dimensionless coordinate in the street parallel with flow direction where the gas source is situated. The same might be stated about the dimensionless leaving time as well as the dimensionless duration, however these fits are worse. Utilising a linear function, we might also estimate some other statistical characteristics from datasets than the datasets means (medians, trimeans). The datasets of the dimensionless arrival time, the dimensionless leaving time and the dimensionless duration can be fitted by the generalized extreme value distribution (GEV) in all sampling positions except one.

  20. Dynamic measurement of liquid film thickness in stratified flow by using ultrasonic echo technique

    International Nuclear Information System (INIS)

    Serizawa, A.; Nagane, K.; Kamei, T.; Kawara, Z.; Ebisu, T.; Torikoshi, K.

    2004-01-01

    We developed a technique to measure time-dependent local film thickness in stratified air-water flow over a horizontal plate by using a time of flight of ultrasonic transmission. The ultrasonic echoes reflected at the liquid/air interfaces are detected by a conventional ultrasonic instrumentation, and the signals are analyzed by a personal computer after being digitalized by an A/D converter to give the time of flight for the ultrasonic waves to run over a distance of twice of the film thickness. A 3.8 mm diameter probe type ultrasonic transducer was used in the present work which transmits and receives 10 MHz frequency ultrasonic waves. The estimated spatial resolution with this arrangement is 0.075 mm in film thickness for water. The time resolution, which depends on both the A/D converter and the memory capacity was up to several tens Hz. We also discussed the sensitivity of the method to the inclination angle of the interfaces. (author)

  1. Carbon nanotube-TiO{sub 2} hybrid films for detecting traces of O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, E; Espinosa, E H; Sotter, E; Ionescu, R; Vilanova, X [MINOS, EMaS, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Torres, J [Research Department, Carburos Metalicos, MATGAS, Campus UAB, 08193 Cerdanyola del Valles (Spain); Felten, A; Pireaux, J J [LISE, University of Namur, B-5000 Namur (Belgium); Ke, X; Tendeloo, G Van [EMAT, University of Antwerp, B-2020 Antwerp (Belgium); Renaux, F; Paint, Y; Hecq, M; Bittencourt, C [LCIA, University of Mons-Hainaut, B-7000, Mons (Belgium)

    2008-09-17

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO{sub 2} films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. {<=}10 ppm) in a flow of CO{sub 2}, which is of interest for the beverage industry.

  2. Effect of Annealing Temperature and Oxygen Flow in the Properties of Ion Beam Sputtered SnO—2x Thin Films

    Directory of Open Access Journals (Sweden)

    Chun-Min Wang

    2015-08-01

    Full Text Available Tin oxide (SnO2—x thin films were prepared under various flow ratios of O2/(O2 + Ar on unheated glass substrate using the ion beam sputtering (IBS deposition technique. This work studied the effects of the flow ratio of O2/(O2 + Ar, chamber pressures and post-annealing treatment on the physical properties of SnO2 thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD and transmission electron microscopy (TEM analysis. In addition, the surface RMS roughness was measured with atomic force microscopy (AFM. Auger electron spectroscopy (AES analysis was used to obtain the changes of elemental distribution between tin and oxygen atomic concentration. The electrical property is discussed with attention to the structure factor.

  3. A New Scheme for the Simulation of Microscale Flow and Dispersion in Urban Areas by Coupling Large-Eddy Simulation with Mesoscale Models

    Science.gov (United States)

    Li, Haifeng; Cui, Guixiang; Zhang, Zhaoshun

    2018-04-01

    A coupling scheme is proposed for the simulation of microscale flow and dispersion in which both the mesoscale field and small-scale turbulence are specified at the boundary of a microscale model. The small-scale turbulence is obtained individually in the inner and outer layers by the transformation of pre-computed databases, and then combined in a weighted sum. Validation of the results of a flow over a cluster of model buildings shows that the inner- and outer-layer transition height should be located in the roughness sublayer. Both the new scheme and the previous scheme are applied in the simulation of the flow over the central business district of Oklahoma City (a point source during intensive observation period 3 of the Joint Urban 2003 experimental campaign), with results showing that the wind speed is well predicted in the canopy layer. Compared with the previous scheme, the new scheme improves the prediction of the wind direction and turbulent kinetic energy (TKE) in the canopy layer. The flow field influences the scalar plume in two ways, i.e. the averaged flow field determines the advective flux and the TKE field determines the turbulent flux. Thus, the mean, root-mean-square and maximum of the concentration agree better with the observations with the new scheme. These results indicate that the new scheme is an effective means of simulating the complex flow and dispersion in urban canopies.

  4. Raman Studies on Pre- and Post-Processed CVD Graphene Films Grown under Various Nitrogen Carrier Gas Flows

    Science.gov (United States)

    Beh, K. P.; Yam, F. K.; Abdalrheem, Raed; Ng, Y. Z.; Suhaimi, F. H. A.; Lim, H. S.; Mat Jafri, M. Z.

    2018-04-01

    In this work, graphene films were grown on copper substrates using chemical vapour deposition method under various N2 carrier flow rate. The samples were characterized using Raman spectroscopy. Three sets of Raman measurements have been performed: graphene/Cu (as-grown samples), pre-annealed graphene/glass, and post-annealed graphene/glass. It was found that the Raman spectra of graphene/Cu samples possessed a hump-shaped baseline, additionally higher signal-to-noise ratio (SNR) that leads to attenuation graphene-related bands. Significant improvement of SNR and flat baseline were observed for graphene films transferred on glass substrate. Further analysis on the remaining sets of Raman spectra highlighted minute traces of polymethyl methacrylate (PMMA) could yield misleading results. Hence, the set of Raman spectra on annealed graphene/glass samples would be suitable in further elucidating the effects of N2 carrier flow towards graphene growth. From there, higher N2 flow implied dilution of methanol/H2 mixture, limiting interactions between reactants and substrate. This leads to smaller crystallite size and lesser graphene layers.

  5. A model for dispersed flow heat transfer in rod bundles during reflood

    International Nuclear Information System (INIS)

    Wong, S.

    1980-01-01

    The present model calculates the heat transfer characteristics of the non-equilibrium dispersed droplet flow regime above the quench front during reflood by solving simultaneously the wall-to-vapor interactions, wall-to-droplet interactions and vapor-to-droplet interactions by an iterative numerical method. The unique feature in the present study is various heat transfer mechanisms are combined in an overall energy balance equation, and the convective heat transfer to vapor is obtained by calculating the vapor temperature distributions at the heated walls. The reactor rod bundle geometry, axial variations of vapor temperature and flow properties, radiative heat transfers, and enhancement of heat transfer due to turbulence are considered carefully, so that the present model could be used to predict PWR (Pressurized Water Reactor) reflood heat transfers, and hence the fuel cladding wall temperature transients. In order to achieve closure of the problem formulations, the droplet size and its motion are determined from the FLECHT (Full Length Emergency Cooling Heat Transfer Program) low flooding rate series consine axial power shape test data. The model is then verified by comparing the heat transfer predictions with FLECHT low flooding rate series skewed axial power shape test data. Comparisons of predictions with data show satisfactory agreements

  6. Evaluation of numerical flow and dispersion simulations for street canyons with avenue-like tree planting by comparison with wind tunnel data

    OpenAIRE

    Gromke, CB Christof; Buccolieri, R; Sabatino, S Di; Ruck, B

    2008-01-01

    Abstract: Flow and traffic-originated pollutant dispersion in an urban street canyon with avenue-like tree planting have been studied by means of wind tunnel and CFD investigations. The study comprises tree planting of different crown porosity, planted in two rows within a canyon of street width to building height ratio W/H = 2 and street length to building height ratio L/H = 10 exposed to a perpendicular approaching boundary layer flow. Numerical simulations have been performed with...

