WorldWideScience

Sample records for dismantling reactor

  1. The timing of reactor dismantling

    International Nuclear Information System (INIS)

    Roberts, P.

    2000-01-01

    Work has been progressing across the world for the decommissioning of nuclear reactors. The initial work focused on the early, complete dismantling but this was associated with small size reactors and was done for experimental or demonstration purposes. The situation now is that an increasing number of full size power reactors are being shutdown and decision are being made as to the decommissioning strategy to be applied, e.g. with respect to the appropriate timing of reactor dismantling. There are two basic approaches to the timing of reactor dismantling, which are to either proceed with dismantling on an early time scale or to delay it for a period of years. There are a number of examples worldwide of both approaches being taken but one common feature of the approach taken by most countries is that decisions are made on a case by case basis, taking account of relevant factors, and as a result the strategy can vary from reactor to reactor and from country to country. Decisions on timing take account of the following main factors: safety, radioactive decay, financial factors, radioactive waste, reactor type, technology, repository availability, site re-use, regulatory standards, plant knowledge/records, other issues

  2. The Japan Power Demonstration Reactor (JPDR) dismantling activities. Management of JPDR dismantling waste

    International Nuclear Information System (INIS)

    Abe, Masayoshi; Nakata, Susumu; Ito, Shinichi

    1996-01-01

    The management of wastes, both radioactive and non-radioactive, is one of the most important issues for a safe and reasonable dismantling operation of nuclear power plants. A large amount of radioactive wastes is arising from a reactor dismantling operation in a relatively short period time, ranging in a wide variety from very low level to relatively high level. Moreover non-radioactive waste is also in a huge amount. The dismantling operation of Japan Power Demonstration Reactor (JPDR) resulted in 24,440 tons of dismantling wastes, of which about 15% was radioactive and 85% non-radioactive. These wastes were managed successfully implementing a well developed management plan for JPDR dismantling waste. Research and development works for handling of JPDR dismantling wastes were performed, including fixation of loose contamination on surface, volume reduction and waste containers for on-site transportation and interim storage. The JPDR dismantling wastes generated were classified and categorized depending on their materials, characteristics and activity level. Approximately 2,100 tons of radioactive wastes were stored in the interim storage facilities on site using developed containers, and 1,670 tons of radioactive concrete waste were used for a safe demonstration test of a simple near-surface disposal for very low level waste. Other dismantling wastes such as steel and concrete which were categorized as non-radioactive were recycled and reused as useful resources. This paper describes the management of the JPDR dismantling wastes. (author)

  3. Reactor vessel dismantling at the high flux materials testing reactor Petten

    International Nuclear Information System (INIS)

    Tas, A.; Teunissen, G.

    1986-01-01

    The project of replacing the reactor vessel of the high flux materials testing reactor (HFR) originated in 1974 when results of several research programs confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report describes the dismantling philosophy and organisation, the design of special underwater equipment, the dismantling of the reactor vessel and thermal column, and the conditioning and shielding activities resulting in a working area for the installation of the new vessel with no access limitations due to radiation. Finally an overview of the segmentation, waste disposal and radiation exposure is given. The total dismantling, segmentation and conditioning activities resulted in a total collective radiation dose of 300 mSv. (orig.) [de

  4. Development of telerobotic manipulators for reactor dismantling work

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Usui, Hozumi; Fujii, Yoshio

    1991-01-01

    This paper describes the amphibious electrical manipulators JARM-10, JART-25, JART-100 and JARM-25 which were developed in the program of reactor decommissioning technology development carried out by the Japan Atomic Energy Research Institute. They are multi-functional telerobotic light-duty (10 and 25 daN) and heavy-duty (100 daN) Manipulators which can be used in hostile environments in reactor dismantling work such as high radiation, underwater work and electrical noise. Each manipulator can be operated in either a bilateral master-slave, a teach-and-playback or a programmed control mode. By combining these modes appropriately, it is possible to perform complex tasks of remote handling. The usefulness of the telerobotic systems for dismantling nuclear reactors has been demonstrated by successful application of the JARM-25 for remote underwater dismantlement of highly radioactive reactor internals of complex form of an experimental nuclear power reactor. (author)

  5. EL-3 dismantling of an experimental reactor

    International Nuclear Information System (INIS)

    1989-01-01

    The EL3 experimental reactor has been definitively stopped in march 1979. Its decommissioning has been pronounced in the end of 1982. This article is consecrated at decontamination and dismantling works necessited by its passage at the dismantling level 2 [fr

  6. Development of multi-functional telerobotic systems for reactor dismantlement

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Usui, Hozumi; Shinohara, Yoshikuni

    1992-01-01

    This report summarizes technological features of advanced telerobotic systems for reactor dismantling application developed at the Japan Atomic Energy Research Institute. Taking into consideration the special environmental conditions in reactor dismantling, major effort was made to develop multifunctional telerobotic system of high reliability which can be used to perform various complex tasks in an unstructured environment and operated in an easy and flexible manner. The system development was carried out through constructing three systems in seccession; a light-duty and a heavy-duty system as a prototype system for engineering test in cold environment, and a demonstration system for practical on-site application to dismantling highly radioactive reactor internals of an experimental boiling water reactor JPDR (Japan Power Demonstration Reactor). Each system was equipped with one or two amphibious manipulators which can be operated in either a push-button manual, a bilateral master-slave, a teach-and-playback or a programmed control mode. Different scheme was adopted in each system at designing the manipulator, transporter and man-machine interface so as to compare their advantages and disadvantages. According to the JPDR decommissioning program, the demonstration system was successfully operated to dismantle a portion of the radioactive reactor internals of the JPDR, which used underwater plasma arc cutting method and proved the usefulness of the multi-functional telerobotic system for reducing the occupational hazards and enhancing the work efficiency in the course of dismantling highly radioactive reactor components. (author)

  7. Decommissioning of the AVR reactor, concept for the total dismantling

    International Nuclear Information System (INIS)

    Marnet, C.; Wimmers, M.; Birkhold, U.

    1998-01-01

    After more than 21 years of operation, the 15 MWe AVR experimental nuclear power plant with pebble bed high temperature gas-cooled reactor was shout down in 1988. Safestore decommissioning began in 1994. In order to completely dismantle the plant, a concept for Continued dismantling was developed according to which the plant could be dismantled in a step-wise procedure. After each step, there is the possibility to transform the plant into a new state of safe enclosure. The continued dismantling comprises three further steps following Safestore decommissioning: 1. Dismantling the reactor vessels with internals; 2. Dismantling the containment and the auxiliary units; 3. Gauging the buildings to radiation limit, release from the validity range of the AtG (Nuclear Act), and demolition of the buildings. For these steps, various technical procedures and concepts were developed, resulting in a reference concept in which the containment will essentially remain intact (in-situ concept). Over the top of the outer reactor vessel a disassembling area for remotely controlled tools will be erected that tightens on that vessel and can move down on the vessel according to the dismantling progress. (author)

  8. Dismantling the nuclear research reactor Thetis

    Energy Technology Data Exchange (ETDEWEB)

    Michiels, P. [Belgoprocess, 2480 Dessel (Belgium)

    2013-07-01

    The research reactor Thetis, in service since 1967 and stopped in 2003, is part of the laboratories of the institution of nuclear science of the University of Ghent. The reactor, of the pool-type, was used as a neutron-source for the production of radio-isotopes and for activation analyses. The reactor is situated in a water pool with inner diameter of 3 m. and a depth of 7.5 m. The reactor core is situated 5.3 m under water level. Besides the reactor, the pool contains pneumatic loops, handling tools, graphite blocks for neutron moderation and other experimental equipment. The building houses storage rooms for fissile material and sources, a pneumatic circuit for transportation of samples, primary and secondary cooling circuits, water cleaning resin circuits, a ventilation system and other necessary devices. Because of the experimental character of the reactor, laboratories with glove boxes and other tools were needed and are included in the dismantling program. The building is in 3 levels with a crawl-space. The ground-floor contains the ventilation installation, the purification circuits with tanks, cooling circuits and pneumatic transport system. On the first floor, around the reactor hall, the control-room, visiting area, end-station for pneumatic transport, waste-storage room, fuel storage room and the labs are located. The second floor contains a few laboratories and end stations of the two high speed transfer tubes. The lowest level of the pool is situated under ground level. The reactor has been operated at a power of 150 kW and had a max operating power of 250 kW. Belgoprocess has been selected to decommission the reactor, the labs, storage halls and associated circuits to free release the building for conventional reuse and for the removal of all its internals as legal defined. Besides the dose-rate risk and contamination risk, there is also an asbestos risk of contamination. During construction of the installation, asbestos-containing materials were

  9. Chooz A: a model for the dismantling of water-cooled reactors

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    The specificity of Chooz-A, the first French pressurized water reactor (PWR), is that the reactor and its major components (pumps, exchangers and cooling circuits) are installed in 2 caves dug out in a hill slope. Chooz-A was operating from 1967 to 1991, in 1993 the fuel was removed and in 2007 EDF received the authorization to dismantle the reactor. In 2012, EDF completed the dismantling of the cave containing the elements of the cooling circuit, a cornerstone was the removing of the four 14 m high steam generators. The dismantling of the pressure vessel began in march 2017, it is the same tools and the same processes that were used for the dismantling of the pressure vessel of the Zorita plant (Spain) in 2016. The end of the Chooz-A dismantling is expected in 2022. The feedback experience will help to standardize practices for the French fleet of PWRs. (A.C.)

  10. Advanced robotic remote handling system for reactor dismantlement

    International Nuclear Information System (INIS)

    Shinohara, Yoshikuni; Usui, Hozumi; Fujii, Yoshio

    1991-01-01

    An advanced robotic remote handling system equipped with a multi-functional amphibious manipulator has been developed and used to dismantle a portion of radioactive reactor internals of an experimental boiling water reactor in the program of reactor decommissioning technology development carried out by the Japan Atomic Energy Research Institute. (author)

  11. Dismantling id the reactor pressure vessel insulation and dissecting of the MZFR reactor pressure vessel

    International Nuclear Information System (INIS)

    Loeb, Andreas; Stanke, Dieter; Thoma, Markus; Eisenmann, Beata; Prechtl, Erwin; Dehnke, Burckhard

    2008-01-01

    The MZFR reactor was decommissioned in 1984. The authors describe the dismantling of the reactor pressure vessel insulation that consists of asbestos containing mineral fiber wool. The appropriate remote handling and cutting tools had to be adapted with respect to the restrained space in the containment. The dismantling of the reactor pressure vessel has been completed, the dissected parts have been packaged into 200 containers for the final repository Konrad. During the total project time no reportable events and no damage to persons occurred.

  12. Decommissioning and dismantling reactors and managing waste

    International Nuclear Information System (INIS)

    Bensoussan, E.; Reicher-Fournel, N.

    2005-01-01

    In the early forties/fifties, a number of countries launched the first developments in the field of nuclear power. Some of them now have large numbers of nuclear facilities and nuclear power plants which have met, and continue to meet, the objectives for which they were designed and built. Other plants, including nuclear fuel production and enrichment plants, experimental reactors or research reactors, will have to be dismantled and demolished in the near future. These activities are handled differently in different countries as a function of specific energy policies, advanced development plants, current financial resources, the availability of qualified engineers and specialized industries able to handle projects of this kind, as well as other factors. All dismantling and demolition projects serve the purpose of returning the respective sites to green-field conditions. (orig.)

  13. The Japan Power Demonstration Reactor dismantling project. Radiation control

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Seiki, Yoshihiro

    1996-01-01

    In the Japan Power Demonstration Reactor (JPDR) dismantling project, radiation control was performed properly with routine and special monitoring to keep the occupational safety and to collect data necessary for future dismantling of nuclear facilities. This report describes a summary of radiation control in the dismantling activities and some results of parametric analysis on dose equivalent evaluation, and introduces the following knowledge on radiological protection effectiveness of the dismantling systems applied in the project. a) Use of remote dismantling systems was effective in reducing equivalent workplace exposure. b) Utilization of existing facilities as radiation shield or radioactivity containment was effective in reducing workplace exposure, and also in increasing work efficiency. c) Use of underwater cutting systems was useful to minimize air contamination, and to reduce the dose equivalent rate in the working area. d) In the planning of dismantling, it is necessary to optimize the radiation protection by analyzing dismantling work procedures and evaluating radiological features of the dismantling systems applied, including additional work which the systems require brought from such activities. (author)

  14. Dismantling method for reactor shielding wall and device therefor

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1995-01-01

    A ring member having an outer diameter slightly smaller than an inner diameter of a reactor shielding wall to be dismantled is lowered in the inside of the reactor shielding wall while keeping a horizontal posture. A cutting device is disposed at the lower peripheral edge of the ring member. The cutting device can move along the peripheral edge of the circular shape of the ring member. The ring member is urged against the inner surface of the reactor shielding wall by using an urging member to immobilize the ring member. Then, the cutting device is operated to cut the reactor shielding wall into a plurality of ring-like blocks at a plurality of inner horizontal ribs or block connection ribs. Then, the blocks of the cut reactor shielding wall are supported by the ring member, and transported out of the reactor container by a lift. The cut blocks transported to the outside are finely dismantled for every block in a closed chamber. (I.N.)

  15. A Study on Dismantling of Westinghouse Type Nuclear Reactor

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Lee, Sang-Guk

    2014-01-01

    KHNP started a research project this year to develop a methodology to dismantle nuclear reactors and internals. In this paper, we reviewed 3D design model of the reactor and suggested feasible cutting scheme.. Using 3-D CAD model of Westinghouse type nuclear reactor and its internals, we reviewed possible options for disposal. Among various options of dismantling the nuclear reactor, plasma cutting was selected to be the best feasible and economical method. The upper internals could be segmented by using a band saw. It is relatively fast, and easily maintained. For cutting the lower internals, plasma torch was chosen to be the best efficient tool. Disassembling the baffle and the former plate by removing the baffle former bolts was also recommended for minimizing storage volume. When using plasma torch for cutting the reactor vessel and its internal, installation of a ventilation system for preventing pollution of atmosphere was recommended. For minimizing radiation exposure during the cutting operation, remotely controlled robotic tool was recommended to be used

  16. Experience of partial dismantling and large component removal of light water reactors

    International Nuclear Information System (INIS)

    Dubourg, M.

    1987-01-01

    Not any of the French PWR reactors need to be decommissioned before the next decade or early 2000. However, feasibility studies of decommissioning have been undertaken and several dismantling scenarios have been considered including the dismantling of four PWR units and the on-site entombment of the active components into a reactor building for interim disposal. In addition to theoretical evaluation of radwaste volume and activity, several operations of partial dismantling of active components and decontamination activities have been conducted in view of dismantling for both PWR and BWR units. By analyzing the concept of both 900 and 1300 MWe PWR's, it appears that the design improvements taken into account for reducing occupational dose exposure of maintenance personnel and the development of automated tools for performing maintenance and repairs of major components, contribute to facilitate future dismantling and decommissioning operations

  17. Cold trap dismantling and sodium removal at a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Anja; Petrick, Holger; Stutz, Uwe [WAK GmbH, Eggenstein-Leopoldshafen (Germany). Hauptabt. Dekontaminationsbetriebe Rueckbau Kompakte Natriumgekuehlte Kernreaktoranlage (KNK); Hosking, Paul [Nuclear Decommissioning Services Limited (NDSL), Sutherland, Dornoch (United Kingdom)

    2013-11-15

    The first German prototype Fast Breeder Nuclear Reactor (KNK) is currently being dismantled after being the only operating Fast Breeder-type reactor in Germany. As this reactor type used sodium as a coolant in its primary and secondary circuit, 7 cold traps containing various amounts of partially activated sodium needed to be disposed of as part of the dismantling. The resulting combined difficulties of radioactive contamination and high chemical reactivity were handled by treating the cold traps differently depending on their size and the amount of sodium contained inside. Six small cold traps were processed on-site by cutting them up into small parts using a band saw under a protective atmosphere. The sodium was then converted to sodium hydroxide by using water. The remaining large cold trap could not be handled in the same way due to its dimensions (2.9 m x 1.1 m) and the declared amount of sodium inside (1,700 kg). It was therefore manually dismantled inside a large box filled with a protective atmosphere, while the resulting pieces were packaged for later burning in a special facility. The experiences gained by KNK during this process may be advantageous for future dismantling projects in similar sodium-cooled reactors worldwide. (orig.)

  18. Radioactivity, radiation protection and monitoring during dismantling of light-water reactors

    International Nuclear Information System (INIS)

    Hummel, L.; Zech, J.B.

    2005-01-01

    Based on the radioactivity inventory in the systems and components of light-water reactors observed during operation, the impact of actions during plant emptying after the conclusion of power operation and possible subsequent long-term safe enclosure concerning the composition of the nuclide inventory of the plant to be dismantled will be described. Derived from this will be the effects on radioactivity monitoring in the plant, physical radiation protection monitoring, and the measured characterization of the residual materials resulting from the dismantling. The impact of long-term interim storage will also be addressed in the discussion. The talk should provide an overview of the interrelationships between source terms, decay times and the radioactivity monitoring requirements of the various dismantling concepts for commercial light-water reactors. (orig.)

  19. The dismantling of fast reactors: sodium processing

    International Nuclear Information System (INIS)

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  20. Dismantling of JPDR reactor internals by underwater plasma arc cutting technique using robotic manipulator

    International Nuclear Information System (INIS)

    Yokota, M.

    1988-01-01

    The actual dismantling of JPDR started on December 4, 1986. As of now, equipment that surrounds the reactor has mostly been removed to provide working space in reactor containment prior to the dismantling of reactor internals. Some reactor internals have been successfully dismantled using the underwater arc cutting system with a robotic manipulator during the period of January to March 1988. The cutting system is composed of an underwater plasma arc cutting device and a robotic manipulator. The cut off reactor internals were core spray block, feedwater sparger and stabilizers for fuel upper grid tube. The plasma arc cutting device was developed to dismantle the reactor internals underwater. It mainly consists of a plasma torch, power and gas supply systems for the torch, and by-product treatment systems. It has the cutting ability of 130 mm thickness stainless steel underwater. The robotic manipulator has seven degrees of freedom of movement, enabling it to move in almost the same way as the arm of a human being. The arm of the robot is mounted on a supporting device which is suspended by three chains from the support structure set on a service floor. A plasma torch is griped by the robotic hand; its position to the structure to be cut is controlled from a remote control room, about 100 meters outside the reactor containment

  1. Method of freezing type dismantling for wasted reactors

    International Nuclear Information System (INIS)

    Tatsumi, Toshiyuki.

    1985-01-01

    Purpose: To enable to operate a cutting device in the air by placing a working table on ice while utilizing the ice as radiation shielding materials thereby prevent the diffusion of air contaminations. Method: Upon dismantling a BWR type reactor, ice is packed into a reactor container and a pressure vessel and frozen state is maintained by cooling coils disposed to the outer circumference of the pressure vessel. Then, an airtight hood is covered over the pressure vessel and a working table is rotatably disposed therein. Upon working, when the upper layer ice is melted by a heat pump and discharged, the airtight hood is lowered to a predetermined level. After freezing the melted portion again at the lowered level, cutting work is conducted by an operator in the hood. The cut pieces are conveyed after hoisting the airtight hood by a crane. The pressure vessel is dismantled by repeating the foregoing procedures. In this way, cut pieces can be recovered without falling them to the reactor bottom as in the conventional work in water. In addition, since the procedures are conducted while covering the airtight hood, diffusion of air contaminations can be prevented. (Kamimura, M.)

  2. Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445

    Energy Technology Data Exchange (ETDEWEB)

    Boucau, Joseph [Westinghouse Electric Company, 43 rue de l' Industrie, Nivelles (Belgium); Mirabella, C. [Westinghouse Electric France, Orsay (France); Nilsson, Lennart [Westinghouse Electric Sweden, Vaesteraas (Sweden); Kreitman, Paul J. [Westinghouse Electric Company, Lake Bluff, IL 60048 (United States); Obert, Estelle [EDF - DPI - CIDEN, Lyon (France)

    2013-07-01

    Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Center for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French

  3. Challenges of dismantling

    International Nuclear Information System (INIS)

    Chevet, P.F.; Schilz, F.; Rondeau, J.M.; Piketty, L.; Dupraz, B.; Conte, D.; Duguey, M.; Louet, C.A.; Dorison, A.; Dutzer, M.; Boucau, J.; Eimer, M.; Boutin, D.; Revilla, J.L.; Golshan, M.; Smith, G.

    2015-01-01

    This document is made up of short articles whose issue is reactor dismantling. The first article presents the French strategy that can be featured by immediate dismantling (the dismantling process is prepared a long time before decommissioning and begins as soon as the reactor is shut down) and massive dismantling (a lot of nuclear facilities will be decommissioned in a near future). The following 4 articles give the viewpoints of ASN (Nuclear Safety Authority), EDF (for its fleet of PWRs), CEA (for its experimental reactors and nuclear facilities) and AREVA (for the EURODIF George Besse plant). Costs and financing are dealt with in an article that says that the cost is greatly dependent on the final state: a complete nuclear-free area or an area whose radioactivity is below safe standards and that law implies to constitute provisions all along the operating life of the facility to cover dismantling costs. Dismantling generates a huge amount of very low-level radioactive wastes particularly metal scraps that might be recycled and get out of nuclear industry, an article details the feasibility of such recycling. Another article shows the impact of massive dismantling on the management of radioactive wastes. In an article Westinghouse presents its experience in the cutting of internal equipment of the reactor core. The last 2 articles presents the dismantling strategies in Spain and in the UK. (A.C.)

  4. General plan for the partial dismantling of the IRT-Sofia research reactor

    Directory of Open Access Journals (Sweden)

    Apostolov Tihomir G.

    2006-01-01

    Full Text Available After the decision of the Bulgarian Government to reconstruct it, the strategy concerning the IRT-Sofia Research Reactor is to partially dismantle the old systems and equipment. The removal of the reactor core and replacement of old equipment will not pose any significant problems. For a more efficient use of existing resources, there is a need for an engineering project which has been already prepared under the title "General Plan for the Partial Dismantling of Equipment at the IRT-Sofia as a Part of the Reconstruction into a Low Power RR".

  5. International Cooperation for the Dismantling of Chooz A Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    Grenouillet, J.J.; Posivak, E.

    2009-01-01

    Chooz A is the first PWR that is being decommissioned in France. The main issue that is conditioning the success of the project is the Reactor Pressure Vessel (RPV) and Reactor Vessel Internals (RVI) segmentation. Whereas Chooz A is the first and unique RPV and RVI being dismantled in France, there are many similar experiences available in the world. Thus the project team was eager to cooperate with other teams facing or being faced with the same issue. A cooperation programme was established in two separate ways: - Benefiting from experience feedback from completed RPV and RVI dismantling projects, - Looking for synergy with future RPV dismantling projects for activities such as segmentation tools design, qualification and manufacturing for example. This paper describes the implementation of this programme and how the outcome of the cooperation was used for the implementation of Chooz-A RPV and RVI segmentation project. It shows also the limits of such a cooperation. (authors)

  6. Stage 2: dismantling of reactor case of the experimental F.B.R. Rapsodie

    International Nuclear Information System (INIS)

    Roger, J.

    1994-01-01

    This document defines the main objectives of stage 2 dismantling of the Rapsodie experimental fast neutron reactor and specifies its time schedule. The work already in progress consists in containing the reactor vessel and its internal equipment, as well as the neutron protection concrete, inside the two leak-tight barriers, and in dismantling all the systems and equipment systems contaminated by sodium. This work, which includes the destruction of 37 metric tons of contaminated sodium from the primary system, was begun in 1987 and will be completed in 1994. The duration of the waiting period for complete dismantling (stage 3) has not been defined. However, the containment and monitoring means implemented should allow a safe waiting period of several decades. (author). 4 figs

  7. Deliberated opinion of the Environment Authority concerning the dismantling of the Ulysse reactor (CEA Saclay)

    International Nuclear Information System (INIS)

    2010-01-01

    As the Ulysse reactor of Saclay is about to be dismantled, this report discusses the content of a request made by the CEA to definitely stop and dismantle this reactor. After having recalled the origin of this dismantling project and its regulatory framework, it describes the actual works which are planned, and outlines the main challenges to be faced. It discusses the content of the environmental report or impact study, notably the analysis of the initial condition, the analysis of direct and indirect effects of the project on the environment and health, and of the envisaged measures (waste management, liquid and gaseous effluent management, risk management, radiological exposure of workers in charge of this dismantling, and transports). Recommendations are formulated for a rewriting of the provided documents

  8. Method of dismantling a nuclear reactor

    International Nuclear Information System (INIS)

    Shirai, Masato; Hashimoto, Osamu.

    1984-01-01

    Purpose: To enable rapid and simple positioning for a plasma arc torch disposed to the inside of a nuclear reactor main body. Method: After removing the upper semi-spherical portion, fuel portion and control rod portion of a nuclear reactor, a rotary type girder is placed on the upper edge of a cylindrical portion remained after the removal of the upper semi-spherical portion. Then, the upper portion of a supporting rod provided with a swing arm having a plasma arc torch at the top end is situated at the center of the reactor main body. Then, the top end of the support rod is inserted to fix in the housing of control rod drives. Then, the swing arm is actuated to situate the plasma arc torch to a desired position to be cut, whereafter cutting is initiated while rotating the rotary type girder. Thus, plasma arc torch is moved horizontally along an arcuate trace, whereby pipeways, accessories or the likes disposed to the inside of the main body are at first cut and then the cylindrical portion constituting the main body is cut to dismantle the reactor. (Moriyama, K.)

  9. Data analysis on work activities in dismantling of Japan Power Demonstration Reactor (JPDR). Contract research

    International Nuclear Information System (INIS)

    Shiraishi, Kunio; Sukegawa, Takenori; Yanagihara, Satoshi

    1998-03-01

    The safe dismantling of a retired nuclear power plant was demonstrated by completion of dismantling activities for the Japan Power Demonstration Reactor (JPDR), March, 1996, which had been conducted since 1986. This project was a flag ship project for dismantling of nuclear power plants in Japan, aiming at demonstrating an applicability of developed dismantling techniques in actual dismantling work, developing database on work activities as well as dismantling of components and structures. Various data on dismantling activities were therefore systematically collected and these were accumulated on computer files to build the decommissioning database; dismantling activities were characterized by analyzing the data. The data analysis resulted in producing general forms such as unit activity factors, for example, manpower need per unit weight of component to be dismantled, and simple arithmetic forms for forecasting of project management data to be applied to planning another dismantling project through the evaluation for general use of the analyzed data. The results of data analysis could be usefully applied to planning of future decommissioning of commercial nuclear power plants in Japan. This report describes the data collection and analysis on the JPDR dismantling activities. (author)

  10. Safe dismantling of the SVAFO research reactors R2 and R2-0 in Sweden

    International Nuclear Information System (INIS)

    ARNOLD, Hans-Uwe; BROY, Yvonne; Dirk Schneider

    2017-01-01

    The R2 and R2-0 reactors were part of the Swedish government's research program on nuclear power from the early 1960's. Both reactors were shut down in 2005 following a decision by former operator Studsvik Nuclear AB. The decommissioning of the R2 and R2-0 reactors is divided into three phases. The first phase - awarded to AREVA - involved dismantling of the reactors and associated systems in the reactor pool, treatment of the disassembled components as well as draining, cleaning and emptying the pool. In the second phase, the pool structure itself will be dismantled, while removal of remaining reactor systems, treatment and disposal of materials and clean-up will be carried out in the third stage. The entire work is planned to be completed before the end of this decade. The paper describes the several steps of phase 1 - starting with the team building, followed by the dismantling operations and covers challenges encountered and lessons learned as well. The reactors consist of 5.400 kg aluminum, 6.000 kg stainless steel restraint structures as well as, connection elements of the mostly flanged components (1.000 kg). The most demanding - from a radiological point of view - was the R2-0 reactor that was limited to ∼ 1 m"3 construction volumes but with an extremely heterogeneous activation profile. Based on the calculated radiological entrance data and later sampling, nuclide vectors for both reactors depending on the real placement of the single component and on the material (aluminum and stainless steel) were created. Finally, for the highest activated component from R2 reactor, 85 Sv/h were measured. The dismantling principles - adopted on a safety point of view - were the following: The always protected base area of the ponds served as a flexible buffer area for waste components and packaging. Specific protections were also installed on the walls to protect them from mechanical stress which may occur during dismantling work. A specific work platform was

  11. Dismantling of the reactor block of the FRJ-1 research reactor (MERLIN); Abbau des Reaktorblocks des Forschungsreaktors FRJ-1 (MERLIN)

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, B.; Matela, K.; Zehbe, C. [Forschungszentrum Juelich GmbH (Germany); Poeppinghaus, J. [Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Cremer, J. [Siempelkamp Nukleartechnik GmbH, Heidelberg (Germany)

    2003-07-01

    By the end of 1998 the complete secondary cooling system and the major part of the primary cooling system were dismantled. Furthermore, the experimental devices, including a rabbit system conceived as an in-core irradiation device, were disassembled and disposed of. In total, approx. 65 t of contaminated and/or activated material as well as approx. 70 t of clearance-measured material were disposed of within the framework of these activities. The dismantling of the coolant loops and experimental devices was followed in 2000 by the removal of the reactor tank internals and the subsequent draining of the reactor tank water. The reactor tank internals were essentially the core support plate, the core box, the flow channel and the neutron flux bridges (s. Fig. 2, detailed reactor core). All components consisted of aluminium, the connecting elements such as bolts and nuts, however, of stainless steel. Due to the high activation of the core internals, disassembly had to be remotely controlled under water. All removal work was carried out from a tank intermediate floor (s. Fig. 2). These activities, which served for preparing the dismantling of the reactor block, were completed in summer 2001. The waste parts arising were transferred to the Service Department for Decontamination of the Research Centre. This included approx. 2.5 t of waste parts with a total activity of approx. 8 x 10{sup 11} Bq. (orig.)

  12. Characterization of radioactive graphite and concrete of the reactor ULYSSE/INSTN at CEA/Saclay to be dismantled

    International Nuclear Information System (INIS)

    Van Lauwe, Aymeric; Ridikas, Danas; Damoy, Francois; Blideanu, Valentin; Fajardo, Christophe; Aubert, Marie-Cecile; Foulon, Francois

    2006-01-01

    Decommissioning and dismantling of nuclear installations after their service life are connected with the necessity of the disassembling, handling and disposing of a large amount of radioactive material. In order to optimize the disassembling operations, to reduce the undesirable volume to the minimum and to successfully plan the dismantling and disposal of radioactive materials to storage facilities, the radiological characterisation of the material present in the reactor and around its environment should be accurately evaluated. The present work has been done in the framework of the decommissioning and dismantling of the experimental reactor ULYSSE that is presently operating in INSTN/Saclay and will be closed in the middle of 2006. A methodology, already successfully used for another research reactor, is proposed for determining accurately the long-term induced activity of the materials present in the active reactor core and its surroundings. The comparison of theoretical predictions, based on Monte Carlo technique, with experimental values validated the approach and the methodology used in the present study. The goal is to plan efficiently the disassembling and dismantling of the system and to optimise the mass flow going to different waste repositories. We show that this approach might reduce substantially the total cost of decommissioning. (authors)

  13. Dismantling method for reactor pressure vessel and system therefor

    International Nuclear Information System (INIS)

    Hayashi, Makoto; Enomoto, Kunio; Kurosawa, Koichi; Saito, Hideyo.

    1994-01-01

    Upon dismantling of a reactor pressure vessel, a containment building made of concretes is disposed underground and a spent pressure vessel is contained therein, and incore structures are contained in the spent pressure vessel. Further, a plasma-welder and a pressing machine are disposed to a pool for provisionally placing reactor equipments in the reactor building for devoluming the incore structures by welding and compression. An overhead-running crane and rails therefor are disposed on the roof and the outer side of the reactor building for transporting the pressure vessel from the reactor building to the containment building. They may be contained in the containment building after incorporation of the incore structures into the pressure vessel at the outside of the reactor building. For the devoluming treatment, a combination of cutting, welding, pressing and the like are optically conducted. A nuclear power plant can be installed by using a newly manufactured nuclear reactor, with no requirement for a new site and it is unnecessary to provide a new radioactive waste containing facility. (N.H.)

  14. Clearance of radioactive materials during reactor dismantling. Permanent enclosure instead of demolition and renaturation?

    International Nuclear Information System (INIS)

    2016-01-01

    During reactor dismantling besides high-level radioactive wastes a large amount of low-level contaminated steel and concrete has to be disposed. In case that radioactivity falls below defined dose limits (10 micro Sv/person and year) these materials may be disposed in domestic waste landfill or in municipal incineration facilities. The issue is discussed in detail including the fact that many power plants are dismantled at the same time so that the contaminated materials might accumulate. Another issue is the occupational safety of contract workers during dismantling. The permanent enclosure could avoid this environmental contamination of decommissioned power plants might also be less expensive.

  15. Using SAFRAN Software to Assess Radiological Hazards from Dismantling of Tammuz-2 Reactor Core at Al-tuwaitha Nuclear Site

    Science.gov (United States)

    Abed Gatea, Mezher; Ahmed, Anwar A.; jundee kadhum, Saad; Ali, Hasan Mohammed; Hussein Muheisn, Abbas

    2018-05-01

    The Safety Assessment Framework (SAFRAN) software has implemented here for radiological safety analysis; to verify that the dose acceptance criteria and safety goals are met with a high degree of confidence for dismantling of Tammuz-2 reactor core at Al-tuwaitha nuclear site. The activities characterizing, dismantling and packaging were practiced to manage the generated radioactive waste. Dose to the worker was considered an endpoint-scenario while dose to the public has neglected due to that Tammuz-2 facility is located in a restricted zone and 30m berm surrounded Al-tuwaitha site. Safety assessment for dismantling worker endpoint-scenario based on maximum external dose at component position level in the reactor pool and internal dose via airborne activity while, for characterizing and packaging worker endpoints scenarios have been done via external dose only because no evidence for airborne radioactivity hazards outside the reactor pool. The in-situ measurements approved that reactor core components are radiologically activated by Co-60 radioisotope. SAFRAN results showed that the maximum received dose for workers are (1.85, 0.64 and 1.3mSv/y) for activities dismantling, characterizing and packaging of reactor core components respectively. Hence, the radiological hazards remain below the low level hazard and within the acceptable annual dose for workers in radiation field

  16. Decommissioning, Dismantling and Disarming: a Unique Information Showroom Inside the G2 Reactor at Marcoule Centre (France) - 12068

    Energy Technology Data Exchange (ETDEWEB)

    Volant, Emmanuelle [CEA DAM, Bruyeres-le-Chatel (France); Garnier, Cedric [CEA DEN, Marcoule (France)

    2012-07-01

    The paper aims at presenting the new information showroom called 'Escom G2' (for 'Espace Communication') inaugurated by the French Atomic Energy and Alternative Energies Commission (CEA) in spring 2011. This showroom is settled directly inside the main building of the G2 nuclear reactor: a facility formerly dedicated to weapon-grade plutonium production since the late 1950's at the Marcoule nuclear centre, in south of France. After its shutdown, and reprocessing of the last spent fuels, a first dismantling step was successfully completed from 1986 to 1996. Unique in France and in Europe, Escom G2 is focused on France dismantling expertise and its action for disarmament. This showroom comprises of a 300-square meters permanent exhibition, organized around four themes: France strategy for disarmament, decommissioning and dismantling technical aspects, uranium and plutonium production cycles. Each of these topics is illustrated with posters, photos, models and technical pieces from the dismantled plants. It is now used to present France's action in disarmament to highly ranked audiences such as: state representatives, diplomats, journalists... The paper explains the background story of this original project. As a matter of fact, in 1996 France was the first nuclear state to decide to shut down and dismantle its fissile material production facilities for nuclear weapons. First, the paper presents the history of the G2 reactor in the early ages of Marcoule site, its operating highlights as well as its main dismantling operations, are presented. In Marcoule, where the three industrial-scale reactors G1, G2 and G3 used to be operated for plutonium production (to be then reprocessed in the nearby UP1 plant), the initial dismantling phase has now been completed (in 1980's for G1 and in 1996 for G2 and G3). The second phase, aimed at completely dismantling these three reactors, will restart in 2020, and is directly linked to the opening of

  17. UDIN's dismantling projects

    International Nuclear Information System (INIS)

    Laffaille, C.

    1993-01-01

    The role of UDIN (Central unit for nuclear facility decommissioning) at the CEA is reviewed together with the main specific aspects of nuclear dismantling: the different options and dismantling strategies and costs. The characteristics of the main on-going projects are described: graphite-gas reactors (G2/G3), RAPSODIE (RNR), AT1 (pilot RNR fuel reprocessing plant), ELAN II B (Cesium source conditioning plant), EL4 (heavy water/CO2 reactor), RM2 (fuel control radio-metallurgical laboratory) and UB-UM (Uranium enrichment plant)

  18. Robotic dismantlement systems at the CP-5 reactor D and D project

    International Nuclear Information System (INIS)

    Seifert, L. S.

    1998-01-01

    The Chicago Pile 5 (CP-5) Research Reactor Facility is currently undergoing decontamination and decommissioning (D and D) at the Argonne National Laboratory (ANL) Illinois site. CP-5 was the principle nuclear reactor used to produce neutrons for scientific research at Argonne from 1954 to 1979. The CP-5 reactor was a heavy-water cooled and moderated, enriched uranium-fueled reactor with a graphite reflector. The CP-5 D and D project includes the disassembly, segmentation and removal of all the radioactive components, equipment and structures associated with the CP-5 facility. The Department of Energy's Robotics Technology Development Program and the Federal Energy Technology Center, Morgantown Office provided teleoperated, remote systems for use in the dismantlement of the CP-5 reactor assembly for tasks requiring remote dismantlement as part of the EM-50 Large-Scale Demonstration Program (LSDP). The teleoperated systems provided were the Dual Arm Work Platform (DAWP), the Rosie Mobile Teleoperated Robot Work System (ROSIE), and a remotely-operated crane control system with installed swing-reduction control system. Another remotely operated apparatus, a Brokk BM250, was loaned to ANL by the Princeton Plasma Physics Laboratory (PPPL). This machine is not teleoperated and was not part of the LSDP, but deserves some mention in this discussion. The DAWP is a robotic dismantlement system that includes a pair of Schilling Robotic Systems Titan III hydraulic manipulator arms mounted to a specially designed support platform: a hydraulic power unit (HPU) and a remote operator console. The DAWP is designed to be crane-suspended for remote positioning. ROSIE, developed by RedZone Robotics, Inc. is a mobile, electro-hydraulic, omnidirectional platform with a heavy-duty telescoping boom mounted to the platform's deck. The work system includes the mobile platform (locomotor), a power distribution unit (PDU) and a remote operator console. ROSIE moves about the reactor building

  19. Experience of the remote dismantling of the Windscale advanced gas-cooled reactor and Windscale pile chimneys

    International Nuclear Information System (INIS)

    Wright, E.M.

    1993-01-01

    This paper gives brief descriptions of some of the remote dismantling work and equipment used on two large decommissioning projects: the BNFL Windscale Pile Chimneys Project (remote handling machine, waste packaging machine, remotely controlled excavator, remotely controlled demolition machine) and the AEA Windscale Advanced Gas-cooled Reactor Project (remote dismantling machine, operational waste, bulk removal techniques, semi-remote cutting operations)

  20. Remote dismantling of the French Brennilis nuclear power plant

    International Nuclear Information System (INIS)

    Studenski, Joerg

    2009-01-01

    The paper deals with the remote dismantling of the decommissioned EL4 prototype power plant Brennilis in France. The block contains the reactor pressure vessel including internals and biological shield, the piping and the control systems. The authors describe the general operation principle of the reactor to illustrate the peculiarities of the dismantling concept and the concept-related challenges. Detailed information is given concerning the following issues: creation of an access to the reactor block, the used remote technology, dismantling of the coolant piping and the axial shield, dismantling of the reactor pressure vessel and the lateral shield. Special attention is given on the minimization of the produced radioactive waste.

  1. Remote dismantling of the French Brennilis nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Studenski, Joerg [NUKEM Technologies GmbH (Germany)

    2009-07-01

    The paper deals with the remote dismantling of the decommissioned EL4 prototype power plant Brennilis in France. The block contains the reactor pressure vessel including internals and biological shield, the piping and the control systems. The authors describe the general operation principle of the reactor to illustrate the peculiarities of the dismantling concept and the concept-related challenges. Detailed information is given concerning the following issues: creation of an access to the reactor block, the used remote technology, dismantling of the coolant piping and the axial shield, dismantling of the reactor pressure vessel and the lateral shield. Special attention is given on the minimization of the produced radioactive waste.

  2. Remote dismantlement tasks for the CP5 reactor: Implementation, operations, and lessons learned

    International Nuclear Information System (INIS)

    Noakes, M.W.

    1998-01-01

    This paper presents a developer's perspective on lessons learned from one example of the integration of new prototype technology into a traditional operations environment. The dual arm work module was developed by the Robotics Technology Development Program as a research and development activity to examine manipulator controller modes and deployment options. It was later reconfigured for the dismantlement of the Argonne National Laboratory Chicago Pile number-sign 5 reactor vessel as the crane-deployed dual arm work platform. Development staff worked along side operations staff during a significant part of the deployment to provide training, maintenance, and tooling support. Operations staff completed all actual remote dismantlement tasks. At the end of available development support funding, the Dual Arm Work Platform was turned over to the operations staff, who is still using it to complete their dismantlement tasks

  3. Evaluation formulas of manpower needs for dismantling of equipment in FUGEN-3. Dismantling process of the condenser removal

    International Nuclear Information System (INIS)

    Kubota, Shintaro; Izumo, Sari; Usui, Hideo; Kawagoshi, Hiroshi; Koda, Yuya; Nanko, Takashi

    2014-07-01

    Japan Atomic Energy Agency (JAEA) has been developing the PRODIA code which supports to make decommissioning plan and has been preparing evaluation formulas. Manpower needs for the dismantling of the condenser that had conducted from 2010 to 2012 was analyzed and compared with existing evaluation formulas. Applicability of evaluation formulas for a large scale reactor facility was confirmed in dismantling of the heat insulating materials and reliability of unit productivity factor was improved. The evaluation formula of work for clearance was made in dismantling of pipes and supports. Unit productivity factor of dismantling of feed water heaters which is applicable for a large scale reactor facility was derived. For derivation of unit productivity factor, statistically meaningful data was provided from the dismantling of the condenser. Manpower needs for dismantling of the condenser has positive correlation to the weight of equipment and can be described in linear expression. Reliability of each unit productivity factor will be improved with accumulating actual dismantling data in future. (author)

  4. Dismantling of nuclear facilities: the industrial know-how

    International Nuclear Information System (INIS)

    Lellament, R.

    2004-01-01

    Numerous nuclear facilities in laboratories or research reactors have been decommissioned and dismantled over the 2 last decades throughout the world. The valuable feedback experience has allowed nuclear industry to design, upgrade and test specific techniques for dismantling. These techniques are efficient although they have been validated on a reduced number of nuclear power plants. In France only 3 power units have been dismantled: Chinon A1, A2 and Brennilis (EL4) and they are not representative of the real park of EDF'reactors. 6 PWR-type reactors have already been dismantled in the Usa. The results of a survey concerning 26 countries shows that the dismantling cost is around 320 dollars/kWe, it represents 15% of the construction cost which is far from being excessive as it is often read in the media. The dismantling costs can be broken into: - de-construction (25-55%), - wastes from dismantling (17-43%), - security and monitoring (8-13%), - site reclamation (5-13%), and - engineering and project management (5-24%). (A.C.)

  5. The Superphenix dismantling

    International Nuclear Information System (INIS)

    Carle, R.

    1999-01-01

    This document presents selected abstracts of Remy Carle's presentation on the dismantling of Superphenix (october 1998). The author wonders about the consequences of such a decision. After a chronological account of this fast reactor project, its cost and the scientific and technical contribution, the dismantling problem is considered. For EDF (Electricite De France) the dismantling dimension is considered at the same time of the design. The main problem is the liquid sodium reprocessing: a technical but also a financing problem. The end of the speech deals with the political aspects of Superphenix and the relations with the public. (A.L.B.)

  6. Cleansing and dismantling of CEA-Saclay nuclear licensed facilities

    International Nuclear Information System (INIS)

    Jeanjacques, Michel; Delaire, Isabelle; Glevarec, Rebecca; Mandard, Lionel; Martin, Jean-Louis; Serrano, Roger

    2013-01-01

    This summary presents the cleansing and dismantling operations currently realized on the CEA center of Saclay (CEA-Saclay). It was initiated at the beginning of the 2000 years a cleansing and dismantling program of the old Nuclear Licensed Facilities (NLF). Currently this program relates the dismantling operations to the Hot Laboratories (Laboratoires de Haute Activite: LHA) and the old workshops of the Liquid Waste Treatment Plant (Station des Effluents Liquides: STEL), the dismantling preparation of Ulysse reactor and the dismantling studies to the Solid Waste Management Plant (SWMP; Zone de Gestion des Dechets Solides) and the Osiris reactor. (authors)

  7. The good wealth of dismantlement

    International Nuclear Information System (INIS)

    Maincent, G.

    2009-01-01

    Civil engineering, mechanical and waste conditioning companies are working hard on the market of nuclear facilities dismantling. This market has a great future ahead of it in the ten years to come. According to the European Commission, 50 to 60 reactors among the 157 actually in service in the European Union should be dismantled by 2025. The cost per reactor is estimated to 10-15% of the initial investment, which represents an enormous amount of money, estimated to 20-39 billion euros for the only French nuclear park. In France, this market is shared by a core of about 20 companies, like Spie Nucleaire, Onet, Vinci (Nuvia) and Areva. Some dismantling sites require a specific skill, in particular those in relation with the research activity of the CEA (the French atomic energy commission) or involving specific technologies (research reactors, spent fuel reprocessing plants, sodium-cooled rectors..). (J.S.)

  8. Project WAGR: the UK demonstration project for power reactor decommissioning - a review of the tools used to dismantle the reactor core

    International Nuclear Information System (INIS)

    Benest, T.G.

    2008-01-01

    The United Kingdom Atomic Energy Authority (UKAEA) has built and operated a wide range of nuclear facilities since the late 1940. UKAEA mission is to restore the environment of its sites in a safe and secure manner. This restoration includes the decommissioning of a number of redundant research and power reactors. The Windscale Advanced Gas-cooled Reactor (WAGR) was the UK prototype Advanced gas cooled reactor and became the forerunner of a family of 14 reactors built to generate cheaper and more efficient electricity in the UK. WAGR was constructed between 1957 and 1961 and was a carbon dioxide cooled, graphite moderated reactor using uranium oxide fuel in stainless steel cans. The reactor consisted of a graphite moderator housed in a cylindrical reactor vessel with hemispherical ends. The reactor and associated heat exchangers were enclosed in the iconic spherical containment building regularly used by the media in the UK as an illustration of the nuclear industry. The reactor first produced power in August 1962 and achieved full design output in 1963. It operated at an electrical output of 33 MW (E) for 18 years (average load factor of 75%). In 1981 the reactor was shut down after satisfactory completion of all the research and development objectives. In anticipation of the UK likely nuclear decommissioning needs the UKAEA decided to decommission WAGR to the International Atomic Energy Agency (IAEA) stage 3 (restoration of the area occupied by the facility to a condition of unrestricted re-usability) as the national demonstration exercise for power reactor decommissioning. Since 1998 the UKAEA and its contractors have been undertaking the dismantling of the reactor core components and pressure vessel in a series of 10 campaigns. These contain neutron activated components expected to produce dose rates well in excess of 1 Sv/hr. To carry out the work UKAEA installed an 8M remote dismantling machine (RDM) a waste recovery and transport system and a shielded waste

  9. The Japan Power Demonstration Reactor (JPDR) dismantling activities. Dismantling of the reactor enclosure and the auxiliary buildings

    International Nuclear Information System (INIS)

    Seiki, Yoshihiro; Kubo, Takashi.

    1996-01-01

    As the final stage of the JPDR decommissioning program, after the major components were removed from each building of JPDR, the dismantling activities proceeded to the decontamination of contaminated concrete surface and the final radiation survey of buildings. These activities were conducted to verify the developed techniques and the detailed procedures for decontamination, and to allow unrestricted use of the JPDR buildings. Following the decontamination of buildings, the dismantling of each building was started. Before dismantling the buildings, the radiation control designations were changed. The buildings that contaminated embedded pipes were changed from first-class radiation controlled areas to second-class radiation controlled areas. On the other hand, the buildings that had no contaminated pipes were changed to uncontrolled areas. A first-class radiation controlled area allows the use of unsealed sources ; thus, radioactive contamination may exist. A second-class radiation controlled area is one where only sealed sources are allowed. Significant quantities of data and experience were obtained during these activities. The practical procedures for decontamination, the final survey of radioactivity, and the dismantling work of buildings were described in this report. (author)

  10. The Molten Salt Reactor option for beneficial use of fissile material from dismantled weapons

    International Nuclear Information System (INIS)

    Gat, U.; Engel, J.R.; Dodds, H.L.

    1991-01-01

    The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined. It is concluded that MSRs are very suitable for beneficial utilization of the dismantled fuel. The MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus MSRs are flexible while maintaining their economy. MSRs further require a minimum of special fuel preparation and can tolerate denaturing and dilution of the fuel. Fuel shipments can be arbitrarily small, all of which supports nonproliferation and averts diversion. MSRs have inherent safety features which make them acceptable and attractive. They can burn a fuel type completely and convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems for deployment of nuclear power. 19 refs

  11. Feedback from dismantling operations (level 2) on EDF's first generation reactors

    International Nuclear Information System (INIS)

    West, J P.; Dionisio-Gomes, A.; Kus, J P.; Mervaux, P.; Bernet, P.; Dalmas, R.

    2003-01-01

    EDF's policy as regards the dismantling of the reactors that have ceased commercial operation, namely the eight power plants of the first generation and the Creys-Malville power plant, is explained. Generally speaking, prior to the year 2001, EDF had opted for the de-construction of these power plants to comply with a 'long wait' scenario, which consisted of waiting for a period of 5 to 10 years to achieve IAEA level 2 (partial release of the site), then postponing the total de-construction of the facilities for 25 to 50 years. Today, EDF has decided to undertake the total de-construction of these reactors, which have ceased commercial operation, over a period of 25 years. The purpose of this document is to present: - The reactors concerned, their background and their 'regulatory' situation, - The main operations performed and/or currently in progress, - The main elements of feedback from such operations, shedding light on the approach adopted in 2001. The installations concerned by the de-construction programme are as follows: - The 8 power plants of the first generation, which were built during the fifties and sixties and ceased commercial operation between 1973 and 1994, namely: Brennilis (industrial prototype using heavy water technology, jointly operated by EDF and CEA), the 6 power units of the NUGG type (natural uranium gas graphite) at Chinon, Saint-Laurent des Eaux and Bugey and the PWR reactor at Chooz A, - The storage silos at Saint-Laurent, where the sleeves for the fuel assemblies of reactors SLA1 and SLA2 are stored, corresponding to approximately 2000 tonnes of graphite, - The Creys-Malville reactor, FBR (fast breeder reactor) shut down in accordance with a government decision, which is currently undergoing decommissioning. At the current stage, our feedback from the dismantling operations carried out on nuclear facilities is based on (i) the work carried out or in progress that will make it possible to achieve the equivalent of IAEA level 2 in the

  12. Progress in the development of tooling and dismantling methodologies for the Windscale advanced gas cooled reactor (WAGR)

    International Nuclear Information System (INIS)

    Cross, M.T.; Wareing, M.I.; Dixon, C.

    1998-01-01

    Decommissioning of the Windscale Advanced Gas-Cooled Reactor (WAGR) is a major UK reactor decommissioning project co-funded by the UK Government, the European Commission and Magnox Electric. WAGR was a CO 2 cooled, graphite moderated reactor which served as a test bed for the development of Advanced Gas-Cooled Reactor technology in the UK. It operated from 1963 until shutdown in 1981. AEA Technology plc are currently the Managing Agents on behalf of UKAEA for the WAGR decommissioning project and are responsible for the co-ordination of the project up to the point when the contents of the reactor core and associated radioactive materials are removed and either disposed of or packaged for disposal at some time in the future. Decommissioning has progressed to the point where the reactor has been dismantled down to the level of the hot gas collection manifold with the removal of the top biological shield, the refuelling standpipes and the top section of the reactor pressure vessel. The 4 heat exchangers have also been removed and committed to shallow land burial. This paper describes the work carried out by AEA Technology under separate contracts of UKAEA in developing some of the equipment and deployment methods for the next phase of active operations required in preparation for the dismantling of the core structure. Most recent work has concentrated on the development of specialist tooling for removal of items of operational waste stored within the reactor core, equipment for cutting and removal of the highly radioactive stainless steel 'loop' pressure tubes, diamond wire cutting equipment for sectioning large diameter pipework, and equipment for dismantling the reactor neutron shield. The paper emphasises the process of adaptation and extension of existing technologies for cost-effective application in the decommissioning environment, the need for adequate forward planning of decommissioning methodologies together with large-scale 'mock-up' testing of equipment to

  13. Underwater cutting of stainless steel plate and pipe for dismantling reactor pressure vessels

    International Nuclear Information System (INIS)

    Hamasaki, M.; Tateiwa, F.; Kanatani, F.; Yamashita, S.

    1982-01-01

    A consumable electrode water jet cutting technique is described. Satisfactory underwater cutting of 80mm stainless steel plate using a current of 2000A and at a water depth of 200mm has been demonstrated. The electrical requirements for this arc welding method applied to cutting were found to be approximately one third those required for conventional plasma arc cutting for the same thickness plate. An application of this technique might be found in the dismantling of atomic reactor pressure vessels, and parts of commercial atomic reactors. (author)

  14. Dismantling of nuclear facilities and related problems - Conference proceedings

    International Nuclear Information System (INIS)

    Tournebize, Frederic; Bordet, Didier; Charlety, Philippe; Gore, Thierry; Estrade, Jerome; Lemaire, Hermine; Ginet, Annick; Fabrier, Lionel; Evrard, Lydie; Furois, Timothee; Butez, Marc; Dutzer, Michel; Faure, Vincent; Billarand, Yann; Menuet, Lise; Lahaye, Thierry; Pin, Alain; Mougnard, Philippe; Charavy, Sylvain; Poncet, Philippe; Moggia, Fabrice; Dochy, Arnaud; Benjamin, Patrick; Poncet, Pierre-Emmanuel; Beneteau, Yannick; Richard, Jean-Baptiste; Pellenz, Gilles; Ollivier Dehaye, Catherine; Gerard, Stephane; Denissen, Luc; Davain, Henri; Duveau, Florent; Guyot, Jean-Luc; Ardellier, Luc

    2012-11-01

    The oldest French nuclear facilities, built for some of them in the 1950's for research or power generation purposes, have reached more or less the end of their life. More than 30 facilities have entered the shutdown or dismantling phase, among which 8 reactors of the very first generations of Electricite de France (EdF) reactors. The aim of this two-days conference is to take stock of the present day status and perspectives of the dismantling activity, to approach the question of the management of the wastes produced, and to share experience about large scale operations already carried out. This document gathers the available presentations given during this conference: 1 - the 'Passage' project (F. Tournebize); 2 - CEA-Grenoble: from Louis Neel to key enabling technologies (D. Bordet); 3 - Dismantling actions in France (L. Evrard); 4 - Securing control of long-term charges funding (T. Furois); 5 - Waste disposal projects and their contribution to the management of dismantling wastes (M. Butez); 6 - Specificities linked with dismantling activities (Y. Billarand); 7 - Dismantling safety: the ASN's point of view (L. Evrad); 8 - Labor Ministry viewpoint about the dismantling related questions (T. Lahaye); 9 - Consideration of organizational and human factors in dismantling operations: a new deal in the operators-service providers relation (L. Menuet); 10 - Diploma and training experience (A. Pin); 11 - Glove-boxes dismantling at La Hague plant - status and experience feedback (P. Mougnard); 12 - Dismantling of Siloe reactor (CEA-Grenoble): application of the ALARA approach (P. Charlety); 13 - BR3 - a complex dismantling: the neutron shield tank (NST) in remote operation and indirect vision (L. Denissen); 14 - Cleansing and dismantling of the Phebus PF containment (S. Charavy); 15 - Integration of dismantling at the design and exploitation stages of nuclear facilities (P. Poncet); 16 - Consideration during the design and exploitation stages of dispositions aiming at

  15. Activation calculations for dismantling - The feedback of a 7 years experience in activation calculations for graphite gas cooled reactors in France

    International Nuclear Information System (INIS)

    Eid, M.; Nimal, J.C.; Gerat, L.M.

