WorldWideScience

Sample records for disk galaxy ngc

  1. HI study of the warped spiral galaxy NGC5055 : a disk/dark matter halo offset?

    NARCIS (Netherlands)

    Battaglia, G.; Fraternali, F.; Oosterloo, T.; Sancisi, R.

    2005-01-01

    Abstract: We present a study of the HI distribution and the dynamics of the nearby spiral galaxy NGC5055 based on observations with the Westerbork Synthesis Radio Telescope. The gaseous disk of NGC5055 extends out to about 40 kpc, equal to 3.5 R_25 and shows a pronounced warp, starting at the end of

  2. HI study of the warped spiral galaxy NGC5055 : a disk/dark matter halo offset?

    NARCIS (Netherlands)

    Battaglia, G; Fraternali, F; Oosterloo, T; Sancisi, R

    We present a study of the Hi distribution and dynamics of the nearby spiral galaxy NGC 5055 based on observations with the Westerbork Synthesis Radio Telescope. The gaseous disk of NGC5055 extends out to about 40 kpc, equal to 3.5 R-25, and shows a pronounced warp that starts at the end of the

  3. Counter-rotating gaseous disks in the 'Evil Eye' galaxy NGC4826

    Science.gov (United States)

    Braun, Robert; Walterbos, Rene A. M.; Kennicutt, Robert C., Jr.

    1992-12-01

    The discovery of two counterrotating gaseous disks in the otherwise normal early-type spiral NGC4826 is reported. This is the most disklike galaxy in which any kinematic substructure has yet been found. This discovery raises the possibility that even spiral galaxies may have undergone a significant degree of structural evolution due to mergers.

  4. THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Radburn-Smith, David [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Dolphin, Andrew [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D., E-mail: ben@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: adrienne@astro.washington.edu, E-mail: dolphin@raytheon.com, E-mail: skillman@astro.umn.edu [Department of Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States)

    2013-03-10

    We present detailed analysis of color-magnitude diagrams of NGC 2403, obtained from a deep (m {approx}< 28) Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observation of the outer disk of NGC 2403, supplemented by several shallow (m {approx}< 26) HST Advanced Camera for Surveys fields. We derive the spatially resolved star formation history of NGC 2403 out to 11 disk scale lengths. In the inner portions of the galaxy, we compare the recent star formation rates (SFRs) we derive from the resolved stars with those measured using GALEX FUV + Spitzer 24{mu} fluxes, finding excellent agreement between the methods. Our measurements also show that the radial gradient in recent SFR mirrors the disk exponential profile to 11 scale lengths with no break, extending to SFR densities a factor of {approx}100 lower than those that can be measured with GALEX and Spitzer ({approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}). Furthermore, we find that the cumulative stellar mass of the disk was formed at similar times at all radii. We compare these characteristics of NGC 2403 to those of its ''morphological twins'', NGC 300 and M 33, showing that the structure and age distributions of the NGC 2403 disk are more similar to those of the relatively isolated system NGC 300 than to those of the Local Group analog M 33. We also discuss the environments and HI morphologies of these three nearby galaxies, comparing them to integrated light studies of larger samples of more distant galaxy disks. Taken together, the physical properties and evolutionary history of NGC 2403 suggest that the galaxy has had no close encounters with other M 81 group members and may be falling into the group for the first time.

  5. THE BULGELESS SEYFERT/LINER GALAXY NGC 3367: DISK, BAR, LOPSIDEDNESS, AND ENVIRONMENT

    International Nuclear Information System (INIS)

    Hernández-Toledo, H. M.; Cano-Díaz, M.; Valenzuela, O.; García-Barreto, J. A; Moreno-Díaz, E.; Puerari, I.; Bravo-Alfaro, H.

    2011-01-01

    NGC 3367 is a nearby isolated active galaxy that shows a radio jet, a strong bar, and evidence of lopsidedness. We present a quantitative analysis of the stellar and gaseous structure of the galaxy disk and search for evidence of recent interaction. Our study is based on new UBVRI Hα and JHK images and on archive Hα Fabry-Perot and H I Very Large Array data. From a coupled one-dimensional/two-dimensional GALFIT bulge/bar/disk decomposition a (B/D ∼ 0.07-0.1) exponential pseudobulge is inferred in all the observed bands. A near-infrared (NIR) estimate of the bar strength Q max T (R) = 0.44 places NGC 3367 bar among the strongest ones. The asymmetry properties were studied using (1) the optical and NIR concentration-asymmetry-clumpiness indices, (2) the stellar (NIR) and gaseous (Hα, H I) A 1 Fourier mode amplitudes, and (3) the H I-integrated profile and H I mean intensity distribution. While the average stellar component shows asymmetry values close to the average found in the local universe for isolated galaxies, the young stellar component and gas values are largely decoupled showing significantly larger A 1 mode amplitudes suggesting that the gas has been recently perturbed and placing NGC 3367 in a global starburst phase. NGC 3367 is devoid of H I gas in the central regions where a significant amount of molecular CO gas exists instead. Our search for (1) faint stellar structures in the outer regions (up to μ R ∼ 26 mag arcsec –2 ), (2) (Hα) star-forming satellite galaxies, and (3) regions with different colors (stellar populations) along the disk all failed. Such an absence is interpreted by using results from recent numerical simulations to constrain either a possible tidal event with an LMC like galaxy to some dynamical times in the past or a very low mass but perhaps gas rich recent encounter. We conclude that a cold flow accretion mode (gas and small/dark galaxies) may be responsible for the nuclear activity and peculiar (young stars and gas

  6. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter [Spitzer Science Center-Caltech, MS 314-6, Pasadena, CA 91125 (United States); Arendt, Richard G. [CRESST/UMBC/NASA GSFC, Code 665, Greenbelt, MD 20771 (United States); Romanowsky, Aaron J. [Department of Physics and Astronomy, San José State University, One Washington Square, San Jose, CA 95192 (United States); Martínez-Delgado, David [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Ashby, Matthew L. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Davies, James E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Majewski, Stephen R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Brodie, Jean P.; Arnold, Jacob A. [University of California Observatories and Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); GaBany, R. Jay, E-mail: seppo@ipac.caltech.edu [Black Bird Observatory, 5660 Brionne Drive, San Jose, CA 95118 (United States)

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distribution with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.

  7. Galaxy Disks

    NARCIS (Netherlands)

    van der Kruit, P. C.; Freeman, K. C.

    The disks of disk galaxies contain a substantial fraction of their baryonic matter and angular momentum, and much of the evolutionary activity in these galaxies, such as the formation of stars, spiral arms, bars and rings, and the various forms of secular evolution, takes place in their disks. The

  8. Photographic surface photometry of NGC 2855 and NGC 6771 galaxies

    International Nuclear Information System (INIS)

    Schroeder, M. de F.S.

    1984-01-01

    Photographic surface photometry in the BV system was carried out two Southern SO's galaxies, NGC 2855 and NGC 6771. B and V isophote maps were obtained as well as geometric and integrated parameters as position angles, inclination, diameters, magnitudes and integrated colors. Each luminosity profile was decomposed into bulge and disk contributions, each component being fitted to convenient laws. For NGC 2855 de Vaucouleurs law described well the bulge whereas the disk showed an exponential distribution. For NGC 6771 the barred nuclear bulge as well as the disk was best fitted by exponential laws. Additional luminosity components due to an inner fragmented ring were identified in NGC 2855 and due to both a quite prominent lens and well defined ring in NGC 6771. In this galaxy the minor axis, oriented almost edge-on, present clues of another luminosity component besides the bulge and the thin disk. For both galaxies the disk central surface brightness was found to be fainter than the standard value observed by Freeman. The fitting parameters were used to determine the bulge-to-disk luminosity ratios as well as their contribution to total luminosity. The domination by the bulge light over the disk light was clear in both galaxies. From the B and V luminosity profile the color gradients were estimated. For both objects the local color indices decreased from inner to outer regions, this effect being relatively smooth in NGC 2855 and more prominent in NGC 6771 [pt

  9. Extraplanar H II Regions in Spiral Galaxies. II. In Situ Star Formation in the Interstellar Thick Disk of NGC 4013

    Science.gov (United States)

    Howk, J. Christopher; Rueff, Katherine M.; Lehner, Nicolas; Wotta, Christopher B.; Croxall, Kevin; Savage, Blair D.

    2018-04-01

    We present observations of an Hα-emitting knot in the thick disk of NGC 4013, demonstrating it is an H II region surrounding a cluster of young hot stars z = 860 pc above the plane of this edge-on spiral galaxy. With LBT/MODS spectroscopy we show that this H II region has an Hα luminosity ∼4–7 times that of the Orion nebula, with an implied ionizing photon production rate log Q 0 ≈ 49.4 (photons s‑1). HST/WFPC2 imaging reveals an associated blue continuum source with M V = ‑8.21 ± 0.24. Together, these properties demonstrate that the H II region is powered by a young cluster of stars formed in situ in the thick disk, with an ionizing photon flux equivalent to ∼6 O7 V stars. If we assume ≈6 other extraplanar Hα-emitting knots are H II regions, the total thick disk star formation rate of NGC 4013 is ∼5 × 10‑4 M ⊙ yr‑1. The star formation likely occurs in the dense clouds of the interstellar thick disk seen in optical images of dust extinction and CO emission.

  10. A tale of two galaxies : Light and mass in NGC 891 and NGC 7814

    NARCIS (Netherlands)

    Fraternali, F.; Sancisi, R.; Kamphuis, P.

    The two edge-on galaxies NGC 891 and NGC 7814 are representative of two extreme morphologies: the former is disk-dominated while the latter is almost entirely bulge-dominated. It has been argued that since the two galaxies, which are optically so different, have similar rotation curves their total

  11. THE SUZAKU VIEW OF THE DISK-JET CONNECTION IN THE LOW-EXCITATION RADIO GALAXY NGC 6251

    International Nuclear Information System (INIS)

    Evans, D. A.; Kraft, R. P.; Lee, J. C.; Summers, A. C.; Hardcastle, M. J.; Gandhi, P.; Croston, J. H.

    2011-01-01

    We present results from an 87 ks Suzaku observation of the canonical low-excitation radio galaxy (LERG) NGC 6251. We have previously suggested that LERGs violate conventional active galactic nucleus unification schemes: they may lack an obscuring torus and are likely to accrete in a radiatively inefficient manner, with almost all of the energy released by the accretion process being channeled into powerful jets. We model the 0.5-20 keV Suzaku spectrum with a single power law of photon index Γ = 1.82 +0.04 -0.05 , together with two collisionally ionized plasma models whose parameters are consistent with the known galaxy- and group-scale thermal emission. Our observations confirm that there are no signatures of obscured, accretion-related X-ray emission in NGC 6251, and we show that the luminosity of any such component must be substantially sub-Eddington in nature.

  12. Starburst Galaxy NGC 3310

    Science.gov (United States)

    1999-01-01

    Scientists using NASA's Hubble Space Telescope are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings. This month's Hubble Heritage image showcases the galaxy NGC 3310. It is one of several starburst galaxies, which are hotbeds of star formation, being studied by Dr. Gerhardt Meurer and a team of scientists at Johns Hopkins University, Laurel, Md. The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://heritage.stsci.edu and http://oposite.stsci.edu/pubinfo/pr/2001/26 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Most galaxies form new stars at a fairly slow rate, but starburst galaxies blaze with extremely active star formation. Measuring the clusters' colors yields information about stellar temperatures. Since young stars are blue and older stars redder, the colors relate to their ages. NGC 3310 is forming clusters of new stars at a prodigious rate. The new image shows several hundred star clusters, visible as the bright blue, diffuse objects that trace the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young, luminous stars can be seen throughout the galaxy. The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more than one hundred million years. This suggests that the starburst 'turned on' more than 100 million years ago. It may have been triggered when NGC 3310 collided with a companion galaxy. These observations may change astronomers' view of starbursts. Starbursts were once thought to be brief

  13. Herschel/SPIRE observations of the dusty disk of NGC 4244

    NARCIS (Netherlands)

    Holwerda, B. W.; Bianchi, S.; Boker, T.; Radburn-Smith, D.; de Jong, R. S.; Baes, M.; van der Kruit, P. C.; Xilouris, M.; Gordon, K. D.; Dalcanton, J. J.

    We present Herschel/SPIRE images at 250, 350, and 500 mu m of NGC 4244, a typical low-mass, disk-only and edge-on spiral galaxy. The dust disk is clumpy and shows signs of truncation at the break radius of the stellar disk. This disk coincides with the densest part of the Hi disk. We compare the

  14. The optical morphology of the kinematically peculiar galaxy NGC 4826

    Science.gov (United States)

    Walterbos, R. A. M.; Braun, R.; Kennicutt, R. C., Jr.

    1994-01-01

    We present charge coupled device (CCD) BVI photometry of the galaxy NGC 4826, the Evil- or Black-Eye galaxy, which was recently found to have two counter-rotating gas disks. We study the extinction in the inner gas disk, which gives NGC 4826 its nickname, and find that this disk can be coplanar or close to coplanar with the stellar disk and still cause the strong absorption that is seen on one side of the galaxy. We try to constrain the orientation of the outer gas disk by looking for a small overall asymmetry in the light distribution which would be present if there is dust in this disk, and if it is significantly tilted with respect to the main body of the galaxy. The test shows that the light distribution does not preclude the outer gas disk from being coplanar with the stellar disk as well. NGC 4826 has a small bulge, with a bulge to total light ratio of 0.17 in B. We confirm that this galaxy is indeed a spiral, with a perfect exponential disk down to 27 mag/sq arcsec in B. The close to coplanar orientation of the gas disks is one aspect which is in good agreement with what is expected on the basis of a merger model for the counter-rotating gas. The rotation direction of the inner gas disk with respect to the stars, however, is not. In addition, the existence of a well defined exponential disk probably implies that if a merger did occur it must have been between a gas-rich dwarf and a spiral, not between two equal mass spirals. The stellar spiral arms of NGC 4826 are trailing over part of the disk and leading in the outer disk. Recent numerical calculations by Byrd et al. for NGC 4622 suggest that long lasting leading arms could be formed by a close retrograde passage of a small companion. In this scenario, the outer counter-rotating gas disk in NGC 4826 might be the tidally stripped gas from the dwarf. However, in NGC 4826 the outer arms are leading, while it appears that in NGC 4622 the inner arms are leading. A realistic N-body/hydro simulation of a dwarf

  15. The search for inner polar disks with integral field spectroscopy : the case of NGC 2855 and NGC 7049

    NARCIS (Netherlands)

    Coccato, L.; Corsini, E. M.; Pizzella, A.; Bertola, F.

    Context. The presence of non-circular and off-plane gas motion is frequently observed in the inner regions of disk galaxies. Aims. With integral-field spectroscopy we have measured the surface-brightness distribution and kinematics of the ionized gas in NGC 2855 and NGC 7049. These two early-type

  16. The Ancient Star Forming Disk of NGC 404

    Science.gov (United States)

    Williams, Benjamin F.; Dalcanton, J. J.; Gilbert, K. M.; Stilp, A.; Dolphin, A.; Seth, A. C.; Weisz, D.; Skillman, E.

    2010-05-01

    We present HST/WFPC2 resolved stellar photometry across the disk of the nearby dwarf S0 galaxy NGC 404, which hosts an extended gas disk. The locations of our fields contain a roughly equal mixture of bulge and disk stars. Detailed modeling of the color-magnitude diagrams suggests that 70% of the stellar mass in the NGC 404 disk formed by z 2 (10 Gyr ago) and at least 90% formed prior to z 1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early and late type disks may have different long-term evolutionary histories, not simply differences in their current and recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in GALEX images show that the brightest FUV regions contain the youngest stellar mass, but some young stars (law. However, 0.5-1 Gyr ago, the star formation rate was unusually low for the inferred gas density, consistent with the possibility that there was a gas accretion event that reignited star formation 0.5 Gyr ago. Such an event could explain why this dwarf S0 galaxy hosts an extended gas disk. Support for this work was provided by NASA through grants GO-10915 and GO-11719 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  17. Mass distributions in disk galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to

  18. Galaxy evolution in groups. NGC 3447/NGC 3447A: the odd couple in LGG 225

    Science.gov (United States)

    Mazzei, P.; Marino, A.; Rampazzo, R.; Plana, H.; Rosado, M.; Arias, L.

    2018-02-01

    Context. Local Group (LG) analogs (LGAs) are galaxy associations dominated by a few bright spirals reminiscent of the LG. The NGC 3447/NGC 3447A system is a member of the LGG 225 group, a nearby LGA. This system is considered a physical pair composed of an intermediate-luminosity late-type spiral, NGC 3447 itself, and an irregular companion, NGC 3447A, linked by a faint, short filament of matter. A ring-like structure in the NGC 3447 outskirts has been emphasised by Galaxy Evolution Explorer (GALEX) observations. Aims: This work aims to contribute to the study of galaxy evolution in low-density environments, a favourable habitat to highly effective encounters, shedding light on the evolution of the NGC 3447/NGC 3447A system. Methods: We performed a multi-λ analysis of the surface photometry of this system to derive its spectral energy distribution and structural properties using ultraviolet (UV), Swift UVOT, and optical Sloan Digital Sky Survey (SDSS) images complemented with available far-IR observations. We also characterised the velocity field of the pair using two-dimensional Hα kinematical observations of the system obtained with PUMA Fabry-Perot interferometer at the 2.1 m telescope of San Pedro Mártir (Mexico). All these data are used to constrain smooth particle hydrodynamic simulations with chemo-photometric implementation to shed light on the evolution of this system. Results: The luminosity profiles, from UV to optical wavelengths, are all consistent with the presence of a disc extending and including NGC 3447A. The overall velocity field does not emphasise any significant rotation pattern, rather a small velocity gradient between NGC 3447 and NGC 3447A. Our simulation, detached from a large grid explored to best-fit the global properties of the system, suggests that this arises from an encounter between two halos of equal mass. Conclusions: NGC 3447 and NGC 3447A belong to the same halo, NGC 3447A being a substructure of the same disk including NGC

  19. A tidally distorted dwarf galaxy near NGC 4449.

    Science.gov (United States)

    Rich, R M; Collins, M L M; Black, C M; Longstaff, F A; Koch, A; Benson, A; Reitzel, D B

    2012-02-08

    NGC 4449 is a nearby Magellanic irregular starburst galaxy with a B-band absolute magnitude of -18 and a prominent, massive, intermediate-age nucleus at a distance from Earth of 3.8 megaparsecs (ref. 3). It is wreathed in an extraordinary neutral hydrogen (H I) complex, which includes rings, shells and a counter-rotating core, spanning ∼90 kiloparsecs (kpc; refs 1, 4). NGC 4449 is relatively isolated, although an interaction with its nearest known companion--the galaxy DDO 125, some 40 kpc to the south--has been proposed as being responsible for the complexity of its H I structure. Here we report the presence of a dwarf galaxy companion to NGC 4449, namely NGC 4449B. This companion has a V-band absolute magnitude of -13.4 and a half-light radius of 2.7 kpc, with a full extent of around 8 kpc. It is in a transient stage of tidal disruption, similar to that of the Sagittarius dwarf near the Milky Way. NGC 4449B exhibits a striking S-shaped morphology that has been predicted for disrupting galaxies but has hitherto been seen only in a dissolving globular cluster. We also detect an additional arc or disk ripple embedded in a two-component stellar halo, including a component extending twice as far as previously known, to about 20 kpc from the galaxy's centre.

  20. Ultraviolet imaging of the AGN+starburst galaxy NGC 1068

    Science.gov (United States)

    Neff, Susan G.; Fanelli, Michael N.; Roberts, Laura J.; O'Connell, Robert W.; Bohlin, Ralph; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1994-01-01

    Images of the Seyfert 2 galaxy NGC 1068 were obtained at two ultraviolet wavelengths by the Ultraviolet Imaging Telescope (UIT). These data represent the first detailed UV imagery of a composite (active galactic nucleus + starburst) disk galaxy. NGC 1068 cotains multiple components at UV wavelengths: the central active galactic nucleus; a population of very luminous starburst knots; a bright oval inner disk; and a fainter, more circular halo. The most luminous knot, which is located approximately 750 pc from the nucleus at PA 315 deg, is approximately 80 times the luminosity of 30 Doradus and gives NGC 1068 a 'double nucleus' appearance in the UV. Significant extended emission is observed throughout the disk, unlike other disk galaxies so far observed in the UV. The radial brightness profile in both UV bandpasses generally follows an exponential decline to approximately 5 kpc. A faint halo extending to approximately 13 kpc is likely to be a galaxian-sized reflection nebula where ambient dust scatters the intense UV continuum from the inner galaxy. UV colors show a striking asymmetric morphology, which is correlated with the observed molecular CO emission.

  1. Spectrophotometry of the Seyfert galaxy NGC 4593

    International Nuclear Information System (INIS)

    MacAlpine, G.M.; Williams, G.A.; Lewis, D.W.

    1979-01-01

    Spectrophotometry of the bright class 1 Seyfert galaxy NGC 4593 is presented. The emission-line characteristics are briefly discussed and compared with those of other Seyfert galaxies. The measured hydrogen Balmer-line ratios are reasonably consistent with expected recombination values, and the emission intensities of Fe II, He I 5876, and forbidden O III 4363 relative to other lines are stronger than average in NGC 4593

  2. THE STELLAR VELOCITY DISPERSION OF THE SPIRAL GALAXIES NGC-1566 AND NGC-2815

    NARCIS (Netherlands)

    BOTTEMA, R

    Long slit absorption line spectroscopy has been obtained of the close to face-on Sc galaxy NGC 1566 and inclined Sb galaxy NGC 2815. These observations provided stellar radial velocities and stellar velocity dispersions as a function of radius for both galaxies. For NGC 1566 a radially decreasing

  3. Disk mass densities in edge-on spiral galaxies

    Science.gov (United States)

    Rupen, Michael P.

    1990-01-01

    Very Large Array (VLA) observations of the neutral hydrogen (HI) gas in two nearby edge-on spirals (NGC 4565 and NGC 891) successfully resolve the thickness of the gas layers in both disks over a wide range in radii. The combination of B, C, and D array data produces a 4 arcsec (approx. 200 pc) beam and 21 km s(exp -1) velocity resolution, combined with sensitivity to structures as large as 18 arcmin (approx. 54 kpc). These observations directly constrain the mid-plane disk mass densities, under the assumption of an equilibrium between the thermal pressure of the gas and the gravitational attraction of the disk. The results of a preliminary analysis are given regarding the z-velocity dispersion of the gas, the mass-to-light ratio of the disk in NGC 4565, and the roles of atomic and molecular gases. The data also allow a detailed study of the HI in these galaxies; in general their brightness temperature distributions seem similar to that in the Milky Way. Both galaxies show asymmetric HI extensions beyond the optical disk. In NGC 4565 the extension is a surprisingly abrupt warp, which may bend back to parallel the galactic plane; the velocity structure implies the warp is continuous around the disk.

  4. Three types of galaxy disks

    NARCIS (Netherlands)

    Pohlen, M.; Erwin, P.; Trujillo, I.; Beckman, J. E.; Knapen, JH; Mahoney, TJ; Vazdekis, A

    2008-01-01

    We present our new scheme for the classification of radial stellar surface brightness profiles for disk galaxies. We summarize the current theoretical attempts to understand their origin and give an example of an application by comparing local galaxies with their counterparts at high redshift (z

  5. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the. Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emis- sion closely follows the ultraviolet emission ...

  6. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC ...

    Indian Academy of Sciences (India)

    In this paper, we present the first low frequency (< 1.4 GHz) radio continuum study of a Wolf Rayet galaxy NGC 4214 using the Giant Meterwave Radio Telescope (GMRT). We detect diffuse extended emission from the galaxy disk at 325 MHz and find that the radio emission closely follows the ultraviolet emission mapped by ...

  7. ASCA observation of three bright early-type galaxies: NGC 4472, NGC 4406, and NGC 4636

    Science.gov (United States)

    Awaki, Hisamitsu; Mushotzky, Richard; Tsuru, Takeshi; Fabian, Andrew C.; Fukazawa, Yasushi; Loewenstein, Michael; Makishima, Kazuo; Matsumoto, Hironori; Matsushita, Kyoko; Mihara, Tatehiro

    1994-01-01

    We report Advanced Satellite for Cosmology and Astrophysics (ASCA) 0.3-10 keV and X-ray observations of three early type galaxies, NGC 4472, NGC 4406, and NGC 4636. The extended mission in these galaxies is well described by thin thermal eimssion from hot gas. The gas temperature is 0.92 +/- 0.02 keV for NGC 4472, 0.79 +/- 0.01 keV for NGC 4406, and 0.73 +/- 0.02 keV for NGC 4636. The metal abundance for NGC 4472, NGC 4406, and NGC 4636 are, under the assumption of solar ratios, 0.63 +/- 0.15, 0.45 +/- 0.10, and 0.38 +/- 0.07, respectively. Detailed analysis has allowed determination of the abundances of oxygen, silicon, sulfur, and iron. The observed abundances are consistent with the solar ratios. For NGC 4472 and NGC 4406 we also determined the mean temperature of the gas producing the Si lines from the ratio of the Si H to He-like lines and find it to be consistent with the continuum temperature. The X-ray temperature is in good agreement with the observed optical velocity dispersion, stellar density profile, and gas density profile. Our data indicates that the supernova rate should be less than one fifth of the nominal rate in early type galaxies. We derive the mass of these systems within fixed angular scales and find that M/L greater than 40, confirming that elliptical galaxies are dark matter dominated at large radii.