  7. Antimicrobial nanostructured starch based films for packaging.

    Science.gov (United States)

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The influence of selected containment structures on debris dispersal and transport following high pressure melt ejection from the reactor vessel

    International Nuclear Information System (INIS)

    Pilch, M.; Tarbell, W.W.; Brockmann, J.E.

    1988-09-01

    High pressure expulsion of molten core debris from the reactor pressure vessel may result in dispersal of the debris from the reactor cavity. In most plants, the cavity exits into the containment such that the debris impinges on structures. Retention of the debris on the structures may affect the further transport of the debris throughout the containment. Two tests were done with scaled structural shapes placed at the exit of 1:10 linear scale models of the Zion cavity. The results show that the debris does not adhere significantly to structures. The lack of retention is attributed to splashing from the surface and reentrainment in the gas flowing over the surface. These processes are shown to be applicable to reactor scale. A third experiment was done to simulate the annular gap between the reactor vessel and cavity wall. Debris collection showed that the fraction of debris exiting through the gap was greater than the gap-to-total flow area ratio. Film records indicate that dispersal was primarily by entrainment of the molten debris in the cavity. 29 refs., 36 figs., 11 tabs

  9. Quantitative Analysis of Piroxicam Using Temperature-Controlled Ionic Liquid Dispersive Liquid Phase Microextraction Followed By Stopped-Flow Injection Spectrofluorimetry

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Ganjali

    2013-07-01

    Full Text Available Background:Piroxicam (PXM belongs to the wide class of non-steroidal anti-inflammatory drugs (NSAIDs. PXM has been widely applied in the treatment of rheumatoid arthritis, gonarthrosis, osteoarthritis, backaches, neuralgia, mialgia. In the presented work, a green and benign sample pretreatment method called temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME was followed with stopped-flow injection spectrofluorimetry (SFIS for quantitation of PXM in pharmaceutical formulations and biological samples.Methods:Temperature-controlled ionic liquid dispersive liquid phase microextraction (TCIL-DLPME was applied as an environmentally friendly sample enrichment method to extract and isolate PXM prior to quantitation. Dispersion of 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF6] ionic liquid (IL through the sample aqueous solution was performed by applying a relatively high temperature. PXM was extracted into the extractor, and after phase separation, PXM in the final solution was determined by stopped-flow injection spectrofluorimetry (SFIS.Results and Major Conclusion:Different factors affecting the designed method such as IL amount, diluting agent, pH and temperature were investigated in details and optimized. The method provided a linear dynamic range of 0.2-150 μg l-1, a limit of detection (LOD of 0.046 μg l-1 and a relative standard deviation (RSD of 3.1%. Furthermore, in order to demonstrate the analytical applicability of the recommended method, it was applied for quantitation of PXM in real samples.

  10. Analytical solutions of advection-dispersion equation for varying ...

    African Journals Online (AJOL)

    Analytical solutions are obtained for a one-dimensional advection–dispersion equation with variable coefficients in a longitudinal domain. Two cases are considered. In the first one the solute dispersion is time dependent along a uniform flow in a semi-infinite domain while in the second case the dispersion and the velocity ...

  11. Analysis of the fragmentation of hot drops with film boiling in a water flow

    International Nuclear Information System (INIS)

    Malmazet, Erik de

    2009-01-01

    The goal of this work is to study different aspects of the fragmentation of very hot drops placed in a uniform flow, a phenomenon related to vapor explosion studies. First, a theoretical study of the isothermal hydrodynamic fragmentation of drops by the Boundary Layer Stripping (BLS) mechanism is done by developing two models. The first model, contrary to past studies which dismissed the BLS, includes deformation and acceleration effects and this is shown to greatly enhance the mass loss by BLS, which enables this mechanism to become a much more effective mechanism when the external flow is gaseous. But it is still ineffective in the liquid case. The second model describes transient aspects of the BLS, and by coupling it with a stripping criteria for the internal boundary layer, it is possible to predict the time of the initiation of fragmentation. Then, a model for film boiling over horizontal cylinders and axisymmetric bodies which is able to properly describe the inertial and convection terms in the vapor flow is presented. This has never been done before, although these terms cannot be neglected in physical conditions close to vapor explosions. The model is able to predict all the experimental results of TREPAM, the only existing forced convection film boiling experiment in conditions close to a vapor explosion, and which results could not be predicted by other models. In the last part, an experimental study of the fragmentation of hot tin drops in a water flow which uses digital fast camera and flash X ray imagery is presented. This study has allowed the observation of several new features of the drop fragmentation mechanism. (author) [fr

  12. Film Aesthetics and the Embodied Brain

    DEFF Research Database (Denmark)

    Grodal, Torben Kragh

    2009-01-01

    The article discusses - based on neuroscience and cognitive science - how the aesthetic experience of films depends on the brain's architecture and the mental flow called the PECMA flow. It describes how the flow from (visual and acoustic) perception of the film, via emotional and cognitive...... processes in the brain to simulated motor actions provides a series of options for aesthetic effects by the film's control of focus; focus on different steps in the flow will evoke different effects. The article further describe how shift of focus control experience of reality status, that is, whether...

  13. FDTD scattered field formulation for scatterers in stratified dispersive media.

    Science.gov (United States)

    Olkkonen, Juuso

    2010-03-01

    We introduce a simple scattered field (SF) technique that enables finite difference time domain (FDTD) modeling of light scattering from dispersive objects residing in stratified dispersive media. The introduced SF technique is verified against the total field scattered field (TFSF) technique. As an application example, we study surface plasmon polariton enhanced light transmission through a 100 nm wide slit in a silver film.

  14. Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film

    International Nuclear Information System (INIS)

    Lu Xiangjun; Dou Hui; Yang Sudong; Hao Liang; Zhang Luojiang; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Graphical abstract: A hierarchical film with coaxial polyaniline/carbon nanotube (PANI/CNT) nanocables uniformly sandwiched between graphene (GN) sheets was prepared by filtration of the complex dispersion of graphite oxide (GO) and PANI/CNT. Highlights: → A film composed of GN sheets, PANI and CNTs was fabricated. → The coaxial PANI/CNT nanocables uniformly sandwiched between the GN sheets. → The unique structure facilitates contact between electrolyte and electrode materials. → Each component provides unique function to achieve superior electrochemical properties. - Abstract: A film composed of graphene (GN) sheets, polyaniline (PANI) and carbon nanotubes (CNTs) has been fabricated by reducing a graphite oxide (GO)/PANI/CNT precursor prepared by flow-directed assembly from a complex dispersion of GO and PANI/CNT, followed by reoxidation and redoping of the reduced PANI in the composite to restore the conducting PANI structure. Scanning electron microscope images indicate that the ternary composite film is a layered structure with coaxial PANI/CNT nanocables uniformly sandwiched between the GN sheets. Such novel hierarchical structure with high electrical conductivity perfectly facilitates contact between electrolyte ions and PANI for faradaic energy storage and efficiently utilizes the double-layer capacitance at the electrode-electrolyte interfaces. The specific capacitance of the GN/PANI/CNT estimated by galvanostatic charge/discharge measurement is 569 F g -1 (or 188 F cm -3 for volumetric capacitance) at a current density of 0.1 A g -1 . In addition, the GN/PANI/CNT exhibits good rate capability (60% capacity retention at 10 A g -1 ) and superior cycling stability (4% fade after 5000 continuous charge/discharge cycles).