    1994-01-01

    This is a revision of the past seven years experience in activation calculations for dismantling. It aims at evaluating the experience and at making better understanding to help in decision making during the following phases. Five gas cooled reactors are shutdown and are waiting for the EDF (Electricite De France) dismantling decision. The sixth (BUGEY1) will be shutdown by 1994 and will be waiting a dismantling decision as well. (authors). 3 figs., 3 tabs

  16. Method for dismantling shields

    International Nuclear Information System (INIS)

    Fukuzawa, Rokuro; Kondo, Nobuhiro; Kamiyama, Yoshinori; Kawasato, Ken; Hiraga, Tomoaki.

    1990-01-01

    The object of the present invention is to enable operators to dismantle shieldings contaminated by radioactivity easily and in a short period of time without danger of radiation exposure. A plurality of introduction pipes are embedded previously to the shielding walls of shielding members which contain a reactor core in a state where both ends of the introduction pipes are in communication with the outside. A wire saw is inserted into the introduction pipes to cut the shieldings upon dismantling. Then, shieldings can be dismantled easily in a short period of time with no radiation exposure to operator's. Further, according to the present invention, since the wire saw can be set easily and a large area can be cut at once, operation efficiency is improved. Further, since remote control is possible, cutting can be conducted in water and complicated places of the reactor. Biting upon starting the wire saw in the introduction pipe is reduced to facilitate startup for the rotation. (I.S.)

  17. Dismantling system of concrete thermal shielding walls

    International Nuclear Information System (INIS)

    Machida, Nobuhiro; Saiki, Yoshikuni; Ono, Yorimasa; Tokioka, Masatake; Ogino, Nobuyuki.

    1985-01-01

    Purpose: To enable safety and efficient dismantling of concrete thermal shielding walls in nuclear reactors. Method: Concrete thermal shielding walls are cut and dismantled into dismantled blocks by a plasma cutting tool while sealing the top opening of bioshielding structures. The dismantled blocks are gripped and conveyed. The cutting tool is remote-handled while monitoring on a television receiver. Slugs and dusts produced by cutting are removed to recover. Since the dismantling work is carried out while sealing the working circumstance and by the remote control of the cutting tool, the operators' safety can be secured. Further, since the thermal sealing walls are cut and dismantled into blocks, dismantling work can be done efficiently. (Moriyama, K.)

  18. Nuclear installations: decommissioning and dismantling

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This document is a compilation of seven talks given during the 1995 EUROFORUM conference about decommissioning and dismantling of Nuclear installations in the European Community. The first two papers give a detailed description of the legal, financial and regulatory framework of decommissioning and dismantling of nuclear facilities in the European Union and a review of the currently available decommissioning techniques for inventory, disassembly, decontamination, remote operations and management of wastes. Other papers describe some legal and technical aspects of reactor and plants dismantling in UK, Germany, Spain and France. (J.S.)

  19. Radiation exposure of the personnel during dismantling and cutting of the primary system of the Karlsruhe Multi-purpose Research Reactor (MZFR)

    International Nuclear Information System (INIS)

    Hesse, H.; Demant, W.; Reichert, A.; Willmann, F.

    2000-10-01

    The heavy water (D 2 O) cooled and moderated pressurized water reactor MZFR with a thermal power of 200 MW will be dismantled step-by-step within the framework of sectional decommissioning licenses. The past decommissioning step (6 th sectional license) in general covered the removal of the primary systems and of all reactor support systems inside the reactor building. The measures for radiation protection during dismantling and handling of the large components of the primary system, such as the fuel element loading machine, fuel element transfer system, steam generator and pressurizer shall be pointed out. The measures taken for the reduction of the dose rate during dismantling and cutting of the components for the purpose of conditioning or unrestricted reuse at the central decontamination department (HDB) shall be described. Chemical decontamination of the primary circuit and its components, which had to be executed in order to reduce the dose rates for subsequent manual dismantling, shall be presented. The efforts undertaken for the protection of individuals in view of the difficult radiological boundary conditions (high concentrations of tritium in all systems as well as very high alpha contamination) will be explained. Moreover, dose-minimizing measures during cutting of the primary circuit and its components at HDB shall be described by the example of the cutting of a steam generator. It shall be demonstrated that cutting and dismantling of highly contaminated and activated parts with high dose rates can be executed safely in terms of both the radiation exposure of the personnel and the technical, financial and time expenditure. (orig.)

  20. Economical dismantling of nuclear power stations

    International Nuclear Information System (INIS)

    Mallok, J.; Andermann, H.

    1999-01-01

    The dismantling of nuclear power stations requires a high degree of security and economic efficiency due to the strong contamination of components and the close spatial conditions. In order to protect involved staff from radiation, modern remote-controlled technology is applied in sectors with heavy radioactive contamination such as reactor pressure vessels. The article shows, that the dismantling of reactor pressure vessels using a remote-controlled milling machine developed by the Siemens subsidiary Mechanik Center Erlangen GmbH, can be done in a secure and efficient way. (orig.) [de

  1. Clean-up and dismantling, Dismantling - legacy of the past, prospects for the future: CEA, a pioneer in the dismantling process, nuclear dismantling, research and innovation dedicated to dismantling

    International Nuclear Information System (INIS)

    Lorec, Amelie

    2016-01-01

    France - a world leader in the whole nuclear power cycle - is also responsible for the clean-up and dismantling of its end-of-life nuclear facilities. Here, the CEA is considered to be a pioneer both in the project ownership of work sites and in the R and D for optimising the timescales, costs and safety of those work sites. Its responsibilities range from defining the most appropriate scenario, characterising the radiological state of equipment and decontaminating premises, carrying out dismantling and optimising the resulting waste. With this wide range of skills and the diversity of its facilities, the CEA Nuclear Energy Division is developing innovative solutions which are already the subject of industrial transfers. Two-thirds of France's end-of-life nuclear facilities belong to the CEA - a situation connected with its history. This implies setting up clean-up and dismantling work sites which have unprecedented scientific, human and financial challenges. Every regulated nuclear installation (INB) (nuclear reactors, laboratories, etc.) has a limited operating life. When it stops being used, it is first cleaned up (removal of radioactive substances), then dismantled (disassembly of components) in accordance with the baseline safety requirements, and finally decommissioned so that it can be used for other purposes or be demolished. Cleanup and dismantling operations concern all the facility's components, such as hot (shielded) cells which can be found in some laboratories. As the owner of its clean-up and dismantling projects, the CEA also devotes a significant amount of R and D to reducing the timescales, costs and waste from current and future programmes, while improving their safety. The resulting innovations often lead to industrial transfers. (authors)

  2. Dismantling at the CEA's Nuclear Energy Division: strategy and programmes

    International Nuclear Information System (INIS)

    Lecomte, C.; Prunele, D. de; Rozain, J.P.; Nokhamzon, J.G.; Tallec, M.

    2008-01-01

    The CEA's Nuclear Energy Division (DEN) nuclear facilities currently include seventeen reactors and thirty six other miscellaneous facilities, particularly laboratories, fuel processing units and facilities specific to waste management. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. At CEA, the first nuclear facility dismantling operations go back several dozen years and involve numerous and varied facilities. The first operations of any significance took place in the 1960's and 1970's and covered, for example, the first plutonium plant at Fontenay-aux-Roses (total dismantling) and small research reactors or critical models - CESAR and PEGGY at Cadarache and MINERVE at Fontenay-aux Roses (civil engineering cleaned up and kept). At La Hague, the dismantling of AT1, a pilot workshop used by the CEA during the 1970's to process irradiated fuels from fast neutron reactors, was completed in March 2001 (IAEA former stage 3, excluding civil engineering demolition). On the other hand, during this period of first dismantling, the intermediate-sized reactors (G1, Rapsodie) were only partially dismantled after shut down, mainly due to the lack of graphite and sodium waste management routes at the time. About twenty facilities were thus dealt with up to 2001, in other words about half of all the nuclear facilities shut down permanently before this date. (authors)

  3. Dismantling of JPDR begins: to demonstrate advanced technology

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    The first dismantling of the Japan Power Demonstration Reactor (JPDR, BWR, 90 MWt, 12.5 MWe) began on December 4, 1986, claiming the attention of nuclear interests in Japan and overseas. The Japan Atomic Energy Research Institute undertook the project as the second phase of the six year program for dismantling the JPDR at the Tokai Research Establishment. It is the demonstration of the technology developed in the first phase of the program from 1981 to 1986, aiming at establishing a total system for dismantling commercial nuclear power plants in the furture. At the ceremony for the beginning of dismantling held on December 4 at the site, a special switch was operated to fire a gas burner, and cutting of the upper head of the reactor pressure vessel on the service floor of the reactor building began. The long term program on the development and utilization of nuclear energy in 1982 decided the basic policy on reactor decommissioning. Under this policy, in July, 1984, the nuclear subcommittee of the Advisory Committee for Energy set up the guideline for standardized decommissioning suitable to the actual situation in Japan. The schedule of the program, the development of eight fundamental techniques, disassembling techniques, decontamination, measurement and robotics are described. (Kako, I.).

  4. Study on treatment of dust by dismantling

    International Nuclear Information System (INIS)

    Torikai, K.; Suzuki, K.

    1987-01-01

    In dismantling of nuclear reactors, various kinds of treatment of dust generated by cutting or dismantling concrete structures of components of reactors are evaluated for safety, cost, and performance comparing the work in air with water. A method of dust treatment for work in air is discussed. The dry method has an easy operation in practice and a good performance in the equipment, but has problem on the prevention from radioactive contamination by diffusion of dust in air. For the purpose of advancing the strong points and eliminating the weak points in dry method, an improved venturi scrubber system is proposed for dismantling work as a dust collecting system. The system consists of dust absorbing pipe, dust collector, separator of dust and water and dust transfer equipment to a storage of waste. This system would be expected to have better performance and lower operating cost in decommissioning nuclear reactors, especially, the number of dust filters, for example, HEPA filters, will be considerably saved

  5. The promising opportunity of dismantlement

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Civil engineering, mechanics and waste conditioning companies are thriving around the market of nuclear facilities dismantlement which is promised to a huge development in the coming decade. This paper presents a map of the opportunities of the dismantlement market throughout Europe (research and power reactors, fuel fabrication plants, spent fuel reprocessing plants) and a cost estimation of a given dismantling work with respect to the different steps of the work. In France a small core of about twenty companies is involved in nuclear dismantlement but the French market is also looking towards foreign specialists of this activity. The British market is also targeted by the French companies but for all the actors the technological or commercial advance gained today will be determining for the future markets. (J.S.)

  6. Overall strategy of Creys Malville power station dismantling

    International Nuclear Information System (INIS)

    Alphonse, P.

    2002-01-01

    The power station was stopped by a government decision following the elections in 1997. This shutdown was then made official by a letter dated April 1998 and the decree of December 1998. This was a non-technical shutdown and as such had not been envisaged; there has been no early warning. Current dismantling strategy: The studies leading to shutdown and then dismantling were engaged in 1998 based on a scenario with a status corresponding to IAEA level 2 until 2046. In 2001, EDF management made the decision to dismantle all the first generation power stations and Creys Malville between now and 2025. It should be noted that the presence of strongly irradiated stellite in the Creys Malville reactor would still require remote systems for working in the reactor block after 2046. The sequence of operations dictated by the dismantling strategy is as follows: eliminate the risks as soon as possible and in particular the risk related to the sodium, 3300 tonnes of which is kept in liquid form in the reactor vessel; dismantle the most active parts which are too radioactive to be sent to the existing or planned storage centres. This may lead to on-site storage to allow decay to occur before sending to a storage centre; planning of the work interventions in order to limit the costs

  7. Decontamination before dismantling a fast breeder reactor primary cooling system

    International Nuclear Information System (INIS)

    Costes, J.R.; Antoine, P.; Gauchon, J.P.

    1997-01-01

    The large-scale decontamination of FBR sodium loops is a novel task, as only a limited number of laboratory-scale results are available to date. The principal objective of this work is to develop a suitable decontamination procedure for application to the primary loops of the RAPSODIE fast breeder reactor as part of decommissioning to Stage 2. After disconnecting the piping from the main vessel, the pipes were treated by circulating chemical solutions and the vessels by spraying. The dose rate in the areas to be dismantled was divided by ten. A decontamination factor of about 300 was obtained, and should allow austenitic steel parts to be melted in special furnaces for unrestricted release. (author)

  8. Aspects of reactor dismantling planning following the safe entombment in the NPP Lingen (KWL); Aspekte der Abbauplanung nach dem Sicheren Einschluss im Kernkraftwerk Lingen (KWL)

    Energy Technology Data Exchange (ETDEWEB)

    Priesmeyer, U.; Rojahn, T.; Fries, B. [Kernkraftwerk Lingen GmbH (Germany)

    2009-07-01

    The NPP Lingen (KWL) was shut-down in 1977. Due to the fact that no final repository was available the safe entombment for 25 years was chosen following the decommissioning. The conventional plant components were dismantled and removed from the plant site. The licensing procedure for reactor dismantling with final disposal in Schacht Konrad has been started. The beginning of dismantling operation is scheduled for 2013. The authors describe the preparatory work, the boundary conditions for the dismantling, radiation protection considerations with respect to manual demolition work after the rather long decay time.

  9. Melting of contaminated steel scrap from the dismantling of the CO2 systems of gas cooled, graphite moderated nuclear reactors

    International Nuclear Information System (INIS)

    Feaugas, J.; Jeanjacques, M.; Peulve, J.

    1994-01-01

    G2 and G3 are the natural Uranium cooled reactors Graphite/Gas. The two reactors were designed for both plutonium and electricity production (45 MWe). The dismantling of the reactors at stage 2 has produced more than 4 000 tonnes of contaminated scrap. Because of their large mass and low residual contamination level, the French Atomic Energy Commission (CEA) considered various possibilities for the processing of these metallic products in order to reduce the volume of waste going to be stored. After different studies and tests of several processes and the evaluation of their results, the choice to melt the dismantled pipeworks was taken. It was decided to build the Nuclear Steel Melting Facility known as INFANTE, in cooperation with a steelmaker (AHL). The realization time schedule for the INFANTE lasted 20 months. It included studies, construction and the licensing procedure. (authors). 2 tabs., 3 figs

  10. Abrasive water jet cutting technique for biological shield concrete dismantlement

    International Nuclear Information System (INIS)

    Konno, T.; Narazaki, T.; Yokota, M.; Yoshida, H.; Miura, M.; Miyazaki, Y.

    1987-01-01

    The Japan Atomic Energy Research Institute (JAERI) is developing the abrasive-water jet cutting system to be applied to dismantling the biological shield walls of the JPDR as a part of the reactor dismantling technology development project. This is a total system for dismantling highly activated concrete. The concrete biological shield wall is cut into blocks by driving the abrasive-water jet nozzle, which is operated with a remote, automated control system. In this system, the concrete blocks are removed to a container, while the slurry and dust/mist which are generated during cutting are collected and treated, both automatically. It is a very practical method and will quite probably by used for actual dismantling of commercial power reactors in the future because it can minimize workers' exposure to radioactivity during dismantling, contributes to preventing diffusion of radiation, and reduces the volume of contaminated secondary waste

  11. CP-5 reactor remote dismantlement activities: Lessons learned in the integration of new technology in an operations environment

    International Nuclear Information System (INIS)

    Noakes, M.W.

    1998-01-01

    This paper presents the developer's perspective on lessons learned from one example of the integration of new prototype technology into a traditional operations environment. The dual arm work module was developed by the Robotics Technology Development Program as a research and development activity to examine manipulator controller modes and deployment options. It was later reconfigured for the dismantlement of the Argonne National Laboratory Chicago Pile No. 5 reactor vessel as the crane-deployed dual arm work platform. Development staff worked along side operations staff during a significant part of the deployment to provide training, maintenance, and tooling support. Operations staff completed all actual remote dismantlement tasks. At the end of available development support funding, the Dual Arm Work Platform was turned over to the operations staff, who are still using it to complete their dismantlement tasks

  12. Achievements and prospects of robotics in dismantling operations

    International Nuclear Information System (INIS)

    Clement, G.; Goetghebeur, S.; Ravera, J.P.

    1993-01-01

    After a definition of 'robotic systems' (poly functionality is the main concept), the nuclear facilities that have used robotic systems for their dismantling are reviewed; the various robot intervention domains in dismantling, the different types of machines and the work carried out by robots are presented. Difficulties arising from robot utilization for reactor dismantling, robot design considerations, reliability, personnel training needs, tooling and costs are discussed. Applicability criteria are derived concerning radio protection, hard working conditions, task complexity, multiplicity and quality, and costs

  13. Status of the Digital Mock-up System for the dismantling of the nuclear facilities

    International Nuclear Information System (INIS)

    Park, Hee Seoung; Kim, S. K.; Lee, K. W.; Oh, W. J.

    2004-12-01

    The database system have already developed is impossible to solve a quantitative evaluation about a various situation from the dismantle activities of the reactor had contaminated with radioactivity. To satisfy the requirements for safety and economical efficiency among a major decommissioning technologies, it need a system that can evaluate and estimate dismantling scheduling, amount of radioactive waste being dismantled, and decommissioning cost. We have review and analyzed status of the digital mock-up system to get a technical guide because we have no experience establishment of one relation to dismantling of research reactor and nuclear power plant

  14. Decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East. Project final report

    International Nuclear Information System (INIS)

    Fellhauer, C.R.; Clark, F.R.

    1997-10-01

    The decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East (ANL-E) was completed in October 1997. Descriptions and evaluations of the activities performed and analyses of the results obtained during the JANUS D and D Project are provided in this Final Report. The following information is included: objective of the JANUS D and D Project; history of the JANUS Reactor facility; description of the ANL-E site and the JANUS Reactor facility; overview of the D and D activities performed; description of the project planning and engineering; description of the D and D operations; summary of the final status of the JANUS Reactor facility based upon the final survey results; description of the health and safety aspects of the project, including personnel exposure and OSHA reporting; summary of the waste minimization techniques utilized and total waste generated by the project; and summary of the final cost and schedule for the JANUS D and D Project

  15. Development of project management data calculation models relating to dismantling of nuclear facilities. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Sukegawa, Takenori; Ohshima, Soichiro; Shiraishi, Kunio; Yanagihara, Satoshi [Department of Decommissioning and Waste Management, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai Ibaraki (Japan)

    1999-02-01

    Labor-hours necessary for dismantling activities are generally estimated based on experience, for example, as a form of unit productivity factors such as the relationship between labor-hours and weight of components dismantled which were obtained by actual dismantling activities. The project management data calculation models together with unit productivity factors for basic dismantling work activities were developed by analyzing the data obtained from the Japan Power Demonstration Reactor (JPDR) dismantling project, which will be applicable to estimation of labor-hours in various dismantling conditions. Typical work breakdown structures were also prepared by categorizing repeatable basic dismantling work activities for effective planning of dismantling activities. The labor-hours for dismantling the JPDR components and structures were calculated by using the code system for management of reactor decommissioning (COSMARD), in which the work breakdown structures and the calculation models were contained. It was confirmed that the labor-hours could be easily estimated by COSMARD through the calculations. This report describes the labor-hour calculation models and application of these models to COSMARD. (author)

  16. Remote techniques for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1997-01-01

    Unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MWe. It was shut down in 1977 after eleven years of operation. The actual decommissioning started in 1983. Since then more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, which uses a dual-cycle system for additional steam generation, the experience gained is transferable to pressurized water reactors. (Author)

  17. Remote control for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1996-01-01

    The unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MW e . It was shut down in 1977 after 11 years of operation. The actual decommissioning started in 1983. Meanwhile more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, using an dual cycle system for additional steam generation, the experience gained is transferable to pressurised water reactors as well. (Author)

  18. Clearance of radioactive materials during reactor dismantling. Permanent enclosure instead of demolition and renaturation?; Freigabe radioaktiven Materials beim AKW-Abriss. Dauerhafter Einschluss statt Rueckbau?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    During reactor dismantling besides high-level radioactive wastes a large amount of low-level contaminated steel and concrete has to be disposed. In case that radioactivity falls below defined dose limits (10 micro Sv/person and year) these materials may be disposed in domestic waste landfill or in municipal incineration facilities. The issue is discussed in detail including the fact that many power plants are dismantled at the same time so that the contaminated materials might accumulate. Another issue is the occupational safety of contract workers during dismantling. The permanent enclosure could avoid this environmental contamination of decommissioned power plants might also be less expensive.

  19. Technology and costs for dismantling a Swedish nuclear power plant

    International Nuclear Information System (INIS)

    1979-10-01

    Various estimates concerning the costs of decommissioning a redundant nuclear power reactor to the green fields state are given in the literature. The purpose of this study is to provide background material for the Swedish nuclear power utilities to estimate the costs and time required to dismantle an ASEA-ATOM Boiling Water Reactor. The units Oskarshamn II and Barsebeck 1, both with an installed capacity of approximately 600 MW, serve as reference plants. The time of operation before final shutdown is assumed to be 40 years. Dismantling operations are initiated one year after shutdown. When the dismantling of the plant is finished, the site is to be released for unrestricted use. The costs for dismantling and subsequent final disposal of the radioactive waste are estimated at approximately SEK 500 million (approximately US dollars 120 million) in terms of 1979 prices. The sum includes 25% contingency. The dismantling cost is equivalent to 10-15% of the installation cost of an equivalent new nuclear power plant. The exact percentage is dependent on the interest rate during the construction period. It is shown in the study that a total dismantling can be accomplished in less than five years. This report is a compilation of studies performed by ASEA-ATOM and VBB based on premises given by KBS. The reports from these studies are presented in appendices. (Auth.)

  20. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rule, K.; Scott, J.; Larson, S. [Princeton Plasma Physics Lab., NJ (United States)] [and others

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methods for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.

  1. Optimization study and preliminary design for Latina NPP early core retrieval and reactor dismantling

    International Nuclear Information System (INIS)

    Macci, E.; Zirpolo, S.; Imparato, A.; Cacace, A.; Parry, D.; Walkden, P.

    2002-01-01

    In June 2000, an agreement was established between Sogin and BNFL to enable the two companies to co-operate, using their specific experiences in the decommissioning field, for the benefit of projects in Italy, the United Kingdom and for third markets. A decommissioning strategy for the Latina NPP was initially developed in a Phase 1 Study which produced a conceptual design for the decommissioning of the reactor. This study was completed in June 2000. Since then, a second study has been completed, which has further developed the strategy and produced preliminary designs for the early dismantling of the core and reactor building at Latina. The engineering and safety data were produced in order to support Sogin in the preparation of a safety case for plant decommissioning. This safety case was submitted to the Italian Regulator, ANPA, in February 2002. (author)

  2. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  3. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  4. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, Michele; Kus, Jean-Pierre; Mogavero, Robert; Genelot, Gabriel

    2009-01-01

    Although the operational life of nuclear plants is long (around 60 years for French reactors) it is nonetheless limited in time, the stopping of it being essentially due to the obsolescence of materials and processes or to economic or safety considerations. The nuclear power plants are then subjected to cleanup and dismantling operations which have different objectives and require specific techniques. The cleanup and/or dismantling of a nuclear power produces significant quantities of waste which is generally of a different nature to that produced during the operation of the concerned plant. The radioactive waste produced by these operations is destined to be sent to the waste disposal facilities of the French National Agency for the Management of Nuclear Waste. (authors)

  5. Dismantling of nuclear facilities: the industrial know-how; Demantelement des installations nucleaires: les voies de la maitrise industrielle

    Energy Technology Data Exchange (ETDEWEB)

    Lellament, R. [Societe Francaise d' Energie Nucleaire (SFEN), Groupe de Reflexion Energie/Environnement, 75 - Paris (France)

    2004-11-01

    Numerous nuclear facilities in laboratories or research reactors have been decommissioned and dismantled over the 2 last decades throughout the world. The valuable feedback experience has allowed nuclear industry to design, upgrade and test specific techniques for dismantling. These techniques are efficient although they have been validated on a reduced number of nuclear power plants. In France only 3 power units have been dismantled: Chinon A1, A2 and Brennilis (EL4) and they are not representative of the real park of EDF'reactors. 6 PWR-type reactors have already been dismantled in the Usa. The results of a survey concerning 26 countries shows that the dismantling cost is around 320 dollars/kWe, it represents 15% of the construction cost which is far from being excessive as it is often read in the media. The dismantling costs can be broken into: - de-construction (25-55%), - wastes from dismantling (17-43%), - security and monitoring (8-13%), - site reclamation (5-13%), and - engineering and project management (5-24%). (A.C.)

  6. Optimized phases for reactor dismantling – an efficient and sustainable concept

    International Nuclear Information System (INIS)

    Krüger, S.; Winter, J.

    2013-01-01

    D&D projects are driven by costs, to implement an optimization process from the very beginning is key. Optimized strategy and sequencing of the dismantling (hot to cold) will provide serious economical savings . Larger dismantling packages will reduce interfaces and ease the coordination efforts on site. Early usage of mobile systems will ease the large-scale release for dismantling Social transition has to be addressed with priority and to be planned at an early phase in the D&D planning Concept, Planning & Project Management will influence the success of the project much more than the used technique

  7. Brennilis, laboratory of dismantlement

    International Nuclear Information System (INIS)

    Dupin, L.

    2011-01-01

    This article comments some aspects of the dismantlement activity on the Brennilis site (in Brittany) where a heavy water reactor has been operated from 1966 to 1985. Half of the deconstruction work has been performed between 1996 and 2006. As the model proposed by EDF for this operation raised some questions, works have been stopped for a while, until July 2011 when a decree authorized them again, but for some parts of the site only. The reactor block must wait as no technical solution exists for storage. But, the experience from this site will be used for eight other first generation power plants

  8. Decontamination and dismantlement plan for international reviewing

    International Nuclear Information System (INIS)

    Wells, P.B.; Earle, O.K.; Klepikov, A.Kh.

    2000-01-01

    When developing a decommissioning plan, several factors need to be included. First and foremost is the issue of outline and scope. Specific to the BN-350, are issues related to short term tasks required to support the safe storage of the reactor for the next 50 years, and long term tasks required to dismantle the reactor, leaving some sort of final state, (brown field, green field, etc.) In addition, issues such as personnel and physical safety as well as environmental concerns must be addressed to ensure the shut down and dismantlement of the reactor is done in a safe manner, both for personnel and the environment. In addition to being the base document in which to support work, a D and D plan can also be utilized to obtain financial resources necessary to complete the plan, as is the case for the BN-350 Reactor located in Aktau, Kazakhstan. By providing a clear and complete D and D plan, which includes costs and schedules for each item, it is anticipated that donor countries will have the ability to review, approve, and provide financial support to complete the work described in the plan

  9. Expertise of the Oeko-Institute on the application to obtain permission to partially dismantle the Niederaichbach nuclear power plant

    International Nuclear Information System (INIS)

    1985-01-01

    This expertise gives an overview on the problems associated with the decommissioning and dismantling of the Niederaichbach nuclear power plant, considering technical and legal aspects. It wants to prove that the dismantling of this reactor cannot serve as evidence to prove the general feasibility of reactor dismantling. Much space is dedicated to the discussion about where the borderline should be drawn between radioactive and non-radioactive materials according to the ordinance on radiation protection. The reasons for rejecting the partial dismantling application are given. (DG) [de

  10. The molten salt reactor option for beneficial use of fissile material from dismantled weapons

    International Nuclear Information System (INIS)

    Gat, U.; Engel, J.R.

    1991-01-01

    The Molten Salt Reactor (MSR) option for burning fissile fuel from dismantled weapons is examined and is found very suitable for the beneficial use of this fuel. MSRs can utilize any fissile fuel in continuous operation with no special modifications, as demonstrated in the Molten Salt Reactor Experiment. Thus, MSRs are flexible while maintaining their economy. Furthermore, MSRs require only a minimum of special fuel preparation. They can tolerate denaturing and dilution of their fuel. The size of fuel shipments can be determined to optimize safety and security-all of which supports nonproliferation and resists diversion. In addition, MSRs have inherent safety features that make them acceptable and attractive. They can burn fissile material completely or can convert it to other fuels. MSRs also have the potential for burning the actinides and delivering the waste in an optimal form, thus contributing to the solution of one of the major remaining problems in the deployment of nuclear power

  11. Decontamination and radioactivity measurement on building surfaces related to dismantling of Japan power demonstration reactor (JPDR)

    International Nuclear Information System (INIS)

    Hatakeyama, Mutsuo; Tachibana, Mitsuo; Yanagihara, Satoshi

    1997-12-01

    In the final stage of dismantling activities for decommissioning a nuclear power plant, building structures have to be demolished to release the site for unrestricted use. Since building structures are generally made from massive reinforced concrete materials, it is not a rational way to treat all concrete materials arising from its demolition as radioactive waste. Segregation of radioactive parts from building structures is therefore indispensable. The rational procedures were studied for demolition of building structures by treating arising waste as non-radioactive materials, based on the concept established by Nuclear Safety Commission, then these were implemented in the following way by the JPDR dismantling demonstration project. Areas of the JPDR facilities are categorized into two groups : possibly contaminated areas, and possibly non-contaminated areas, based on the document of the reactor operation. Radioactivity on the building surfaces was then measured to confirm that the qualitative categorization is reasonable. After that, building surfaces were decontaminated in such a way that the contaminated layers were removed with enough margin to separate radioactive parts from non-radioactive building structures. Thought it might be possible to demolish the building structures by treating arising waste as non-radioactive materials, confirmation survey for radioactivity was conducted to show that there is no artificial radioactive nuclides produced by operation in the facility. This report describes the procedures studied on measurement of radioactivity and decontamination, and the results of its implementation in the JPDR dismantling demonstration project. (author)

  12. Remote tool development for nuclear dismantling operations

    International Nuclear Information System (INIS)

    Craig, G.; Ferlay, J.C.; Ieracitano, F.

    2003-01-01

    Remote tool systems to undertake nuclear dismantling operations require careful design and development not only to perform their given duty but to perform it safely within the constraints imposed by harsh environmental conditions. Framatome ANP NUCLEAR SERVICES has for a long time developed and qualified equipment to undertake specific maintenance operations of nuclear reactors. The tool development methodology from this activity has since been adapted to resolve some very challenging reactor dismantling operations which are demonstrated in this paper. Each nuclear decommissioning project is a unique case, technical characterisation data is generally incomplete. The development of the dismantling methodology and associated equipment is by and large an iterative process combining design and simulation with feasibility and validation testing. The first stage of the development process involves feasibility testing of industrial tools and examining adaptations necessary to control and deploy the tool remotely with respect to the chosen methodology and environmental constraints. This results in a prototype tool and deployment system to validate the basic process. The second stage involves detailed design which integrates any remaining technical and environmental constraints. At the end of this stage, tools and deployment systems, operators and operating procedures are qualified on full scale mock ups. (authors)

  13. Taking into account of dismantling constraints in the design of nuclear facilities

    International Nuclear Information System (INIS)

    Gouhier, E.; Moitrier, C.; Girones, P.; Pitrou, Y.; Poncet, P.; O'Sullivan, P.

    2014-01-01

    The taking into account of dismantling constraints in the design of nuclear facilities allows the reduction of the dosimetry during the dismantling operations, the reduction of the amount of wastes to manage and the saving of time and money by foreseeing an adequate and simple solution for each component. It is to notice that the strategy of life-extension strengthens that of dismantling because life-extension implies the possibility for any component of the reactor except the pressure vessel to be replaced. The feedback experience capitalized on various types of nuclear facilities have enabled IAEA and OECD to publish recommendations to facilitate dismantling. For instance, pipes and ventilation ducts must be designed to minimize the deposit of dust and residues, the natural porosity of concrete must be limited through the use of polishing products or a metal liner, the type and concentrations of impurities present in the structure materials must be controlled to limit radioactivation, the documentation describing the facility must be kept up to date, or the history of contamination events must be recorded all along the life of the facility. The integration of the dismantling constraints in the design stage is illustrated with 3 examples: the Georges Besse 2 enrichment fuel plant, new reactors (EPR, ASTRID and RJH), and ITER. (A.C.)

  14. Importance of low-level radioactive wastes in dismantling strategy in CEA (FRANCE)

    International Nuclear Information System (INIS)

    Lafaille, C.

    1991-01-01

    This paper describes the advance used in C.E.A. to realize dismantling operations in the best technical and economical conditions. Particularly, for low-level radioactive waste management CEA's advance defines, first, the final destination of dismantling materials: - recycling in public lands for level activity inferior to 1 Bq/g; directly or after transformation (melting, calcination, extrusion) - storage in a ground disposal, after compacting, encapsulation or drumming. Two examples are given: - Marcoule G2 - G3 reactor dismantling - Gaseous diffusion plants demolition (COGEMA Pierrelatte)

  15. Dismantling of the research reactor RTS-1 Galileo Galilei in Pisa (Italy)

    International Nuclear Information System (INIS)

    Ruiz Martinez, J. t.; Farella, G.; Cimini, E.; Russo, M.

    2014-01-01

    This paper is about the most relevant aspects of the first phase of the dismantling, removal of the water in the pool, prior treatment through evaporation, the dismantling of all the submerged activated elements and other activated or contaminated elements that have been part of the nuclear facility. (Author)

  16. Experience in dismantling and packaging of pressure vessel and core internals

    International Nuclear Information System (INIS)

    Pillokat, Peter; Bruhn, Jan Hendrik

    2011-01-01

    Nuclear Company AREVA is proud to look back on versatile experience in successfully dismantling nuclear components. After performing several minor dismantling projects and studies for nuclear power plants, AREVA completed the order for dismantling of all remaining Reactor Pressure Vessel internals at German Boiling Water Reactor Wuergassen NPP in October '08. During the onsite activities about 121 tons of steel were successfully cut and packed under water into 200l- drums, as the dismantling was performed partly in situ and partly in an underwater working tank. AREVA deployed a variety of different cutting techniques such as band sawing, milling, nibbling, compass sawing and water jet cutting throughout this project. After successfully finishing this task, AREVA dismantled the cylindrical part of the Wuergassen Pressure Vessel. During this project approximately 320 tons of steel were cut and packaged for final disposal, as dismantling was mainly performed by on air use of water jet cutting with vacuum suction of abrasive and kerfs material. The main clue during this assignment was the logistic challenge to handle and convey cut pieces from the pressure vessel to the packing area. For this, an elevator was installed to transport cut segments into the turbine hall, where a special housing was built for final storage conditioning. At the beginning of 2007, another complex dismantling project of great importance was acquired by AREVA. The contract included dismantling and conditioning for final storage of the complete RPV Internals of the German Pressurized Water Reactor Stade NPP. Very similar cutting techniques turned out to be the proper policy to cope this task. On-site activities took place in up to 5 separate working areas including areas for post segmentation and packaging to perform optimized parallel activities. All together about 85 tons of Core Internals were successfully dismantled at Stade NPP until September '09. To accomplish the best possible on

  17. Evaluation of worker's dose on a virtual dismantling environment

    International Nuclear Information System (INIS)

    Park, Hee Seong; Kim, Sung Hyun; Park, Byung Suk; Yoon, Ji Sup

    2007-01-01

    The motivation of this study is to provide a basis for a minimization of worker's dose during dismantling activities. In the present study, we proposed methods for identifying an existence of radioactivity which is contained in the dismantling objects and for evaluating a worker's dose under a virtual dismantling environment. To evaluate a worker's external dose, the shape of the exposure room in the KRR 2(Korean Research Reactor TRIGA MARK III) by 3D CAD was created and the radiation dose surrounding the facility by using MCNP- 4C(Monte Carlo N-Particle-4C) was calculated. The radiation field of the exposure room was visualized three dimensionally by using the radiation dose that was obtained by the code

  18. The challenges of dismantling

    International Nuclear Information System (INIS)

    Sene, Monique; Lheureux, Yves; Leroyer, Veronique; Rollinger, Francois; Gauthier, Florence; Depauw, Denis; Reynal, Nathalie; Fraysse, Thierry; Burger, Eric; Bertrand, Adrien; Vallat, Christophe; Bernet, Philippe; Eimer, Michel; Boutin, Dominique; Bietrix, Philippe; Richard, Francoise; Piketty, Laurence; Mouchet, Chantal; Charre, Jean-Pierre

    2014-01-01

    This document gathers Power Point presentations which address the contexts and challenges of dismantling (legal framework, safety and radiation protection challenges, waste processing industry), and propose illustrations of dismantling challenges (example of operations to prepare EURODIF dismantling and CLIGEET work-group on EURODIF dismantling, examples of dismantling of EDF installations and CLIs' opinion on the dismantling of EDF installations, Brennilis dismantling follow-up performed by the CLI, examples of dismantling of CEA installations and opinion of a CLI on the dismantling of CEA installations)

  19. Tools and tool application for the dismantling of the nuclear power plant Brennilis in France

    International Nuclear Information System (INIS)

    Bienia, Harald; Welbers, Philipp; Krueger, Peter; Noll, Thomas

    2012-01-01

    The EL-4 reactor in the NPP Brennilis in France is a CO2 cooled heavy water moderated test reactor with net power of 70 MW, the reactor started operation in 1967 and was decommissioned in 1985. Due to the construction features it was not necessary to enter the reactor area during operation, therefore the reactor pressure vessel and the surrounding piping systems are built in a very compact way. The dismantling procedures are therefore different from German BWR or PWR systems, the remote cutting and handling tools have to be adapted to the different features. Because of the high local dosage rate in the reactor hall it is also necessary to perform the erection of the dismantling equipment by robot systems. For cutting of the piping system a new plasma cutting technique, the hot wire method will be used. Other mechanical cutting techniques have to be used for instance for zircaloy containing components due to fire prevention purposes. The required time for tool and manipulator changes, including wearing part replacements constitute a significant part of the dismantling schedule. The suction/exhaust system for radioactive dust removal allowed a reduction of the total personal dose by one third of the allowed dose.

  20. Dismantling and waste management: CEA's strategy and research programs

    International Nuclear Information System (INIS)

    Behar, C.

    2012-01-01

    There are 3 main dismantling operations in CEA. First, the dismantling of the UP1 facility in the Marcoule site. UP1 was a reprocessing plant of nuclear fuels that operated from 1958 to 1997 and is now the biggest dismantling operation in the world. Its dismantling operation follows a 6-step scheme that will end in 2050. Secondly, the Passage project on the Grenoble site that concerns the dismantling of 3 research reactors (Siloette, Melusine and Siloe), of a laboratory dedicated to the analysis of active materials (Lama) and of a station for the processing of waste (Sted). Thirdly the Aladin project that concerns the installations of the Fontenay-aux-Roses site. The dismantling operations are complex because all the first research programs on high activity chemistry and on transuranium elements were performed in Fontenay-aux-Roses facilities and because ancient activities have to leave a clean place to be replaced by new ones. The radioactive waste produced by CEA enter the flow of waste that is normally processed and managed by ANDRA. Only high-activities waste have not yet a definitive solution, they are stored in waiting the opening of a geological repository. CEA leads research programs on the separation and transmutation of minor actinides and on the long-term behaviour of waste packages put in deep geological layers. (A.C.)

  1. Dismantling large components at the Jose-Cabrera NPP (CNJC) in Spain

    International Nuclear Information System (INIS)

    Santiago, Juan Luis

    2012-01-01

    Located in central Spain, near Madrid, the Jose-Cabrera NPP (also known as Zorita) is the first PWR to be dismantled in Spain. The unit is a one-loop Westinghouse PWR, with a capacity of 150 MW. The plant was shut down in 1996 and ENRESA (Empresa Nacional de Residuos Radioactivos) has decided its prompt decommissioning, starting in 2010. In preparation for decommissioning, a full system decontamination (FSD) of the whole reactor cooling system (including the reactor vessel in the flow path) was carried out in 2006-7. The large components to be dismantled include: the reactor pressure vessel (RPV) and the internals; the vessel head; the SG; the pressurizer and the surge line; the reactor coolant pump, and the primary loop piping The objective of the project is not only to ensure the safe and efficient dismantling of those large components, but also to gain experience and to learn lessons to be applied during the future decommissioning and dismantling of the remaining six operating PWRs in Spain, whose operational lives are currently planned to end between 2021 and 2028. ENRESA has defined a waste-management policy for decommissioning activities, which includes Waste-management routes and optimisation. A case study describes the results obtained by ENRESA in the specific case of CNJC large components (including the RPV) dismantling project: Removal and conditioning of large components as a single piece is not considered a viable option. Segmentation therefore is required and 2 options have been analysed: large pieces for disposal in a large container and small pieces for disposal in approved concrete packages (CE-2a and the smaller CE-2b). The use of the CE-2b package is a feasible option and is easy to implement as a logical extension from the CE-2a. The use of the CE-2b package results in an important reduction in the total volume of final waste packages and does not require, in itself, any changes in the current waste handling and kinematics. The large size

  2. The dismantling of the damaged Chernobyl reactor No 4 and the implications upon the design of a second shelter

    International Nuclear Information System (INIS)

    Mao, J.L. Le; White, S.J.

    1995-01-01

    During 1994/95 a study was undertaken, by Alliance, to assess the feasibility of constructing a new containment/shelter over the damaged Chernobyl reactor and its sarcophagus. This paper reviews the implications placed upon the design due to the ultimate dismantling requirements. The paper highlights some of the generic requirements and the impact upon the shelter design solution. Alliance is a consortium of leading European engineering companies comprising Campenon Bernard, AEA Technology, Walter-Bau, SGN, Taylor Woodrow and Bouygues. (Author)

  3. Declassification of radioactive water from a pool type reactor after nuclear facility dismantling

    Science.gov (United States)

    Arnal, J. M.; Sancho, M.; García-Fayos, B.; Verdú, G.; Serrano, C.; Ruiz-Martínez, J. T.

    2017-09-01

    This work is aimed to the treatment of the radioactive water from a dismantled nuclear facility with an experimental pool type reactor. The main objective of the treatment is to declassify the maximum volume of water and thus decrease the volume of radioactive liquid waste to be managed. In a preliminary stage, simulation of treatment by the combination of reverse osmosis (RO) and evaporation have been performed. Predicted results showed that the combination of membrane and evaporation technologies would result in a volume reduction factor higher than 600. The estimated time to complete the treatment was around 650 h (25-30 days). For different economical and organizational reasons which are explained in this paper, the final treatment of the real waste had to be reduced and only evaporation was applied. The volume reduction factor achieved in the real treatment was around 170, and the time spent for treatment was 194 days.

  4. EDV supported dynamic fire protection concept adaptation during dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Mummert, Maxi; Traichel, Anke; Dilger, Matthias

    2013-01-01

    Fire protection concepts are supposed to be a decision guide for the definition of measures and priorities in fire fighting and fire prevention. In case of reactor dismantling a fire protection concept for the actual status is required. Following the fuel removal from the reactor the protection goals are reduced to the safe confinement of radioactive materials and the restriction of radiation exposure. A dynamic fire protection concept was developed to allow the compliance with the required protection measures with respect to the protection targets. The implementation of the dynamic fire protection concept simplifies the planning of the dismantling steps and to adjust the fire protection measured in the frame of changes in the plant.

  5. Development of telerobotic systems for reactor decommissioning, (3)

    International Nuclear Information System (INIS)

    Usui, Hozumi; Fujii, Yoshio; Shinohara, Yoshikuni

    1991-01-01

    This paper describes the telerobotic system for reactor decommissioning in the scope of engineering demonstration of dismantling radioactive reactor internals of an experimental boiling water power reactor JPDR. The total system consists of a telerobotic manipulator system equipped with a multi-functional amphibious slave manipulator with a load capacity of 25 daN, a chain-driven transport system, and a computer-assisted monitoring and control system. Preceding to the application of the telerobotic system to actual dismantling operation, a mockup test was performed of dismantling the simulated reactor internals of actual-size by the method of underwater plasma arc cutting in order to study the performance of the telerobotic system in a realistic environment. The system was then successfully applied to dismantling the actual reactor internals according to the JPDR decommissioning program. (author)

  6. Chapter 12. Nullification of nuclear reactors

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Harangozo, M.

    2000-01-01

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with problems connected with nullification of nuclear reactors. There are tree basic methods of nullification of nuclear reactors: (1) conservation, (2) safe close (wall up, embed in concrete), (3) direct dismantlement and remotion and two combined ways: (1) combination of mothball with subsequent dismantlement and remotion and (2) combination of safe close with subsequent dismantlement and remotion. Activity levels as well as volumes of radioactive wastes connected with decommissioning of nuclear reactors are reviewed

  7. The preliminary 3D dynamic simulation on the RSR dismantling process of the KRR-1 and 2

    International Nuclear Information System (INIS)

    Kim, Hee-Reyoung; Kim, Sung-Kyun; Seo, Bum-Kyoung; Lee, Kune-Woo; Park, Jin-Ho

    2003-01-01

    A three-dimensional graphic simulation has been carried out for the dismantling process of the Rotary Specimen Rack(RSR) in the Korea Research Reactor-1 and 2 (KRR-1 and 2). First of all, the general steps of the graphic simulation were established and reviewed for the dismantling process of the object. Four dismantling processes, which are the removal of RSR, reactor core region, beam tube, and thermal column and activated concrete, were selected for the graphic simulation on the virtual space by the consideration of the activation, worker training, work difficulty and so on. In the present study, the dismantling procedure of the RSR was divided into several steps and its visual simulation was performed by the 3D graphic software. Finally, the simulation result was converted to moving file with extension of AVI so that easy approach can be made on window OS system

  8. Decommissioning of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnachs, J.; Popelis, A.

    2002-01-01

    In May 1995, the Latvian Government decided to shut down the Research Reactor Salaspils (SRR) and to dispense with nuclear energy in future. The reactor has been out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH from 1998-1999. he Latvian Government decided on 26 October 1999 to start the direct dismantling to 'green field' in 2001. The results of decommissioning and dismantling performed in 1999-2001 are presented and discussed. The main efforts were devoted to collecting and conditioning 'historical' radioactive waste from different storages outside and inside the reactor hall. All radioactive material more than 20 tons were conditioned in concrete containers for disposal in the radioactive waste depository 'Radons' in the Baldone site. Personal protective and radiation measurement equipment was upgraded significantly. All non-radioactive equipment and material outside the reactor buildings were free-released and dismantled for reuse or conventional disposal. Weakly contaminated material from the reactor hall was collected and removed for free-release measurements. The technology of dismantling of the reactor's systems, i.e. second cooling circuit, zero power reactors and equipment, is discussed in the paper. (author)

  9. Plan for Moata reactor decommissioning, ANSTO

    International Nuclear Information System (INIS)

    Kim, S.

    2003-01-01

    'Moata' is an Argonaut type 100 kW reactor that was operated by Australian Nuclear Science and Technology Organisation for 34 years from 1961 to 1995. It was initially used as a reactor-physics research tool and a training reactor but the scope of operations was extended to include activation analysis and neutron radiography from the mid 1970s. In 1995, the Moata reactor was shutdown on the grounds that its continued operation could no longer be economically justified. All the fuel (HEU) was unloaded to temporary storage and secured in 1995, followed by drainage of the demineralised water (primary coolant) from the reactor in 1996 and complete removal of electrical cables in 1998. The Reactor Control Room has been renovated into a modern laboratory. The reactor structure is still intact and kept under safe storage. Various options for decommissioning strategies have been considered and evaluated. So far, 'Immediate Dismantling' is considered to be the most desirable option, however, the timescale for actual dismantling needs to take account of the establishment of the national radioactive repository. This paper describes the dismantling options and techniques considered along with examples of other dismantling projects overseas. (author)

  10. EDF's dismantling experience

    International Nuclear Information System (INIS)

    Mira, J.J.

    1993-01-01

    The dismantling policy at EDF, taking into account technical, economical and socio-political factors, is presented. The various current realizations are reviewed and their dismantling solution discussed: Chinon A2, Chinon A1, Marcoule G1, G2, G3, Brennilis (EL4). Several dismantling projects are also described (Chinon A3, St-Laurent A1-A2, Chooz A). The various dismantling operations are presented and scheduled

  11. Dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Tallec, M.; Kus, J.P.

    2009-01-01

    Nuclear facilities have a long estimable lifetime but necessarily limited in time. At the end of their operation period, basic nuclear installations are the object of cleansing operations and transformations that will lead to their definitive decommissioning and then to their dismantling. Because each facility is somewhere unique, cleansing and dismantling require specific techniques. The dismantlement consists in the disassembly and disposing off of big equipments, in the elimination of radioactivity in all rooms of the facility, in the demolition of buildings and eventually in the reconversion of all or part of the facility. This article describes these different steps: 1 - dismantling strategy: main de-construction guidelines, expected final state; 2 - industries and sites: cleansing and dismantling at the CEA, EDF's sites under de-construction; 3 - de-construction: main steps, definitive shutdown, preparation of dismantling, electromechanical dismantling, cleansing/decommissioning, demolition, dismantling taken into account at the design stage, management of polluted soils; 4 - waste management: dismantlement wastes, national policy of radioactive waste management, management of dismantlement wastes; 5 - mastery of risks: risk analysis, conformability of risk management with reference documents, main risks encountered at de-construction works; 6 - regulatory procedures; 7 - international overview; 8 - conclusion. (J.S.)

  12. Contaminated Metal Components in Dismantling by Hot Cutting Processes

    International Nuclear Information System (INIS)

    Cesari, Franco G.; Conforti, Gianmario; Rogante, Massimo; Giostri, Angelo

    2006-01-01

    During the preparatory dismantling activities of Caorso's Nuclear Power Plant (NPP), an experimental campaign using plasma and oxyacetylene metal cutting processes has been performed and applied to plates and tubes exposed to the coolant steam of the reactor. The plant (Boiling Water Reactor, 870 MWe) was designed and built in the 70's, and it was fully operating by 1981 to 1986 being shut down after 1987 Italy's poll that abrogated nuclear power based on U235 fission. The campaign concerns no activated materials, even if the analyses have been performed of by use contaminated components under the free release level, not yet taking into account radioactivity. In this paper, the parameters related to inhalable aerosol, solid and volatile residuals production have been, studied during hot processes which applies the same characteristics of the cutting in field for the dismantling programs of Caorso NPP. The technical parameters such as cutting time and cutting rate vs. pipe diameter/thickness/schedule or plate thickness for ferritic alloys and the emissions composition coming from the sectioning are also reported. The results underline the sort of trouble that can emerge in the cutting processes, in particular focusing on the effects comparison between the two cutting processes and the chemical composition of powders captured by filtering the gaseous emission. Some preliminary considerations on methodology to be used during the dismantling have been presented. (authors)

  13. Study on safety evaluation for unrestricted recycling criteria of radioactive waste from dismantling operation

    International Nuclear Information System (INIS)

    Yoshimori, Michiro; Ohkoshi, Minoru; Abe, Masayoshi

    1995-01-01

    The study on safety evaluation was done, under contracting with the Science and Technology Agency, for recycling scrap metal arising from dismantling of reactor facilities. An object of this study is to contribute to the examination of establishing criteria and safety regulation for unrestricted recycling steel scrap. To define amount of market flow of iron material in Japan and the amount of radioactive waste generated from dismantling of reactor facilities, investigation had been carried out. On basis of these investigation results and data in several literature, individual doses to workers and to the members of the public have been calculated as well as collective doses. (author)

  14. Decommissioning of a small reactor (BR3 reactor, Belgium)

    International Nuclear Information System (INIS)

    Dadoumont, J.; Massaut, V.; Klein, M.; Demeulemeester, Y.

    2002-01-01

    Since 1989, SCK-CEN has been dismantling its PWR reactor BR3 (Belgian Reactor No. 3). After gaining a great deal of experience in remote dismantling of highly radioactive components during the actual dismantling of the two sets of internals, the BR3 team completed the cutting of its reactor pressure vessel (RPV). During the feasibility phase of the RPV dismantling, a decision was made to cut it under water in the refuelling pool of the plant, after having removed it from its cavity. The RPV was cut into segments using a milling cutter and a bandsaw machine. These mechanical techniques have shown their ability for this kind of operations. Prior to the segmentation, the thermal insulation situated around the RPV was remotely removed and disposed of. The paper will describe all these operations. The BR3 decommissioning activities also include the dismantling of contaminated loops and equipment. After a careful sorting of the pieces, optimized management routes are selected in order to minimize the final amount of radioactive waste to be disposed of. Some development of different methods of decontamination were carried out: abrasive blasting (or sand blasting), chemical decontamination (Oxidizing-Reducing process using Cerium). The main goal of the decontamination program is to recycle most of the metallic materials either in the nuclear world or in the industrial world by reaching the respective recycling or clearance level. Overall the decommissioning of the BR3 reactor has shown the feasibility of performing such a project in a safe and economical way. Moreover, BR3 has developed methodologies and decontamination processes to economically reduce the amount of radwaste produced. (author)

  15. Nuclear cleanup and decontamination for dismantling operations

    International Nuclear Information System (INIS)

    Bargues, S.; Solignac, Y.; Lapierre, Y.

    2003-01-01

    In the May 2003 issue of the review 'Controle', the French Nuclear Safety Authority (Autorite de Surete Nucleaire or ASN) reviewed the radiation protection and waste management principles applicable to dismantling operations carried out on nuclear installations, i.e. reactors, research laboratories, fuel cycle installations and nuclear power reactors. Estelle Chapelain, of the DGSNR (French General Directorate for Nuclear Safety and Radiation Protection), pointed out that dismantling work does not involve the same radioactive risks as operating an installation. For instance, 'the risk of disseminating radioactive material is generally greater because the dismantling process supposes the removal of one or more containment barriers'. In addition to this risk of internal exposure, the possibility of external irradiation of personnel must be taken into account due to the nature of the work carried out by the operators. The probability of conventional hazards is also accentuated, these hazards varying as work progresses (fire hazards during cutting operations, hazards associated with handling tasks, etc). Other risks must also be considered: hazards due to the ageing of installations, to loss of traceability, and finally the risks associated with waste management. Waste management falls within a strict regulatory framework specified by the decree dated December 31, 1999, which makes it compulsory to carry out a 'waste survey' with the aim of producing an inventory of waste and improving waste management. These surveys include 'waste zoning' to identify those areas liable to have been contaminated. These requirements lead operators to adapt their cleanup methodology in order to distinguish suspect rooms or equipment from those that can be deemed with certainty to be conventional. In its conclusion, the safety authority recalls the importance of 'the safety and radiation protection of dismantling operations being effectively managed and optimised, without imposing

  16. Decommissioning strategy for reactor AM, Russian Federation

    International Nuclear Information System (INIS)

    Suvorov, A.P.; Mukhamadeev, R.I.

    2002-01-01

    This paper presents the results of studies into the various aspects of decommissioning the oldest Russian research reactor, the AM reactor. Experimental and calculation results of a study to determine the inventory of long lived radioactive materials at the AM reactor are presented, along with a comparison to comparable data for other similar reactors. An analysis, by calculation, of the decay time needed to allow manual dismantling of the reactor vessel and stack, without remote operated equipment, defined it as 90 years. The possibility of burning most of the irradiated graphite to decrease the amount of long lived radioactive wastes was confirmed. The problems associated with the dismantling of the reactor components, contaminated with radioactive corrosion products, were analyzed. A decommissioning strategy for reactor AM was formed which is deferred dismantling, placing most of the radiological areas into long term safe enclosure. An overall decommissioning plan for reactor AM is given. (author)

  17. Nuclear reactor fuel sub-assemblies

    International Nuclear Information System (INIS)

    Ford, J.; Bishop, J.F.W.

    1981-01-01

    An improved fuel sub-assembly for liquid metal cooled fast breeder nuclear reactors is described which facilitates dismantling operations for reprocessing purposes. The method of dismantling is described. (U.K.)

  18. The dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Duthe, M.; Mignon, H.; Lambert, F.; Pradel, Ph.; Hillewaere, J.P.; Dupre la Tour, St.; Mandil, C.; Weil, L.; Eickelpasch, N.; Finsterwalder, L.

    1997-01-01

    for nuclear installations, the dismantling is an important part of their exploitation. The technology of dismantling is existing and to get a benefit from the radioactive decay, it seems more easy for operating company such E.D.F. to wait for fifty years before dismantling. But in order to get the knowledge of this operation, the Safety Authority wanted to devote this issue of 'Controle'to the dismantling method. This issue includes: the legal aspects, the risks assessment, the dismantling policy at E.D.F., the site of Brennilis (first French experience of dismantling), the dismantling techniques, the first dismantling of a fuel reprocessing plant, comparison with classical installations, economic aspect, some German experiences, the cleansing of the american site of Handford. (N.C.)