  8. Exploring Our Galaxy's Thick Disk

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    What is the structure of the Milky Ways disk, and how did it form? A new study uses giant stars to explore these questions.A View from the InsideSchematic showing an edge-on, not-to-scale view of what we think the Milky Ways structurelookslike. The thick disk is shown in yellow and the thin disk is shown in green. [Gaba p]Spiral galaxies like ours are often observed to have disks consisting of two components: a thin disk that lies close to the galactic midplane, and a thick disk that extends above and below this. Past studies have suggested that the Milky Ways disk hosts the same structure, but our position embedded in the Milky Way makes this difficult to confirm.If we can measure the properties of a broad sample of distant tracer stars and use this to better understand the construction of the Milky Ways disk, then we can start to ask additional questions like, how did the disk components form? Formation pictures for the thick disk generally fall into two categories:Stars in the thick disk formed within the Milky Way either in situ or by migrating to their current locations.Stars in the thick disk formed in satellite galaxies around the Milky Way and then accreted when the satellites were disrupted.Scientists Chengdong Li and Gang Zhao (NAO Chinese Academy of Sciences, University of Chinese Academy of Sciences) have now used observations of giant stars which can be detected out to great distances due to their brightness to trace the properties of the Milky Ways thick disk and address the question of its origin.Best fits for the radial (top) and vertical (bottom) metallicity gradients of the thick-disk stars. [Adapted from Li Zhao 2017]Probing OriginsLi and Zhao used data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in China to examine a sample of 35,000 giant stars. The authors sorted these stars into different disk components halo, thin disk, and thick disk based on their kinematic properties, and then explored how the orbital and

  9. Diverse Group of Galaxy Types, NGC 3190 Field

    Science.gov (United States)

    2005-01-01

    Ultraviolet image of a diverse group of galaxy types. NGC 3190 is a dusty edge on spiral galaxy. NGC 3187 is highly distorted. The two are separated by only 35 kilo-parsecs (about half the diameter of our own Milky Way galaxy). A ring, elliptical, and other irregular galaxies are also present.

  10. NGC 5291: Implications for the Formation of Dwarf Galaxies

    Science.gov (United States)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  11. The ISM in nearby galaxies: NGC1365

    NARCIS (Netherlands)

    Baan, Willem; Loenen, Edo; Spaans, Marco

    We propose a sensitive spectral survey of the nuclear region of the nearby Luminous Infrared Galaxy NGC1365. These observations are to confirm a similar program carried out in 2007, which suffers from severe bandpass issues. The previous observations have resulted in 76+ tentative detections,

  12. Magnetized Disk Winds in NGC 3783

    Science.gov (United States)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2018-01-01

    We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.

  13. THE ODD OFFSET BETWEEN THE GALACTIC DISK AND ITS BAR IN NGC 3906

    Energy Technology Data Exchange (ETDEWEB)

    Swardt, Bonita de [South African Astronomical Observatory, Observatory, 7935 Cape Town (South Africa); Sheth, Kartik; Kim, Taehyun; Muñoz-Mateos, Juan-Carlos [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stephen Pardy; Elena D’ Onghia; Eric Wilcots [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Hinz, Joannah [MMTO, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Regan, Michael W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Athanassoula, E.; Bosma, Albert [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Buta, Ronald J. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Cisternas, Mauricio; Erroz-Ferrer, Santiago [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Comerón, Sébastien [Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu, FI-90014 (Finland); Gadotti, Dimitri A. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Paz, Armando Gil de [Departamento de Astrofísica, Universidad Complutense de Madrid, Madrid E-28040 (Spain); Jarrett, Thomas H. [Astronomy Department, University of Cape Town, Rondebosch 7701 (South Africa); Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, Yorktown Hts., NY 10598 (United States); Ho, Luis C. [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2015-07-20

    We use mid-infrared 3.6 and 4.5 μm imaging of NGC 3906 from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) to understand the nature of an unusual offset between its stellar bar and the photometric center of an otherwise regular, circular outer stellar disk. We measure an offset of ∼910 pc between the center of the stellar bar and photometric center of the stellar disk; the bar center coincides with the kinematic center of the disk determined from previous HI observations. Although the undisturbed shape of the disk suggests that NGC 3906 has not undergone a significant merger event in its recent history, the most plausible explanation for the observed offset is an interaction. Given the relatively isolated nature of NGC 3906 this interaction could be with dark matter substructure in the galaxy's halo or from a recent interaction with a fast moving neighbor that remains to be identified. Simulations aimed at reproducing the observed offset between the stellar bar/kinematic center of the system and the photometric center of the disk are necessary to confirm this hypothesis and constrain the interaction history of the galaxy.

  14. A Fourier Analysis of the Interacting Pair of Galaxies KPG 404 (NGC 5394/95)

    Science.gov (United States)

    Puerari, I.; Valdez-Gutiérrez, M.; Hernández-López, I.

    2004-06-01

    We present a bi-dimensional Fourier analysis of near-infrared images of KPG 404 (NGC 5394/95). The 2D Fourier analysis shows that NGC 5394 is a H2β galaxy in the DP classification (Block & Puerari 1999). In contrast, NGC 5395 displays a very complex structure which needs a number of Fourier coefficients to be explained. A tightly wound m=1 (DP class H1α) is the main structure, but other m=1 and m=2 coefficients (suggesting spiral arm modulation) are also present in the Fourier spectra. The complex structure of NGC 5395 also suggests a strong interaction in the pair. The m=1 coefficients can represent a pseudo ring-type structure, resulting of a collision rather than a grazing passage. We conclude that the most probable scenario of the interaction in this pair should take into account a crossing of NGC 5394 through the disk of NGC 5395.

  15. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    Science.gov (United States)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  16. New Portraits of Spiral Galaxies NGC 613, NGC 1792 and NGC 3627

    Science.gov (United States)

    2003-12-01

    Not so long ago, the real nature of the "spiral nebulae", spiral-shaped objects observed in the sky through telescopes, was still unknown. This long-standing issue was finally settled in 1924 when the famous American astronomer Edwin Hubble provided conclusive evidence that they are located outside our own galaxy and are in fact "island universes" of their own. Nowadays, we know that the Milky Way is just one of billions of galaxies in the Universe. They come in vastly different shapes - spiral, elliptical, irregular - and many of them are simply beautiful, especially the spiral ones. Astronomers Mark Neeser from the Universitäts-Sternwarte München (Germany) and Peter Barthel from the Kapteyn Institute in Groningen (The Netherlands) were clearly not insensitive to this when they obtained images of three beautiful spiral galaxies with ESO's Very Large Telescope (VLT). They did this in twilight during the early morning when they had to stop their normal observing programme, searching for very distant and faint quasars. The resulting colour images ( ESO PR Photos 33a-c/03 ) were produced by combining several CCD images in three different wavebands from the FORS multi-mode instruments. The three galaxies are known as NGC 613, NGC 1792 and NGC 3627 . They are characterized by strong far-infrared, as well as radio emission, indicative of substantial ongoing star-formation activity. Indeed, these images all display prominent dust as well as features related to young stars, clear signs of intensive star-formation. NGC 613 ESO PR Photo 33a/03 ESO PR Photo 33a/03 [Preview - JPEG: 470 x 400 pix - 25k] [Normal - JPEG: 939 x 800 pix - 416k] [Full Res - JPEG: 2702 x 2301 pix - 3.4M] PR Photo 33a/03 of the barred spiral galaxy NGC 613 was obtained with the FORS1 and FORS2 multi-mode instruments (at VLT MELIPAL and YEPUN, respectively) on December 16-18, 2001. It is a composite of three exposures in different wavebands, cf. the technical note below. The full-resolution version

  17. Accurate Distances to Important Spiral Galaxies: M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2017-08-01

    Accurate distances are fundamental for interpreting various measured properties of galaxies. Surprisingly, many of the best-studied spiral galaxies in the Local Volume have distance uncertainties that are much larger than can be achieved with modern observation techniques. Using Hubble Space Telescope optical imaging, we use the tip of the red giant branch method to measure the distances to six galaxies that are included in the Spitzer Infrared Nearby Galaxies Survey program and its offspring surveys. The sample includes M63, M74, NGC 1291, NGC 4559, NGC 4625, and NGC 5398. We compare our results with distances reported to these galaxies based on a variety of methods. Depending on the technique, there can be a wide range in published distances, particularly from the Tully–Fisher relation. In addition, differences between the planetary nebular luminosity function and surface brightness fluctuation techniques can vary between galaxies, suggesting inaccuracies that cannot be explained by systematics in the calibrations. Our distances improve upon previous results, as we use a well-calibrated, stable distance indicator, precision photometry in an optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties.

  18. DUST EXTINCTION IN NGC-4594, THE SOMBRERO GALAXY

    NARCIS (Netherlands)

    KNAPEN, JH; HES, R; BECKMAN, JE; PELETIER, RF

    We have studied the extinction law in the well-defined dust lane of the Sombrero galaxy, NGC4594. In the R,I,J,H, and K bands we find good agreement between values for the extinction ratios A-lambda/A(v) in NGC4594 and those reported for our own Galaxy. We can explain the apparently somewhat lower

  19. DISTRIBUTION AND MOTIONS OF H(I) IN THE SA GALAXIES NGC-1169 AND NGC-3898

    NARCIS (Netherlands)

    VANDRIEL, W; VANWOERDEN, H

    The Sa-type galaxies NGC 1169 and NGC 3898 were mapped in the 21-cm HI line at Westerbork with a spatial resolution of about 30'' and a velocity resolution of 40 km s-1. NGC 1169, classified as SBa(r) I, has M(HI)/L(B)0=0.12. M./L.,B. The HI distribution of NGC 1169 shows a central hole, 2.5 times

  20. Disturbed Fossil Group Galaxy NGC 1132

    Science.gov (United States)

    Kim, Dong-Woo; Anderson, Craig; Burke, Doug; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jen; McCollough, Michael; Morgan, Doug; Mossman, Amy; O’Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa; Trinchieri, Ginevra

    2018-02-01

    We have analyzed the Chandra archival data of NGC 1132, a well-known fossil group, i.e., a system expected to be old and relaxed long after the giant elliptical galaxy assembly. Instead, the Chandra data reveal that the hot gas morphology is disturbed and asymmetrical, with a cold front following a possible bow shock. We discuss possible origins of the disturbed hot halo, including sloshing by a nearby object, merger, ram pressure by external hotter gas, and nuclear outburst. We consider that the first two mechanisms are likely explanations for the disturbed hot halo, with a slight preference for a minor merger with a low impact parameter because of the match with simulations and previous optical observations. In this case, NGC 1132 may be a rare example of unusual late mergers seen in recent simulations. Regardless of the origin of the disturbed hot halo, the paradigm of the fossil system needs to be reconsidered.

  1. The Interacting Galaxy Pair NGC 5394/95: Near-Infrared Photometry, Structure, and Morphology

    Science.gov (United States)

    Puerari, Ivânio; Valdez-Gutiérrez, Margarita; Hernández-López, Izbeth

    2005-10-01

    We present near-infrared observations in the J, H, and K' passbands of the interacting pair of galaxies NGC 5394/95 (KPG 404). The total magnitudes, colors, surface brightnesses, and color profiles are calculated. In addition, aperture magnitudes are compared against previous determinations. We also perform a structural (disk + bulge) analysis, as well as a two-dimensional Fourier analysis, to gain insight into the morphology of the pair. The disk + bulge fit shows that NGC 5394 (KPG 404A) is more compact than normal galaxies, while NGC 5395 (KPG 404B) is less concentrated. The two-dimensional Fourier analysis shows that NGC 5394 is an H2β galaxy in the dust-penetrated (DP) classification by Block & Puerari. NGC 5395, in contrast, displays a very complex structure that needs a number of Fourier coefficients to be explained. A tightly wound m=1 coefficient (DP class H1α) is the main structure, but other m=1 and m=2 coefficients (suggesting modulation) are also present in the Fourier spectra. The m=1 coefficients represent a pseudo-ring-type structure, indicative of a collision rather than a passage. Based on our results we are able to assert that the scenario of the interaction between the galaxy members of KPG 404 should take into account a crossing of NGC 5394 through the disk of NGC 5395 in a Cartwheel-like encounter rather than a passage as in M51-type pairs. Numerical simulations could help to unravel the structural and morphological evolution of this interacting pair.

  2. The Interstellar Medium and Star Formation in Edge-On Galaxies. II. NGC 4157, 4565, and 5907

    NARCIS (Netherlands)

    Yim, Kijeong; Wong, Tony; Xue, Rui; Rand, Richard J.; Rosolowsky, Erik; van der Hulst, J. M.; Benjamin, Robert; Murphy, Eric J.

    2014-01-01

    We present a study of the vertical structure of the gaseous and stellar disks in a sample of edge-on galaxies (NGC 4157, 4565, and 5907) using BIMA/CARMA 12COJ=1\\to 0, VLA Hi, and Spitzer 3.6 μm data. In order to take into account projection effects when we measure the disk thickness as a function

  3. A Catalog of Edge-on Disk Galaxies: From Galaxies with a Bulge to Superthin Galaxies

    OpenAIRE

    Kautsch, S. J.; Grebel, E. K.; Barazza, F. D.; Gallagher, J. S.

    2005-01-01

    The formation and evolution of disk-dominated galaxies is difficult to explain, yet these objects exist. We therefore embarked on a study aimed at a better understanding of these enigmatic objects. We used data from the SDSS DR1 in order to identify edge-on galaxies with disks in a uniform, reproducible, automated fashion. We identified 3169 edge-on disk galaxies, which we subdivided into disk galaxies with bulge, intermediate types, and simple disk galaxies without any obvious bulge componen...

  4. The Stability of Galaxy Disks

    Science.gov (United States)

    Westfall, K. B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T. P. K.; Swaters, R. A.; Verheijen, M. A. W.

    2014-03-01

    We calculate the stellar surface mass density (Σ*) and two-component (gas+stars) disk stability (QRW) for 25 late-type galaxies from the DiskMass Survey. These calculations are based on fits of a dynamical model to our ionized-gas and stellar kinematic data performed using a Markov Chain Monte Carlo sampling of the Bayesian posterior. Marginalizing over all galaxies, we find a median value of QRW = 2.0±0.9 at 1.5 scale lengths. We also find that QRW is anti-correlated with the star-formation rate surface density (Σ*), which can be predicted using a closed set of empirical scaling relations. Finally, we find that the star-formation efficiency (Σ*/Σg) is correlated with Σ* and weakly anti-correlated with QRW. The former is consistent with an equilibrium prediction of Σ*/Σg ∝ Σ*1/2. Despite its order-of-magnitude range, we find no correlation of Σ*/ΣgΣ*1/2 with any other physical quantity derived by our study.

  5. Infrared and optical properties of the emission-line galaxies NGC 1386 and NGC 1365

    International Nuclear Information System (INIS)

    Phillips, M.M.; Frogel, J.A.

    1980-01-01

    We have obtained optical spectrophotometry and broad-band infrared data for the nucleus of the emission-line galaxy NGC 1386. These observations are discussed and compared with our own optical spectrophotometry as well as published optical and infrared measurements of the nucleus of the neighboring ''hot spot'' galaxy NGC 1365. Both galaxies show large infared excesses. The very high excitation emission-line spectrum of NGC 1386 is that of a type of 2 Seyfert, making this galaxy the closest known member of this class of objects. We find direct evidence for a significant early-type stellar population in the nucleus of NGC 1365, thus strengthening the previous conclusion that the nuclear emission lines of this galaxy are excited by the radiation of young, hot stars. In addition, we confirm the presence of weak [Ne V] and He II emission, which suggests that a nonthermal source of ionization may also be present. The nucleus of NGC 1365 is emitting a factor of 10 more energy in both the optical emission lines and the infrared than is that of NGC 1386. Finally, we point out the uncertainty in identification of NGC 1365 as an X-ray source in view of its proximity of a Seyfert 2, galaxy, several of which have now been shown to be strong X-ray emitters

  6. The evolution of interacting spiral galaxy NGC 5194

    Science.gov (United States)

    Kang, Xiaoyu

    2015-08-01

    NGC 5194 (M51a) is a grand-design spiral galaxy and undergoing interactions with its companion. Here, we focus on investigating main properties of its star formation history by constructing a simple evolution model, which assumes that the disk builds up gradually by cold gas infall and the gas infall rate can be parametrizedly described by a Gaussian form. By comparing model predictions with the observed data, we discuss the probable range for free parameter in the model and then know more about the main properties of the evolution and SFH of M51a. We find that the model predictions are very sensitive to the free parameter and the model adopting a constant infall-peak time tp = 7.0 Gyr can reproduce most of the observed constraints of M51a. Although our model does not assume the gas infall time-scale of the inner disk is shorter than that of the outer disc, our model predictions still show that the disk of M51a forms inside-out. We find that the mean stellar age of M51a is younger than that of the Milky Way, but older than that of the gas-rich disk galaxy UGC 8802. In this paper, we also introduce a ‘toy’ model to allow an additional cold gas infall occurred recently to imitate the influence of the interaction between M51a and its companion. Our results show that the current molecular gas surface density, the star formation rate and the UV-band surface brightness are important quantities to trace the effects of recent interaction on galactic star formation process.

  7. Kinematics of NGC 4826: A sleeping beauty galaxy, not an evil eye

    Science.gov (United States)

    Rubin, Vera C.

    1994-01-01

    A recent high resolution H I study of the Sab galaxy NGC 4826 (1992) reveals that the sense of rotation of the neutral gas reverses from the inner to the outer disk. The present paper reports on optical spectra at high velocity resolution in four position angles in NGC 4826, which cover the region of the gas reversal and which reveal a high degree of complexity. In the inner disk, which includes the prominent dusty lane, the stars and gas rotate in concert, and the spiral arms trail (for the adopted geometry). Arcs of ionized gas are observed partially encircling the nucleus; expansion velocities reach 400 km/s. At distances just beyond the prominent dust lane, the ionized gas exhibits a rapid, orderly velocity fall and within 500 parsecs it has reversed from 180 km/s prograde to 200 km/s retrograde; it also has a component radial toward the nucleus of over 100 km/s. The stars, however, continue their prograde rotation. Beyond this transition zone, the neutral gas continues its retrograde rotation, stellar velocities are prograde, but the sense of the almost circular arms is not established. Because of its kinematical complexity as well as its proximity, NGC 4826 is an excellent early-type galaxy in which to observe the long term effects of gas acquistion or a galaxy merger on a disk galaxy.

  8. FISICA observations of the starburst galaxy, NGC 1569

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Raines, S. N.; Gruel, N.; Elston, R.; Guzman, R.; Julian, J.; Boreman, G.; Glenn, P. E.; Hull-Allen, C. G.; Hoffman, J.; Rodgers, M.; Thompson, K.; Flint, S.; Comstock, L.; Myrick, B.

    2006-06-01

    Using the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) we obtained observations of the dwarf starburst galaxy NGC 1569. We present our JH band spectra, particularly noting the existence of extended emission in Paschen β and He I.

  9. HST/ACS DIRECT AGES OF THE DWARF ELLIPTICAL GALAXIES NGC 147 AND NGC 185

    Energy Technology Data Exchange (ETDEWEB)

    Geha, M. [Astronomy Department, Yale University, New Haven, CT 06520 (United States); Weisz, D. [Astronomy Department, Box 351580, University of Washington, Seattle, WA 98195 (United States); Grocholski, A. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Dolphin, A. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Marel, R. P. van der [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Guhathakurta, P., E-mail: marla.geha@yale.edu [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2015-10-01

    We present the deepest optical photometry for any dwarf elliptical (dE) galaxy based on Hubble Space Telescope Advanced Camera for Surveys (ACS) observations of the Local Group dE galaxies NGC 147 and NGC 185. Our F606W and F814W color–magnitude diagrams are the first to reach below the oldest main sequence turnoff in a dE galaxy, allowing us to determine full star formation histories in these systems. The ACS fields are located roughly ∼1.5 effective radii from the galaxy center to avoid photometric crowding. While both ACS fields show unambiguous evidence for old and intermediate age stars, the mean age of NGC 147 is ∼4–5 Gyr younger as compared to NGC 185. In NGC 147, only 40% of stars were in place 12.5 Gyr ago (z ∼ 5), with the bulk of the remaining stellar population forming between 5 to 7 Gyr. In contrast, 70% of stars were formed in NGC 185 prior to 12.5 Gyr ago with the majority of the remaining population forming between 8 to 10 Gyr ago. Star formation has ceased in both ACS fields for at least 3 Gyr. Previous observations in the central regions of NGC 185 show evidence for star formation as recent as 100 Myr ago, and a strong metallicity gradient with radius. This implies a lack of radial mixing between the center of NGC 185 and our ACS field. The lack of radial gradients in NGC 147 suggests that our inferred SFHs are more representative of its global history. We interpret the inferred differences in star formation histories to imply an earlier infall time into the M31 environment for NGC 185 as compared to NGC 147.

  10. Gas Kinematics and the Black Hole Mass at the Center of the Radio Galaxy NGC 4335

    Science.gov (United States)

    Verdoes Kleijn, Gijs A.; van der Marel, Roeland P.; de Zeeuw, P. Tim; Noel-Storr, Jacob; Baum, Stefi A.

    2002-11-01

    We investigate the kinematics of the central gas disk of the radio-loud elliptical galaxy NGC 4335, derived from Hubble Space Telescope (HST) long-slit spectroscopic observations of Hα+[N II] along three parallel slit positions. The observed mean velocities are consistent with a rotating thin disk. We model the gas disk in the customary way, taking into account the combined potential of the galaxy and a putative black hole with mass M•, as well as the influence on the observed kinematics of the point-spread function and finite slit width. This sets a 3 σ upper limit of 108 Msolar on M•. The velocity dispersion at rintegral model of the stellar dynamics yields M•>~3×109 Msolar. However, there is reason to believe that this model overestimates M•. Reported correlations between black hole mass and inner stellar velocity dispersion σ predict M• to be >=5.4×108 Msolar in NGC 4335. If our standard thin disk modeling of the gas kinematics is valid, then NGC 4335 has an unusually low M• for its velocity dispersion. If, on the other hand, this approach is flawed and provides an underestimate of M•, then black hole masses for other galaxies derived from HST gas kinematics with the same assumptions should be treated with caution. In general, a precise determination of the M•-σ relation and its scatter will benefit from (1) joint measurements of M• from gas and stellar kinematics in the same galaxies and (2) a better understanding of the physical origin of the excess velocity dispersion commonly observed in nuclear gas disks of elliptical galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  11. Dynamical models of two lenticular galaxies: NGC 1023 and NGC 4526

    Directory of Open Access Journals (Sweden)

    Samurović S.

    2017-01-01

    Full Text Available We study kinematics and dynamics of two lenticular galaxies that possess globular clusters (GCs which extend beyond approximately seven effective radii. We analyze two nearby lenticular galaxies, NGC 1023 and NGC 4526, based on their GCs. We extract the kinematics of these galaxies and use it for dynamical modeling based on the Jeans equation. The Jeans equation was solved in both the Newtonian mass-follows-light approach assuming constant mass-to-light ratio and assuming a dark halo in the Navarro-Frenk-White form. We find that while the first galaxy, NGC 1023, does not need a significant amount of dark matter, in the other galaxy, NGC 4526, the dark component fully dominates stellar matter in the total dynamical mass. In this paper we also used three different MOND approaches and found that while for both galaxies MOND models can provide successful fits of the observed velocity dispersion, in the case of NGC 4526 we have a hint of an additional dark component even in the MOND framework. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 176021: Visible and Invisible Matter in Nearby Galaxies: Theory and Observations

  12. THE STRUCTURE OF THE CIRCUMGALACTIC MEDIUM OF GALAXIES: COOL ACCRETION INFLOW AROUND NGC 1097

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, David V.; Jenkins, Edward B. [Princeton University Observatory, Ivy Lane, Princeton, NJ 08544 (United States); Chelouche, Doron [Department of Physics, University of Haifa, Mount Carmel, Haifa 31905 (Israel); Tripp, Todd M. [Department of Astronomy, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003 (United States); Pettini, Max [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0EZ (United Kingdom); York, Donald G. [Department of Astronomy and Astrophysics, University of Chicago, Enrico Fermi Institute, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Frye, Brenda L. [Department of Astronomy/Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-07-20

    We present Hubble Space Telescope far-UV spectra of four QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of ρ = 48–165 kpc. NGC 1097 is a nearby spiral galaxy that has undergone at least two minor merger events, but no apparent major mergers, and is relatively isolated with respect to other nearby bright galaxies. This makes NGC 1097 a good case study for exploring baryons in a paradigmatic bright-galaxy halo. Ly α absorption is detected along all sightlines and Si iii λ 1206 is found along the three sightlines with the smallest ρ ; metal lines of C ii, Si ii, and Si iv are only found with certainty toward the innermost sightline. The kinematics of the absorption lines are best replicated by a model with a disk-like distribution of gas approximately planar to the observed 21 cm H i disk, which is rotating more slowly than the inner disk, and into which gas is infalling from the intergalactic medium. Some part of the absorption toward the innermost sightline may arise either from a small-scale outflow or from tidal debris associated with the minor merger that gives rise to the well known “dog-leg” stellar stream that projects from NGC 1097. When compared to other studies, NGC 1097 appears to be a “typical” absorber, although the large dispersion in absorption line column density and equivalent width in a single halo goes perhaps some way toward explaining the wide range of these values seen in higher- z studies.

  13. THE EVOLUTION OF STELLAR POPULATIONS IN THE OUTER DISKS OF SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Alberts, Stacey; Calzetti, Daniela; Dong Hui; Johnson, L. C.; Dale, Daniel A.; Bianchi, Luciana; Thilker, David; Chandar, Rupali; Kennicutt, Robert C.; Meurer, Gerhardt R.; Regan, Michael

    2011-01-01

    We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Galaxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer-disk associations in our sample is ∼100 Myr with a large dispersion that spans the entire range of our models (1 Myr to 1 Gyr). This relatively evolved state for most associations addresses the observed dearth of Hα emission in some outer disks, as Hα can only be observed in star-forming regions younger than ∼10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B - V) = 0-0.3 mag) and variations in the upper end of the stellar initial mass function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.