  15. Experimental Study on Pressure Drop and Flow Dispersion in Packed Bed of Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Ruya Petric Marc

    2018-01-01

    Full Text Available The use of conventional correlation for pressure drop and dispersion coefficient calculation may result in inaccurate values for zeolite packed bed as the correlations are generally developed for regularly shaped and uniformly sized particles. To support the research on the application of modified natural zeolite as tar cracking catalyst, the research on the hydrodynamic behaviour of zeolite packed bed has been conducted. Experiments were carried out using a glass column with diameter of 37.8 mm. Natural zeolite with particle size of about 2.91 to 6.4 mm was applied as packing material in the column, and the bed height was varied at 9, 19 and 29 cm. Air was used as the fluid that flows through the bed and nitrogen was used as a tracer for residence time distribution determination. Air flow rates were in the range of 20 to 100 mL/s which correspond to the laminar-transitional flow regime. The pressure drops through the bed were in the range of 1.7 to 95.6 Pa, depending on the air flow rate and bed height. From these values, the parameters in the Ergun equation were estimated, taking into account the contribution by wall effect when the ratio of column to particle diameter is low. The viscous and inertial term constants in the Ergun equation calculated ranges from 179 to 199 and 1.41 to 1.47 respectively while the particle sphericity ranges from 0.56 to 0.59. The reactor Peclet number were determined to range from 5.2 to 5.5, which indicated significant deviation from a plug flow condition.

  16. Second order nonlinear optical properties of zinc oxide films deposited by low temperature dual ion beam sputtering

    International Nuclear Information System (INIS)

    Larciprete, M.C.; Passeri, D.; Michelotti, F.; Paoloni, S.; Sibilia, C.; Bertolotti, M.; Belardini, A.; Sarto, F.; Somma, F.; Lo Mastro, S.

    2005-01-01

    We investigated second order optical nonlinearity of zinc oxide thin films, grown on glass substrates by the dual ion beam sputtering technique under different deposition conditions. Linear optical characterization of the films was carried out by spectrophotometric optical transmittance and reflectance measurements, giving the complex refractive index dispersion. Resistivity of the films was determined using the four-point probe sheet resistance method. Second harmonic generation measurements were performed by means of the Maker fringes technique where the fundamental beam was originated by nanosecond laser at λ=1064 nm. We found a relatively high nonlinear optical response, and evidence of a dependence of the nonlinear coefficient on the deposition parameters for each sample. Moreover, the crystalline properties of the films were investigated by x-ray diffraction measurements and correlation with second order nonlinearity were analyzed. Finally, we investigated the influence of the oxygen flow rate during the deposition process on both the second order nonlinearity and the structural properties of the samples

  17. Partial liquid-penetration inside a deep trench by film flowing over it

    Science.gov (United States)

    Nguyen, Phuc-Khanh; Dimakopoulos, Yiannis; Tsamopoulos, John

    2014-11-01

    Liquid film flow along substrates featuring a deep trench may not wet the trench floor, but create a second gas-liquid interface inside the trench. The liquid penetration inside the trench depends on the location and shape of this inner interface. The penetration increases by decreasing the two three-phase contact lines between the inner interface and the two side-walls or the flow rate and depends on the liquid properties. This partial-penetration is studied by employing the Galerkin / finite element method to solve the two-dimensional steady-state Navier-Stokes equations in a physical domain that is adaptively remeshed. Multiple branches of steady solutions connected via turning points are revealed by pseudo arc-length continuation. Flow hysteresis may occur in a certain range of liquid penetration depth, when the interaction of the two interfaces changes qualitatively. This induces an abrupt jump of penetration distance and deformation amplitude of the outer interface. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.

  18. Burnout and distribution of liquid between the flow core and wall films in narrow slot channels

    Science.gov (United States)

    Boltenko, E. A.; Shpakovskii, A. A.

    2010-03-01

    Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.

  19. Effect of nitrogen flow rate on structural, morphological and optical properties of In-rich In{sub x}Al{sub 1−x}N thin films grown by plasma-assisted dual source reactive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, M., E-mail: alizadeh_kozerash@yahoo.com [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ganesh, V.; Goh, B.T. [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Dee, C.F.; Mohmad, A.R. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahman, S.A., E-mail: saadah@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-15

    Highlights: • In-rich In{sub x}Al{sub 1−x}N films were grown by Plasma-aided reactive evaporation. • Effect of nitrogen flow rate on the films properties was investigated. • The band gap of the films was varied from 1.17 to 0.90 eV. • By increasing N{sub 2} flow rate the In{sub x}Al{sub 1−x}N films tend to turn into amorphous state. • At higher N{sub 2} flow rate agglomeration of the particles is highly enhanced. - Abstract: In-rich In{sub x}Al{sub 1−x}N thin films were deposited on quartz substrate at various nitrogen flow rates by plasma-assisted dual source reactive evaporation technique. The elemental composition, surface morphology, structural and optical properties of the films were investigated by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Raman spectroscopy, X-ray diffraction (XRD), UV–vis spectrophotometer and photoluminescence (PL) measurements. XPS results revealed that the indium composition (x) of the In{sub x}Al{sub 1−x}N films increases from 0.90 to 0.97 as the nitrogen flow rate is increased from 40 to 100 sccm, respectively. FESEM images of the surface and cross-sectional microstructure of the In{sub x}Al{sub 1−x}N films showed that by increasing the N{sub 2} flow rate, the grown particles are highly agglomerated. Raman and XRD results indicated that by increasing nitrogen flow rate the In-rich In{sub x}Al{sub 1−x}N films tend to turn into amorphous state. It was found that band gap energy of the films are in the range of 0.90–1.17 eV which is desirable for the application of full spectra solar cells.

  20. Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth

    Science.gov (United States)

    Bertino, Giulia; Gura, Anna; Dawber, Matthew

    We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.

  1. Polarization waves in dielectric films with spatial dispersion

    International Nuclear Information System (INIS)

    Jardin, Jean-Pierre; Moch, Philippe; Dvorak, Vladimir

    2002-01-01

    The polarization waves propagating in a slab-shaped or in a semi-infinite dielectric medium with spatial dispersion characterized by a volume free-energy density and by a boundary-surface energy density are studied, taking into account Maxwell's equations, in the framework of the Landau-Ginzburg formalism. It is shown that two independent extrapolation lengths providing for the required additional boundary conditions need to be specified at each surface limiting the medium. Complete calculations are performed in the electrostatic approximation: they provide evidence of the differences between the transverse in-plane polarized modes (s modes) and the sagittal plane polarized modes (p modes). True surface modes exist only in the case of negative extrapolation lengths. A detailed analysis of the symmetry properties of the surface and of the guided bulk modes in a slab is developed. Finally, our results are compared with those from previous models describing the boundary conditions in media where spatial dispersion is present. (author)

  2. Determination of flow times and longitudinal dispersion in the Rhine using 3HHO as a tracer

    International Nuclear Information System (INIS)

    Krause, W.J.; Mundschenk, H.

    1993-01-01

    Flow times and longitudinal dispersion in the Rhine river under natural conditions are determined by use of single emissions of tritiated waste water from nuclear power plants during normal operation. The influence of the discharge of the Rhine on the most relevant parameters is investigated thoroughly. In a case of accidental release of radioactive material, these data would be the basis of a prognosis by which the behaviour of the contaminated river section along the course can be described and the radiological consequences within the so-called critical impact area estimated. (orig.) [de

  3. STUDI EKSPERIMENTAL FALLING FILM EVAPORATOR PADA EVAPORASI NIRA KENTAL

    Directory of Open Access Journals (Sweden)

    Medya Ayunda Fitri

    2016-06-01

    Full Text Available Falling film evaporator is a constructed equipment for concentrating dilute solution that are sensitive to heat flowing form a thin film. This research aims to study the evaporation of cane juice concentrated with air flow on falling film evaporator and knowing evaporation rate occured in falling film evaporator used. In the process, cane juice from plant pumped to the falling film evaporator that used in this experiment. This research used concentrated cane juice and air flow rate for variables of this experiment. Cane juice flow from top of evaporator through distributor to form thin film and air flow from the bottom of evaporator. After that, temperatur of pipe wall, inlet and outlet temperature of cane juice and air were measured. This experiment concluded that the highest concentration of outlet solution is 59 brix for liquid flow rate 154 l/h and air flow rate 10 m3/h, and the other hand inlet solution concentration 51 brix. Optimum evaporation rate is 35 kg/m2.h for 51 brix and air flow rate 10 m3/h.