  19. Long-term management of wastes resulting from dismantling operations. Storing the very low-level activity wastes at Morvilliers

    International Nuclear Information System (INIS)

    Duret, F.; Dutzer, M.; Beranger, V.; Lecoq, P.

    2003-01-01

    Extension of dismantling operations in France in the years to come poses the question of availability of long-term waste facility. Large amount of such wastes will be produced after progressive shutdown of the 58 pressurized water reactors now in operation, not before 2010. However, France is already confronted with dismantling of 9 power reactors (6 of which of gas cooled graphite type), the first reprocessing plant at Marcoule, as well as, dismantling of other installations, for instance the CEA reactors or laboratories. The systems of processing the dismantling waste are not different from those used for wastes resulting from nuclear operations. For the high-level or long-term intermediate level activity disposal the debates must start by 2006, as based on the results of the research conducted according to different provisions of the December 30, 1991 law. These wastes represent however small amounts from the dismantling (around 2000 t for the 9 reactors at shutdown) and they will be stored until a decision will be made. A specific storing system should be implemented by 2008-2010 for the graphite wastes (around 23,000 t) which contain significant amount of long-lived radioelements, although their gross activity is low. But the most significant amount will come from low-level or intermediate-level of short lifetime or from wastes of very low activity. The first category is stored at Storage Center at Aube (CSA), its capacity being of 1,000,000 m 3 of drums. The total volume stored by the end of 2002 amounted 136,500 m 3 with an annual delivering of 12-15,000 m 3 at design rate of 30,000 m 3 /y. This center will be able to absorb the flux increase resulting from dismantling of the decommissioned nuclear installations (around 50,000 t from the dismantling of the 9 power reactor). The Center at Aube can be also adapted for storing wastes of large sizes as for instance the lid of the reactor vessel. According to the French regulation, the wastes produced within a

  20. SGN's Dismantling and Decommissioning engineering, projects experience and capabilities

    International Nuclear Information System (INIS)

    Destrait, L.

    1998-01-01

    Its experience in waste treatment, conditioning, storage and disposal, its cooperation with CEA and COGEMA Group in license agreements give SGN expertise in the decommissioning field. SGN's experience and background in all areas of nuclear facility decommissioning, such as chemical and mechanical cells, nuclear advanced reactors, reprocessing facilities result in fruitful references to the customers. The poster is presenting different achievements and projects with SGN's participation such as: - The decommissioning of Windscale Advanced Gas cooled Reactors (WAGR), in particular providing methodology and equipment to dismantle the Pressure and Insulation Vessel of the reactor. - The decommissioning plan of Ignalina (Lithuania) and Paldiski (Estonia), defining strategies, scenarios, necessary equipments and tools and choosing the best solutions to decommission the site under different influencing parameters such as cost, dose rate exposure, etc... - Th One Site Assistance Team (OSAT) at Chernobyl regarding the preparation works for the waste management and decommissioning of the plant. - The decommissioning of French nuclear facilities such as reprocessing (UP1) and reactor (EL4) plants. The important experience acquired during the facility management and during the first dismantling and decommissioning operations is an important factor for the smooth running of these techniques for the future. The challenge to come is to control all the operations, the choice of strategies, the waste management, the efficiency of tools and equipments, and to provide nuclear operators with a full range of proven techniques to optimise costs and minimize decommissioning personnel exposure. (Author)

  1. Assessment of the applicability of AWJ technique for dismantling the reactor of Fugen. Performance of underwater-cutting thick plate and testing of sound-based monitoring for underwater-cutting process

    International Nuclear Information System (INIS)

    Maruyama, Shin-ichiro; Nishio, Shin-ichi

    2010-01-01

    The reactor of Fugen is characterized by its double-walled pressure tube construction that is composed of pressure tubes and calandria tubes. The reactor dismantlement has been planning on dismantling it under water and the abrasive water jet (AWJ) underwater-cutting method is chosen as an option among simultaneous double tubes cutting technologies. For assessing the applicability of the AWJ cutting technology, a thick plate was cut under water by the small AWJ cutting machine. In addition, since cutting causes muddiness in water, cutting was monitored by the sound-based monitoring system which was adopted as a secondary cutting monitoring method. As a results, it was demonstrated that one-phase cutting was possible under water for a stainless-steel plate with 150mm thickness and that the relationship between cutting depth and capable cutting speed could be predictable. As for the sound-based cutting monitoring, the predictability whether or not cutting would be successful was verified by checking the change of sounds level. (author)

  2. Further retardation could lead to a hold-up of nuclear reactor dismantling; Weitere Verzoegerungen koennten zu einem Stillstand des Kernkraft-Rueckbaus fuehren

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Konstantin (comp.) [Innovations- und Technologieberatung Altran, Frankfurt am Main (Germany). Bereich Energy and Industry

    2015-07-01

    The following issues concerning the consequences of the German nuclear power phaseout are discussed: the cost of reactor dismantling could increase; the complete deconstruction of a nuclear power plant including environmental revitalization take a time of 10-15 years; the largest challenge is the still unsolved problem of final disposal; further retardations could trigger a complete deadlock of the deconstruction due to completely filled interim storage facilities. A further problem is the knowledge preservation due to the lack of students.

  3. Development of decommissioning engineering support system for fugen. Development of support system during actual dismantlement works

    International Nuclear Information System (INIS)

    Masanori Izumi; Yukihiro Iguchi; Yoshiki Kannehira

    2005-01-01

    The Advanced Thermal Reactor, Fugen Nuclear Power Station was permanently shut down in March 2003, and is now preparing for decommissioning. We have been developing Decommissioning Engineering Support System (DEXUS) aimed at planning optimal dismantlement process and carrying out dismantlement work safely and precisely. DEXUS consists of 'decommissioning planning support system' and 'dismantling support system'. The dismantling support system is developed aiming at using during actual dismantling work. It consists of three subsystems such as 'Worksite Visualization System', 'Dismantling Data Collection System' and 'Generated Waste Management System'. 'Worksite Visualization System' is a support system designed to provide the necessary information to workers during actual dismantlement works. And this system adopts AR (Augmented Reality) technology, overlapping calculation information into real world. 'Dismantling Data Collection System' is to collect necessary data for improving accuracy of decommissioning planning by evaluating work content and worker equipage, work time for dismantlement works. 'Generated Waste Management system' is a system recording necessary information by attaching the barcode to dismantled wastes or the containers. We can get the information of generated waste by recording generation place, generated time, treatment method and the contents. These subsystems enable to carry out reasonable and safe decommissioning of Fugen. In addition, we expect that those systems will be used for decommissioning of other nuclear facilities in the future. (authors)

  4. State of dismantling of reactor facilities (JPDR) in Tokai Research Establishment, Japan Atomic Energy Research Institute (fiscal year 1986)

    International Nuclear Information System (INIS)

    1987-01-01

    As to this dismantling work, the contents of the notice on the dismantling and the policy of administration offices to deal with it were reported to the Nuclear Safety Commission beforehand, and after the approval was obtained, it has been executed. Based on the talk of the chairman of Nuclear Safety Commission on January 6, 1983, the state of dismantling is reported. In fiscal year 1986, the second stage dismantling was begun in December, and it was confirmed that the works were carried out safety. In order to ensure the place required for dismantling and removing in-core structures and the pressure vessel, the pressure vessel upper cover and its heat insulator were removed from the third story of the containment vessel. A part of the facilities installed on the second and third stories of the containment vessel was also dismantled and removed. In order to utilize as the place for the temporary preservation and decontamination of dismantled things, a part of the facilities installed in the dump condenser building was dismantled and removed. The control building was reconstructed for smoothly carrying out the entrance control of workers. 36 spent fuel assemblies were carried away for reprocessing. The exposure dose of workers was below the detectable limit of film badges. The dismantled wastes were about 171 t of metals and 34 t of concrete. (Kako, I.)

  5. Dismantling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  6. Dismantling techniques

    International Nuclear Information System (INIS)

    Wiese, E.

    1998-01-01

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule

  7. National School of Dismantling

    International Nuclear Information System (INIS)

    Ivaldi, Fabienne

    2003-01-01

    The National Institut of Nuclear Sciences and Techniques founded of 2001 a National School of Dismantling, NSD, at the end, which was validated by CEA, COGEMA, EDF and ANDRA. This school addresses four major issues: Decontamination; Dismantling; Demolition and waste Disposal (4D). Dedicated for instructing scientific and technical knowledge and know-how, needed in dismantling the nuclear installations, NSD has as targets: - personnel at engineering and operational level; - personnel occupied with involved trades from conception through intervention; - students and employees on leave; - employees while training on the job. Initial basic education for students in collaboration with schools and universities concerns: - master degree in radioactive waste management; - master degree in dismantling; - professional license in 3 D; - pro 4 D graduation. NSD is also engaged in continual formation for employees qualified, or not, adapted to the needs generated by the following tasks and personnel: - introduction in dismantling; - project team; - specialist engineer; - team head; - agent for remedial action; - agent for dismantling. The National School of Dismantling joins a network of human and technological capabilities confined within the 4 D frame, namely: - scientific and technical competencies (experts, instructors working in the nuclear field and dismantling); - pedagogical competence (professionals from basic and continual education); - specific material means such as those used by construction site schools, mock-ups, rooms for practical training etc

  8. Dismantling technologies trends

    International Nuclear Information System (INIS)

    Devaux, P.

    2009-01-01

    In this work dismantling technologies trends realized by the CEA are reviewed. There following technologies are presented: Data acquisition from facilities; Scenario studies; Remote handling and carriers; Dismantling techniques; Decontamination.

  9. The decommissioning of the KEMA suspension test reactor

    International Nuclear Information System (INIS)

    Spruyt, A.; Peters, D.; Loon, W.M.G.M. van; Boekschoten, H.J.C.; Brugman, H.

    1991-01-01

    In this report the decommissioning of the KEMA Suspension Test Reactor (KSTR) is described. This reactor was a 1 MWth aqueous homo-geneous nuclear reactor in which a suspension of a mixed oxide UO 2 / ThO 2 in light water was circulated in a closed loop through a sphere-shaped core vessel. The reactor, located on KEMA premises, made 150 MW of heat during its critical periods. Dismantling of this reactor, with its many connected subsystems, meant the mastering of activated components which were also contaminated on inner surfaces caused by small fuel deposits (alpha contaminants) and fission products (beta, gamma contaminants). A description is given of the save removal of the fuel, the remote dismantling of systems and components and the disposal of steel scrap and other materials. Important features are the measures to be taken and provisions needed for safe handling, for the reduction of the radiation dose for the working team and the prevention of spreading of activity over the working area and the environment. It has been demonstrated that safe dismantling and disposal of such systems can be achieved. Experience gained at KEMA for the proper dismantling and for safety measures to be taken for workers and the environment can be made available for similar dismantling projects. A cost break-down is included in the report. (author). 22 refs.; 52 figs.; 12 tabs

  10. Some regulation aspects in dismantling

    International Nuclear Information System (INIS)

    Niel, J.C.

    1993-01-01

    In the French regulation framework, operations linked to dismantling are controlled by an overall technical and legislative system applied to all the different stages of the facility (commissioning, etc.). Government control on facilities under dismantling is aimed at dismantling operation safety and security, and dismantling waste processing in order to ensure public and environmental protection

  11. Development of plasma arc cutting technique for dismantlement of reactor internals in JPDR decommissioning program

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi; Tanaka, Mitsugu; Ujihara, Norio.

    1988-01-01

    The decommissioning program for JPDR has been conducted by JAERI since 1981 under contact with the Science and Technology Agency of Japan. The development of cutting tools for dismantling the JPDR is one of the important items in the program. An underwater plasma arc cutting technique was selected for dismantling the JPDR core internals. The study was concentrated on improving the cutting ability in water. Various cutting tests were conducted changing the parameters such as arc current, supply gas and cutting speed to evaluate the most effective cutting condition. Through the study, it has been achieved to be able to cut a 130 mm thick stainless steel plate in water. In addition, the amount and the characteristics of by-products were measured during the cutting tests for the safety evaluation of the dismantling activities. Final cutting tests and checkout of whole plasma arc cutting system were conducted using a mockup water pool and test pieces simulating the JPDR core internals. It was proved from the tests that the cutting system developed in the program will be applicable for the JPDR core internals dismantlement. (author)

  12. The Grenoble CEA Center: dismantled and rehabilitated

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The denuclearization program of the CEA center in Grenoble was launched in 2001. It involves 6 nuclear facilities (3 research reactors: Melusine, Siloette, and Siloe, and 1 laboratory (LAMA) and 2 units for processing wastes). The dismantling works were finished at the end of 2012 and the 2013 program concerns: the demolition of the buildings homing Melusine and Siloe reactors, the final rehabilitation of the Siloe raft, and the final rehabilitation of the laboratory and of the waste processing units. The budget is 117*10 6 euros for Siloe, 28*10 6 euros for Melusine, 6*10 6 euros for Siloette, 70*10 6 euros for the LAMA, and 90*10 6 euros for the 2 waste processing units. (A.C.)

  13. Decommissioning experience of the Japan power demonstration reactor

    International Nuclear Information System (INIS)

    Hoshi, T.; Yanagihara, S.; Tachibana, M.; Momma, T.

    1992-01-01

    Actual dismantling of the Japan Power Demonstration Reactor (JPDR) has been progressing since 1986 aiming to make stage 3 condition as the final goal. Such highly activated components as the reactor pressure vessel (RPV) and the inner portion of biological shield concrete close to the RPV have removed using the remotely operated cutting machines. Useful data on the dismantling techniques and their safety as well as the manpower expenditure and radiation exposure of workers have been obtained. Experiences gained through the dismantling works are described in this paper. (author)

  14. Recycling of concrete generated from Nuclear Power Plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nawa, Toyoharu; Ishikura, Takeshi; Tanaka, Hiroaki

    2013-01-01

    Reactor decommissioning required various technologies such as dismantling of facilities, decontamination, radioactivity measurement and recycling of dismantling wastes. This article discussed recycling of demolished concrete wastes. Dismantling of reactor building of large one unit of nuclear power plants would generate about 500 K tons of concrete wastes, about 98% of which was non-radioactive and could be used as base course material or backfill material after crushed to specified particle size. Since later part of 1990s, high quality recycled aggregate with specified limit of bone-dry density, water absorptivity and amount of fine aggregate had been developed from demolished concrete with 'Heat and rubbing method', 'Eccentric rotor method' and 'Screw grinding method' so as to separate cements attached to aggregate. Recycled aggregates were made from concrete debris with 'Jaw crusher' to particle size less than 40 mm and then particle size control or grinded by various grinding machines. Recycled fine aggregates made from crushing would have fragile site with cracks, air voids and bubbles. The author proposed quality improvement method to selectively separate fragile defects from recycled aggregates using weak grinding force, leaving attached pastes much and preventing fine particle generation as byproducts. This article outlined experiments to improve quality of recycled fine aggregates and their experimental results confirmed improvement of flow ability and compressive strength of mortal using recycled fine aggregates using 'Particle size selector' and 'Ball mill' so as to remove their fragile parts less than 2%. Mortal made from recycled fine aggregate could also prevent permeation of chloride ion. Recycled aggregate could be used for concrete instead of natural aggregate. (T. Tanaka)

  15. U P1, an example for advanced techniques applied to high level activity dismantling

    International Nuclear Information System (INIS)

    Michel-Noel, M.; Calixte, O.; Blanchard, S.; Bani, J.; Girones, P.; Moitrier, C.; Terry, G.; Bourdy, R.

    2014-01-01

    The U P1 plant on the CEA Marcoule site was dedicated to the processing of spend fuels from the G1, G2 and G3 plutonium-producing reactors. This plant represents 20.000 m 2 of workshops housing about 1000 hot cells. In 1998, a huge program for the dismantling and cleaning-up of the UP1 plant was launched. CEA has developed new techniques to face the complexity of the dismantling operations. These techniques include immersive virtual reality, laser cutting, a specific manipulator arm called MAESTRO and remote handling. (A.C.)

  16. Health and Safety Considerations Associated with Sodium-Cooled Experimental Nuclear Fuel Dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Carvo, Alan E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    Between the mid-1970s and the mid-1980s Sandia National Laboratory constructed eleven experimental assemblies to simulate debris beds formed in a sodium-cooled fast breeder reactor. All but one of the assemblies were irradiated. The experimental assemblies were transferred to the Idaho National Laboratory (INL) in 2007 and 2008 for storage, dismantlement, recovery of the uranium for reuse in the nuclear fuel cycle, and disposal of unneeded materials. This paper addresses the effort to dismantle the assemblies down to the primary containment vessel and repackage them for temporary storage until such time as equipment necessary for sodium separation is in place.

  17. Decommissioning and dismantling of nuclear and fuel cycle facilitites in Spain

    International Nuclear Information System (INIS)

    Gravalos, J.M.; Alamo, S.

    1992-01-01

    In the recent past, and as a consequence of a fire in the turbine island of the Vandellos I Graphite Gas type Nuclear Plant, which damaged the facility to a point that recovery was not judged economically feasible, the authorities decided on the final shutdown of the plant. Several studies were performed in order to select the dismantling strategy to be adopted. In spite of Valdellos I being the first commercial reactor to be decommissioned in Spain, several research reactors and fuel cycle facilities, which have reached the end of their commercial lives, are at present at different stages of their dismantling and decommissioning process as is described further. The development of an exemption policy for below regulatory concern wastes is considered a very significant issue regarding decommissioning as it has a large impact on radioactive waste volumes, and thus on costs. Aware of this problem ENRESA together with Spanish regulatory authorities are working in close cooperation with CEC research programs to complete the development of criteria and methodologies for the application of exemption practices in Spain

  18. Towards a more professional demolition and dismantling industry

    International Nuclear Information System (INIS)

    1988-01-01

    The work of the National Economic Development Office Demolition and Dismantling Group in four areas which are crucial to the economic performance of the demolition and dismantling industry and its safety record is considered. The first concerns the availability and accessibility of information about unconventional structures and details are given of the sort of information often kept for different types of structure. Secondly, the need is stressed for guidelines for the client, particularly on the risks involved and the choice of a competent contractor. Thirdly, basic credentials which it is important for contractors to set out in order to establish a good reputation for the industry are set out. Finally, the particular case of nuclear power station decommissioning is considered with reference to the size of the market, the pioneering knowledge to be gained from the decommissioning of the Windscale Advanced Gas-cooled Reactor, private sector involvement and the special techniques required. (U.K.)

  19. French activities on gas cooled reactors

    International Nuclear Information System (INIS)

    Bastien, D.

    1996-01-01

    The gas cooled reactor programme in France originally consisted of eight Natural Uranium Graphite Gas Cooled Reactors (UNGG). These eight units, which are now permanently shutdown, represented a combined net electrical power of 2,375 MW and a total operational history of 163 years. Studies related to these reactors concern monitoring and dismantling of decommissioned facilities, including the development of methods for dismantling. France has been monitoring the development of HTRs throughout the world since 1979, when it halted its own HTR R and D programme. France actively participates in three CRPs set up by the IAEA. (author). 1 tab

  20. Reactor decommissioning strategy: a new start for BNFL

    International Nuclear Information System (INIS)

    Woollam, P.; Nurden, P.

    2001-01-01

    The key points of BNFL Magnox Electric's revised waste management and reactor decommissioning strategy for the reactor sites are enlisted. Reactors will be defuelled as soon as practicable after shutdown. Predominantly Caesium contaminated plant will be dismantled when it is no longer needed. Cobalt contaminated plant such as boilers will remain in position until the reactors are dismantled, but appropriate decontamination technology will be regularly reviewed. All buildings except the reactor buildings will be dismantled as soon as practicable after they are no longer needed. Operational ILW, except some activated components, will be retrieved and packaged during the Care and Maintenance preparation period. All wastes will be stored on site, and handled in the long term in accordance with Government policy. Reactor buildings and their residual contents will be placed in a passive safe storage Care and Maintenance condition in a manner appropriate for the site. Contaminated land will be managed to maintain public safety. The reactors will be finally dismantled in a sequenced programme with a start date and duration to be decided at the appropriate time in the light of circumstances prevalent at that time. Currently, the Company is considering a sequenced programme across all sites, notionally beginning around 100 years from station shutdown, leading to a range of deferral periods. For provisioning purposes, the Company has costed a strategy involving reactor dismantling deferrals ranging from 85 to about 105 years in order to demonstrate prudent provisioning to meet its liabilities. A risk provision to reflect the potential for shorter deferral periods is included in the cost estimates. The end point for reactor decommissioning is site clearance and delicensing, based on the assumption that a reasonably practicable interpretation of the 'no danger' clause in the Nuclear Installations Act 1965 (as amended) can be developed. In line with Government policy, and taking

  1. The management routes for materials produced by the dismantling of the BR3-PWR reactor

    International Nuclear Information System (INIS)

    Klein, M.; Demeulemeester, Y.; Ponnet, M.; Emond, M.; Emond, O.; Dadoumont, J.; Massaut, V.

    2000-01-01

    The dismantling of the BR3 reactor produces quite large masses of contaminated materials, mainly metals or concrete. The main management routes are: conditioning of the radioactive wastes and disposal, recycling of radioactive materials in the nuclear sector and the recycling of free released materials in the industrial sector or their evacuation as industrial waste. The conditioning of the radioactive wastes is essentially performed in the installations of Belgoprocess and must follow the specifications imposed by the national radwaste management agency ONDRAF/NIRAS. The conditioning of the pieces produced during the cutting of the reactor pressure vessel is given as example. The recycling of radioactive materials in the nuclear sector is possible for metals and for concrete. For metals, SCK.CEN has an agreement with a nuclear foundry which reuses these materials for the fabrication of shieldings. For concrete, an R and D programme is going on with the objective to demonstrate the possible reuse of baryte concrete as raw materials for the production of mortar used in the conditioning of radioactive wastes. The free release of radioactive materials and their reuse or evacuation as radioactive wastes requires the strict respect of procedures and the use of low level measurement techniques. Various decontamination techniques are used at SCK.CEN to reach this objective. For the metals, we use mainly simple washing, abrasive decontamination and hard chemical decontamination. For concrete, we use mainly scabbling or shaving techniques. (authors)

  2. Experience acquired by EDF in implementation of its dismantling programme

    Energy Technology Data Exchange (ETDEWEB)

    Klaeyle, S.; Dalmas, R.; Davoust, M. [EDF - Centre d' Ingenerie Deconstruction Environnement (CIDEN), 69 - Villeurbanne (France)

    2008-07-01

    EDF decided in 2001 to implement immediate dismantling of its first generation nuclear plants. Seven years after this decision, the physical progress of the programme is 24% and is due to reach 50 % by 2013. This paper presents the experiences acquired in the fields of organization, project and programme management, purchasing strategies and waste management. Until now, the principal works involve Brennilis (Heavy water), ChoozA (PWR) and Creys Malville (fast breeder reactor). The detailed pre-project concerning the first of the six gas graphite reactors is complete and the call for bids process has been launched. The organization to manage projects, established at the De-construction and Environment Engineering Center (CIDEN), is effective and productive. Estimates of costs and expenses are coherent, which makes the forecasts put together to finance the programme secure. CIDEN has carried out significant engineering work over the last six years, making it possible to apply for the administrative authorizations which have now been obtained or are in the process of being obtained. Technical specifications are prepared at an optimized level of detail according to a contractual policy adapted to the complexity of the operations and the sharing of risk with manufacturers. The ChoozA contractualization process has been launched and the first dismantling work has begun in the nuclear auxiliary part. The main Brennilis contract will be completed in mid- 2008 and dismantling works will restart after renewal of the decree which was cancelled in mid-2007. Treatment of sodium from Creys Malville is about to begin, leading to elimination of the sodium risk by 2013. The very low activity waste (TFA) and low to medium activity waste (FA-MA) removal chains are operational. The intermediate activity/long lived (MA-VL) waste will be stored in a facility which will be brought into operational service in 2012. The graphite storage center is due to open between 2017 and 2019

  3. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  4. LEP dismantling starts

    CERN Multimedia

    2000-01-01

    Since the end of November, various teams have been getting stuck into dismantling the LEP accelerator and its four experiments. After making the installations safe, the dismantling and removal of 40,000 tonnes of equipment is underway. Down in the tunnel, it is a solemn moment. It is 10 o'clock on 13 December and Daniel Regin, one of those heading the dismantling work, moves in on a magnet, armed with a hydraulic machine. Surrounded by teams gathered there for a course in dismantling, he makes the first cut into LEP. The great deconstruction has begun. In little over than a year, the accelerator will have been cleared away to make room for its successor, the LHC. The start of the operation goes back to 27 November. Because before setting about the machine with hydraulic shears and monkey wrenches, LEP had first to be made safe - it was important to make sure the machine could be taken apart without risk. All the SPS beam injection systems to LEP were cut off. The fluids used for cooling the magnets and superc...

  5. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    International Nuclear Information System (INIS)

    Chambon, Frederic; CIZEL, Jean-Pierre; Blanchard, Samuel

    2013-01-01

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  6. Cleanup and Dismantling of Highly Contaminated Ventilation Systems Using Robotic Tools - 13162

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Frederic [AREVA FEDERAL SERVICES, Columbia MD (United States); CIZEL, Jean-Pierre [AREVA BE/NV, Marcoule (France); Blanchard, Samuel [CEA DEN/DPAD, Marcoule (France)

    2013-07-01

    The UP1 plant reprocessed nearly 20,000 tons of used natural uranium gas cooled reactor fuel coming from the first generation of civil nuclear reactors in France. Following operating incidents in the eighties, the ventilation system of the continuous dissolution line facility was shut down and replaced. Two types of remote controlled tool carriers were developed to perform the decontamination and dismantling operations of the highly contaminated ventilation duct network. The first one, a dedicated small robot, was designed from scratch to retrieve a thick powder deposit within a duct. The robot, managed and confined by two dedicated glove boxes, was equipped for intervention inside the ventilation duct and used for carrying various cleanup and inspection tools. The second type, consisting of robotic tools developed on the base of an industrial platform, was used for the clean-up and dismantling of the ventilation duct system. Depending on the type of work to be performed, on the shape constraints of the rooms and any equipment to be dismantled, different kinds of robotic tools were developed and installed on a Brokk 40 carrier. After more than ten years of ventilation duct D and D operations at the UP1 plant, a lot of experience was acquired about remote operations. The three main important lessons learned in terms of remote controlled operation are: characterizing the initial conditions as much as reasonably possible, performing non-radioactive full scale testing and making it as simple and modular as possible. (authors)

  7. Dismantling and decommissioning of Jose Cabrera nuclear power plant

    International Nuclear Information System (INIS)

    Rodriguez, A.

    2009-01-01

    With the start of the dismantling works at the Jose Cabrera nuclear power plant now in sight, this is an appropriate moment to look back and consider recent history. The first time that the issue of nuclear power plant dismantling was dealt with was in 1975, at a conference in Paris entitled Nuclear Energy Maturity. Up until then the entire question had been one of design, construction and operation, but since that moment and it has been quite a while since that conference dismantling has begun to be seen as just another activity in the nuclear cycle, a final activity that will sooner or later affect all the facilities, an activity different from its predecessors and with the ultimate objective of restoring the sites for whatever use might be determined. During the 1960s and 1970s, the construction of nuclear power plants was widespread across the entire world. It was the baby boom of nuclear energy and now, forty or fifty years later, we are seeing the arrival of the end of the service lifetime of these plants and are faced with the corresponding general process of dismantling these installations. The dismantling of nuclear power plants has ceased to be an emerging issue and is now consolidated as a regular activity in the nuclear industry, albeit an activity that lacks adequate financing or specific regulation in certain countries. Fortunately this is not the case in Spain, since economic provisions have been planned and the regulatory framework developed. In view of the above, the dismantling of the nuclear power plants is an industrial activity involving specific technologies that implies new professional and business opportunities that should be absorbed and seized by society. In Spain the path followed in this direction has been a long one, as is underlined by the experiences of dismantling the Argos (Barcelona, 1998- 2004) and Arbi (Bilbao, 2002-2005) research reactors, the Andujar Uranium Mill (Jaen, 1991-1995), the Vandellos I nuclear power plant

  8. Evolution of radiation protection of overall decommissioning and Dismantling of a Nuclear Power Plants

    International Nuclear Information System (INIS)

    Ortiz, M. T.; Ondaro, M.; Irun, I.; Just, J.

    2000-01-01

    From the point of view of Radiological Protection, the overall Decommissioning and Dismantling (D and D) Plan of a Nuclear Power Plant cannot be considered in isolation without considering the evolution of the radiological characteristics of the installation and the site itself from previous, during and final states. This experience of D and D is the first in Spain and in other European countries due to several aspects: 1) the reference reactor technology, 2) total grass power, and 3) management of a great amount of materials to be released. Three decommissioning alternatives were studied: Indefinite maintenance in shutdown state, Stage 1. Stage 2 for the defuelled reactor vessel and contents, with decontamination of most of the rest of the site. Immediate dismantling to Stage 3. Stage 2 was the alternative selected with the release of 80% of the site, keeping the remaining 20% of the site as a regulated area, housing the reactor vessel in a new structure and removing the radioactive waste. The above, along with the fact that this is a specific type of natural uranium-graphite-gas plant (NUGG) and that ownership of the facility has been transferred for dismantling (from HIFRENSA to ENRESA), implies a series of preliminary considerations that, for the purposes of this article, are compiled in the following aspects: a) Preliminary phase prior to transfer, b) Preparatory phase, and c) Dismantling phase. This paper describes aspects under the D and D experiences at CN-V1 NPP, now in progress, from the point of view of the radiological aspects in relation with the continuous updating of the source term. Operative Radiological nuclide vectors, applicable in the Radiation Protection tasks, are also commented to prevent and evaluate several risks during the execution of the works. Finally, there is a description of the results obtained from the work performed to decay the three actual nuclide vectors, to evaluate and obtain activity calculations for the release of the

  9. Decommissioning activities for Salaspils research reactor - 59055

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnacs, J.

    2012-01-01

    In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor (SRR). The reactor is out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH at 1998-1999. The Latvian government decided to start the direct dismantling to 'green field' in October 26, 1999. The upgrade of decommissioning and dismantling plan was performed in 2003-2004 years, which change the main goal of decommissioning to the 'brown field'. The paper deals with the SRR decommissioning experience during 1999-2010. The main decommissioning stages are discussed including spent fuel and radioactive wastes management. The legal aspects and procedures for decommissioning of SRR are described in the paper. It was found, that the involvement of stakeholders at the early stages significantly promotes the decommissioning of nuclear facility. Radioactive waste management's main efforts were devoted to collecting and conditioning of 'historical' radioactive wastes from different storages outside and inside of reactor hall. All radioactive materials (more than 96 tons) were conditioned in concrete containers for disposal in the radioactive wastes repository 'Radons' at Baldone site. The dismantling of contaminated and activated components of SRR systems is discussed in paper. The cementation of dismantled radioactive wastes in concrete containers is discussed. Infrastructure of SRR, including personal protective and radiation measurement equipment, for decommissioning purposes was upgraded significantly. Additional attention was devoted to the free release measurement's technique. The certified laboratory was installed for supporting of all decommissioning activities. All non-radioactive equipments and materials outside of reactor buildings were released for clearance and dismantled for reusing or conventional disposing. Weakly contaminated materials from reactor hall were collected

  10. Decontamination of the HFR dismantling cell

    International Nuclear Information System (INIS)

    Cloes, K.; Husmann, K.; Hardt, P. von der.

    1976-05-01

    The Commission of the European Communities operates in the Petten Establishment of the Joint Research Centre (EURATOM), a 45 MW light-water cooled materials testing reactor, the HFR. Inside the reactor containment building, on top of a side wing of the main pool, a hot cell had been constructed for the dismantling, of irradiated equipment, and brought into active service in July 1966. Early in 1973, the cell was contaminated by 0.1 to 1 Ci of Po 210 , originating from an irradiation capsule containing Bi impregnated graphite specimens. Due to the elevated radiotoxicity of this isotope, and to numerous potential ways of spreading out the contamination it was decided to stop routine operation of the cell until a satisfactory degree of decontamination had been reached. Two years have been spent for preparation of specialized equipment and thorough clean-up and overhaul work of the cell. It went back into normal operation on February 21st, 1975 and has since then been working very successfully

  11. Dismantling of a furnace and gloveboxes of a U3O8 with 20% enrichment production line

    International Nuclear Information System (INIS)

    Yorio, Daniel; Cinat, Enrique; Cincotta, Daniel; Fernandez, Carlos A.; Bruno, Hernan R.; Camacho, Esteban F.; Boero, Norma

    1999-01-01

    In the Uranium Powder Manufacturing Plant at CAC, U 3 O 8 with 20% enrichment is manufactured for fuel plates to be used in test reactors. This plant is in full operation since 1986, producing uranium oxide for Peru, Algeria, Iran, Egypt and the RA-3-CAE reactors. Some of the equipment of the Plant have finished their life time and one of the furnaces of the processing line had to be replaced. This work implied the dismantling not only of the furnace, but also of the gloveboxes connected to the furnace and the dismantling of the extraction lines and air injection of the gloveboxes. The work had to be performed with the necessary care in order to minimize risks and effects on personnel, installations and environment involved. (author)

  12. A methodology to simulate the cutting process for a nuclear dismantling simulation based on a digital manufacturing platform

    International Nuclear Information System (INIS)

    Hyun, Dongjun; Kim, Ikjune; Lee, Jonghwan; Kim, Geun-Ho; Jeong, Kwan-Seong; Choi, Byung Seon; Moon, Jeikwon

    2017-01-01

    Highlights: • Goal is to provide existing tech. with cutting function handling dismantling process. • Proposed tech. can handle various cutting situations in the dismantlement activities. • Proposed tech. can be implemented in existing graphical process simulation software. • Simulation results have demonstrated that the proposed technology achieves its goal. • Proposed tech. enlarges application of graphic simulation into dismantlement activity. - Abstract: This study proposes a methodology to simulate the cutting process in a digital manufacturing platform for the flexible planning of nuclear facility decommissioning. During the planning phase of decommissioning, visualization and verification using process simulation can be powerful tools for the flexible planning of the dismantling process of highly radioactive, large and complex nuclear facilities. However, existing research and commercial solutions are not sufficient for such a situation because complete segmented digital models for the dismantling objects such as the reactor vessel, internal assembly, and closure head must be prepared before the process simulation. The preparation work has significantly impeded the broad application of process simulation due to the complexity and workload. The methodology of process simulation proposed in this paper can flexibly handle various dismantling processes including repetitive object cuttings over heavy and complex structures using a digital manufacturing platform. The proposed methodology, which is applied to dismantling scenarios of a Korean nuclear power plant in this paper, is expected to reduce the complexity and workload of nuclear dismantling simulations.

  13. The dismantling of nuclear installations: The dismantling of nuclear installations at the CEA's Directorate for nuclear energy; The CEA's sanitation and dismantling works: example of one of the Marcoule UP1 program lots; Research and innovation in sanitation-dismantling; Global optimisation of the management of dismantling radioactive wastes

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre; Piketty, Laurence; Moitrier, Cyril; Blanchard, Samuel; Soulabaille, Yves; Georges, Christine; Dutzer, Michel; Legee, Frederic

    2016-01-01

    This publication proposes a set of four articles which addresses issues related to the dismantling of nuclear installations in France, notably for the different involved actors such as the CEA and the ANDRA. The authors more particularly address the issue and the general strategy of dismantling within the Directorate for nuclear energy of the CEA; comment the example of one of the Marcoule UP1 program lots to highlight sanitation and dismantling works performed by the CEA; discuss current research and innovation activities within the CEA regarding sanitation and dismantling; and comment how to globally optimise the management of radioactive wastes produced by dismantling activities

  14. Visualization of a dismantling environment for an evaluation of a worker's dose during the decommissioning of KRR-1 and 2

    International Nuclear Information System (INIS)

    Park, Hee Seong; Kim, Sung Kyun; Lee, Kune Woo; Jung, Chong Hun; Jin, Seong Il

    2008-01-01

    The purpose of this paper is to provide a basis for an optimization of a dismantling process of a research reactor and nuclear facility. An optimization of a dismantling process should be at the beginning of a study for an evaluation of the radioactivity inventory and the safety of the workers. Many countries have conducted an optimization to achieve a shortened dismantling schedule, a reduction of the amount of waste, and cut down on the decommissioning by using computer graphics such as animation, simulation, and virtual reality. In the present study, we propose methods for identifying the existence of radioactivity which is contained in the dismantled objects and for evaluating a worker's dose through a simulation. To evaluate a worker's external dose under a virtual dismantling environment generated by computer graphics, the shape of the thermal column horizontal door was created by 3D CAD and the radiation dose surrounding the door was calculated by using MCNP-4C. An animation that can demonstrate a dismantling procedure according to a dismantling scenario was produced. For matching the radiation dose, which was calculated by MCNP-4C with an area where workers are dismantling a door, a simulation module was developed which could show a worker's external dose in real-time. The result from the distribution of the radioactivity enables us to specify where the most contaminated part of the dismantling objects is. In the animation, a virtual worker demonstrated a dismantling activity procedure as a chosen scenario. In the simulation, a worker's exposure dose rate in real-time has been evaluated

  15. The dismantling of nuclear installations in the Grenoble CEA centre - Press book 2013

    International Nuclear Information System (INIS)

    Laveissiere, Stephane; Coronini, Vincent

    2013-01-01

    After having outlined the importance of the project for the Grenoble CEA centre, this document presents the objectives, issues and challenges of dismantling activities performed on various nuclear installations located in the CEA centre of Grenoble. Objectives are presented in terms of agenda, predicted production of radioactive wastes, budget, personnel and steering committee. The various nuclear installations are presented: experimental reactors (Melusine, Siloe, Siloette), LAMA (laboratory of analysis of active materials), STED (station for the treatment of effluents and wastes). The safety and protection of workers is addressed in terms of protection and monitoring measures, and of exposure to radiations. The next part deals with the monitoring of the environment (actors, history of control of the centre's releases, control points, releases, atmosphere monitoring, and hydrological monitoring). A second part presents the global strategy of the CEA for its activities of sanitation and nuclear dismantling: present operations, dismantling activities in Fontenay-aux-Roses and in Marcoule, economic organization, contribution of advanced technology in radiological measurement and control, simulation and modelling, decontamination techniques, cutting operations, and remotely controlled operations

  16. The dismantling of CEA nuclear installations

    International Nuclear Information System (INIS)

    Piketty, Laurence

    2016-03-01

    After having indicated locations of French nuclear installations which are currently being dismantled (about 30 installations), and recalled the different categories of radioactive wastes with respect to their activity level and the associated storage options, this article gives an overview of various aspects of dismantling, more precisely in the case of installations owned and managed by the CEA. These operations comprise the dismantling itself, the recovery and packaging of wastes, old effluents and spent fuels. The organisation and responsible departments within the CEA are presented, and the author outlines some operational problematic issues met due to the age of installations (traceability of activities, regulation evolutions). The issue of financing is then discussed, and its uncertainties are outlined. The dismantling strategy within the CEA-DEN is described, with reference to legal and regulatory frameworks. The next parts of the article address the organisation and the economic impact of these decontamination and dismantling activities within the CEA-DEN, highlight how R and D and advanced technology are a support to this activities as R and D actions address all scientific and technical fields of nuclear decontamination and dismantling. An overview of three important dismantling works is proposed: Fontenay-aux-Roses, the Marcoule CEA centre (a reference centre in the field of nuclear dismantling and decontamination) and the Grenoble CEA centre (reconversion in R and D activities in the fields of technologies of information, of communication, technologies, for health, and in renewable energies). The last part addresses the participation to the Strategic Committee of the Nuclear Sector (CSFN)

  17. In-situ dismantling of plutonium-contaminated glove box

    International Nuclear Information System (INIS)

    Numata, Koji; Watanabe, Hisashi; Ishikawa, Hisashi; Miyo, Hiroaki; Ohtsuka, Katsuyuki

    1980-01-01

    A plutonium-contaminated glove box was dismantled along with the development of the treatment techniques for plutonium-bearing wastes. The objectives of this in-situ dismantling of the glove box are to reuse the Plutonium Fuel Fabrication Facility more efficiently, to reduce the volume of wastes generated during the dismantling, and to acquire dismantling techniques for decommissioning the Plutonium Fuel Fabrication Facility in the future. Prior to the dismantling works, a greenhouse for decontamination was installed, and the decontamination with surfactants was performed. Unremovable contamination was coated with paint. After this greenhouse was removed, the main greenhouse for dismantling and three greenhouses for contamination control were assembled. The main workers wearing protective devices engaged in dismantling works in the greenhouse. As the protective devices, anorak type PVC suits with air line masks, Howell type pressurized suits, and respirators were used. The tools used for the dismantling are a plasma cutter, an electric nibbler, an electric disk grinder, an electric circular saw and an electric jig saw. The results of the dismantling in-situ were compared with two previous cases of dismantling carried out by different procedures. In the case of in-situ dismantling, the volume of wastes was 1.6 - 1.8 m 3 /m 3 of glove box, and considerable reduction was realized. (Kako, I.)

  18. The AIDA-MOX 1 program: Results of the French-Russian study on peaceful use of plutonium from dismantled Russian Nuclear weapons

    International Nuclear Information System (INIS)

    Yegorov, N.N.; Kudriavtsev, E.; Poplavsky, V.; Polyakov, A.; Ouin, X.; Camarcat, N.; Sicard, B.; Bernard, H.

    1997-01-01

    The Intergovernmental Agreement signed on November 12, 1992, between the governments of France and the Russian Federation instituted cooperation between the two countries for the safe elimination of the excess Russian nuclear weapons. France has allocated 400 million francs to this program, covering transportation and dismantling of nuclear weapons, interim storage and subsequent commercial use of the nuclear materials from the dismantled weapons, nuclear materials accountancy and safeguards, and scientific research. The concept of loading commercial Russian reactors with fuel fabricated from the plutonium recovered from dismantled nuclear weapons of the former Soviet Union is gaining widespread acceptance, and is at the heart of the French-Russian AIDA/MOX project

  19. Nuclear reactors built, being built, or planned: 1987

    International Nuclear Information System (INIS)

    1988-06-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1987. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually for Washington headquarters and field offices of DOE; from the US Nuclear regulatory Commission; from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The major change in this revision involves the data related to shutdown and dismantled facilities. Because this information serves substantially different purposes, it has been accumulated in a separate section, ''Reactors and Facilities Shutdown or Dismantled.'' Cancelled reactors or reactors whose progress has been terminated at some stage before operation are included in this section

  20. Decommissioning and dismantling of nuclear research facilities in Switzerland: lessons learned

    International Nuclear Information System (INIS)

    Leibundgut, Fritz

    2017-01-01

    Paul Scherrer Institute is the largest research institute for natural and engineering science in Switzerland. It operated various nuclear facilities from 1960 to 2011: Research reactors DIORIT, SAPHIR and PROTEUS, and an incineration plant for low and medium level radioactive waste. Concerning SAPHIR research reactor: in operation from 1958 to 1993, planning of decommissioning from 1998 to 2000. Decommissioning work started in 2004. Finishing is planned for 2019. Concerning DIORIT research reactor: operation as DIORIT I (20 MWth) from 1960 to 1967, then reconstruction to DIORIT II (30 MWth) and operation from 1970 until 1977. Planning of decommissioning from 1992 to 1994. Decommissioning work started in 1994 and was finished in 2012. Concerning PROTEUS research reactor: in operation from 1966 to 2011. Planning of decommissioning from 2013 to 2014. Starting of decommissioning work is planned for 2017, finishing is planned for the end of 2018 Incineration plant: In operation from 1974 to 2002. Planning of decommissioning from 2011 to 2012. Starting of decommissioning work in 2016. Finishing planned for end of 2019. Treatment of various material categories from dismantling: Concerning aluminum: because of the production of H_2 during solidification in concrete, it was necessary to minimize the surface area. When dismantling research reactors, the aluminum removed was melted in an induction furnace and poured into a 4.5 m"3 concrete container to solidify. Cutting the metal and handling it was largely accomplished remote control, using conventional technology. Concerning Steel/Cast-iron: the storage containers to be filled determined the method used for reducing the size of these materials, and the technique used for handling them. The goal was to optimize the packing density to reduce repository costs. The selected method of reducing the size of components is to cut them up using diamond-tipped tools, like saw blades. Concerning Graphite: for graphite, grinding was the

  1. When reactors reach old age

    International Nuclear Information System (INIS)

    Fischetti, M.

    1986-01-01

    While the battle over whether to build new nuclear plants has quieted in recent times, a second struggle is shaping up in the United States as reactors approach a new stage of life: retirement. Four decades into the nuclear power age, questions of how best to dismantle and dispose of a nuclear power plant remain largely unanswered. The debates have been mainly academic until now - although reactors have operated for 25 years, decommissioning retired reactors has simply not been fully planned in this country. But the Shippingport Atomic Power Station in Pennsylvania, the first large-scale power reactor to be retired, is now being decommissioned. The work has rekindled the debates in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. Virtually all groups involved in decommissioning a reactor in the United States - the utility, the Nuclear Regulatory Commission, the U.S. Department of Energy, the U.S. Environmental Protection Agency, state public service commissions, and citizen organizations - agree that for the most part the technology to dismantle and dispose of a reactor safely is available. They disagree, however, on which technical option is the safest or cheapest and on who should pay for dismantlement. And there are further complications: Which regulations must be complied with. How much radiation exposure for workers and the public is acceptable. Even with answers to these questions, uncertainty about where to dispose of the radioactive waste and about how much residual radiation can be left at a former reactor site plagues the architects of decommissioning. This article discusses these questions

  2. Experience in the decontamination and dismantling of alpha facilities

    International Nuclear Information System (INIS)

    Charamathieu, A.

    1988-01-01

    Experience in dismantling alpha-containing radiochemical installations in France is described. The dismantling programme undertaken by the Societe des Techniques en Milieu Ionisant since 1977 is tabulated. This includes the dismantling of CALCIO and FLUO (plutonium metal), the dismantling of a slag processing plant, the dismantling of part of a medium activity plutonium mine and the dismantling of rooms 82-100 at Marcoule, France. (author)

  3. Robotics take heat out of reactor. [Windscale AGR decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Rufford, N

    1986-12-04

    The Windscale prototype reactor is being decommissioned and dismantled. The stages are outlined. The first phase began in 1985 and included construction of a waste packaging plant annexed to the steel dome. The boilers will be cut up and, once decontaminated, probably sold for scrap. The second phase involves dismantling the reactor itself. Much of this will be done by a semi-automatic robot which is being specially built and tested. The robot will have an extendable arm with a manipulator which will be equipped with bolt croppers, shears, a saw and oxypropane cutter. This robot will cut up the pressure vessel in sections ready for encasing in concrete. Lessons learnt from the dismantling will be used in future reactor designs and specifications (eg the need to use steels with fewer impurities, especially cobalt). Ultimate disposal of the concrete waste blocks is undecided. (U.K.).

  4. Technical challenges for dismantlement verification

    International Nuclear Information System (INIS)

    Olinger, C.T.; Stanbro, W.D.; Johnston, R.G.; Nakhleh, C.W.; Dreicer, J.S.

    1997-01-01

    In preparation for future nuclear arms reduction treaties, including any potential successor treaties to START I and II, the authors have been examining possible methods for bilateral warhead dismantlement verification. Warhead dismantlement verification raises significant challenges in the political, legal, and technical arenas. This discussion will focus on the technical issues raised by warhead arms controls. Technical complications arise from several sources. These will be discussed under the headings of warhead authentication, chain-of-custody, dismantlement verification, non-nuclear component tracking, component monitoring, and irreversibility. The authors will discuss possible technical options to address these challenges as applied to a generic dismantlement and disposition process, in the process identifying limitations and vulnerabilities. They expect that these considerations will play a large role in any future arms reduction effort and, therefore, should be addressed in a timely fashion

  5. Decommissioning of reactor facilities (2). Required technology

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2014-01-01

    Decommissioning of reactor facilities was planned to perform progressive dismantling, decontamination and radioactive waste disposal with combination of required technology in a safe and economic way. This article outlined required technology for decommissioning as follows: (1) evaluation of kinds and amounts of residual radioactivity of reactor facilities with calculation and measurement, (2) decontamination technology of metal components and concrete structures so as to reduce worker's exposure and production of radioactive wastes during dismantling, (3) dismantling technology of metal components and concrete structures such as plasma arc cutting, band saw cutting and controlled demolition with mostly remote control operation, (3) radioactive waste disposal for volume reduction and reuse, and (4) project management of decommissioning for safe and rational work to secure reduction of worker's exposure and prevent the spreading of contamination. (T. Tanaka)

  6. Application and development of dismantling technologies for decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Bach, W.; Kremer, G.; Ruemenapp, T.

    2006-01-01

    The decommissioning of nuclear installations poses a challenge to high performance underwater cutting technologies because of complex limiting conditions, like radioactive contamination, accessibility, geometry of work piece, material thickness and composition. For the safe dismantling of the moderator tank and the thermal shield of the Multi-purpose Research Reactor (MZFR) Karlsruhe the development and the use of thermal cutting tools will be demonstrated, in this case the underwater plasma arc cutting and the contact arc metal cutting (CAMC). (orig.)

  7. Calculation of external exposure during transport and disposal of radioactive waste arisen from dismantling of steam generator

    International Nuclear Information System (INIS)

    Hornacek, M.; Necas, V.

    2014-01-01

    The dismantling of large components (reactor pressure vessel, reactor internals, steam generator) represents complex of processes involving preparation, dismantling, waste treatment and conditioning, transport and final disposal. To optimise all of these activities in accordance with the ALARA principle the prediction of the exposure of workers is an essential prerequisite. The paper deals with the calculation of external exposure of workers during transport and final disposal of heat exchange tubes of steam generator used in Slovak nuclear power plant V1 in Jaslovske Bohunice. The type of waste packages, the calculation models of truck and National Radioactive Waste Repository in Mochovce are presented. The detailed methodology of radioactive waste disposal is showed and the degree of influence of time decay (0, 5 and 10 years) on the radiological conditions during transport and disposal is studied. All of the results do not exceed the limits given in Slovak and international regulatory documents. (authors)

  8. Information report published in application of article 146 of the Regulation by the Commission of information related to the technical and financial feasibility of the dismantling of basic nuclear installations on the behalf of the Commission for sustainable development and land planning. Nr 4428

    International Nuclear Information System (INIS)

    Aubert, Julien; Romagnan, Barbara

    2017-01-01

    Based on visits, on hearings and on debates within the Commission, this report addresses the issue of the technical and financial feasibility of the dismantling of nuclear installations. Indeed, it appears that the technical feasibility is not as mastered as supposed, and that dismantling works will last longer than foreseen, with therefore a higher cost than foreseen. Thus, existing and foreseen funding might be insufficient, and the global strategy for dismantling should be seriously reviewed regarding both technical and financial points of view. Before reaching this conclusion, the report presents the general context: definition of dismantling, perspective of development of dismantling activities, specific case of marine reactors. The authors then present and comment initial basic principles (extrapolation with the Dampierre model, immediate dismantling, soil decontamination) and parameters which could result in cost reduction. The second part of the report discusses the technical issue, first by recalling and commenting the difficulties faced by EDF to dismantle its first reactors (case of Brennilis, complete shift by EDF regarding its strategy for graphite-gas reactors, case of Superphenix), secondly by outlining that waste management largely determines dismantling (situation for the different types of wastes, problem of saturation of some centres, issue of a release threshold, case of wastes from graphite-gas reactors), and thirdly by discussing the issue of subcontracting. The third part addresses the financial issue and EDF funding by discussing assessment principles and method used by EDF, by showing that the result is probably an under-assessment (due to optimistic hypotheses, to many unfunded expenses, and to under-assessed dismantling costs). The authors then compare the French situation with other countries (Germany, USA, Belgium, OECD countries) to show that institutional comparisons are consistent with each other. They propose a more detailed

  9. Decommissioning of nuclear facilities: COGEMA expertise devoted to UP1 reprocessing plant dismantling programme

    International Nuclear Information System (INIS)

    Gay, A.

    2001-01-01

    Over the last past decades, the French nuclear industry has acquired a great experience and know-how in the field of dismantling. Today this experience amounts to more than 200,000 hours. The fundamental aims within dismantling strategy are the same as for all nuclear facilities: minimising doses received by workers, minimising waste volume and adapting waste management to radioactivity levels, minimising costs. French experience is based on technologies which are currently used in nuclear maintenance facilities. Dismantling is a dynamic process especially in the field of decontamination (chemical and mechanical), cleaning, robotics and remote control operations. The strategy for the dismantling of former UP1 reprocessing plant is based on the feedback of experience gained through the dismantling of other facilities such as the AT1 workshop at La Hague. This workshop, a pilot plant for reprocessing of fast-breeder reactor fuels (Rapsodie and Phenix) has to be dismantled to IAEA level 3 (unrestricted site use), excluding civil works structures. Currently conducted by trained shifts, this dismantling project should end in 1999. The experience already acquired proves that chemical rinsings with the use of specific reagents is sufficient to decontaminate the hot cells and that the use of remote operations or robotics is not as important as previously envisaged. The UP1 reprocessing plant of Marcoule operated from 1958 to 1997. End of the operation was pronounced on the 31st of December 1997. 20,000 tons of spent fuels were reprocessed at UP1. The cleaning and dismantling operations at the Marcoule site depend upon the CEA, EDF and COGEMA. The Defence and Industry Ministries asked for a specific structure to be set up. An economic interest group called CODEM was created in May 1996. CODEM decides, finances and supervises dismantling operations, while respecting the constraints of nuclear safety, environmental protection and cost-effectiveness. The cleaning operations of

  10. Dismantling of the 50 MW steam generator test facility

    International Nuclear Information System (INIS)

    Nakai, S.; Onojima, T.; Yamamoto, S.; Akai, M.; Isozaki, T.; Gunji, M.; Yatabe, T.

    1997-01-01

    We have been dismantling the 50MW Steam Generator Test Facility (50MWSGTF). The objectives of the dismantling are reuse of sodium components to a planned large scale thermal hydraulics sodium test facility and the material examination of component that have been operated for long time in sodium. The facility consisted of primary sodium loop with sodium heater by gas burner as heat source instead of reactor, secondary sodium loop with auxiliary cooling system (ACS) and water/steam system with steam temperature and pressure reducer instead of turbine. It simulated the 1 loop of the Monju cooling system. The rated power of the facility was 50MWt and it was about 1/5 of the Monju power plant. Several sodium removal methods are applied. As for the components to be dismantled such as piping, intermediate heat exchanger (IHX), air cooled heat exchangers (AC), sodium is removed by steam with nitrogen gas in the air or sodium is burned in the air. As for steam generators which material tests are planned, sodium is removed by steam injection with nitrogen gas to the steam generator. The steam generator vessel is filled with nitrogen and no air in the steam generator during sodium removal. As for sodium pumps, pump internal structure is pulled out from the casing and installed into the tank. After the installation, sodium is removed by the same method of steam generator. As for relatively small reuse components such as sodium valves, electromagnet flow meters (EMFs) etc., sodium is removed by alcohol process. (author)

  11. Pilot tests for dismantling by blasting of the biological shield of a shut down nuclear power station

    International Nuclear Information System (INIS)

    Freund, H.U.

    1995-01-01

    Following free-field tests on concrete blocks the feasibility of explosive dismantling of the biological shield of nuclear power stations has been succesfully tested at the former hotsteam reaction in Karlstein/Main Germany. For this purpose a model shield of scale 1:2 was embedded into the reactor structure at which bore-hole blasting tests employing up to about 15 kg of explosive were performed. An elaborate measurement system allowed to receive detailed information on the blast side-effects: Special emphasis was focussed on the quantitative registration of the dynamic blast loads; data for the transfer of the dismantling method to the removal of real ractor structures were obtained. (orig.) [de

  12. Decommissioning technology development for research reactors

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, S. K.; Kim, Y. K.