  14. THE RINGS SURVEY. I. Hα AND H i VELOCITY MAPS OF GALAXY NGC 2280

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Carl J.; Williams, T. B.; Sellwood, J. A. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Spekkens, Kristine; Lee-Waddell, K. [Department of Physics, Royal Military College of Canada, P.O. Box 17000, Station Forces, Kingston, ON, K7K 7B4, XNS (Canada); Naray, Rachel Kuzio de, E-mail: cmitchell@physics.rutgers.edu, E-mail: williams@saao.ac.za, E-mail: kristine.spekkens@rmc.ca, E-mail: karen.lee-waddell@rmc.ca, E-mail: kuzio@astro.gsu.edu, E-mail: sellwood@physics.rutgers.edu [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Atlanta, GA 30303 (United States)

    2015-03-15

    Precise measurements of gas kinematics in the disk of a spiral galaxy can be used to estimate its mass distribution. The Southern African Large Telescope has a large collecting area and field of view, and is equipped with a Fabry–Pérot (FP) interferometer that can measure gas kinematics in a galaxy from the Hα line. To take advantage of this capability, we have constructed a sample of 19 nearby spiral galaxies, the RSS Imaging and Spectroscopy Nearby Galaxy Survey, as targets for detailed study of their mass distributions and have collected much of the needed data. In this paper, we present velocity maps produced from Hα FP interferometry and H i aperture synthesis for one of these galaxies, NGC 2280, and show that the two velocity measurements are generally in excellent agreement. Minor differences can mostly be attributed to the different spatial distributions of the excited and neutral gas in this galaxy, but we do detect some anomalous velocities in our Hα velocity map of the kind that have previously been detected in other galaxies. Models produced from our two velocity maps agree well with each other and our estimates of the systemic velocity and projection angles confirm previous measurements of these quantities for NGC 2280.

  15. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. II. A catalogue of isolated nearby edge-on disk galaxies and the discovery of new low surface brightness systems

    Science.gov (United States)

    Henkel, C.; Javanmardi, B.; Martínez-Delgado, D.; Kroupa, P.; Teuwen, K.

    2017-07-01

    The connection between the bulge mass or bulge luminosity in disk galaxies and the number, spatial and phase space distribution of associated dwarf galaxies is a discriminator between cosmological simulations related to galaxy formation in cold dark matter and generalised gravity models. Here, a nearby sample of isolated Milky Way-class edge-on galaxies is introduced, to facilitate observational campaigns to detect the associated families of dwarf galaxies at low surface brightness. Three galaxy pairs with at least one of the targets being edge-on are also introduced. Approximately 60% of the catalogued isolated galaxies contain bulges of different size, while the remaining objects appear to be bulgeless. Deep images of NGC 3669 (small bulge, with NGC 3625 at the edge of the image) and NGC 7814 (prominent bulge), obtained with a 0.4 m aperture, are also presented, resulting in the discovery of two new dwarf galaxy candidates, NGC 3669-DGSAT-3 and NGC 7814-DGSAT-7. Eleven additional low surface brightness galaxies are identified, previously notified with low quality measurement flags in the Sloan Digital Sky Survey (SDSS). Integrated magnitudes, surface brightnesses, effective radii, Sersic indices, axis ratios, and projected distances to their putative major hosts are displayed. At least one of the galaxies, NGC 3625-DGSAT-4, belongs with a surface brightness of μr ≈ 26 mag arcsec-2 and effective radius >1.5 kpc to the class of ultra-diffuse galaxies (UDGs). NGC 3669-DGSAT-3, the galaxy with the lowest surface brightness in our sample, may also be an UDG.

  16. Millimeter interferometer observations of infrared luminous galaxies - NGC 828 and NGC 6240

    International Nuclear Information System (INIS)

    Wang, Z.; Scoville, N.Z.; Sanders, D.B.

    1991-01-01

    Millimeter interferometer observations of the infrared luminous galaxies NGC 828 and NGC 6240 at about 7 arcsec resolution are reported which reveal details of the spatial distribution and kinematics of molecular gas in these two high-luminosity IRAS galaxies. The centers of both galaxies have massive concentrations of molecular gas representing a large fraction of the total dynamical mass. These regions are likely to be extremely unstable to gravitational instability. The high infrared luminosity of these galaxies is probably triggered by the galactic interaction. However, the estimated available kinetic energy in the ISM indicates that the luminosity can be provided by the bulk kinetic energy release for no more than 10 to the 6th yr, far too short compared to the time scale for merging. In both galaxies, the CO data support the general picture that these are merger systems. 34 refs

  17. The Globular Cluster System of the Spiral Galaxy NGC 7814

    Science.gov (United States)

    Rhode, Katherine L.; Zepf, Stephen E.

    2003-11-01

    We present the results of a wide-field photometric study of the globular cluster (GC) system of the edge-on Sab spiral NGC 7814. This is the first spiral to be fully analyzed from our survey of the GC systems of a large sample of galaxies beyond the Local Group. NGC 7814 is of particular interest because a previous study estimated that it has 500-1000 GCs, giving it the largest specific frequency (SN) known for a spiral. Understanding this galaxy's GC system is important in terms of our understanding of the GC populations of spirals in general and has implications for the formation of massive galaxies. We observed the galaxy in BVR filters with the WIYN 3.5 m telescope and used image classification and three-color photometry to select GC candidates. We also analyzed archival Hubble Space Telescope (HST) Wide Field Planetary Camera 2 images of NGC 7814, both to help quantify the contamination level of the WIYN GC candidate list and to detect GCs in the inner part of the galaxy halo. Combining HST data with high-quality ground-based images allows us to trace the entire radial extent of this galaxy's GC system and determine the total number of GCs directly through observation. We find that rather than being an especially high-SN spiral, NGC 7814 has <~200 GCs and SN~1, making it comparable to the two most well-studied spiral galaxies, the Milky Way and M31. We explore the implications of these results for models of the formation of galaxies and their GC systems. The initial results from our survey suggest that the GC systems of typical elliptical galaxies can be accounted for by the merger of two or more spirals, but that for highly luminous elliptical galaxies, additional physical processes may be needed.

  18. Near-infrared to Mid-infrared Observations of Galaxy Mergers: NGC 2782 and NGC 7727

    Science.gov (United States)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Wu, Ronin; Ohsawa, Ryou; Kaneda, Hidehiro; Lebouteiller, Vianney; Roellig, Thomas L.

    2018-01-01

    We present the results of near-infrared-to-mid-infrared (NIR-to-MIR) imaging and NIR spectroscopic observations of two galaxy mergers, NGC 2782 (Arp 215) and NGC 7727 (Arp 222), with the Infrared Camera on board AKARI. NGC 2782 shows extended MIR emission in the eastern side of the galaxy, which corresponds to the eastern tidal tail seen in the H I 21 cm map, while NGC 7727 shows extended MIR emission in the north of the galaxy, which is similar to the plumes seen in the residual image at the K-band after subtracting a galaxy model. Both extended structures are thought to have formed in association with their merger events. They show excess emission at 7–15 μm, which can be attributed to emission from polycyclic aromatic hydrocarbons (PAHs), while the observed spectral energy distributions (SEDs) decline longward of 24 μm, suggesting that very small grains (VSGs) are deficient. These characteristics of the observed MIR SED may be explained if PAHs are formed by fragmentation of VSGs during merger events. The star formation rate is estimated from the MIR PAH emission in the eastern tail region of NGC 2782 and it is in fair agreement with those estimated from Hα and [C II] 158 μm. MIR observations are efficient for the study of dust processing and structures formed during merger events.

  19. Ram Pressure Stripping in the Low-Luminosity Virgo Cluster Elliptical Galaxy NGC 4476

    Science.gov (United States)

    Lucero, D. M.; Young, L. M.; van Gorkom, J. H.

    2005-09-01

    We present a deep VLA search for H I emission from the low-luminosity Virgo Cluster elliptical galaxy NGC 4476, which contains 1.1x108 solar masses of molecular gas in an undisturbed disk in regular rotation. No H I was detected. The total H I mass is less than 1.5x107 solar masses. If we compare our H I upper limit with the H2 content, we find that NGC 4476 is extremely deficient in H I compared with other galaxies detected in these two species. The H2/HI mass ratio for NGC 4476 is greater than 7, whereas typical H2/HI ratios for elliptical galaxies detected in both H I and H2 are less than 2. On the basis of this extreme H I deficiency and the intracluster medium density at the projected distance from M87, we argue that either NGC 4476 has undergone ram pressure stripping while traveling through the Virgo Cluster core or its average molecular gas density is larger and its interstellar UV field is smaller than in typical spiral galaxies. NGC 4476 is located 12 arcminutes in projection from M87, which causes extreme continuum confusion problems. We also discuss in detail the techniques used for continuum subtraction. The spectral dynamic range of our final image is 50,000 to 1. This work was partially supported by NSF grant AST 00-74709 to New Mexico Institute of Mining and Technology and NSF grant AST 00-98249 to Columbia University.

  20. ROTATIONAL DYNAMICS AND STAR FORMATION IN THE NEARBY DWARF GALAXY NGC 5238

    Energy Technology Data Exchange (ETDEWEB)

    Cannon, John M.; McNichols, Andrew T.; Teich, Yaron G., E-mail: jcannon@macalester.edu, E-mail: amcnicho@nrao.edu, E-mail: yateich@gmail.com; and others

    2016-12-01

    We present new H i spectral-line images of the nearby low-mass galaxy NGC 5238, acquired with the Karl G. Jansky Very Large Array. Located at a distance of 4.51 ± 0.04 Mpc, NGC 5238 is an actively star-forming galaxy with widespread H α and ultraviolet (UV) continuum emission. The source is included in many ongoing and recent nearby galaxy surveys, but until this work the spatially resolved qualities of its neutral interstellar medium have remained unstudied. Our H i images resolve the disk on physical scales of ∼400 pc, allowing us to undertake a detailed comparative study of the gaseous and stellar components. The H i disk is asymmetric in the outer regions, and the areas of high H i mass surface density display a crescent-shaped morphology that is slightly offset from the center of the stellar populations. The H i column density exceeds 10{sup 21} cm{sup −2} in much of the disk. We quantify the degree of co-spatiality of dense H i gas and sites of ongoing star formation as traced by far-UV and H α emission. The neutral gas kinematics are complex; using a spatially resolved position–velocity analysis, we infer a rotational velocity of 31 ± 5 km s{sup −1}. We place NGC 5238 on the baryonic Tully–Fisher relation and contextualize the system among other low-mass galaxies.

  1. Internal and environmental secular evolution of disk galaxies

    Science.gov (United States)

    Kormendy, John

    2015-03-01

    classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions σ with respect to the Faber-Jackson correlation between σ and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. None of the above classification criteria are 100% reliable. Published disagreements on (pseudo)bulge classifications usually result from the use of diffferent criteria. It is very important to use as many classification criteria as possible. When two or more criteria are used, the probability of misclassification becomes very small. I also review environmental secular evolution - the transformation of gas-rich, star-forming spiral and irregular galaxies into gas-poor, `red and dead' S0 and spheroidal (`Sph') galaxies. I show that Sph galaxies such as NGC 205 and Draco are not the low-luminosity end of the structural sequence (the `fundamental plane') of elliptical galaxies. Instead, Sph galaxies have structural parameters like those of low-luminosity S+Im galaxies. Spheroidals are continuous in their structural parameters with the disks of S0 galaxies. They are bulgeless S0s. S+Im -> S0+Sph transformation involves a variety of internal (supernova-driven baryon ejection) and environmental processes (e.g., ram-pressure gas stripping, harassment, and starvation). Improved evidence for galaxy transformation is presented in several papers at this meeting.

  2. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    Science.gov (United States)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  3. POLAR DISK GALAXY FOUND IN WALL BETWEEN VOIDS

    NARCIS (Netherlands)

    Stanonik, K.; Platen, E.; Aragon-Calvo, M. A.; van Gorkom, J. H.; van de Weygaert, R.; van der Hulst, J. M.; Peebles, P. J. E.

    2009-01-01

    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an Hi survey of SDSS void galaxies, with no optical counterpart to the Hi polar disk. Yet the Hi mass in

  4. HI observations of the starburst galaxy NGC 2146

    NARCIS (Netherlands)

    Taramopoulos, A; Payne, H; Briggs, FH

    NGC 2146 is a peculiar spiral galaxy which is currently undergoing a major burst of star formation and is immersed in a extended HT structure that has morphological and kinematical resemblence to a strong tidal interaction. This paper reports aperture synthesis observations carried out in the 21 cm

  5. Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies

    Science.gov (United States)

    Fausnaugh, M. M.; Starkey, D. A.; Horne, Keith; Kochanek, C. S.; Peterson, B. M.; Bentz, M. C.; Denney, K. D.; Grier, C. J.; Grupe, D.; Pogge, R. W.; De Rosa, G.; Adams, S. M.; Barth, A. J.; Beatty, Thomas G.; Bhattacharjee, A.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brown, Jacob E.; Brown, Jonathan S.; Brotherton, M. S.; Coker, C. T.; Crawford, S. M.; Croxall, K. V.; Eftekharzadeh, Sarah; Eracleous, Michael; Joner, M. D.; Henderson, C. B.; Holoien, T. W.-S.; Hutchison, T.; Kaspi, Shai; Kim, S.; King, Anthea L.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; MacInnis, F.; Manne-Nicholas, E. R.; Mason, M.; Montuori, Carmen; Mosquera, Ana; Mudd, Dale; Musso, R.; Nazarov, S. V.; Nguyen, M. L.; Okhmat, D. N.; Onken, Christopher A.; Ou-Yang, B.; Pancoast, A.; Pei, L.; Penny, Matthew T.; Poleski, Radosław; Rafter, Stephen; Romero-Colmenero, E.; Runnoe, Jessie; Sand, David J.; Schimoia, Jaderson S.; Sergeev, S. G.; Shappee, B. J.; Simonian, Gregory V.; Somers, Garrett; Spencer, M.; Stevens, Daniel J.; Tayar, Jamie; Treu, T.; Valenti, Stefano; Van Saders, J.; Villanueva, S., Jr.; Villforth, C.; Weiss, Yaniv; Winkler, H.; Zhu, W.

    2018-02-01

    We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC 2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of τ ∝ λ 4/3. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long (2.6 day) lag is problematic for coronal reprocessing models.

  6. Gas component parameters in the nucleus of galaxy NGC5879

    International Nuclear Information System (INIS)

    Petrov, G.T.; Mineva, V.A.; Kyazumov, G.A.

    1984-01-01

    Relative intensities of the emission lines from the nucleus of galaxy NGC 5879 are determined, using spectra obtained by the 125-cm ZTE telescope at the Crimea Station of State Astronomical Institute Shane. On the basis of these data, the luminosity in the line HSUB(α) is determined: LSUB(Hα)= 3.43.10 38 erg/sec; also the mass of gas: MSUB(gas)= 1.10 36 g, and other quantities, for H=75 km/s Mpc. The electron density of the gas, nSUB(e), is estimated to be 1550 cm -3 . Nitrogen and sulphur ion contents are correspondingly lgN + =7.09 and lgS + =6.53, assuming lgH=12.00. The NGC 5879 galaxy exibits a weak activity, expressed in relatively strong emission lines, and can be referred to galaxies of the M51 or M81 type, studied in detail by Peimbert

  7. Simulated DIsk Galaxies over Cosmic Time

    Science.gov (United States)

    Bird, Jonathan C.

    2015-01-01

    We analyze the evolution of vertical disk structure and the stellar age-velocity relations in a series of high-resolution, cosmological SPH simulations. We compare current MW observations with detailed mock observations of the simulated galaxies at z=0, accounting for the latest constraints on the solar position and the selection functions of modern surveys. We show that the particular implementation of these mock observations becomes an increasingly crucial component of any quantitative comparison between theory and data; a point that will only be emphasized in the GAIA era. At z=0, our fiducial simulation reproduces the stellar age-velocity relationship measured in the solar neighborhood. Present-day simulated mono-age populations also have velocity dispersions nearly independent of height, matching the puzzling isothermal nature of mono-abundance populations in the MW. We identify two main ingredients governing the evolution of these quantities: ``upside-down'' formation and scattering processes. The galaxy forms upside-down in the sense thatprogressively younger stellar populations are born with increasingly smaller vertical velocity dispersion, tracing the kinematics of the collapsing gas disk from which they form. After birth, the evolution in stellar structure and kinematics is largely governed by scattering processes. We demonstrate that ``upside-down'' disk growth is necessary to simultaneously match: (1) the observed evolution of gas and stellar kinematics in disk galaxies from z~2 to now, (2) the cosmic star formation rate, and (3) the dynamical properties of intermediate age stars in the MW observed today.

  8. Accurate Parameters of the Mass Distribution in Spiral Galaxies: 1. Fabry - Perot Observations of NGC 5585

    OpenAIRE

    Blais-Ouellette, Sebastien; Carignan, Claude; Amram, Philippe; Cote, Stephanie

    1999-01-01

    Using the example of the Sd galaxy NGC 5585, it is shown that high resolution 2-D HII kinematical data are necessary to determine accurately the parameters of the mass distribution in spirals. New CFHT Fabry-Perot Halpha observations are combined with low resolution (20") Westerbork HI data to study its mass distribution. Using the combined rotation curve and best fit models, it can be seen that M/L of the luminous disk goes from 0.3 using only the HI rotation curve, to 0.8 using both the opt...

  9. Island universes structure and evolution of disk galaxies

    CERN Document Server

    DE JONG, R. S

    2007-01-01

    This book contains an up-to-date review of the structure and evolution of disk galaxies from both the observational and theoretical point of view. The book is the proceedings of the "Island Universes" conference held at the island of Terschelling, The Netherlands in July 2005, which attracted about 130 experts and students in the field. The conference was organized as a tribute to Dr. Piet C. van der Kruit for receiving the honorary Jacobus C. Kapteyn Professorship in Astronomy. The eight topical themes discussed at the meeting are reflected in these proceedings: 1) Properties of Stellar Disks, 2) Kinematics and Dynamics of Disk Galaxies, 3) Bars, Spiral Structure, and Secular Evolution in Disk Galaxies, 4) The Outskirts and Environment of Disk Galaxies, 5) Interstellar Matter, 6) (Evolution of) Star Formation in Galactic Disks, 7) Disk Galaxies through Cosmic Time, and 8) Formation Models of Disk Galaxies. These proceedings are concluded with a conference summary reflecting on the most significant recent pro...

  10. The environment and dynamics of the radio galaxy NGC 6251

    International Nuclear Information System (INIS)

    Werner, Pierre Nicolas

    2002-01-01

    This thesis is primarily a case study of the low-power radio galaxy NGC 6251. New radio (VLA), optical imaging (KPNO), optical spectroscopy (MMTO) and X-ray (Chandra) data are complemented with existing HST, ROSAT and ASCA results to give a comprehensive multi-wavelength overview of this spectacular source on different size scales. On the large scale, the gravity field is probed by measuring the velocity dispersion of the cluster members associated with NGC 6251 and relating this to the cluster's X-ray emission. The cluster is found to be a poor one, and the X-ray-emitting gas confined within is consequently cool. Potential optical and X-ray jet detections are discussed, and spectral distributions of three jet knots are modeled. The results suggest that synchrotron radiation most convincingly explains the radio to X-ray spectrum. The issue of the dynamics of the host galaxy and their relation to the radio structure is briefly discussed, but proves largely inconclusive, due to observational limitations. To probe the inner regions of NGC 6251, L-band spectral line radio observations are analysed, and show 21 cm neutral hydrogen absorption against the continuum of the galactic core. The HI spectrum shows a rare double-peaked absorption profile straddling the systemic velocity of the galaxy, suggesting the existence of both infalling and outflowing components. It is shown that the amount of infalling gas is more than enough to fuel the central engine of the AGN by accretion. Two models are proposed to account for the outflow, including an outflowing 'wind' that explains both the HI absorption component and the blue-shifted optical-line-emitting gas. The technique of using optical spectroscopic observations to probe cluster environments is also applied to the low-power radio galaxy NGC 326. The measured velocity dispersion is found to be consistent with the X-ray temperature of the cluster dominated by NGC 326. (author)

  11. Extragalactic molecular line surveys: the starburst galaxy NGC253

    Science.gov (United States)

    Martín, S.; Mauersberger, R.; Martín-Pintado, J.; Henkel, C.; García-Burillo, S.

    Figure 1 shows the first spectral line survey towards an extragalactic source, the starburst galaxy NGC253. The scan, carried out at the IRAM 30m telescope, covers ~86% of the observable 2mm atmospheric window from 129.1 to 175.2GHz. A total of ~ 100 spectral features have been identified as transitions from 25 different molecular species. Ten out of these 25 molecules have been detected for the first time towards a starbust galaxy. NO, NS, SO2, H2S and H2CS were reported by Martín et al.(2003), Martín et al.(2005) while C2S, CH2NH, NH2CN, HOCO+ and C3H are tentatively detected in the survey. These new detections implies an increase of ~ 40% in the 27 molecular species previosly detected outside the galaxy (Mauersberger & Henkel(1993), Mauersberger et al.(1995), Sage & Ziurys(1995), Heikkila et al.(1999).) Additionaly, DNC and N2D+, two deuterated species never obseved in the extragalactic ISM, are tentatively identified. The molecular abundances derived for each species in NGC253 have been compared with five Galactic sources known to be prototypes of different types of chemistry. The chemical complexity of NGC253 resembles closely that observed towards prototypical Galactic Center molecular clouds (SgrB2(OH) in, thought to be mainly dominated by low velocity shocks Martín-Pintado et al.(2001). This comparison certainly indicates that the chemistry of the molecular environment within the nuclear region of NGC253 and that in Galactic Center molecular clouds are driven by similar physical processes. Also a comparison has been performed with five selected prominent galaxies which clearly shows up the chemical differenciation between nuclei of galaxies. The chemical complexity of IC342, and also that of NGC4945 except for the observed lack of SiO, clearly resemble that of NGC253. On the other hand, it is remarkable the different chemical complexity observed between the starburst nuclei within NGC253 and M82. This difference has been interpreted in terms of the

  12. ALMA imaging of C2H emission in the disk of NGC 1068

    Science.gov (United States)

    García-Burillo, S.; Viti, S.; Combes, F.; Fuente, A.; Usero, A.; Hunt, L. K.; Martín, S.; Krips, M.; Aalto, S.; Aladro, R.; Ramos Almeida, C.; Alonso-Herrero, A.; Casasola, V.; Henkel, C.; Querejeta, M.; Neri, R.; Costagliola, F.; Tacconi, L. J.; van der Werf, P. P.

    2017-12-01

    Aims: We study the feedback of star formation and nuclear activity on the chemistry of molecular gas in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing whether the abundances of key molecular species such as ethynyl (C2H), which is a classical tracer of photon dominated regions (PDR), change in the different environments of the disk of the galaxy. Methods: We used the Atacama Large Millimeter Array (ALMA) to map the emission of the hyperfine multiplet of C2H(N = 1-0) and its underlying continuum emission in the central r ≃ 35″ (2.5 kpc) region of the disk of NGC 1068 with a spatial resolution 1.̋0 × 0.̋7 (≃ 50-70 pc). We used maps of the dust continuum emission obtained at 349 GHz by ALMA to derive the H2 gas column densities and combined these with the C2H map at matched spatial resolution to estimate the fractional abundance of this species. We developed a set of time-dependent chemical models, which include shocks, gas-phase PDRs, and gas-grain chemical models to determine the origin of the C2H gas. Results: A sizeable fraction of the total C2H line emission is detected from the r ≃ 1.3 kpc starburst (SB) ring, which is a region that concentrates the bulk of the recent massive star formation in the disk traced by the Paα emission complexes imaged by the Hubble Space Telescope (HST). However, the brightest C2H emission originates from a r ≃ 200 pc off-centered circumnuclear disk (CND), where evidence of a molecular outflow has been previously found in other molecular tracers imaged by ALMA. We also detect significant emission that connects the CND with the outer disk in a region that probes the interface between the molecular disk and ionized gas outflow out to r ≃ 400 pc. We derived the fractional abundances of C2H (X(C2H)) assuming local thermodynamic equilibrium (LTE) conditions and a set of excitation temperatures (Tex) constrained by the previous multiline CO studies of the galaxy. Our estimates range from X(C2H) ≃ a

  13. THE UNUSUAL VERTICAL MASS DISTRIBUTION OF NGC 4013 SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G)

    International Nuclear Information System (INIS)

    Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.; Sheth, Kartik; Munoz-Mateos, Juan-Carlos; Kim, Taehyun; Mizusawa, Trisha; Hinz, Joannah L.; Regan, Michael W.; Gil de Paz, Armando; Menendez-Delmestre, KarIn; Seibert, Mark; Ho, Luis C.; Laurikainen, Eija; Salo, Heikki; Laine, Jarkko; Athanassoula, E.; Bosma, Albert; Buta, Ronald J.; Gadotti, Dimitri A.

    2011-01-01

    NGC 4013 is a nearby Sb edge-on galaxy known for its 'prodigious' H I warp and its 'giant' tidal stream. Previous work on this unusual object shows that it cannot be fitted satisfactorily by a canonical thin+thick disk structure. We have produced a new decomposition of NGC 4013, considering three stellar flattened components (thin+thick disk plus an extra and more extended component) and one gaseous disk. All four components are considered to be gravitationally coupled and isothermal. To do so, we have used the 3.6 μm images from the Spitzer Survey of Stellar Structure in Galaxies. We find evidence for NGC 4013 indeed having a thin and a thick disk and an extra flattened component. This smooth and extended component (scale height z EC ∼ 3 kpc) could be interpreted as a thick disk or as a squashed ellipsoidal halo and contains ∼20% of the total mass of all three stellar components. We argue it is unlikely to be related to the ongoing merger or due to the off-plane stars from a warp in the other two disk components. Instead, we favor a scenario in which the thick disk and the extended component were formed in a two-stage process, in which an initially thick disk has been dynamically heated by a merger soon enough in the galaxy history to have a new thick disk formed within it.