  4. Effect of filling surface-treated pyrolytic char on resistivity of rubber films

    Directory of Open Access Journals (Sweden)

    Pattraporn Yamkaya

    2015-03-01

    Full Text Available In this research, natural rubber (NR films filled with pyrolytic tire char, carbon black N234 and N330 were compared for their electrical resistivity. The filler loading was varied to be 5, 10, 15, 20 and 25% of dry rubber content. The effect of surfactant which is 2 %w/v sodium dodecyl sulfate (SDS was also investigated. In the experiments, it was necessary to disperse the pyrolytic char in ethyl alcohol while disperse carbon black (CB in ammonium hydroxide solution prior to mixing with the rubber latex and the filled NR film was prepared by casting the mixture on a plate. It was found that increasing the amount of pyrolytic char in the NR film could lower its resistivity. The surfactant, SDS, could help better dispersion of both CB and pyrolytic char, thereby decreasing the resistivity. In a separate experiment where hexane vapor was absorbed in NR film without surfactant, in the first 30 seconds, the rate of increasing resistivity of the CB-filled film was not seen as clearly as that of pyrolytic-char-filled film. For the films with surfactant, the slow increase in resistivity of the NR films filled with N330 and pyrolytic char during adsorbing hexane vapor was observed.

  5. Evaluation of numerical flow and dispersion simulations for street canyons with avenue-like tree planting by comparison with wind tunnel data

    NARCIS (Netherlands)

    Gromke, C.B.; Buccolieri, R.; Sabatino, Di S.; Ruck, B.

    2008-01-01

    Flow and traffic-originated pollutant dispersion in an urban street canyon with avenue-like tree planting have been studied by means of wind tunnel and CFD investigations. The study comprises tree planting of different crown porosity, planted in two rows within a canyon of street width to building

  6. Modeling solid-fuel dispersal during slow loss-of-flow-type transients

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Fenske, G.R.

    1981-01-01

    The dispersal, under certain accident conditions, of solid particles of fast-reactor fuel is examined in this paper. In particular, we explore the possibility that solid-fuel fragmentation and dispersal can be driven by expanding fission gas, during a slow LOF-type accident. The consequences of fragmentation are studied in terms of the size and speed of dispersed particles, and the overall quantity of fuel moved. (orig.)

  7. Effects of surface deposition and droplet injection on film cooling

    International Nuclear Information System (INIS)

    Wang, Jin; Cui, Pei; Vujanović, Milan; Baleta, Jakov; Duić, Neven; Guzović, Zvonimir

    2016-01-01

    Highlights: • Cooling effectiveness is significantly affected by the deposition size. • Coverage area for model without mist is reduced by increasing the deposition height. • Wall temperature is decreased by 15% with 2% mist injection. • Cooling coverage is increased by more than three times with 2% mist injection. • Cooling effectiveness for mist models is improved by increasing deposition height. - Abstract: In the present research, the influence of the particle dispersion onto the continuous phase in film cooling application was analysed by means of numerical simulations. The interaction between the water droplets and the main stream plays an important role in the results. The prediction of two-phase flow is investigated by employing the discrete phase model (DPM). The results present heat transfer characteristics in the near-wall region under the influence of mist cooling. The local wall temperature distribution and film cooling effectiveness are obtained, and results show that the film cooling characteristics on the downstream wall are affected by different height of surface deposits. It is also found that smaller deposits without mist injection provide a lower wall temperature and a better cooling performance. With 2% mist injection, evaporation of water droplets improves film cooling effectiveness, and higher deposits cause lateral and downstream spread of water droplets. The results indicate that mist injection can significantly enhance film cooling performance.

  8. Experimental study on flow pattern and heat transfer of inverted annular flow

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki; Akagawa, Koji; Fujii, Terushige; Nishida, Koji

    1990-01-01

    Experimental results are presented on flow pattern and heat transfer in the regions from inverted annular flow to dispersed flow in a vertical tube using freon R-113 as a working fluid at atmospheric pressure to discuss the correspondence between them. Axial distributions of heat transfer coefficient are measured and flow patterns are observed. The heat transfer characteristics are divided into three regions and a heat transfer characteristics map is proposed. The flow pattern changes from inverted annular flow (IAF) to dispersed flow (DF) through inverted slug flow (ISF) for lower inlet velocities and through agitated inverted annular flow (AIAF) for higher inlet velocities. A flow pattern map is obtained which corresponds well with the heat transfer characteristic map. (orig.)

  9. An assessment of first-order stochastic dispersion theories in porous media

    Science.gov (United States)

    Chin, David A.

    1997-12-01

    Random realizations of three-dimensional exponentially correlated hydraulic conductivity fields are used in a finite-difference numerical flow model to calculate the mean and covariance of the corresponding Lagrangian-velocity fields. The dispersivity of the porous medium is then determined from the Lagrangian-velocity statistics using the Taylor definition. This estimation procedure is exact, except for numerical errors, and the results are used to assess the accuracy of various first-order dispersion theories in both isotropic and anisotropic porous media. The results show that the Dagan theory is by far the most robust in both isotropic and anisotropic media, producing accurate values of the principal dispersivity components for σy as high as 1.0, In the case of anisotropic media where the flow is at an angle to the principal axis of hydraulic conductivity, it is shown that the dispersivity tensor is rotated away from the flow direction in the non-Fickian phase, but eventually coincides with the flow direction in the Fickian phase.

  10. Chemotaxis and flow disorder shape microbial dispersion in porous media

    Science.gov (United States)

    De Anna, Pietro; Yawata, Yutaka; Stocker, Roman; Juanes, Ruben

    2017-04-01

    Bacteria drive a plethora of natural processes in the subsurface, consuming organic matter and catalysing chemical reactions that are key to global elemental cycles. These macro-scale consequences result from the collective action of individual bacteria at the micro-scale, which are modulated by the highly heterogeneous subsurface environment, dominated by flow disorder and strong chemical gradients. Yet, despite the generally recognized importance of these microscale processes, microbe-host medium interaction at the pore scale remain poorly characterized and understood. Here, we introduce a microfluidic model system to directly image and quantify the role of cell motility on bacterial dispersion and residence time in confined, porous, media. Using the soil-dwelling bacterium Bacillus subtilis and the common amino acid serine as a resource, we observe that chemotaxis in highly disordered and confined physico-chemical environment affords bacteria an increase in their ability to persistently occupy the host medium. Our findings illustrate that the interplay between bacterial behaviour and pore-scale disorder in fluid velocity and nutrient concentration directly impacts the residence time, transport and bio-geo-chemical transformation rates of biota in the subsurface, and thus likely the processes they mediate.

  11. Superconducting Tl2Ba2CaCu2O8 thin films prepared by post-annealing in a flow-through multiple-zone furnace

    International Nuclear Information System (INIS)

    Pluym, T.C.; Muenchausen, R.E.; Arendt, P.N.