    2004-03-01

    Although it is expected that the decommissioning of a nuclear power plant will happen since 2020, the need of partial decommissioning and decontamination for periodic inspection and life extension has been on an increasing trend and domestic market has gradually been extended. Therefore, in this project the decommissioning DB system on the KRR-1 and 2 was developed as establishing the information classification system of the research reactor dismantling and the structural design and optimization of the decommissioning DB system. Also in order to secure the reliability and safety about the dismantling process, the main dismantling simulation technology that can verify the dismantling process before their real dismantling work was developed. And also the underwater cutting equipment was developed to remove these stainless steel parts highly activated from the RSR. First, the its key technologies were developed and then the design, making, and capability analysis were performed. Finally the actual proof was achieved for applying the dismantling site. an automatic surface contamination measuring equipment was developed in order to get the sample automatically and measure the radiation/radioactivity

  13. Jose Cabrera dismantling and decommissioning project

    International Nuclear Information System (INIS)

    Ondaro, Manuel

    2013-01-01

    The Jose Cabrera Nuclear Power Plant (NPP) was the first commercial power reactor (Westinghouse 1 loop PWR 510 MWth, 160 MWe) commissioned in Spain and provided the base for future development and training. The reactor construction started in 1963 and it was officially on-line by 1969. The NPP operated from 1969 until 2006 when it became the first reactor to be shut down after completing its operational period. The containment is reinforced concrete with a stainless steel head. In 2010 responsibility for D and D was transferred to Enresa to achieve IAEA level 3 (a green field site available for unrestricted re-uses) by 2017. Of the total of more than 104,000 tons of materials that will be generated during dismantling, it is estimated that only ∼4,000 tons will be radioactive waste, some of which, 40 t are considered as intermediate level long-lived wastes and the rest (3,960 t) will be categorized as VLLW and ILLW. The Project is divided into five phases: Phase 0 - Removal of fuel and preliminary work.. Phase 1 - Preparatory Activities for D and D. complete. Phase 2 - Dismantling of Major Components. Phase 3 - Removal of Auxiliary Installations, Decontamination and Demolition. Phase 4 - Environmental Restoration. Phase 2, is currently ongoing (50% completed). To manage the diverse aspects of decommissioning operations, Enresa uses an internally developed computerized project management tool. The tool, based on knowledge gathered from other Enresa projects, can process operations management, maintenance operations, materials, waste, storage areas, procedures, work permits, operator dose management and records. Enresa considers that communication is important for both internal and external stakeholder relations and can be used to inform, to neutralize negative opinions and attitudes, to remove false expectations and for training. Enresa has created a new multi-purpose area (exhibition/visitor centre) and encourages visits from the public, local schools, local and

  14. Jose Cabrera dismantling and decommissioning project

    Energy Technology Data Exchange (ETDEWEB)

    Ondaro, Manuel [ENRESA, Madrid (Spain)

    2013-07-01

    The Jose Cabrera Nuclear Power Plant (NPP) was the first commercial power reactor (Westinghouse 1 loop PWR 510 MWth, 160 MWe) commissioned in Spain and provided the base for future development and training. The reactor construction started in 1963 and it was officially on-line by 1969. The NPP operated from 1969 until 2006 when it became the first reactor to be shut down after completing its operational period. The containment is reinforced concrete with a stainless steel head. In 2010 responsibility for D and D was transferred to Enresa to achieve IAEA level 3 (a green field site available for unrestricted re-uses) by 2017. Of the total of more than 104,000 tons of materials that will be generated during dismantling, it is estimated that only ∼4,000 tons will be radioactive waste, some of which, 40 t are considered as intermediate level long-lived wastes and the rest (3,960 t) will be categorized as VLLW and ILLW. The Project is divided into five phases: Phase 0 - Removal of fuel and preliminary work.. Phase 1 - Preparatory Activities for D and D. complete. Phase 2 - Dismantling of Major Components. Phase 3 - Removal of Auxiliary Installations, Decontamination and Demolition. Phase 4 - Environmental Restoration. Phase 2, is currently ongoing (50% completed). To manage the diverse aspects of decommissioning operations, Enresa uses an internally developed computerized project management tool. The tool, based on knowledge gathered from other Enresa projects, can process operations management, maintenance operations, materials, waste, storage areas, procedures, work permits, operator dose management and records. Enresa considers that communication is important for both internal and external stakeholder relations and can be used to inform, to neutralize negative opinions and attitudes, to remove false expectations and for training. Enresa has created a new multi-purpose area (exhibition/visitor centre) and encourages visits from the public, local schools, local and

  15. Dismantling of transuranic contaminated facilities

    International Nuclear Information System (INIS)

    Roux, P.

    1985-01-01

    The dismantling of transuranic contaminated facilities raises specific problems. A large part of these problems relates to the management of the waste resulting from dismantling. From the experience gained in the different centers CEA and COGEMA it appears that there are industrial solutions in the group CEA and that an engineering company such as SGN can export them [fr

  16. Machine for dismantling metal parts

    Energy Technology Data Exchange (ETDEWEB)

    Prokopov, O.I.; Loginovskiy, V.I.; Yagudin, S.Z.

    1982-01-01

    The purpose of the invention is to reduce the outlays of time for dismantling metal parts under conditions of eliminating open gas and oil gushers in operational drilling. This goal is achieved because the machine for dismantling the metal parts is equipped with a set of clamping elements arranged on the chassis, where each of them has a drive.

  17. Dismantling institutional racism: theory and action.

    Science.gov (United States)

    Griffith, Derek M; Mason, Mondi; Yonas, Michael; Eng, Eugenia; Jeffries, Vanessa; Plihcik, Suzanne; Parks, Barton

    2007-06-01

    Despite a strong commitment to promoting social change and liberation, there are few community psychology models for creating systems change to address oppression. Given how embedded racism is in institutions such as healthcare, a significant shift in the system's policies, practices, and procedures is required to address institutional racism and create organizational and institutional change. This paper describes a systemic intervention to address racial inequities in healthcare quality called dismantling racism. The dismantling racism approach assumes healthcare disparities are the result of the intersection of a complex system (healthcare) and a complex problem (racism). Thus, dismantling racism is a systemic and systematic intervention designed to illuminate where and how to intervene in a given healthcare system to address proximal and distal factors associated with healthcare disparities. This paper describes the theory behind dismantling racism, the elements of the intervention strategy, and the strengths and limitations of this systems change approach.

  18. Weapons dismantlement issues in independent Ukraine

    International Nuclear Information System (INIS)

    Zack, N.R.

    1995-01-01

    The American Association for the Advancement of Science sponsored a seminar during September 1993 in Kiev, Ukraine, titled, ''Toward a Nuclear-Free Future--Barriers and Problems.'' It brought together Ukrainians, Belarusians and Americans to discuss the legal, political, economic, technical, and safeguards and security dimensions of nuclear weapons dismantlement and destruction. US representatives initiated discussions on legal and treaty requirements and constraints, safeguards and security issues surrounding dismantlement, storage and disposition of nuclear materials, warhead transportation, and economic considerations. Ukrainians gave presentations on arguments for and against the Ukraine keeping nuclear weapons, the Ukrainian Parliament's nonapproval of START 1, alternative strategies for dismantling silos and launchers, and economic and security implications of nuclear weapons removal from the Ukraine. Participants from Belarus discussed proliferation and control regime issues. This paper will highlight and detail the issues, concerns and possible impacts of the Ukraine's dismantlement of its nuclear weapons

  19. Decommissioning and dismantling of 305-M test pile at the Savannah River Plant

    International Nuclear Information System (INIS)

    Horton, H.L.

    1985-01-01

    The 305-M Test Pile was started up at the Savannah River Plant in 1952 and operated until 1981. The pile was used to measure the uranium content of reactor fuel. In 1984 work began to decommission and dismantle the pile. Extensive procedures were used that included a detailed description of the radiological controls and safety measures. These controls allowed the job to be completed with radiation doses as low as reasonably achievable

  20. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  1. Implementation of the environmental management plan for the dismantling of nuclear powered submarines at Zvezdochka Shipyard, Russia

    International Nuclear Information System (INIS)

    Washer, M.; Cull, M.; Crocker, C.; Ivanov, V.; Shepurev, A.; Khan, B.U.Z.; Lee, M.; Gerchikov, M.

    2007-01-01

    Department of Foreign Affairs and International Trade Canada is funding the dismantling of twelve nuclear powered submarines (NPS) from the Russian Federation's Northern Fleet as part of the Global Partnership Initiative against weapons and materials of mass destruction. In this paper, work performed by Nuclear Safety Solutions Ltd. and its collaborators in support of these activities is described. First, an environmental impact assessment of towing and dismantling NPS in the Kola Peninsula, and the Barents and White Seas was performed. The assessed activities included: towing of NPS from Naval Bases in Murmansk Region to the Zvezdochka shipyard (Severodvinsk); defuelling of onboard reactors; dismantling of NPS at Zvezdochka; and waste management. The assessment helped identify mitigation measures that could prevent the occurrence of adverse effects. Next, the project team defined and implemented an environmental management plan (EMP) based on the shipyard's existing environmental policy and the mitigating measures identified during the environmental assessment. Specific targets were defined to track the progress of the EMP implementation, and are described in this paper. During the study period, three Victor Class NPS were dismantled at Zvezdochka. The major benefits realized include: removal and spent nuclear fuel assemblies; treatment/decontamination of liquid and solid radioactive waste; and the cultivation of collaboration between Russian and Western expertise. (author)

  2. Implementation of the environmental management plan for the dismantling of nuclear powered submarines at Zvezdochka shipyard, Russia

    International Nuclear Information System (INIS)

    Washer, M.; Cull, M.; Crocker, C.; Ivanov, V.; Shepurev, A.; Khan, B.U.Z.; Lee, M.; Gerchikov, M.

    2008-01-01

    Department of Foreign Affairs and International Trade Canada is funding the dismantling of twelve nuclear powered submarines (NPS) from the Russian Federation's Northern Fleet as part of the Global Partnership Initiative against weapons and materials of mass destruction. In this paper, work performed by Nuclear Safety Solutions Ltd. and its collaborators in support of these activities is described. First, an environmental impact assessment of towing and dismantling NPS in the Kola Peninsula, and the Barents and White Seas was performed. The assessed activities included: towing of NPS from Naval Bases in Murmansk Region to the Zvezdochka shipyard (Severodvinsk); defuelling of onboard reactors; dismantling of NPS at Zvezdochka; and waste management. The assessment helped identify mitigation measures that could prevent the occurrence of adverse effects. Next, the project team defined and implemented an environmental management plan (EMP) based on the shipyard's existing environmental policy and the mitigating measures identified during the environmental assessment. Specific targets were defined to track the progress of the EMP implementation, and are described in this paper. During the study period, three Victor Class NPS were dismantled at Zvezdochka. The major benefits realized include: removal of spent nuclear fuel assemblies; treatment/ decontamination of liquid and solid radioactive waste; and the cultivation of collaboration between Russian and Western expertise. (author)

  3. Fabrication of mixed oxide fuel using plutonium from dismantled weapons

    International Nuclear Information System (INIS)

    Blair, H.T.; Chidester, K.; Ramsey, K.B.

    1996-01-01

    A very brief summary is presented of experimental studies performed to support the use of plutonium from dismantled weapons in fabricating mixed oxide (MOX) fuel for commercial power reactors. Thermal treatment tests were performed on plutonium dioxide powder to determine if an effective dry gallium removal process could be devised. Fabrication tests were performed to determine the effects of various processing parameters on pellet quality. Thermal tests results showed that the final gallium content is highly dependent on the treatment temperature. Fabrication tests showed that the milling process, sintering parameters, and uranium feed did effect pellet properties. 1 ref., 1 tab

  4. Decontamination and dismantling at the CEA

    International Nuclear Information System (INIS)

    2006-01-01

    This document presents the dismantling policy at the CEA (French Research Center on the atomic energy), the financing of the decontamination and the dismantling, the regulatory framework, the knowledge and the technology developed at the CEA, the radiation protection, the environment monitoring and the installations. (A.L.B.)

  5. Definition of a dismantling project

    International Nuclear Information System (INIS)

    Meyers, H.; Claes, J.; Geens, L.

    1988-01-01

    The shutdown of the fuel reprocessing plant of Eurochemic having been decided, a study for defining the facilities to be dismantled and how to do it, was conducted by Belgoprocess. The cost of the operation was estimated by an accurate investigation and by a pilot project on the dismantling of the wastes storage building. The work carried out up to now and the problems to be solved are summarized [fr

  6. The extension of the SWS period or CANDU reactors with particular reference to Douglas Point

    International Nuclear Information System (INIS)

    Bennett, C.R.

    1985-01-01

    The foregoing approach to the determination of the fate of a concrete containment building is worth much consideration. The expenditure of $10 8 or its escalated equivalent is too much to pay for the probable saving of fraction of a statistical life. The unquestioning adoption of the dogma of reactor dismantlement displays a complete misunderstanding of the numerics of ''risk'', even the place of reactor dismantling in the spectrum of nuclear risk. The position of the risk of reactor dismantling is more than an order of magnitude lower than the former of these. The most altruistic criterion for any engineering activity is the achievement of the greatest expected net benefit (or the least expected net detriment) when all the consequences of the activity are taken into account. As has been shown this criterion leads to the conclusion that, at least in CANDU reactors and particularly Douglas Point, there is apparently no reason why the S.W.S. period should not be extended indefinitely

  7. Management of wastes from dismantled nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The problems associated with the management of radioactive wastes encountered in the dismantling of a 1200MWe PWR reactor are considered. It is possible to extend all the conclusions reached in these studies to BWR's or other reactors of the same type using light water as a coolant and moderator. The studies performed established the specific characteristics of these wastes: a gamma activity due essentially to 60 Co (after some fifty years this radioisotope will have decayed sufficiently to enable it to be stored without shielding); the presence of 63 Ni and 59 Ni (these long half-life beta emitting radioisotopes need to be stored over a long or even indefinite period of time); contaminated components (60% of the overall wastes), the reselling of these components involving costly decontamination processes. Extensive studies have been conducted on the management and handling of these wastes: packaging, transport, processing, storage and a great many techniques have been developed. However, further developments in concentration methods (fusion, crushing, cryogenics etc) and the selection of storage sites for this type of waste are necessary. Depending on the solutions chosen, the global cost of the wastes coming from a 1200 MW PWR reactor can vary between 10 and 20 million BFR

  8. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  9. BRET fuel assembly dismantling machine

    International Nuclear Information System (INIS)

    Titzler, P.A.; Bennett, K.L.; Kelley, R.S. Jr.; Stringer, J.L.

    1984-08-01

    An automated remote nuclear fuel assembly milling and dismantling machine has been designed, developed, and demonstrated at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The machine can be used to dismantle irradiated breeder fuel assemblies from the Fast Flux Test Facility prior to fuel reprocessing. It can be installed in an existing remotely operated shielded hot cell facility, the Fuels and Materials Examination Facility (FMEF), at the Hanford Site in Richland, Washington

  10. Decommissioning of the BR3 pressurized-water reactor

    International Nuclear Information System (INIS)

    Massaut, V.

    1996-01-01

    The dismantling and the decommissioning of nuclear installations at the end of their life-cycle is a new challenge to the nuclear industry. Different techniques and procedures for the dismantling of a nuclear power plant on an existing installation, the BR-3 pressurized-water reactor, are described. The scientific programme, objectives, achievements in this research area at the Belgian Nuclear Research Centre SCK-CEN for 1995 are summarized

  11. Comparison of thorough decontamination techniques on dismantled pieces of a PWR reactor

    International Nuclear Information System (INIS)

    Klein, M.; Rahier, A.; Mandoki, R.; Ponnet, M.

    1998-01-01

    The decontamination experience gained during the BR3 dismantling project is developed. This started with the full system decontamination of the primary loop and was followed by R and D on thorough decontamination projects. First, a wet abrasive installation has been installed and is now in operation for the thorough cleaning of metallic pieces of simple geometry. Afterwards, the chemical cerium process has been developed. The results of the regeneration with ozone and with electrochemistry are presented in detail. The ozone regeneration process has been selected for the industrial installation of which the construction is foreseen in 1998. (author)

  12. Dismantling and waste managing benefit from digital technologies

    International Nuclear Information System (INIS)

    Moitrier, C.

    2017-01-01

    Dismantling is a very important challenge for nuclear industry as its success will prove the ability of the industry to deal with all the stages of a nuclear power plant from design to the end. A dismantling project is constraint by costs, time, feasibility, safety and environment protection and all of this implies a perfect knowledge of both the initial state of the facility at the beginning of the dismantling and the supply chain to avoid delays and extra-costs. Digital tools have a very important role to play as a provider of a 3-dimensional digital twin of the facility. This digital model allows: a remote preparation of the dismantling actions, to assess and optimize the radiation exposure during the intervention, to simulate various scenarios and select the most adequate, to ease collaborative work between various teams, to assess the volume and kind of waste at a very early stage of the dismantling, and to train operators and workers for x. (A.C.)

  13. Preservation of the first research nuclear reactor in Korea

    International Nuclear Information System (INIS)

    2008-06-01

    This book describes preservation of the first research nuclear reactor in Korea and necessity of building memorial hall, sale of the Institute of Atomic Energy Research in Seoul and dismantlement of the first and the second nuclear reactor, preservation of the first research nuclear reactor and activity about memorial hall of the atomic energy reactor, assignment and leaving the report, and the list of related data.

  14. Dismantling of Vandellos I

    International Nuclear Information System (INIS)

    Armada, J. R.

    2003-01-01

    Spain is witnessing the phase-out of a nuclear power plant. It is a unique experience in our country and therefore the dismantling work has been watched closely, not only from here but also from abroad. The Empresa Nacional de Residuos Radiactivos (ENRESA) is in charge of managing the dismantling and decommissioning work of the Vandellos-I nuclear power plant, located in the municipality of L'Hospitalet de l'Infant (Tarragona). the work began five years ago and has been executed on schedule. the appearance of what was one of the first Spanish commercial nuclear power plants has been changed radically to leave premises suitable for any other activity. (Author)

  15. STMI: several years of experience in nuclear plant dismantling

    International Nuclear Information System (INIS)

    Moreau, J.C.

    1985-01-01

    Since 1977, when STMI performed its first dismantling operation, the Company appreciably improved in that field through important operations: the dismantling of the calciothermy and fluoration metal Pu preparation facility, in La Hague reprocessing plant; the dismantling of the slag treatment chain, associated to calciothermy and fluoration processes, in La Hague reprocessing plant; and the cleaning of EL4 cell in Marcoule. To perform these operations, STMI's operating teams, on top of decontamination and dismantling technologies, strived to improve handling and transportation technologies, and to nuclearize many equipments. In order to increase its technical efficiency, STMI signed a cooperation agreement with FRAMATOME company. Therefore, the union between the operational know-hows of STMI and the design experience of TECHNICATOME allow the needs of any customs facing a dismantling case to be satisfied [fr

  16. Technical report on natural evaporation system for radioactive liquid waste treatment arising from TRIGA research reactors' decontamination and decommissioning activities

    International Nuclear Information System (INIS)

    Moon, J. S.; Jung, K. J.; Baek, S. T.; Jung, U. S.; Park, S. K.; Jung, K. H.

    1999-01-01

    This technical report described that radioactive liquid waste treatment for dismantling/decontamination of TRIGA Mark research reactor in Seoul. That is, we try safety treatment of operation radioactive liquid waste during of operating TRIGA Mark research reactor and dismantling radioactive liquid waste during R and D of research reactor hereafter, and by utilizing of new natural evaporation facility with describing design criteria of new natural evaporation facility. Therefore, this technical report described the quantity of present radioactive liquid waste and dismantling radioactive liquid waste hereafter, analysis the status of radial-rays/radioactivity, and also treatment method of this radioactive liquid waste. Also, we derived the method that the safeguard of outskirts environment and the cost down of radioactive liquid waste treatment by minimize of the radioactive liquid waste quantities, through-out design/operation of new natural evaporation facility for treatment of operation radioactive liquid waste and dismantling radioactive liquid waste. (author). 6 refs., 12 tabs., 5 figs

  17. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  18. Activation calculation for the dismantling and decommissioning of a light water reactor using MCNP™ with ADVANTG and ORIGEN-S

    Directory of Open Access Journals (Sweden)

    Schlömer Luc

    2017-01-01

    Full Text Available The decommissioning of a light water reactor (LWR, which is licensed under § 7 of the German Atomic Energy Act, following the post-operational phase requires a comprehensive licensing procedure including in particular radiation protection aspects and possible impacts to the environment. Decommissioning includes essential changes in requirements for the systems and components and will mainly lead to the direct dismantling. In this context, neutron induced activation calculations for the structural components have to be carried out to predict activities in structures and to estimate future costs for conditioning and packaging. To avoid an overestimation of the radioactive inventory and to calculate the expenses for decommissioning as accurate as possible, modern state-of-the-art Monte-Carlo-Techniques (MCNP™ are applied and coupled with present-day activation and decay codes (ORIGEN-S. In this context ADVANTG is used as weight window generator for MCNP™ i. e. as variance reduction tool to speed up the calculation in deep penetration problems. In this paper the calculation procedure is described and the obtained results are presented with a validation along with measured activities and photon dose rates measured in the post-operational phase. The validation shows that the applied calculation procedure is suitable for the determination of the radioactive inventory of a nuclear power plant. Even the measured gamma dose rates in the post-operational phase at different positions in the reactor building agree within a factor of 2 to 3 with the calculation results. The obtained results are accurate and suitable to support effectively the decommissioning planning process.

  19. Activation calculation for the dismantling and decommissioning of a light water reactor using MCNP™ with ADVANTG and ORIGEN-S

    Science.gov (United States)

    Schlömer, Luc; Phlippen, Peter-W.; Lukas, Bernard

    2017-09-01

    The decommissioning of a light water reactor (LWR), which is licensed under § 7 of the German Atomic Energy Act, following the post-operational phase requires a comprehensive licensing procedure including in particular radiation protection aspects and possible impacts to the environment. Decommissioning includes essential changes in requirements for the systems and components and will mainly lead to the direct dismantling. In this context, neutron induced activation calculations for the structural components have to be carried out to predict activities in structures and to estimate future costs for conditioning and packaging. To avoid an overestimation of the radioactive inventory and to calculate the expenses for decommissioning as accurate as possible, modern state-of-the-art Monte-Carlo-Techniques (MCNP™) are applied and coupled with present-day activation and decay codes (ORIGEN-S). In this context ADVANTG is used as weight window generator for MCNP™ i. e. as variance reduction tool to speed up the calculation in deep penetration problems. In this paper the calculation procedure is described and the obtained results are presented with a validation along with measured activities and photon dose rates measured in the post-operational phase. The validation shows that the applied calculation procedure is suitable for the determination of the radioactive inventory of a nuclear power plant. Even the measured gamma dose rates in the post-operational phase at different positions in the reactor building agree within a factor of 2 to 3 with the calculation results. The obtained results are accurate and suitable to support effectively the decommissioning planning process.

  20. The WAK decommissioning and dismantling program

    International Nuclear Information System (INIS)

    Eiben, K.; Fritz, P.

    1995-01-01

    After an extensive rinsing of the reprocessing equipment the operation in the plant was terminated in 1991 following the principal political decision to abolish reprocessing of nuclear fuel in Germany. Since July 1991 only the safety relevant units are still in operation including the waste storage facilities for 80 m 3 of high active waste concentrate (HAWC). The decommissioning and dismantling will be achieved in six steps taking into account that some of the reprocessing equipment can be dismantled before and the rest only after the HAWC has been vitrified approximately by mid 2000. So far two licenses for decommissioning have been granted. An application for the dismantling of twelve systems in the process building including headend and tailend facilities will be licensed in 1995. The remote dismantling of equipment from the hot cells in the process building is being planned and will be executed between 1998--2001. New remote handling equipment will be cold tested in a test facility scheduled to start in the middle of this year. The final task is the green meadow after demolishing of the building and remediation of the site which is scheduled for 2005

  1. Arkansas Tech University TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Sankoorikal, J.; Culp, R.; Hamm, J.; Elliott, D.; Hodgson, L.; Apple, S.

    1990-01-01

    This paper describes the TRIGA nuclear reactor (ATUTR) proposed for construction on the campus of Arkansas Tech University in Russellville, Arkansas. The reactor will be part of the Center for Energy Studies located at Arkansas Tech University. The reactor has a steady state power level of 250 kW and can be pulsed with a maximum reactivity insertion of $2.0. Experience gained in dismantling and transporting some of the components from Michigan State University, and the storage of these components will be presented. The reactor will be used for education, training, and research. (author)

  2. Dismantling without contaminating: The EUREX plant experience

    International Nuclear Information System (INIS)

    2001-01-01

    The EUREX pilot plant of ENEA Research Centre of Saluggia (Italy) reprocessed, between 1970 and 1983, some 600 elements and 1.5 tonnes of irradiated fuel from MTR and CANDU reactors. The general programme of denuclearization of the site actually focuses on the main priority of the conditioning of the about 400 m 3 of High and Low Level Liquid wastes stored in Saluggia. For this reason, in 1997 a project for the H and LLW conditioning, named 'CORA' has started. The 'CORA' unit will solidify the liquid wastes applying the Cold Crucible Melter (CCM) technology; due to the low volume amount of wastes to vitrify, the 'CORA' project has been accurately tailored in order to reduce social impact on public acceptance, costs and conditioning plant volumes to dismantle at the end of the work. For this reason, all the main nuclear components of the conditioning unit (input tank and pretreatment section, CC Melter, pot handling, off-gas system, interim glass storage) will be hosted inside four existing cells of the EUREX plant, duly dismantled. The EUREX plant services (electric and process fluid supplies, controlled areas, ventilation system...) will be reused too, revamped in some cases. The reuse of a nuclear plant which was built in the 60's, as the EUREX is, for future conditioning activities to be 'transplanted' there in the next years, it is not quite an easy job: the partial EUREX dismantling must permit an easy recovery of process areas and spread of contamination from old components (tanks, pipes, valves...) has to be minimized as far as possible. In order to minimize contamination spread, pipe cutting is made by a hydraulic shear, leaving the cut edges closed. Size reduction of pipes and tanks, to optimize the 5 m 3 steel storage containers filling is, as far as possible, made out of the working area of the cells. To achieve this goal a preliminary sketch of pipes to be cut and where the minimal cuts ought to be done is prepared before each intervention. The time

  3. Technology, safety, and costs of decommissioning a reference pressurized water reactor power station

    International Nuclear Information System (INIS)

    Smith, R.I.; Konzek, G.J.; Kennedy, W.E. Jr.

    1978-05-01

    Safety and cost information was developed for the conceptual decommissioning of a large [1175 MW(e)] pressurized water reactor (PWR) power station. Two approaches to decommissioning, Immediate Dismantlement and Safe Storage with Deferred Dismantlement, were studied to obtain comparisons between costs, occupational radiation doses, potential radiation dose to the public, and other safety impacts. Immediate Dismantlement was estimated to require about six years to complete, including two years of planning and preparation prior to final reactor shutdown, at a cost of $42 million, and accumulated occupational radiation dose, excluding transport operations, of about 1200 man-rem. Preparations for Safe Storage were estimated to require about three years to complete, including 1 1 / 2 years for planning and preparation prior to final reactor shutdown, at a cost of $13 million and an accumulated occupational radiation dose of about 420 man-rem. The cost of continuing care during the Safe Storage period was estimated to be about $80 thousand annually. Accumulated occupational radiation dose during the Safe Storage period was estimated to range from about 10 man-rem for the first 10 years to about 14 man-rem after 30 years or more. The cost of decommissioning by Safe Storage with Deferred Dismantlement was estimated to be slightly higher than Immediate Dismantlement. Cost reductions resulting from reduced volumes of radioactive material for disposal, due to the decay of the radioactive containments during the deferment period, are offset by the accumulated costs of surveillance and maintenance during the Safe Storage period

  4. Decontamination and remote dismantling tests in the Itrec reprocessing plant

    International Nuclear Information System (INIS)

    Candelieri, T.; Gerardi, A.; Soffietto, G.

    1993-01-01

    The scope of this research is to evaluate the advantages of the rack removal system in the dismantling of reprocessing installations. The objective of this work is to verify experimentally the possibility of the decontamination of any particular module and the capability of the remote dismantling of components installed in the mobile rack. In particular, the main objective is to develop remotely operated equipment for the dismantling of centrifugal contactors. The decontamination of the equipment which represents the most important preliminary phase of the decommissioning operation, allowed to obtain low-level radioactivity. A supporting programme has been performed in order to collect sufficient data for the project and design of the remote dismantling machine. On the basis of technological cold test results, the project of the dismantling machine's construction has been optimized. Positive results obtained during the hot dismantling operations on the Rack 6 bis attested the effectiveness of the rack removal system as an original design which facilitates decommissioning of reprocessing plants. 2 tabs., 18 figs

  5. Management routes for materials arising from the decommissioning of a PWR reactor

    International Nuclear Information System (INIS)

    Klein, M.; Demeulemeester, Y.; Moers, S.; Ponnet, M.

    2001-01-01

    The management of wastes from decommissioning is described for the on-going dismantling of the BR3 PWR small reactor. The incentive is put on the radionuclides characterization, the description of the various waste streams, the conditioning techniques for low radioactive waste (LAW) to high radioactive waste (RAW), the alternative evacuation routes (recycling in the nuclear, free release by decontamination) and the minimization of secondary wastes during dismantling. Finally, some considerations are given on the overall dismantling cost and on the relative costs of the various evacuation routes. (author)

  6. Decommissioning and decontamination of licensed reactor facilities and demonstration nuclear power plants

    International Nuclear Information System (INIS)

    Lear, G.; Erickson, P.B.

    1975-01-01

    Decommissioning of licensed reactors and demonstration nuclear power plants has been accomplished by mothballing (protective storage), entombment, and dismantling or a combination of these three. The alternative selected by a licensee seems to be primarily based on cost. A licensee must, however, show that the decommissioning process provides adequate protection of the health and safety of the public and no adverse impact on the environment. To date the NRC has approved each of the alternatives in the decommissioning of different facilities. The decommissioning of small research reactors has been accomplished primarily by dismantling. Licensed nuclear power plants, however, have been decommissioned primarily by being placed in a mothballed state in which they continue to retain a reactor license and the associated licensee responsibilities

  7. Overview of recycling technologies for decommissioned materials. Lessons learned during the dismantling of a small PWR reactor

    International Nuclear Information System (INIS)

    Klein, M.; Emond, O.; Ponnet, M.

    2001-01-01

    Full text: SCK CEN is dismantling its 11 MWe PWR reactor. The reactor was shutdown in 1987 after 25 years of operation and the dismantling started in 1990. For the management of the low radioactive materials, we apply a strategy promoting the minimisation of the production of radioactive waste and hence the maximisation of the production of recycled materials while keeping the costs as low as possible. The recycled materials are either reused in the non- nuclear industry as raw materials (metal scrap industry or building industry for the concrete) or recycled in the nuclear industry for specific applications (reuse of metals for fabrication of shielding, potential reuse of concrete for production of 'radioactive mortar'). The clearance of radioactive materials and their reuse require the strict respect of procedures and specifications. In our case, the Health Physics department under supervision of the Competent Authority establishes the procedures. This procedure is still a case by case practice but the legislation in Belgium is progressively put in place. For the recycling in the nuclear industry, we must respect the specifications of the end-user. Up to now, we have recycled low radioactive metals for the fabrication of shielding in the USA, so we had to respect the specifications of the melting facility and to obtain the authorisations for the transport abroad and for the transfer of property. Besides the radioactive waste route, we are using several evacuation routes for the dismantled materials: Evacuation of the cleared metals (iron, stainless steel, copper, electric motors...) to a local scrap dealer; Evacuation of metals to the Studsvik melting facility situated in Sweden: after clearance by the Swedish Authority, the non radioactive materials are sent to a local scrap dealer and the secondary radioactive waste is sent back to Belgium and conditioned by Belgoprocess. This technology further decontaminates the metals and allows performing an accurate

  8. The market of nuclear plant dismantling. The new EDF's strategy, process standardisation, robotization: which perspectives for the market by 2030?

    International Nuclear Information System (INIS)

    2017-09-01

    Dismantling appears as the most promising activity in the nuclear sector due to ageing plants, to ambitious objectives of reduction of the nuclear share in the energy mix, or to high expertise of French companies in robotic and digital solutions for deconstruction in radioactive environments. However, the development of the dismantling market depends on EDF decisions: the extension of nuclear reactor lifetime postpones the development of this market. In this context, this study aims at giving an anticipated view of the plant dismantling market by 2030, at deciphering growth levers for the sector actors, and at understanding the sector operation and the business model of operators. Thus, the report presents the main components of the market (key figures, dismantling types, dismantling steps, sector ecosystem, barriers to enter the market, costs, contractual relationships), proposes an analysis of the market and of its perspectives (situation in France, and at the world level, predictive scenario for 2030), and discusses the development axes and demand evolutions (robotization and digitalisation, elaboration of standardised processes, management of wastes produced by nuclear dismantling, internationalisation of French actors). It also proposes an overview of actors in France, and identity sheets for commissioners (EDF, New Areva), contractors (Onet, Vinci, Engie), and other actors (Veolia, Assystem, Ortec, Cybernetix, Oreka Group). The last part proposes synthetic sheets for more than 110 companies of the sector (general information, management and financial performance data under the form of tables and figures) and comparative tables according to 5 key indicators. Data are presented for a period ranging from 2010 to 2016

  9. Regulatory supervision of the radiation protection and release during the dismantling of the German NPP Wuergassen

    International Nuclear Information System (INIS)

    Boerchers, F.; Hillberg, M.

    2003-01-01

    The NPP Wuergassen (KWW) is a commercial, single unit boiling water reactor with a capacity of 670 MW el . It was commissioned by PreussenElektra and constructed by AEG/KWU between 1968 and 1971. This NPP was finally shut down in 1994. The decommissioning, started in April 1997, is still under progress. Up to now, approx. 9,500 Mg of various materials (e.g. metal scrap, cable, concrete) have been deconstructed and released from the site. In this paper we describe the contribution from the authority and the independent expert during the radiological characterisation, the dismantling work, and the material flow up to the release. Special focus will be on the necessary control steps and the documentation regarding the dismantling work and the procedure of release. There is always a close fit between the radiation protection and the release of material on the basis of the radiological characterisation. (authors)

  10. Environmental Assessment for decontamination and dismantlement, Pinellas Plant

    International Nuclear Information System (INIS)

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) (DOE/EA-1092) of the proposed decontamination and dismantlement of the Pinellas Plant in Largo, Florida. Under the Decontamination and Dismantlement EA, the DOE proposes to clean up facilities, structures, and utilities; dismantle specific structures; and mitigate or eliminate any environmental impacts associated with the cleanup, dismantlement, and related activities. Related activities include utilization of specific areas by new tenants prior to full-scale cleanup. Based on the analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  11. Decree no. 2005-78 from January 26, 2005, authorizing the Atomic Energy Commission to proceed to the definitive shutdown and dismantling operations of the nuclear facility no.20, named Siloe reactor, in the Grenoble city territory (Isere)

    International Nuclear Information System (INIS)

    2005-02-01

    On March 19, 2003, the French atomic energy commission (CEA) addressed an authorization demand for the definitive shutdown and dismantling of the Siloe reactor. After a technical and administrative instruction of this demand by the French nuclear safety authority (ASN), a project of decree has been presented on July 6, 2004 at the permanent section of the inter-ministry commission of basic nuclear facilities. The commission gave its favourable judgment which is the object of this decree. (J.S.)

  12. Dismantling of nuclear facilities. From a structural engineering perspective

    International Nuclear Information System (INIS)

    Block, Carsten; Henkel, Fritz-Otto; Bauer, Thomas

    2014-01-01

    The paper summarizes some important aspects, requirements and technical boundary conditions that need to be considered in dismantling projects in the nuclear sector from a structural engineering perspective. Besides general requirements regarding radiation protection, occupational safety, efficiency and cost effectiveness it is important to take into account other conditions which have a direct impact on technical details and the structural assessment of the dismantling project. These are the main aspects highlighted in this paper: - The structural assessment of dismantling projects has to be based on the as-built situation. - The limitations in terms of available equipment and space have to be taken into account. - The structural assessments are often non-standardized engineering evaluations. A selection of five dismantling projects illustrates the various structural aspects. (orig.)

  13. Decommissioning of the research nuclear reactor IRT-M and problems connected with radioactive waste

    International Nuclear Information System (INIS)

    Abramidze, S.P.; Katamadze, N.M.; Kiknadze, G.G.; Saralidze, Z.K.

    2000-01-01

    The nuclear research reactor IRT-2000 is described, along with modifications and upgrades made over the past three decades. Considerations are outlined which followed a decision to shut-down the reactor and to dismantle it. (author)

  14. User Interface Technology to Reduce Mental Transformations for Tangible Remote Dismantling Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Dongjun; Kim, Ikjune; Lee, Jonghwan; Kim, Geun-Ho; Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jeikwon; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    High-level radiation of the major components restricts access by human workers, and makes an accident or outage during the dismantling process more difficult to deal with. Since unexpected situations causes waste of budget and an aggravation of safety, the preliminary verification of the dismantling processes and equipment by the tangible remote dismantling simulator is very important. The design optimization of the dismantling processes and equipment is one of the most important objectives of the tangible remote dismantling simulator, as well. This paper proposes a user interface technology to reduce mental transformations for the tangible remote dismantling simulator. At the dismantling process simulation using the tangible remote dismantling simulator, the most difficult work is the remote operation handling the high degrees-of-freedom (DOF) manipulator due to complex mental transformations. The proposed user interface technology reduces mental transformations with constraints using the point projection and direction projection. The test result of the cutting process over the closure head of the RPV demonstrates that the proposed mental transformation reduction technology is operated successfully in the tangible remote dismantling simulator, and lets the operator be easy to control the high DOF manipulator even in the most difficult operation by reducing DOFs to be controlled manually.

  15. User Interface Technology to Reduce Mental Transformations for Tangible Remote Dismantling Simulator

    International Nuclear Information System (INIS)

    Hyun, Dongjun; Kim, Ikjune; Lee, Jonghwan; Kim, Geun-Ho; Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jeikwon; Choi, Jong-Won

    2015-01-01

    High-level radiation of the major components restricts access by human workers, and makes an accident or outage during the dismantling process more difficult to deal with. Since unexpected situations causes waste of budget and an aggravation of safety, the preliminary verification of the dismantling processes and equipment by the tangible remote dismantling simulator is very important. The design optimization of the dismantling processes and equipment is one of the most important objectives of the tangible remote dismantling simulator, as well. This paper proposes a user interface technology to reduce mental transformations for the tangible remote dismantling simulator. At the dismantling process simulation using the tangible remote dismantling simulator, the most difficult work is the remote operation handling the high degrees-of-freedom (DOF) manipulator due to complex mental transformations. The proposed user interface technology reduces mental transformations with constraints using the point projection and direction projection. The test result of the cutting process over the closure head of the RPV demonstrates that the proposed mental transformation reduction technology is operated successfully in the tangible remote dismantling simulator, and lets the operator be easy to control the high DOF manipulator even in the most difficult operation by reducing DOFs to be controlled manually

  16. Towards the creation of an industrial sector dedicated to nuclear dismantling

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    In next decades the business of nuclear dismantling is expected to grow exponentially due to the decommissioning of nuclear facilities that will have reached the end of their operating life. Dismantling has 2 main features: dismantling operations on a same site can span decades and dismantling is a new activity in which innovations are likely to appear and may benefit other sectors. In France regional authorities have promoted public-private partnerships in order to make working together small enterprises very specialized in sectors like robotic, laser cutting, waste processing, remote operations... with public laboratories dedicated to nuclear research, and with graduate schools to include dismantling in curriculum and with major industrial operators of the nuclear industry. The aim is the creation of jobs and the building of an industrial sector able to win market shares in the worldwide business of nuclear dismantling. (A.C.)

  17. Decision support system for the dismantling of building in nuclear facilities

    International Nuclear Information System (INIS)

    Zeiher, M.

    2009-01-01

    In case of decommissioning and dismantling the complex structure of nuclear facilities requires a thorough selection of dismantling methods and a detailed operations planning. The decision for an appropriate technology with respect to economic, environmental and radiation protection aspects has to take into account that the different procedural steps are coordinated. Component specific boundary conditions and process parameters have to be considered. A data base was established that includes the process parameters for different dismantling methodologies. The next step is the determination of specific requirements of plant operators and engineers in order to identify the tasks in the frame of the dismantling process. The authors describes the decision support algorithm that allows to enhance the dismantling efficiency.

  18. Method of decommissioning nuclear reactor building by utilizing sea water buyoancy

    International Nuclear Information System (INIS)

    Iwashima, Sumio; Ogoshi, Shigeru; Kobari, Shin-ichi.

    1989-01-01

    Upon dismantling nuclear reactor buildings, peripheral yards are excavated and channels leading to sea shore are formed. Since the outer walls of the reactor buildings are made of iron-reinforced concretes, the opening poritons are grouted with concretes to attain a tightly such closed structure that radioactive wastes, etc. in the inside are not flown out upon reactor discommisioning. Peripheral buildings at relatively low level of radiation contaminations are dismantled and withdrawn. The fundations of the nuclear reactor buildings were dug out and jacked to separate base rocks and the reactor buildings. Then, sea water is introduced into the water channels to entirely float up the buildings. A water gate is disposed in the water channel on the side of sea shore to control the level of sea water. The buildings are moved and guided to the sea shore and towed to a site optimum as a permanent storage area and then burried in that place. The operation period for the discommissioning work can greatly be shortened and the radiation dose and the amount of the wastes can be reduced. (T.M.)

  19. Vandellos-I Dismantling nearing completion

    International Nuclear Information System (INIS)

    Armada, J. R.

    2004-01-01

    Spain is witnessing the phase-out of a nuclear power plant. It is a unique experience in our country and therefore the dismantling work has been watched closely, not only from here but also from abroad. The Empresa Nacional de Residuos Radiactivos (ENRESA) is in charge of managring the dismantling and decommissioning work of the Vandellos-1 nuclear power plant, located in the municipally of l' Hospitalet de l'Infant (Tarragona). The work began five years ago and has been executed on schedule. The appearance of what was one of the first Spanish commercial nuclear power plants has been changed radically to leave premises suitable for any other activity. (Author)

  20. Decommissioning of the CANDU-PHW reactor

    International Nuclear Information System (INIS)

    Unsworth, G.N.

    1977-04-01

    This report contains the results of a study of various aspects of decommissioning of reactors. The study places in perspective the size of the job, the hazards involved, the cost and the environmental impact. The three internationally agreed ''stages'' of decommissioning, namely, mothballing, entombment, and dismantling are defined and discussed. The single unit 600 MW(e) CANDU is chosen as the type of reactor on which the discussion is focussed but the conclusions reached will provide a basis for judgement of the costs and problems associated with decommissioning reactors of other sizes and types. (author)

  1. The installation and dismantling of electrolytic cells

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to construction of aluminium electrolytic cells, their installation and dismantling. Therefore, the general characteristic and classification of aluminium electrolytic cells was considered. The anode and cathode structure was studied. The lining of cathode casing, the process of collection of anode gases, electrolytic cell cover, and electrical insulation was studied as well. The installation and dismantling of aluminium electrolytic cells was described.

  2. A survey of commercially available manipulators, end-effectors, and delivery systems for reactor decommissioning activities

    International Nuclear Information System (INIS)

    Henley, D.R.; Litka, T.J.

    1996-05-01

    Numerous nuclear facilities owned by the U.S. Department of Energy (DOE) are under consideration for decommissioning. Currently, there are no standardized, automated, remote systems designed to dismantle and thereby reduce the size of activated reactor components and vessels so that they can be packaged and shipped to disposal sites. Existing dismantling systems usually consist of customized, facility-specific tooling that has been developed to dismantle a specific reactor system. Such systems have a number of drawbacks. Generally, current systems cannot be disassembled, moved, and reused. Developing and deploying the tooling for current systems is expensive and time-consuming. In addition, the amount of manual work is significant because long-handled tools must be used; as a result, personnel are exposed to excessive radiation. A standardized, automated, remote system is therefore needed to deliver the tooling necessary to dismantle nuclear facilities at different locations. Because this system would be reusable, it would produce less waste. The system would also save money because of its universal design, and it would be more reliable than current systems

  3. DISMANTLING OF THE FUEL CELL LABORATORY AT RESEARCH CENTRE JUELICH

    International Nuclear Information System (INIS)

    Stahn, B.; Matela, K.; Bensch, D.; Ambos, Frank

    2003-01-01

    The fuel cell laboratory was constructed in three phases and taken into operation in the years 1962 to 1966. The last experimental work was carried out in 1996. After all cell internals had been disassembled, the fuel cell laboratory was transferred to shutdown operation in 1997. Three cell complexes, which differed, in particular, by the type of shielding (lead, cast steel, concrete), were available until then for activities at nuclear components. After approval by the regulatory authority, the actual dismantling of the fuel cell laboratory started in March 2000. The BZ I laboratory area consisted of 7 cells with lead shieldings of 100 to 250 mm thickness. This area was dismantled from April to September 2000. Among other things, approx. 30,000 lead bricks with a total weight of approx. 300 Mg were dismantled and disposed of. The BZ III laboratory area essentially consisted of cells with concrete shieldings of 1200 to 1400 mm thickness. The dismantling of this area started in the fir st half of 2001 and was completed in November 2002. Among other things, approx. 900 Mg of concrete was dismantled and disposed of. Since more than 90 % of the dismantled materials was measurable for clearance, various clearance measurement devices were used during dismantling. The BZ II laboratory area essentially consists of cells with cast steel shieldings of 400 to 460 mm thickness. In September 2002 it was decided to continue using this laboratory area for future tasks. The dismantling of the fuel cell laboratory was thus completed. After appropriate refurbishment, the fuel cell laboratory will probably take up operation again in late 2003

  4. Mobile worksystems for decontamination and dismantlement

    International Nuclear Information System (INIS)

    Osborn, J.; Bares, L.C.; Thompson, B.R.

    1995-01-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes two technologies that are viable solutions for facility D ampersand D

  5. Mobile worksystems for decontamination and dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, J. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bares, L.C.; Thompson, B.R. [RedZone Robotics, Inc., Pittsburgh, PA (United States)

    1995-10-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of. The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes a mobile workstation termed ROSIE, which provides remote work capabilities for D&D activities.

  6. Process cells dismantling of EUREX pant: previous activities

    International Nuclear Information System (INIS)

    Gili, M.

    1998-01-01

    In the '98-'99 period some process cells of the EUREX pant will be dismantled, in order to place there the liquid wastes conditioning plant 'CORA'. This report resumes the previous activities (plant rinsing campaigns and inactive Cell 014 dismantling), run in the past three years and the drawn experience [it

  7. Laser cutting equipment for dismantling irradiated PFR fuel sub-assemblies

    International Nuclear Information System (INIS)

    Higginson, P.R.; Campbell, D.A.

    1981-01-01

    Laser cutting was identified as a possible technique for dismantling irradiated Prototype Fast Reactor (P.F.R.) fuel sub-assemblies and initial trials showed that it could be used to make essentially swarf free cuts in P.F.R. wrapper material provided sufficient laser power was available to allow use of an inert cutting gas. A programme of development work has established a technique for inert gas cutting with the reliable, commercially available Ferranti MF 400 laser and equipment for laser cutting of sub-assemblies has been installed in the Irradiated Fuel Cave at P.F.R. Test cuts carried out with this equipment on un-irradiated wrapper sections have shown it to be easy to operate remotely, optically stable and reliable in operation. (author)

  8. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  9. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  10. Dismantling and removal of the Niederaichbach nuclear power plant (KKN) to the 'Green Field'. Final report

    International Nuclear Information System (INIS)

    Valencia, L.; Prechtl, E.

    1998-04-01

    The major objective of the present project consisted in the complete dismantling and removal of the Niederaichbach nuclear power plant (KKN), ranging from the state of safe enclosure to re-establishing the original state of vegetation of the site (so-called 'green field'). By reaching this objective, principle feasibility of the complete removal of a power reactor was demonstrated. In addition, considerable experience has been gained with regard to the execution of all phases of such a complex project and project optimization. The following phases of the project can be distinguished: - Licensing procedure - dismantling of the inactive, contaminated and activated plant sections - disassembly of the activated building structures and decontamination of the buildings - demolition (conventional) of the buildings and recultivation of the site. Moreover, the project included the work performed under the direct supervision of the licensing authority, comprehensive radiation protection activities, the solution of waste management problems and the respective public relations work. (orig./MM) [de

  11. Decommissioning of the Northrop TRIGA reactor

    International Nuclear Information System (INIS)

    Cozens, George B.; Woo, Harry; Benveniste, Jack; Candall, Walter E.; Adams-Chalmers, Jeanne

    1986-01-01

    An overview of the administrative and operational aspects of decommissioning and dismantling the Northrop Mark F TRIGA Reactor, including: planning and preparation, personnel requirements, government interfacing, costs, contractor negotiations, fuel shipments, demolition, disposal of low level waste, final survey and disposition of the concrete biological shielding. (author)

  12. General Research and Development problems in dismantling

    International Nuclear Information System (INIS)

    Lorin, C.

    1993-01-01

    R and D studies for dismantling nuclear facilities have been conducted in several domains: safety evaluation (3D cameras, gamma camera, gamma low level control bench, alpha measures); general studies (such as the Baladin software, an expert system for dismantling); decontamination techniques (utilisation of acid or base liquids, laser, ...); cutting techniques and tools (remote controlled grinder, remote controlled robot, carrier crane); robotics for remote operations and handling; waste processing

  13. 105-C Reactor interim safe storage project technology integration plan

    International Nuclear Information System (INIS)

    Pulsford, S.K.

    1997-01-01

    The 105-C Reactor Interim Safe Storage Project Technology Integration Plan involves the decontamination, dismantlement, and interim safe storage of a surplus production reactor. A major goal is to identify and demonstrate new and innovative D and D technologies that will reduce costs, shorten schedules, enhance safety, and have the potential for general use across the RL complex. Innovative technologies are to be demonstrated in the following areas: Characterization; Decontamination; Waste Disposition; Dismantlement, Segmentation, and Demolition; Facility Stabilization; and Health and Safety. The evaluation and ranking of innovative technologies has been completed. Demonstrations will be selected from the ranked technologies according to priority. The contractor team members will review and evaluate the demonstration performances and make final recommendations to DOE

  14. Corrosion problem in the CRENK Triga Mark II research reactor

    International Nuclear Information System (INIS)

    Kalenga, M.

    1990-01-01

    In August 1987, a routine underwater optical inspection of the aluminum tank housing the core of the CRENK Triga Mark II reactor, carried out to update safety condition of the reactor, revealed pitting corrosion attacks on the 8 mm thick aluminum tank bottom. The paper discuss the work carried out by the reactor staff to dismantle the reactor in order to allow a more precise investigation of the corrosion problem, to repair the aluminum tank bottom, and to enhance the reactor overall safety condition

  15. Evaluation on activation activity of reactor in JRR-2 applied 3 dimensional model to neutron flux calculation

    International Nuclear Information System (INIS)

    Kishimoto, Katsumi; Arigane, Kenji

    2005-03-01

    Revaluation to activation activity of reactor evaluated at the notification of dismantling submitted in 1997 was carried out in JRR-2 where decommissioning was advanced now. In the revaluation, estimation accuracy on neutron streaming at various horizontal experimental tubes was improved by applying 3 dimensional model to neutron transport calculation that had been carried out by 2 dimensional model, and calculating with TORT. As the result, excessive overestimations on horizontal experimental tubes and biological shield that had greatly contributed to total activation activity in evaluation at the notification of dismantling was revised, sum of their activation activities in the revaluation decreased to 1/18 (case after 1 year from the permanent shutdown of reactor) of evaluation at the notification of dismantling, and the structural materials that had large activation activity were changed. By the above, it was shown that introducing 3 dimensional model was effective in evaluation on activation activity of the research reactor that had a lot of various experimental tubes. Total activation activity of reactor by the revaluation depended on control rods, thermal shield plates and horizontal experimental tubes, and the value after 1 year from the permanent shutdown of reactor was 1.9x10 14 Bq. (author)

  16. Decommissioning of the Nuclear Reactors R2 and R2-0 at Studsvik, Sweden. General Data as called for under Article 37 of the Euratom Treaty

    Energy Technology Data Exchange (ETDEWEB)

    2009-01-15

    This document describes the plans for decommissioning of the nuclear research and material test reactors R2 and R2-0, situated at the Studsvik site close to the city of Nykoeping, Sweden. The purpose of the document is to serve as information for the European Commission, and to fulfil the requirements of Article 37 of the Euratom Treaty. Studsvik is situated on the Baltic coast, about 20 km east of Nykoeping and 80 km southwest of Stockholm. The site comprises the reactors R2 and R2-0 and several facilities for material investigation and radioactive waste treatment and storage. The reactors were used for a number of different purposes from 1960 until June 2005, when they were shut down following a decision by the operator. Decommissioning of the reactor facility is planned to be completed in 2016 after dismantling and conditioning of radioactive parts and demolition of the facility. Solid and liquid radioactive wastes from the dismantling activities will be treated and stored on-site awaiting final disposal. The waste treatment facilities, which are situated in other buildings at the Studsvik site, are planned to continue operation during and after the decommissioning of the reactor facility. All nuclear fuel has been transferred to a separate storage facility and is being shipped to the US according to existing agreements. The objective of the planned dismantling activities is to achieve clearance of the facility to make it possible to either demolish the buildings or use them for other purposes. The operator has divided the planning for dismantling and demolition of the facility into three phases [1]: Dismantling 1, including primary system decontamination, dismantling of the reactors with systems in the reactor pool, draining, cleaning and temporary covering of the reactor pool. This phase has begun and is due to last till approximately December 2009. Dismantling 2, including dismantling of systems in the reactor facility, removal of equipment, radiological

  17. Decommissioning of the Nuclear Reactors R2 and R2-0 at Studsvik, Sweden. General Data as called for under Article 37 of the Euratom Treaty

    International Nuclear Information System (INIS)

    2009-01-01

    This document describes the plans for decommissioning of the nuclear research and material test reactors R2 and R2-0, situated at the Studsvik site close to the city of Nykoeping, Sweden. The purpose of the document is to serve as information for the European Commission, and to fulfil the requirements of Article 37 of the Euratom Treaty. Studsvik is situated on the Baltic coast, about 20 km east of Nykoeping and 80 km southwest of Stockholm. The site comprises the reactors R2 and R2-0 and several facilities for material investigation and radioactive waste treatment and storage. The reactors were used for a number of different purposes from 1960 until June 2005, when they were shut down following a decision by the operator. Decommissioning of the reactor facility is planned to be completed in 2016 after dismantling and conditioning of radioactive parts and demolition of the facility. Solid and liquid radioactive wastes from the dismantling activities will be treated and stored on-site awaiting final disposal. The waste treatment facilities, which are situated in other buildings at the Studsvik site, are planned to continue operation during and after the decommissioning of the reactor facility. All nuclear fuel has been transferred to a separate storage facility and is being shipped to the US according to existing agreements. The objective of the planned dismantling activities is to achieve clearance of the facility to make it possible to either demolish the buildings or use them for other purposes. The operator has divided the planning for dismantling and demolition of the facility into three phases [1]: Dismantling 1, including primary system decontamination, dismantling of the reactors with systems in the reactor pool, draining, cleaning and temporary covering of the reactor pool. This phase has begun and is due to last till approximately December 2009. Dismantling 2, including dismantling of systems in the reactor facility, removal of equipment, radiological

  18. Evaluation of decontamination during dismantling of plutonium-contaminated glove boxes

    International Nuclear Information System (INIS)

    Kinugasa, Manabu; Taguchi, Seigi; Ohzeki, Satoru; Inoue, Yoshiaki; Kashima, Sadamitsu

    1981-01-01

    The dismantling work of plutonium-contaminated glove boxes was carried out. These glove boxes had been used for the R and D of plutonium-uranium mixed oxide fuel for 15 years. The work was carried out in a pressure-controlled greenhouse, and the contamination of air in the greenhouse was monitored continuously. In order to reduce the contamination of air during dismantling, the decontamination and fixation of loose contaminants on the surfaces of glove boxes were very important. The correlation between decontamination and the contamination of air regarding dismantling is reported in this paper. The surface contamination density of the glove boxes was measured utilizing the smear method before and after the decontamination, and the decontamination effects were estimated. The contamination of air during dismantling was continuously measured with a plutonium dust monitor. It was found that loose contamination exponentially decreased by the decontamination process. When the so-called wet glove boxes, which contained wet recovery and waste disposal apparatus, were dismantled, the contamination of air did not exceed 500 (MPC) a. However, the contamination of air exceeded 500 (MPC) a several times in the present work of dismantling the so-called dry glove boxes which had been used for the fabrication of plutonium-uranium mixed oxide pellets. (Kato, T.)

  19. Decontamination and partial dismantling of the Eurochemic plant. Part 1

    International Nuclear Information System (INIS)

    Detilleux, E.; Geens, L.; Hild, W.; Klonk, W.