  14. Detection of retrograde gas streaming in the SB0 galaxy NGC 4546

    International Nuclear Information System (INIS)

    Galletta, G.

    1987-01-01

    Spectroscopic observations are reported of the almost edge-on SB0 galaxy NGC 4546 which reveal a striking discordance between the derived emission and absorption-line velocities. The gas clouds show velocities that are similar in amplitude but opposite in direction from the stars. This discordance is seen in observations obtained through slits oriented in a wide range of position angles. NGC 4546 is thus, at present, unique as a disk system exhibiting large-scale retrograde motions relative to the stellar component. Orbits elongated both along the bar major axis (prograde, stars) and along the bar intermediate axis (retrograde, gas) are found. The possibility that this material originated from an infall is discussed. 27 references

  15. Nustar and Suzaku X-Ray Spectroscopy Of Ngc 4151: Evidence For Reflection From The Inner Accretion Disk

    DEFF Research Database (Denmark)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.

    2015-01-01

    the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact......We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN......) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity...

  16. H I IMAGING OBSERVATIONS OF SUPERTHIN GALAXIES. II. IC 2233 AND THE BLUE COMPACT DWARF NGC 2537

    International Nuclear Information System (INIS)

    Matthews, Lynn D.; Uson, Juan M.

    2008-01-01

    We have used the Very Large Array to image the H I 21 cm line emission in the edge-on Sd galaxy IC 2233 and the blue compact dwarf NGC 2537. We also present new optical B, R, and Hα imaging of IC 2233 obtained with the WIYN telescope. Despite evidence of localized massive star formation in the form of prominent H II regions and shells, supergiant stars, and a blue integrated color, IC 2233 is a low surface brightness system with a very low global star formation rate (∼ sun yr -1 ), and we detect no significant 21 cm radio continuum emission from the galaxy. The H I and ionized gas disks of IC 2233 are clumpy and vertically distended, with scale heights comparable to that of the young stellar disk. Both the stellar and H I disks of IC 2233 appear flared, and we also find a vertically extended, rotationally anomalous component of H I extending to ∼ 2.4d 10 kpc from the midplane. The H I disk exhibits a mild lopsidedness as well as a global corrugation pattern with a period of ∼7d 10 kpc and an amplitude of ∼150d 10 pc. To our knowledge, this is the first time corrugations of the gas disk have been reported in an external galaxy; these undulations may be linked to bending instabilities or to underlying spiral structure and suggest that the disk is largely self-gravitating. Lying at a projected distance of 16'.7 from IC 2233, NGC 2537 has an H I disk with a bright, tilted inner ring and a flocculent, dynamically cold outer region that extends to ∼3.5 times the extent of the stellar light (D 25 ). Although NGC 2537 is rotationally-dominated, we measure H I velocity dispersions as high as σ V.HI ∼25 km s -1 near its center, indicative of significant turbulent motions. The inner rotation curve rises steeply, implying a strong central mass concentration. Our data indicate that IC 2233 and NGC 2537 do not constitute a bound pair and most likely lie at different distances. We also find no compelling evidence of a recent minor merger in either IC 2233 or NGC

  17. Dark and luminous matter in the NGC 3992 group of galaxies - I. The large barred spiral NGC 3992

    NARCIS (Netherlands)

    Bottema, R; Verheijen, MAW

    Detailed neutral hydrogen observations have been obtained of the large barred spiral galaxy NGC 3992 and its three small companion galaxies, UGC 6923, UGC 6940, and UGC 6969. For the main galaxy, the Hi distribution is regular with a low level radial extension outside the stellar disc. However, at

  18. ISM Parameters in the Normal Galaxy NGC 5713

    Science.gov (United States)

    Lord, S. D.; Malhotra, S.; Lim, T.; Helou, G.; Beichman, C. A.; Dinerstein, H.; Hollenbach, D. J.; Hunter, D. A.; Lo, K. Y.; Lu, N. Y.; hide

    1996-01-01

    We report ISO Long Wavelength Spectrometer (LWS) observations fo the Sbc(s) pec galaxy NGC 5713. We have obtained strong detections of the fine-structure forbidden transitions [C(sub ii)] 158(micro)m, [O(sub i)]63(micro)m, and [O(sub iii)] 88(micro)m, and significant upper limits for[N(sub ii)]122(micro)m, [O(sub iii)] 52(micro)m, and [N(sub iii)] 57(micro)m. We also detect the galaxy's dust continuum emission between 43 and 197 microns.

  19. GMRT Low Radio Frequency Study of the Wolf Rayet Galaxy NGC ...

    Indian Academy of Sciences (India)

    with a background galaxy, 2MASX J12153795+3622218. Key words. Galaxy: radio continuum—galaxy: Wolf Rayet—individual: NGC 4214. 1. Introduction. Galaxies containing the signatures of Wolf Rayet stars such as broad He II 4686 Å emission feature in their optical spectra are known as Wolf Rayet (WR) galaxies.

  20. DISTRIBUTION AND MOTIONS OF ATOMIC-HYDROGEN IN LENTICULAR GALAXIES .10. THE BLUE S0-GALAXY NGC-5102

    NARCIS (Netherlands)

    VANWOERDEN, H; VANDRIEL, W; BRAUN, R; ROTS, AH

    We have mapped the blue gas-rich S0 galaxy NGC 5102 in the 21-cm HI line with a spatial resolution of 34'' x 37'' (DELTAalpha x DELTAdelta) and a velocity resolution of 12 km s-1. Optically NGC 5102 is a peculiar S0 galaxy, in the sense that it has unusually blue colours, and shows evidence for a

  1. The peculiar spiral galaxy NGC 4258

    International Nuclear Information System (INIS)

    Albada, G.D. van.

    1978-01-01

    Observations have been obtained of the 21 cm line and continuum emission, both with the WSRT and the 100m telescope of the Max Planck Institut fuer Radioastronomie in Bonn. The reduction of these observations is described, maps of the distribution of the neutral hydrogen and the continuum are presented and an analysis is given. The normal aspects and the anomalous arms are discussed. Methods for the reduction and analysis of H I observations are reviewed and how the ejected matter in NGC 4258 may have behaved is discussed. Some suggestions are made for further, mainly observational research. (C.F.)

  2. Mapping the Supernova-Rich Fireworks Galaxy NGC 6946

    Science.gov (United States)

    Patton, Locke; Levesque, Emily

    2018-01-01

    Supernovae (SNe) are the spectacularly violent deaths of evolved young massive stars, which expel a shock wave into the intergalactic medium that in turn can spark star formation and disperse heavy elements into their host galaxy. While a SN event can be classified by its spectral signature, determining the nature of a SN progenitor depends upon chance photometry taken prior to the event. By turning to the study of SN host environments and their surrounding interstellar medium within the unique and rare population of galaxies that have hosted three or more SN events within the last century, we are granted the opportunity to study the locations and environmental properties of stellar populations prone to supernova progenitor production. Using moderate-resolution optical slit spectra taken with the Apache Point Observatory 3.5m DIS spectrograph, our goal is to map metallicity, ionization parameter, and star formation rates using emission line diagnostic ratios across each SN-rich galaxy. Dubbed the “Fireworks Galaxy” at a distance of 5.6 ± 1.5 Mpc, NGC 6946 is of particular interest as it has uniquely produced ten core-collapse supernovae (CCSNe) and several other massive star transients within the last century. We present spatially-resolved metallicity and star formation rate (SFR) maps of NGC 6946, tracing fifty-five slit orientations which span the face of the galaxy and cover all CCSN host sites. Future work will include both stellar population synthesis modelling to determine stellar populations, ages, and SFR histories in NGC 6946 and a further expansion of this analysis to the other SN-rich host galaxies in our sample.

  3. Small-Scale Systems of Galaxies. II. Properties of the NGC 4756 Group of Galaxies

    Science.gov (United States)

    Grützbauch, R.; Kelm, B.; Focardi, P.; Trinchieri, G.; Rampazzo, R.; Zeilinger, W. W.

    2005-04-01

    This paper is part of a series that focuses on investigating galaxy formation and evolution in small-scale systems of galaxies in low-density environments. We present results from a study of the NGC 4756 group, which is dominated by the elliptical galaxy NGC 4756. The characteristics of the group are investigated through (1) the detailed investigation of the morphological, photometric, and spectroscopic properties of nine galaxies among the dominant members of the group; (2) the determination of the photometric parameters of the faint galaxy population in an area of 34'×34' centered on NGC 4756 and (3) an analysis of the X-ray emission in the area based on archival data. The nine member galaxies are located in the core part of the NGC 4756 group (a strip ~300 kpc in diameter, H0=70 km s-1 Mpc-1), which has a very loose configuration. The central part of the NGC 4756 group contains a significant fraction of early-type galaxies. Three new group members with previously unknown systemic velocities are identified, one of which is type dE. At about 7.5 arcmin southwest of NGC 4756 a substructure of the group is detected, including IC 829, MCG -2-33-35, MCG -2-33-36, and MCG -2-33-38, that meets the Hickson criteria for being a compact group. Most of the galaxies in this substructure show interaction signatures. We do not detect apparent fine structure and signatures of recent interaction events in the early-type galaxy population, with the exception of a strong dust lane in the elliptical galaxy MCG -2-33-38. However, this galaxy displays signatures of nuclear activity. Strong [O III], [N II], and [S II] line emission, combined with comparatively weak but broad Hα emission, suggests an intermediate Seyfert type classification. Although the area is heavily contaminated by the background cluster A1631, X-ray data suggest the presence of a hot intergalactic medium related to the detected X-ray emission of the group. The present results are discussed in the context of

  4. Hard Gamma Ray Emission from the Starburst Galaxy NGC 253

    Science.gov (United States)

    Jackson, James M.; Marscher, Alan M.

    1996-01-01

    We have completed the study to search for hard gamma ray emission from the starburst galaxy NGC 253. Since supernovae are thought to provide the hard gamma ray emission from the Milky Way, starburst galaxies, with their extraordinarily high supernova rates, are prime targets to search for hard gamma ray emission. We conducted a careful search for hard gamma ray emission from NGC 253 using the archival data from the EGRET experiment aboard the CGRO. Because this starburst galaxy happens to lie near the South Galactic Pole, the Galactic gamma ray background is minimal. We found no significant hard gamma ray signal toward NGC 253, although a marginal signal of about 1.5 sigma was found. Because of the low Galactic background, we obtained a very sensitive upper limit to the emission of greater than 100 MeV gamma-rays of 8 x 10(exp -8) photons/sq cm s. Since we expected to detect hard gamma ray emission, we investigated the theory of gamma ray production in a dense molecular medium. We used a leaky-box model to simulate diffusive transport in a starburst region. Since starburst galaxies have high infrared radiation fields, we included the effects of self-Compton scattering, which are usually ignored. By modelling the expected gamma-ray and synchrotron spectra from NGC 253, we find that roughly 5 - 15% of the energy from supernovae is transferred to cosmic rays in the starburst. This result is consistent with supernova acceleration models, and is somewhat larger than the value derived for the Galaxy (3 - 10%). Our calculations match the EGRET and radio data very well with a supernova rate of 0.08/ yr, a magnetic field B approx. greater than 5 x 10(exp -5) G, a density n approx. less than 100/sq cm, a photon density U(sub ph) approx. 200 eV/sq cm, and an escape time scale tau(sub 0) approx. less than 10 Myr. The models also suggest that NGC 253 should be detectable with only a factor of 2 - 3 improvement in sensitivity. Our results are consistent with the standard picture

  5. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    International Nuclear Information System (INIS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-01-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  6. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei, E-mail: gbmou@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026 (China)

    2017-07-20

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  7. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Science.gov (United States)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  8. A MULTI-WAVELENGTH ANALYSIS OF NGC 4178: A BULGELESS GALAXY WITH AN ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Secrest, N. J.; Satyapal, S.; Gliozzi, M.; Moran, S. M.; Cheung, C. C.; Giroletti, M.; Bergmann, M. P.; Seth, A. C.

    2013-01-01

    We present Gemini longslit optical spectroscopy and Very Large Array radio observations of the nuclear region of NGC 4178, a late-type bulgeless disk galaxy recently confirmed to host an active galactic nucleus (AGN) through infrared and X-ray observations. Our observations reveal that the dynamical center of the galaxy is coincident with the location of the Chandra X-ray point source discovered in a previous work, providing further support for the presence of an AGN. While the X-ray and IR observations provide robust evidence for an AGN, the optical spectrum shows no evidence for the AGN, underscoring the need for the penetrative power of mid-IR and X-ray observations in finding buried or weak AGNs in this class of galaxy. Finally, the upper limit to the radio flux, together with our previous X-ray and IR results, is consistent with the scenario in which NGC 4178 harbors a deeply buried AGN accreting at a high rate

  9. Far UV study on the non-thermal activity in the narrow line galaxies NGC 4507 and NGC 5506

    CERN Document Server

    Bergeron, J; Perola, C

    1981-01-01

    The narrow line high excitation galaxies NGC 4507 and NGC 5506 were observed with the IUE satellite. The continua of both galaxies, when combined with optical observations, show a flattening at log nu >14.9. The reddening correction cannot be estimated with accuracy. The UV non-stellar component is hard; after reddening correction it can be fitted with a power law, f/sub nu / varies as nu /sup - alpha /. The energy content in the Lyman continuum is large enough to power the narrow line region providing the coverage factor is of order unity. In the case of NGC 4507 the spectral lines are studied. (25 refs).

  10. Dark matter deprivation in the field elliptical galaxy NGC 7507

    Science.gov (United States)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  11. STAR FORMATION PROPERTIES IN BARRED GALAXIES (SFB). I. ULTRAVIOLET TO INFRARED IMAGING AND SPECTROSCOPIC STUDIES OF NGC 7479

    International Nuclear Information System (INIS)

    Zhou Zhimin; Meng Xianmin; Wu Hong; Cao Chen

    2011-01-01

    Large-scale bars and minor mergers are important drivers for the secular evolution of galaxies. Based on ground-based optical images and spectra as well as ultraviolet data from the Galaxy Evolution Explorer and infrared data from the Spitzer Space Telescope, we present a multi-wavelength study of star formation properties in the barred galaxy NGC 7479, which also has obvious features of a minor merger. Using various tracers of star formation, we find that under the effects of both a stellar bar and a minor merger, star formation activity mainly takes place along the galactic bar and arms, while the star formation rate changes from the bar to the disk. With the help of spectral synthesis, we find that strong star formation took place in the bar region about 100 Myr ago, and the stellar bar might have been ∼10 Gyr old. By comparing our results with the secular evolutionary scenario from Jogee et al., we suggest that NGC 7479 is possibly in a transitional stage of secular evolution at present, and it may eventually become an earlier type galaxy or a luminous infrared galaxy. We also note that the probable minor merger event happened recently in NGC 7479, and we find two candidates for minor merger remnants.

  12. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Horne, Keith [SUPA Physics and Astronomy, University of St. Andrews, Fife KY16 9SS (United Kingdom); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Sergeev, S. G.; Borman, G. A. [Crimean Astrophysical Observatory, P/O Nauchny Crimea 298409 (Russian Federation); Kaspi, S. [School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Minezaki, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1, Osawa, Mitaka, 181-0015 Tokyo (Japan); Siverd, R. J. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Bord, D. J., E-mail: peterson.12@osu.edu [Department of Natural Sciences, The University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, MI 48128 (United States); and others

    2014-11-10

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M {sub BH} ≈ 1 × 10{sup 7} M {sub ☉}, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  13. THE HOT INTERSTELLAR MEDIUM OF THE INTERACTING GALAXY NGC 4490

    International Nuclear Information System (INIS)

    Richings, A. J.; Fabbiano, G.; Wang Junfeng; Roberts, T. P.

    2010-01-01

    We present an analysis of the hot interstellar medium (ISM) in the spiral galaxy NGC 4490, which is interacting with the irregular galaxy NGC 4485, using ∼100 ks of Chandra ACIS-S observations. The high angular resolution of Chandra enables us to remove discrete sources and perform spatially resolved spectroscopy for the star-forming regions and associated outflows, allowing us to look at how the physical properties of the hot ISM such as temperature, hydrogen column density, and metal abundances vary throughout these galaxies. We find temperatures of >0.41 keV and 0.85 +0.59 -0.12 keV, electron densities of >1.87η -1/2 x 10 -3 cm -3 and 0.21 +0.03 -0.04 η -1/2 x 10 -3 cm -3 , and hot gas masses of >1.1η 1/2 x 10 7 M sun and ∼3.7η 1/2 x 10 7 M sun in the plane and halo of NGC 4490, respectively, where η is the filling factor of the hot gas. The abundance ratios of Ne, Mg, and Si with respect to Fe are found to be consistent with those predicted by theoretical models of type II supernovae (SNe). The thermal energy in the hot ISM is ∼5% of the total mechanical energy input from SNe, so it is likely that the hot ISM has been enriched and heated by type II SNe. The X-ray emission is anticorrelated with the Hα and mid-infrared emission, suggesting that the hot gas is bounded by filaments of cooler ionized hydrogen mixed with warm dust.

  14. The ULX Population in the Starburst Galaxy NGC 253

    Science.gov (United States)

    Weaver, K. A.; Heckman, T. M.; Strickland, D. K.

    2004-01-01

    Optimism is mounting for the existence of intermediate mass black holes (IMBH), which occupy the mass spectrum somewhere between the stellar-mass and supermassive varieties. IMBH are naturally predicted by theoretical stellar and black hole evolution models, but the strong attention to them began only recently with the discovery of ultraluminous x-ray sources (ULX). If isotropic and accreting normally, ULX have luminosities tens to thousands of times greater than the Eddington luminosity of a neutron star or stellar-mass black hole. A standard interpretation of their x-ray flux implies that they are powered by IMBH. On the other hand, they may be stellar-mass black holes that are beamed or emit anisotropically. Therefore, the exact nature of ULX is highly controversial. ULX are common in starburst galaxies. At a distance of only 3 Mpc, NGC 253 is bright, nearby, and one of the best-studied starburst galaxies. Approximately 50 distinct x-ray point sources are detected in or near the plane of the galaxy. At least six of these are ULX, with luminosities greater than 10 times that expected for a stellar-mass, accreting compact object. We present new Chandra data from an 80 ksec observation of NGC 253 obtained in 2003 that provides high quality spectra of these sources. Comparing the 1999 and 2003 Chandra observations, the sources have varied significantly over the course of four years, with one of the ULX disappearing completely. The ULX spectra are similar to black-hole XRBs and at least one appears to possess an iron K line. We will discuss what insight these data provide for the nature of ULX in NGC 253 .

  15. Accretion Disk Reverberation with Hubble Space Telescope Observations of NGC 4593: Evidence for Diffuse Continuum Lags

    Science.gov (United States)

    Cackett, Edward M.; Chiang, Chia-Ying; McHardy, Ian; Edelson, Rick; Goad, Michael R.; Horne, Keith; Korista, Kirk T.

    2018-04-01

    The Seyfert 1 galaxy NGC 4593 was monitored spectroscopically with the Hubble Space Telescope as part of a reverberation mapping campaign that also included Swift, Kepler, and ground-based photometric monitoring. During 2016 July 12–August 6, we obtained 26 spectra across a nearly continuous wavelength range of ∼1150–10000 Å. These were combined with Swift data to produce a UV/optical “lag spectrum,” which shows the interband lag relative to the Swift UVW2 band as a function of wavelength. The broad shape of the lag spectrum appears to follow the τ ∝ λ 4/3 relation seen previously in photometric interband lag measurements of other active galactic nuclei (AGNs). This shape is consistent with the standard thin disk model, but the magnitude of the lags implies a disk that is a factor of ∼3 larger than predicted, again consistent with what has been previously seen in other AGNs. In all cases these large disk sizes, which are also implied by independent gravitational microlensing of higher-mass AGNs, cannot be simply reconciled with the standard model. However, the most striking feature in this higher-resolution lag spectrum is a clear excess around the 3646 Å Balmer jump. This strongly suggests that diffuse emission from gas in the much larger broad-line region (BLR) must also contribute significantly to the interband lags. While the relative contributions of the disk and BLR cannot be uniquely determined in these initial measurements, it is clear that both will need to be considered to comprehensively model and understand AGN lag spectra.

  16. The Complex Neutral Gas Dynamics of the Dwarf Starburst Galaxy NGC 625

    Science.gov (United States)

    Cannon, John M.; McClure-Griffiths, N. M.; Skillman, Evan D.; Côté, Stéphanie

    2004-05-01

    We present new multiconfiguration H I aperture synthesis imaging of the nearby dwarf starburst galaxy NGC 625 obtained with the Australia Telescope Compact Array. Total H I column density images show gas well aligned with the optical major axis and low column density H I extending to greater than 6 optical scale lengths. The H I velocity field, on the other hand, is highly disturbed, with neutral gas at nearly all detected velocities within the central region. After considering various interpretations, we find that a blowout scenario most accurately describes the data. Since at our resolution we do not detect any large evacuated holes in the H I disk, we interpret this blowout to be the result of the extended (both spatially and temporally) star formation event that NGC 625 has undergone in the last 100 Myr. This is one of the clearest examples of H I outflow detected in a dwarf galaxy. We find no obvious external trigger for this extended star formation event. We detect strong radio continuum emission from the largest H II regions; comparing to our Hubble Space Telescope and ground-based Hα fluxes suggests either appreciable amounts of extinction toward the star formation regions or the contribution of nonthermal sources to the radio continuum luminosity.

  17. Kinematics of emission-line gas disks in radio-quiet galaxies

    Science.gov (United States)

    Verdoes Kleijn, Gijs

    2001-07-01

    It is a long-standing puzzle why some early-type galaxies are radio-loud, while others are radio-quiet. We have been pursuing a program to address this issue by studying a sample of the 21 nearest powerful radio galaxies. We have obtained WFPC2 imaging in Cycle 6. In Cycle 8 we are obtaining STIS spectroscopy of the nuclear gas detected in these galaxies, to measure central black hole {BH} masses from the rotation rate of the emission-line gas, and to determine the nature and structure of the gas disks. From inspection of the HST/WFPC2 archive we have identified three galaxies with no radio jets and with Halpha+[NII] emission, which have dust disks similar to those commonly seen in our sample of radio-loud active galaxies. The difference in radio properties of these early- type galaxies may be related to differences in their BH mass and/or the absence of accretion of the present fuel. We propose to observe these galaxies with STIS. This will yield the first BH mass measurements from HST rotation measurements of emission-line gas disks in radio-quiet galaxies {previous studies such as for M87, M84, NGC4261, etc. were all for radio-loud systems}. The results will advance our understanding of the nature of BHs in radio-loud and radio- quiet galaxies and its relation to the radio activity and the formation and physics of radio-jets. Only HST offers the high spatial resolution required for this study.

  18. Toward a dust penetrated classification of the evolved stellar Population II disks of galaxies

    Science.gov (United States)

    Block, David L.; Puerari, Ivânio

    1999-02-01

    To derive a coherent physical framework for the excitation of spiral structure in galaxies, one must consider the co-existence of two different dynamical components: a gas-dominated Population I disk (OB associations, HII regions, cold interstellar HI gas) and an evolved stellar Population II component. The Hubble classification scheme has as its focus, the morphology of the Population I component only. In the near-infrared, the morphology of evolved stellar disks indicates a simple classification scheme: the dominant Fourier m-mode in the dust penetrated regime, and the associated pitch angle. On the basis of deprojected K' (2.1microns ) images, we propose that the evolved stellar disks may be grouped into three principal dust penetrated archetypes: those with tightly wound stellar arms characterised by pitch angles at K' of ~ 10(deg) (the alpha class), an intermediate group with pitch angles of ~ 25(deg) (the beta class) and thirdly, those with open spirals demarcated by pitch angles at K' of ~ 40(deg) (the gamma bin). There is no correlation between our dust penetrated classes and optical Hubble binning; the Hubble tuning fork does not constrain the morphology of the old stellar Population II disks. Any specific dust penetrated archetype may be the resident disk of both an early or late type galaxy. The number of arms and the pitch angle of the arms at K' of the early-type `a' spiral NGC 718 are almost identical to those for the late-type `c' spiral NGC 309. We demonstrate that galaxies on opposite ends of the tuning fork can display remarkably similar evolved disk morphologies and belong to the same dust penetrated class. Furthermore, a prototypically flocculent galaxy such as NGC 5055 (Elmegreen arm class 3) can have an evolved disk morphology almost identical to that of NGC 5861, characterised in the optical as having one of the most regular spiral patterns known and of Elmegreen class 12. Both optically flocculent or grand design galaxies can reside within

  19. H I studies of the Sculptor group galaxies. V. NGC 253

    International Nuclear Information System (INIS)

    Puche, D.; Carignan, C.; Van Gorkom, J.H.