    1994-01-01

    Tl 2 Ba 2 CaCu 2 O 8 thin films were prepared for the first time by use of a multiple-zone flow-through thallination process. Thallous oxide was volatilized from condensed thallium oxide in a low temperature source zone and convectively transported to a higher temperature thallination zone in which initially amorphous Ba 2 CaCu 2 O 5 precursor films were located. By careful control of the source temperature, film temperature, flow rate, anneal time, and rates of heat up and cool down, smooth Tl 2 Ba 2 CaCu 2 O 8 thin films were prepared on (100) LaAlO 3 with the following properties: inductive T c of 107.6 K and 80% transition width of 1.3 K, transport J c at 75 K of 1.3 x 10 5 A/cm 2 , and R s at 10 GHz and 80 K of 1.3 mΩ. The scalability of the process to large area film processing was demonstrated by the preparation of Tl 2 Ba 2 CaCu 2 O 8 thin films on LaAlO 3 three-inch diameter wafers

  12. Investigation of liquid film behavior at the onset of flooding during adiabatic counter-current air-water two-phase flow in an inclined pipe

    International Nuclear Information System (INIS)

    Deendarlianto; Ousaka, Akiharu; Kariyasaki, Akira; Fukano, Tohru

    2005-01-01

    The liquid film characteristics at the onset of flooding in an inclined pipe (16 mm i.d. and 2.2 m in length) have been investigated experimentally. A constant electric current method and visual observation were utilized to elucidate the flow mechanisms at the onset of flooding. Two mechanisms are clarified to control the flooding in lower flooding and upper flooding, respectively. The lower flooding occurred at lower liquid flow rate and high pipe inclination angle. In this mechanism, the liquid film does not block the pipe cross-section. On the other hand, the upper flooding occurred at higher liquid flow rate and low pipe inclination angle. In this case, blocking of the pipe cross-section by large wave and entrainment plays an important role. The experimental data indicated that there was no reversal motion of liquid film at the onset of flooding during the operation of both lower flooding and upper flooding. The effects of pipe inclination angle on the onset of flooding are also discussed

  13. Electronic Instability at High Flux-Flow Velocities in High-Tc Superconducting Films

    DEFF Research Database (Denmark)

    Doettinger, S. G.; Huebener, R. P.; Gerdemann, R.

    1994-01-01

    At high flux-flow velocities in type-II superconductors the nonequilibrium distribution of the quasiparticles leads to an electronic instability and an aburpt switching into a state with higher electric resistivity, as predicted by Larkin and Ovchinnikow (LO). We report the first obervation...... of this effect in a high-temperature superconductor, namely in epitaxial c-axis oriented films of YBa(2)Cu3O(7)-(delta). Using the LO therory, we have extracted from out results the inelastic quasiparticle scattering rare tau(in)(-1), which strongly decreases with decreasing temperature below T-c...

  14. Vortex lattice ordering in the flux flow state of Nb thin films

    International Nuclear Information System (INIS)

    Grimaldi, Gaia; Leo, Antonio; Nigro, Angela; Pace, Sandro

    2010-01-01

    We measure current-voltage characteristics at high driving currents for different magnetic fields and temperatures in Nb thin films of rather strong pinning. In a definite range of the B-T phase diagram we find that a current induced transition occurs in the flux flow motion of the vortex lattice, namely a dynamic ordering (DO). Contrary to the case of weaker pinning materials, DO is observed only at low fields, due to the stronger intrinsic disorder that can deform plastically the moving vortex lattice even for small applied fields.

  15. Longitudinal dispersion coefficient depending on superficial velocity of hydrogen isotopes flowing in column packed with zeolite pellets at 77.4 K

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K. [Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Kubo, K.; Takashima, S.; Moriyama, S.T. [Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Tanaka, M. [National Institute for Fusion Science, Oroshi-cho, Toki, Gifu (Japan); Sugiyama, T. [Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    Authors have been developing a cryogenic pressure swing adsorption system for hydrogen isotope separation. In the problem of its design and operation, it is necessary to predict the concentration profiles developing in packed beds of adsorbent pellets. The profiling is affected by the longitudinal dispersion of gas flowing in packed beds, in addition to the mass transfer resistance in porous media of adsorbent pellets. In this work, an equation is derived for estimating the packed-bed dispersion coefficient of hydrogen isotopes, by analyzing the breakthrough curves of trace D{sub 2} or HD replacing H{sub 2} adsorbed in synthetic zeolite particles packed columns at the liquefied nitrogen temperature 77.4 K. Since specialized for hydrogen isotopes, this equation can be considered to estimate the dispersion coefficients more reliable for the cryogenic hydrogen isotope adsorption process, than the existing equations. (authors)

  16. Taylor dispersion on a fractal

    International Nuclear Information System (INIS)

    Mazo, R.M.

    1998-01-01

    Taylor dispersion is the greatly enhanced diffusion in the direction of a fluid flow caused by ordinary diffusion in directions orthogonal to the flow. It is essential that the system be bounded in space in the directions orthogonal to the flow. We investigate the situation where the medium through which the flow occurs has fractal properties so that diffusion in the orthogonal directions is anomalous and non-Fickian. The effective diffusion in the flow direction remains normal; its width grows proportionally with the time. However, the proportionality constant depends on the fractal dimension of the medium as well as its walk dimension. (author)

  17. Effect of contact angle hysteresis on moving liquid film integrity.

    Science.gov (United States)

    Simon, F. F.; Hsu, Y. Y.

    1972-01-01

    A study was made of the formation and breakdown of a water film moving over solid surfaces (teflon, lucite, stainless steel, and copper). The flow rate associated with film formation was found to be higher than the flow rate at which film breakdown occurred. The difference in the flow rates for film formation and film breakdown was attributed to contact angle hysteresis. Analysis and experiment, which are in good agreement, indicated that film formation and film breakdown are functions of the advancing and receding angles, respectively.

  18. Dispersion of aircraft exhaust in the late wake

    Energy Technology Data Exchange (ETDEWEB)

    Duerbeck, T; Gerz, T; Doernbrack, A [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The dispersion of aircraft emissions is investigated at cruising levels, i.e. in the free, stably stratified atmosphere near the tropopause. The study is based on large-eddy simulations in a domain of size 4.3 x 1.1{sup 2} km{sup 3} where the combined effects of typical atmospheric stratification, shear and turbulence are considered. The effect of a breaking gravity wave on the dispersion of the exhaust is analyzed. The mixing processes during the late wake flow are evaluated, i.e. in the dispersion and diffusion regimes when the organized flow by the wing tip vortices has ceased and the atmospheric motions gradually dominate the events. (R.P.) 7 refs.

  19. Dispersion of aircraft exhaust in the late wake

    Energy Technology Data Exchange (ETDEWEB)

    Duerbeck, T.; Gerz, T.; Doernbrack, A. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The dispersion of aircraft emissions is investigated at cruising levels, i.e. in the free, stably stratified atmosphere near the tropopause. The study is based on large-eddy simulations in a domain of size 4.3 x 1.1{sup 2} km{sup 3} where the combined effects of typical atmospheric stratification, shear and turbulence are considered. The effect of a breaking gravity wave on the dispersion of the exhaust is analyzed. The mixing processes during the late wake flow are evaluated, i.e. in the dispersion and diffusion regimes when the organized flow by the wing tip vortices has ceased and the atmospheric motions gradually dominate the events. (R.P.) 7 refs.

  20. Origin of Scale-Dependent Dispersivity and Its Implications For Miscible Gas Flooding

    Energy Technology Data Exchange (ETDEWEB)

    Steven Bryant; Russ Johns; Larry Lake; Thomas Harmon

    2008-09-30

    Dispersive mixing has an important impact on the effectiveness of miscible floods. Simulations routinely assume Fickian dispersion, yet it is well established that dispersivity depends on the scale of measurement. This is one of the main reasons that a satisfactory method for design of field-scale miscible displacement processes is still not available. The main objective of this project was to improve the understanding of the fundamental mechanisms of dispersion and mixing, particularly at the pore scale. To this end, microsensors were developed and used in the laboratory to measure directly the solute concentrations at the scale of individual pores; the origin of hydrodynamic dispersion was evaluated from first principles of laminar flow and diffusion at the grain scale in simple but geometrically completely defined porous media; techniques to use flow reversal to distinguish the contribution to dispersion of convective spreading from that of true mixing; and the field scale impact of permeability heterogeneity on hydrodynamic dispersion was evaluated numerically. This project solved a long-standing problem in solute transport in porous media by quantifying the physical basis for the scaling of dispersion coefficient with the 1.2 power of flow velocity. The researchers also demonstrated that flow reversal uniquely enables a crucial separation of irreversible and reversible contributions to mixing. The interpretation of laboratory and field experiments that include flow reversal provides important insight. Other advances include the miniaturization of long-lasting microprobes for in-situ, pore-scale measurement of tracers, and a scheme to account properly in a reservoir simulator (grid-block scale) for the contributions of convective spreading due to reservoir heterogeneity and of mixing.