    1980-09-01

    A description is given of the partial dismantling of the dissolver used for fuel elements of up to 1.6 wt % 235 U enrichment, and of the total dismantling of the dissolver for highly enriched fuel elements. The corresponding head-end cells have been decontaminated, allowing prolonged interventions, either in view of refurbishing or complete dismantling. An assessment of required manpower, dose commitments, material consumption, and waste production for all operations is given. (author)

  20. LEP Dismantling Reaches Half-Way Stage

    CERN Multimedia

    2001-01-01

    LEP's last superconducting module leaves its home port... Just seven months into the operation, LEP dismantling is forging ahead. Two of the eight arcs which form the tunnel have already been emptied and the last of the accelerator's radiofrequency (RF) cavities has just been raised to the surface. The 160 people working on LEP dismantling have reason to feel pleased with their progress. All of the accelerator's 72 superconducting RF modules have already been brought to the surface, with the last one being extracted on 2nd May. This represents an important step in the dismantling process, as head of the project, John Poole, explains. 'This was the most delicate part of the project, because the modules are very big and they could only come out at one place', he says. The shaft at point 1.8 through which the RF cavity modules pass is 18 metres in diameter, while each module is 11.5 metres long. Some modules had to travel more than 10 kilometres to reach the shaft. ... is lifted up the PM 1.8 shaft, after a m...

  1. Study on applicability of evaluation model of manpower needs for dismantling of equipments in FUGEN-1. Dismantling process in 3rd/4th feedwater heater room

    International Nuclear Information System (INIS)

    Shibahara, Yuji; Izumi, Masanori; Nanko, Takashi; Tachibana, Mitsuo; Ishigami, Tsutomu

    2010-10-01

    Manpower needs for the dismantling process on the dismantling of equipments in FUGEN 3rd/4th feedwater heater room was calculated with the management data evaluation system (PRODIA Code), and it was inspected whether the conventional evaluation model had applicability for FUGEN or not. It was confirmed that the conventional evaluation model for feedwater heater had no applicability. In comparison of the calculated value with the actual data, we found two difference: 1) the calculated value were significantly larger than the actual data, 2) the actual data for the dismantling of 3rd feedwater heater was twice larger than that of 4th feedwater heater, though these equipments were almost same weight. It was found that these were brought 1) by the difference in the work descriptions of dismantling between JPDR and FUGEN, and 2) by that in the cutting number between 3rd feedwater heater and 4th one. The manpower needs for the dismantling of both feedwater heaters were calculated with a new calculation equation reflecting the descriptions of dismantling, and it was found that these results showed the good agreement with the actual data. (author)

  2. Decree no. 2005-79 from January 26, 2005, authorizing the Atomic Energy Commission to proceed to the definitive shutdown and dismantling operations of the nuclear facility no.21, named Siloette research reactor, in the Grenoble city territory (Isere)

    International Nuclear Information System (INIS)

    2005-02-01

    On May 26, 2003, the French atomic energy commission (CEA) addressed an authorization demand for the definitive shutdown and dismantling of the Siloette research reactor. After a technical and administrative instruction of this demand by the French nuclear safety authority (ASN), a project of decree has been presented on July 6, 2004 at the permanent section of the inter-ministry commission of basic nuclear facilities. The commission gave its favourable judgment which is the object of this decree. (J.S.)

  3. Progress of decommissioning of Rikkyo reactor in FY2014

    International Nuclear Information System (INIS)

    Suzuki, M.; Kato, M.; Tanzawa, T.; Kawaguchi, K.; Terasawa, T.; Yamada, Shigeru; Nakai, Masaru

    2015-01-01

    Institute for Atomic Energy, Rikkyo University, applied in 2012 for changes in the decommissioning plan toward the abolition of the reactor facilities, and received approval. It promoted the decommissioning work of the research reactors in a plan for two years from 2012, conducted the removal of the structure installed in the reactor tank and storage management measures, and implemented the function stop of the disposal facility of liquid waste and the removal of part of them. These procedures achieved the safe storage condition of core internal structure / equipment with relatively high radioactivity due to neutron irradiation. In addition, the maintenance management of partial facilities and equipment that had been maintained in operational conditions had come to be unnecessary. Based on these results, the implementation plan for decommissioning scheduled for 2015-2016 was prepared. The contents of main works are as follows: (1) dismantling and removal of disposal facilities for liquid waste and storage management of subsequently generated radioactive waste in the reactor building control area, (2) storage management of radioactive solid waste of solid waste storage facilities in the reactor building control area, (3) dismantling and removal of solid waste storage facilities that become unnecessary, and (4) release of part of the controlled area associated with the above actions. (A.O.)

  4. Diamond Wire Cutting of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Keith Rule; Erik Perry; Robert Parsells

    2003-01-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of DandD (Decontamination and Decommissioning) activity

  5. Decontamination and decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Walton, G.R.; Perry, E.D.; Commander, J.C.; Spampinato, P.T.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) is scheduled to complete its end-of-life deuterium-tritium (D-T) experiments in September 1994. The D-T operation will result in the TFTR machine structure becoming activated, and plasma facing and vacuum components will be contaminated with tritium. The resulting machine activation levels after a two year cooldown period will allow hands on dismantling for external structures, but require remote dismantling for the vacuum vessel. The primary objective of the Decontamination and Decommissioning (D ampersand D) Project is to provide a facility for construction of a new Department of Energy (DOE) experimental fusion reactor by March 1998. The project schedule calls for a two year shutdown period when tritium decontamination of the vacuum vessel, neutral beam injectors and other components will occur. Shutdown will be followed by an 18 month period of D ampersand D operations. The technical objectives of the project are to: safely dismantle and remove components from the test cell complex; package disassembled components in accordance with applicable regulations; ship packages to a DOE approved disposal or material recycling site; and develop expertise using remote disassembly techniques on a large scale fusion facility. This paper discusses the D ampersand D objectives, the facility to be decommissioned, and the technical plan that will be implemented

  6. Training reactor deployment. Advanced experimental course on designing new reactor cores

    International Nuclear Information System (INIS)

    Skoda, Radek

    2009-01-01

    Czech Technical University in Prague (CTU) operating its training nuclear reactor VR1, in cooperation with the North West University of South Africa (NWU), is applying for accreditation of the experimental training course ''Advanced experimental course on designing the new reactor core'' that will guide the students, young nuclear engineering professionals, through designing, calculating, approval, and assembling a new nuclear reactor core. Students, young professionals from the South African nuclear industry, face the situation when a new nuclear reactor core is to be build from scratch. Several reactor core design options are pre-calculated. The selected design is re-calculated by the students, the result is then scrutinized by the regulator and, once all the analysis is approved, physical dismantling of the current core and assembling of the new core is done by the students, under a close supervision of the CTU staff. Finally the reactor is made critical with the new core. The presentation focuses on practical issues of such a course, desired reactor features and namely pedagogical and safety aspects. (orig.)

  7. Mechanical, chemical and radiological characterization of the graphite of the UNGG reactors type

    International Nuclear Information System (INIS)

    Bresard, I.; Bonal, J.P.

    2000-01-01

    In the framework of UNGG reactors type dismantling procedures, the characterization of the graphite, used as moderator, has to be realized. This paper presents the mechanical, chemical and radiological characterizations, the properties measured and gives some results in the case of the Bugey 1 reactor. (A.L.B.)

  8. Disposal of control elements from the VAK reactor

    International Nuclear Information System (INIS)

    Eickelpasch, N.

    1996-01-01

    From the 25 years of operation there were available in the VAK fuel cooling installation 22 control elements which had to be dismantled and packed ready for disposal. The design of the control elements was already that which was later used in other boiling water reactors, so that the procedure took on a pioneering character. The technique of a remote controlled underwater scissors was suitable for the dismantling. By means of an accompanying measuring programme, it was confirmed that the released tritium posed no radiological problem for the working place and the waste values of the installation. (author) 1 fig

  9. Transparency in nuclear warhead dismantlement -- Limited chain of custody and warhead signatures

    International Nuclear Information System (INIS)

    Kiernan, G.; Percival, M.; Bratcher, L.

    1996-01-01

    The goal of the US Safeguards, Transparency, and Irreversibility (STI) initiative is the development of a series of transparency measures that provide confidence that nuclear warheads are actually being dismantled and that the fissile material being removed from these dismantled weapons is not recycled into new production. A limited chain of custody (LCC) would follow a warhead from the time it is declared excess until it is actually dismantled and the fissile materials are stored. Measurement of warhead signatures is an option in LCC using radiation detection techniques to confirm that a warhead has been dismantled, without intrusive inspections within the dismantlement facility. This paper discusses LCC and warhead signatures as well as indicate first results of laboratory measurements related to warhead signatures

  10. The inherent advantages of delayed dismantling of decommissioning nuclear stations

    International Nuclear Information System (INIS)

    Liederman, J.M.; Saroudis, J.I.

    1985-01-01

    Recent studies in Canada pertaining to the decommissioning of the CANDU 600 MW(e) reactor have led to the development of the option of a ''static state'' condition. This alternative is based on judging risk and benefit to society considering the greatly reduced potential radiation exposure to personnel after 30 to 80 years have elapsed, following the final shutdown of the reactor. After approximately 80 to 120 years have elapsed, the decay in all systems and components (with the exception of the reactor assembly) would be such that radiation fields would be at background levels producing an environment that would be acceptable for Stage 3 decommissiong. This philosophy is based on the current engineering judgement that: - All systems, components, and structures which were associated with the nuclear processes and are radioactive, can be put into a static or storage state, and a containment function maintained at low cost for prolonged periods of between 80 to 120 years. - Between 80 to 120 years after shutdown, most of the radioactivity, except for some long lived radionuclides in the reactor vessel itself and its vault, will have naturally decayed to near releasable limits without any external intervention. - There is a lower overall risk to society in this approach, than dismantling and transporting radioactive materials prematurely. This philosophy is developed taking into consideration radiation protection, financial and risk assessment issues. The Canadian concept of dry storage of spent fuel is part of this philosophy and may be of interest to decommissioned nuclear plants of other types. 4 tables, 5 graphs

  11. EDF decommissioning and dismantling policy a global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Rondeau, J.

    2001-01-01

    Until recently, EDF's policy regarding the dismantling of its decommissioned nuclear power plants was to reach 'level 2' (release of non-nuclear facilities) and to postpone final dismantling for another 30-40 years. Today, some studies suggest that a full deconstruction program of the first generation NPPs (9 units) could be optimized over the period 2000 - 2025. EDF has acquired during the last ten years an unique experience, both as an operator and as an engineering company, in the frame of the decommissioning programme of its own NPPs. Many types of reactors, including graphite moderated one, PWR, are at varying stages of the dismantling process.Plant operation quality is at the core of a satisfactory control of releases. Over the last decade, as a result of the efforts of all operating sites associated with good in-house operating practice feedback, the overall release volume has been divided by two, and the release activity by one hundred. Another issue given increased attention is radiological cleanliness. EDF-DPN launched a 'radiological cleanliness' action plan revolving around two main themes: increased monitoring of nuclear-related transportations, site entrance and access to controlled areas, along with on-site radiological cleanliness, particularly during maintenance work tasks. Progress is already apparent in several points at issue and the overall objective of the action plan should be attained. (author)

  12. Development of Digital Mock-Up for the Assessment of Dismantling Scenarios

    International Nuclear Information System (INIS)

    Kim, Sung-Kyun; Park, Hee-Sung; Lee, Kune-Woo; Jung, Chong-Hun

    2008-01-01

    As the number of superannuated research reactors and nuclear power plants increase, dismantling nuclear power facilities has become a big issue. However, decommissioning a nuclear facility is still a costly and possibly hazardous task. So prior to an actual decommission, what should be done foremost is to establish a proper procedure. Due to the fact that a significant difference in cost, exposure to a radiation, and safety might occur, a proper procedure is imperative for the entire engineering process. The purpose of this paper is to develop a system for evaluating the decommissioning scenarios logically and systematically. So a digital mockup system with functions such as a dismantling schedule, decommissioning costs, wastes, worker's exposure dose, and a radiation distribution was developed. Also on the basis of the quantitative information calculated from a DMU system and the data evaluated by decommissioning experts about qualitatively evaluating the items, the best decommissioning scenarios were established by using the analytic hierarchy process (AHP) method. Finally, the DMU was implemented in the thermal column of KRR-1 and adequate scenarios were provided after comparing and analyzing the two scenarios. In this paper, we developed the virtual environment of KRR-1 by using computer graphic technology and simulating the dismantling processes. The data-computing modules were also developed for quantitatively comparing the decommissioning scenarios. The decommissioning DMU system was integrated with both the VE system and the data-computing modules. In addition, we presented a decision-making method for selecting the best decommissioning scenario through the AHP. So the scenarios can be evaluated logically and quantitatively through the decommissioning DMU. As an implementation of the AHP, the plasma cutting scenario and the nibbler cutting scenario of the thermal column were prioritized. The fact that the plasma cutting scenario ranked the better than the

  13. Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada

    International Nuclear Information System (INIS)

    Kenny, Stephen

    2008-01-01

    Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred

  14. Shielded Cells D ampersand D and Dismantlement System Requirements

    International Nuclear Information System (INIS)

    Witherspoon, R.L.

    1995-01-01

    This document describes the basis for the development of the System for Highly Radioactive Equipment Dismantlement or SHRED. It is the result of a thorough investigation into current and past dismantlement practices at shielded cell facilities around the DOE complex. This information has been used to formulate the development requirements for the SHRED

  15. S.T.M.I.: Several years of experience in nuclear plant dismantling

    International Nuclear Information System (INIS)

    Moreau, J.C.

    1986-01-01

    Since 1977, when STMI performed its first dismantling operation, the Company appreciably improved in that field through important operations: the dismantling of the calciothermy and fluoration metal Pu preparation facility, in La Hague reprocessing plant, the dismantling of the slag treatment chain, associated to calciothermy and fluoration processes, in La Hague reprocessing plant, the cleaning of EL4 cell in Marcoule. To perform these operations, STMI's operating teams, on top of decontamination and dismantling technologies, strived to improve handling and transportation technologies, and to nuclearize many equipments. In order to increase its technical efficiency, STMI signed a cooperation agreement with TECHNICATOME company. Therefore, the union between the operational know-hows of STMI and the design experience of TECHNICATOME allow the needs of any customs facing a dismantling case to be satisfied [fr

  16. Nuclab Marcoule: a dedicated waste management and dismantling support laboratory

    International Nuclear Information System (INIS)

    Dugne, Olivier; Bec-Espitalier, Lionel; Rosen, Jeremy

    2014-01-01

    Formerly dedicated to plutonium production support, NucLab was renovated to perform a wide range of analyses for dismantling, plant operation and process development activities mainly at Marcoule but also for external clients. The laboratory is a CEA entity in the Nuclear Energy Division. It provides services to several industrial operators (nuclear processes and power plants) in the fields of analytical chemistry, radioactivity measurements, in situ nuclear measurements, decontamination processes, industrial chemistry processes, and waste treatment. NucLab supports research, production, and dismantling activities in all areas of dismantling operations (authors)

  17. The Blue Lady Case and the International Issue of Ship Dismantling - Comment

    Directory of Open Access Journals (Sweden)

    Florent Pelsy

    2008-09-01

    Full Text Available This paper focuses on the decision of the Supreme Court of India to allow the dismantling of the Blue Lady (ex France in Alang. The first part underlines that the Supreme Court of India is prioritising the commercial interest of the dismantling companies over the social and environmental concerns of the workers and the communities living in Alang. It argues that such decision goes against its 2003 judgement on ship-dismantling. It then demonstrates that the Supreme Court of India is distorting the concept of sustainable development. The second part analyses the Blue Lady case from an international perspective since most of the ships that are dismantled in India come from developed countries. It provides an overview of the Basel Convention on ship dismantling issues and a study of the Clemenceau case before the French Conseil d'Etat. It then concludes that a better control of end-of-life ships in OECD countries and a new international convention on ship-dismantling would be necessary in order to prevent environmental and social disasters in Alang.

  18. Decommissioning of the Neuherberg Research Reactor (FRN)

    International Nuclear Information System (INIS)

    Demmeler, M.; Rau, G.; Strube, D.

    1982-01-01

    The Neuherberg Research Reactor is of type TRIGA MARK III with 1 MW steady state power and pulsable up to 2000 MW. During more than ten years of operation 12000 MWh and 6000 reactor pulses had been performed. In spite of its good technical condition and of permanent safe operation without any failures, the decommissioning of the Neuherberg research reactor was decided by the GSF board of directors to save costs for maintaining and personnel. As the mode of decommissioning the safe enclosure was chosen which means that the fuel elements will be transferred back to the USA. All other radioactive reactor components will be enclosed in the reactor block. Procedures for licensing of the decommissioning, dismantling procedures and time tables are presented

  19. Radiation protection planning for decommissioning of research reactor facilities

    International Nuclear Information System (INIS)

    Jackson, Roger; Harman, Neil; Craig, David; Fecitt, Lorna; Lobach, Yuri; Gorlinskij, Juri; Kolyadin, Vyacheslav; Pavlenko, Vytali

    2008-01-01

    The MR reactor at the Russian Research Centre Kurchatov Institute (RRCKI), Moscow was a 50 MW multipurpose material testing and research reactor equipped with nine experimental loop facilities to test prototype fuel for various nuclear power reactors being developed. The reactor was shut down in 1993 and de-fuelled. The experimental loops are located in basement rooms around the reactor. The nature of the research into the characteristics of fuel design and coolant chemistry resulted in fission products and activation products in the test loop equipment. Decommissioning of the loops therefore presents a number of challenges. In addition the city of Moscow has expanded such that the RRC KI is now surrounded by housing which had to be taken into account in the radiological protection planning. This paper describes the techniques proposed to undertake the dismantling operations in order to minimise the radiation exposure to workers and members of the public. Estimates have been made of the worker doses which could be incurred during the dismantling process and the environmental impacts which could occur. These are demonstrated to be as low as reasonably achievable. The work was funded by the UK Department of Business Enterprise and Regulatory Reform (DBERR) (formerly the Department of Trade and Industry) under the Nuclear Safety Programme (NSP) set up to address nuclear safety issues in the Former Soviet Union. (author)

  20. The possibility of creating a new low power nuclear facility with slightly enriched nuclear fuel on the basis of the decommissioned IRT-M reactor intended for applied purposes

    International Nuclear Information System (INIS)

    Abramidze, Sh.P.; Katamadze, N.M.; Kiknadze, G.G.; Rostomashvili, Z.I.; Saralidze, Z.K.

    2002-01-01

    Nearly 50 years have passed since the appearance of the first nuclear research reactors. Most of them have completed their operating life and must be dismantled. But it is known that the dismantling of permanently shut down nuclear reactors is a very complex process, full realization that it generates a lot of radioactive waste (both solid and liquid), it is connected with high financial expenditures, and its solution is apparently beyond the possibilities of many countries, including Georgia In the given paper we consider a radiologically safe, ecologically clean and economically beneficial version of the decommissioning of the IRT-M nuclear research reactor and the stages of its implementation that are not connected with the dismantling of its highly radioactive technological components. We justify the possibility of creating a new Low Power Nuclear Facility on the basis of the decommissioned IRT-M reactor to solve the problems of applied nature in different fields of science and technology being very important for Georgia. (author)

  1. Method of processing dismantled products of radiation-contaminated equipments and transportation container therefor

    International Nuclear Information System (INIS)

    Komura, Shiro; Heki, Hideaki.

    1991-01-01

    In a method of decontaminating dismantled products of radiation-contaminated equipments removed at nuclear power facilities and classifying the dismantled products depending on their remaining radioactivity levels measured at a processing facility, the dismantled products are contained in a transportation container, to which decontamination liquids are injected and they are transferred to the processing facility. The decontaminated liquid wastes are drained from the transportation container, the dismantled products are washed while being contained in the transportation container as they are. Then, they are transferred to a step for measuring their remaining radioactivity level. This can shorten the time from the containment of the dismantled products to the transportation container to the completion of the decontamination, to improve the efficiency for the decontamination processing. Further, by separately containing the dismantled products on every kind of materials to respective containers, the processing time can be appropriately controlled respectively even if the dissolving efficiency to the decontamination liquids is different depending on the materials. (T.M.)

  2. Nuclear reactors built, being built, or planned, 1988

    International Nuclear Information System (INIS)

    1989-08-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1988. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington Headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables. Section 2 includes nuclear reactors that are operating, being built, or planned. Section 3 includes reactors that have been shut down permanently or dismantled

  3. Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Owen, M.B.

    1997-04-01

    This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future.

  4. Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1

    International Nuclear Information System (INIS)

    Owen, M.B.

    1997-04-01

    This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future

  5. Parameters of Dismantling Techniques Related to Costs for Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon

    2012-01-01

    Reliable cost estimating is one of the most important elements of decommissioning operation. Reliable cost estimating is one of the most important elements of decommissioning planning. Alternative technologies may be evaluated and compared on their efficiency and effectiveness, and measured against a baseline cost as to the feasibility and benefit derived from the technology. This principle ensures that the cost consideration is economically sound and practical for funding. This paper provides a list with basic review of cutting and dismantling techniques, including some typical characteristics if available, as well as aspects of implementation, parameters of cutting and dismantling techniques in decommissioning costing. This paper gives an overview of the principles of the unit factor approach and its implementation in costing in relation to dismantling activities. In general, proper evaluation of decommissioning costs is important for following issues and relevant measures for achieving the listed aspects are: · Selection of a decommissioning strategy and activities: several decommissioning options should be evaluated: · Support to a cost-benefit analysis to ensure that the principle of optimization and reasonably practicable measures are applied: the extent of evaluated decommissioning options should cover all possible scenarios for dismantling activities; · Estimate of required financial resources for the selected strategy: the selected option should involve the dismantling activities in a structure and extent relevant to real procedure of dismantling activities; · Preparation of the project schedule, workforce requirements and phased funding needs: dismantling activities should be structured according to the tasks of the decommissioning schedule; · Definition of measures for proper management and maintenance of resources for safe and timely decommissioning: the time distribution and safety related parameters of dismantling activities should be known

  6. Level 3 decommissioning of Triton - Nereide research reactor

    International Nuclear Information System (INIS)

    Lopes, E.; Pillette-Cousin, L.

    2002-01-01

    The French Atomic Energy Commission Center located at Fontenay-Aux-Roses has launched an extensive programme of site cleanup and decommissioning of nuclear facilities. This programme includes the level 3 decommissioning of the Triton and Nereide piles. These pool type research reactors were constructed in the late 1950's, primarily for R and D activities related to neutron physics studies, radiological shielding experiments and radioelement production. As of 1982, a level 2 decommissioning was achieved and over the the last twenty years, no activities were carried out in the facility. During 2001, there has been extensive investigation work carried out to acquire a better knowledge of the radiological status of the facility, in order to set up dismantling scenarios and to reduce the volume of generated radioactive waste. Indeed, one of the first and main operations to be carried out for dismantling Triton and Nereide piles is waste zoning, by using the facility layout, operating conditions and history, as well as the present radiological inventory. The paper describes the investigations and studies carried out to implement waste zoning. The paper also describes the preliminary dismantling operations undertaken on equipment and studies conducted to optimize the dismantling and cleanup of the facility. Finally, the paper presents the outline of the preferred dismantling and decommissioning options and the progress of the work to date. (author)

  7. Nuclear reactor built, being built, or planned

    International Nuclear Information System (INIS)

    1991-06-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1990. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE, from the US Nuclear Regulatory Commission, from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations, from US and foreign embassies, and from foreign governmental nuclear departments. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly

  8. Decommissioning and dismantling of the reprocessing plant Karlsruhe

    International Nuclear Information System (INIS)

    Eiben, K.; Fritz, P.

    1995-01-01

    Reprocessing activities were discontinued in late 1990. The facility was drained and rinsed, and 80 m3 of HLWC have since been stored in special tanks, awaiting vitrification. Decommissioning work is scheduled to proceed in six phases. The reprocessing areas of the facility will be prepared for release from radiological control and dismantled in the first phase. The remaining facilities can be deregulated, and storage tanks dismantled, only after termination of phase 1. The goal of the following phase is clearance from radiological control of all controlled areas, and the last phase is to cover dismantling of all buildings and restoration of a green field site. The overall costs of these activities are estimated to amount to DM 1.657 million. The article explains the contents of the first permits for decommissioning as well as the documents prepared for planning of work and licence application. (orig./HP) [de

  9. Underwater-manipulation system for measuring- and cutting tasks in dismantling decommissioned nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Stegemann, D.; Reimche, W.; Hansch, M.; Spitzer, M.

    1995-01-01

    Not only manipulators are necessary for dismantling and inspection of structure parts in decomissioned nuclear facilities, but flexible underwater-vehicles. Free-diving underwater-vehicles for inspection and dismantling tasks are still not developed and tested. Aim of the project is the development of sensors and devices for the position determination and the depth regulation. For inspection tasks an ultrasonic measurement and dosimeter device shall be built up. A measurement device has been developed which evaluates the ultrasonic time of flight from a transmitter at the vehicle to several receivers, installed in the reactor pressure vessel. The depth regulation is based on a pressure sensor and the direct control of the thrusters. The ultrasonic measurements are realized by an adapted ultrasonic card, the γ-dosimetry with an ionization chamber and a pA-amplifier. An acoustic orientation system was built up, which measures very accurately with one transmitter mounted on the vehicle and four receivers. Problem occur by reflection from the walls of the basin. The depth regulation is working faultless. The ultrasonic device is preferably used for distance measurement. The radiation measurement device was tested and mounted in the vehicle. (orig./HP) [de

  10. Waste from decommissioning of research reactors and other small nuclear facilities

    International Nuclear Information System (INIS)

    Massaut, V.

    2001-01-01

    Full text: Small nuclear facilities were often built for research or pilot purposes. It includes the research reactors of various types and various aims (physics research, nuclear research, nuclear weapons development, materials testing reactor, isotope production, pilot plant, etc.) as well as laboratories, hot cells and accelerators used for a broad spectrum of research or production purposes. These installations are characterized not only by their size (reduced footprint) but also, and even mostly, by the very diversified type of materials, products and isotopes handled within these facilities. This large variety can sometimes enhance the difficulties encountered for the dismantling of such facilities. The presence of materials like beryllium, graphite, lead, PCBs, sodium, sometimes in relatively large quantities, are also challenges to be faced by the dismantlers of such facilities, because these types of waste are either toxic or no solutions are readily available for their conditioning or long term disposal. The paper will review what is currently done in different small nuclear facilities, and what are the remaining problems and challenges for future dismantling and waste management. The question of whether Research and Development for waste handling methods and processes is needed is still pending. Even for the dismantling operation itself, important improvements can be brought in the fields of characterization, decontamination, remote handling, etc. by further developments and innovative systems. The way of funding such facilities decommissioning will be reviewed as well as the very difficult cost estimation for such facilities, often one-of-a-kind. The aspects of radioprotection optimization (ALARA principle) and classical operators safety will also be highlighted, as well as the potential solutions or improvements. In fact, small nuclear facilities encounter often, when dismantling, the same problems as the large nuclear power plants, but have in

  11. Provisions for the dismantling of nuclear facilities are sufficient

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2016-01-01

    The European Union has assessed the provisions made by the nuclear plant operators to face the future costs of dismantling. The United-Kingdom and the Netherlands are the single E.U. members to have provisions covering the whole of the expenses (respectively 100% and 94%). The figure for France is very low 33% (far below the European average of 56%). According to French authorities the provisions for the dismantling of nuclear facilities are strictly defined by law: they must be made progressively till the decommissioning and they must be composed by dedicated assets. The costs of the dismantling is regularly re-assessed for taking into account technological progress and changes in regulation. Furthermore the French system limits the period in which provisions are made to the initial operating life of the plant: mostly 40 years which is a prudent measure. In other E.U. members like Germany, the provisions are not covered by dedicated assets which might endanger the capacity of the operator to face the future costs. The progressiveness of the French systems of provision-making is fair because the dismantling costs are spread equally over the entire operating period of the facility. (A.C.)

  12. Set-up of polarographic analytical methods in the framework of nuclear reactor dismantling en of the decontamination of metallic pieces

    International Nuclear Information System (INIS)

    Poirier, S.; Rahier, A.

    1996-06-01

    Differential pulse polarography has been used to measure several chemical species, relevant to the dismantling and the decontamination of a nuclear power reactor. First, a method which allows the determination of low concentrations of Co in stainless steels has been studied. Co 3+ is reduced in the presence of ethylenediamine at pH 7.5 at -0.47 V vs Ag/AgCl sat. A preliminary extraction of iron (and partially chromium) in diethylether is required. Interferences with iron and nickel have been completely eliminated without using any precipitation technique. Some complications may result from the precipitation of residual Cr 3+ in the presence of EDA, even when fluorides are added. Next, the measurements of the main components of steels have been carried out successfully. The reduction of CrO 4 2- is observed at -0.46 V vs Ag/AgCl sat. in a medium containing 0.1 M KOH, 0.5 M citric acid and 1 M NH 3 . Adding dimethylglyoxime in the same medium allows to identify the reduction to Fe 2+ and Ni 2+ respectively at -1.65 and -1.13 V vs Ag/AgCl sat. Finally, the reduction to Cr 3+ is observed at -1.2 V vs Ag/AgCl sat. in an acetic buffer containing 0.1 M EDTA

  13. Evaluation methodology of a manipulator actuator for the dismantling process during nuclear decommissioning

    International Nuclear Information System (INIS)

    Park, Jongwon; Kim, Chang-Hoi; Jeong, Kyung-min; Choi, Byung-Seon; Moon, Jeikwon

    2016-01-01

    Highlights: • A methodology to evaluate actuators of a dismantling manipulator. • Evaluation criteria for choosing the most suitable actuator type. • A mathematical evaluation model for evaluation. • The evaluation method is expected to be used for determining other manipulators. - Abstract: This paper presents a methodology to evaluate actuators of a manipulator for dismantling nuclear power plants. Actuators are the most dominant components because a dismantling manipulator relies heavily on the actuator type used. To select the most suitable actuator, evaluation criteria are presented in four categories based on the nuclear dismantling environment. A mathematical model is presented and evaluation results are calculated with weights and scores for each criterion. The proposed evaluation method is expected to be used for determining other aspects of the design of dismantling manipulators.

  14. Longtime radionuclide monitoring in the vicinity of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    Riekstina, D.; Berzins, J.; Krasta, T.; Skrypnik, O.; Alksnis, J.

    2016-01-01

    The research nuclear reactor in Salaspils was decommissioned in 1998. Now reactor is partially dismantled and its territory is used as a temporary storage of radioactivity contaminated materials and water. Environment radioactivity monitoring for presence of artificial radionuclides in the vicinity of Salaspils nuclear reactor is carried out since 1990. Data include Cs-137 concentration in soils, tritium concentration in ground water, as well as H-3, Cs-137, Co-60 concentration and gross beta-activity of reactors sewage and rainwater drainage. The systematic monitoring allowed to detect in December 2014 a leakage from the special wastewater basin and so to prevent a pollution of ground water outside reactors territory.

  15. Processing of LLW arising from dismantling activities in a reprocessing facility

    International Nuclear Information System (INIS)

    Geens, L.G.; Geens, L.P.; Vandeven, I.

    1990-01-01

    The Eurochemic reprocessing facility, at the Mol-Dessel site in Belgium was in active operation from July 1966 until January 1975. In total, about 210 Mg of various types of irradiated nuclear fuels were processed. After the shut-down the plant has been partially decontaminated in view of recommissioning. When the recommissioning option was abandoned, the decision was taken in 1986 to dismantle the plant. A 2 years study resulted in the start of a pilot project: the dismantling of two smaller buildings, previously used for storage of uranyl nitrate and used solvent. The minimization of radioactive waste generation was also one of the major goals of this project. The report deals with the different steps in the minimization of radioactive waste generation during the dismantling activities. First, an estimation of the amounts of radioactive waste, expected to be generated, was made. In a second step the actual waste production during dismantling operations was minimized and compared with the estimations. Finally, a large part of the primary radioactive dismantling waste has been completely decontaminated, resulting in much lower amounts of nuclear waste generated. 2 refs., 3 figs., 2 tabs

  16. Lessons learned. Optimization of the plant structure at the beginning of the dismantling process

    International Nuclear Information System (INIS)

    Sesterhenn, Kurt

    2008-01-01

    The processes of shutdown and dismantling of the NPP Muehlheim-Kaerlich included several steps: conservation operation including fuel element removal, decontamination and radiological characterization, conservation of components that may still be used, removal and disposal of operating supply items, preparation of concepts for the dismantling process and realization of dismantling. The authors describe in detail the safety concept, the waste tracking program, the operational organization and reduction of area subject to radiological surveillance during the dismantling and renaturation project.

  17. Dismantling and decontamination of the PIVER prototype vitrification facility

    International Nuclear Information System (INIS)

    Jouan, A.

    1989-01-01

    The PIVER facility was dismantled for replacement by a new continuous pilot plant. The more important operation concerns the vitrification cell, containing equipments of the process, for complete disposal and maximum decontamination, requiring dismantling, cutting, conditioning and removal of equipment inside the cell. Manipulators, handling and cutting tools were used. Activity of removed material and irradiation of personal are followed during the work for matching intervention means to operation conditions [fr

  18. The brief introduction to decommissioning of nuclear reactor projects

    International Nuclear Information System (INIS)

    Zhao Shixin

    1991-01-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste

  19. The brief introduction to decommissioning of nuclear reactor projects

    Energy Technology Data Exchange (ETDEWEB)

    Shixin, Zhao [Beijing Inst. of Nuclear Engineering (China)

    1991-08-01

    The basic concept and procedure of the decommissioning of nuclear reactor project and the three stages of decommissioning defined by IAEA are introduced. The main work of decommissioning of nuclear reactor are as following: (1) the documentary and technological preparation; (2) the site preparation of decommissioning project; (3) the dismantling of equipment piping system and components; (4) the decontamination of the piping system before and after decomminssioning; (5) the storage and disposal of the operational and decommissioning waste.

  20. Calculation of induced activity in the V-230 reactor

    International Nuclear Information System (INIS)

    Bouhahhane, A.; Farkas, G.

    2013-01-01

    In this paper, we focused on the calculation of the neutron induced activity of nuclear reactor components for decommissioning purposes. The results confirm, that the most important radionuclides in the reactor components dismantling process are 55 Fe (1 st decade), 60 Co (10 - 50 y) and 63 Ni (during the whole process). Another aim of this paper was to refer to the possibility to improve the accuracy of the calculations using continuous energy Monte Carlo methods. (authors)

  1. Decommissioning a nuclear reactor

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs

  2. Enhanced productivity in reactor decommissioning and waste management

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2014-01-01

    As for any industrial facility, the service live of nuclear power plants, fuel cycle facilities, research and test reactors ends. Decision for decommissioning such facilities may be motivated by technical, economical or political reasons or a combination of it. As of today, a considerable number of research reactors, fuel cycle facilities and power reactors have been completely decommissioned. However, the end point of such facilities' lifetime is achieved, when the facility is finally removed from regulatory control and the site becomes available for further economical utilization. This process is commonly known as decommissioning and involves detailed planning of all related activities, radiological characterization, dismantling, decontamination, clean-up of the site including treatment and packaging of radioactive and/or contaminated material not released for unrestricted recycling or industrial disposal. Decommissioning requires adequate funding and suitable measures to ensure safety while addressing stakeholders' requirements on occupational health, environment, economy, human resources management and the socioeconomic effects to the community and the region. One important aspect in successful management of decommissioning projects and dismantling operation relates to the economical impact of the endeavor, primarily depending on the selected strategy and, as from commencement of dismantling, on total duration until the end point is achieved. Experience gained by Areva in executing numerous decommissioning projects during past 2 decades shows that time injury free execution and optimum productivity turns out crucial to project cost. Areva develops and implements specific 'performance improvement plans' for each of its projects which follow the philosophy of operational excellence based on Lean Manufacturing principles. Means and methods applied in implementation of these plans and improvements achieved are described and examples are given on the way Areva

  3. Enhanced productivity in reactor decommissioning and waste management

    Energy Technology Data Exchange (ETDEWEB)

    Wasinger, Karl [Areva GmbH, Offenbach (Germany)

    2014-04-15

    As for any industrial facility, the service live of nuclear power plants, fuel cycle facilities, research and test reactors ends. Decision for decommissioning such facilities may be motivated by technical, economical or political reasons or a combination of it. As of today, a considerable number of research reactors, fuel cycle facilities and power reactors have been completely decommissioned. However, the end point of such facilities' lifetime is achieved, when the facility is finally removed from regulatory control and the site becomes available for further economical utilization. This process is commonly known as decommissioning and involves detailed planning of all related activities, radiological characterization, dismantling, decontamination, clean-up of the site including treatment and packaging of radioactive and/or contaminated material not released for unrestricted recycling or industrial disposal. Decommissioning requires adequate funding and suitable measures to ensure safety while addressing stakeholders' requirements on occupational health, environment, economy, human resources management and the socioeconomic effects to the community and the region. One important aspect in successful management of decommissioning projects and dismantling operation relates to the economical impact of the endeavor, primarily depending on the selected strategy and, as from commencement of dismantling, on total duration until the end point is achieved. Experience gained by Areva in executing numerous decommissioning projects during past 2 decades shows that time injury free execution and optimum productivity turns out crucial to project cost. Areva develops and implements specific 'performance improvement plans' for each of its projects which follow the philosophy of operational excellence based on Lean Manufacturing principles. Means and methods applied in implementation of these plans and improvements achieved are described and examples are given on

  4. Behavior of generated aerosols in decommissioning of reactor

    International Nuclear Information System (INIS)

    Tomii, H.; Nakamura, K.

    1999-01-01

    Generated aerosols in dismantling of the JPDR were investigated for making an estimation of air contamination. The maximum dose equivalent rate at the surface of each reactor component was 9.4 Sv/h for core shroud, 80 mSv/h for pressure vessel, 2.0 mSv/h for biological shield, respectively. An under-water cutting method with remote handling plasma torch was used for dismantling of the core shroud and the pressure vessel. The biological shield was dismantled by an in-air cutting method and a controlled blasting method. Pipes connected to recirculation system were dismounted by a conventional mechanical and thermal cutting machine in the air. Generated radioactive aerosols were collected in the exhaust air of green house which enclosed the upper part of the reactor room to control the air contamination. An Andersen sampler was used for the measurement of particle distribution in the aerosols. Most of the particle size was below 0.1 μm in the under-water cutting method. The particle size distribution in the in-air cutting method, however, was divided into two parts at 0.1 μm and 0.3 μm. Dispersion rate of aerosol into the atmosphere was decreased exponentially with the depth of water. The dispersion rate and the size distribution of aerosol generated during cutting of the stainless steel pipes and blasting of the biological shield are also reported in the paper. (Suetake, M.)

  5. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  6. Decree no. 96-978 from October 31, 1996 giving permission to the French atomic energy Commission (CEA) to create a basic nuclear installation intended to maintain under supervision and in an intermediate dismantling state the old basic nuclear installation no. 28, named Monts d'Arree-EL 4 nuclear power plant (a decommissioned reactor), in the Monts d'Arree site of the Loqueffret town (Finistere, Brittany)

    International Nuclear Information System (INIS)

    Borotra, F.; Lepage, C.

    1996-01-01

    This decree from the French ministry of industry and postal services gives permission to the CEA to create a new basic nuclear installation, named EL 4D, which is devoted to the storage of materials from the partially dismantled Monts d'Arree EL 4 reactor. Thus, the CEA is allowed to carry out confining works on the reactor building with the closure of all apertures with the exception of the personnel entry sieve, on the circuits and equipments of the reactor vessel with the plugging of fuel channels, heavy water, helium and demineralized water pipes and of the heads of control rod drive mechanisms and other channels, and on the primary coolant circuit outside the reactor vessel and the steam generators with the installation of welded hatches. The irradiated fuels building, the solid wastes repository, the ventilation building, the heavy water and helium circuits, the fuel handling systems and the effluents treatment plant will be completely dismantled. The other buildings will be pulled down. The rest of the decree enumerates the general technical and safety prescriptions which have to be followed in order to ensure the protection of the personnel against ionizing radiations and of the environment against radioactive pollution. (J.S.)

  7. REUSE OF AUTOMOTIVE COMPONENTS FROM DISMANTLED END OF LIFE VEHICLES

    Directory of Open Access Journals (Sweden)

    Piotr NOWAKOWSKI

    2013-12-01

    Full Text Available The problem of recycling end of life automotive vehicles is serious worldwide. It is one of the most important streams of waste in developed countries. It has big importance as recycling potential of raw materials content in automotive vehicles is valuable. Different parts and assemblies after dismantling can also be reused in vehicles where replacement of specific component is necessary. Reuse of the components should be taken into consideration in selecting the vehicles dismantling strategy. It also complies with European Union policy concerning end of life vehicles (ELV. In the paper it is presented systematic approach to dismantling strategies including disassembly oriented on further reuse of components. It is focused on decision making and possible benefits calculation from economic and environmental point of view.

  8. Mock-up test of remote controlled dismantling apparatus for large-sized vessels (contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Myodo, Masato; Miyajima, Kazutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Okane, Shogo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-03-01

    The Remote dismantling apparatus, which is equipped with multi-units for functioning of washing, cutting, collection of cut pieces and so on, has been constructed to dismantle the large-sized vessels in the JAERI's Reprocessing Test Facility (JRTF). The apparatus has five-axis movement capability and its operation is performed remotely. The mock-up tests were performed to evaluate the applicability of the apparatus to actual dismantling activities by using the mock-ups of LV-3 and LV-5 in the facility. It was confirmed that each unit was satisfactory functioned by remote operation. Efficient procedures for dismantling the large-sized vessel was studied and various date was obtained in the mock-up tests. This apparatus was found to be applicable for the actual dismantling activity in JRTF. (author)

  9. Mock-up test of remote controlled dismantling apparatus for large-sized vessels (contract research)

    International Nuclear Information System (INIS)

    Myodo, Masato; Miyajima, Kazutoshi; Okane, Shogo

    2001-03-01

    The Remote dismantling apparatus, which is equipped with multi-units for functioning of washing, cutting, collection of cut pieces and so on, has been constructed to dismantle the large-sized vessels in the JAERI's Reprocessing Test Facility (JRTF). The apparatus has five-axis movement capability and its operation is performed remotely. The mock-up tests were performed to evaluate the applicability of the apparatus to actual dismantling activities by using the mock-ups of LV-3 and LV-5 in the facility. It was confirmed that each unit was satisfactory functioned by remote operation. Efficient procedures for dismantling the large-sized vessel was studied and various date was obtained in the mock-up tests. This apparatus was found to be applicable for the actual dismantling activity in JRTF. (author)

  10. Development of an augmented reality based simulation system for cooperative plant dismantling work

    International Nuclear Information System (INIS)

    Ishii, Hirotake; Man, Zhiyuan; Yan, Weida; Shimoda, Hiroshi; Izumi, Masanori

    2015-01-01

    An augmented reality-based simulation system for cooperative plant dismantling work has been developed and evaluated. In the system, behaviors of virtual objects such as the dismantling target, chain blocks, and trolleys are physically simulated. Their appearance is superimposed on camera images captured with cameras on users' tablet devices. The users can manipulate virtual objects cooperatively via touch operation. They can cut the dismantling targets, lift them on the trolleys using chain blocks, and convey them through narrow passages to ascertain whether the dismantling targets can be conducted without colliding with the passages. During the simulation, collisions between the virtual objects and real work environment are detected based on their three-dimensional shape data measured in advance. The collided parts are visualized using augmented reality superimposition. Four evaluators assessed the simulation system. Results show that the simulation system can be useful for prior examination of dismantling works, but some points were also found to need improvement. (author)

  11. NucLab Marcoule. A laboratory facility dedicated to support dismantling operations

    International Nuclear Information System (INIS)

    Dugne, O.; Houssin, A.; Pierre, D.; Bec-Espitalier, L.

    2013-06-01

    Formerly dedicated to plutonium production support, NucLab was renovated to perform a wide range of analyses for dismantling, plant operation and process development activities mainly on Marcoule site but also outside (Veurey, Fontenay aux Roses). The Laboratory is under a CEA AREVA partnership as a CEA entity operated by AREVA employees. It provides services to several industrial operators (nuclear process and power plant) in the fields of analytical chemistry, radioactivity measurements, in situ nuclear measurements, decontamination processes and industrial chemistry processes, waste treatments to meet the following analysis requirements. NucLab today is able to support research, production and dismantling activities in all part of dismantling operations. (authors)

  12. Decontamination and dismantling of large plutonium-contamined glove boxes

    International Nuclear Information System (INIS)

    Draulans, J.

    1991-01-01

    This report describes the work performed in the frame of two C.E.C. - Contracts FI1D-002400-B Decommissioning of very large glove boxes and FI1D-0058 Decommissioning of a complex glove box structure to be dismounted partially on place. Detailed information is given about each glove box. The selection of the solution Transportation of the glove boxes to a specialized dismantling plant is justified. The necessary contacts inside the BELGONUCLEAIRE MOX plant and between the latter and other organizations are explained. The problems of manipulating large gloves are listed and the retained solution of building a so called Stiffening frame around each glove box is described. Furthermore information is given concerning required operators time for cleaning, manipulating, packing and dismantling together with received doses and quantities of waste produced. Concerning the glove box unit partially to be dismounted on place, detailed information is given about the way the glove boxes have been treated prior to this partial dismantling on place and about the way this partial dismantling has been performed. From these results one can conclude that such a delicate task can be performed without major difficulties. Finally information is given of the decontamination test of a highly Pu contaminated glove box with freon with rather poor results and of the preliminary CO 2 blasting tests on non active samples

  13. Research reactor decommissioning experience - concrete removal and disposal -

    International Nuclear Information System (INIS)

    Manning, Mark R.; Gardner, Frederick W.

    1990-01-01

    Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limits for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations

  14. Waste management concept during dismantling of KKS NPP in Germany

    International Nuclear Information System (INIS)

    Bacmeister, Georg U.

    2008-01-01

    Full text: This paper gives an overview on the waste management of NPP Stade during dismantling. The general idea is to reduce the radioactive waste to about three percentage of the complete dismantling mass. The NPP Stade in Germany was shut down in November 2003. After a transient phase the license for dismantling was given in 2005. In the following 8 years about 20.000 tones of steel and 120.000 tones of concrete will be put out by the dismantling. The yearly output of steel will by about 100 times higher than during the running time of the NNP. For this a new processes for waste management had to be installed. The waste management during dismantling focus on free release (about 97%). Beside some minor exception, the rest is deemed to be radioactive waste. This will be collected in 1000 packages, which are ready to be sent to a final storage. As until now in Germany no final storage is open (and sending of radioactive waste to another country is forbidden), the NNP Stade build an intermediate storage, where the packages may by saved for longest 40 years. The clearance procedure in Germany is regulated in the radiation protection ordinances. It is based on a nuclide specific set of clearance levels. To fulfil these demands the NNP Stade chose a semi automated system for characterization and documentation, which we develop in accordance to our release license. It guaranties a most accurate determination of the relevant nuclides for a set of dismantling material (some 10 to 100 tones). After the characterization only the gamma-activity of the material is measured in boxes of about 500 kg. A short comparison of the chosen procedure with other options, possible in Germany will be given and the decision from the collaboration with the NPP in Barsebaeck, Sweden, will be withdrawn. Beside the free release different options are used for waste management, like incineration, sending to landfill or reuse in nuclear industry. The waste management of the NNP Stade take

  15. Dismantling of the 904 Cell at the HAO/Sud Facility - 13466

    Energy Technology Data Exchange (ETDEWEB)

    Vaudey, C.E.; Crosnier, S. [AREVA Clean-Up BU, 1 route de la Noue 91196 - Gif-sur-Yvette (France); Renouf, M.; Gaspard, N. [AREVA Clean-Up BU, Site de La Hague - BV 35 - 50444 Beaumont Hague (France); Pinot, L. [AREVA D and D BU, Site de La Hague - 50444 Beaumont Hague (France)

    2013-07-01

    La Hague facility, in France, is the spent fuel recycling plant wherein a part of the fuel coming from some of the French, German, Belgian, Swiss, Dutch and Japanese nuclear reactors is reprocessed before being recycled in order to separate certain radioactive elements. The facility has been successively handled by the CEA (1962-1978), Cogema (1978-2006), and AREVA NC (since 2006). La Hague facility is composed of 3 production units: The UP2-400 production unit started to be operated in 1966 for the reprocessing of UNGG metal fuel. In 1976, following the dropout of the graphite-gas technology by EDF, an HAO workshop to reprocess the fuel from the light water reactors is affiliated and then stopped in 2003. - UP2-400 is partially stopped in 2002 and then definitely the 1 January 2004 and is being dismantled - UP2-800, with the same capacity than UP3, started to be operated in 1994 and is still in operation. And UP3 - UP3 was implemented in 1990 with an annual reprocessing capacity of 800 tons of fuel and is still in operation The combined licensed capacity of UP2-800 and UP3 is 1,700 tons of used fuel. (authors)

  16. The further development and evaluation of an automatic dismantler of short staple ring-spun yarns

    CSIR Research Space (South Africa)

    Fassihi, A

    2014-07-01

    Full Text Available Information System (AFIS) single fiber length tests, the fibers from automatically dismantled ring-spun cotton yarns are very similar in their properties to those dismantled by hand (manually). It was also found that, at a speed of 2 m/min, the yarn dismantler...

  17. Disposal of fissionable material from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The reduction in tensions between the United States and the Soviet Union has improved the prospects for nuclear disarmament, making it more likely that significant numbers of nuclear warheads will be dismantled by the United States and USSR in the foreseeable future. Thus, the question becomes more urgent as to the disposition of the weapons materials, highly enriched uranium and plutonium. It is timely, therefore, to develop specific plans for such disposal. The overall process for disposal of weapons materials by the burnup option involves the following steps: (1) removing the weapons material from the warheads, (2) converting the material to a fuel form suitable for power reactors, (3) burning it up as a power reactor fuel, and (4) removing the spent fuel and placing it in a permanent repository. This paper examines these four steps with the purpose of answering the following questions. What facilities would be appropriate for the disposal process? Do they need to be dedicated facilities, or could industrial facilities be used? What is the present projection of the economics of the burnup process, both the capital investment and the operating costs? How does one assure that fissionable materials will not be diverted to military use during the disposal process? Is the spent fuel remaining from the burnup process proliferation resistant? Would the disposal of spent fuel add an additional burden to the spent fuel permanent repository? The suggested answers are those of the author and do not represent a position by the Electric Power Research Institute

  18. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  19. The dismantling of nuclear power plants which are not in use

    International Nuclear Information System (INIS)

    Tanguy, P.

    1987-01-01

    At the end of its life span, a nuclear power plant contains big quantities of radioactive products. The corresponding risks must be controlled and over the long range, all radioactivity must be definitively removed. The latter operation is called dismantling. In France, at the beginning of 1987, five nuclear units which were permanently put out of use have to be dismantled. These units are presented in this article. From this presentation, it can be seen that there are now techniques which provide for complete control of the risks corresponding to radioactivity. However, in France, as in the rest of the world, the dismantling of nuclear plants will not attain its full industrial level until the 21st Century. The problems which have to be solved are known, but better performing technologies have to be developed in order to obtain a superior protection of dismantling work crews and a reduction of costs. This article concludes with an appeal for high French interest in international activities in this field [fr

  20. Consideration of dismantling operations in the design

    International Nuclear Information System (INIS)

    Dubourg; Bonin.

    1984-12-01

    This analysis shows that the parameters and the constraints taken into account at the design level to facilitate the exploitation and the maintenance make the dismantling and its preparation easier [fr

  1. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options

    International Nuclear Information System (INIS)

    Meyer, Bettina

    2012-01-01

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  2. Experience with Dismantling of the Analytic Cell in the JRTF Decommissioning Program

    International Nuclear Information System (INIS)

    Annoh, Akio; Nemoto, Koichi; Tajiri, Hideo; Saito, Keiichiro; Miyajima, Kazutoshi; Myodo, Masato

    2003-01-01

    The analytic cell was mainly used for process control analysis of the reprocessing process and for the measurement of fuel burn up ratio in JAERI's Reprocessing Test Facility (JRTF). The analytic cell was a heavy shielded one and equipped with a conveyor. The cell was alpha and beta(gamma)contaminated. For dismantling of analytic cells, it is very important to establish a method to remove the heavy shield safely and reduce the exposure. At first, a green house was set up to prevent the spread out of contamination, and next, the analytic cell was dismantled. Depending on the contamination condition, the workers wore protective suits such as air ventilated-suits for prevention of internal exposure and vinyl chloride aprons, lead aprons in order to reduce external exposure. From the work carried out, various data such as needed manpower for the activities, the collective dose of workers by external exposure, the amount of radioactive wastes and the relation between the weight of the shield and its dismantling efficiency were obtained and input for the database. The method of dismantling and the experience with the dismantling of the analytic cell in the JRTF, carried out during 2001 and 2002, are described in this paper

  3. Public inquiry related to the request by EDF of a definitive stopping and complete dismantling of the hardware storage installation of the Monts d'Arree nuclear power plant (INB n.162). Opinion and conclusions of the inquiry commission

    International Nuclear Information System (INIS)

    2010-03-01

    After a recall of the project of stopping and dismantling of the hardware storage installation (INB n.162) which had been created after the stopping and dismantling of the Monts d'Arree heavy water nuclear reactor (INB n.28), this report analyzes the results of the public inquiry, and highlights the arguments of those in favour of this project and those opposed to it. Then, it states the Inquiry Commission's opinion which addresses the request for a national public debate, the project justification, the inquiry file, the site radiological status, the site radiological control during works, the impacts of dismantling, the various risks (for the population and the workers, in terms of fire risks), the issue of radioactive wastes, economic aspects (costs, jobs, local economy, tourism and site image), and site reconversion

  4. Nuclear reactors built, being built, or planned 1993

    International Nuclear Information System (INIS)

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly

  5. Technology development and demonstration for TRIGA research reactor decontamination, decommissioning and site restoration

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Ki Jung; Lee, Byung Jik

    1997-01-01

    This paper describes the introduction to research reactor decommissioning plan at KAERI, the background of technology development and demonstration, and the current status of the system decontamination technology for TRIGA reactors, concrete decontamination and dust treatment technologies, wall ranging robot and graphic simulation of dismantling processes, soil decontamination and restoration technology, recycling or reuse technologies for radioactive metallic wastes, and incineration technology demonstration for combustible wastes. 9 figs

  6. Nuclear reactors built, being built, or planned 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

  7. Nuclear reactors built, being built, or planned: 1996

    International Nuclear Information System (INIS)

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled

  8. Disposition of excess weapons plutonium from dismantled weapons

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1997-01-01

    With the end of the Cold War and the implementation of various nuclear arms reduction agreements, US and Russia have been actively dismantling tens of thousands of nuclear weapons. As a result,large quantities of fissile materials, including more than 100 (tonnes?) of weapons-grade Pu, have become excess to both countries' military needs. To meet nonproliferation goals and to ensure the irreversibility of nuclear arms reductions, this excess weapons Pu must be placed in secure storage and then, in timely manner, either used in nuclear reactors as fuel or discarded in geologic repositories as solid waste. This disposition in US and Russia must be accomplished in a safe, secure manner and as quickly as practical. Storage of this Pu is a prerequisite to any disposition process, but the length of storage time is unknown. Whether by use as fuel or discard as solid waste, disposition of that amount of Pu will require decades--and perhaps longer, if disposition operations encounter delays. Neither US nor Russia believes that long-term secure storage is a substitute for timely disposition of excess Pu, but long-term, safe, secure storage is a critical element of all excess Pu disposition activities

  9. Nuclear reactors built, being built, or planned, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  10. Nuclear reactors built, being built, or planned, 1991

    International Nuclear Information System (INIS)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)

  11. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    International Nuclear Information System (INIS)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-01-01

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors

  12. Identification and evaluation of factors influencing the timing of dismantling projects; Identifizierung und Bewertung von Einflussfaktoren zur Terminsteuerung bei Rueckbauprojekten

    Energy Technology Data Exchange (ETDEWEB)

    Emami-Far, Hedjeh [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Abt. Technologie und Management des Rueckbaus Kerntechnischer Anlagen (TMRK)

    2013-07-01

    The problem of reactor dismantling projects is the amount of overshooting with respect to the planned project time. The question on the origin of this fact is raised together with the possibility of an early problem identification and possible counter measures to fulfill the timing plan. The main issues for the interrogation of personnel, specialists and operators were organization, competence preservation and technology concerning conditioning, storage/disposal and licensing procedures. The contribution includes details on the questions and the evaluation of answers including recommendations for the future approach.