    1991-01-01

    A study of the H I properties and mass distribution of the Sculptor group galaxy NGC 253, from VLA obserations, is presented. The detected H I disk is fairly small with a diameter of about 0.8 D HO. The rotation curve, derived from the velocity field using a full tilted ring model, is still rising at the last observed point. The maximum observed rotation velocity is 224 km/s at a radius of 8.5 kpc. From this analysis, a systematic velocity of 245 km/s, a mean inclination of 72 deg, and a mean position angle of 229 deg are derived. The study of the mass distribution shows that a two-component (luminous and dark) mass model is needed to explain the observed rotation curve over the whole radius range. 24 refs

  20. MOLECULAR DISK PROPERTIES IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Xu, X.; Walker, C.; Narayanan, D.

    2010-01-01

    We study the simulated CO emission from elliptical galaxies formed in the mergers of gas-rich disk galaxies. The cold gas not consumed in the merger-driven starburst quickly resettles into a disk-like configuration. By analyzing a variety of arbitrary merger orbits that produce a range of fast- to slow-rotating remnants, we find that molecular disk formation is a fairly common consequence of gas-rich galaxy mergers. Hence, if a molecular disk is observed in an early-type merger remnant, it is likely the result of a 'wet merger' rather than a 'dry merger'. We compare the physical properties from our simulated disks (e.g., size and mass) and find reasonably good agreement with recent observations. Finally, we discuss the detectability of these disks as an aid to future observations.

  1. Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry and Water and Methanol Masers in IC 342, NGC 6946, and NGC 2146

    Science.gov (United States)

    Gorski, Mark; Ott, Jürgen; Rand, Richard; Meier, David S.; Momjian, Emmanuel; Schinnerer, Eva

    2018-04-01

    The Survey of Water and Ammonia in Nearby galaxies (SWAN) studies atomic and molecular species across the nuclei of four star-forming galaxies: NGC 253, IC 342, NGC 6946, and NGC 2146. As part of this survey, we present Karl G. Jansky Very Large Array molecular line observations of three galaxies: IC 342, NGC 6946, and NGC 2146. NGC 253 is covered in a previous paper. These galaxies were chosen to span an order of magnitude in star formation rates and to select a variety of galaxy types. We target the metastable transitions of ammonia NH3(1, 1) to (5, 5), the 22 GHz water (H2O) (616–523) transition, and the 36.1 GHz methanol (CH3OH) (4‑1–30) transition. We use the NH3 metastable lines to perform thermometry of the dense molecular gas. We show evidence for uniform heating across the central kiloparsec of IC 342 with two temperature components for the molecular gas, similar to NGC 253, of 27 and 308 K, and that the dense molecular gas in NGC 2146 has a temperature <86 K. We identify two new water masers in IC 342, and one new water maser in each of NGC 6946 and NGC 2146. The two galaxies NGC 253 and NGC 2146, with the most vigorous star formation, host H2O kilomasers. Lastly, we detect the first 36 GHz CH3OH masers in IC 342 and NGC 6946. For the four external galaxies the total CH3OH luminosity in each galaxy suggests a correlation with galactic star formation rate, whereas the morphology of the emission is similar to that of HNCO, a weak shock tracer.

  2. A molecular line survey toward the nearby galaxies NGC 1068, NGC 253, and IC 342 at 3 mm with the Nobeyama 45 m radio telescope: Impact of an AGN on 1 kpc scale molecular abundances

    Science.gov (United States)

    Nakajima, Taku; Takano, Shuro; Kohno, Kotaro; Harada, Nanase; Herbst, Eric

    2018-01-01

    It is important to investigate the relationships between the power sources and the chemical compositions of galaxies in order to understand the scenario of galaxy evolution. We carried out an unbiased molecular line survey towards active galactic nucleus (AGN) host galaxy NGC1068, and prototypical starburst galaxies, NGC 253 and IC 342, with the Nobeyama 45 m telescope in the 3 mm band. The advantage of this line survey is that the obtained spectra have the highest angular resolution ever obtained with single-dish telescopes. In particular, the beam size of this telescope is ˜15″-19″, which is able to separate spatially the nuclear molecular emission from that of the starburst ring (d ˜ 30″) in NGC 1068. We successfully detected approximately 23 molecular species in each galaxy, and calculated rotation temperatures and column densities. We estimate the molecular fractional abundances with respect to 13CO and CS molecules and compare them among three galaxies in order to investigate the chemical signatures of an AGN environment. As a result, we found clear trends in the abundances of molecules surrounding the AGN on a 1-kpc scale. HCN, H13CN, CN, 13CN, and HC3N are more abundant, and CH3CCH is deficient in NGC 1068 compared with the starburst galaxies. High abundances of HCN, H13CN, and HC3N suggest that the circumnuclear disk in NGC 1068 is in a high-temperature environment. The reason for the non-detection of CH3CCH is likely to be dissociation by high-energy radiation or less sublimation of a precursor of CH3CCH from grains.

  3. Molecular Gasdynamics of the Young Nuclear Starburst in the Barred Galaxy NGC 3504

    Science.gov (United States)

    Kenney, Jeffrey D. P.; Carlstrom, John E.; Young, Judith S.

    1993-12-01

    We present CO (J = 1 → 0) interferometry at 2".5 resolution and Hα CCD observations of the circumnuclear starburst region of the barred spiral galaxy NGC 3504. The CO emission is centrally peaked, extends over a region 16" (1.6 kpc) in diameter, and is relatively azimuthally symmetric. The CO radial distribution is well fitted by an exponential with a scale length of 2".3 (220 pc). This simple distribution is surprisingly unusual for the center of a galaxy. The velocity field is consistent with purely circular motions. Gas comprises ˜40% of the dynamical mass within a radius of 100 pc (1"), if the "standard" CO-H2 relationship is assumed. If isothermal and self-gravitating, the circumnuclear gas disk has a scale height of only 5-10 pc, and a spatially averaged proton density of 104 cm-3 at radii less than 300 pc. The rotation curve and the dust-lane morphology indicate the presence of an outer inner Lindblad resonance (OILR) at a radius of ˜5", and an inner inner Lindblad resonance (IILR) at a radius of ˜2". The starburst and most of the circumnuclear gas disk seem to be located between the OILR and the IILR. The maximum value of Ω-κ/2 is nearly twice as large as the bar pattern speed of the large-scale bar, and the OILR and the IILR are well separated, and these may be important dynamical differences between NGC 3504 and nonstarburst barred galaxies. The rate of high-mass star formation per unit gas mass, as traced by the ratio of Hα to CO emission, is uniformly high over the portion of the rotation curve which is nearly solid body, and drops by a factor of ˜4 where the rotation curve turns over and flattens out. Since the CO radial distribution is not ringlike despite the fact that gas is being consumed more rapidly in the center, we believe that the starburst in NGC 3504 is in an early phase of its evolution. The Toomre Q stability parameter is approximately constant at 0.9±0.2 throughout the circumnuclear molecular gas disk, so the simple

  4. NGC 404: A REJUVENATED LENTICULAR GALAXY ON A MERGER-INDUCED, BLUEWARD EXCURSION INTO THE GREEN VALLEY

    International Nuclear Information System (INIS)

    Thilker, David A.; Bianchi, Luciana; Schiminovich, David; Gil de Paz, Armando; Seibert, Mark; Madore, Barry F.; Wyder, Ted; Barlow, Tom; Conrow, Tim; Forster, Karl; Friedman, Peter; Martin, Chris; Morrissey, Patrick; Small, Todd; Rich, R. Michael; Yi, Sukyoung; Neff, Susan

    2010-01-01

    We have discovered recent star formation in the outermost portion ((1-4) x R 25 ) of the nearby lenticular (S0) galaxy NGC 404 using Galaxy Evolution Explorer UV imaging. FUV-bright sources are strongly concentrated within the galaxy's H I ring (formed by a merger event according to del RIo et al.), even though the average gas density is dynamically subcritical. Archival Hubble Space Telescope imaging reveals resolved upper main-sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles, and integrated magnitudes for NGC 404. Within the ring, the average star formation rate (SFR) surface density (Σ SFR ) is ∼2.2 x 10 -5 M sun yr -1 kpc -2 . Of the total FUV flux, 70% comes from the H I ring which is forming stars at a rate of 2.5 x 10 -3 M sun yr -1 . The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the universe. In the context of the UV-optical galaxy color-magnitude diagram, the presence of the star-forming H I ring places NGC 404 in the green valley separating the red and blue sequences. The rejuvenated lenticular galaxy has experienced a merger-induced, disk-building excursion away from the red sequence toward bluer colors, where it may evolve quiescently or (if appropriately triggered) experience a burst capable of placing it on the blue/star-forming sequence for up to ∼1 Gyr. The green valley galaxy population is heterogeneous, with most systems transitioning from blue to red but others evolving in the opposite sense due to acquisition of fresh gas through various channels.

  5. Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 From The Nuclear Stellar Dynamics

    Science.gov (United States)

    Bower, G. A.; Green, R. F.; Bender, R.; Gebhardt, K.; Lauer, T. R.; Magorrian, J.; Richstone, D. O.; Danks, A.; Gull, T.; Hutchings, J.

    2000-01-01

    We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V equals approx. 70 km/s at a distance of O.1 deg = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 0.4) x 10(exp 7) solar masses and mass-to-light ratio (M/L(sub v)) of 5.38 +/- 0.08, and the goodness-of-fit (CHI(exp 2)) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10(exp 7) solar masses and M/L(sub v) of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.

  6. Chandra Data Analysis of H2O Megamaser Galaxy NGC 4258 ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Chandra Data Analysis of H2O Megamaser Galaxy NGC 4258. Baisheng Liu, Jiangshui Zhang. ∗. & Jin Wang. Center for Astrophysics, Guangzhou University, Guangzhou 510006, China. *e-mail: jszhang@gzhu.edu.cn. Abstract. Chandra observations of NGC 4258 were analyzed to inves-.

  7. ROSAT PSPC observations of the early-type galaxies NGC 507 and NGC 499: Central cooling and mass determination

    Science.gov (United States)

    Kim, Dong-Woo; Fabbiano, G.

    1995-01-01

    We present the results of a deep observation of NGC 507 and NGC 499 with the ROSAT Position Sensitive Proportional Counter (PSPC). The X-ray emission of NGC 507 is extended at least out to 1000 sec (458 kpc at a distance of 94.5 Mpc). The radial profile of X-ray surface brightness goes as Sigma(sub x) is approximately r(exp -1.8) outside the core region. The radial profile is a function of energy such that the softer X-rays have a smaller core radius and a flatter slope. Spectral analysis reveals that the emission temperature, with an average of 1 keV, peaks at an intermediate radius of 2-3 min and falls toward the center (possibly decreases outward as well). The absorption column density is consistent with the Galactic line-of-sight value. The X-ray emission of NGC 499 is extended to 300 sec and suggests a similarly cooler core. The cooler cores of NGC 507 and NGC 499 are strong evidence of the presence of cooling flows in these galaxies. Assuming hydrostatic equilibrium outside the cooling radius, the estimated mass-to-light ratio of NGC 507 is 97 +/- 16 within 458 kpc, indicative of the presence of a heavy halo. Similarly, the mass-to-light ratio of NGC 499 is 89 +/- 14 within 137 kpc. Near the edge of the X-ray-emitting region of NGC 507 we detect 19 soft, unresolved sources. These sources do not have optical counterparts and are significantly in excess of the expected number of background serendipitous sources. We speculate that they may represent cooling clumps in the halo of NGC 507. If there are many undetected cooling clumps distributed at large radii, then the radial profile of the X-ray surface brightness does not directly reflect the potential, adding uncertainty to the measurement of the binding mass; the gas mass could also be overestimated.

  8. A search for candidate radio supernova remnants in the nearby irregular starburst galaxies NGC 4214 and NGC 4395

    Directory of Open Access Journals (Sweden)

    Vukotić B.

    2005-01-01

    Full Text Available We present the results of a search for new candidate radio su­pernova remnants (SNRs in the nearby starburst irregular galaxies NGC 4214 and NGC 4395 using archived radio observations made with the Very Large Array (VLA at the wavelengths of 3.5 cm, 6 cm and 20 cm for NGC 4214 and 6 cm and 20 cm for NGC 4395. These observations were analyzed as part of our ongoing search for candidate radio SNRs in nearby galaxies: the goal of this search is to prepare a large sample of candidate radio SNRs for the purpose of a robust statistical study of the properties of these sources. Based on our analysis, we have confirmed the nonthermal nature of the discrete radio sources α and β in NGC 4214 and classify these sources as candidate radio SNRs based on their positional coincidences with HII regions in that galaxy. We have measured the flux densities of the two candidate radio SNRs at each wavelength and calculated corresponding spectral indices: we have also measured flux densities of two other discrete radio sources in these galaxies - ρ in NGC 4214 and #3 in NGC 4395 which we suspect to be additional candidate radio SNRs based on their positional coincidences with other HII regions in these galaxies. However, the radio data presently available for these sources can­not confirm such a classification and additional observations are needed. We have also calculated the radio luminosities Lradio at the wavelength of 20 cm for these two candidate radio SNRs as well as the corresponding values for the minimum total energy Emin required to power these radio sources via synchrotron emission and the corresponding magnetic field strength Bmin. We have compared our mean calculated values for these properties with the mean values for populations of candidate radio SNRs in other starburst galaxies: while the values for Lradio and Bmin are roughly comparable to the values seen in other starburst galaxies, the mean value for Emin is higher than the mean value of any

  9. The mass distribution in early type disk galaxies

    NARCIS (Netherlands)

    Noordermeer, E; van der Hulst, T; Sancisi, R; Swaters, R; Ryder, SD; Pisano, DJ; Walker, MA; Freeman, KC

    2004-01-01

    We are studying the mass distribution in a sample of 50 early type spiral galaxies, with morphological type betweens SO and Sab and absolute magnitudes M-B between -18 and -22; they form the massive and high-surface brightness extreme of the disk galaxy population. Our study is designed to

  10. The mass distribution in early type disk galaxies

    NARCIS (Netherlands)

    Noordermeer, E.; Hulst, J. M. van der; Sancisi, R.; Swaters, R. A.

    2006-01-01

    Abstract: We are studying the mass distribution in a sample of 50 early type spiral galaxies, with morphological type betweens S0 and Sab and absolute magnitudes M_B between -18 and -22; they form the massive and high-surface brightness extreme of the disk galaxy population. Our study is designed to

  11. ECO and RESOLVE: Galaxy Disk Growth in Environmental Context

    Science.gov (United States)

    Moffett, Amanda J.; Kannappan, Sheila J.; Berlind, Andreas A.; Eckert, Kathleen D.; Stark, David V.; Hendel, David; Norris, Mark A.; Grogin, Norman A.

    2015-10-01

    We study the relationships between galaxy environments and galaxy properties related to disk (re)growth, considering two highly complete samples that are approximately baryonic mass limited into the high-mass dwarf galaxy regime, the Environmental COntext catalog (data release herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE survey. We quantify galaxy environments using both group identification and smoothed galaxy density field methods. We use by-eye and quantitative morphological classifications plus atomic gas content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ˜ {10}11.5 {M}⊙ , implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early-types can regrow late-type disks. In fact, we find that the only significant difference in the typical group halo mass inhabited by different galaxy classes is for satellite galaxies with different colors, where at fixed baryonic mass red early- and late-types have higher typical group halo masses than blue early- and late-types. More generally, we argue that the traditional morphology-environment relation (i.e., that denser environments tend to have more early-types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color-environment relation for satellites.

  12. NUSTAR and Suzaku x-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    Energy Technology Data Exchange (ETDEWEB)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.

    2015-06-15

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin $a\\gt 0.9$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.

  13. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT

    International Nuclear Information System (INIS)

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Pérez-González, P. G.; Gallego, J.; Zamorano, J.; Muñoz-Mateos, J. C.; Sánchez, S. F.; Alonso-Herrero, A.; Boissier, S.

    2012-01-01

    We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r ∼36'' ∼ 4.4 kpc ∼ 0.36 (D 25 /2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r ∼ 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of λ = 0.053 and v c = 167 km s –1 , respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r ∼36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.

  14. An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies

    Science.gov (United States)

    Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert. galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, and Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubifiski, and Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above approximately 50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft gamma-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

  15. Neutral hydrogen observations of the amorphous galaxy NGC 4670 at moderate spatial resolution

    NARCIS (Netherlands)

    Hunter, DA; vanWoerden, H; Gallagher, JS

    1996-01-01

    We present a moderate resolution H I map of the amorphous galaxy NGC 4670. Our previous lower resolution data had shown a symmetric H I distribution centered on the single supergiant H II region and highly concentrated to the center of the galaxy. We now resolve the central H I distribution into

  16. Extra-planar H I in the starburst galaxy NGC 253

    NARCIS (Netherlands)

    Boomsma, R; Oosterloo, TA; Fraternali, F; van der Hulst, JM; Sancisi, R

    Observations of the nearby starburst galaxy NGC 253 in the 21-cm line reveal the presence of neutral hydrogen in the halo, up to 12 kpc from the galactic plane. This extra-planar H I is found in only one half of the galaxy and is concentrated in a half-ring structure and plumes which are lagging in

  17. Constraining the age of the NGC 4565 H I disk WARP: Determining the origin of gas WARPS

    Energy Technology Data Exchange (ETDEWEB)

    Radburn-Smith, David J.; Dalcanton, Julianne J.; Stilp, Adrienne M. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); De Jong, Roelof S.; Streich, David [Leibniz-Institut für Astrophysik Potsdam, D-14482 Potsdam (Germany); Bell, Eric F.; Monachesi, Antonela [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Holwerda, Benne W. [European Space Agency, ESTEC, 2200 AG Noordwijk (Netherlands); Bailin, Jeremy [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2014-01-01

    We have mapped the distribution of young and old stars in the gaseous H I warp of NGC 4565. We find a clear correlation of young stars (<600 Myr) with the warp but no coincident old stars (>1 Gyr), which places an upper limit on the age of the structure. The formation rate of the young stars, which increased ∼300 Myr ago relative to the surrounding regions, is (6.3{sub −1.5}{sup +2.5})×10{sup −5} M {sub ☉} yr{sup –1} kpc{sup –2}. This implies a ∼60 ± 20 Gyr depletion time of the H I warp, similar to the timescales calculated for the outer H I disks of nearby spiral galaxies. While some stars associated with the warp fall into the asymptotic giant branch (AGB) region of the color-magnitude diagram, where stars could be as old as 1 Gyr, further investigation suggests that they may be interlopers rather than real AGB stars. We discuss the implications of these age constraints for the formation of H I warps and the gas fueling of disk galaxies.

  18. The Second Nucleus of NGC 7727: Direct Evidence for the Formation and Evolution of an Ultracompact Dwarf Galaxy

    Science.gov (United States)

    Schweizer, François; Seitzer, Patrick; Whitmore, Bradley C.; Kelson, Daniel D.; Villanueva, Edward V.

    2018-01-01

    We present new observations of the late-stage merger galaxy NGC 7727, including Hubble Space Telescope/WFPC2 images and long-slit spectra obtained with the Clay telescope. NGC 7727 is relatively luminous ({M}V = ‑21.7) and features two unequal tidal tails, various bluish arcs and star clusters, and two bright nuclei 480 pc apart in projection. These two nuclei have nearly identical redshifts, yet are strikingly different. The primary nucleus, hereafter Nucleus 1, fits smoothly into the central luminosity profile of the galaxy and appears—at various wavelengths—“red and dead.” In contrast, Nucleus 2 is very compact, has a tidal radius of 103 pc, and exhibits three signs of recent activity: a post-starburst spectrum, an [O III] emission line, and a central X-ray point source. Its emission-line ratios place it among Seyfert nuclei. A comparison of Nucleus 2 ({M}V = ‑15.5) with ultracompact dwarf galaxies (UCDs) suggests that it may be the best case yet for a massive UCD having formed through tidal stripping of a gas-rich disk galaxy. Evidence for this comes from its extended star formation history, long blue tidal stream, and elevated dynamical-to-stellar-mass ratio. While the majority of its stars formed ≳ 10 {Gyr} ago, ∼1/3 formed during starbursts in the past 2 Gyr. Its weak active galactic nucleus activity is likely driven by a black hole of mass 3× {10}6-8 {M}ȯ . We estimate that the former companion’s initial mass was less than half that of then NGC 7727, implying a minor merger. By now this former companion has been largely shredded, leaving behind Nucleus 2 as a freshly minted UCD that probably moves on a highly eccentric orbit. Based in part on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. An Optimal Strategy for Accurate Bulge-to-disk Decomposition of Disk Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Gao Hua [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)

    2017-08-20

    The development of two-dimensional (2D) bulge-to-disk decomposition techniques has shown their advantages over traditional one-dimensional (1D) techniques, especially for galaxies with non-axisymmetric features. However, the full potential of 2D techniques has yet to be fully exploited. Secondary morphological features in nearby disk galaxies, such as bars, lenses, rings, disk breaks, and spiral arms, are seldom accounted for in 2D image decompositions, even though some image-fitting codes, such as GALFIT, are capable of handling them. We present detailed, 2D multi-model and multi-component decomposition of high-quality R -band images of a representative sample of nearby disk galaxies selected from the Carnegie-Irvine Galaxy Survey, using the latest version of GALFIT. The sample consists of five barred and five unbarred galaxies, spanning Hubble types from S0 to Sc. Traditional 1D decomposition is also presented for comparison. In detailed case studies of the 10 galaxies, we successfully model the secondary morphological features. Through a comparison of best-fit parameters obtained from different input surface brightness models, we identify morphological features that significantly impact bulge measurements. We show that nuclear and inner lenses/rings and disk breaks must be properly taken into account to obtain accurate bulge parameters, whereas outer lenses/rings and spiral arms have a negligible effect. We provide an optimal strategy to measure bulge parameters of typical disk galaxies, as well as prescriptions to estimate realistic uncertainties of them, which will benefit subsequent decomposition of a larger galaxy sample.

  20. Population Synthesis Models for Normal Galaxies with Dusty Disks

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2003-09-01

    Full Text Available To investigate the SEDs of galaxies considering the dust extinction processes in the galactic disks, we present the population synthesis models for normal galaxies with dusty disks. We use PEGASE (Fioc & Rocca-Volmerange 1997 to model them with standard input parameters for stars and new dust parameters. We find that the model results are strongly dependent on the dust parameters as well as other parameters (e.g. star formation history. We compare the model results with the observations and discuss about the possible explanations. We find that the dust opacity functions derived from studies of asymptotic giant branch stars are useful for modeling a galaxy with a dusty disk.

  1. The Evolution of Interacting Spiral Galaxy NGC\\,5194

    Science.gov (United States)

    Chang, Ruixiang

    2015-08-01

    NGC\\,5194 (M51a) is a grand-design spiral galaxy and undergoing interactions with its companion. Here we focus on investigating main properties of its star-formation history (SFH) by constructing a simple evolution model, which assumes that the disc builds up gradually by cold gas infall and the gas infall rate can be parameterizedly described by a Gaussian form. By comparing model predictions with the observed data, we discuss the probable range for free parameter in the model and then know more about the main properties of the evolution and SFH of M51a. We find that the model predictions are very sensitive to the free parameter and the model adopting a constant infall-peak time $t_{\\rm p}\\,=\\,7.0{\\rm Gyr}$can reproduce most of the observed constraints of M51a. Although our model does not assume the gas infall time-scale of the inner disc is shorter than that of the outer disc, our model predictions still show that the disc of M51a forms inside-out. We find that the mean stellar age of M51a is younger than that of the Milky Way, but older than that of the gas-rich disc galaxy UGC\\,8802. In this paper, we also introduce a 'toy' model to allow an additional cold gas infall occurred recently to imitate the influence of the interaction between M51a and its companion. Our results show that the current molecular gas surface density, the SFR and the UV-band surface brightness are important quantities to trace the effects of recent interaction on galactic SF process.

  2. Extended Red Emission in the Evil Eye Galaxy (NGC 4826)

    Science.gov (United States)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2002-04-01

    NGC 4826 (M64) is a nearby Sab galaxy with an outstanding, absorbing dust lane (called the Evil Eye) asymmetrically placed across its prominent bulge. In addition, its central region is associated with several regions of ongoing star formation activity. We obtained accurate low-resolution (4.3 Å pixel-1) long-slit spectroscopy (KPNO 4 m) of NGC 4826 in the 5300-9100 Å spectral range, with a slit of 4.4‧ length, encompassing the galaxy's bulge size, positioned across its nucleus. The wavelength-dependent effects of absorption and scattering by the dust in the Evil Eye are evident when comparing the observed stellar spectral energy distributions (SEDs) of pairs of positions symmetrically located with respect to the nucleus, one on the dust lane side and one on the symmetrically opposite side of the bulge, under the assumption that the intrinsic (i.e., unobscured) radiation field is to first-order axisymmetric. We analyzed the SED ratios for a given number of pairs of positions through the multiple-scattering radiative transfer model of Witt & Gordon. As a main result, we discovered strong residual extended red emission (ERE) from a region of the Evil Eye within a projected distance of about 13" from the nucleus, adjacent to a broad, bright H II region, intercepted by the spectrograph slit. ERE is an established phenomenon well-covered in the literature and interpreted as originating from photoluminescence by nanometer-sized clusters, illuminated by UV/optical photons of the local radiation field. In the innermost part of the Evil Eye, the ERE band extends from about 5700 to 9100 Å, with an estimated peak intensity of ~3.7×10-6 ergs s -1 Å-1 cm-2 sr-1 near 8300 Å and with an ERE to scattered light band integrated intensity ratio, I(ERE)/I(sca), of about 0.7. At farther distances, approaching the broad, bright H II region, the ERE band and peak intensity shift toward longer wavelengths, while the ERE band-integrated intensity, I(ERE), diminishes and, eventually

  3. STAR FORMATION IN THE SPIRAL GALAXY NGC 4736

    Science.gov (United States)

    Hasan, Farhanul; Crocker, Alison

    2018-01-01

    We estimate star formation properties of the center and circumnuclear ring of spiral galaxy NGC 4736 using its population of observed young star clusters. Compact star clusters in the center and ring are identified and selected from Hubble Space Telescope's (HST) Wide Field Planetary Camera 2 (WFPC2) images in F814W, F568N, F555W, F450W, and F336W filters. We fit Bruzual & Charlot's (2003) stellar evolutionary models to the observed photometry of each cluster to determine the masses (M), ages, and extinctions of each. The cluster mass function in the ring and center are both well-approximated by a power law function, dN/d log M ∝ Mβ with β ∼ -1.8 (though some evidence of truncation at high-mass end is found for the ring). Using total cluster masses extrapolated from these mass functions along with estimated cluster formation efficiencies, we determine the star formation rates (SFR) in both regions. The surface density of star formation, ΣSFR, is about 7 times as high in the ring as in the center, despite very similar surface gas densities, Σgas. In both regions, the SFR is below that predicted by the Kennicutt-Schmidt (1998) law, however only the central region has a lower SFR than expected given the intrinsic scatter in the relation.