  1. Influences of oxygen gas flow rate on electrical properties of Ga-doped ZnO thin films deposited on glass and sapphire substrates

    International Nuclear Information System (INIS)

    Makino, Hisao; Song, Huaping; Yamamoto, Tetsuya

    2014-01-01

    The Ga-doped ZnO (GZO) films deposited on glass and c-plane sapphire substrates have been comparatively studied in order to explore the role of grain boundaries in electrical properties. The influences of oxygen gas flow rates (OFRs) during the deposition by ion-plating were examined. The dependences of carrier concentration, lattice parameters, and characteristic of thermal desorption of Zn on the OFR showed common features between glass and sapphire substrates, however, the Hall mobility showed different behavior. The Hall mobility of GZO films on glass increased with increasing OFR of up to 15 sccm, and decreased with further increasing OFR. On the other hand, the Hall mobility of GZO films on c-sapphire increased for up to 25 sccm. The role of grain boundary in polycrystalline GZO films has been discussed. - Highlights: • Ga-doped ZnO films were deposited on glass and c-sapphire by ion-plating. • The epitaxial growth on c-sapphire was confirmed by X-ray diffraction. • Dependence of Hall mobility showed different tendency between glass and sapphire. • Grain boundaries influence transport properties at high O 2 gas flow rate

  2. Cooling and spreading of corium during its fall into water in a pressurised water nuclear plant severe accident: description of mechanical and thermal interactions in a three phase flow during spreading of cold or heated spheres in a liquid pool; Refroidissement et dispersion du corium lors de sa chute dans l'eau pendant un accident severe de reacteur nucleaire a eau pressurisee: description des interactions mecaniques et thermiques en ecoulement triphasique lors de la dispersion de spheres solides froides ou chaudes dans un bain liquide

    Energy Technology Data Exchange (ETDEWEB)

    Duplat, F

    1998-10-26

    In the frame of nuclear safety studies about corium and water interactions, we address spreading and cooling stage of corium fragments in a liquid pool. Considering the complexity of encountered flow regimes and mechanical and thermal interactions coupling, modelling validation is based on a thermal-hydraulic computer code (MC3D). A bibliographical study shows that classical modelling of three phase flow is based on constitutive laws already established in the case of two phase flow. The present study states a complete analysis of BILLEAU experiments and defines a characterisation method for a sphere cloud. Some complementary QUEOS experiments are also described. Mechanical interaction terms such as added mass, lift and turbulent dispersion have been presented in the frame of a three phase flow and their influence has been tested in numerical simulations of BILLEAU tests. The effect of film vapour overheat, as well as particle diameter evolution have been studied. Moreover a radiative heat transfer modelling developed in Karlsruhe research centre (FZK) has been analysed and completed. Numerical simulations achieved for this study show that mechanical and thermal behaviour of the system are actually coupled. Taking into account lift and turbulent dispersion terms as well as heat transfer modifications all wed better results. This study also presents some considerations about flow regimes identification as a preliminary for studies about numerical diffusion that was already estimated in the present state of the computer code MC3D. (author)

  3. Structural, chemical and electrical characterisation of conductive graphene-polymer composite films

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Barry; Spencer, Steve J.; Belsey, Natalie A. [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Faris, Tsegie [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Cronin, Harry [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH (United Kingdom); Silva, S. Ravi P. [Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH (United Kingdom); Sainsbury, Toby; Gilmore, Ian S. [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Stoeva, Zlatka [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Pollard, Andrew J., E-mail: andrew.pollard@npl.co.uk [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom)

    2017-05-01

    Graphical abstract: Secondary Ion Mass Spectrometry (SIMS) imaging of the dispersion of graphene within graphene-polymer composites using the Na{sup +} signal. - Highlights: • Relation of properties of graphene flakes with electrical properties of composite. • Standardised characterisation method for structural properties of graphene flakes. • Structural and chemical characterisation of commercial graphene flakes. • ToF-SIMS used to determine dispersion of graphene in polymer. - Abstract: Graphene poly-acrylic and PEDOT:PSS nanocomposite films were produced using two alternative commercial graphene powders to explore how the graphene flake dimensions and chemical composition affected the electrical performance of the film. A range of analytical techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), were employed to systematically analyse the initial graphene materials as well as the nanocomposite films. Electrical measurements indicated that the sheet resistance of the films was affected by the properties of the graphene flakes used. To further explore the composition of the films, ToF-SIMS mapping was employed and provided a direct means to elucidate the nature of the graphene dispersion in the films and to correlate this with the electrical analysis. These results reveal important implications for how the dispersion of the graphene material in films produced from printable inks can be affected by the type of graphene powder used and the corresponding effect on electrical performance of the nanocomposites. This work provides direct evidence for how accurate and comparable characterisation of the graphene material is required for real-world graphene materials to develop graphene enabled films and proposes a measurement protocol for comparing graphene materials that can be used for international

  4. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity.

    Science.gov (United States)

    Ding, Jiheng; Ur Rahman, Obaid; Zhao, Hongran; Peng, Wanjun; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-09-29

    Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (∼10.0 mg ml -1 ) and an extraordinary production yield (∼100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 10 4 S m -1 and a superior thermal conductivity of 1842 W m -1 K -1 . Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.

  5. Preparation and characterization of amorphous manganese sulfide thin films by SILAR method

    International Nuclear Information System (INIS)

    Pathan, H.M.; Kale, S.S.; Lokhande, C.D.; Han, Sung-Hwan; Joo, Oh-Shim

    2007-01-01

    Manganese sulfide thin films were deposited by a simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method using manganese acetate as a manganese and sodium sulfide as sulfide ion sources, respectively. Manganese sulfide films were characterized for their structural, surface morphological and optical properties by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques. The as-deposited film on glass substrate was amorphous. The optical band gap of the film was found to be thickness dependent. As thickness increases optical band gap was found to be increase. The water angle contact was found to be 34 o , suggesting hydrophilic nature of manganese sulfide thin films. The presence of Mn and S in thin film was confirmed by energy dispersive X-ray analysis

  6. Hair treatment process providing dispersed colors by light diffraction

    Science.gov (United States)

    Lamartine, Bruce Carvell; Orler, E. Bruce; Sutton, Richard Matthew Charles; Song, Shuangqi

    2013-12-17

    Hair was coated with polymer-containing fluid and then hot pressed to form a composite of hair and a polymer film imprinted with a nanopattern. Polychromatic light incident on the nanopattern is diffracted into dispersed colored light.

  7. Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Electrical conductivity of 150–200 µm thick polysulfone films loaded with 0.05–0.75% w/w multiwall carbon nanotubes was systematically investigated for two types of dispersion states, uniformly dispersed and agglomerated at the micro-scale. The percolation threshold was found at 0.11% and 0.068% w/w for the uniformly dispersed and agglomerated films, respectively. Overall, the conductivity of the films with agglomerated nanotubes was higher than that of the uniformly dispersed ones, with marked differences of 2 to 4 orders of magnitude for carbon nanotubes loadings in the upper vicinity of the percolation threshold (0.1–0.3% w/w. The increased conductivity of the agglomerated state is explained by the increased nanotube-to-nanotube contact after the percolating network has formed, which facilitates electron transfer.