  13. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  14. Safety in the Utilization and Modification of Research Reactors. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    This Safety Guide is a revision of Safety Series No. 35-G2 on safety in the utilization and modification of research reactors. It provides recommendations on meeting the requirements for the categorization, safety assessment and approval of research reactor experiments and modification projects. Specific safety considerations in different phases of utilization and modification projects are covered, including the pre-implementation, implementation and post-implementation phases. Guidance is also provided on the operational safety of experiments, including in the handling, dismantling, post-irradiation examination and disposal of experimental devices. Examples of the application of the safety categorization process for experiments and modification projects and of the content of the safety analysis report for an experiment are also provided. Contents: 1. Introduction; 2. Management system for the utilization and modification of a research reactor; 3. Categorization, safety assessment and approval of an experiment or modification; 4. Safety considerations for the design of an experiment or modification; 5. Pre-implementation phase of a modification or utilization project; 6. Implementation phase of a modification or utilization project; 7. Post-implementation phase of a utilization or modification project; 8. Operational safety of experiments at a research reactor; 9. Safety considerations in the handling, dismantling, post-irradiation examination and disposal of experimental devices; 10. Safety aspects of out-of-reactor-core installations; Annex I: Example of a checklist for the categorization of an experiment or modification at a research reactor; Annex II: Example of the content of the safety analysis report for an experiment at a research reactor; Annex III: Examples of reasons for a modification at a research reactor.

  15. Progress of the decommissioning process of Musashi Institute of Technology reactor (4)

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Tanzawa, Tomio; Mitsuhashi, Ishi; Morishima, Kayoko; Matsumoto, Tetsuo

    2012-01-01

    The research reactor of Tokyo City University Atomic Energy Research Laboratory (Musashi Institute of Technology reactor) is zirconium-moderated water-cooled solid homogeneous type (TRIGA-II type), and its maximum heat output is 100 kW. It got into the first critical state in January 1963, and since then, it has mainly contributed to education and training for upgrading nuclear engineers, radioactivation analysis and reactor physics, and medical researches, as the joint usage research facilities across Japan. Then, after a long-term suspension, the university submitted the file in 2004 to the Ministry of Education, Culture, Sports, Science and Technology on the dismantling for the purpose of facility abolishment. Through the procedure of submitting a decommissioning plan, it was approved. Furthermore, in order to perform the function stop of the disposal facilities of liquid waste, application for change authorization for the decommissioning plan was submitted and approved. Regarding the progress of the decommissioning plan, the dismantling and removal of waste facilities for liquid waste and solid waste was carried out in FY2011 without any trouble. This paper explains this progress and future work plans. (A.O.)

  16. Dismantling of a furnace and gloveboxes of a U{sub 3}O{sub 8} with 20% enrichment production line; Desmantelamiento de un horno y cajas de guantes de una linea de produccion de U{sub 3}O{sub 8} enriquecido al 20%

    Energy Technology Data Exchange (ETDEWEB)

    Yorio, Daniel; Cinat, Enrique; Cincotta, Daniel; Fernandez, Carlos A; Bruno, Hernan R; Camacho, Esteban F; Boero, Norma [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Combustibles Nucleares

    1999-07-01

    In the Uranium Powder Manufacturing Plant at CAC, U{sub 3}O{sub 8} with 20% enrichment is manufactured for fuel plates to be used in test reactors. This plant is in full operation since 1986, producing uranium oxide for Peru, Algeria, Iran, Egypt and the RA-3-CAE reactors. Some of the equipment of the Plant have finished their life time and one of the furnaces of the processing line had to be replaced. This work implied the dismantling not only of the furnace, but also of the gloveboxes connected to the furnace and the dismantling of the extraction lines and air injection of the gloveboxes. The work had to be performed with the necessary care in order to minimize risks and effects on personnel, installations and environment involved. (author)

  17. Radiation protection aspects of dismantling and decommissioning of Uranium Mining of Andujar (Spain)

    International Nuclear Information System (INIS)

    Ortiz Ramis, M.T.; Garcia-Bermejo Fernandez, R.; Martin Palomo, N.

    1995-01-01

    This study analyzes the radiation protection aspects during the decommissioning and dismantling of uranium mining in Andujar (Spain). The application during dismantling's mining, the transfer factor of natural radioactive isotopes and the application during the sterile movements are presented

  18. Decommissioning and re-utilization of the Musashi Reactor

    International Nuclear Information System (INIS)

    Tomio Tanzawa; Nobukazu Iijima; Norikazu Horiuchi; Tadashi Yoshida; Tetsuo Matsumoto; Naoto Hagura; Ryouhei Kamiya

    2008-01-01

    The Musashi Institute of Technology Research Reactor (the Musashi Reactor) is a TRIGA-? with maximum thermal power of 100 kW. The decommissioning was decided in May, 2003. The reactor facility is now under decommissioning. The phased decommissioning was selected. Phase 1 consists of permanent shutdown of the reactor and stopping the operational functions, and transportation of the spent nuclear fuels. After completion of the transportation, the reactor facility is characterized as the storage of low level radioactive materials. This is phase 2. Activities of phase 1 were completed and the facility is now under phase 2. Activities of phase 3 consist of dismantling the reactor tank and the shielding, and delivering the radioactive waste to a waste disposal facility. The phase 3 will be started on condition that the undertaking of the waste disposal for research reactors will be established. On the other hand, re-utilization of the facility has being studied, and 'realistic' reactor simulator was turned out by utilizing the reactor installations such as control rod drive and operation console. (authors)

  19. Feedback from Westinghouse experience on segmentation of reactor vessel internals - 59013

    International Nuclear Information System (INIS)

    Kreitman, Paul J.; Boucau, Joseph; Segerud, Per; Fallstroem, Stefan

    2012-01-01

    With more than 25 years of experience in the development of reactor vessel internals segmentation and packaging technology, Westinghouse has accumulated significant know-how in the reactor dismantling market. Building on tooling concepts and cutting methodologies developed decades ago for the successful removal of nuclear fuel from the damaged Three Mile Island Unit 2 reactor (TMI-2), Westinghouse has continuously improved its approach to internals segmentation and packaging by incorporating lessons learned and best practices into each successive project. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques, including plasma arc cutting (PAC), abrasive water-jet cutting (AWJC), metal disintegration machining (MDM), or mechanical cutting. Westinghouse has applied its technology to all types of reactors covering Pressurized Water Reactors (PWR's), Boiling Water Reactors (BWR's), Gas Cooled Reactors (GCR's) and sodium reactors. The primary challenges of a segmentation and packaging project are to separate the highly activated materials from the less-activated materials and package them into appropriate containers for disposal. Since space is almost always a limiting factor it is therefore important to plan and optimize the available room in the segmentation areas. The choice of the optimum cutting technology is important for a successful project implementation and depends on some specific constraints like disposal costs, project schedule, available areas or safety. Detailed 3-D modeling is the basis for tooling design and provides invaluable support in determining the optimum strategy for component cutting and disposal in waste containers, taking account of the radiological and packaging constraints. Westinghouse has also developed a variety of special handling tools, support fixtures, service bridges, water filtration systems, video-monitoring systems and customized rigging, all of which are required for a

  20. Planning and management for reactor decommissioning

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    2001-01-01

    This report describes decommissioning strategy, planning process, regulation, management and organization, radiological characterization and safety. Planning is used to identify, define and organize the requirements for decommissioning including decommissioning options, items to be accomplished (objective, scope), to solve problems of how it is to be accomplished (methods, means and procedures), questions of who will execute it (resources, organization and responsibilities, interfacing), and time when it will be executed (schedule for meeting the objectives). A plan is highly dependent on the quality of the management team assembled to carry it out. Radiological characterization involves a survey of existing data, calculation, in situ measurements and/or sampling and analyses. Using this databases decommissioning planner may assess options, considering: decontamination processes, dismantling procedures, tools required, radiological protection of workers and public/environment, waste classification, and resulting costs. Comparison and optimization of these factors will lead to selection of a decommissioning strategy, i.e. typically, immediate or deferred dismantling. The planning and implementation of decommissioning for nuclear reactors should be referred both recent dismantling techniques and many decommissioning experiences. The technical lessons learned from many projects will help in the planning for future decommissioning projects. And systematic planning and management are essential to successful completion of a decommissioning project. (author)

  1. Chemical Decontamination of Metallic Waste from Uranium Conversion Plant Dismantling

    International Nuclear Information System (INIS)

    Hwang, D. S.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Byun, J. I.; Jang, N. S.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of the uranium conversion plant. Pre-work was carried as follows; installation of the access control facility, installation of a changing room and shower room, designation of an emergency exit way and indicating signs, installation of a radiation management facility, preparation of a storage area for tools and equipments, inspection and load test of crane, distribution and packaging of existing waste, and pre-decontamination of the equipment surface and the interior. First, decommissioning work was performed in kiln room, which will be used for temporary radioactive waste storage room. Kiln room housed hydro fluorination rotary kiln for production of uranium tetra-fluoride. The kiln is about 0.8 m in diameter and 5.5 m long. The total dismantled waste was 6,690 kg, 73 % of which was metallic waste and 27 % the others such as cable, asbestos, concrete, secondary waste, etc. And effluent treatment room and filtration room were dismantled for installation of decontamination equipment and lagoon sludge treatment equipment. There were tanks and square mixer in these rooms. The total dismantled waste was 17,250 kg, 67% of which was metallic waste and 33% the others. These dismantled metallic wastes consist of stainless and carbon steel. In this paper, the stainless steel plate and pipe were decontaminated by the chemical decontamination with ultrasonic

  2. Development of equipments for remote dismantling of joule heated ceramic melter

    International Nuclear Information System (INIS)

    Badgujar, Kiran T.; Usarkar, Sachin G.; Kumar, Binu; Nair, K.N.S.

    2011-01-01

    Joule Heated Ceramic Melter (JHCM) technology has been adopted for industrial scale vitrification of high level liquid waste (HLLW) at Tarapur and Kalpakkam. The melter installed at Advanced Vitrification System (AVS), Tarapur has immobilized 175 m 3 of HLLW in 113 canisters containing 11533Kg of Vitrified Waste Product (VWP). The melter has been in operation for 3 years before shutdown. It is intended to demonstrate the complete procedure of dismantling of Joule Melter in 1:1 scale prior to going in for actual dismantling in the hot cell. The Melter consists of an assembly of Inconel/SS pipes and plates, fuse cast refractories, thermal insulations of various types inside a SS casing and possibly some glass which is left over in the melter. Dismantling of melter involves remote cutting of the outer casing, pipe connections, electrical connections and removal, sizing and packing of internals in a sequential manner to minimise generation of secondary waste. The challenge involves development of remotely operated multi-degrees of freedom fixtures, modification and performance testing of standard industrial cutting and breaking tools and adapting them for remote operations. The work also involves development of equipments for collection of waste generated during the dismantling operation and packaging thus in special packages. Remotely actuated fixtures have been developed for remote top plate and side electrodes cutting. Remotely operated grab has been developed for handling of loose material and grippers have been developed for handling of refractory blocks. Industrial vacuum suction device has been modified into split units to enable for reducing the spread of powder material, while dismantling in progress. The performance test of developed fixtures, equipments, cutting and breaking tools have been carried on 1:1 scale melter model. Various parameters like cutting speed, cutting tool performance, generation of waste volume has been measured and analysed for

  3. Refurbishment programme of the reactor and progress of work

    International Nuclear Information System (INIS)

    Astruc, J.M.

    1992-01-01

    During 20 years of operation, since its start-up the ILL there have been some problems, like ruptured heavy water collector, in the upper part of the reflector tank, replacement of all the beam tubes due to the evolution of the mechanical characteristics of the aluminium alloy under irradiation. Some days after regular shutdown for maintenance, an inspection of the internal elements of the reactor discovered cracks on the grids which ensure the regular flow of cooling water. The investigations showed that the cracks are due to a design fault, aggravated by the effects of mechanical fatigue on highly irradiated material. It was not possible to repair the cracked grid, and it had to be replaced. This involved the dismantling of the internals parts of the reactor tank. The reactor refurbishment programme was set up. It provides for the replacement of the reactor block, the coupling sleeves, the anti turbulence grids and the diffuser, and of the ancillary elements. The main items to be replaced are: the reactor block consisting of the reactor vessel and its cover, known as the 'upper structure'; the heavy water collectors; connecting sleeves between the reactor block and the flanges of the various beam tubes. These three items constitute the primary circuit in the swimming pool. It is also planned to replace some internal parts of the reactor tank, such as the beam-tubes, the grid and diffuser and the chimney. Some parts of the present reactor, which are not at the end of their life, would be reused, for instance the two cold sources, the safety rods, and some other pieces. The parts replaced would be cut up and packaged in accordance with current standards and disposed of. All items are in principle to be replaced by identical equipment. This concerns in particular performance, mechanical characteristics and the choice of materials. The replacement of the reactor block necessitates a complete dismantling of the equipment in the reactor block, and of the structures in

  4. Dismantling and decontamination of Piver prototype vitrification plant

    International Nuclear Information System (INIS)

    Jouan, A.; Roudil, S.; Thomas, F.

    1991-01-01

    The PIVER prototype was targeted for dismantling in order to install a new pilot facility for the french continuous vitrification process. Most of the work involved the vitrification cell containing the process equipments, which had to be cleared out and thoroughly decontaminated; this implied disassembling, cutting up, conditioning and removing all the equipment installed in the cell. Remote manipulation, handling and cutting devices were used and some prior modifications were implemented in the cell environment. The dismantling procedure was conducted under a detailed programme defining the methodology for each operation. After equipment items and active zones were identified, the waste materials were removed, and several liquid decontamination operations were implemented. Removed activity, levels of irradiation in the cell and doses integrated by personnel were monitored to control progress and to adapt procedures to the conditions encountered. At the end of December 1989, the PIVER cleanup programme was at 87% complete and the total activity removed was 2.11 X 10 14 Bq (5712 Ci). The objective now is to obtain suitable working conditions in order to allow operators to enter the cell to remove items that are inaccessible or which cannot be dismantled by remote manipulators and to complete the decontamination procedure

  5. Latest feedback from a major reactor vessel dismantling project

    International Nuclear Information System (INIS)

    Boucau, J.; Segerud, P.; Sanchez, M.; Garcia, R.

    2015-01-01

    Westinghouse performed two large segmentation projects in 2010-2013 and then 2013-2015 at the Jose Cabrera nuclear power plant in Spain. The power plant is located in Almonacid de Zorita, 43 miles east of Madrid, Spain and was in operation between 1968 and 2006. This paper will describe the sequential steps required to prepare, segment, separate, and package the individual component segments using under water mechanical techniques. The paper will also include experiences and lessons learned that Westinghouse has collected from the activities performed during the reactor vessel and vessel internals segmentation projects. (authors)

  6. Comparative analysis of a hypothetical coolant loss accident in an LMFB reactor with the use of various calculation models for a common reference problem

    International Nuclear Information System (INIS)

    Royl, P.

    1979-01-01

    The results of a comparative analysis of the initial and dismantling stages of a hypothetical loss of flow accident in an LMFB reactor are presented. The analyses were made for a common reference problem with four different calculation models (CARMEN/KADIS, SURDYN, CAPRI/KADIS and FRAX). The reference core is described specifically, as are the differences in its geometrical disposition in the models, the static and transient conditions before and after the start of boiling and during dismantling. The differences in the models used for simulating the boiling and the dismantling are compared. The structure of the core, as well as the calculation conditions and hypotheses, were intentionally designed so that the accident would culminate, in all cases, in an energetic hydrodynamic dismantling stage

  7. Deregulation in the field of decommissioning and dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Kurz, A.

    1994-05-01

    The report comprises two articles covering current topics of the decommissioning and dismantling of nuclear facilities. In the first article written by Kurz, the legal standards are listed together with conclusions and proposals regarding their implementation for the further development of this field of law. The article by Baumgaertel is aimed at evaluating the regulations governing nuclear technology as regards their applicability to the decommissioning and dismantling of nuclear facilities. These articles shall contribute to the discussions taking place in this field at the moment. As a result, an appropriate and project-specific application of the legal provisions and not legally binding (technical) regulations in the field of nuclear technology (deregulation) in the licensing procedures required for the decommissioning and dismantling of nuclear facilities is requested by the authors. (orig.) [de

  8. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  9. DECISION ANALYSIS SCIENCE MODELING FOR APPLICATION AND FIELDING SELECTION APPLIED TO EQUIPMENT DISMANTLEMENT TECHNOLOGIES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    The dismantlement of radioactively contaminated process equipment is a major concern during the D and D process. There are an estimated 1,200 buildings in the DOE-EM complex that will require the dismantlement of equipment and various metal structures. As buildings undergo the D and D process, this metallic equipment contaminated with radionuclides such as uranium and plutonium must be size-reduced before final disposal. A single information source comparing dismantlement technologies in the areas of safety, cost, and performance is needed by DOE managers and is not currently available. The selection of the appropriate technologies to meet the dismantlement objectives for a given site is a difficult process in the absence of comprehensive and comparable data. Choosing the wrong technology could result in increased exposure of personnel to contaminants and an increase in D and D project costs. The purpose of this investigation was to evaluate commercially available and innovative technologies for equipment dismantlement and provide a comprehensive source of information to the D and D community in the areas of technology performance, cost, and health and safety

  10. Know History, Know Self: Art Therapists' Responsibility to Dismantle White Supremacy

    Science.gov (United States)

    Hamrick, Cassie; Byma, Christine

    2017-01-01

    In this article, we call on white art therapists to assume responsibility for dismantling white supremacy in the field of art therapy, in personal as well as political-structural arenas. We respond to calls from scholars and writers of color for white people to assume increased responsibility for dismantling white supremacy in white communities…

  11. DIRECT DISMANTLING OF REPROCESSING PLANT CELLS THE EUREX PLANT EXPERIENCEe2d12c

    International Nuclear Information System (INIS)

    Gili, M.; Troiani, F.; Risoluti, P.

    2003-01-01

    After finishing the reprocessing campaigns in 1970-1983, the EUREX pilot reprocessing plant of ENEA Saluggia Research Center started into a new phase, aiming to materials and irradiated fuel systemation and radioactive wastes conditioning. In 1997 the project ''CORA'' for a vitrification plant for the high and intermediate liquid radioactive wastes started. The ''CORA'' plant will be hosted in some dismantled cells of the EUREX plant, reusing many of the EUREX plant auxiliary systems, duly refurbished, saving money and construction time and avoiding a new nuclear building in the site. Two of the cells that will be reused were part of the EUREX chemical process (solvent recovery and 2nd extraction cycle) and the components were obviously internally contaminated. In 2000 the direct (hands-on) dismantling of one of them started and has been completed in summer 2002; the second one will be dismantled in the next year and then the ''CORA'' plant will be assembled inside the cells. Special care w as taken to avoid spread of contamination in the cells, where ''CORA'' installation activities will start in the next years, during the dismantling process The analysis of data and results collected during the dismantling of the first cell shows that direct dismantling can be achieved with careful choice of tools, procedures and techniques, to reduce volumes of wastes to be disposed and radiological burden

  12. Determination of Cl-36 in Irradiated Reactor Graphite

    International Nuclear Information System (INIS)

    Beer, H.-F.; Schumann, D.; Stowasser, T.; Hartmann, E.; Kramer, A.

    2016-01-01

    Two of the three research reactors at the Paul Scherrer Institute (PSI), the reactors DIORIT and PROTEUS, contained reactor graphite. Whereas the former research reactor DIORIT has been dismantled completely the PROTEUS is subject to a future decommissioning. In case of the DIORIT the reactor graphite was conditioned applying a procedure developed at PSI. In this case the 36 Cl content had to be determined after the conditioning. The result is reported in this paper. The radionuclide inventory including 36 Cl of the graphite used in PROTEUS was measured and the results are reported in here. It has been proven that the graphite from PROTEUS has a radionuclide inventory near the detection limits. All determined radionuclide activities are far below the Swiss exemptions limits. The graphite from PROTEUS therefore poses no radioactive waste. In contrast, the 36 Cl content of graphite from DIORIT is well above the exemption limits. (author)

  13. Manually-Operated Crate Dismantlement System for Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Laffitte, John; Lagos, Leo; Morales, Miguel

    2002-01-01

    Los Alamos National Laboratory currently possesses between 500 and 800 fiberglass-reinforced plywood crates that contain hazardous materials that need to be decontaminated. To access the hazardous material, a system is needed to dismantle the crate. Currently, crates are dismantled by workers using hand-held tools. This technique has numerous disadvantages. One disadvantage is that it is difficult for a worker to hold the tool for an extended period of time in the awkward angles and positions necessary to fully size-reduce the crate. Other disadvantages of using hand tools include managing power cords and vacuum hoses, which become entangled or can act as tripping hazards. In order to improve the crate opening and size-reduction task, Florida International University's Hemispheric Center for Environmental Technology (HCET) is developing a manually operated crate dismantlement system. This versatile system is expected to greatly increase worker efficiency while decreasing fatigue and the possibility of accidents. (authors)

  14. Analysis of dismantling possibility and unloading efforts of fuel assemblies from core of WWER

    International Nuclear Information System (INIS)

    Danilov, V.; Dobrov, V.; Semishkin, V.; Vasilchenko, I.

    2006-01-01

    The computation methods of optimal dismantling sequence of fuel assemblies (FA) from core of WWER after different operating periods and accident conditions are considered. The algorithms of fuel dismantling sequence are constructed both on the basis of analysis of mutual spacer grid overlaps of adjacent fuel assemblies and numerical structure analysis of efforts required for FA removal as FA heaving from the core. Computation results for core dismantling sequence after 3-year operating period and LB LOCA are presented in the paper

  15. Stade. Decommissioning and dismantling of the nuclear power plant - from the nuclear power plant to the green lawn. 3. ed.

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear power plant Stade (KKS) was shutdown in 2003 and is being dismantled since 2005. The contribution covers the following issues: What means decommissioning and dismantling? What was the reason for decommissioning? What experiences on the dismantling of nuclear power plants are available? What is the dismantling procedure? What challenges for the power plant personal result from dismantling? What happens with the deconstruction material? What happens with the resulting free area (the ''green lawn'')? What is the legal frame work for dismantling?

  16. Present status of decommissioning in the Musashi Reactor Facility (4)

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Tanzawa, Tomio; Mitsuhashi, Ishi; Morishima, Kayoko; Matsumoto, Tetsuo

    2012-01-01

    The decommissioning of the Musashi reactor was decided in 2003. Permanent shutdown of the reactor and stopping the operational functions were conducted in 2004. Transportation of the spent fuels was finished in 2006. After 2007, the system and equipment stopping the functions were stored as installed in the reactor facility as radioactive wastes. After separating nonradioactive wastes such as concretes from radioactive wastes with a contamination test, stopping the functions of liquid waste management facility was performed with newly installed drainage facility for radioisotope use in 2010. Solid waste management facility was also dismantled and removed in the same way as liquid waste management facility in 2011. Radioactive wastes packed in containers were moved and stored in the reactor facility. (T. Tanaka)

  17. Evaluation formulas of manpower needs for dismantling of equipments in uranium refining and conversion plant

    International Nuclear Information System (INIS)

    Izumo, Sari; Usui, Hideo; Kubota, Shintaro; Tachibana, Mitsuo; Kawagoshi, Hiroshi; Tokuyasu, Takashi; Takahashi, Nobuo; Morimoto, Yasuyuki; Tanaka, Yoshio; Sugitsue, Noritake

    2014-07-01

    Japan Atomic Energy Agency has developed PROject management data evaluation code for DIsmantling Activities (PRODIA) to make an efficient decommissioning for nuclear facilities. PRODIA is a source code which provides estimated value such as manpower needs, costs, etc., for dismantling by evaluation formulas according to the type of nuclear facility. Evaluation formulas of manpower needs for dismantling of equipments about reprocessed uranium conversion in Uranium Refining and Conversion Plant (URCP) have been developed in this report. In the result, evaluation formulas of manpower needs for dismantling of equipment were derived based on the classifications of equipment's functions or work items. These evaluation formulas are widely applicable to the estimation of the manpower needs for dismantling the other nuclear facilities, in particular uranium handling facilities. It was confirmed that some of these evaluation formulas with the same applicable condition could be unified to some inclusive evaluation formulas. It turned out that all steel equipment contaminated by uranium could be evaluated by one evaluation formula. (author)

  18. Decontamination of soil from the research reactor site

    International Nuclear Information System (INIS)

    Won, H. Z.; Kim, K. N.; Choi, W. K.; Jeong, J. H.; Oh, W. J.

    2002-01-01

    The two research reactors (TRIGA MARK II and III) in Korea are to be decommissioned in the near future. When the reactors are completely dismantled, the site may remain contaminated due to the long period of operation. We assume that the site is radioactively contaminated by Co-60. Soils gathered from the research reactor site were artificially contaminated with Co 2+ ion. The desorption characteristics of Co 2+ ion from the soil surface by citric acid solution were investigated. Decontamination performances of citric acid and EDTA on soil stored in the radioactive waste drums was examined. The feasibility test of recycling the citric acid was also performed. We concluded that the radioactive waste volume could be reduced significantly by soil washing with a citric acid solution

  19. 48 CFR 52.249-3 - Termination for Convenience of the Government (Dismantling, Demolition, or Removal of Improvements).

    Science.gov (United States)

    2010-10-01

    ... Convenience of the Government (Dismantling, Demolition, or Removal of Improvements). 52.249-3 Section 52.249-3... Convenience of the Government (Dismantling, Demolition, or Removal of Improvements). As prescribed in 49.502(b)(2), insert the following clause: Termination for Convenience of the Government (Dismantling...

  20. LEP Dismantling - a first Step into New Era

    CERN Multimedia

    2000-01-01

    The aim of the project is to remove the LEP machine and most of the services from the underground areas in order to install the LHC within the time constraints of its civil engineering and installation programmes The dismantling of LEP will be the first project to be executed under the new INB (Installation Nucléaire de Base) convention for the LHC. This talk will give an overview of the LEP Dismantling project covering traceability, planning, infrastructure and execution. It will explain what it means for our accelerators to be classified as INB's and will introduce the changes in working and safety procedures, which will be enforced from the beginning of October. Note: The presentation will be made in French with the transparencies in English.

  1. Cutting Method of the CAD model of the Nuclear facility for Dismantling Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikjune; Choi, ByungSeon; Hyun, Dongjun; Jeong, KwanSeong; Kim, GeunHo; Lee, Jonghwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Current methods for process simulation cannot simulate the cutting operation flexibly. As is, to simulate a cutting operation, user needs to prepare the result models of cutting operation based on pre-define cutting path, depth and thickness with respect to a dismantle scenario in advance. And those preparations should be built again as scenario changes. To be, user can change parameters and scenarios dynamically within a simulation configuration process so that the user saves time and efforts to simulate cutting operations. This study presents the methodology of cutting operation which can be applied to all the procedure in the simulation of dismantling of nuclear facilities. We developed the cutting simulation module for cutting operation in the dismantling of the nuclear facilities based on proposed cutting methodology. We defined the requirement of model cutting methodology based on the requirement of the dismantling of nuclear facilities. And we implemented cutting simulation module based on API of the commercial CAD system.

  2. Research and development activities for reactor decommissioning. Developing technology of Fuji Electric Co., Ltd

    International Nuclear Information System (INIS)

    Shirakawa, Masahiro; Takaya, Jyunichi; Mizukoshi, Seiji; Hosoda, Hiroshi; Tomizuka, Chiaki; Funaguchi, Susumu; Ito, Katsuhito

    1997-01-01

    Fuji Electric Co., Ltd. is conducting decommissioning R and D for commercial reactor, especially for gas cooled reactor since the construction of the Tokai-1 power station of JAPCO, in the field of system engineering, residual radioactivity evaluation, dismantling of core internals, remote handling, treatment and disposal of radioactive waste, and radioactivity measurement. These R and D have been performed mainly under contract of JAPCO and JAERI. This paper gives a summary of the present status and future plan concerning technical development for decommissioning of nuclear reactor by Fuji Electric Co., Ltd. (author)

  3. 49 CFR 1242.42 - Administration, repair and maintenance, machinery repair, equipment damaged, dismantling retired...

    Science.gov (United States)

    2010-10-01

    ... repair, equipment damaged, dismantling retired property, fringe benefits, other casualties and insurance, lease rentals, joint facility rents, other rents, depreciation, joint facility, repairs billed to others... maintenance, machinery repair, equipment damaged, dismantling retired property, fringe benefits, other...

  4. Implementation of the long term stewardship model of decommissioning power reactors. Update on the Zion project

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.; Hess, J.; Moloney, B.P. [EnergySolutions EU, Swindon (United Kingdom)

    2012-11-01

    Several countries have announced programmes to phase out nuclear power. Many NPPs built in the 1960s-80s are in any case reaching the end of their planned operating lives. Over the next decade, approximately 60-80 reactors worldwide will reach end of useful life and become candidates for decontamination and dismantling (D and D). Utilities will therefore commission over the coming decade a much larger number of decommissioning programmes to discharge their license responsibilities for reactor dismantling and site remediation. One major strategic question for the utilities is whether they regard decommissioning reactors as part of their core business or whether they wish to transfer this burden and risk in part or in whole to a specialised contractor. This paper reviews progress at the first programme in the US where a non-utility company has taken on the full license responsibility from the utility to undertake site remediation and license termination. We call this model ''Long Term Stewardship'' and it is now fully underway at the Zion NPP near Chicago, Illinois. (orig.)

  5. Planning of the BN-350 reactor decommissioning

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Tazhibayeva, I.L.; Zhantikin, T.M.; Baldov, A.N.; Nazarenko, P.I.; Koltyshev, S.M.; Wells, P.B.

    2002-01-01

    The experimental and commercial BN-350 NPP equipped with a fast neutron sodium cooled reactor is located in Kazakhstan near the Aktau city on the Caspian Sea coast. It was commissioned in 1973 and intended for weapon-grade plutonium production and as stream supply to a water desalination facility and the turbines of the Mangyshlak Atomic Energy Complex. Taking into account technical, financial and political issues, the Government of Kazakhstan enacted the Decree no. 456 'On Decommissioning of the Reactor BN-350 in the Aktau City of the Mangystau Region'. Because the decision on reactor decommissioning was adopted before the end of scheduled operation (2003), the plan to decommission the BN-350 reactor has not yet been developed. To determine the activities required for ensuring reactor safety and in preparation for decommission in the period prior, the development and ensuring approval by the Republic of Kazakhstan Government of the decommissioning plan, a 'Plan of Priority Actions for BN-350 Reactor Decommissioning' was developed and approved. Actions provided for in the plan include the following: Development of BN-350 Reactor Decommissioning Plan; Accident prevention during the period of transition; Unloading nuclear fuel from reactor and draining the coolant from the heat exchange circuits. Decommission is defined as a complex of administrative and technical actions taken to allow the removal of some or all of regulatory controls over a nuclear facility. These actions involve decontamination, dismantling and removal of radioactive materials, waste, components and structures. They are carried out to achieve a progressive and systematic reduction in radiological hazards and are undertaken on the basis of planning and assessment in order to ensure safety decommissioning operations. In accordance with the decision of Kazakhstan Government, three basic stages for BN-350 reactor decommissioning are envisaged: First stage - Placement of BN-350 into long-term storage

  6. Atomic Energy Commission (CEA) dismantling experience review and perspectives

    International Nuclear Information System (INIS)

    Barre, J.Y.

    1992-01-01

    Reorganization and dismantling have been part of the CEA's facility renewal process for more than twenty years now. Many facilities have already been downrated or will be in the near future. The strategy developed so far is founded on acquired experience, on the basis of which it may be said that: nuclear facilities are reversible in full and strict compliance with safety and security rules; a field of competence has been developed that will help French industries to land on their feet when the time comes on the dismantling market; public opinion has been informed as to the soundness of the energy alternatives chosen

  7. Shutdown, dismantling and decommissioning of nuclear facilities in France - Guide no. 6 - Update of 30/08/2016

    International Nuclear Information System (INIS)

    2016-01-01

    After a recall of the regulatory context and references, this guide addresses the strategy for an immediate dismantling of an installation, the dismantling planning, the different phases of the end of life of nuclear base installations, the authorization of definitive stop and dismantling, the preliminary phase preparing the definitive stop (regulatory context, technical aspects), the dismantling phase (regulatory context, technical aspects for the concerned operations, the security functions, hardware important for security, taking ageing into account), and the final status of installations (downgrading, constraints)

  8. Fuel bundle for nuclear reactor

    International Nuclear Information System (INIS)

    Long, J.W.; Flora, B.S.; Ford, K.L.

    1977-01-01

    The invention concerns a new, simple and inexpensive system for assembling and dismantling a nuclear reactor fuel bundle. Several fuel rods are fitted in parallel rows between two retaining plates which secure the fuel rods in position and which are maintained in an assembled position by means of several stays fixed to the two end plates. The invention particularly refers to an improved apparatus for fixing the stays to the upper plate by using locking fittings secured to rotating sleeves which are applied against this plate [fr

  9. Method of dismantling nuclear fuel elements

    International Nuclear Information System (INIS)

    Adams, G.J.

    1983-01-01

    Nuclear fuel assemblies of the kind comprising fuel pins in dimpled cellular grids are freed from the grids to aid dismantling of the assemblies by causing a rotary sleeve to pass concentrically over the pins to remove the dimples in the grids and thereby increase the freedom of the pins in the cells of the grids. (author)

  10. Management system information of characterization of the dismantling project of Jose Cabrera

    International Nuclear Information System (INIS)

    Gimeno Blesa, M. E.; Martin Palomo, N.; Gomez Rodriguez, C. A.

    2011-01-01

    In the proposed dismantling and decommissioning of the Jose Cabrera NPP is designed and implemented a database of physical and radiological inventory, which provides a powerful tool to optimize the storage, monitoring and control of the characterization data. The database is a useful and reliable management system characterization information that facilitates access and information processing, and ensures their integrity and traceability along of the dismantling project.

  11. Dismantling of an alpha contaminated hot cell at the Marcoule Pilot Plant

    International Nuclear Information System (INIS)

    Tachon, M.

    1988-01-01

    For the remodeling of Marcoule Pilot Plant, the cell 82: old unit for plutonium solution purification by extraction, was dismantled. About 42 tons of wastes were evacuated. Some wastes wen decontaminated by mechanical means other wastes with higher residual activity were stored for subsequent processing. The operation shows that dismantling of a hot cell is possible even if incorporated in an operating plant [fr

  12. A Study on Dismantling and Verifying North Korea's Nuclear Capabilities

    International Nuclear Information System (INIS)

    Kim, Young Jae; Cheon, Seong Whun

    2007-10-01

    North Korea's nuclear weapon development is a serious threat to South Korea's national security and can become a trigger to change the status quo in the Korean peninsula. Having prevailed security dynamics in Northeast Asia last 20 years, the North Korea's nuclear problem faced a key turning point when Pyongyang tested its first nuclear weapon on October 9, 2006. Despite this test, however, diplomatic efforts to resolve the nuclear issue were never given up, resulting in a so-called, initial agreement signed at the Six-Party Talks in February 2007. With the Six-Party Talks being held more than four years, the six countries have had sufficient time to discuss principal and political matters regarding the dismantlement of North Korea's nuclear weapons. Under the circumstances, this report is going to study practical and detail issues related with dismantling the North's nuclear weapons. Specifically, in light of historical experiences, the report will investigate possible problems to be faced in the course of dismantlement and propose policy measures to overcome these problems

  13. Failure prevention with stress measurement for dismantling of nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Komber, T.; Reimche, W.; Bach, F.W.

    2003-07-01

    The dismantling of nuclear facilities is in progress since 20 years in Germany. Practical experiences in decommissioning have shown, that problem can occur during dismantling operations caused by release of residual stresses. In this case cutting parts or cutting tools get jammed if mechanical cutting techniques are used. The aim of this research work was to develop measuring techniques for the determination of the stress state in RPV, to predict the deformation during dismantling operations. This can serve as additional base for improved decommissioning planning and for time optimised dismantling. For determination of the stress state in components two small and inexpensive measuring techniques were new designed, for remote-controlled on-site use in atmosphere and under water. For the nondestructive determination of the directional stress state, based on the magnetostriction and the Harmonic-Analysis of alternating magnetic fields, a new developed rotating sensor is in use with a principal magnetisation direction. Because of the mainly isotropic material properties and the directional stresses, measured Harmonic values are influenced mainly by the stress state in the surface areas. In this way it is possible to determine the stress state qualitatively and the direction of principal stresses in the surface areas of the component. As an alternative to the established wire strain gauge, which remote-controlled application is still not possible under water, a new slot jet cutting strain control technique was designed. This technique detects the deformation in the surface after stresses are cut free by a water jet. So the stress state could be determined quantitatively in the surface and assessed in the depth. With the help of these two measuring techniques it is possible to characterize the stress state along a planned cutting line. The use of an adapted FEM simulation enables to calculate and determine the deformation of the cutting gap beforehand. These information

  14. Stationary low power reactor No. 1 (SL-1) accident site decontamination ampersand dismantlement project

    International Nuclear Information System (INIS)

    Perry, E.F.

    1995-01-01

    The Army Reactor Area (ARA) II was constructed in the late 1950s as a test site for the Stationary Low Power Reactor No. 1 (SL-1). The SL-1 was a prototype power and heat source developed for use at remote military bases using a direct cycle, boiling water, natural circulation reactor designed to operate at a thermal power of 3,000 kW. The ARA II compound encompassed 3 acres and was comprised of (a) the SL-1 Reactor Building, (b) eight support facilities, (c) 50,000-gallon raw water storage tank, (d) electrical substation, (e) aboveground 1,400-gallon heating oil tank, (f) underground 1,000-gallon hazardous waste storage tank, and (g) belowground power, sewer, and water systems. The reactor building was a cylindrical, aboveground facility, 39 ft in diameter and 48 ft high. The lower portion of the building contained the reactor pressure vessel surrounded by gravel shielding. Above the pressure vessel, in the center portion of the building, was a turbine generator and plant support equipment. The upper section of the building contained an air cooled condenser and its circulation fan. The major support facilities included a 2,500 ft 2 two story, cinder block administrative building; two 4,000 ft 2 single story, steel frame office buildings; a 850 ft 2 steel framed, metal sided PL condenser building, and a 550 ft 2 steel framed decontamination and laydown building

  15. Project WAGR: The UK demonstration project for power reactor decommissioning - removing the core and looking to completion

    International Nuclear Information System (INIS)

    Benest, T. G.

    2003-01-01

    The United Kingdom Atomic Energy Authority (UKAEA) has built and operated a wide range of nuclear facilities since the late 1940's. UKAEA's present mission is to restore the environment of these facilities in a safe and environmentally responsible manner. This restoration includes the decommissioning of a number of redundant research and power reactors, one of which is the Windscale Advanced Gas-cooled Reactor (WAGR). Following shut down, UKAEA decided to continue the prototype function of the reactor into the decommissioning phase to develop dismantling techniques and establish waste routes. The reactor core and pressure vessel are now being dismantled in a programme of 10 campaigns, seven of which have been completed since 1998. It is anticipated that the current programme will be completed by summer 2005. This paper outlines the history of the reactor, the operation of the waste-processing route, the installed dismantling equipment and the successful completion of the first seven campaigns. This earlier work has been described in a number of publications and conferences, so this paper concentrates on recent work to select and develop cutting equipment to dismantle the core support structures and the pressure vessel. The decommissioning of the Windscale Advance Gas-cooled reactor is being undertaken to demonstrate that a power reactor can be decommissioned shortly after shutdown. The removal of the core and pressure vessel has been broken down into a series of 10 campaigns associated with particular core components. The first 7 campaigns have been successfully completed and the 8., is expected to commence in September 2003 17 months earlier than planned. Dismantling methodologies and tools have been developed specifically for each of these campaigns. Full-scale mock-ups have been used to test the tools, train the operators and assess the duration of operations. However, despite successful trials, operational experience has shown that some of these tools have not

  16. How to replace a reactor pressure vessel

    International Nuclear Information System (INIS)

    Huber, R.

    1996-01-01

    A potential life extending procedure for a nuclear reactor after, say, 40 years of service life, might in some circumstances be the replacement of the reactor pressure vessel. Neutron induced degradation of the vessel might make replacement by one of a different material composition desirable, for example. Although the replacement of heavy components, such as steam generators, has been possible for many years, the pressure vessel presents a much more demanding task if only because it is highly irradiated. Some preliminary feasibility studies by Siemens are reported for the two removal strategies that might be considered. These are removal of the entire pressure vessel in one piece and dismantling it into sections. (UK)

  17. Decommissioning of Salaspils Research Reactor

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Popelis, A.; Abramenkova, G

    2008-01-01

    The Salaspils Research Reactor (SRR) is out of operation since July 1998 and the decommissioning of SRR was started in 1999 according to the decision of the Government of Latvia. The main decommissioning activities up to 2006 were connected with collecting and conditioning of historical radioactive wastes from different storages outside and inside of reactor hall. The total amount of dismantled materials was about 700 tons, more than 77 tons were conditioned in concrete containers for disposal in repository. The radioactive wastes management technology is discussed in the paper. It was found, that additional efforts must be spent for immobilization of radionuclides in cemented matrix to be comply with the wastes acceptance criteria. The investigations of mechanical stability of water-cement matrix are described and discussed in the paper

  18. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  19. Evaluation of scheduling problems for the project planning of large-scale projects using the example of nuclear facility dismantling; Evaluation von Schedulingproblemen fuer die Projektplanung von Grossprojekten am Beispiel des kerntechnischen Rueckbaus

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Felix; Schellenbaum, Uli; Stuerck, Christian; Gerhards, Patrick; Schultmann, Frank

    2017-05-15

    The magnitude of widespread nuclear decommissioning and dismantling, regarding deconstruction costs and project duration, exceeds even most of the prominent large-scale projects. The deconstruction costs of one reactor are estimated at several hundred million Euros and the dismantling period for more than a decade. The nuclear power plants built in the 1970s are coming closer to the end of their planned operating lifespan. Therefore, the decommissioning and dismantling of nuclear facilities, which is posing a multitude of challenges to planning and implementation, is becoming more and more relevant. This study describes planning methods for large-scale projects. The goal of this paper is to formulate a project planning problem that appropriately copes with the specific challenges of nuclear deconstruction projects. For this purpose, the requirements for appropriate scheduling methods are presented. Furthermore, a variety of possible scheduling problems are introduced and compared by their specifications and their behaviour. A set of particular scheduling problems including possible extensions and generalisations is assessed in detail. Based on the introduced problems and extensions, a Multi-mode Resource Investment Problem with Tardiness Penalty is chosen to fit the requirements of nuclear facility dismantling. This scheduling problem is then customised and adjusted according to the specific challenges of nuclear deconstruction projects. It can be called a Multi-mode Resource Investment Problem under the consideration of generalized precedence constraints and post-operational costs.

  20. Audit on modalities of assessment of gross claims for the calculation of provisions of deconstruction of currently operated EDF reactors. Report synthesis, August 4, 2015

    International Nuclear Information System (INIS)

    2015-01-01

    Based on data provided by EDF, this report presents hypotheses, calculation methods and analyses regarding modalities of assessment of provisions for the deconstruction of EDF reactors. After a presentation of the EDF PWR fleet, an overview of dismantling activities at the world scale, a discussion of accounting provisions, a presentation of the audit methodology and limitations, the authors report an analysis of deconstruction costs through the case of Dampierre (dismantling strategy, planning, engineering expenses, site-related expenses, dismantling costs, demolition costs, waste management cost). They propose a comparison at the international level, discuss an extrapolation to the whole fleet, evoke a risk analysis, and presents their conclusion for the global assessment

  1. Vandellos 1 NPP. Dismantling at the level 1

    International Nuclear Information System (INIS)

    Pla, E.; Perez Pallares, J.

    1998-01-01

    Because of the fire in a main turbogenerator in October 1989, the Spanish Ministry of Industry ordered the definitive shutdown of Vandellos 1 NPP. The tasks allowed to the owner in the Ministerial Order were: the reactor defueling, the operation radwaste conditioning. The size of the reactor core needed to prepare an adequate defueling plan in order to prevent the potential reactivity oscillations and ensure the refrigeration of the nuclear fuel remaining in the core. The operation radwastes were divided in four types, according to the conditioning method: the low level solid radwaste, the irradiated metallic materials, the resins and zeolites used for decontaminating the liquid effluents, the radwaste stored in three graphite silos. The low level solid radwastes were stored during operation in drums of 220 litres. Recently they were compacted at a pressure of 40 tones before to be shipped to en ENRESA disposal. The irradiated metallic materials are, essentially, some parts of the refuelling machine. For deactivating the liquid effluents, Vandellos 1 used both organic resins and zeolites. The presence of zeolites helps the cementation, but its rough surface makes difficult to flow in the pipes of the cementation plant. 35 m 3 of this mixture have been conditioned into 670 drums of 220 liters. Vandellos 1 has three silos designed to store the graphite sleeves (reactor fuel support). In the silo number 1 some other radwastes were stored, as low level solid radwastes and two fuel elements. An international request for tenders was made in order to undertake the extraction and conditioning all these radwastes. The project was awarded to the Spanish/French Consortium EQUIPOS NUCLEARES-FRAMATOME. The achievement of the graphite silos project needed to design specific devices for separating irradiated wires from graphite, and searching and extracting two fuel elements jumbled up with the graphite sleeves. The spent fuel ponds have been emptied and its internals confined

  2. System approach as a tool for optimization of the dismantling technological process of NPP decommissioning

    International Nuclear Information System (INIS)

    Bylkin, B.K.; Shpitser, V.Ya.

    1994-01-01

    The concept of NPP unit decommissioning has been considered. Special attention was paid to the stage of dismantling of NPP unit equipment. Employment of systematic approach as a tool for optimization of dismantling processes permits formalizing manipulations with certified indices of quality and it permits an objective assessment of the dismantling technology level attained during designing as compared with the basic one. It seems appropriate to develop a basic project of NPP unit decommissioning as a technical means of planning, predicting and evaluating ecological and social aftereffects

  3. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE

  4. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  5. LEP Dismantling: Wagons Roll!

    CERN Multimedia

    2001-01-01

    The first trucks transporting material from LEP and its four experiments left CERN on 31 January. Since the LEP dismantling operation began, the material had been waiting to be removed from the sites of the four experiments and the special transit area on the Prévessin site. On the evening of 30 January, the French customs authorities gave the green light for the transport operation to begin. So first thing the next day, the two companies in charge of recycling the material, Jaeger & Bosshard (Switzerland) and Excoffier (France), set to work. Only 1500 truckloads to go before everything has been removed!

  6. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    International Nuclear Information System (INIS)

    None

    1997-01-01

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D and D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D and D activities beginning in 1997

  7. Decontamination and dismantling at the CEA; L'assainissement et le demantelement au CEA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document presents the dismantling policy at the CEA (French Research Center on the atomic energy), the financing of the decontamination and the dismantling, the regulatory framework, the knowledge and the technology developed at the CEA, the radiation protection, the environment monitoring and the installations. (A.L.B.)

  8. Present status of refining and conversion facility dismantling. Progress in latter half of 2010FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Tanaka, Yoshio; Takahashi, Nobuo; Tokuyasu, Takashi

    2011-09-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008. Equipments in radiation controlled area (excluding ventilating equipment and liquid waste treatment equipment) will be dismantled by the 2011 fiscal year, and ventilating equipment and liquid waste treatment equipment will be dismantled by the 2014 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in latter half year of 2010FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room / each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  9. SGDES: Management system dismantling of ENRESA

    International Nuclear Information System (INIS)

    Julian, A. de; Fernandez, M.; Vidaechea, S.

    2013-01-01

    ENRESA, the Spanish public company responsible for managing radioactive waste and nuclear facilities decommissioning, has developed a management information system (SGDES) for the decommissioning of nuclear power plants. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both under human and technological point of view. SGDES system is capable of responding to the mentioned operational needs, efficiently and safely.

  10. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    Pattinson, A.

    2003-01-01

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  11. A treaty more alarming than efficient. The dismantled warheads will not be destroyed. Danger

    International Nuclear Information System (INIS)

    Riche, P.; Despic-Popovic, H.; Nougayrede, N.

    2002-01-01

    This political analysis presents the new treaty of nuclear weapons dismantling between Russia and Usa. In fact the warheads will not be completely dismantling but only stocked, leading to a possible recovery by terrorists. It underlines the real interests of this agreement which are more economic than peaceful. (A.L.B.)

  12. Demolition of the FRJ-1 research reactor (MERLIN)

    International Nuclear Information System (INIS)

    Stahn, B.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

    2003-01-01

    FRJ-2 (MERLIN), the swimming pool reactor cooled and moderated by light water, was built at the then Juelich Nuclear Research Establishment (KFA) between 1958 and 1962. In the period between 1964 and 1985, it was used for. The reactor was decommissioned in 1985. Since 1996, most of the demolition work has been carried out under the leadership of a project team. The complete secondary cooling system was removed by late 1998. After the cooling loops and experimental installations had been taken out, the reactor vessel internals were removed in 2000 after the water had been drained from the reactor vessel. After the competent authority had granted a license, demolition of the reactor block, the central part of the research reactor, was begun in October 2001. In a first step, the reactor operating floor and the reactor attachment structures were removed by the GNS/SNT consortium charged with overall planning and execution of the job. This phase gave rise to approx. The reactor block proper is dismantled in a number of steps. A variety of proven cutting techniques are used for this purpose. Demolition of the reactor block is to be completed in the first half of 2003. (orig.) [de

  13. Remotely-Controlled Shear for Dismantling Highly Radioactive Tools In Rokkasho Vitrification Facility - 12204

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Sawa, Shusuke; Sadaki, Akira; Awano, Toshihiko [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Cole, Matt [S.A. Technology Inc, 3985 S. Lincoln Ave., Ste. 100, Loveland CO 80537 (United States); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2012-07-01

    A high-level liquid waste vitrification facility in the Japanese Rokkasho Reprocessing Plant (RRP) is right in the middle of hot commissioning tests toward starting operation in fall of 2012. In these tests, various tools were applied to address issues occurring in the vitrification cell. Because of these tools' unplanned placement in the cell it has been necessary to dismantle and dispose of them promptly. One of the tools requiring removal is a rod used in the glass melter to improve glass pouring. It is composed of a long rod made of Inconel 601 or 625 and has been highly contaminated. In order to dismantle these tools and to remotely put them in a designated waste basket, a custom electric shear machine was developed. It was installed in a dismantling area of the vitrification cell by remote cranes and manipulators and has been successfully operated. It can be remotely dismantled and placed in a waste basket for interim storage. This is a very good example of a successful deployment of a specialty remote tool in a hot cell environment. This paper also highlights how commissioning and operations are done in the Japanese Rokkasho Reprocessing Plant. (authors)

  14. Perspectives concerning radioactive waste management

    International Nuclear Information System (INIS)

    Massaut, V.; Dadoumont, J.

    2013-01-01

    The article discusses experience acquired in the framework of the dismantling of the Belgian Reactor 3 (BR3). The BR3 is the first pressurised water reactor built in Europe and its operation stopped in 1987. In December 1989, an agreement was concluded between the European Commission and SCK·CEN to start the dismantling of the BR3 as a pilot project for the development and the demonstration of dismantling techniques. The BR3 dismantling project was particularly successful and involved several world premieres such as the full decontamination of the primary circuit of a PWR, the remote-handled cutting and the dismantling of the reactor vessel and the establishing of a workshop for advanced decontamination of reactor components in view of the free release of decontaminated materials. The article discusses technical aspects as well as issues related to the financing of the dismantling of nuclear power reactors. Different mechanisms that are applied for ensuring that the cost of dismantling is secured are discussed.

  15. Cleaning and dismantling of a high activity laboratory (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Bredel; Thierry; Buzare, Alain

    2005-01-01

    The high activity laboratories have been built at the end of the 50ies. The particularity of this facility was that about 14 different laboratories worked in 14 different fields (biology, production of Cs and Cf sources, metallurgy, mechanical testing ...). Because of the optimization of the nuclear research, the CEA decided to close progressively this facility and to transfer the different experiments in other places. This action began in 1997 and is planed to end in 2010. 6 laboratories have been closed from 1997 to 2001 and the dismantling of the shielded cells has begun since 2002. Therefore, several laboratories have been cleaned of the materials and experiments. Nevertheless, the main particularity of this subject is that some experimental activities have been pursued during the cleaning and dismantling of other laboratories. For example, we describe the dismantling of the laboratory that performed metallurgical and mechanical characterization of irradiated materials. This laboratory occupied 20 lead cells and 2 glove boxes. The exploitation of those cells has been stopped progressively (12 at the end of 2001 and 5 at the end of 2003). The end of the last 3 cell exploitation is planed to end 2005. Since the end of 2001, 9 lead cells have been cleaned. Their dismantling is planed for next the two years. In parallel, we will clean all the other cells. During this phase we will have also to transfer all the irradiated samples (about 5000) that are still in the laboratory to the waste treatment facility of the CEA centre or to the new laboratory which has been presented during the previous hotlab meeting in Saclay. The paper gives details for background about ended operations: Organization, waste production, specific designs which improve radioprotection, waste destinations and costs, Difficulties and feedback experience of dismantling. (Author)

  16. Education and research when dismantling nuclear plants at the Technical University Dresden

    International Nuclear Information System (INIS)

    Hurtado, A.; Anthofer, A.; Cloppenborg, T.; Schreier, M.

    2013-01-01

    With the decision by the German government in 2011 to revoke the operating permission from 8 of the existing 17 German nuclear power plants, the responsibility of decommissioning and dismantling these plants has moved back into the focus of public awareness. Under the current legal conditions, the last nuclear plant will be disconnected from the grid on 31.12.2022 and this will create an enormous challenge for all the involved approving authorities, expert organisations, as well as companies involved in dismantling the plants. The development of new and efficient dismantling technologies and strategies is required to perform these highly responsible tasks. On the other hand, the nuclear competence and knowhow, as well as the promotion of young talents in the relevant scientific fields must be preserved. Technological and economic solutions are in demand for the various plants due to the different specifics of nuclear power plants. This will still require e.g. in the field of radiation protection highly qualified and well trained staff in future. The training of these skilled employees will require expanding the subject matter taught at universities, colleges and polytechnics to suit the changed parameters. The chair for hydrogen and nuclear energy technology at the TU Dresden will in future offer lectures as part of a new teaching discipline with the focus on dismantling and disposal. The course 'Dismantling nuclear power plants' took place for the first time in the summer semester 2013. It is organised as a three-day block seminar with an excursion to the company NIS Ingenieurgesellschaft mbH in Alzenau. The company NIS is a subsidiary of the Siempelkamp Nukleartechnik GmbH. This article intends to provide an overview of the contents of the courses and the impressions of the participants. In this way the TU Dresden is making a further contribution to preserving nuclear competence and inter-disciplinary dialogue. (orig.)

  17. Specific application for Oak Ridge National Laboratory dismantlement of Building 3004. Appendix A - Quality assurance plan; Appendix B - Records management plan

    International Nuclear Information System (INIS)

    1997-03-01

    This quality assurance (QA) plan defines the QA requirements for the dismantlement and removal of Building 3004 at Oak Ridge National Laboratory (ORNL). The building is a four-story wooden trained structure with wooden siding, which resides approximately 150 ft west of the Bulk Shielding Reactor, and only several feet away from the visitors entrance to the Graphite Reactor museum. Complete descriptions and sketches are in the Performance Specification document for this project. This project is being conducted as a non-CERCLA maintenance action. This plan is an appendix to the QA plan for the ORNL Environmental Restoration (ER) Program. ORNL/ER-225, which is the source of the project QA requirements, tailors those QA requirements to the specific needs of this project as defined in ORNL/ER-225. Project-specific description and organization are also provided in this plan. Appendix B, Records Management Plan, is included

  18. Preliminary dismantling for the decommissioning of nuclear licensed facilities at the CEA Centre in Fontenay aux Roses

    International Nuclear Information System (INIS)

    Estivie, D.; Bohar, M.P.; Jeanjacques, M.; Binet, C.

    2008-01-01

    Under the perimeter modification programme for the Nuclear Licensed Facilities (NLFs) of the French Atomic Energy Commission centre at Fontenay aux Roses (CEN-FAR), preliminary dismantling work proved necessary to decommission the buildings outside the nuclear perimeter and create interim storage areas for waste packages. This summary describes the dismantling of Buildings 07, 53 and 91/54, which are the most representative of the preliminary dismantling work. (author)

  19. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    International Nuclear Information System (INIS)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices

  20. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

  1. Cost effective decommissioning and dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2012-01-01

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  2. Dismantling Racial and Hegemonic Boundaries for an Inclusive ...