  4. A massive, dead disk galaxy in the early Universe.

    Science.gov (United States)

    Toft, Sune; Zabl, Johannes; Richard, Johan; Gallazzi, Anna; Zibetti, Stefano; Prescott, Moire; Grillo, Claudio; Man, Allison W S; Lee, Nicholas Y; Gómez-Guijarro, Carlos; Stockmann, Mikkel; Magdis, Georgios; Steinhardt, Charles L

    2017-06-21

    At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation. It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions, but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies. Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which-surprisingly-turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst. The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo. This result confirms previous indirect indications that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.

  5. Probing the Accretion Disk and Central Engine Structure of the NGC 4258 with Suzaku and XMM-Newton Observations

    Science.gov (United States)

    Reynolds, Christopher S.; Nowak, Michael A.; Markoff, Sera; Tueller, Jack; Wilms, Joern; Young, Andrew

    2009-01-01

    We present an X-ray study of the low-luminosity active galactic nucleus (AGN) in NGC 4258 using data from Suzaku, XMM-Newton, and the Swift/Burst Alert Telescope survey. We find that signatures of X-ray reprocessing by cold gas are very weak in the spectrum of this Seyfert-2 galaxy; a weak, narrow fluorescent K(alpha) emission line of cod iron is robustly detected in both the Suzaku and XMM-Newton spectra but at a level much below that of most other Seyfert-2 galaxies. We conclude that the circumnuclear environment of this AGN is very "clean" and lacks the Compton-thick obscuring torus of unified Seyfert schemes. From the narrowness of the iron line, together with evidence of line flux variability between the Suzaku and XMM-Newton observations, we constrain the line emitting region to be between 3 x 10(exp 3)r(sub g) and 4 x 10(exp 4)r(sub g), from the black hole. We show that the observed properties of the iron line can be explained if the line originates from the surface layers of a warped accretion disk. In particular, we present explicit calculations of the expected iron line from a disk warped by Lens-Thirring precession from a misaligned central black hole. Finally, the Suzaku data reveal clear evidence of large amplitude 2-10 keV variability on timescales of 50 ksec and smaller amplitude flares on timescales as short as 5-10 ksec. If associated with accretion disk processes, such rapid variability requires an origin in the innermost regions of the disk (r approx. equals 10(r(sub g) or less). Analysis of the difference spectrum between a high- and low-flux states suggests that the variable component of the X-ray emission is steeper and more absorbed than the average AGN emission, suggesting that the primary X-ray source and absorbing screen have a spatial structure on comparable scales. We note the remarkable similarity between the circumnuclear environment of NGC 4258 and another well studied low-luminosity AGN, M81*.

  6. Theory of bending waves with applications to disk galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Mark, J.W.K.

    1982-01-01

    A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way.

  7. On the evolution of the disk of our galaxy

    International Nuclear Information System (INIS)

    Biermann, P.

    1977-01-01

    We present two aspects of the history of our galaxy as derived from modeorig.calculations (Smith, Biermann and Mezger 1977). First, the scalelength of the exponential surface brightness distribution is increasing with time. If this is true generally for disk galaxies, it affects derivations of cosmological parameters (Petrosian 1976, Tinsley 1976a). Second, we describe the evolution of the enrichment in heavy elements and helium in the gas and young stars. (orig.) [de

  8. VELOCITY PROFILES OF GALAXIES WITH CLAIMED BLACK-HOLES .1. OBSERVATIONS OF M31, M32, NGC-3115 AND NGC-4594

    NARCIS (Netherlands)

    VANDERMAREL, RP; RIX, HW; CARTER, D; FRANX, M; WHITE, SDM; DEZEEUW, T

    1994-01-01

    The presence of a massive black hole has been invoked to match the observed rotation velocities and velocity dispersions at the centres of M31, M32, NGC 3115 and NGC 4594. Here we determine stellar line-of-sight velocity profiles of these galaxies, from high spatial resolution, high S/N spectra

  9. The Gaia-ESO Survey and CSI 2264: Substructures, disks, and sequential star formation in the young open cluster NGC 2264

    Science.gov (United States)

    Venuti, L.; Prisinzano, L.; Sacco, G. G.; Flaccomio, E.; Bonito, R.; Damiani, F.; Micela, G.; Guarcello, M. G.; Randich, S.; Stauffer, J. R.; Cody, A. M.; Jeffries, R. D.; Alencar, S. H. P.; Alfaro, E. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofré, P.; Morbidelli, L.; Sousa, S. G.; Zaggia, S.

    2018-01-01

    Context. Reconstructing the structure and history of young clusters is pivotal to understanding the mechanisms and timescales of early stellar evolution and planet formation. Recent studies suggest that star clusters often exhibit a hierarchical structure, possibly resulting from several star formation episodes occurring sequentially rather than a monolithic cloud collapse. Aims: We aim to explore the structure of the open cluster and star-forming region NGC 2264 ( 3 Myr), which is one of the youngest, richest and most accessible star clusters in the local spiral arm of our Galaxy; we link the spatial distribution of cluster members to other stellar properties such as age and evolutionary stage to probe the star formation history within the region. Methods: We combined spectroscopic data obtained as part of the Gaia-ESO Survey (GES) with multi-wavelength photometric data from the Coordinated Synoptic Investigation of NGC 2264 (CSI 2264) campaign. We examined a sample of 655 cluster members, with masses between 0.2 and 1.8 M⊙ and including both disk-bearing and disk-free young stars. We used Teff estimates from GES and g,r,i photometry from CSI 2264 to derive individual extinction and stellar parameters. Results: We find a significant age spread of 4-5 Myr among cluster members. Disk-bearing objects are statistically associated with younger isochronal ages than disk-free sources. The cluster has a hierarchical structure, with two main blocks along its latitudinal extension. The northern half develops around the O-type binary star S Mon; the southern half, close to the tip of the Cone Nebula, contains the most embedded regions of NGC 2264, populated mainly by objects with disks and ongoing accretion. The median ages of objects at different locations within the cluster, and the spatial distribution of disked and non-disked sources, suggest that star formation began in the north of the cluster, over 5 Myr ago, and was ignited in its southern region a few Myr later

  10. The opacity of spiral galaxy disks VII. The accuracy of galaxy counts as an extinction probe

    NARCIS (Netherlands)

    Holwerda, BW; Gonzalez, RA; Allen, RJ; van der Kruit, PC

    2005-01-01

    The "Synthetic Field Method" (SFM) was introduced by Gonzalez et al. (1998, ApJ, 506, 152) to calibrate numbers of distant galaxies as a probe of extinction in a foreground spiral disk. Gonzalez et al. (2003, AJ, 125, 1182) studied the effect of the foreground disk on these numbers using simulations

  11. A single population of red globular clusters around the massive compact galaxy NGC 1277

    Science.gov (United States)

    Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia

    2018-03-01

    Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.

  12. The Inner Regions of Disk Galaxies: A Constant Baryonic Fraction?

    NARCIS (Netherlands)

    Lelli, Federico

    For disk galaxies (spirals and irregulars), the inner circular-velocity gradient (inner steepness of the rotation curve) correlates with the central surface brightness with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density.

  13. Tilted-ring modelling of disk galaxies : Anomalous gas

    NARCIS (Netherlands)

    Jozsa, G. I. G.; Niemczyk, C.; Klein, U.; Oosterloo, T. A.

    We report our ongoing work on kinematical modelling of HI in disk galaxies. We employ our new software TiRiFiC (Tilted-Ring-Fitting-Code) in order to derive tilted-ring models by fitting artificial HI data cubes to observed ones in an automated process. With this technique we derive very reliable

  14. The Vertical Variation of HI Velocity Dispersion in Disk Galaxies

    NARCIS (Netherlands)

    Peters, Stephan Pieter Cornelis; Freeman, Ken; van der Kruit, Pieter C.

    2010-01-01

    One of the key assumptions in dynamical applications of the HI velocity dispersion in disk galaxies (e.g. to the flattening of the dark halo) has always been the isothermal nature of the HI distribution. There is no physical reason for this assumption: it is made because until now it has not been

  15. A scaling law of radial gas distribution in disk galaxies

    Science.gov (United States)

    Wang, Zhong

    1990-01-01

    Based on the idea that local conditions within a galactic disk largely determine the region's evolution time scale, researchers built a theoretical model to take into account molecular cloud and star formations in the disk evolution process. Despite some variations that may be caused by spiral arms and central bulge masses, they found that many late-type galaxies show consistency with the model in their radial atomic and molecular gas profiles. In particular, researchers propose that a scaling law be used to generalize the gas distribution characteristics. This scaling law may be useful in helping to understand the observed gas contents in many galaxies. Their model assumes an exponential mass distribution with disk radius. Most of the mass are in atomic gas state at the beginning of the evolution. Molecular clouds form through a modified Schmidt Law which takes into account gravitational instabilities in a possible three-phase structure of diffuse interstellar medium (McKee and Ostriker, 1977; Balbus and Cowie, 1985); whereas star formation proceeds presumably unaffected by the environmental conditions outside of molecular clouds (Young, 1987). In such a model both atomic and molecular gas profiles in a typical galactic disk (as a result of the evolution) can be fitted simultaneously by adjusting the efficiency constants. Galaxies of different sizes and masses, on the other hand, can be compared with the model by simply scaling their characteristic length scales and shifting their radial ranges to match the assumed disk total mass profile sigma tot(r).

  16. Origin of Disk Lopsidedness in Spiral Galaxies

    NARCIS (Netherlands)

    Angiras, R. A.; Jog, C. J.; Dwarakanath, K. S.; Omar, A.; Verheijen, M. A. W.; Saikia, D.J.; Green, D.A.; Gupta, Y.; Venturi, T.

    2009-01-01

    In our work we have used the atomic hydrogen [H I] gas distribution in the H I 21-cm line emission to study the dark matter halo perturbations. For this analysis, the 2-D H I surface density and velocity maps (archival) of the galaxies in the Eridanus group (obtained using the GMRT) and in the Ursa

  17. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    International Nuclear Information System (INIS)

    Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.; Reshetnikov, V. P.; Sotnikova, N. Ya.; Yablokova, N. V.; Hillyer, R. W.

    2014-01-01

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, and Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.

  18. The Westerbork HI Survey os spiral and irregular galaxies III : HI observations of early-type disk galaxies

    NARCIS (Netherlands)

    Noordermeer, E.; Hulst, J.M. van der; Sancisi, R.; Swaters, R.A.; Abada, T.S. van

    2005-01-01

    Abstract: We present HI observations of 68 early-type disk galaxies from the WHISP survey. They have morphological types between S0 and Sab and absolute B-band magnitudes between -14 and -22. These galaxies form the massive, high surface-brightness extreme of the disk galaxy population, few of which

  19. XMM-Newton Spectroscopy of Four Bright Ultraluminous X-Ray Sources in the Antennae Galaxies (NGC 4038/4039)

    Science.gov (United States)

    Miller, J. M.; Zezas, A.; Fabbiano, G.; Schweizer, F.

    2004-07-01

    We report the results of spectral fits to four bright ultraluminous X-ray sources (ULXs) in the Antennae galaxies (NGC 4038/4039) observed for 41 ks with XMM-Newton. Although emission regions are not resolved as well as in prior Chandra observations, at least four ULXs (X-11, X-16, X-37, and X-44 in the Zezas and Fabbiano scheme) are sufficiently bright and well separated with XMM-Newton that reliable extractions and spectral analyses are possible. We find that the single-component multicolor disk blackbody models cannot describe any of the spectra. Sources X-11 and X-16 are acceptably fitted with simple power-law models. A thermal bremsstrahlung model provides a better fit to the spectrum of X-44. Including a disk blackbody component to the spectrum of X-37 improves the fit and reveals an apparently cool disk (kT=0.13+/-0.02 keV). This would suggest a parallel to cool disks recently found in other very luminous ULXs, which may contain intermediate-mass black holes; however, the complex diffuse emission of the Antennae demands that this finding be regarded cautiously.

  20. Diffuse HI Disks in Isolated Galaxies

    OpenAIRE

    Hogg, David E.; Roberts, Morton S.; Haynes, Martha P.; Maddalena, Ronald J.

    2007-01-01

    In order to investigate the contribution of diffuse components to their total HI emission, we have obtained high precision HI line flux densities with the 100m Green Bank Telescope for a sample of 100 isolated spiral and irregular galaxies which we have previously observed with the 43m telescope. A comparison of the observed HI line fluxes obtained with the two different telescopes, characterized by half-power beam widths of 9 arcmin and 21 arcmin respectively, exploits a ``beam matching'' te...

  1. Seeing Red in NGC 1978, NGC 55, and NGC 3109

    Science.gov (United States)

    Davidge, T. J.

    2018-04-01

    Spectra of the intermediate-age star cluster NGC 1978 and the dwarf irregular galaxies NGC 55 and NGC 3109 are discussed. The spectra were recorded with the Gemini Multi-object Spectrograph on Gemini South and span the 0.7–1.1 μm wavelength interval. Five slit pointings were observed in NGC 1978, and these are used to examine stochastic effects on the integrated red light from an intermediate-age cluster. The removal of either the brightest M giant or the brightest C star from the co-added spectrum has minor effects on the equivalent withs of the Ca triplet. The most robust signature of C stars in the integrated cluster spectrum at these wavelengths is the CN band head near 7900 Å. The equivalent widths of Ca triplet lines in the NGC 1978 spectrum and in the spectra of individual cluster stars are larger than expected for a scaled-solar abundance system. It is suggested that these stars have a lower than expected surface gravity, which might occur if the stars in NGC 1978 have been subject to extra mixing processes, as suggested by Lederer et al. The near-infrared color profile of NGC 1978 is shown to contain a prominent red cusp in the central 10 arcsec, and the suppression of light from this cusp does not affect the depth of the Ca lines in the integrated spectrum. The NGC 55 spectra run parallel to the major axis, and a gradient is found in the strength of the Ca lines, in the sense that the Ca lines weaken with increasing distance from the disk plane. Comparisons with models suggest that the disk light is dominated by stars with ages 1–2 Gyr, in agreement with star-forming histories (SFHs) obtained from the analysis of color–magnitude diagrams (CMDs). The NGC 55 spectra also sample a large star-forming complex. The age of this complex inferred from comparisons with models is broadly consistent with that estimated from a near-infrared CMD of the same region. The CN band head at 7900 Å in this part of NGC 55 is detected, but this is likely a signature of

  2. The Total Mass of the Early-Type Galaxy NGC 4649 (M60

    Directory of Open Access Journals (Sweden)

    Ćirković, M. M.

    2008-12-01

    Full Text Available In this paper the problem of the total mass and the total mass-to-light ratio of the early-type galaxy NGC~4649 (M60 is analyzed. Use is made of two independent techniques: the X-ray methodology which is based on the temperature of the X-ray halo of NGC~4649 and the tracer mass estimator (TME which uses globular clusters (GCs observed in this galaxy. The mass is calculated in Newtonian and MOdified Newtonian Dynamics (MOND approaches and it is found that inside 3 effective radii ($R_e$ there is no need for large amounts of dark matter. Beyond $3R_e$ the dark matter starts to play important dynamical role. The possible reasons for the discrepancy between the estimates of the total mass based on X-rays and TME in the outer regions of NGC~4649 are also discussed.

  3. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    International Nuclear Information System (INIS)

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-01-01

    The recent detection by the Fermi γ-ray space telescope of high-energy γ-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE γ-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  4. STELLAR NUCLEI AND INNER POLAR DISKS IN LENTICULAR GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Sil’chenko, Olga K., E-mail: olga@sai.msu.su [Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, 119992 (Russian Federation); Isaac Newton Institute, Chile, Moscow Branch (Chile)

    2016-09-01

    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.

  5. STELLAR NUCLEI AND INNER POLAR DISKS IN LENTICULAR GALAXIES

    International Nuclear Information System (INIS)

    Sil’chenko, Olga K.

    2016-01-01

    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxies reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.

  6. Rate of star formation in normal disk galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kennicutt, R.C. Jr.

    1983-09-01

    Photometry of the integrated H..cap alpha.. emission in a large sample of field spiral and irregular galaxies has been used to obtain quantitative estimates of the total star formation rate (SFR) in the galaxies. The photoionization properties of a stellar population have been modeled for a variety of choices for the initial mass function (IMF). The observed UBV colors and H..cap alpha.. emission equivalent widths place tight constraints on the slope of the IMF between 1 M /sub sun/ and 50 M /sub sun/ in the galaxies; excellent agreement with the observed galaxy colors and H..cap alpha.. emission is obtained with models using an IMF slope close to Salpeter's original value. The properties of late-type galaxies are not well reproduced by the Miller-Scalo solar neighborhood IMF. The extinction-corrected star formation rates are large, as high as 20 M /sub sun/ yr/sup -1/ in giant Sc galaxies (H/sub 0/ = 50 km s/sup -1/ Mpc/sup -1/). The current rates in late-type galaxies are comparable to the past rates averaged over the age of the disk; late-type disk galaxies have evolved at a nearly constant rate, confirming earlier models by Searle, Sargent, and Bagnuolo. Little evidence is found for a strong correlation between the SFR and average gas density; if the SFR proportional rho/sup n/, then the exponent n must be much less than 1, corroborating earlier studies of star formation in the solar neighborhood by Miller, Scalo, and Twarog. Comparison of the present SFRs with the remaining supply of interstellar gas yields consumption time scales of only a few times 10/sup 9/ years in most cases, in agreement with the model estimates of Larson, Tinsley, and Caldwell.

  7. Radio continuum observations of the quasar-galaxy pair 3C 232-NGC 3067

    International Nuclear Information System (INIS)

    Haxthausen, E.; Carilli, C.; Vangorkom, J.H.

    1990-01-01

    The quasar-galaxy pair 3C 232-NGC 3067 is well known to show absorption by gas associated with the foreground galaxy against the background quasar (see Stocke et al. this volume). Observations by Carilli, van Gorkom, and Stocke (Nature 338, 134, 1989) found that the absorbing gas is located in a long tail of gas which extends from the galaxy toward the quasar and beyond (in projection). Though the HI observations of NGC 3067 indicate that the galaxy has been severely disturbed, there is no obvious candidate in the field which could cause such a disturbance, leading to the conclusion that the system has undergone a recent merger. The radio continuum observations of this system were designed to study the nature of this highly disturbed galaxy. New continuum observations confirm the notion that NGC 3067 is a highly disturbed system, and, in particular, the notion that the western half of the galaxy extends only 1/2 as far in radius as the eastern half. This disturbance must have occurred recently, since the galactic rotation would smooth out the observed asymmetry in about 10(exp 8) years. Researchers are left with the problem that there are no obvious candidates which could have caused such a disturbance

  8. A jet model for the broadband spectrum of the Seyfert 1 galaxy NGC 4051

    NARCIS (Netherlands)

    Maitra, D.; Miller, J.M.; Markoff, S.; King, A.

    2011-01-01

    Recent radio very long baseline interferometry observations of the ~ parsec-scale nuclear region of the narrow line Seyfert 1 galaxy NGC 4051 hint toward the presence of outflowing plasma. From available literature we have collected high-quality, high-resolution broadband spectral energy

  9. Abundance ratios and IMF slopes in the dwarf elliptical galaxy NGC 1396 with MUSE

    NARCIS (Netherlands)

    Mentz, J. J.; La Barbera, F.; Peletier, R. F.; Falcón-Barroso, J.; Lisker, T.; van de Ven, G.; Loubser, S. I.; Hilker, M.; Sánchez-Janssen, R.; Napolitano, N.; Cantiello, M.; Capaccioli, M.; Norris, M.; Paolillo, M.; Smith, R.; Beasley, M. A.; Lyubenova, M.; Munoz, R.; Puzia, T.

    2016-01-01

    Deep observations of the dwarf elliptical (dE) galaxy NGC 1396 (MV = -16.60, Mass ˜4 × 108 M⊙), located in the Fornax cluster, have been performed with the Very Large Telescope/Multi Unit Spectroscopic Explorer spectrograph in the wavelength region from 4750 to 9350 Å. In this paper, we present a

  10. H I observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7

    NARCIS (Netherlands)

    Lucero, D. M.; Carignan, C.; Elson, E. C.; Randriamampandry, T. H.; Jarrett, T. H.; Oosterloo, T. A.; Heald, G. H.

    We present H I observations of the Sculptor group starburst spiral galaxy NGC 253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for the Square Kilometre Array precursor MeerKAT, under construction. The short baselines and low system temperature of the telescope make it very

  11. The PN.S Elliptical Galaxy Survey: a standard ΛCDM halo around NGC 4374? : A standard ΛCDM halo around NGC 4374?

    NARCIS (Netherlands)

    Napolitano, N. R.; Romanowsky, A. J.; Capaccioli, M.; Douglas, Nigel; Arnaboldi, M.; Coccato, L.; Gerhard, O.; Kuijken, K.; Merrifield, M. R.; Bamford, S. P.; Cortesi, A.; Das, P.; Freeman, K. C.

    As part of our current programme to test ΛCDM predictions for dark matter (DM) haloes using extended kinematical observations of early-type galaxies, we present a dynamical analysis of the bright elliptical galaxy NGC 4374 (M84) based on ˜450 planetary nebulae (PNe) velocities from the

  12. Star Formation Histories of the LEGUS Dwarf Galaxies. I. Recent History of NGC 1705, NGC 4449, and Holmberg II

    Science.gov (United States)

    Cignoni, M.; Sacchi, E.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Adamo, A.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Johnson, K. E.; Messa, M.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.

    2018-03-01

    We use Hubble Space Telescope observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC 4449, Holmberg II, and NGC 1705, from their UV color–magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modeling. Irrespective of the adopted stellar models, all three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100–200 Myr, with modest enhancements (a factor of ∼2) above the 100 Myr averaged SFR. Significant differences among the three dwarfs are found in terms of the overall SFR, the timing of the most recent peak, and the SFR/area. The initial mass function of NGC 1705 and Holmberg II is consistent with a Salpeter slope down to ≈5 M ⊙, whereas it is slightly flatter, s = ‑2.0, in NGC 4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between the upper main-sequence and helium-burning stars, which is not apparent in the data. Since neither differential reddening, which is significant in NGC 4449, nor unresolved binaries appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS 5-26555.

  13. Gemini/GMOS imaging of globular clusters in the Virgo galaxy NGC 4649 (M60)

    Science.gov (United States)

    Forbes, Duncan A.; Faifer, Favio Raúl; Forte, Juan Carlos; Bridges, Terry; Beasley, Michael A.; Gebhardt, Karl; Hanes, David A.; Sharples, Ray; Zepf, Stephen E.

    2004-12-01

    We present Sloan g and i imaging from the Gemini Multi-object Spectrograph (GMOS) instrument on the Gemini North telescope for the globular cluster (GC) system around the Virgo galaxy NGC 4649 (M60). Our three pointings, taken in good seeing conditions, cover an area of about 90 square arcmin. We detect 2151 unresolved sources. Applying colour and magnitude selection criteria to this source list gives 995 candidate GCs. Our source list is greater than 90 per cent complete to a magnitude of i= 23.6, and has little contamination from background galaxies. We find fewer than half a dozen potential ultracompact dwarf galaxies around NGC 4649. Foreground extinction from the nearby spiral NGC 4647 is limited to be AV < 0.1. We confirm the bimodality in the GC colour distribution found by earlier work using Hubble Space Telescope/WFPC2 imaging. As is commonly seen in other galaxies, the red GCs are concentrated towards the centre of the galaxy, having a steeper number density profile than the blue GC subpopulation. The varying ratio of red-to-blue GCs with radius can largely explain the overall GC system colour gradient. The underlying galaxy starlight has a similar density profile slope and colour to the red GCs. This suggests a direct connection between the galaxy field stars and the red GC subpopulation. We estimate a total GC population of 3700 +/- 900, with the uncertainty dominated by the extrapolation to larger radii than observed. This total number corresponds to a specific frequency SN= 4.1 +/- 1.0. Future work will present properties derived from GMOS spectra of the NGC 4649 GCs.

  14. MISALIGNED DISKS AS OBSCURERS IN ACTIVE GALAXIES

    International Nuclear Information System (INIS)

    Lawrence, Andy; Elvis, Martin

    2010-01-01

    We critically review the evidence concerning the fraction of active galactic nuclei (AGNs) that appear as Type 2 AGNs, carefully distinguishing strict Type 2 AGNs from both more lightly reddened Type 1 AGNs, and from low excitation narrow line AGNs, which may represent a different mode of activity. Low-excitation AGNs occur predominantly at low luminosities; after removing these, true Type 2 AGNs represent 58% ± 5% of all AGNs, and lightly reddened Type 1 AGNs a further ∼15%. Radio, IR, and volume-limited samples all agree in showing no change of Type 2 fraction with luminosity. X-ray samples do show a change with luminosity; we discuss possible reasons for this discrepancy. We test a very simple picture which produces this Type 2 fraction with minimal assumptions. In this picture, infall from large scales occurs in random directions, but must eventually align with the inner accretion flow, producing a severely warped disk on parsec scales. If the re-alignment is dominated by tilt, with minimal twist, a wide range of covering factors is predicted in individual objects, but with an expected mean fraction of Type 2 AGNs of exactly 50%. This 'tilted disk' picture predicts reasonable alignment of observed nuclear structures on average, but with distinct misalignments in individual cases. Initial case studies of the few well-resolved objects show that such misalignments are indeed present.