  8. Performances of screen-printing silver thick films: Rheology, morphology, mechanical and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jung-Shiun; Liang, Jau-En; Yi, Han-Liou [Department of Chemical Engineering, National Chung Cheng University, Chia Yi 621, Taiwan, ROC (China); Chen, Shu-Hua [China Steel Corporation, Kaohsiung City 806, Taiwan, ROC (China); Hua, Chi-Chung, E-mail: chmcch@ccu.edu.tw [Department of Chemical Engineering, National Chung Cheng University, Chia Yi 621, Taiwan, ROC (China)

    2016-06-15

    Numerous recent applications with inorganic solar cells and energy storage electrodes make use of silver pastes through processes like screen-printing to fabricate fine conductive lines for electron conducting purpose. To date, however, there have been few studies that systematically revealed the properties of the silver paste in relation to the mechanical and electronic performances of screen-printing thick films. In this work, the rheological properties of a series of model silver pastes made of silver powders of varying size (0.9, 1.3, and 1.5 μm) and shape (irregular and spherical) were explored, and the results were systematically correlated with the morphological feature (scanning electron microscopy, SEM) and mechanical (peeling test) and electronic (transmission line method, TLM) performances of screen-printing dried or sintered thick films. We provided evidence of generally intimate correlations between the powder dispersion state in silver pastes—which is shown to be well captured by the rheological protocols employed herein—and the performances of screen-printing thick films. Overall, this study suggests the powder dispersion state and the associated phase behavior of a paste sample can significantly impact not only the morphological and electronic but also mechanical performances of screen-printing thick films, and, in future perspectives, a proper combination of silver powders of different sizes and even shapes could help reconcile quality and stability of an optimum silver paste. - Highlights: • Powder dispersion correlates well with screen-printing thick film performances. • Rheological fingerprints can be utilized to fathom the powder dispersion state. • Good polymer-powder interactions in the paste ensure good powder dispersion. • Time-dependent gel-like viscoelastic features are found with optimum silver pastes. • The size and shape of functional powder affect the dispersion and film performances.

  9. Optical spectroscopy, optical conductivity, dielectric properties and new methods for determining the gap states of CuSe thin films

    International Nuclear Information System (INIS)

    Sakr, G.B.; Yahia, I.S.; Fadel, M.; Fouad, S.S.; Romcevic, N.

    2010-01-01

    Research highlights: → The structural, optical dispersion parameters and the Raman spectroscopy have been studied for CuSe thin films. → X-ray diffraction results indicate the amorphous nature of the thermally evaporated CuSe thin films. → The refractive index shows an anomalous dispersion at the lower wavelength (absorption region) and a normal dispersion at the higher wavelengths (transparent region). → The refractive index dispersion obeys the single oscillator model proposed by Wemple and DiDomenico WDD model and the single oscillator parameters were determined. → The band gap of CuSe thin films was determined by three novel methods i.e. (relaxation time, real and imaginary dielectric constant and real and imaginary optical conductivity) which in a good agreement with the Tauc band gap value. - Abstract: The paper describes the structural and optical properties of CuSe thin films. X-ray diffraction pattern indicates that CuSe thin film has an amorphous structure. Transmittance T(λ) and reflectance R(λ) measurements in the wavelength range (300-1700 nm) were used to calculate the refractive index n(λ), the absorption index and the optical dispersion parameters according to Wemple and Didomenico WDD model. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. The optical bandgap has been estimated and confirmed by four different methods. The value for the direct bandgap for the as-deposited CuSe thin film approximately equals 2.7 eV. The Raman spectroscopy was used to identify and quantify the individual phases presented in the CuSe films.

  10. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    International Nuclear Information System (INIS)

    Yu Tsvelodub, O

    2016-01-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. Weakly nonlinear steady-state traveling solutions of the equation with wave numbers in a vicinity of neutral wave numbers are constructed analytically. The nature of the wave branching from the undisturbed solution is investigated. Steady-state traveling solutions, whose wave numbers within the instability area are far from neutral wave numbers, are found numerically. (paper)

  11. Preparation of superhydrophobic poly(methyl methacrylate)-silicon dioxide nanocomposite films

    International Nuclear Information System (INIS)

    Wang Jinyan; Chen Xinhua; Kang Yingke; Yang Guangbin; Yu Laigui; Zhang Pingyu

    2010-01-01

    Superhydrophobic poly(methyl methacrylate)-SiO 2 (coded as PMMA-SiO 2 ) nanocomposite films with micro-nanohierarchical structure were prepared via a simple approach in the absence of low surface-energy compounds. By spin-coating the suspension of hydrophobic silica (SiO 2 ) nanoparticles dispersed in PMMA solution, target nanocomposite films were obtained on glass slides. The wetting behavior of PMMA-SiO 2 nanocomposite films was investigated in relation to the dosage of SiO 2 nanoparticles dispersed in PMMA solution. It was found that hydrophilic PMMA film was transferred to superhydrophobic PMMA-SiO 2 nanocomposite films when hydrophobic SiO 2 nanoparticles were introduced into the PMMA solution at a high enough dosage (0.2 g and above). Resultant PMMA-SiO 2 nanocomposite films had a static water contact angle of above 162 o , showing promising applications in selfcleaning and waterproof for outer wall of building, outer covering for automobile, sanitary wares, and so forth.

  12. Tensile properties of carbon black-filled natural rubber latex films using two different approaches of film preparation

    Science.gov (United States)

    Jarkasi, Siti Aisyah; Samsuri, Azemi; Hashim, M. Y. Amir; Kamarun, Dzaraini

    2017-09-01

    A study was structured to investigate the effects of two different approaches of black-filled NRL films preparation on tensile strengths and tensile stress at 100% strain (M100). In the "First Approach", carbon black dispersion was added into the NRL and mixed using mechanical stirrer. Then the black-filled NRL was coagulated with acetic acid and dried to form NR black-filled masterbatch. This black-filled NR masterbatch was then masticated and mixed with other compounding ingredients on the 2-roll mill. In the "Second Approach", carbon black dispersion was mixed with NRL plus all other compounding ingredients using a mechanical stirrer at high mechanical stirring speed (200 rpm) for 3 hrs. Tensile test-pieces from these two rubber specimens were tested according to ISO37. It was observed that the tensile strengths are affected by both methods. In the case of masticated latex masterbatch, the black-filled NRL films gave higher tensile strength (25-27 MPa) as compared to un-masticated black-filled NRL films (11-17 MPa). The optimum amount of filler loading for highest tensile strength in both approaches was 20 phr of carbon black. However these different approaches did not give significant effect to the elongation at break, EB and M100. SEM images of samples prepared from both approaches suggested that the dispersion of filler in the rubber matrix was better in the masticated samples compared to the un-masticated samples. The reason for the difference in the tensile strength between the two black-filled rubbers might be associated with the degree of dispersions and the uniformity of the dispersions within the rubber matrix. The first mixing approach involved high mechanical shearing action during mastication and mixing process on the 2-roll mill. The high shearing actions were able to breakdown filler aggregates efficiently and distributed the dispersed filler uniformly within the rubber matrix. In the second approach, the breakdown of filler aggregates relied on

  13. Transient compressible flows in porous media

    International Nuclear Information System (INIS)

    Morrison, F.A. Jr.