    African Journals Online (AJOL)

    ... expressed experiences of hostile institutional cultures, untransformed curricula that are largely based on European traditions and norms and a general atmosphere that is tilted towards white supremacy. The article also gives specifi c attention to the formation of a unifying organisational culture, requisite for dismantling

  3. Method and apparatus for dismantling mechanical anchors

    Energy Technology Data Exchange (ETDEWEB)

    Dubovskiy, Yu P; Chendev, F S; Gritsayuk, B I; Gubin, N I; Osipov, S P

    1982-01-01

    This apparatus is designed to reduce the amount of labor required to dismantle mechanical anchors while at the same time lowering expenditures for lumber. Longwall beams and timber skips are used to support the cap and any fractured rock faces. The apparatus itself has grooves, vertical guides, and a drive system to position the longwall beams.

  4. SIRIUS 2: A versatile medium power research reactor

    International Nuclear Information System (INIS)

    Rousselle, P.

    1992-01-01

    Most of the Research Reactors in the world have been critical in the Sixties and operated for twenty to thirty years. Some of them have been completely shut down, modified, or simply refurbished; the total number of RR in operation has decreased but there is still an important need for medium power research reactors in order: - to sustain a power program with fuel and material testing for NPP or fusion reactors; - to produce radioisotopes for industrial or medical purposes, doped silicon, NAA or neutron radiography; - to investigate further the condensed matter, with cold neutrons routed through neutron guides to improved equipment; - to develop new technologies and applications such as medical alphatherapy. Hence, taking advantage of nearly hundred reactor x years operation and backed up by the CEA experience, TECHNICATOME assisted by FRAMATOME has designed a new versatile multipurpose Research Reactor (20-30 Mw) SIRIUS 2 taking into account: - more stringent safety rules; - the lifetime; - the flexibility enabling a wide range of experiments and, - the future dismantling of the facility according to the ALARA criteria

  5. Decommissioning of the MZFR nuclear power plant at the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Demant, W.; Engelhardt, G.

    1991-01-01

    The MZFR multipurpose research reactor was permanently shut down on May 3, 1984. The envisaged decommissioning concept provides for disposal in five steps. The first two steps are devoted to preparatory work on dismantling and simplification of the systems needed for dismantling. In the third step the reactor auxiliary systems in the auxiliary building and in the fourth step the reactor systems in the reactor building will be dismantled. In the fifth step remote dismantling of the reactor pressure vessel and demolition of the building will take place. The scheduled date of completion is the year 2001. (author)

  6. PIK reactor construction status

    International Nuclear Information System (INIS)

    Konoplev, K.A.; Smolsky, S.L.

    2001-01-01

    The 100MW reactor PIK for fundamental researches has a thermal neutron flux of more than 10 15 n/cm 2 sec. This presentation outlines the construction state as of 2001, its prospects and completion tactics in the conditions of unstable finance. Construction of the reactor started in 1976. In 1986 construction of the building was completed and significant part of the installation work fulfilled. Construction of cooling systems was finished, the control panel assembled, and adjustment of the pump and gate valve control circuits started. After Chernobyl catastrophe, the USSR nuclear reactor safety requirements were revised. The PIK design did not meet these requirements and underwent considerable revision. The reconstruction design resulted in double the initial cost. Creation of the containment was the bulkiest part of the reconstruction. It brought about the need to disassemble the roofing of the building, dismantle all the equipment of the two upper floors, and lay up the equipment of the lower floors. As of 2001, construction in accordance with the revised design is at the stage of assemblage of the most important units, i.e. reactor itself, cooling system, heavy water system, and a number of auxiliary systems, such as depleted fuel storage, emergency cooling system etc. (orig.)

  7. An approach to evaluate the cutting time for the nuclear dismantling simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonghwan; Hyun, Dongjun; Kang, Sinyoung; Kim, Ikjune; Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Nuclear power plant (NPP) decommissioning involves various processes and technologies. Decommissioning should be performed after a comprehensive review of the information related to these processes and technologies. There are various means of prior examination and evaluation to ensure the feasibility and safety of the decommissioning process plan. Our dismantling simulation system aims to simulate and evaluate whole processes related to the dismantlement of core equipment of NPP such as the device preparation, cutting operation, waste transfer, and so on. This paper introduces the estimation methodology of the time required for the cutting processes based on real cutting conditions in order to provide effective economic evaluation functionalities used for the system. The methodology to estimate the time required for the remote cutting process in the nuclear dismantling simulation system was proposed. Among the factors which mainly determine the time, the cutting trace was directly calculated from the simulation system and the continuous cutting speed was obtained by proper order of the spline fitting with constraint conditions.

  8. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Equipment Dismantlement Technologies. Topical Report January 1998

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The dismantlement of radioactively contaminated process equipment is a major concern during the D and D process. As buildings undergo the D and D process, metallic equipment contaminated with radionuclides such as uranium and plutonium must be dismantled before final disposal.The primary objective for equipment dismantlement is to reduce the potential for personnel and environmental exposure to contaminants during the decommissioning of the nuclear facility. The selection of the appropriate technologies to meet the dismantlement objectives for a given site is a difficult process in the absence of comprehensive and comparable data. Choosing the wrong technology could result in increased exposure of personnel to contaminants and an increase in D and D project costs. Innovative technologies are being developed with the goal of providing safer and more cost-effective alternatives that generate less secondary waste, thereby decreasing the operating costs for dismantlement. During the development and implementation process, performance indicators for the success of these technologies must be reviewed to ensure that these aims are being met. This project provides a mechanism for the assessment of innovative and commercially available nuclear and non-nuclear technologies for equipment dismantlement

  9. Comparison of ship dismantling processes in India and the U.S.

    Science.gov (United States)

    Ahluwalia, Rashpal S.; Sibal, Pooja; Govindarajulu, Sriram

    2004-03-01

    This paper compares ship-dismantling processes in India and the U.S. The information for India was collected during an informal visit to the ship dismantling sites in Alang, India. The information for the U.S. was obtained from the MARAD report. For a 10,000-ton passenger ship, the Indian contractor makes a profit of about 24% compared to a loss of about 15% in the U.S. The loss in the US is primarily due to high labor costs, compliance to safety and health regulations and lack of market for used components and scrap metal.

  10. Longtime radionuclide monitoring in the vicinity of Salaspils nuclear reactor; Dauerhaftes Monitoring der Radionuklide in Umgebung von Salaspils Kernreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Riekstina, D.; Berzins, J.; Krasta, T. [Latvia Univ. (Latvia). Inst. of Solid State Physics; Skrypnik, O.; Alksnis, J. [Latvia Univ. (Latvia). Inst. of Chemical Physics

    2016-07-01

    The research nuclear reactor in Salaspils was decommissioned in 1998. Now reactor is partially dismantled and its territory is used as a temporary storage of radioactivity contaminated materials and water. Environment radioactivity monitoring for presence of artificial radionuclides in the vicinity of Salaspils nuclear reactor is carried out since 1990. Data include Cs-137 concentration in soils, tritium concentration in ground water, as well as H-3, Cs-137, Co-60 concentration and gross beta-activity of reactors sewage and rainwater drainage. The systematic monitoring allowed to detect in December 2014 a leakage from the special wastewater basin and so to prevent a pollution of ground water outside reactors territory.

  11. Technicians dismantle the inner section of L3

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    The technicians are dismantling the forward tracking chamber located at the heart of the L3 detector. This formed part of the hadronic calorimeter, which is used for measuring particle energies. L3 was an experiment at the LEP collider that ran from 1989 to 2000.

  12. Sustainable design for automotive products: dismantling and recycling of end-of-life vehicles.

    Science.gov (United States)

    Tian, Jin; Chen, Ming

    2014-02-01

    The growth in automotive production has increased the number of end-of-life vehicles (ELVs) annually. The traditional approach ELV processing involves dismantling, shredding, and landfill disposal. The "3R" (i.e., reduce, reuse, and recycle) principle has been increasingly employed in processing ELVs, particularly ELV parts, to promote sustainable development. The first step in processing ELVs is dismantling. However, certain parts of the vehicle are difficult to disassemble and use in practice. The extended producer responsibility policy requires carmakers to contribute in the processing of scrap cars either for their own developmental needs or for social responsibility. The design for dismantling approach can be an effective solution to the existing difficulties in dismantling ELVs. This approach can also provide guidelines in the design of automotive products. This paper illustrates the difficulty of handling polymers in dashboards. The physical properties of polymers prevent easy separation and recycling by using mechanical methods. Thus, dealers have to rely on chemical methods such as pyrolysis. Therefore, car designers should use a single material to benefit dealers. The use of materials for effective end-of-life processing without sacrificing the original performance requirements of the vehicle should be explored. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Hot cell examination on the surveillance capsule of SA 533 cl. 1 reactor pressure vessel (1st test report)

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yong Sun; Jung, Y. H.; Yoo, B. O.; Baik, S. J.; Oh, W. H.; Soong, W. S.; Hong, K. P

    2000-08-01

    The post-irradiated examinations such as impact test, tensile test, composition analysis and etc. were conducted to monitor and to evaluate the radiation-induced changes, so called radiation embrittlement, in the mechanical properties of ferritic materials. Those data should be applied to confirm safety as well as reliability of reactor pressure vessel. The scopes and contents of hot cell examination on the surveillance capsule are as follows; - Capsule transportation, cutting, dismantling and classification - Shim block and Dosimeter cutting and dismantling - Impact test - Tensile test - Composition analysis by EPMA - SEM observation on the fractured surface - Hardness test - Radwaste treatment.

  14. Treatment for dismantled radioactive solid waste from the TRIGA Mark-2 and 3

    International Nuclear Information System (INIS)

    Park, Seung Kook; Jung, Kyung Hwan

    1999-06-01

    Radioactive wastes are generally classified into 3 type depending on their physical property: liquid, solid and gaseous type. State-of -the art concerning liquid waste treatment has already been published; KAERI/TR-1315/99. Solid wastes classification package and treatment method will be studied to effectively manage them during the practical decommissioning work. All of the spent fuel produced during the operation of the TRIGA Mark-2 and 3 have been transported to the US last year, 1998, according to the spent fuel management strategy set-up by the US government for the non-proliferation of nuclear energy. Solid wastes are mainly all equipment existing inside of the reactors, activated concrete among the bio-shielded concrete, pipes, pimps, resin filter and it's housings, heat-exchangers, liquid waste storage tanks, to radioactive waste storage treatment facilities and so on. Solid wastes are generally low-level. They are classified according to the national regulation and nuclear law and IAEA Safety Standard Series ST-1(1996). Medium level radioactive wastes from reactor structures, mainly stainless steel component from the Rotary Specimen Rack(RSR) will be properly dismantled and stored in a shield container such as TIF(TRIGA Irradiated Fuel) container. While, low-level solid waste will be treated and packed in a ISO container(4m 3 ISO container for example) according to the IAEA recommendation. And combustible solid waste such as cloths, gloves, paper etc. will be packed in a 200 liters drum. This state-of-the art shows a general feature of the solid radioactive waste management which will be produced during the decommissioning of the TRIGA Mark-2 and 3 research reactors. (author). 17 refs., 17 tabs., 2 figs

  15. Dismantling of Irradiation Facility Selfshielded of Investigation Model MPX- γ-25M

    International Nuclear Information System (INIS)

    Soguero, D.; Rapado, M.; Prieto, E.; Desdin, L.; Guerra, M.; Castillo, J.

    2011-01-01

    In this paper is described the dismantling a category I selfshielded gamma irradiation facility model MPX - γ - 25M. The following specific objectives were established: a) identify aspects of the insurance contract, human and technical resources b) assess the radiological situation of the process and c) analyze potential radiological extraordinary events in each step of the process, ensuring appropriate responses, based on an evaluation of process safety. The assessment of radiological events can serve as a reference for addressing the process of dismantling other similar irradiators. (Author)

  16. Report of working group for technical standard of cutting and melting works in Glovebox dismantling

    International Nuclear Information System (INIS)

    Asazuma, Shinichiroh; Takeda, Shinsoh; Tajima, Shoichi

    2004-11-01

    In order to prevent spread of contamination, glovebox dismantling activity is usually performed in a confined enclosure with personal radioactive protective equipment. Since large potion of these materials is made of vinyl acetate, there exist potential risks of fire, damage and injury to the environment and workers during the dismantling (cutting or melting) operation. It is therefore important to establish standard for proper use of equipment and hazard controls in such a specific environment. Working Group composed of Tokai Works and Oarai Works has examined and developed the operational standard for cutting work in glovebox dismantlement. The result is reflected to the Tokai Works Safety Operational Standard. (author)

  17. Nuclear reactors built, being built, or planned, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  18. Nuclear reactors built, being built, or planned: 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  19. Nuclear reactors built, being built, or planned, 1994

    International Nuclear Information System (INIS)

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)

  20. Nuclear reactors built, being built, or planned: 1995

    International Nuclear Information System (INIS)

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5)

  1. Technical report on dismantling of incinerator building of JNC with strict environmental assessments especially for the contamination of surroundings of incinerator by Dioxin's in soil

    International Nuclear Information System (INIS)

    Aizawa, Masanori; Ohmori, Koji; Nomura, Takeshi; Numano, Tatuo; Usui, Kazuya; Irinouchi, Shigenori

    2003-03-01

    Building of incinerator for general waste located at Tokai of Japan Nuclear Cycle Development Institute (JNC in short) were dismantled form April 2002 to March 2003 under environmental control According to the regulation entitled 'Outline for the prevention of exposure of Dioxin's to operators engaged in dismantling of waste incinerator' issued on June 01, 2000 by Ministry of Health, Labor and Welfare in Japan, the regulation requests proper protection methodology to dismantling the incinerator and surroundings contaminated by Dioxin's. This report consists of Environmental assessment under Japanese law and regulations and Procedure of actual dismantling of incinerator building with law-abiding stand point. 1. Environmental assessment; Survey of several laws and regulations concerning on the Dioxin's and actual site assessment to analyze the content of Dioxin's for surroundings of incinerator building. Ground design of dismantling procedures, waste management for disposed during dismantling and scheduling for dismantling of building. 2. Dismantling procedures; Prior to dismantling operation, contamination map by Dioxin's were established then restricted areas were determined. Protection methodology to dioxin's exposure for operators were selected and started dismantling operation after getting permission from the Labor Standards Bureau of Ibaraki Prefecture. Dismantling operations were carried out with respect o above mentioned regulations to prevent the operators exposure to Dioxin's if they are exists in soil or surroundings of building. Finally, dismantling operations were completed without accidents and confirmed no-exposure of Dioxin's to operators of dismantling. Waste generated during dismantling were recycled using specialized recycling companies in Ibaraki prefecture. Dismantling operation of incinerator was first experience at Ibaraki Prefecture, so the officials of Labor Standards Bureau were carried out on-the-spot inspection and have no claim from

  2. Cutting and decontamination technologies for nuclear facility dismantling; Technologien zur Zerlegung und zur Dekontamination von kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Felix; Grone, Georg von; Schultmann, Frank

    2017-03-15

    The German Government's decision to phase-out nuclear power will lead to a substantial increase of the number of nuclear decommissioning and dismantling projects. The decommissioning of nuclear facilities must meet the requirements of the radiation protection ordinance. This study deals with the decontamination and dismantling technologies available to meet radiation protection requirements. The aim of this study is to determine the state of the art in the field of decommissioning and dismantling technologies. Furthermore, future trends in the development and application of such technologies should be identified. A detailed study of current literature provides an overview of established decommissioning technologies. Moreover, experts were consulted in order to facilitate a practical assessment. The experts' statements indicate that (apart from the chemical decontamination of the primary circuit) the use of mechanical methods is generally preferred. Abrasive methods are rated as particularly efficient. According to the experts, the development of new decontamination technologies may allow a more efficient decontamination. However, the success of a new technology will be subject to its application costs. Mechanical technologies are preferred for the dismantling of nuclear facilities. The band saw has been identified as a standard tool in nuclear dismantling. The survey has concluded that there is no need for new dismantling technologies. The potential lies in the optimization of existing processes and techniques. With regard to remotely operated systems, experts' opinions vary on whether the use of these systems will increase in future. Most areas inside a nuclear facility have low radiation levels that allow the use of human labour for the dismantling. However, there is a need for an improvement in the allocation and management of decommissioning projects.

  3. RA reactor operation and maintenance in 1996, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Mikic, N.; Tanaskovic, M.

    1996-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. Since the RA reactor is shutdown since 1984, it is high time for decision making of its future status. Possible solutions for the future status of the RA reactor discussed in this report are: renewal of reactor components for the reactor restart, conservation of the reactor (temporary shutdown) or permanent reactor shutdown. Control and maintenance of the reactor instrumentation and devices was done regularly but dependent on the availability of the spare parts and financial means. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  4. Studies on decommissioning of TRIGA reactors and site restoration technologies in the Republic of Korea

    International Nuclear Information System (INIS)

    Oh, Won-Zin; Kim, Gye-Nam; Won, Hui-Jun

    2002-01-01

    Research and development on research reactor decommissioning and environmental restoration has been carried out at KAERI since 1997 to prepare for the decommissioning of KAERI's two TRIGA-type research reactors, which had been shut down since 1995. A 3-D graphic model of the TRIGA research reactor was built using IGRIP. The dismantling process was simulated in the graphic environment to verify the feasibility of individual operations before the execution of the remote dismantling process. An under-water wall-climbing robot, moving by propeller injection, and identifying its coordinates by using a laser sensor, was developed and tested in the TRIGA reactor pool by measuring a radioactive contamination map of the reactor surface. Using MODFLOW and TRIGA site geological data, a computer simulation of the underground migration of residual radionuclides, after the TRIGA reactor decommissioning, was carried out. It was found that the underground migration rate was very slow such that, when radionuclide decay and dilution are considered, the residual radionuclides will not have a significant environmental impact. The soil decontamination R and D, using soil washing, solvent flushing and electro-decontamination technologies, was carried out to determine the best method for decontaminating the soil waste accumulated in KAERI. The decontamination results indicated that, using the soil washing method, more than 80% of the soil wastes could be decontaminated well enough to discharge them to the environment. It was also determined that the control of solution pH and temperature in the soil washing process is important for the reduction of decontamination waste. Further decontamination, using an electro-kinetic decontamination method, was considered necessary for the residual soil waste, which consisted mainly of fine soil particles. (author)

  5. Use of laser cutting techniques for dismantling tasks in nuclear facilities

    International Nuclear Information System (INIS)

    Haferkamp, H.; Drygalla, M.; Goede, M.

    2001-01-01

    A handguided laser processing system developed by laser zentrum Hannover e.V. (LZH) allows impressive cutting, notching, and material removal applications for the dismantling of nuclear power plants. The handguided unit is equipped with a motor drive for consistent processing results and flexible processing for as long as desired. It offers the possibility to adjust the nozzle as well as focal position in order that various materials with different material thicknesses may be processed. The set process parameters may be viewed on a display which also indicates the laser processing programme selected. An integrated exhaust system guarantees a shielded process. The operator is not only protected against process emissions but also against laser beam reflexions. The handguided unit is connected to the laser beam source via an optical fibre and can be used for laser output powers of up to 1500 W with a high beam quality. For handguided laser material processing low emissions at high feed rates as well as cutting kerf widths between 0.5 and 0.3 mm for special applications such as the dismantling of large facilities or units, etc. are decisive, especially when cutting metal sheets for the dismantling of nuclear power plants. (orig.)

  6. Use of laser cutting techniques for dismantling tasks in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H.; Drygalla, M.; Goede, M. [Laser Zentrum Hannover e.V. (Germany)

    2001-07-01

    A handguided laser processing system developed by laser zentrum Hannover e.V. (LZH) allows impressive cutting, notching, and material removal applications for the dismantling of nuclear power plants. The handguided unit is equipped with a motor drive for consistent processing results and flexible processing for as long as desired. It offers the possibility to adjust the nozzle as well as focal position in order that various materials with different material thicknesses may be processed. The set process parameters may be viewed on a display which also indicates the laser processing programme selected. An integrated exhaust system guarantees a shielded process. The operator is not only protected against process emissions but also against laser beam reflexions. The handguided unit is connected to the laser beam source via an optical fibre and can be used for laser output powers of up to 1500 W with a high beam quality. For handguided laser material processing low emissions at high feed rates as well as cutting kerf widths between 0.5 and 0.3 mm for special applications such as the dismantling of large facilities or units, etc. are decisive, especially when cutting metal sheets for the dismantling of nuclear power plants. (orig.)

  7. Pick-N-Pull Auto Dismantlers, Kansas City, LLC Inc.

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against Pick-N-Pull Auto Dismantlers, Kansas City, LLC, a subsidiary of Schnitzer Steel Industries, Inc., for alleged violations at its facilities at 8012 East Truman Rd., Kansas C

  8. DCNS invents the immersed civil modular reactor

    International Nuclear Information System (INIS)

    Guilhem, Jean

    2013-01-01

    SMRs (Small and Modular Reactors) are a response to networks smaller than 10 GW. They are under study in USA, Russia and China, and a Korean one is already certified. In France, DCNS proposes Flexblue, a compact modular 160 MWe reactor, completely immersed 60 to 100 m under the sea level, few kilometres off the coasts. Almost invisible and protected by the marine environment, it will benefit from an infinite cold source which will ensure a high safety level. It is designed to produce 1 MWh at less than 100 euros. It will be retrieved onshore for its dismantling at the end of its service life. Its operation is said to be neutral for surrounding ecosystems with a tritium release more than 90 per cent less than that of onshore power plants

  9. Note n. SD3-DEM-01 regulations procedures relative to the based nuclear installations dismantling

    International Nuclear Information System (INIS)

    2003-02-01

    This note aims to define the regulations procedures relative to the safety of based nuclear installations dismantling defined by the decree of the 11 december 1963 modified. The first part describes the two main phases of a based nuclear installation life, the operating and the dismantling phase. The second part is devoted to the procedures. (A.L.B.)

  10. Status of the RA research reactor decommissioning project

    International Nuclear Information System (INIS)

    Ljubenov, V.; Nikolic, D.; Pesic, M.; Milosevic, M.; Kostic, Lj.; Steljic, M.; Sotic, O.; Antic, D. . E-mail address of corresponding author: vladan@vin.bg.ac.yu; Ljubenov, V.)

    2005-01-01

    The 6.5 MW heavy water RA research reactor at the VINCA Institute of Nuclear Sciences operated from 1959 to 1984. After 18 years of extended shutdown in 2002 it was decided that the reactor shutdown should be final. Preliminary decommissioning activities have been initiated by the end of 2002 under the Technical Co-operation Programme of the International Atomic Energy Agency. The objective of the project is to implement safe, timely and cost-effective decommissioning of the RA reactor up to unrestricted use of the site. Decommissioning project is closely related to two other projects: Safe Removal of the RA Reactor Spent Nuclear Fuel and Radioactive Waste Management in VINCA Institute. The main phases of the project include preparation of the detailed decommissioning plan, radiological characterization of the reactor site, dismantling and removal of the reactor components and structures, decontamination, final radiological site survey and the documentation of all the activities in order to obtain the approval for unrestricted use of the facility site. In this paper a review of the activities related to the preparation and realization of the RA reactor decommissioning project is given. Status of the project's organizational and technical aspects as for July 2004 are presented and plans for the forthcoming phases of the project realization are outlined. (author)

  11. The Pierrelatte's military factories dismantling

    International Nuclear Information System (INIS)

    Bourrelier, P.; Kassel, Ch.

    1999-01-01

    The site of Pierrelatte in France, receives since 1958 gaseous diffusion plants assigned to the uranium enrichment for military uses. Since 1996 Cogema implements, by order of the Cea, a dismantling operation of the site. The operation which will begin in 2000, is going to last ten years. This project shows difficulties that make it innovative. Its originality, the planning, the risks, the program progressing and the regulation aspects are detailed in this paper. Beyond the complicated technical operations, the wastes management is of primary importance for the good development of the operations. (A.L.B.)

  12. Decommissioning plan for Tammuz-2 research reactor in Iraq

    International Nuclear Information System (INIS)

    Ahmed, A. A.; Jasim, H. I.

    2012-12-01

    For nuclear facilities, decommissioning is the final phase in the life cycle after sitting, design, construction, commissioning and operation. It is a process involving operations such as decontamination, dismantling of plant equipment of result in materials. All these activities take into account health and safety requirements for operating personnel and the general public, and any implications for the environment. (1) In several projects to decommission various type of nuclear facilities, it has been shown that technical methods and equipment are available today to dismantle safely nuclear facilities, of whatever type or size. Much experience in the use of these techniques has the decommissioning of prototype, demonstration, and small power reactors or other nuclear facilities. In Iraq these activities will be done by the cooperation with (IAEA) International Atomic Energy Agency and the other national regulatory bodies such as (IRSRA) Iraqi Radioactive Sources Regulatory Authority, and (RPC/MoEn) Radiation Protection Center/ Ministry of Environment in Iraq. (Author)

  13. Advanced robotics for decontamination and dismantlement

    International Nuclear Information System (INIS)

    Hamel, W.R.; Haley, D.C.

    1994-01-01

    The decontamination and dismantlement (D ampersand D) robotics technology application area of the US Department of Energy's Robotics Technology Development Program is explained and described. D ampersand D robotic systems show real promise for the reduction of human exposure to hazards, for improvement of productivity, and for the reduction of secondary waste generation. Current research and development pertaining to automated floor characterization, robotic equipment removal, and special inspection is summarized. Future research directions for these and emerging activities is given

  14. Management of the decommissioning of the Thetis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Luc; Maris, Patrick; Noynaert, Luc [SCK-CEN, Mol (Belgium)

    2013-07-01

    The Thetis research reactor on the site of the Nuclear Sciences Institute of the Ghent University has been in operation from 1967 until December 2003. This light-water moderated graphite-reflected low-enriched uranium pool-type reactor has been used for various purposes e.g. the production of radioisotopes and activation analyses. During the first years its core power was 15 kW. In the early '70, a core enlargement allowed for operation at typically 150 kW, while the maximum was allowed to be 250 kW In September 2007, Ghent University entrusted to SCK-CEN the management of the back-end of the spent fuel and the decommissioning of the reactor. In 2010, the spent fuel was removed from the reactor and transported to Belgoprocess for cementation in 400 l drums and interim storage awaiting final disposal. This activity allows tackling the decommissioning of the reactor. The objective is to complete its decommissioning by the end of 2014. In the framework of the decommissioning of the Thetis reactor, SCK-CEN set-up the final decommissioning plan and the decommissioning licensing file. These documents include among others a radiological inventory of the reactor. The graphite moderator blocks, the control and the safety pates, the liner of the pool were modeled to assess the activation products (isotopic vector and intensity). At the end of the unloading of the reactor in 2010 a brief mapping of the equipment's and internals of the reactor pool was performed. In 2012, we realized a more detailed mapping. These results confirmed those performed earlier and allowed to confirm the assumptions made in the final decommissioning plan. We set-up the terms of reference for the first decommissioning phase of the reactor namely the dismantling of the reactor i.e. reactor pool, circuits and rabbit system, equipment's and ventilation ducts. The removal of asbestos is also included into this phase. We conducted the selection process and the awarding of this

  15. Development programs on decommissioning technology for reactors and fuel cycle facilities in Japan

    International Nuclear Information System (INIS)

    Fujiki, K.

    1992-01-01

    The Science and Technology Agency (STA) of Japan is promoting technology development for decommissioning of nuclear facilities by entrusting various research programs to concerned research organisations: JAERI, PNC and RANDEC, including first full scale reactor decommissioning of JPDR. According to the results of these programs, significant improvement on dismantling techniques, decontamination, measurement etc. has been achieved. Further development of advanced decommissioning technology has been started in order to achieve reduction of duration of decommissioning work and occupational exposures in consideration of the decommissioning of reactors and fuel cycle facilities. (author) 5 refs.; 7 figs.; 1 tab

  16. Dismantling the silicon microstrip detector on L3

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    The silicon microstrip detector is located at the heart of the detector and must be kept cool to prevent thermal noise. The work shown here is the removal of the cooling system. L3 was dismantled as part of the closure of the entire LEP accelerator in 2000 to make way for the new LHC.

  17. Dismantlement and destruction of chemical, nuclear and conventional weapons

    International Nuclear Information System (INIS)

    Schulte, N.T.

    1997-01-01

    The safe destruction and dismantling of chemical, nuclear and conventional weapons is of fundamental importance to the security of all countries represented in this volume. Expertise in the field is not confined to one country or organisation: all can benefit from each other. There is an ever present danger of proliferation of weapons of mass destruction: approximately two dozen countries have ongoing programmes to develop or acquire such weapons, and many are also gaining the capability to build air-surface delivery systems. But much can be done to prevent proliferation by reducing leakage of materials and know-how and by solving the problems of the destruction of surplus weapons systems, which has now come to be a key issue. In 13 sessions of the workshop attention was paid to (1) Dismantlement and Destruction of Chemical, Nuclear and Conventional Weapons; (2) Status of Implementation of Arms Control Treaties and Voluntary Commitments; (3) National Perspectives on Cooperation in Disarmament; (4) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Chemical Weapons; (5) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Nuclear Weapons; (6) Stocktaking of National and Bilateral Disposal/Destruction Programmes: Conventional Weapons. Session; (7) Experience with Currently Employed Chemical Destruction Technologies; (8) Alternative Chemical Destruction Technologies; (9) Deactivation, Dismantlement and Destruction of Delivery Systems and Infrastructure for Nuclear Weapons; (10) Storage, Safeguarding and Disposition of Fissile Materials; (11) Technologies for Conversion and Civil Use of Demilitarized Materials; (12) International Organizations; and (13) Environmental Challenges Posed by Chemical and Nuclear Disarmament

  18. Information Factor Color Revolutions and Modern Technology Dismantling of Political Regimes

    Directory of Open Access Journals (Sweden)

    Andrey Victorovich Manoylo

    2014-01-01

    Full Text Available This article analyzes the problems associated with the dismantling of the political regimes in modern states (both authoritarian and democratic type and the role of technology in the process of color revolutions. Problems of dismantling of political regimes and the associated problems of color revolutions acquire extreme urgency and actuality in modern conditions. In the world history always there were problems associated with the dismantling of the political regimes. But formerly the instruments of dismantling included mostly violent methods in the classical sense, applied in armed coups, local armed conflicts, civil wars and military interventions. And the international community managed to develop effective methods to counter these threats and to create effective mechanisms for political control of these processes, even at the international level. Acuteness of the problem associated with the threat of military coups in the various countries of the world does not cease to be actual and not removed from the agenda, but for the whole international community this category of threats is familiar, and the world community knows how to react to it. However, today the world is changing, and technologies of armed coups are replaced by more subtle color revolutions technology that is cleverly disguised as a true revolutionary movement and virtually unopposed from both countries witch fully developed democracy and of the Oriental type, preserved traditional livelihoods. Repetition of the scenario of color revolutions in Ukraine causes legitimate concern (well founded anxiety, since there is growing confidence that Ukraine -not the end point of this scenario, but simply a bargaining chip to the geopolitical game in which the brunt of American directors (producers of color revolutions may be directed to Russia, China and Kazakhstan.

  19. Information Factor Color Revolutions and Modern Technology Dismantling of Political Regimes

    Directory of Open Access Journals (Sweden)

    Andrey Victorovich Manoylo

    2014-01-01

    Full Text Available This article analyzes the problems associated with the dismantling of the political regimes in modern states (both authoritarian and democratic type and the role of technology in the process of color revolutions. Problems of dismantling of political regimes and the associated problems of color revolutions acquire extreme urgency and actuality in modern conditions. In the world history always there were problems associated with the dismantling of the political regimes. But formerly the instruments of dismantling included mostly violent methods in the classical sense, applied in armed coups, local armed conflicts, civil wars and military interventions. And the international community managed to develop effective methods to counter these threats and to create effective mechanisms for political control of these processes, even at the international level. Acuteness of the problem associated with the threat of military coups in the various countries of the world does not cease to be actual and not removed from the agenda, but for the whole international community this category of threats is familiar, and the world community knows how to react to it. However, today the world is changing, and technologies of armed coups are replaced by more subtle color revolutions technology that is cleverly disguised as a true revolutionary movement and virtually unopposed from both- countries witch fully developed democracy and of the Oriental type, preserved traditional livelihoods. Repetition of the scenario of color revolutions in Ukraine causes legitimate concern (well founded anxiety, since there is growing confidence that Ukraine -not the end point of this scenario, but simply a bargaining chip to the geopolitical game in which the brunt of American directors (producers of color revolutions may be directed to Russia, China and Kazakhstan.

  20. Present status of refining and conversion facility dismantling. Progress in first half of 2010FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Tanaka, Yoshio; Takahashi, Nobuo; Tokuyasu, Takashi

    2011-06-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008, and all equipments in radiation controlled area will be dismantled by the 2011 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in first half year of 2010FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room / each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  1. Present status of refining and conversion facility dismantling. Progress in first half of 2009FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Tanaka, Yoshio; Takahashi, Nobuo; Tokuyasu, Takashi

    2010-03-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008, and all equipments in radiation controlled area will be dismantled by the 2011 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in first half year of 2009FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room / each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  2. Present status of refining and conversion facility dismantling. Progress in latter half of 2008FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Takahashi, Nobuo; Tokuyasu, Takashi

    2010-01-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008, and all equipments in radiation controlled area will be dismantled by the 2011 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in latter half year of 2008FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room/each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  3. Analytical determination of traced elements in concrete samples used in nuclear reactors of the European Community

    International Nuclear Information System (INIS)

    May, S.; Piccot, D.

    1984-01-01

    In reactor dismantling residual radioacting of concrete used, especially in biological shield can brought problems for treatment and disposal. Radioactivity of concrete from reactors can be forecasted if element content is known. Elements producing long life radionuclides are: chlorine, calcium nickel, cobalt, niobium, europium and samarium. Neutron activation analysis is used for determination of these elements whithout chemical separation for Ca, Co, Eu and Sm and with radiochemical separation for Cl, Ni and Nb. A lot of elements, less interesting are also determined by gamma spectrometry after irradiation. It was possible to determine 29 elements in 21 concrete samples from different European Community reactors

  4. Dismantling of alpha contaminated obsolete installations and glove boxes on the IRMM site in Geel (Belgium)

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Melis, Gustaaf

    2007-01-01

    At the Institute for Reference Materials and Measurements (European commission, Joint Research Centre, IRMM) a dismantling campaign of obsolete installations and glove boxes has been carried out in 2005. There were various reasons for their removal. Some large installations did not meet modern safety standards, other installations were worn out and expected to cause a radioactive contamination risk in the future. The main goal was to create as less waste as possible by extensive contamination checks and by decontamination if necessary. For the glove boxes, decontamination was not possible. A controlled area was set up around the installation to be dismantled in order to prevent spreading of contamination from dust and dirt. This was only possible for the 'minor' contaminated installations. The dismantling campaign of the glove boxes was carried out by using tents of two types depending the contamination inside the glove boxes. The most common glove boxes were dismantled in a tent constructed with hard surfaced polycarbonate plates (ventilated cell). For glove boxes with higher contamination, the same principle was used but with a second 'glove box tent' inside (ventilated glove tent). The purpose of this project was to learn from the experience of this campaign which gave the ability to make estimates of future radioactive waste or classic waste that could be expected from dismantled installations. (authors)

  5. Device for transferring fast nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Plagnard, Andre.

    1982-01-01

    The description is given of a device for transferring fuel assemblies between a storage position near the reactor vessel and a position where the irradiated assemblies are evacuated and the provision of new assemblies for the reactor. This device can be dismantled and is movable as a whole for its successive use on several reactors and includes: - a platform mounted so as to rotate on a support made to rest on the structure of the reactor, the platform having at least one opening then being horizontal and mobile about a vertical axis to bring the opening successively in position with vertical wells giving access to the storage and evacuation positions of the assemblies provided in the reactor structure, - at least one hopper that can contain one assembly in a vertical position, located on the upper surface of the platform around the opening provided in it and fitted with a winch for the vertical moving of the assemblies inside the wells and the hopper, when these follow each other by rotation of the platform, - at least one connecting device carried on the platform for connecting the hopper and wells when these are in line [fr

  6. Removing of the fuel element storage basin by explosive technique in the course of decommissioning of the Nuclear research reactor FR 2 in the research center Karlsruhe. Permission and technical execution

    International Nuclear Information System (INIS)

    Jehle, P.; Freund, H.U.

    1999-01-01

    The fuel element storage basin was removed by explosive technique in the course of the decommissioning of the nuclear research reactor FR 2. This basin consisted of 6.800 tons of heavily reinforced concrete with 25 tons of stainless steel lining. The reactor building including residual radioactive inventory was constructionally connected to the basin and had to stay undamaged. For this reason and due to the fact that the storage basin as operational part of the nuclear facility was subject to the German nuclear law the dismantling had to follow stringent licensing and control requirements. Special restrictions concerned the tolerable reactor building vibrations and the direct blast loadings which could affect the structural integrity of the building enclosing the basin. The explosive dismantling operations which also included the final removal of the building foundation were successfully performed in 90 separate blasts employing 490 kg of commercial explosives. (orig.) [de

  7. The development of fast neutron reactors in France - from February 1983 to February 1984

    International Nuclear Information System (INIS)

    Benoist, E.; Champeix, L.

    1984-01-01

    The report presents the ''end of life'' tests, the decommissioning and the start of dismantling operations at the Rapsodie reactor. For nuclear power plant Phenix data concerning electricity production, the results of the tests on fuel elements and the occurred accidents are reported. For the nuclear power plant Super Phenix 1 under construction at Creys Malville the results with regard to the reactor core, the fuel elements, the secondary coolant circuits and the auxiliary circuits are presented. The project for the 1500 MWe nuclear power plant Super Phenix 2 is discussed. The research and development activities in the LMFBR field, mainly, technological aspects, reactor core, fuel elements, materials and the test programs concerning especially the safety experiments and sodium-water reactors are summarized in the last part of the report

  8. Some studies related to decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    Bergman, C.; Menon, S.

    1990-02-01

    Decommissioning of large nuclear reactors has not yet taken place in the Nordic countries. Small nuclear installations, however, have been dismantled. This NKA-programme has dealt with some interesting and important factors which have to be analysed before a large scale decommissioning programme starts. Prior to decommissioning, knowledge is required regarding the nuclide inventory in various parts of the reactor. Measurements were performed in regions close to the reactor tank and the biological shield. These experimental data are used to verify theoretical calculations. All radioactive waste generated during decommissioning will have to be tansported to a repository. Studies show that in all the Nordic countries there are adequate transport systems with which decommissioning waste can be transported. Another requirement for orderly decommissioning planning is that sufficient information about the plant and its operation history must be available. It appears that if properly handled and sorted, all such information can be extracted from existing documentation. (authors)

  9. Long range manipulator development and experiments with dismantling tools

    International Nuclear Information System (INIS)

    Mueller, K.

    1993-01-01

    An existing handling system (EMIR) was used as a carrier system for various tools for concrete dismantling and radiation protection monitoring. It combined the advantages of long reach and high payload with highly dexterous kinematics. This system was enhanced mechanically to allow the use of different tools. Tool attachment devices for automatic tool exchange were investigated as well as interfaces (electric, hydraulic, compressed air, cooling water and signals). The control system was improved with regard to accuracy and sensor data processing. Programmable logic controller functions for tool control were incorporated. A free field mockup of the EMIR was build that allowed close simulation of dismantling scenarios without radioactive inventory. Aged concrete was provided for the integration tests. The development scheduled included the basic concept investigation; the development of tools and sensors; the EMIR hardware enhancement including a tool exchange; the adaption of tools and mockup and the final evaluation of the system during experiments

  10. Follow-up of CRNL employees involved in the NRX reactor clean-up

    International Nuclear Information System (INIS)

    Werner, M.M.; Myers, D.K.; Morrison, D.P.

    1982-07-01

    Data available to date on the mortality of continuing and retired employees of the Chalk River Nuclear Laboratories are consistent with the Σhealthy workerΣ effect that has been observed in similar studies at other nuclear facilities. Because of an accident at the NRX research reactor in December 1952, the reactor was largely dismantled and rebuilt in 1953-54. These operations involved appreciable radiation exposures to a number of employees. The follow-up of the 850 on-site AECL staff involved in the clean-up has indicated that there were no unusual patterns in the mortality of this group when compared with those of the general population of Ontario

  11. Simulation for preparation of dismantling operations

    International Nuclear Information System (INIS)

    Carrere, J.M.; Idasiak, J.M.

    2003-01-01

    New applications of 3D models are still emerging. At first, simulation of dismantling operations has been used to illustrate the proposed scenarios, with 3D views or animated films, for: - internal and external communication; - technical reviews; - presentation to Safety Authorities. It helps a lot to explain the structure of the facility to dismantle, the proposed solutions, to convince people that the study is detailed enough. But 3D modelling is an investment in time and money. A lot of time is spent in collecting the drawings, and checking them with pictures, videos, interviews of operators, new measurements. This investment can be much more exploited, during all the life time of the decommissioning project, to avoid problems during operations, and so to save a lot of money. It is possible to have navigation or even immersion inside 3D models of facilities to dismantle, so that the project team or the operators can be familiar with the configuration of rooms, of accesses, with the location of equipment. A 3D model can hardly be as detailed as the real facility. Some simplifications have to be done, to avoid having too heavy models. But in a training process, 3D-models help to have rapidly an overview of complex environments. Dose uptake simulation is becoming also a tool for decommissioning projects. It is possible to compute either off line, or even in real time, the dose uptake of the operators, and to compare easily different options for the ALARA principle: decontamination or not, use of shielding or not. It requires to have not only the geometrical model, but also a radiological model of the facility, but with the use of gamma camera and spectrometry, it becomes easier. 3D-models can be used to integrate in an user-friendly way all the knowledge of a facility to decommission, and to update that knowledge during operations: reports on construction, on exploitation, on shut-down, physical and radiological measurements, traceability of wastes. Progress are

  12. Sampling of reactor pressure vessel and core internals

    International Nuclear Information System (INIS)

    Oberhaeuser, Ralf

    2012-01-01

    Decommissioning and dismantling of nuclear power plants is a growing business as a huge number of plants built in the 1970's have now reached their lifetime. It is well known that dismantling a nuclear power plant means an extraordinary expense for the owner respectively operator. Beside the dismantling works for itself, the disposal of activated components and other nuclear waste is very expensive. What comes next is the fact that final disposal facilities are not available yet in most countries meaning a need for interim storage on-site in specially built facilities. It can be concluded that a special attention is paid on producing a minimal radioactive waste volume. For this, optimized dismantling and packaging concepts have to be developed. AREVA is proud of versatile experience in successfully dismantling nuclear components like core internals and reactor pressure vessel (RPV). The basis of a well-founded and optimized dismantling and packaging concept must always be the detailed knowledge of the radiological condition of the component to be and in the best case a 3D activation- model. For keeping the necessary sampling effort as small as possible, but simultaneously as efficient as possible, representative sampling positions are defined in advance by theoretical radiological examinations. For this, a detailed 3D-CAD-model of the components to be dismantled has proven very helpful and effective. Under these aspects a sampling of RPV and its components is necessary to verify the theoretically calculated radiological data. The obtained results of activation and contamination are taken into account for the optimized dismantling and packaging strategy. The precise 3D-activation-model will reduce the necessary number and type of final disposal containers as security factors are minimized leading to a lower shielding effort, too. Besides, components or even parts of components may be subject of release measurement. In the end, costs can be reduced. In this context

  13. Fast reactor development programme in France

    Energy Technology Data Exchange (ETDEWEB)

    Le Rigoleur, C [Direction des Reacteurs Nucleaires, CEA Centre d` Etudes de Cadarache, Saint-Paul-lez-Durance (France)

    1998-04-01

    First the general situation regarding production of electricity in France is briefly described. Then in the field of Fast Reactors, the main events of 1996 are presented. At the end of February 1996, the PHENIX reactor was ready for operation. After review meetings, the Safety Authority has requested safety improvements and technical demonstrations, before it examines the possibility of authorizing a new start-up of PHENIX. The year 1996 was devoted to this work. In 1996, SUPERPHENIX was characterized by excellent operation throughout the year. The reactor was restarted at the end of 1995 after a number of minor incidents. The reactor power was increased by successive steps: 30% Pn up to February 6, followed by 50% Pn up to May then 60% up to October and 90% Pn during the last months. A programmed shutdown period occurred during May, June and mid-July 1996. The reactor has been shutdown at the end of 1996 for the decenial control of the steam generators. The status of the CAPRA project, aimed at demonstrating the feasibility of a fast reactor to burn plutonium at as high a rate as possible and the status of the European Fast Reactor are presented as well as their evolution. Finally the R and D in support of the operation of PHENIX and SUPERPHENIX, in support of the ````knowledge-acquisition```` programme, and CAPRA and EFR programmes is presented, as well as the present status of the stage 2 dismantling of the RAPSODIE experimental fast reactor. (author). 4 refs, figs, 2 tabs.

  14. Radiological impact of very slightly radioactive copper and aluminium recovered from dismantled nuclear facilities

    International Nuclear Information System (INIS)

    Garbay, H.; Chapuis, A.M.; Cahuzac, O.; Guetat, P.; Haristoy, D.; Renaud, P.

    1991-01-01

    This work is in keeping with a large evaluation of doses likely to be received by public and non nuclear workers when dismantling nuclear installations. A bibliographic study and inquiries are realized, in the nuclear field to evaluate quantities of very slightly radioactive materials, in the conventional copper and aluminium recovery fields: waste recovery, metal refinery and processing, occupational or domestic uses of the metals or their alloys. In fact copper and aluminium waste arising from the dismantling of nuclear installations are mainly electrical cables constituents including insulation material which is mainly polyvinyle chloride (PVC). Estimated quantities are relatively low compared to steel quantities arising from dismantling. The study is based on the hypothesis of two PWRs dismantled per year, estimated quantities are 200 tonnes of copper, 40 tonnes of aluminium and 500 tonnes of PVC. A special case is also studied, which is the dismantling of low and medium uranium enrichment plant in Pierrelatte (France); the plant pipework is mainly made of an aluminium and magnesium alloy: AG3. From these informations, one can define exposure scenarios which may occur with a non negligible probability. The doses likely to be received under the foreseen conditions are calculated. Reference doses are established from recommendations of international organisations as ICRP, IAEA, NEA. Comparing the calculated doses and the reference doses, the activity level of the initial waste can be deduced as to follow the recommendations. The mean specific activity of main beta-gamma emitters in copper, aluminium and PVC are of the same order of magnitude, 10Bq.g -1 . In the case of alpha emitters specific activity levels depend on the material and on the radionuclide, from 2 Bq.g -1 to 10 Bq.g -1 in copper, from 10 Bq.g -1 to 50 Bq.g -1 in aluminium

  15. Analyses and testing of model prestressed concrete reactor vessels with built-in planes of weakness

    International Nuclear Information System (INIS)

    Dawson, P.; Paton, A.A.; Fleischer, C.C.

    1990-01-01

    This paper describes the design, construction, analyses and testing of two small scale, single cavity prestressed concrete reactor vessel models, one without planes of weakness and one with planes of weakness immediately behind the cavity liner. This work was carried out to extend a previous study which had suggested the likely feasibility of constructing regions of prestressed concrete reactor vessels and biological shields, which become activated, using easily removable blocks, separated by a suitable membrane. The paper describes the results obtained and concludes that the planes of weakness concept could offer a means of facilitating the dismantling of activated regions of prestressed concrete reactor vessels, biological shields and similar types of structure. (author)

  16. RA reactor operation and maintenance in 1994, Part 1

    International Nuclear Information System (INIS)

    Sotic, O.; Cupac, S.; Sulem, B.; Zivotic, Z.; Mikic, N.; Tanaskovic, M.

    1994-01-01

    During the previous period RA reactor was not operated because the Committee of Serbian ministry for health and social care has cancelled the operation licence in August 1984. The reason was the non existing emergency cooling system and lack of appropriate filters in the special ventilation system. The planned major tasks were fulfilled: building of the new emergency cooling system, reconstruction of the existing ventilation system, and renewal of the reactor power supply system. The existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Renewal of the reactor instrumentation was started but but it is behind the schedule because the delivery of components from USSR was stopped for political reasons. The spent fuel elements used from the very beginning of reactor operation are stored in the existing pools. Project concerned with increase of the storage space and the efficiency of handling the spent fuel elements has started in 1988 and was fulfilled in 1990. Control and maintenance of the reactor instrumentation and tools was done regularly but dependent on the availability of the spare parts. Training of the existing personnel and was done regularly, but the new staff has no practical training since the reactor is not operated. Lack of financial support influenced strongly the status of RA reactor [sr

  17. Engineering and planning for reactor 105-C interim safe storage project subcontract no. 0100C-SC-G0001 conceptual design report. Volume 1

    International Nuclear Information System (INIS)

    1996-04-01

    The 105-C Reactor, one of eight surplus production reactors at the Hanford Site, has been proposed by the U.S. Department of Energy, Richland, Operations Office to be the first large-scale technology demonstration project in the decontamination and decommissioning (D ampersand D) focus area as part of the project for dismantlement and interim safe storage. The 105-C Reactor will be placed in an interim safe storage condition, then undergo the decontamination and decommissioning phase. After D ampersand D, the reactor will be placed in long- term safe storage. This report provides the conceptual design for these activities

  18. Derivation methods for clearance levels applied to reactors

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Seki, Takeo

    2001-01-01

    In order to support the discussion by the Nuclear Safety Commission, JAERI derived the unconditional clearance levels for concrete and metal arising from the operation and dismantling of nuclear reactors. The clearance levels of 20 radionuclides were derived from 10 μSv/y of individual doses by deterministic approach. In this approach, calculation models were established to assess individual doses resulting from 73 exposure pathways related to disposal and recycle/reuse, and realistic parameter values were selected considering Japanese natural and social conditions. The appropriateness of selected parameter values was confirmed by stochastic analyses. (author)

  19. Dismantling of Radium-226 Coal Level Gauges: Encountered Problems and How to Solve

    International Nuclear Information System (INIS)

    Punnachaiya, M.; Nuanjan, P.; Moombansao, K.; Sawangsri, T.; Pruantonsai, P.; Srichom, K.

    2006-01-01

    This paper describes the techniques for dismantling of disused-sealed Radium-226 (Ra-226) coal level gauges which the source specifications and documents were not available, including problems occurred during dismantling stage and the decision making in solving all those obstacles. The 2 mCi (20 pieces), 6 mCi (20 pieces) and 6.6 mCi (30 pieces) of Ra-226 hemi-spherically-shaped with lead-filled coal level gauges were used in industrial applications for electric power generation. All sources needed to be dismantled for further conditioning as requested by the International Atomic Energy Agency (IAEA). One of the 2 mCi Ra-226 source was dismantled under the supervision of IAEA expert. Before conditioning period, each of the 6 mCi and 6.6 mCi sources were dismantled and inspected. It was found that coal level gauges had two different source types: the sealed cylindrical source (diameter 2 cm x 2 cm length) locked with spring in lead housing for 2 mCi and 6.6 mCi; while the 6 mCi was an embedded capsule inside source holder stud assembly in lead-filled housing. Dismantling Ra-226 coal level gauges comprised of 6 operational steps: confirmation of the surface dose rate on each source activity, calculation of working time within the effective occupational dose limit, cutting the weld of lead container by electrical blade, confirmation of the Ra-226 embedded capsule size using radiation scanning technique and gamma radiography, automatic sawing of the source holder stud assembly, and transferring the source to store in lead safe box. The embedded length of 6 mCi Ra-226 capsule in its diameter 2 cm x 14.7 cm length stud assembly was identified, the results from scanning technique and radiographic film revealed the embedded source length of about 2 cm, therefore all the 6 mCi sources were safely cut at 3 cm using the automatic saw. Another occurring problem was one of the 6.6 mCi spring type source stuck inside its housing because the spring was deformed and there was

  20. Polychlorinated biphenyls (PCBs) in the frame of the dismantling of nuclear facilities

    International Nuclear Information System (INIS)

    Hagenbart, Lars; Held, Christian; Reichert, Alexander

    2013-01-01

    During construction and maintenance of nuclear facilities PCB (polychlorinated biphenyls) containing paints were used in a large extent in the past. The WAK dismantling and disposal Company has dismantles such facilities and identified the PCB in the buildings. Besides the radionuclides the conventional hazardous material group of the PCBs has also to be disposed. The respective legal regulations have to be considered. In the frame of the contribution the radiological release of building structures with respect to re-use or demolition and residual PCB containing materials is discussed. The radiological disposal in final repositories and the conventional disposal regulations for releasable residual wastes are reported.

  1. CONSIDERATIONS FOR THE DEVELOPMENT OF A DEVICE FOR THE DECOMMISSIONING OF THE HORIZONTAL FUEL CHANNELS IN THE CANDU 6 NUCLEAR REACTOR. PART 6 - PRESENTATION OF THE DECOMMISSIONING DEVICE

    Directory of Open Access Journals (Sweden)

    Gabi ROSCA FARTAT

    2015-05-01

    Full Text Available The objective of this paper is to present a possible solution for the designing of a device for the decommissioning of the horizontal fuel channels in the CANDU 6 nuclear reactor. The decommissioning activities are dismantling, demolition, controlled removal of equipment, components, conventional or hazardous waste (radioactive, toxic in compliance with the international basic safety standards on radiation protection. One as the most important operation in the final phase of the nuclear reactor dismantling is the decommissioning of fuel channels. For the fuel channels decommissioning should be taken into account the detailed description of the fuel channel and its components, the installation documents history, adequate radiological criteria for decommissioning guidance, safety and environmental impact assessment, including radiological and non-radiological analysis of the risks that can occur for workers, public and environment, the description of the proposed program for decommissioning the fuel channel and its components, the description of the quality assurance program and of the monitoring program, the equipments and methods used to verify the compliance with the decommissioning criteria, the planning of performing the final radiological assessment at the end of the fuel channel decommissioning. These will include also, a description of the proposed radiation protection procedures to be used during decommissioning. The dismantling of the fuel channel is performed by one device which shall provide radiation protection during the stages of decommissioning, ensuring radiation protection of the workers. The device shall be designed according to the radiation protection procedures. The decommissioning device assembly of the fuel channel components is composed of the device itself and moving platform support for coupling of the selected channel to be dismantled. The fuel channel decommissioning device is an autonomous device designed for

  2. Dismantling of civilian nuclear powered fleet technical support vessels. engineering solutions - 59386

    International Nuclear Information System (INIS)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    2012-01-01

    At the present time six nuclear technical support vessels are operated and maintained by Atomflot. Two of them (Volodarsky FTB (floating technical base) and Lepse FTB) were taken out of service for decommissioning and are stored afloat. One more vessel Lotta FTB should be decommissioned during next two years. The nuclear technological support ships carrying spent nuclear fuel (SNF), liquid and solid radioactive wastes (LRW and SRW) appear to be a possible radiation contamination of Murmansk region and Kola Bay because the Ship long-term storage afloat has the negative effect on hull's structures technical condition. As a result of this in the context of the Federal Program 'Nuclear and Radiation Safety' (2008-2015) NIPTB Onega OAO was engaged by state corporation Rosatom to develop the dismantling procedure for Volodarsky FTB and Lotta FTB. Before developing of nuclear technological support ships decommissioning projects the technical and economic assessment of decommissioning/dismantling was carried out. The following options were examined: - formation of module as one-piece Ship's hull for long-term storage at Saida Bay; - formation of separated modules for long-term storage at Saida Bay; - complete dismantling of hull's structures, systems and equipment with packing all generated SRW into certified long-term storage containers. This paper contains description of options, research procedure, comparative analysis of options of decommissioning and dismantling (D and D) of nuclear technological support ships and its difference with dismantling of nuclear submarine. On the basis of the technical and economic assessment of FTB D and D options the least expensive on the first D and D stage and the least duration option is the option 1 (Formation of module as one-piece Ship's hull for long-term storage at Saida Bay). By the implementation of the given option there will be the need of large areas for modules storage at Saida Bay. It was not considered while working out

  3. A solution to level 3 dismantling of gas-cooled reactors: Graphite incineration

    International Nuclear Information System (INIS)

    Dubourg, M.