  15. The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817

    Science.gov (United States)

    Hjorth, Jens; Levan, Andrew J.; Tanvir, Nial R.; Lyman, Joe D.; Wojtak, Radosław; Schrøder, Sophie L.; Mandel, Ilya; Gall, Christa; Bruun, Sofie H.

    2017-10-01

    The historic detection of gravitational waves from a binary neutron star merger (GW170817) and its electromagnetic counterpart led to the first accurate (sub-arcsecond) localization of a gravitational-wave event. The transient was found to be ˜10″ from the nucleus of the S0 galaxy NGC 4993. We report here the luminosity distance to this galaxy using two independent methods. (1) Based on our MUSE/VLT measurement of the heliocentric redshift (z helio = 0.009783 ± 0.000023), we infer the systemic recession velocity of the NGC 4993 group of galaxies in the cosmic microwave background (CMB) frame to be v CMB = 3231 ± 53 km s-1. Using constrained cosmological simulations we estimate the line-of-sight peculiar velocity to be v pec = 307 ± 230 km s-1, resulting in a cosmic velocity of v cosmic = 2924 ± 236 km s-1 (z cosmic = 0.00980 ± 0.00079) and a distance of D z = 40.4 ± 3.4 Mpc assuming a local Hubble constant of H 0 = 73.24 ± 1.74 km s-1 Mpc-1. (2) Using Hubble Space Telescope measurements of the effective radius (15.″5 ± 1.″5) and contained intensity and MUSE/VLT measurements of the velocity dispersion, we place NGC 4993 on the Fundamental Plane (FP) of E and S0 galaxies. Comparing to a frame of 10 clusters containing 226 galaxies, this yields a distance estimate of D FP = 44.0 ± 7.5 Mpc. The combined redshift and FP distance is D NGC 4993 = 41.0 ± 3.1 Mpc. This “electromagnetic” distance estimate is consistent with the independent measurement of the distance to GW170817 as obtained from the gravitational-wave signal ({D}{GW}={43.8}-6.9+2.9 Mpc) and confirms that GW170817 occurred in NGC 4993.

  16. ROSAT PSPC observations of two X-ray-faint early-type galaxies: NGC 4365 and NGC 4382

    Science.gov (United States)

    Fabbiano, G.; Kim, D.-W.; Trinchieri, G.

    1994-01-01

    We present the results of ROSAT Positive Sensitive Proportional Counter (PSPC) observations of the two early-type galaxies NGC 4365 and NGC 4382. These galaxies are among those observed with Einstein to have the lowest X-ray to optical flux ratios of early-type galaxies. The PSCP data show that for radii r greater than 50 arcsec the radial distributions of the X-ray surface brightness are consistent with the optical distributions of King (1978). We also find that these galaxies have X-ray spectra significantly different from those observed in X-ray-bright ellipticals, with a relative excess of counts detected in the softest spectral channels. This confirms earlier Einstein results. The characteristics of the ROSAT PSPC do not allow us to discriminate between possible spectral models. If we adopt a two-component thermal model on the grounds of physical plausibility, we find that the spectral data can be fitted with a very soft optically thin component, with kT approximately 0.2 keV, and a hard component with kT greater than (1.0-1.5) keV. The hard component has a luminosity consistent with that expected from the integrated emission of a population of low mass-X-ray binaries in these galaxies; the nature of the very soft component is more speculative. Candidates include the coronal emission of late-type stars, supersoft X-ray sources, RS CVn, and perhaps a hot Interstellar Medium (ISM). Alternatively, the spectal data may be fitted with a 0.6-1 keV bremsstrahlung spectrum (expontential plus Gaunt), and may suggest the presence of a totally new population of X-ray sources.

  17. Low dark matter content of the nearby early-type galaxy NGC 821

    Directory of Open Access Journals (Sweden)

    Samurović S.

    2014-01-01

    Full Text Available In this paper we analyze the kinematics and dynamics of the nearby early-type galaxy NGC 821 based on its globular clusters (GCs and planetary nebulae (PNe. We use PNe and GCs to extract the kinematics of NGC 821 which is then used for the dynamical modelling based on the Jeans equation. We apply the Jeans equation using the Newtonian mass-follows-light approach assuming constant mass-to-light ratio and find that using such an approach we can successfully fit the kinematic data. The inferred constant mass-to-light ratio, 4:2 < M=LB < 12:4 present throughout the whole galaxy, implies the lack of significant amount of dark matter. We also used three different MOND approaches and found that we can fit the kinematic data without the need for additional, dark, component. [Projekat Ministarstva nauke Republike Srbije, br. 176021: Visible and invisible matter in nearby galaxies: theory and observations

  18. The Environment of X-Ray Binaries in the Dwarf Starburst Galaxy NGC 1569

    Science.gov (United States)

    Clark, David M.; Eikenberry, Stephen S.; Raines, Steven N.

    2008-05-01

    We use deep, J and Ks observations of NGC 1569 acquired with FLAMINGOS on the KPNO 4-m to search for star cluster counterparts to X-ray binaries identified in archived Chandra images of this dwarf starburst galaxy. Performing near-IR photometry on the star cluster counterparts, we determine their colors, luminosities and masses. Comparing these results to the properties for all clusters in this galaxy, we search for trends in clusters associated with X-ray sources. Combining this study with FISICA, near-IR spectral observations, we further characterize the surroundings to X-ray binaries in NGC 1569. Contrasting this work with findings from a similar study performed on the Antennae galaxies, a large, merging system, we investigate the differences in X-ray binary environments.

  19. THE FORMATION OF SHELL GALAXIES SIMILAR TO NGC 7600 IN THE COLD DARK MATTER COSMOGONY

    OpenAIRE

    Cooper, Andrew P.; Martinez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.; GaBany, R. Jay

    2011-01-01

    We present new deep observations of 'shell' structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter universe (available at http://www.virgo.dur.ac.uk/shell-galaxies). The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system o...

  20. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 03722 (Korea, Republic of)

    2017-08-20

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  1. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    International Nuclear Information System (INIS)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K.

    2017-01-01

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  2. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Gyoon; Jang, In Sung, E-mail: mglee@astro.snu.ac.kr, E-mail: isjang@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  3. Formation and Evolution of Giant Molecular Clouds in Disk Galaxies

    Science.gov (United States)

    Tasker, Elizabeth J.; Tan, J.

    2009-01-01

    The formation of stars from gas in disk galaxies is one of the most basic processes controlling galactic evolution. While there are many other important effects, such as galaxy interactions and infall of diffuse gas, ultimately a large fraction of the gas settles into a rotationally supported disk where the majority of the stellar population is born. Due to restrictions in resolution, galactic-scale simulations have largely modeled star formation using empirical correlations between the gas density and star formation rate. While useful, these methods are unable to tell us about the early stages of star formation and the evolution of the interstellar medium (ISM). In this talk, we show results from a set of high adaptive mesh resolution ( 15 pc) global galaxy simulations (32 kpc) that follows the birth, evolution and death of star-forming clouds in the ISM. We present a technique to track the clouds through their life and compare the properties of clouds at different ages. Our clouds are defined with a density threshold that should give them similar properties to giant molecular clouds, and this allows us to make detailed comparison of our simulation results to observations of the Milky Way and other galaxies.

  4. Keck Spectroscopy of Globular Clusters in the Elliptical Galaxy NGC 3610

    OpenAIRE

    Strader, Jay; Brodie, Jean P.; Schweizer, Francois; Larsen, Soeren S.; Seitzer, Patrick

    2002-01-01

    We present moderate-resolution Keck spectra of nine candidate globular clusters in the possible merger-remnant elliptical galaxy NGC 3610. Eight of the objects appear to be bona fide globular clusters of NGC 3610. We find that two of the clusters belong to an old metal-poor population, five to an old metal-rich population, and only one to an intermediate-age metal-rich population. The estimated age of the intermediate-age cluster is 1-5 Gyr, which is in agreement with earlier estimates of the...

  5. Strongly baryon-dominated disk galaxies at the peak of galaxy formation ten billion years ago.

    Science.gov (United States)

    Genzel, R; Schreiber, N M Förster; Übler, H; Lang, P; Naab, T; Bender, R; Tacconi, L J; Wisnioski, E; Wuyts, S; Alexander, T; Beifiori, A; Belli, S; Brammer, G; Burkert, A; Carollo, C M; Chan, J; Davies, R; Fossati, M; Galametz, A; Genel, S; Gerhard, O; Lutz, D; Mendel, J T; Momcheva, I; Nelson, E J; Renzini, A; Saglia, R; Sternberg, A; Tacchella, S; Tadaki, K; Wilman, D

    2017-03-15

    In the cold dark matter cosmology, the baryonic components of galaxies-stars and gas-are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark-matter halo. In the local (low-redshift) Universe, the mass of dark matter within a galactic disk increases with disk radius, becoming appreciable and then dominant in the outer, baryonic regions of the disks of star-forming galaxies. This results in rotation velocities of the visible matter within the disk that are constant or increasing with disk radius-a hallmark of the dark-matter model. Comparisons between the dynamical mass, inferred from these velocities in rotational equilibrium, and the sum of the stellar and cold-gas mass at the peak epoch of galaxy formation ten billion years ago, inferred from ancillary data, suggest high baryon fractions in the inner, star-forming regions of the disks. Although this implied baryon fraction may be larger than in the local Universe, the systematic uncertainties (owing to the chosen stellar initial-mass function and the calibration of gas masses) render such comparisons inconclusive in terms of the mass of dark matter. Here we report rotation curves (showing rotation velocity as a function of disk radius) for the outer disks of six massive star-forming galaxies, and find that the rotation velocities are not constant, but decrease with radius. We propose that this trend arises because of a combination of two main factors: first, a large fraction of the massive high-redshift galaxy population was strongly baryon-dominated, with dark matter playing a smaller part than in the local Universe; and second, the large velocity dispersion in high-redshift disks introduces a substantial pressure term that leads to a decrease in rotation velocity with increasing radius. The effect of both factors appears to increase with redshift. Qualitatively, the observations suggest that baryons in the early (high

  6. The Gaia-ESO survey: the inner disk intermediate-age open cluster NGC 6802

    Science.gov (United States)

    Tang, B.; Geisler, D.; Friel, E.; Villanova, S.; Smiljanic, R.; Casey, A. R.; Randich, S.; Magrini, L.; San Roman, I.; Muñoz, C.; Cohen, R. E.; Mauro, F.; Bragaglia, A.; Donati, P.; Tautvaišien*error*ė, G.; Drazdauskas, A.; Ženovienė, R.; Snaith, O.; Sousa, S.; Adibekyan, V.; Costado, M. T.; Blanco-Cuaresma, S.; Jiménez-Esteban, F.; Carraro, G.; Zwitter, T.; François, P.; Jofrè, P.; Sordo, R.; Gilmore, G.; Flaccomio, E.; Koposov, S.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Damiani, F.; Franciosini, E.; Hourihane, A.; Lardo, C.; Lewis, J.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sacco, G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Milky Way open clusters are very diverse in terms of age, chemical composition, and kinematic properties. Intermediate-age and old open clusters are less common, and it is even harder to find them inside the solar Galactocentric radius, due to the high mortality rate and strong extinction inside this region. NGC 6802 is one of the inner disk open clusters (IOCs) observed by the Gaia-ESO survey (GES). This cluster is an important target for calibrating the abundances derived in the survey due to the kinematic and chemical homogeneity of the members in open clusters. Using the measurements from Gaia-ESO internal data release 4 (iDR4), we identify 95 main-sequence dwarfs as cluster members from the GIRAFFE target list, and eight giants as cluster members from the UVES target list. The dwarf cluster members have a median radial velocity of 13.6 ± 1.9 km s-1, while the giant cluster members have a median radial velocity of 12.0 ± 0.9 km s-1 and a median [Fe/H] of 0.10 ± 0.02 dex. The color-magnitude diagram of these cluster members suggests an age of 0.9 ± 0.1 Gyr, with (m-M)0 = 11.4 and E(B-V) = 0.86. We perform the first detailed chemical abundance analysis of NGC 6802, including 27 elemental species. To gain a more general picture about IOCs, the measurements of NGC 6802 are compared with those of other IOCs previously studied by GES, that is, NGC 4815, Trumpler 20, NGC 6705, and Berkeley 81. NGC 6802 shows similar C, N, Na, and Al abundances as other IOCs. These elements are compared with nucleosynthetic models as a function of cluster turn-off mass. The α, iron-peak, and neutron-capture elements are also explored in a self-consistent way. Full Tables A.3-A.6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A56

  7. Near-IR TRGB Distance to Dwarf Elliptical Galaxy NGC 147

    Directory of Open Access Journals (Sweden)

    A. Kang

    2007-09-01

    Full Text Available We report the distance modulus of nearby dwarf elliptical galaxy NGC 147 estimated from the Tip of Red-giant Branch (TRGB method applying to the color-magnitude diagrams and luminosity functions in the near-infrared JHK bands. Apparent magnitudes of TRGBs in each band are obtained by applying Savitzky-Golay filter to the luminosity functions, and the theoretical absolute magnitudes are estimated from Yonsei-Yale isochrones. The derived values of distance modulus to NGC 147 are (m-M=23.69±0.12, 23.78±0.17, and 23.85±0.22 for J, H, and K bands, respectively. Distance modulus in bolometric magnitude is also derived as (m-M=23.87±0.11. We compare the derived values of the TRGB distance modulus to NGC 147 in the near-infrared bands with the previous results in other bands.

  8. Distance and Reddening of the Isolated Dwarf Irregular Galaxy NGC 1156

    Science.gov (United States)

    Kim, Sang Chul; Park, Hong Soo; Kyeong, Jaemann; Lee, Joon Hyeop; Ree, Chang Hee; Kim, Minjin

    2012-04-01

    We present a photometric estimation of the distance and reddening values to the dwarf irregular galaxy NGC 1156, that is one of the best targets for the study of isolated dwarf galaxies in the nearby universe. We used imaging data sets of the Hubble Space Telescope (HST) Advanced Camera for Surveys, High Resolution Channel of the central region of NGC 1156 (26'' × 29'') available in the HST archive for this study. From the (U - B, B - V) color-color diagram, we first estimated the total (foreground + internal) reddening toward NGC 1156 of E (B - V) = 0.35±0.05 mag, whereas only the foreground reddening was previously known to be E (B - V) = 0.16 mag (1984, ApJS, 54, 33) or 0.24 mag (1998, ApJ, 500, 525). Based on the brightest-star method, selecting the three brightest blue supergiant (BSG) stars with a mean B magnitude of = 21.94 and the three brightest red supergiant (RSG) stars with a mean V magnitude of = 22.76, we derived the distance modulus to NGC 1156 to be (m - M)0,BSG = 29.16 mag and (m - M)0,RSG = 29.5 5 mag. By using weights of 1 for BSGs and 1.5 for RSGs, we finally obtained a weighted mean distance modulus to NGC 1156, (m - M)0 = 29.39 ± 0.20 mag (distance = 7.6 ± 0.7 Mpc), which is in agreement with previous estimates. Combining the photometry data of this study with those of Karachentsev, Musella, and Grimardi (1996, A&A, 310, 722) gives a smaller distance to NGC 1156, which is discussed together with the limits of the data.

  9. A spatially resolved radio spectral index study of the dwarf irregular galaxy NGC 1569

    Science.gov (United States)

    Westcott, Jonathan; Brinks, Elias; Hindson, Luke; Beswick, Robert; Heesen, Volker

    2018-04-01

    We study the resolved radio continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high-quality NRAO Karl G. Jansky Very Large Array observations that densely sample the 1-34 GHz frequency range, we adopt a Bayesian fitting procedure, where we use H α emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission, and non-thermal spectral index vary across NGC 1569's main disc. We find a higher thermal fraction at 1 GHz than is found in spiral galaxies (26^{+2}_{-3} {per cent}) and find an average non-thermal spectral index α = -0.53 ± 0.02, suggesting that a young population of cosmic ray electrons is responsible for the observed non-thermal emission. By comparing our recovered map of the thermal radio emission with literature H α maps, we estimate the total reddening along the line of sight to NGC 1569 to be E(B - V) = 0.49 ± 0.05, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC 1569.

  10. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    DEFF Research Database (Denmark)

    Walton, D. J.; Risaliti, G.; Harrison, F. A.

    2014-01-01

    We present a spectral analysis of four coordinated NuSTAR+XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first...

  11. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    International Nuclear Information System (INIS)

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio; Urbaneja, Miguel A.; Przybilla, Norbert; Evans, Christopher J.; Pietrzyński, Grzegorz; Gieren, Wolfgang; Carraro, Giovanni

    2014-01-01

    We present a quantitative analysis of the low-resolution (∼4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T eff indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low α/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  12. Quantitative spectroscopy of blue supergiants in metal-poor dwarf galaxy NGC 3109

    Energy Technology Data Exchange (ETDEWEB)

    Hosek, Matthew W. Jr.; Kudritzki, Rolf-Peter; Bresolin, Fabio [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Urbaneja, Miguel A.; Przybilla, Norbert [Institute for Astro and Particle Physics, A-6020 Innsbruck University (Austria); Evans, Christopher J. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh (United Kingdom); Pietrzyński, Grzegorz; Gieren, Wolfgang [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Carraro, Giovanni, E-mail: mwhosek@ifa.hawaii.edu, E-mail: kud@ifa.hawaii.edu, E-mail: bresolin@ifa.hawaii.edu, E-mail: Miguel.Urbaneja-Perez@uibk.ac.at, E-mail: Norbert.Przybilla@uibk.ac.at, E-mail: chris.evans@stfc.ac.uk, E-mail: pietrzyn@astrouw.edu.pl, E-mail: wgieren@astro-udec.cl, E-mail: gcarraro@eso.org [European Southern Observatory, La Silla Paranal Observatory (Chile)

    2014-04-20

    We present a quantitative analysis of the low-resolution (∼4.5 Å) spectra of 12 late-B and early-A blue supergiants (BSGs) in the metal-poor dwarf galaxy NGC 3109. A modified method of analysis is presented which does not require use of the Balmer jump as an independent T {sub eff} indicator, as used in previous studies. We determine stellar effective temperatures, gravities, metallicities, reddening, and luminosities, and combine our sample with the early-B-type BSGs analyzed by Evans et al. to derive the distance to NGC 3109 using the flux-weighted gravity-luminosity relation (FGLR). Using primarily Fe-group elements, we find an average metallicity of [ Z-bar ] = –0.67 ± 0.13, and no evidence of a metallicity gradient in the galaxy. Our metallicities are higher than those found by Evans et al. based on the oxygen abundances of early-B supergiants ([ Z-bar ] = –0.93 ± 0.07), suggesting a low α/Fe ratio for the galaxy. We adjust the position of NGC 3109 on the BSG-determined galaxy mass-metallicity relation accordingly and compare it to metallicity studies of H II regions in star-forming galaxies. We derive an FGLR distance modulus of 25.55 ± 0.09 (1.27 Mpc) that compares well with Cepheid and tip of the red giant branch distances. The FGLR itself is consistent with those found in other galaxies, demonstrating the reliability of this method as a measure of extragalactic distances.

  13. Diffuse Gamma-Ray Emission from the Starburst Galaxy NGC 253

    Science.gov (United States)

    Bertsch, David L.; Paglione, Timothy A. D.; Marscher, Alan P.; Jackson, James M.

    1995-01-01

    The starburst galaxy NGC 253 was observed with the Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory (CGRO) satellite. We obtain a 2 sigma upper limit to the gamma-ray emission above 100 MeV of 8 x 10(exp -8) photons/sq cm/s. Because of their large gas column densities and supernova rates, nearby starburst galaxies were predicted to have gamma-ray fluxes detectable by EGRET. Our nondetection of gamma-rays from NGC 253 motivates us to reexamine in detail the premise of supernova acceleration of cosmic rays and the effect of enhanced cloud densities, photon densities, and magnetic fields on the high-energy spectra of galaxies. By modeling the expected gamma-ray and synchrotron spectra from NGC 253, we find that up to 20% of the energy from supernovae is transferred to cosmic rays in the starburst, which is consistent with supernova acceleration models. Our calculations match the EGRET and radio data well with a supernova rate of 0.08/yr, a magnetic field B greater than or approximately equal to 5 x 10(exp -5) G, a density n approximately 300/cu cm, a photon density U(sub ph) approximately 200 eV/cu cm, and an escape timescale tau(sub o) less than or approximately equal to 10 Myr.

  14. The Halo Dynamics of NGC 3379: A Normal Elliptical Galaxy with No Dark Matter

    Science.gov (United States)

    Ciardullo, R.; Jacoby, G. H.

    1993-05-01

    We present the results of a radial velocity survey of planetary nebulae in the normal, non-interacting, elliptical galaxy NGC 3379. In two half-nights with the Kitt Peak 4-m telescope and the NESSIE multifiber spectrograph, we measured the velocities of 29 PNe with projected galactocentric distances between 0.4 and 3.8 effective radii (1 kpc < R < 10 kpc). These data, which have an observational uncertainty of ~ 7 km s(-1) , extend 3 times further into the halo than any previous absorption line study, and allow us for the first time, to examine the kinematics of halo stars in a normal E0 galaxy. The observed velocity dispersion and photometric profile of NGC 3379 agrees extremely well with that expected from a constant mass-to-light, isotropic orbit Jaffe model with a mass-to-light ratio M/L_B ~ 7. A simple c = 2.33 King model with M/L_B ~ 7 also fits the data reasonably well, but models with purely radial or circular orbits are ruled out. The data strongly suggest that NGC 3379 is a galaxy with little or no dark matter within 3.5 effective radii of its nucleus.

  15. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel

    2009-01-01

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in ∼ sun yr -1 , and each clump converts into stars in ∼0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z ∼ 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z ∼ 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  16. Lopsided spiral galaxies

    Indian Academy of Sciences (India)

    Lopsided distribution highlighted first: Baldwin, Lynden-Bell, & Sancisi (1980) · Lopsidedness also seen in an edge-on galaxy : NGC 891 · Slide 7 · Origin of m=1 disk distribution? Early Theoretical models: · Disk response to a lopsided halo potential (Jog 1997, 2002): · Isophotal shapes in a lopsided potential. Distribution of ...

  17. Gravitational potential energy of a disk-sphere pair of galaxies

    International Nuclear Information System (INIS)

    Ballabh, G.M.

    1975-01-01

    Algebraic expressions are obtained for the interaction potential energy of a pair of galaxies in which one is disk shaped and the other spherical. The density distribution in the disk galaxy is represented by a polynomial in ascending powers of the distance from the centre of the disk while the density distribution in the spherical galaxy is represented by the superposition of spherical polytropes of integral indices. The basic functions required for obtaining the interaction potential energy of a coplanar disk-sphere pair of galaxies are tabulated. The forces of attraction between a coplanar disk-sphere pair of galaxies are shown graphically for two density models of disk and spherical galaxies. An overlapping coplanar disk-sphere pair of galaxies attract just like two mass-points at a certain separation, rsub(c), of their centres. The force of attraction is less than that of two mass-points having masses equal to the masses of the two galaxies, if the separation of the centres is less than rsub(c), and greater if the separation is greater than rsub(c). For a typical coplanar disk-sphere pair of galaxies (the density of the disk is represented by Model II and of the sphere by a polytropic index n=4) of equal radii, the following is noted. At a separation of 0.79 R, R being the common radius of the two galaxies, the force of attraction between the pair is the same as if the entire mass of each galaxy is concentrated at its centre. The mass-point model for the two galaxies will overestimate the force of attraction by more than a factor of 10 if the separation is less than 0.36 R. For separation greater than the radii of the galaxies the mass-point model will underestimate the force but the departure in this case is less than 33%. (Auth.)

  18. General solution of Poisson equation in three dimensions for disk-like galaxies

    International Nuclear Information System (INIS)

    Tong, Y.; Zheng, X.; Peng, O.

    1982-01-01

    The general solution of the Poisson equation is solved by means of integral transformations for Vertical BarkVertical Barr>>1 provided that the perturbed density of disk-like galaxies distributes along the radial direction according to the Hankel function. This solution can more accurately represent the outer spiral arms of disk-like galaxies

  19. PKS 1814-637: a powerful radio-loud AGN in a disk galaxy

    NARCIS (Netherlands)

    Morganti, R.; Holt, J.; Tadhunter, C.; Almeida, C. Ramos; Dicken, D.; Inskip, K.; Oosterloo, T.; Tzioumis, T.

    2011-01-01

    We present a detailed study of PKS 1814-637, a rare case of powerful radio source (P5 GHz = 4.1 × 1025 W Hz-1) hosted by a disk galaxy. Optical images have been used to model the host galaxy morphology confirming it to be dominated by a strong (and warped) disk component that is observed close to

  20. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    Science.gov (United States)

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. © 2011 Macmillan Publishers Limited. All rights

  1. NGC 741—Mergers and AGN Feedback on a Galaxy-group Scale

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, G.; Vrtilek, J. M.; David, L.; O’Sullivan, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Giacintucci, S. [Naval Research Laboratory, 4555 Overlook Avenue SW, Code 7213, Washington, DC 20375 (United States); Johnston-Hollitt, M.; Duchesne, S. W. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6140 (New Zealand); Raychaudhury, S., E-mail: gerrit.schellenberger@cfa.harvard.edu [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India)

    2017-08-10

    Low-mass galaxy cluster systems and groups will play an essential role in upcoming cosmological studies, such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to quantify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy-group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC 741 that provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly bent jets, a 100-kpc radio trail, intriguing narrow X-ray filaments, and gas-sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas-stripping from NGC 742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.