    1975-09-01

    Transient compressible flow in porous media was investigated analytically. The major portion of the investigation was directed toward improving and understanding of dispersion in these flows and developing rapid accurate numerical techniques for predicting the extent of dispersion. The results are of interest in the containment of underground nuclear experiments. The transient one-dimensional transport of a trace component in a gas flow is analyzed. A conservation equation accounting for the effects of convective transport, dispersive transport, and decay, is developed. This relation, as well as a relation governing the fluid flow, is used to predict trace component concentration as a function of position and time. A detailed analysis of transport associated with the isothermal flow of an ideal gas is done. Because the governing equations are nonlinear, numerical calculations are performed. The ideal gas flow is calculated using a highly stable implicit iterative procedure with an Eulerian mesh. In order to avoid problems of anomolous dispersion associated with finite difference calculation, trace component convection and dispersion are calculated using a Lagrangian mesh. Details of the Eulerian-Lagrangian numerical technique are presented. Computer codes have been developed and implemented on the Lawrence Livermore Laboratory computer system

  14. Fate of dispersants associated with the deepwater horizon oil spill.

    Science.gov (United States)

    Kujawinski, Elizabeth B; Kido Soule, Melissa C; Valentine, David L; Boysen, Angela K; Longnecker, Krista; Redmond, Molly C

    2011-02-15

    Response actions to the Deepwater Horizon oil spill included the injection of ∼771,000 gallons (2,900,000 L) of chemical dispersant into the flow of oil near the seafloor. Prior to this incident, no deepwater applications of dispersant had been conducted, and thus no data exist on the environmental fate of dispersants in deepwater. We used ultrahigh resolution mass spectrometry and liquid chromatography with tandem mass spectrometry (LC/MS/MS) to identify and quantify one key ingredient of the dispersant, the anionic surfactant DOSS (dioctyl sodium sulfosuccinate), in the Gulf of Mexico deepwater during active flow and again after flow had ceased. Here we show that DOSS was sequestered in deepwater hydrocarbon plumes at 1000-1200 m water depth and did not intermingle with surface dispersant applications. Further, its concentration distribution was consistent with conservative transport and dilution at depth and it persisted up to 300 km from the well, 64 days after deepwater dispersant applications ceased. We conclude that DOSS was selectively associated with the oil and gas phases in the deepwater plume, yet underwent negligible, or slow, rates of biodegradation in the affected waters. These results provide important constraints on accurate modeling of the deepwater plume and critical geochemical contexts for future toxicological studies.

  15. Re-dispersion and film formation of GdVO4 :  Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies.

    Science.gov (United States)

    Shanta Singh, N; Ningthoujam, R S; Phaomei, Ganngam; Singh, S Dorendrajit; Vinu, A; Vatsa, R K

    2012-04-21

    GdVO(4) : Ln(3+) (Ln(3+) = Dy(3+), Eu(3+), Sm(3+), Tm(3+)) nanoparticles are prepared by a simple chemical route at 140 °C. The crystallite size can be tuned by varying the pH of the reaction medium. Interestingly, the crystallite size is found to increase significantly when pH increases from 6 to 12. This is related to slower nucleation of the GdVO(4) formation with increase of VO(4)(3-) present in solution. The luminescence study shows an efficient energy transfer from vanadate absorption of GdVO(4) to Ln(3+) and thereby enhanced emissions are obtained. A possible reaction mechanism at different pH values is suggested in this study. As-prepared samples are well dispersed in ethanol, methanol and water, and can be incorporated into polymer films. Luminescence and its decay lifetime studies confirm the decrease in non-radiative transition probability with the increase of heat treatment temperature. Re-dispersed particles will be useful in potential applications of life science and the film will be useful in display devices.

  16. Effect of argon gas flow rate on properties of film electrodes prepared by thermal vacuum evaporation from synthesized Cu{sub 2}SnSe{sub 3} source

    Energy Technology Data Exchange (ETDEWEB)

    Sabli, Nordin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Zainal, Zulkarnain [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Hilal, Hikmat S. [SSERL, Department of Chemistry An-Najah N. University, PO Box 7, Nablus, West Bank (Country Unknown); Fujii, Masatoshi [Department of Molecular Science, School of Medicine, Shimane University, Izumo, Shimane, 693-8501 (Japan)

    2014-03-05

    This work describes a new technique to enhance photoresponse of metal chalcogenide-based semiconductor film electrodes deposited by thermal vacuum evaporation under argon gas flow from synthesized Cu{sub 2}SnSe{sub 3} sources. SnSe formation with Cu-doped was obtained under higher argon gas flow rate (V{sub A} = 25 cm{sup 3}/min). Higher value of photoresponse was observed for films deposited under V{sub A} = 25 cm{sup 3}/min which was 9.1%. This finding indicates that Cu atoms inside the SnSe film were important to increase carrier concentrations that promote higher photoresponse.

  17. Gas phase dispersion in a small rotary kiln

    International Nuclear Information System (INIS)

    Spencer, B.B.

    1981-07-01

    A study was made of nonideal flow of gas in a rotary kiln reactor. A rotating tube 0.165 m in diameter by 2.17 m long, with internal lifting flights, was operated at room temperature. Rotational speeds from 2.0 to 7.0 rpm, air flow rates from 0.351 to 4.178 m 3 /h, and solid contents of 0.0, 5.1, and 15.3% of tube volume were studied. Residence time distribution of the gas was measured by means of the pulse injection technique using a helium tracer. A model was developed based on dispersive flow that exchanges with a deadwater region. Two parameters, a dispersion number describing bulk gas flow and an interchange factor describing exchange between the flow region and the gas trapped in the solids bed, were sufficient to correlate the data, but these parameters are sensitive to experimental error. The model is applicable to analysis of other flow systems, such as packed beds

  18. Numerical analysis for conductance probes, for the measurement of liquid film thickness in two-phase flow

    International Nuclear Information System (INIS)

    No, Hee Cheon; Mayinger, F.

    1995-01-01

    A three-dimensional numerical tool is developed to calculate the potential distribution, electric field, and conductance for any types of conductance probes immersed in the wavy liquid film with various shapes of its free surface. The tool is validated against various analytical solutions. It is applied to find out the characteristics of the wire-wire probe, the flush-wire probe and the flush-flush probe in terms of resolution, linearity, and sensitivity. The wire-wire probe shows high resolution and excellent linearity for various film thickness, but comparably low sensitivity for low film thickness fixed. The flush-wire probe shows good linearity and high sensitivity for varying film thickness, but resolution degrading with an increase in film thickness. In order to check the applicability of the three types of probes in the real situation, the Korteweg-de Vries(KdV) two-dimensional solitary wave is simulated. The wire-wire probe is strongly affected by the installation direction of the two wires; when the wires are installed perpendicularly to the flow direction, the wire-wire probe shows large distortion of the solitary wave. In order to measure the transverse profile of waves, the wire-wire probes and the flush-wire probes are required to be separately installed 2mm and 2mm, respectively

  19. Mechanistic model of the inverted annular film boiling

    International Nuclear Information System (INIS)

    Seok, Ho; Chang, Soon Heung

    1989-01-01

    An analytical model is developed to predict the heat transfer coefficient and the friction factor in the inverted annular film boiling. The developed model is based on two-fluid mass, momentum and energy balance equations and a theoretical velocity profile. The predictions of the proposed model are compared with the experimental data and the well-established correlations. For the heat transfer coefficient, they agree with the experimental data and are more promising than those of Bromely and Berenson correlations. The present model also accounts the effects of the mass flux and subcooling on the heat transfer. The friction factor predictions agree qualitatively with the experimental measurements, while some cases show a similar behavior with those of the post-CHF dispersed flow obtained from Beattie's correlation

  20. Dispersion strengthening of aluminium-aluminium-oxide products

    DEFF Research Database (Denmark)

    Hansen, Niels

    1970-01-01

    The true stress-true strain curves at room temperature and at 400°C were determined for various types of aluminium-aluminium-oxide products containing from 0.2 to 4.7 weight per cent of aluminium oxide. The effect of particles on the initial flow stress and the flow stress for 0.2% offset at room...... temperature and at 400°C is in agreement with Orowan's theory. The increase in flow stress at room temperature for strain values below 3 per cent was related to the plastic strain by the equation σ-σoy=k1ε 1/2, where σoy is the initial flow stress and where k1 increases for increasing volume fraction...... and decreasing particle size of the dispersed particles. A general expression for k1 was derived for the relationship between the dislocation density and the strain in dispersion-strengthened products...