    1993-01-01

    This paper presents an approach developed to solve the specific decommissioning problems of the G2 and G3 gas cooled reactors at Marcoule and the strategy applied with emphasis in incinerating the graphite core components, using a fluidized-bed incinerator developed jointly between the CEA and FRAMATOME. The incineration option was selected over subsurface storage for technical and economic reasons. Studies have shown that gaseous incineration releases are environmentally acceptable

  4. Interim storage of dismantled nuclear weapon components at the U.S. Department of Energy Pantex Plant

    International Nuclear Information System (INIS)

    Guidice, S.J.; Inlow, R.O.

    1995-01-01

    Following the events of 1989 and the subsequent cessation of production of new nuclear weapons by the US, the mission of the Department of Energy (DOE) Nuclear Weapons Complex has shifted from production to dismantlement of retired weapons. The sole site in the US for accomplishing the dismantlement mission is the DOE Pantex Plant near Amarillo, Texas. Pending a national decision on the ultimate storage and disposition of nuclear components form the dismantled weapons, the storage magazines within the Pantex Plant are serving as the interim storage site for pits--the weapon plutonium-bearing component. The DOE has stipulated that Pantex will provide storage for up to 12,000 pits pending a Record of Decision on a comprehensive site-wide Environmental Impact Statement in November 1996

  5. Nonproliferation and safeguards aspects of the Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Hannum, W.H.; Wade, D.C.; McFarlane, H.F.; Hill, R.N.

    1997-01-01

    The National Academy of Sciences (NAS) has declared that the large and growing stocks of plutonium from weapons dismantlement in the U.S. and the former Soviet Union FSU are a ''clear and present danger'' to peace and security. Moreover, the opinion of some experts that plutonium of any isotopic blend is a proliferation threat has been well publicized, heightening the concern that plutonium produced in the civilian fuel cycle is itself a proliferation threat. Assuring that separated plutonium, from dismantled warheads as well as from civilian power programs, is under effective control has (again) become a high priority of U.S. diplomacy. One pole of the debate on how to manage this material is to declare it to be a waste, and to search for some way to dispose of it safely, securely, and permanently. The other pole is to view it as an energy resource and to safeguard it against diversion, putting it into active use in the civilian power program. The ultimate choice cannot be separated from the long-term strategy for use of peaceful nuclear power. Continued use of a once-through fuel cycle will lead to an ever-increasing quantity of excess plutonium-requiring safeguarding. Alternatively, recycling the world's stocks of plutonium in fast reactors, contrary to common misconception, will cap the world supply of plutonium and hold it in working inventories for generating power. Transition from the current-generation light water cooled reactors (LWRs) to a future fast-reactor-based nuclear energy supply under international safeguards would, henceforth, limit world plutonium inventories to the amount necessary and useful for power generation, with no further excess production. (author)

  6. Refitting of the 'Celimene' hot cell for following up the fuel assembly of 900 MWe PWR power reactors

    International Nuclear Information System (INIS)

    Lhermenier, Andre; Van Craeynest, J.-C.

    1980-05-01

    The 'Celimene' cell adjoining the EL3 reactor provides for the acceptance, handling and the examination of irradiated fuel assemblies from power reactors (length approximately 4m, weight approximately 700 kg). Within the framework of the PWR fuel behavior follow-up or reprocessing, it is possible to extract an assembly representative of the normal fuel cycle, carry out non destructive tests on this assembly, extract pencils from it and re-insert this assembly, after refitting the head, into the normal fuel cycle for handling in a reprocessing plant or storage pond. Given suitable refitting techniques, the re-irradiation of the assembly can be considered after examination. Significant changes have been made to the buildings and the hoist facilities for handling very heavy flasks. It was necessary to rearrange the handling, machining and in-cell storage facilities. The development of an inspection rig will make it possible, some time in 1980, to carry out non destructive tests of assemblies, optical and metrological examination of assemblies prior to dismantling or of the structure after dismantling [fr

  7. The conceptual solutions concerning decommissioning and dismantling of Russian civil nuclear powered ships

    International Nuclear Information System (INIS)

    Kulikov, Konstantin N.; Nizamutdinov, Rinat A.; Abramov, Andrey N.

    2013-01-01

    From 1959 up to 1991 nine civil nuclear powered ships were built in Russia: eight ice-breakers and one lash lighter carrier (cargo ship). At the present time three of them were taking out of service: ice-breaker 'Lenin' is decommissioned as a museum and is set for storage in the port of Murmansk, nuclear ice-breakers 'Arktika' and 'Sibir' are berthing. The ice-breakers carrying rad-wastes appear to be a possible source of radiation contamination of Murmansk region and Kola Bay because the ship long-term storage afloat has the negative effect on hull's structures. As the result of this under the auspices of the Federal Targeted Program 'Nuclear and Radiation Safety of Russia for 2008 and the period until 2015' the conception and projects of decommissioning of nuclear-powered ships are developed by the State corporation Rosatom with the involvement of companies of United Shipbuilding Corporation. In developing the principal provisions of conception of decommissioning and dismantling of icebreakers the technical and economic assessment of dismantling options in ship-repairing enterprises of North-West of Russia was performed. The paper contains description of options, research procedure, analysis of options of decommissioning and dismantling of nuclear ice-breakers, taking into account the principle of optimization of potential radioactive effect to personnel, human population and environment. The report's conclusions contain the recommendations for selection of option for development of nuclear icebreaker decommissioning and dismantling projects. (authors)

  8. Radiological protection of the staff during the decommissioning operations of the Romanian VVR-S research reactor

    International Nuclear Information System (INIS)

    Ene, D.C.

    2002-01-01

    Dose rate estimates for periods of 100 days and 6, 10, 25, 100 years after the shut down of the Romanian VVR-S reactor are presented in this paper for some foreseen decommissioning activities which include: i) cutting the water pipe in the pump room and the reactor sealing operations; ii) extracting reactor components; and iii) handling and dismantling the internal structures taken of from the reactor. For the reactor components extracted from the reactor, the considered calculation points were placed in the central plan of the items, on the surface and at distances from the surface which correspond to +0.2m, +1m, +2m, +8m, and +10m. Time dependence of the resulted dose rates are presented and discussed. Qualitative comparison with the measured values from other VVR-S reactors is done. The obtained results assist to develop working procedures that must be observed during the decommissioning activities. (author)

  9. Dismantling of a hot cell of high level activity. Method and tools used

    International Nuclear Information System (INIS)

    Jeantet, E.; Miquel, P.; Baudoin, J.C.; Moutonnet, A.

    1981-05-01

    The aim of this operation is the removal of all the equipment and the material introduced and used in the hot cell 'Attila' and its decontamination to obtain an irradiation level as low as possible to allow direct intervention. The Attila facilitie was build in 1964-1966 to study dry processing of irradiated fuels by halogenide volatility process. Dismantling of the out-cell and of the laboratory associated to the shielded cell, dismantling inside the shielded cell with the remote handling equipment of the cell and tools used for these operations are described in this article [fr

  10. The Dismantling of Nuclear Installations in France

    International Nuclear Information System (INIS)

    Bonnaure, P.

    2011-01-01

    As we saw in the previous article by Pierre Bonnaure, though it has long been decried for the dangers inherent in its production structures and the very long-lived waste that it generates, nuclear power may yet recover its credibility, particularly in France. However, on close examination, we see that the nuclear industry is beset by a number of unresolved questions, beginning with the dismantling of installations that have become obsolete or are set to become so. Nuclear power took off after the Second World War, but several generations of technology have been developed since then, and most currently functioning power-stations - mainly second-generation installations - are theoretically nearing the end of their useful lives, at least in terms of what was said when they were being built. The problem therefore arises of their dismantling and the clean-up of the sites on which they were built, a thorny question on which Pierre Bonnaure casts light in this article (prospects, strategies, financing, management of waste etc.). Unfortunately, it emerges that in France nothing has really been resolved, that public debate on the matter is decidedly limited and that investment (both financial investment and research) is not commensurate with the needs of a sector which is, after all, the source of three quarters of national electricity production. (author)

  11. An Evaluation of Dismantling Scenarios Using a Computer Simulation Technology for KRR-1 and 2

    International Nuclear Information System (INIS)

    Kim, S.K.; Park, H.S.; Lee, K.W.; Oh, W.Z.; Park, J.H.

    2006-01-01

    A graphic simulation has been used to design and verify new equipment and has also been expanded to virtual prototyping technology [1∼5]. In the nuclear decommissioning field, this technology has been utilized to validate the design of dismantling processes and to check the interferences and collisions in dismantling scenarios. However, a graphic simulation only provides us with visible result it just provides us with illustrative information of the decommissioning process. A scenario evaluation program has been developed using the computer simulation technology to create an efficient decommissioning plan. In the D and D planning stage, it is important that the scenarios are evaluated from a engineering point of view because the decommissioning work has to be executed economically and safely following the best scenarios. Therefore, we need several modules to evaluate scenarios. We composed the systems like this: 1. Decommissioning DB module for managing the decommissioning activity information (nuclear facility data, worker's data, radioactive inventory date, etc.). Dismantling process evaluation module 3. Visualization module for a radioactive inventory and a dismantling process using 3D CAD and virtual reality technology. 4. Analysis module for the evaluation results of a dismantling process. The evaluation module's capabilities produce a dismantling schedule, quantify radioactive waste, visualize a radioactive inventory, estimate a decommissioning cost, estimate a worker's exposure, and check for interference/collisions. After using the simulation results, the expert ranking system to evaluate scenarios for economics and worker's safety are implemented. The expert ranking system is a powerful and flexible decision making process to help set priorities and make the best decisions when both the qualitative and quantitative aspects of a decision need to be considered. By reducing complex decisions to a series of one-on-one comparisons, then synthesizing the

  12. Optimization of reactor pressure vessel internals segmentation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung-Sik [Dankook Univ., Chungnam (Korea, Republic of). Dept. of Nuclear Engineering

    2017-11-15

    One of the most challenging tasks during plant decommissioning is the removal of highly radioactive internal components from the reactor pressure vessel (RPV). For RPV internals dismantling, it is essential that all activities are thoroughly planned and discussed in the early stage of the decommissioning project. One of the key activities in the detailed planning is to prepare the segmentation and packaging plan that describes the sequential steps required to segment, separate, and package each individual component of RPV, based on an activation analysis and component characterization study.

  13. Hot cells of the Osiris reactor

    International Nuclear Information System (INIS)

    Jourdain, Jean

    1969-10-01

    Hot cells of the Osiris reactor are β and γ type cells. Their main functions are: the extraction of irradiated samples from experimental assemblies (irradiation loops, experimental devices) used to irradiate them, the reinstallation of experimental setups with irradiated samples, the fractioning of unrecoverable experimental devices, and the removal of irradiated samples and active wastes. Each cell is therefore equipped with means for remote handling, for observation and for removal, and a venting. Each cell may also receive additional equipment, notably for the dismantling of experimental setups. This report presents the cell implantation in the reactor, elements to be handled in cells, the path followed by elements to be handled (arrival, departure, conveyors). It describes the cells (capacity and protection, design and construction, external and internal arrangements) and the cell equipment (remote handling devices, windows, lighting, lifting unit, sound system), and the installed electric power. A realisation planning is provided. An appendix indicates the cost of these hot cells

  14. Operational experience of decommissioning techniques for research reactors in the United Kingdom

    International Nuclear Information System (INIS)

    England, M.R.; McCool, T.M.

    2002-01-01

    In previous co-ordinated research projects (CRP) conducted by the IAEA no distinction was made between decommissioning activities carried out at nuclear power plants, research reactors or nuclear fuel cycle facilities. As experience was gained and technology advanced it became clear that decommissioning of research reactors had certain specific characteristics which needed a dedicated approach. It was within this context that a CRP on Decommissioning Techniques for Research Reactors was launched and conducted by the IAEA from 1997 to 2001. This paper considers the experience gained from the decommissioning of two research reactors during the course of the CRP namely: (a) the ICI Triga Mk I reactor at Billingham UK which was largely complete by the end of the research project and (b) the Argonaut 100 reactor at the Scottish Universities Research and Reactor centre at East Kilbride in Scotland which is currently is the early stages of dismantling/site operations. It is the intention of this paper with reference to the two case studies outlined above to compare the actual implementation of these works against the original proposals and identify areas that were found to be problematical and/or identify any lessons learnt. (author)

  15. Drafting of the dismantling operations of the MAR 200 workshop with the help of virtual reality

    International Nuclear Information System (INIS)

    Chabal, C.; Soulabaille, Y.; Garnier, T.; Callixte, O.

    2014-01-01

    In order to optimize future dismantling operations of nuclear installations virtual reality allows the validation of predefined scenarios and their adequacy with the environment. CEA uses an immersion and interactive room to validate maintenance and dismantling operations. The equipment of this room is composed of a video wall that gives a 3-dimensional view of the virtual environment, and of a system for motion capture. For the simulation of handling operations a haptic interface has been designed, it allows the user to receive a tactic and effort-feeling feed back. The immersion is completed by a phonic ambience that creates sounds for virtual operations. The use of the immersion room for optimizing the dismantling of a spent fuel dissolver (MAR 200) used in hot cell is presented. (A.C.)

  16. ANCCLI White Paper VI. Which conditions for an influential participation of CLIs and ANCCLI to the territorial and national follow-up of dismantling works

    International Nuclear Information System (INIS)

    Delalonde, Jean-Claude; Eimer, Michel; Boutin, Dominique

    2017-01-01

    After a brief presentation of the different phases of nuclear installation dismantling, and a statement about the interest of CLIs (Local information commissions) and ANCCLI (National association of local information commissions and committees), the first part of this white paper addresses the regulatory framework of dismantling, its process, and outlines roles of CLIs and ANCCLI in this process, and remaining issues. It describes the role CLIs already had in issues related to dismantling for different sites (Tricastin, Gard, Monts d'Arree, Saint-Laurent-des-Eaux). A set of proposals is formulated for an influential participation of CLIs and ANCCLI to the national and territorial follow-up of dismantling works. A road-map is proposed for CLIs who want to tackle the dismantling issue. An amendment is proposed for a decree related to the definitive stoppage and dismantling of basic nuclear installations and to subcontracting

  17. Westinghouse experience in using mechanical cutting for reactor vessel internals segmentation

    International Nuclear Information System (INIS)

    Boucau, Joseph; Fallstroem, Stefan; Segerud, Per; Kreitman, Paul J.

    2010-01-01

    Some commercial nuclear power plants have been permanently shut down to date and decommissioned using dismantling methods. Other operating plants have decided to undergo an upgrade process that includes replacement of reactor internals. In both cases, there is a need to perform a segmentation of the reactor vessel internals with proven methods for long term waste disposal. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques. Mechanical cutting has been used by Westinghouse since 1999 for both PWRs and BWRs and its process has been continuously improved over the years. Detailed planning is essential to a successful project, and typically a 'Segmentation and Packaging Plan' is prepared to document the effort. The usual method is to start at the end of the process, by evaluating the waste disposal requirements imposed by the waste disposal agency, what type and size of containers are available for the different disposal options, and working backwards to select the best cutting tools and finally the cut geometry required. These plans are made utilizing advanced 3-D CAD software to model the process. Another area where the modelling has proven invaluable is in determining the logistics of component placement and movement in the reactor cavity, which is typically very congested when all the internals are out of the reactor vessel in various stages of segmentation. The main objective of the segmentation and packaging plan is to determine the strategy for separating the highly activated components from the less activated material, so that they can be disposed of in the most cost effective manner. Usually, highly activated components cannot be shipped off-site, so they must be packaged such that they can be dry stored with the spent fuel in an Independent Spent Fuel Storage Installation (ISFSI). Less activated components can be shipped to an off-site disposal site depending on space availability. Several of the

  18. Days of dismantling activities of installations and rehabilitation of contaminated sites in France

    International Nuclear Information System (INIS)

    2008-01-01

    The objective of these days, organized by the section environment of the French society of radiation protection, is to present a panorama of the activities of nuclear installations dismantling and contaminated sites rehabilitation in France, by leaning in the same time on practical cases and by stating the French rule and the national and international recommendations on the subject. These days have also for object to approach the stakes associated with the sectors of waste management and the materials generated by these activities and in a more general way, the stakes to come for the different actors of the dismantling and the rehabilitation. (N.C.)

  19. The nuclear installations dismantling and the management of radioactive wastes; Le demantelement des installations nucleaires et la gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-01-15

    As other industrial activities, the nuclear industry causes risks. The risks bound to the dismantling operations are known and controlled. After a presentation of the dismantling and radioactive wastes challenge, this document proposes recommendations based on the first experiences of dismantling and wastes storage. It aims then to answer to the questions relative to the cost and the financing of the operations. Finally it wonders on the public information modalities. (A.L.B.)

  20. Multiparameter optimisation of dismantling activities and waste management at a research centre

    International Nuclear Information System (INIS)

    Andres, Roger

    2001-01-01

    Full text: The Paul Scherrer Institute (PSI) is a multi-disciplinary research centre for natural sciences and technology. The institute is active in solid-state physics, materials sciences, elementary particle physics, life sciences, nuclear and non-nuclear energy research, and energy-related ecology. PSI develops and operates complex research installations such as nuclear reactors and particle accelerators. These produce ionising radiation and major quantities of radioactive materials. The optimal handling of decommissioning and dismantling projects and radioactive waste treatment at PSI represents a complex management task, and is determined by many parameters that are only partially identical to those in the energy producing industry. Some of the major issues are addressed below. Management: The research community often requires rapid changes of experimental equipment. This necessitates that the four steps of decommissioning, removal, dismantling and conditioning of waste are spatially and temporally separated. The availability of a great scientific knowledge pool is instrumental for innovative solutions for the complex problems encountered. The accessibility of a modem hardware park (instruments, workshops etc.), sophisticated computer systems and modelling know how can facilitate the work considerably. The lack of a dedicated pool of decommissioning funds and the need for rapid response (see above) necessitate flexibility of the decommissioning crew and constant coordination and optimisation of the work packages with the institute's top management. The product of a research centre in general is not a tradable commodity and does not result in a direct return of money. Financial mechanisms such as the accumulation of funds for future liabilities are not an option. Since PSI - as probably most research institutes - is funded on a yearly basis, long term cost optimisations processes are in competition with legitimate short-term research needs. The benefits of

  1. Laser dismantling of a glovebox

    International Nuclear Information System (INIS)

    Johnson, R.; Fender, M.

    1985-01-01

    A 5 kW laser has been used to cut up a 2.6 x 1 x 1 m glove box made of 5 mm mild steel with 12.5 mm perspex windows and 3 mm neoprene gaskets. The laser cut all components including the sandwich of perspex, neoprene and steel with ease. The production of fibrous filaments of perspex during the cutting process has been almost avoided by modifying the cutting variables. The combustion of material beyond that being cut has also been prevented by adopting the correct level of laser power. The problems encountered with loss of glove box rigidity with progressive dismantling are discussed, together with the relevance these problems have to possible cutting methods other than lasers. (author)

  2. Project and feedback experience on nuclear facility decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L. [ENRESA (Spain); Benest, T.G. [United Kingdom Atomic Energy Authority, Windscale, Cumbria (United Kingdom); Tardy, F.; Lefevre, Ph. [Electricite de France (EDF/CIDEN), 69 - Villeurbanne (France); Willis, A. [VT Nuclear Services (United Kingdom); Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R. [Belgoprocess (Belgium); Jeanjacques, M. [CEA Saclay, 91 - Gif sur Yvette (France); Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C. [CEA Fontenay aux Roses, 92 (France); Fontana, Ph.; Fraize, G. [CEA Marcoule 30 (France); Seurat, Ph. [AREVA NC, 75 - Paris (France); Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2008-11-15

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  3. Project and feedback experience on nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Santiago, J.L.; Benest, T.G.; Tardy, F.; Lefevre, Ph.; Willis, A.; Gilis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.; Jeanjacques, M.; Bohar, M.P.; Bremond, M.P.; Poyau, C.; Mandard, L.; Boissonneau, J.F.; Fouquereau, A.; Pichereau, E.; Binet, C.; Fontana, Ph.; Fraize, G.; Seurat, Ph.; Chesnokov, A.V.; Fadin, S.Y.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Shisha, A.D.; Volkov, V.G.; Zverkov, Y.A.

    2008-01-01

    This series of 6 short articles presents the feedback experience that has been drawn from various nuclear facility dismantling and presents 3 decommissioning projects: first, the WAGR project that is the UK demonstration project for power reactor decommissioning (a review of the tools used to dismantle the reactor core); secondly, the dismantling project of the Bugey-1 UNGG reactor for which the dismantling works of the reactor internals is planned to be done underwater; and thirdly, the decommissioning project of the MR reactor in the Kurchatov Institute. The feedback experience described concerns nuclear facilities in Spain (Vandellos-1 and the CIEMAT research center), in Belgium (the Eurochemic reprocessing plant), and in France (the decommissioning of nuclear premises inside the Fontenay-aux-roses Cea center and the decommissioning of the UP1 spent fuel reprocessing plant at the Marcoule site). (A.C.)

  4. The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Chris [Sellafield Ltd, Sellafield (United Kingdom)

    2012-07-01

    The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the

  5. The management of waste originating from the dismantling of nuclear power stations, a growth business that has yet to be optimized

    International Nuclear Information System (INIS)

    Cahen, B.

    2013-01-01

    The dismantling of a nuclear power plant consists of all the operations undertaken by the operator after the definitive shutdown, until such time that risks to humanity and the environment on the site are strictly limited or totally removed. Thus, the dismantling process may necessitate stripping and decontaminating a building which will be reusable, or it can go as far as the total demolition of machinery, equipment and structures. Cleaning up the land is an integral part of the dismantling brief. In France, dismantling requires prior authorization by government decree, after approval by the Nuclear Safety Authority. The decree stipulates the terms and nature of all the operations to be undertaken and the final state to be obtained by the operator. (author)

  6. Process for the dismantling of buried equipment, with a contamination risk and eventually irradiating, and intervention enclosure for this process

    International Nuclear Information System (INIS)

    Bodin, F.; Saublet, J.C.

    1991-01-01

    Dismantling of buried equipment, for instance abandoned effluent pipes,is made by unitary sections under mobile enclosure with a self-supporting structure and a floor provided with a long central aperture giving access to the section to dismantle

  7. ''1995/2010: site drainage and nuclear facilities dismantling program'' result 2001

    International Nuclear Information System (INIS)

    2001-01-01

    A drainage and dismantling planing with the corresponding wastes management, has been decided for the CEA of Fontenay aux roses, in 1995. It will end in 2010. This document presents the main evolutions occurred since october 2000. (A.L.B.)

  8. The EL-4 reactor. Changing of a pressure tube on a test loop

    International Nuclear Information System (INIS)

    Foulquier, H.; Clara, P.

    1964-01-01

    Right from the beginning of the EL-4 project, the research convected with the overall design of the reactor was guided by the various technical specifications resulting from a justifiable concern about the reliability. The external and internal tubes of each layer situated in the reactor block had in particular to be interchangeable. The research alone into the dismantling of the external tube, i.e in fact the pressure tube, justified a certain number of full-scale tests on a model. The tests carried out under relevant conditions on a non-irradiated structure made it possible to define a complete ranger of of positioning and un-positioning sequences at a distance for such a pressure tube. (authors) [fr

  9. Decommissioning and dismantling policy in Spain

    International Nuclear Information System (INIS)

    Landa, J.

    2004-01-01

    Decommissioning and dismantling nuclear installations is an increasingly important topic for governments, regulators, industries and civil society. There are many aspects that have to be carefully considered and planned, in many cases well in advance when they really need to be implemented. In my speech I am going to focus on policy-making considerations. Firstly I will go briefly over the current Spanish strategy on D and D, discussing the know-how we have gained from past experience. Then I will review the challenges that we will have to face in the near future, suggesting possible alternatives and approaches. I will finish talking a little bit about the international scene. (author)

  10. Removal of the Materials Test Reactor overhead working reservoir

    International Nuclear Information System (INIS)

    Lunis, B.C.

    1975-10-01

    Salient features of the removal of an excessed contaminated facility, the Materials Test Reactor (MTR) overhead working reservoir (OWR) from the Test Reactor Area to the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory are described. The 125-ton OWR was an overhead 160,000-gallon-capacity tank approximately 193 feet high which supplied cooling water to the MTR. Radiation at ground level beneath the tank was 5 mR/hr and approximately 600 mR/hr at the exterior surface of the tank. Sources ranging from 3 R/hr to in excess of 500 R/hr exist within the tank. The tank interior is contaminated with uranium, plutonium, and miscellaneous fission products. The OWR was lowered to ground level with the use of explosive cutters. Dismantling, decontamination, and disposal were performed by Aerojet Nuclear Company maintenance forces

  11. Strategies for the disposition of high explosives resulting from dismantlement of nuclear weapons

    International Nuclear Information System (INIS)

    Pruneda, C.; Humphrey, J.

    1993-03-01

    Many thousands of pounds of high quality main-charge explosives will result as surplus from the dismantlement of returns from the US nuclear weapons stockpile. The method most often employed for dealing with this surplus explosive is destruction by open burning. However, open burning as a means of treating excess explosives is losing favor because of environmental concerns associated with such an uncontrolled thermal destruction process. Thus, alternative processes for treatment of excess explosives from weapon dismantlement is discussed. These alternatives include: reformulation, crystalline component recovery, chemical conversion of the crystalline component to higher value products which may have civilian or military applications and, when necessary, treatment as waste in an environmentally benign fashion

  12. Sites with nuclear facilities in the state of dismantling and their future from the public perspective

    International Nuclear Information System (INIS)

    Kretz, Simon Philipp

    2015-01-01

    The thesis on the public perspective at sites of nuclear facility dismantling covers the following issues: the change of German energy landscapes under social and political points of view, theoretical frame of the work, combination of empirical studies and the theoretical approaches in a space concept, action model and hypotheses on the situation and development in communities with nuclear facilities in the state of dismantling, description of the interviewees, and the empirical results of the interviews.

  13. Application of an automatic yarn dismantler to track changes in cotton fibre properties during processing on a miniature spinning line

    CSIR Research Space (South Africa)

    Fassihi, A

    2014-11-01

    Full Text Available . The results obtained on different Upland cottons have clearly demonstrated the practical value of the yarn dismantler in enabling yarns to be automatically dismantled into their constituent fibres, which can then be tested by instrument, such as the AFIS...

  14. Review of dismantling activities in Europe and worldwide: Current state and perspectives

    International Nuclear Information System (INIS)

    Leclercq, J.

    2003-01-01

    This analysis adopts deliberately the point of view of 'dismantling companies' and aims to draw up a coherent overview of the presentations made per country or major contractors. Aside from the programs, or intentions, that may have been published, its goal is to take stock of the actions undertaken in the last few years and the significant changes that have been observed. In view of the diversity of the 'business models', depending on whether research institutes, major electrical power companies or industrial companies in charge of fuel-related activities are involved, the objective of this presentation is also to assess the solutions retained on both a technical and industrial level for the entire 'de-construction sector'. In conclusion, this presentation seeks to highlight the major challenges that open dismantling industry will have to meet. (author)

  15. Decontamination and dismantlement of Plant 7 at Fernald

    International Nuclear Information System (INIS)

    Albertin, M.; Borgman, T.; Zebick, B.

    1994-01-01

    Decontamination and dismantlement (D ampersand D) tasks have been successfully completed on Plant 7 at the Fernald Environmental Management Project. The seven story facility was radiologically, chemically, and biologically contaminated. The work involved the D ampersand D work beginning with safe shutdown and gross decontamination, and ended with removal of the structural steel. A series of lessons learned were gained which include use of explosives, bidding tactics, safe shutdown, building decontamination and lockdown, use of seam climbers, etc

  16. Quantity assessment of waste in the dismantlement of liquid waste treatment plant and its actual state

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Mitsuhashi, Ishi; Matsumoto, Tetsuo; Morishima, Kayoko; Tanzawa, Tomio

    2016-01-01

    From the progress of decommissioning project work of Tokyo City University Atomic Energy Research Institute, this paper reports the comparison between the actual amount of the waste generated during dismantlement work at liquid waste treatment facilities and the assessment quantity before starting the dismantlement. The quantity assessment was made on the basis of the installation license application, design specifications, drawings, records, history of use, site investigation results, etc. Since this quantity assessment did not take into account the dismantling contents of reservoir concrete, the assessed quantity of non-radioactive waste (NR waste) did not match the sum of actual NR waste. However, if an actually generated quantity of concrete of radioactive waste was added to the quantity assessment as NR waste, the quantity of actually generated NR waste and that of assessed NR waste were nearly consistent, which verified the validity of this assessment. This method is considered to be able to be utilized in the future quantity assessment of decommissioning work and the like. On the other hand, it was found that the number of drums that were actually stored tended to increase more than the estimated number of drum conversion. In old buildings, it is necessary to take into account the generation of waste other than radioactive materials in the quantity assessment stage and dismantlement stage. (A.O.)

  17. Operating experience and maintenance at the TRIGA Mark II LENA reactor

    International Nuclear Information System (INIS)

    Cingoli, F.; Meloni, S.; Alloni, L.

    1986-01-01

    A summary of reactor operation and maintenance in the time period 1982-1986 is presented and discussed. Some problems occurred from instrumentated aluminum cladded elements. Both of them presented damage in the cable tubes and one element showed a protuberance in the cladding. They were replaced with stainless - steel cladded ones. Both elements were sealed up in stainless - steel tubes and put away in wells, 3 meters deep, in the reactor room floor. Some minor problems, correlated to the quite aid instrumentation of the console, are reported. The reactor activity in the last four years was conditioned by the developing of the n - n-bar oscillation NADIR experiment. The thermal column was dismantled and rebuilt in consideration of the Nadir experiment necessities and this job is described in detail. The building containing, the target and the void pipe, presented in 1982 Conference, are now completely operating and the experiment is running. (author)

  18. CRITICALITY CONTROL DURING THE DISMANTLING OF A URANIUM CONVERSION PLANT

    International Nuclear Information System (INIS)

    LADURELLE, Laurent; LISBONNE, Pierre

    2003-01-01

    Within the Commissariat a l'Energie Atomique, in the Cadarache Research Center in southern France, the production at the Enriched Uranium Treatment Workshops started in 1965 and ended in 1995. The dismantling is in progress and will last until 2006. The decommissioning is planned in 2007. Since the authorized enrichment in 235U was 10% in some parts of the plant, and unlimited in others, the equipment and procedures were designed for criticality control during the operating period. Despite the best previous removing of the uranium in the inner parts of the equipment, evaluation of the mass of remaining fissile material by in site gamma spectrometry measurement shows that the safety of the ''clean up'' operations requires specific criticality control procedures, this mass being higher than the safe mass. The chosen method is therefore based on the mapping of fissile material in the contaminated parts of the equipment and on the respect of particular rules set for meeting the criticality control standards through mass control. The process equipment is partitioned in separated campaign, and for each campaign the equipment dismantling is conducted with a precise traceability of the pieces, from the equipment to the drum of waste, and the best final evaluation of the mass of fissile material in the drum. The first results show that the mass of uranium found in the dismantled equipment is less than the previous evaluation, and they enable us to confirm that the criticality was safely controlled during the operations. The mass of fissile material remaining in the equipment can be then carefully calculated, when it is lower than the minimal critical mass, and on the basis of a safety analysis, we will be free of any constraints regarding criticality control, this allowing to make procedures easier, and to speed up the operations

  19. Corrosion Induced Leakage Problem of the Radial Beam Port 1 of BAEC Triga Mark-II Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kalam, A.; Salam, M. A.; Sarder, M. A.; Rahman, M. M.; Rahman, M.; Rahman, A.; Chowdhury, A. Z.; Uddin, M. S.; Haque, M. M.; Zulquarnain, M.A., E-mail: kalambaec@yahoo.com [Reactor Operation and Maintenance Unit, Atomic Energy Research Establishment (AERE), Dhaka (Bangladesh)

    2014-08-15

    The BAEC reactor has so far been operated as per the technical specifications and procedures laid down in the SAR of the research reactor. The BP leakage problem of the BAEC research reactor was an issue that could lead to a situation close to a LOCA. Therefore, the matter was handled carefully, taking all measures so that such an incident could be prevented. Assistance of agencies outside BAEC was taken for solving the problem. It is understood that the silicone rubber lining of the encirclement clamp may become damaged by neutron irradiation. Therefore, while designing the clamp, provisions were kept such that it can be dismantled and reinstalled again following lining replacement. As a moderately aged facility, the ageing management BAEC TRIGA research reactor deserves significant attention. BAEC, together with its strategic partners, are doing what is needed in this regard.

  20. Management of activated parts generated during the dismantling of linear accelerators for medical uses

    International Nuclear Information System (INIS)

    Ortiz, Teresa; Correa, Cristina

    2008-01-01

    During years 2006-2008 have been carried out to the dismantling of several linear accelerators of medical use in Spain. The two first were in the Hospital of 'La Princesa' in Madrid and in the Hospital 'Santa Creu y Sant Pau' in Barcelona. The disassembling of such was made by technicians of the providing company and of the own hospital, with the advising of experts of the Radiological Protection and Radiophysics Service of such. Technicians of the Radiological Protection Technical Unit (RPU) of ENRESA collaborated in these dismantlings with the objective to determine that pieces could be evacuated conventionally as metallic scraps and which had to be managed as radioactive waste. In the following dismantling the classification of the pieces were carried out by the technicians of the providing company. After that the technicians of the RPU of ENRESA verified this classification and characterized, in detail, the pieces classified as radioactive wasted before their removal. In this paper the activities carried out to classify the pieces and the legal bases in which it leans on, as well as the measures made for the characterization of the materials considered as radioactive waste are described. (author)

  1. Dismantling Experiment of Mock-up Tube Bundle of Steam Generator

    International Nuclear Information System (INIS)

    Kim, Sung Kyun; Lee, Kune Woo

    2010-01-01

    A SG (steam generator) is one of the biggest decommissioning components in nuclear power plants and one has been replaced 2∼6 times during the whole operation of a nuclear power plant. The old SG should be decommissioned for the purpose of the volume reduction of radioactive waste. Among the components of SG, the tube bundle is one of the most difficult items to be dismantled due to the fact that it is very hard to cut since it is made of Inconel 600 which has high resistance of corrosion and abrasion. Moreover, All cutting process should be performed by remotely since radioactive contamination of the internal surface of SG tubes is very high (about 150,000∼300,000 Bq/cm 2 ). Therefore, it is necessary to choose the appropriate cutting methods by the pros and cons analysis for candidate dismantling technologies and to do experiment study for the validation. In this study, the results of cutting experiment for a mock-up bundle by using band saw cutting method are described herein

  2. Remote Fiber Laser Cutting System for Dismantling Glass Melter - 13071

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, Takashi; Miura, Noriaki [IHI Corporation, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Oowaki, Katsura; Kawaguchi, Isao [IHI Inspection and Instrumentation Co., Ltd, 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa (Japan); Miura, Yasuhiko; Ino, Tooru [Japan Nuclear Fuel Limited, 4-108, Aza Okitsuke, Oaza Obuchi, Rokkasho-Mura, Kamikita-gun, Aomori (Japan)

    2013-07-01

    Since 2008, the equipment for dismantling the used glass melter has been developed in High-level Liquid Waste (HLW) Vitrification Facility in the Japanese Rokkasho Reprocessing Plant (RRP). Due to the high radioactivity of the glass melter, the equipment requires a fully-remote operation in the vitrification cell. The remote fiber laser cutting system was adopted as one of the major pieces of equipment. An output power of fiber laser is typically higher than other types of laser and so can provide high-cutting performance. The fiber laser can cut thick stainless steel and Inconel, which are parts of the glass melter such as casings, electrodes and nozzles. As a result, it can make the whole of the dismantling work efficiently done for a shorter period. Various conditions of the cutting test have been evaluated in the process of developing the remote fiber cutting system. In addition, the expected remote operations of the power manipulator with the laser torch have been fully verified and optimized using 3D simulations. (authors)

  3. Characteristics of organic matter in PM2.5 from an e-waste dismantling area in Taizhou, China.

    Science.gov (United States)

    Gu, Zeping; Feng, Jialiang; Han, Wenliang; Wu, Minghong; Fu, Jiamo; Sheng, Guoying

    2010-08-01

    Solvent extractable organic compounds in PM(2.5) samples collected in Taizhou, a city famous for its electrical and electronic waste (e-waste) recycling industry in Zhejiang province of China, were analyzed to identify the main emission sources based on molecular markers. Two types of plastics which were most frequently contained in the e-wastes, wires/cables and plastic blocks, were burned in the lab and the particles emitted analyzed. The concentrations of PAHs and phthalate esters at the e-waste dismantling area during our sampling periods were about two times of that at the reference urban site, indicating the high pollution level there. The high concentrations of quaterphenyl found at the dismantling area indicated that burning of plastics or polymers was an important emission source of the PAHs in the fine particles. The diagnostic analysis based on the compositions of alkanes, hopanes and other molecular markers showed that engine exhaust, biomass burning and kitchen emissions were also important emission sources at the e-waste dismantling area. Our results suggested that more effort should be paid to control the correlative emission sources such as transportation and kitchen to achieve better air quality at the e-waste dismantling area besides regulating the recycling activities. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Decommissioning of fast reactors after sodium draining

    International Nuclear Information System (INIS)

    2009-11-01

    Acknowledging the importance of passing on knowledge and experience, as well mentoring the next generation of scientists and engineers, and in response to expressed needs by Member States, the IAEA has undertaken concrete steps towards the implementation of a fast reactor data retrieval and knowledge preservation initiative. Decommissioning of fast reactors and other sodium bearing facilities is a domain in which considerable experience has been accumulated. Within the framework and drawing on the wide expertise of the Technical Working Group on Fast Reactors (TWG-FR), the IAEA has initiated activities aiming at preserving the feedback (lessons learned) from this experience and condensing those to technical recommendations on fast reactor design features that would ease their decommissioning. Following a recommendation by the TWG-FR, the IAEA had convened a topical Technical Meeting (TM) on 'Operational and Decommissioning Experience with Fast Reactors', hosted by CEA, Centre d'Etudes de Cadarache, France, from 11 to 15 March 2002 (IAEA-TECDOC- 1405). The participants in that TM exchanged detailed technical information on fast reactor operation and decommissioning experience with various sodium cooled fast reactors, and, in particular, reviewed the status of the various decommissioning programmes. The TM concluded that the decommissioning of fast reactors to reach safe enclosure presented no major difficulties, and that this had been accomplished mainly through judicious adaptation of processes and procedures implemented during the reactor operation phase, and the development of safe sodium waste treatment processes. However, the TM also concluded that, on the path to achieving total dismantling, challenges remain with regard to the decommissioning of components after sodium draining, and suggested that a follow-on TM be convened, that would provide a forum for in-depth scientific and technical exchange on this topic. This publication constitutes the Proceedings of

  5. Research nuclear reactor RA - Annual Report 1994

    International Nuclear Information System (INIS)

    Sotic, O.

    1994-12-01

    Activities related to revitalisation of the RA reactor stared in 1986, were continued in 1991. A number of interventions on the reactor components were finished that are supposed to enable continuous and reliable operation. The last, and at the same time largest action, related to exchange of complete reactor instrumentation is underway, but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 56% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Activities related to improvement of Russian project were continued in 1994. Control and maintenance of the reactor components was done regularly and efficiently. Extensive repair of the secondary coolant loop is almost finished and will be completed in the first part of 1995 according to existing legal procedures and IAEA recommendations. Fuel inspection by the IAEA safeguards inspectors was done on a monthly basis. There have been on the average 47 employees at the RA reactor which is considered sufficient for maintenance and repair conditions. Research reactor RA Annual report for year 1991 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection [sr

  6. Radiation protection procedures for the dismantling and decontamination of nuclear facility

    International Nuclear Information System (INIS)

    Almeida, C.C.; Garcia, R.H.L.; Cambises, P.B.S.; Silva, T.M. da; Paiva, J.E.; Carneiro, J.C.G.G.; Rodrigues, D.L.

    2013-01-01

    This work presents the operational procedures and conditions to ensure the required level of protection and safety during the dismantling and decontamination of a natural uranium purification facility at IPEN-CNEN/SP, Brazil. The facility was designed for chemical processing of natural uranium, aiming to obtain the uranyl nitrate, nuclear-grade. Afterwards, the installation operated in treatment and washing of thorium sulfate and thorium oxycarbonate dissolution, to get thorium nitrate as final product. A global evaluation of the potential exposure situation was carried out by radioprotection team in order to carry out the operations planned. For the facility dismantling, was established both measures to control the radiation exposure at workplace and individual monitoring of workers. A combination of physical, chemical and mechanical methods was used in the decontamination procedure applied in this unit. Concerning the internal operation procedures of IPEN-CNEN/SP, the radioactive waste control, the transport of the radioactive materials and authorization of use of decontaminated equipment were also subject of study. (author)

  7. Manipulator and materials handling systems for reactor decommissioning -Cooperation between the university and the plant operator

    International Nuclear Information System (INIS)

    Schreck, G.; Bach, F. W.; Haferkamp, H.

    1995-01-01

    Nuclear reactor dismantling requires suitable handling systems for tools and disassembled components, as well as qualified and reliable disassembly and cutting techniques. From the angle of radiation protection, remote-controlled handling techniques and underwater techniques are the methods of choice, the latter particularly in continuation of plant operating conditions, and this all the more the more disassembly work proceeds towards the reactor core. With the experience accumulated for 20 years now by the Institut fuer Werkstoffkunde (materials science) of Hannover University by basic research and application-oriented development work in the field of thermal cutting technology, especially plasma arc cutting techniques, as well as development work in the field of remote-controlled materials handling systems, the institute is the cut-out partner for disassembly tasks in reactor decommissioning. (Orig./DG) [de

  8. International collaborations about fuel studies for reactor recycling of military quality plutonium

    International Nuclear Information System (INIS)

    Bernard, H.; Chaudat, J.P.

    1997-01-01

    In November 1992, an agreement was signed between the French and Russian governments to use in Russia and for pacific purposes the plutonium recovered from the Russian nuclear weapons dismantling. This plutonium will be transformed into mixed oxide fuels (MOX) for nuclear power production. The French Direction of Military Applications (DAM) of the CEA is the operator of the French-Russian AIDA program. The CEA Direction of Fuel Cycle (DCC) and Direction of Nuclear Reactors (DRN) are involved in the transformation of metallic plutonium into sinterable oxide powder for MOX fuel manufacturing. The Russian TOMOX (Treatment of MOX powder Metallic Objects) and DEMOX (MOX Demonstration) plants will produce the MOX fuel assemblies for the 4 VVER 1000 reactors of Balakovo and the fast BN 600 reactor. The second part of the program will involve the German Siemens and GRS companies for the safety studies of the reactors and fuel cycle plants. The paper gives also a brief analysis of the US policy concerning the military plutonium recycling. (J.S.)

  9. Provision of the technical infrastructure for the dismantling of the WAK HAWC container. Design and realization

    International Nuclear Information System (INIS)

    Marquard, C.; Ripholz, M.; Lutz, W.

    2013-01-01

    The dismantling concept of the WAK HAWC (high-level liquid waste concentrate) containers includes remote handling equipment. Due to the solid deposits that formed during the concentrate storage time the activity and the dose rates of the containers are very high (2.6x10E15 Bq alpha and beta, dose rates higher 100 Sv/h). Therefore appropriate radiation protection measures have to be installed to protect personnel and environment. The provision of the technical infrastructure for the remote HAWC container dismantling is described in detail.

  10. Capacitive tool standoff sensor for dismantlement tasks

    International Nuclear Information System (INIS)

    Schmitt, D.J.; Weber, T.M.; Liu, J.C.

    1996-01-01

    A capacitive sensing technology has been applied to develop a Standoff Sensor System for control of robotically deployed tools utilized in Decontamination and Dismantlement (D and D) activities. The system combines four individual sensor elements to provide non-contact, multiple degree-of-freedom control of tools at distances up to five inches from a surface. The Standoff Sensor has been successfully integrated to a metal cutting router and a pyrometer, and utilized for real-time control of each of these tools. Experiments demonstrate that the system can locate stationary surfaces with a repeatability of 0.034 millimeters

  11. System of large transport containers for waste from dismantling light water and gas-cooled nuclear reactors. Volume 1

    International Nuclear Information System (INIS)

    Price, M.S.T.; Lafontaine, I.

    1985-01-01

    The purpose of this volume is to introduce the main types of nuclear reactor in the European Community (EC), select reference plants for further study, estimate the waste streams from the reference reactors, survey the transport regulations and assess existing containers

  12. Modelling the cooling and partial dismantling of the Febex in-situ test

    International Nuclear Information System (INIS)

    Sanchez, M.; Gens, A.; Guimaraes, L.

    2010-01-01

    Document available in extended abstract form only. In many designs for radioactive waste disposal the space between the canister and the cavity surface is filled by an engineered barrier made up of compacted expansive clay. Engineered barrier and adjacent host rock will be submitted to the heating effect of the nuclear waste as well as to associated hydraulic and mechanical phenomena that interact in a complex way. In order to achieve a safe and robust repository design, it is necessary to have a good understanding of the processes that occur in the near field and their evolution over time. To this end, properly instrumented full scale in situ tests provide essential information. The in-situ test operated at full scale and under natural conditions at the underground laboratory managed by NAGRA (Swiss National Cooperative for the Disposal of Radioactive Waste) at the Grimsel test site in Switzerland. Two 4300 W heaters were placed in the axis of the horizontal drift in the natural rock (granite). The heaters were 4.54 m long and 0.90 m in diameter, and were intended to simulate the release of heat by nuclear waste. The space between the rock surface and the heaters was backfilled using blocks of compacted bentonite. The test area was sealed with a 2.7 m long concrete plug. The test was heavily instrumented, including 632 sensors that were installed in the clay barrier and in the rock with measurements of temperatures, relative humidity (equivalent to total suction), pore pressures, displacements, and stresses. The heaters were symmetrically placed in relation to the central section of the test. The power of the heaters was adjusted to maintain a 100 deg. C temperature at the interface between heaters and bentonite barrier. The test was run in this way for five years when one of the heaters was switched off and dismantled. Dismantling data provided extremely valuable information about the state of the barrier at the end of the experiment and a useful benchmark for

  13. Investigation of specific applications of laser cutting for dismantling of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tarroni, G.; De Zaiacomo, T.; Melandri, C.; Formignani, M.; Barilli, L.; Di Fino, M.; Picini, P.; Galuppi, G.; Rocca, C.; Manassero, G.; Migliorati, B.

    1992-01-01

    The aim of this work, performed on an experimental basis in a frame of strict collaboration between industry (FIAT-CIEI and FIAT-CRF in Turin) and public research laboratories (ENEA-PAS-FIBI in Bologna, ENEA-PAS-ISP and ENEA-TIB-TECNLAS in Rome) and supported by a CEC contract, was to bring out the items for better evaluation of the laser beam application possibilities in dismantling nuclear power plants. The main topics of the research have been: study and definition of the relevant basic parameters ruling the aerosol generation rate and behaviour in terms of physical and chemical characteristics. This work has been performed in a facility specifically designed for aerosol measurements and equipped with a 2kW laser source; study of the feasibility of local abatement of the aerosols produced and of the pressure drop in the HEPA filters; study of long distance transmission of the laser beam power performed with a 5kW laser source with an evaluation of the power loss and beam characteristic modifications; study of laser beam technique application for dismantling the Garigliano power plant steam drum in order to better demonstrate the feasibility of the use of this technique. The research resulted in the conclusion that the laser beam is actually appropriate for long distance dismantling of metal components.

  14. Lessons-learned from ongoing decommissioning project of Fugen NPS

    International Nuclear Information System (INIS)

    Tezuka, M.; Koda, Y.; Iguchi, Y.; Kato, Y.; Yanagihara, S.

    2017-01-01

    Advanced Thermal Reactor (ATR) Fugen is a 557 MWt, 165 MWe, heavy water moderated, light-water cooled, pressure-tube type reactor. In 2003, Fugen was shut down after ca 25 years operation, and started decommissioning activity from 2008. In the initial period of decommissioning, we have been dismantling from turbine systems because of their little contamination. In general, most difficult process of dismantling of nuclear power plant is the dismantlement of the reactor core because the radiation rate of the reactor core is very high, e.g., it is over 200 Sv/hr in the Fugen's case. Our plan of dismantlement of the core is from about 2022. The core area has some features that the structure is narrow and complicated by tube-cluster structure that contains 224 fuel channels with both the pressure and the calandria tubes coaxially in each channel. The radiation shielding area is laminated structure composed of up to 150 mm thickness of carbon steel. And the structure of the reactor, which is made of various materials such as stainless steel, carbon steel, zirconium alloy and aluminum. In particular, the core area is planning to be dismantled under water by remote controlled machines in order to shield the radiation around the core and prevent airborne dust generated by the cutting considering the usage of Zr alloy which is likely to be oxidized. In consideration of above, the cutting methods were selected for dismantling the reactor core in order to shorten the dismantling term and reduce the secondary waste. The candidate cutting method options were decreased based on the results of the researches on achievement of the cutting methods domestically and internationally. Finally, the laser cutting method was selected for dismantling the core area and shielding area, and diamond wire saw was also selected for dismantling the shielding area applicable to concrete with metal liner, based on the results of some cutting tests. The laser cutting method has many advantages, e

  15. Decommissioning strategy and schedule for a multiple reactor nuclear power plant site

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Deiglys Borges; Moreira, Joao M.L.; Maiorino, Jose Rubens, E-mail: deiglys.monteiro@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    The decommissioning is an important part of every Nuclear Power Plant life cycle gaining importance when there are more than one plant at the same site due to interactions that can arise from the operational ones and a decommissioning plant. In order to prevent undesirable problems, a suitable strategy and a very rigorous schedule should implemented and carried. In this way, decommissioning tasks such as fully decontamination and dismantling of activated and contaminated systems, rooms and structures could be delayed, posing as an interesting option to multiple reactor sites. The present work aims to purpose a strategy and a schedule for the decommissioning of a multiple reactor site highlighting the benefits of delay operational tasks and constructs some auxiliary services in the site during the stand by period of the shutdown plants. As a case study, will be presented a three-reactor site which the decommissioning process actually is in planning stage and that should start in the next decade. (author)

  16. Decommissioning strategy and schedule for a multiple reactor nuclear power plant site

    International Nuclear Information System (INIS)

    Monteiro, Deiglys Borges; Moreira, Joao M.L.; Maiorino, Jose Rubens

    2015-01-01

    The decommissioning is an important part of every Nuclear Power Plant life cycle gaining importance when there are more than one plant at the same site due to interactions that can arise from the operational ones and a decommissioning plant. In order to prevent undesirable problems, a suitable strategy and a very rigorous schedule should implemented and carried. In this way, decommissioning tasks such as fully decontamination and dismantling of activated and contaminated systems, rooms and structures could be delayed, posing as an interesting option to multiple reactor sites. The present work aims to purpose a strategy and a schedule for the decommissioning of a multiple reactor site highlighting the benefits of delay operational tasks and constructs some auxiliary services in the site during the stand by period of the shutdown plants. As a case study, will be presented a three-reactor site which the decommissioning process actually is in planning stage and that should start in the next decade. (author)

  17. Research nuclear reactor RA - Annual Report 1991

    International Nuclear Information System (INIS)

    Sotic, O.

    1992-01-01

    Activities related to revitalisation of the RA reactor stared in 1986, were continued in 1991. A number of interventions on the reactor components were finished that are supposed to enable continuous and reliable operation. The last, and at the same time largest action, related to exchange of complete reactor instrumentation is underway, but it is behind the schedule in 1991 because the delivery of components from USSR is late. Production of this instruments is financed by the IAEA according to the contract signed in December 1988 with Russian Atomenergoexport. According to this contract, it has been planned that the RA reactor instrumentation should be delivered to the Vinca Institute by the end of 1990. Only 56% of the instrumentation was delivered until September 1991. Since then any delivery of components to Yugoslavia was stopped because of the temporary embargo imposed by the IAEA. In 1991 most of the existing RA reactor instrumentation was dismantled, only the part needed for basic measurements when reactor is not operated, was maintained. Construction of some support elements is almost finished by the local staff. The Institute has undertaken this activity in order to speed up the ending of the project. If all the planned instrumentation would not arrive until the end of March 1992, it would not be possible to start the RA reactor testing operation in the first part of 1993, as previously planned. In 1991, 53 staff members took part in the activities during 1991, which is considered sufficient for maintenance and repair conditions. Research reactor RA Annual report for year 1991 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection [sr

  18. Operation experience and maintenance at the TRIGA Mark II L.E.N.A. reactor

    International Nuclear Information System (INIS)

    Gngoli, F.; Berzero, A.; Lana, F.; Rosti, G.; Meloni, S.

    2008-01-01

    The TRIGA Mark II reactor of the University of Pavia was operated in the last two years on a routine basis, mostly for neutron activation analysis purposes. Moreover the reactor was completely shutdown in the first six months of this year to allow the dismantling of the NADIR experimental setup. The paper presents: - Reactor operation from July 1990 to June 1992; - Reactor users in the time period January 1990 - December 1991; - Specific activities of some radionuclides in the filling materials; - Specific activity of some radionuclides in thermal column materials. Operations related to dismantling of NADIR experimental facility are described. Finally the new thermal column configuration is presented. Starting from the end inside the reactor tank, a graphite layer (35 cm thick) was positioned, followed by a bismuth layer (10 cm thick) to reduce gamma-ray intensity. The old graphite rods were then positioned leaving in the central part, on the equatorial plane of the thermal column, a cavity whose vertical section has 40 cm width and 20 cm height. The bottom of the cavity, towards to the reactor tank, has been lined with additional layers of graphite (10 cm), bismuth (10 cm) and again graphite (1 cm). The new configuration allowed new experiments to be performed. The cavity in the central part has been created to allow the irradiation of large biological samples such as experimental animal and human livers. This is a peculiar step in a neutron capture boron therapy project to be carried out at the University of Pavia. In order to avoid an implemented 41 Ar production in the void space between shutters and the thermal column outer end, the external surface of the thermal column has been coated with boral sheets. The neutron flux profile, both thermal and epithermal, and cadmium ratio for gold are shown. The flux distribution appears to be adequate to proceed with the neutron capture boron therapy experiment. The LENA Health Physics Service has checked all phases of

  19. The management of radioactive wastes and the dismantling of nuclear installations in Spain

    International Nuclear Information System (INIS)

    Bouchet, Bertrand

    2014-08-01

    This report first presents the Spanish institutional framework, briefly presents the multi-year national plan of management of radioactive wastes, and indicates the origin and volume of radioactive wastes produced in Spain. It addresses the management of low and medium level wastes, the case of spent fuel and high level wastes (storage in pool and installations of temporary warehousing, project of a centralized temporary storage, the question of definitive management), and proposes an overview of R and D activities in the different domains of waste management in Spain: waste technology, technologies and processes of treatment, packaging and dismantling, materials and containment systems, behaviour and safety assessment, radiological protection and associated modelling, infrastructure and cooperation. The two last parts briefly address the funding of waste management and the dismantling of nuclear installations

  20. Measurement of radioactive aerosol behavior during dismantling and reflection to the exposure dose evaluation - 16107

    International Nuclear Information System (INIS)

    Iguchi, Yukihiro; Kato, Masami

    2009-01-01

    Radioactive aerosol disperses slightly via contamination prevention systems such as control enclosures and filters when the nuclear installation is dismantled, and it might impact the environment. Therefore, when decommissioning is planned, it is necessary to assess the safety such as exposure dose evaluation to the public. For the radioactive aerosol, it is possible that the dispersion ratio is different according to the contamination condition, the dismantlement method of the material, nuclides (elements), etc. The radiation exposure evaluation for the decommissioning plan has been executed by operators in Japan based on a number of experiments (mostly cold tests) and overseas results. The decommissioning is now being carried out at the Tokai Power Station (GCR) and Fugen Decommissioning Engineering Center in Japan. In this study, the results data is acquired at the decommissioning sites, and the methodology and data for the exposure dose evaluation are verified and confirmed. These examination results will lead to the upgrading and improvement of the exposure evaluation methodology. In particular, the dismantlement work of connected piping of the heat exchanger (steam generator) was executed in the Tokai Power Station in 2008. In this study, we paid attention to the radionuclides of Co-60 and Cs-137 that adhered to piping, and the dispersion behavior of aerosol was measured and contamination prevention effect was assured. As a result, the data show that the cesium concentrates about four times higher than cobalt. Moreover, the effects of the prevention measures of contamination were confirmed and the behavior of the radioactive aerosol became clear and the effective findings about the dose evaluation of the dismantling were collected. (authors)