  2. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    International Nuclear Information System (INIS)

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva; Schruba, Andreas; Bigiel, Frank; Bolatto, Alberto; Brinks, Elias; De Blok, W. J. G.; Rosolowsky, Erik; Schuster, Karl-Friedrich; Usero, Antonio

    2013-01-01

    We compare molecular gas traced by 12 CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between Σ mol and Σ SFR but also find important second-order systematic variations in the apparent molecular gas depletion time, τ dep mol =Σ mol /Σ SFR . At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed α CO equivalent to the Milky Way value, our data yield a molecular gas depletion time, τ dep mol =Σ mol /Σ SFR ∼2.2 Gyr with 0.3 dex 1σ scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, Σ SFR ∝Σ mol N . We find N = 1 ± 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between τ dep mol and other local and global quantities. The strongest of these are a decreased τ dep mol in low-mass, low-metallicity galaxies and a correlation of the kpc-scale τ dep mol with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H 2 conversion factor (α CO ) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed τ dep mol trends. After applying a D/G-dependent α CO , some weak correlations between τ dep mol and local conditions persist. In particular, we observe lower τ dep mol and enhanced CO excitation associated with nuclear gas concentrations in a subset of our targets. These appear to reflect real enhancements in the

  3. The Inner Regions of Disk Galaxies: A Constant Baryonic Fraction?

    Directory of Open Access Journals (Sweden)

    Federico Lelli

    2014-07-01

    Full Text Available For disk galaxies (spirals and irregulars, the inner circular-velocity gradient dRV0 (inner steepness of the rotation curve correlates with the central surface brightness ∑*,0 with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density. Here I show that this empirical relation is consistent with a simple model where the central baryonic fraction ƒbar,0 is fixed to 1 (no dark matter and the observed scatter is due to differences in the baryonic mass-to-light ratio Mbar / LR (ranging from 1 to 3 in the R-band and in the characteristic thickness of the central stellar component Δz (ranging from 100 to 500 pc. Models with lower baryonic fractions are possible, although they require some fine-tuning in the values of Mbar/LR and Δz. Regardless of the actual value of ƒbar,0, the fact that different types of galaxies do not show strong variations in ƒbar,0 is surprising, and may represent a challenge for models of galaxy formation in a Λ Cold Dark Matter (ΛCDM cosmology.

  4. The 0.3-30 Kev Spectra Of Powerful Starburst Galaxies: Nustar And Chandra Observations Of Ngc 3256 And Ngc 3310

    DEFF Research Database (Denmark)

    Lehmer, B. D.; Tyler, J. B.; Hornschemeier, A. E.

    2015-01-01

    -law distributions with Γ ≈ 2.6 at E > 5-7 keV. Using new and archival Chandra data, we search for signatures of heavily obscured or low luminosity active galactic nuclei (AGNs). We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra...... observations therefore constrain the average spectral shape of galaxy-wide populations of luminous accreting binaries (i.e., ULXs). Interestingly, despite a completely different galaxy sample selection, emphasizing here a range of SFRs and stellar masses, these properties are similar to those of super...... likely explained by the relatively low metallicity of the young stellar population in this galaxy, a property that is expected to produce an excess of luminous X-ray binaries for a given SFR....

  5. The extent of CO in the early-type galaxy NGC 4472

    Science.gov (United States)

    Hutchtmeier, W. K.; Bregman, J. N.; Hogg, D. E.; Roberts, M. S.

    1994-01-01

    NGC 4472, and E/SO system, is the earliest type normal galaxy with detected CO emission, and here we present additional radio observations in the lines of CO(1-0) and CO(2-1) to determine the distribution and internal properties of this gas. The original detection is reconfirmed, but observations at five surrounding locations and at two other locations in the galaxy do not show the gas to be extended; the total H2 gas mass is estimated to be 4 x 10(exp 7) solar mass. A high CO(1-0)/CO(2-1) brightness temperature ratio is found (greater than 3), which is indicative of subthermal excitation of the CO(2-1) line that can occur at low gas temperatures and low gas densities. Also, upper limits are given for the CO(2-1) fluxes in four other early-type galaxies.

  6. Stellar models simulating the disk-locking mechanism and the evolutionary history of the Orion Nebula cluster and NGC 2264

    Science.gov (United States)

    Landin, N. R.; Mendes, L. T. S.; Vaz, L. P. R.; Alencar, S. H. P.

    2016-02-01

    Context. Rotational evolution in young stars is described by pre-main sequence evolutionary tracks including non-gray boundary conditions, rotation, conservation of angular momentum, and simulations of disk-locking. Aims: By assuming that disk-locking is the regulation mechanism for the stellar angular velocity during the early stages of pre-main sequence evolution, we use our rotating models and observational data to constrain disk lifetimes (Tdisk) of a representative sample of low-mass stars in two young clusters, the Orion Nebula cluster (ONC) and NGC 2264, and to better understand their rotational evolution. Methods: The period distributions of the ONC and NGC 2264 are known to be bimodal and to depend on the stellar mass. To follow the rotational evolution of these two clusters' stars, we generated sets of evolutionary tracks from a fully convective configuration with low central temperatures (before D- and Li-burning). We assumed that the evolution of fast rotators can be represented by models considering conservation of angular momentum during all stages and of moderate rotators by models considering conservation of angular velocity during the first stages of evolution. With these models we estimate a mass and an age for all stars. Results: The resulting mass distribution for the bulk of the cluster population is in the ranges of 0.2-0.4 M⊙ and 0.1-0.6 M⊙ for the ONC and NGC 2264, respectively. For the ONC, we assume that the secondary peak in the period distribution is due to high-mass objects still locked in their disks, with a locking period (Plock) of ~8 days. For NGC 2264 we make two hypotheses: (1) the stars in the secondary peak are still locked with Plock = 5 days, and (2) NGC 2264 is in a later stage in the rotational evolution. Hypothesis 2 implies in a disk-locking scenario with Plock = 8 days, a disk lifetime of 1 Myr and, after that, constant angular momentum evolution. We then simulated the period distribution of NGC 2264 when the mean age

  7. Dust extinction and X-ray emission from the starburst galaxy NGC 1482

    Science.gov (United States)

    Vagshette, N. D.; Pandge, M. B.; Pandey, S. K.; Patil, M. K.

    2012-07-01

    We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to ˜11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV = 3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is ˜2.7 × 105 M⊙, and provide lower limit due to the fact that our method is not sensitive to the intermix component of dust. Comparison of the observed dust in the galaxy with that supplied by the SNe to the ISM, imply that this supply is not sufficient to account for the observed dust and hence point towards the origin of dust in this galaxy through a merger like event. Our multiband imaging analysis reveals a qualitative physical correspondence between the morphologies of the dust and Hα emission lines as well as diffuse X-ray emission in this galaxy. Spatially resolved spectral analysis of the hot gas along outflows exhibit a gradient in the temperature. Similar gradient was also noticed in the measured values of metallicity, indicating that the gas in the halo is not yet enriched. High resolution, 2-8 keV Chandra image reveals a pair of point sources in the nuclear region with their luminosities equal to 2.27 × 1039 erg s-1 and 9.34 × 1039 erg s-1, and are in excess of the Eddington-limit of 1.5 M⊙ accreting source. Spectral analysis of these

  8. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    Science.gov (United States)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  9. Star formation histories across the interacting galaxy NGC 6872, the largest-known spiral

    Energy Technology Data Exchange (ETDEWEB)

    Eufrasio, Rafael T.; De Mello, Duilia F. [Physics Department, The Catholic University of America, Washington, DC 20064 (United States); Dwek, Eli; Arendt, Richard G.; Benford, Dominic J. [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gadotti, Dimitri A. [European Southern Observatory, Santiago (Chile); Urrutia-Viscarra, Fernanda; De Oliveira, Claudia Mendes, E-mail: rafael.t.eufrasio@nasa.gov [Departamento de Astronomia, Instituto de Astronomia, Geofísica e Ciências Atmosféricas da USP, Rua do Matão 1226, Cidade Universitária, 05508-090 São Paulo (Brazil)

    2014-11-01

    NGC 6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 μm) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  10. The Physical Properties and Kinematics of Molecular Gas in a Barred Galaxy NGC 2903

    Science.gov (United States)

    Xu, Zizheng; Ueda, Junko; Petitpas, Glen

    2018-01-01

    Barred spiral galaxies are ideal sources for studying the relation between star formation and kpc-scale galactic dynamics. The non-circular motions of gas are induced by the non-axisymmetric bar potential. Theoretical studies and numerical simulations have shown that these motions pile up the gas along the leading side of the bar and induce shock waves and/or shear motion. It is expected that the physical properties of molecular gas change in such an environment. The shock wave and shear motion make molecular clouds break down, which eventually suppresses the star-formation activities. In order to better understand star formation in barred galaxies, it is important to investigate the physical properties and kinematics of the molecular gas that is the fuel of stars. We have conducted the CO (2-1) observations of a nearby barred galaxy NGC 2903 using SMA. We compare the distribution and kinematics of cold molecular gas with those of stellar components and ionized gas in order to investigate the relation between the properties of molecular gas and star formation. We also make the CO (2-1)/CO (1-0) line ratio map using the archival CO (1-0) data obtained with BIMA. This enables us investigate the excitation condition of the CO molecule with twice higher angular resolution compared to previous studies. In this presentation, we discuss the distribution and kinematics of molecular gas, and excitation condition in NGC 2903.

  11. Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817

    Science.gov (United States)

    Im, Myungshin; Yoon, Yongmin; Lee, Seong-Kook J.; Lee, Hyung Mok; Kim, Joonho; Lee, Chung-Uk; Kim, Seung-Lee; Troja, Eleonora; Choi, Changsu; Lim, Gu; Ko, Jongwan; Shim, Hyunjin

    2017-11-01

    Recently, the optical counterpart of the gravitational-wave source GW170817 has been identified in the NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars (NSs). We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with {r}{eff}˜ 2{--}3 {kpc} and a Sérsic index of n=3{--}4 for the bulge component. The spectral energy distribution from 0.15 to 24 μm indicates that this galaxy has no significant ongoing star formation, a mean stellar mass of (0.3{--}1.2)× {10}11 {M}⊙ , a mean stellar age greater than ˜3 Gyr, and a metallicity of about 20%-100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from the literature, finding an angular diameter distance of 37.7 ± 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts (GRBs) but much different from those of long GRBs, supporting the picture of GW170817 as a result of the merger of two NSs.

  12. The origin of the X-ray, radio and H I structures in the NGC 5903 galaxy group

    Science.gov (United States)

    O'Sullivan, Ewan; Kolokythas, Konstantinos; Kantharia, Nimisha G.; Raychaudhury, Somak; David, Laurence P.; Vrtilek, Jan M.

    2018-02-01

    The NGC 5903 galaxy group is a nearby (∼30 Mpc) system of ∼30 members, dominated by the giant ellipticals NGC 5903 and NGC 5898. The group contains two unusual structures: a ∼110 kpc long H I filament crossing NGC 5903 and a ∼75 kpc wide diffuse, steep-spectrum radio source of unknown origin that overlaps NGC 5903 and appears to be partly enclosed by the H I filament. Using a combination of Chandra, XMM-Newton, Giant Meterwave Radio Telescope (GMRT) and Very Large Array (VLA) observations, we detect a previously unknown ∼0.65 keV intra-group medium filling the volume within 145 kpc of NGC 5903 and find a loop of enhanced X-ray emission extending ∼35 kpc south-west from the galaxy, enclosing the brightest part of the radio source. The northern and eastern parts of this X-ray structure are also strongly correlated with the southern parts of the H I filament. We determine the spectral index of the bright radio emission to be α _{150}^{612} = 1.03 ± 0.08, indicating a radiative age >360 Myr. We discuss the origin of the correlated radio, X-ray and H I structures, either through an interaction-triggered active galactic nucleus (AGN) outburst with enthalpy 1.8 × 1057 erg, or via a high-velocity collision between a galaxy and the H I filament. While neither scenario provides a complete explanation, we find that an AGN outburst is the most likely source of the principal X-ray and radio structures. However, it is clear that galaxy interactions continue to play an important role in the development of this relatively highly evolved galaxy group. We also resolve the question of whether the group member galaxy ESO 514-3 hosts a double-lobed radio source, confirming that the source is a superposed background AGN.

  13. A combined N-body and hydrodynamic code for modeling disk galaxies

    International Nuclear Information System (INIS)

    Schroeder, M.C.

    1989-01-01

    A combined N-body and hydrodynamic computer code for the modeling of two dimensional galaxies is described. The N-body portion of the code is used to calculate the motion of the particle component of a galaxy, while the hydrodynamics portion of the code is used to follow the motion and evolution of the fluid component. A complete description of the numerical methods used for each portion of the code is given. Additionally, the proof tests of the separate and combined portions of the code are presented and discussed. Finally, a discussion of the topics researched with the code and results obtained is presented. These include: the measurement of stellar relaxation times in disk galaxy simulations; the effects of two-armed spiral perturbations on stable axisymmetric disks; the effects of the inclusion of an instellar medium (ISM) on the stability of disk galaxies; and the effect of the inclusion of stellar evolution on disk galaxy simulations

  14. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  15. NGC 985 - Extended ionized regions and the far-infrared luminosity of a ring-shaped Seyfert galaxy

    International Nuclear Information System (INIS)

    Rodriguez Espinosa, J.M.; Stanga, R.M.

    1990-01-01

    Narrow-band H-alpha images and long-slit spectroscopy of the Seyfert galaxy NGC 985 are presented. Large-scale extended ionized zones are seen to cover a significant fraction of the ring of this object. These ionized zones are responsible for a considerable fraction (greater than 35 percent) of the far-infrared emission of NGC 985. These ionized zones are interpreted as giant H II region complexes, formed in a recent burst of star formation. It is also argued that that starburst was triggered by a galaxy interaction. 41 refs

  16. The old globular cluster system of the dIrr galaxy NGC 1427A in the Fornax cluster

    Science.gov (United States)

    Georgiev, I. Y.; Hilker, M.; Puzia, T. H.; Chanamé, J.; Mieske, S.; Goudfrooij, P.; Reisenegger, A.; Infante, L.

    2006-06-01

    We present a study of the old globular cluster (GC) population of the dwarf irregular galaxy NGC 1427A using multi-wavelength VLT observations in U,B,V,I, Hα and J bands under excellent observing conditions. We applied color and size selection criteria to select old GC candidates and made use of archival ACS images taken with the Hubble Space Telescope to reject contaminating background sources and blended objects from the GC candidates' list. The Hα observations were used to check for contamination due to compact, highly reddened young star clusters whose colors and sizes could mimic those of old GCs. After accounting for contamination we obtain a total number of 38±8 GC candidates with colors consistent with an old (~10 Gyr) and metal-poor (Zcontamination analysis indicates that the density distribution of GCs in the outskirts of the Fornax central cD galaxy NGC 1399 may not be spherically symmetric. We derive a present-day specific frequency SN of 1.6 for NGC 1427A, a value significantly larger than what is observed in the Local Group dwarf irregular galaxies and comparable with the values found for the same galaxy types in the Virgo and Fornax clusters. Assuming a universal globular cluster luminosity function turnover magnitude, we derive a distance modulus to NGC 1427A of 31.01±0.21 mag which places it ˜3.2±2.5 (statistic)±1.6 (systematic) Mpc in front of the Fornax central cD galaxy NGC 1399. The implications of this result for the relationship between NGC 1427A and the cluster environment are briefly discussed.

  17. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio [Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Dr, Honolulu, HI 96822 (United States); Evans, Chris [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh., EH9 3HJ (United Kingdom); Patrick, Lee [Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh., EH9 3HJ (United Kingdom); Davies, Ben [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Bergemann, Maria [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Plez, Bertrand [Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS, F-34095 Montpellier (France); Bender, Ralf; Wegner, Michael [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany); Bonanos, Alceste Z.; Williams, Stephen J. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-06-01

    We present a quantitative spectroscopic study of 27 red supergiants (RSGs) in the Sculptor Galaxy NGC 300. J-band spectra were obtained using KMOS on the Very Large Telescope and studied with state of the art synthetic spectra including NLTE corrections for the strongest diagnostic lines. We report a central metallicity of [Z] = −0.03 ± 0.05 with a gradient of −0.083 ± 0.014 [dex/kpc], in agreement with previous studies of blue supergiants and H ii-region auroral line measurements. This result marks the first application of the J-band spectroscopic method to a population of individual RSG stars beyond the Local Group of galaxies and reveals the great potential of this technique.

  18. RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300

    International Nuclear Information System (INIS)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio; Evans, Chris; Patrick, Lee; Davies, Ben; Bergemann, Maria; Plez, Bertrand; Bender, Ralf; Wegner, Michael; Bonanos, Alceste Z.; Williams, Stephen J.

    2015-01-01

    We present a quantitative spectroscopic study of 27 red supergiants (RSGs) in the Sculptor Galaxy NGC 300. J-band spectra were obtained using KMOS on the Very Large Telescope and studied with state of the art synthetic spectra including NLTE corrections for the strongest diagnostic lines. We report a central metallicity of [Z] = −0.03 ± 0.05 with a gradient of −0.083 ± 0.014 [dex/kpc], in agreement with previous studies of blue supergiants and H ii-region auroral line measurements. This result marks the first application of the J-band spectroscopic method to a population of individual RSG stars beyond the Local Group of galaxies and reveals the great potential of this technique

  19. Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf spheroidal galaxy?

    Science.gov (United States)

    Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.; Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.; Caffau, E.; Duffau, S.

    2015-07-01

    Context. The tidal disruption of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, it is suspected that the Sgr dSph has lost a number of globular clusters (GC). Many Galactic GC are thought to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed owing to chemical similarities, others exist whose chemical composition has never been investigated. Aims: NGC 5053 and NGC 5634 are two of these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. Methods: We analyze high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal-poor Sgr dSph main body population. Results: We derive a metallicity of [Fe ii/H] = -2.26 ± 0.10 for NGC 5053, and of [Fe i/H] = -1.99 ± 0.075 and -1.97 ± 0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal-poor globular clusters in the MW. Both clusters display an α enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. Conclusions: The chemistry of the Sgr dSph main body populations is similar to that of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system. Appendix A is available in electronic form at http

  20. Supermassive black holes do not correlate with galaxy disks or pseudobulges.

    Science.gov (United States)

    Kormendy, John; Bender, R; Cornell, M E

    2011-01-20

    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.

  1. Rotation curve of the edge-on spiral galaxy NGC 5907: disc and halo masses

    International Nuclear Information System (INIS)

    Casertano, S.; Rijksuniversiteit Groningen

    1983-01-01

    The dynamical consequences of a truncation in the disc of a spiral galaxy, like that suggested by the sharp decline of luminosity observed in the outer parts of some edge-on galaxies, are investigated, in relation to the interpretation of observed velocity curves. The disc truncation leaves a 'signature' on the rotation curve, in the form of a region of nearly constant velocity, followed by a steep decline of velocity just outside the truncation. Such a feature is clearly present in the observed rotation curve of NGC 5907, in which the luminosity truncation is also present. The observed velocity curve of NGC 5907 can be well reproduced by a two-component model, with a smooth spherical distribution of 'dark mass' (a halo) superimposed on the luminous disc. The best-fitting values for the mass in the disc and in the halo (inside the optical truncation) are 9 and 13.5 x 10 10 solar masses, respectively. The mass-to-light ratio (luminosity in the J band) is about 11, in solar units. The model predicts the values of some quantities, such as the thickness of the gas layer, that could possibly be observed in the near future, thus providing a clear-cut test of the model itself. (author)

  2. Discovery of an Active Galactic Nucleus Driven Molecular Outflow in the Local Early-type Galaxy NGC 1266

    NARCIS (Netherlands)

    Alatalo, K.; Blitz, L.; Young, L. M.; Davis, T. A.; Bureau, M.; Lopez, L.A.; Cappellari, M.; Scott, N.; Shapiro, K. L.; Crocker, A. F.; Martin, S.; Bois, M.; Bournaud, F.; Davies, R. L.; de Zeeuw, P. T.; Duc, P. -A.; Emsellem, E.; Falcon-Barroso, J.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P. -Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Serra, P.; Weijmans, A.

    2011-01-01

    We report the discovery of a powerful molecular wind from the nucleus of the non-interacting nearby S0 field galaxy NGC 1266. The single-dish CO profile exhibits emission to +/- 400 km s(-1) and requires a nested Gaussian fit to be properly described. Interferometric observations reveal a massive,

  3. A Faint Luminous Halo that May Trace the Dark Matter around Spiral Galaxy NGC~5907

    OpenAIRE

    Sackett, Penny D.; Morrison, Heather L.; Harding, Paul; Boroson, Todd A.

    1994-01-01

    The presence of unseen halos of ``dark matter'' has long been inferred from the high rotation speeds of gas and stars in the outer parts of spiral galaxies$^{1}$. The volume density of this dark matter decreases less quickly from the galactic center than does that of the luminous mass (such as that in stars), meaning that the dark matter dominates the mass far from the center$^{1,2}$. While searching for faint starlight away from the plane of the edge-on disk galaxy \\gal$^{3}$, we have found ...

  4. The prodigious warp of NGC4013

    International Nuclear Information System (INIS)

    Bottema, R.; Shostak, G.S.; Kruit, P.C. van der

    1987-01-01

    H I radio synthesis observations reveal that the edge-on Sbc galaxy NGC4013 has the largest regular H I warp so far observed. It extends to a large height above the plane of the galaxy, and begins abruptly at just the radius where photometry indicates the end of the luminous disk. Furthermore, at precisely this position, the rotational velocity is seen to drop by 25 km s -1 . These observations can only be explained by a situation in which not only the disk-light distribution, but also the disk-mass distribution, suddenly approach zero at the radius of the warp onset. (author)

  5. Possible Imprints of Cold-mode Accretion on the Present-day Properties of Disk Galaxies

    Science.gov (United States)

    Noguchi, Masafumi

    2018-01-01

    Recent theoretical studies suggest that a significant part of the primordial gas accretes onto forming galaxies as narrow filaments of cold gas without building a shock and experiencing heating. Using a simple model of disk galaxy evolution that combines the growth of dark matter halos predicted by cosmological simulations with a hypothetical form of cold-mode accretion, we investigate how this cold-accretion mode affects the formation process of disk galaxies. It is found that the shock-heating and cold-accretion models produce compatible results for low-mass galaxies owing to the short cooling timescale in such galaxies. However, cold accretion significantly alters the evolution of disk galaxies more massive than the Milky Way and puts observable fingerprints on their present properties. For a galaxy with a virial mass {M}{vir}=2.5× {10}12 {M}ȯ , the scale length of the stellar disk is larger by 41% in the cold-accretion model than in the shock-heating model, with the former model reproducing the steep rise in the size–mass relation observed at the high-mass end. Furthermore, the stellar component of massive galaxies becomes significantly redder (0.66 in u ‑ r at {M}{vir}=2.5× {10}12 {M}ȯ ), and the observed color–mass relation in nearby galaxies is qualitatively reproduced. These results suggest that large disk galaxies with red optical colors may be the product of cold-mode accretion. The essential role of cold accretion is to promote disk formation in the intermediate-evolution phase (0.5red.

  6. A far-IR and optical 3D view of the starburst driven superwind in NGC 2146

    NARCIS (Netherlands)

    Kreckel, Kathryn; Armus, Lee; Groves, Brent; Lyubenova, Mariya; Diaz-Santos, Tanio; Schinnerer, Eva

    Galaxy outflows are a vital mechanism in the regulation of galaxy evolution through feedback and enrichment. NGC 2146, a nearby infrared luminous galaxy (LIRG), presents evidence for outflows along the disk minor axis in all gas phases (ionized, neutral atomic and molecular). We present new far-IR

  7. The opacity of spiral galaxy disks. VIII. Structure of the cold ISM

    NARCIS (Netherlands)

    Holwerda, B. W.; Draine, B.; Gordon, K. D.; Gonzalez, R. A.; Calzetti, D.; Thornley, M.; Buckalew, B.; Allen, Ronald J.; van der Kruit, P. C.

    2007-01-01

    The quantity of dust in a spiral disk can be estimated using the dust's typical emission or the extinction of a known source. In this paper we compare two techniques, one based on emission and one on absorption, applied to sections of 14 disk galaxies. The two measurements reflect, respectively, the

  8. The opacity of spiral galaxy disks VI. Extinction, stellar light and color

    NARCIS (Netherlands)

    Holwerda, BW; Gonzalez, RA; van der Kruit, PC; Allen, RJ

    2005-01-01

    In this paper we explore the relation between dust extinction and stellar light distribution in disks of spiral galaxies. Extinction influences our dynamical and photometric perception of disks, since it can distort our measurement of the contribution of the stellar component. To characterize the

  9. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  10. The DiskMass Survey : VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    We present dynamically- determined rotation- curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum- disk hypothesis and to quantify properties of their dark- matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical

  11. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NARCIS (Netherlands)

    Martinsson, T.P.K.; Verheijen, M.; Westfall, K.; Bershady, M.; Andersen, D.; Swaters, R.

    2013-01-01

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass

  12. A Comparison of Galaxy Bulge+Disk Decomposition Between Pan-STARRS and SDSS

    Science.gov (United States)

    Lokken, Martine Elena; McPartland, Conor; Sanders, David B.

    2018-01-01

    Measurements of the size and shape of bulges in galaxies provide key constraints for models of galaxy evolution. A comprehensive catalog of bulge measurements for Sloan Digital Sky Survey (SDSS) DR7 galaxies is currently available to the public. However, the Pan-STARRS1 (PS1) 3π survey now covers the same region with ~1-2 mag deeper photometry, a ~10-30% smaller PSF, and additional coverage in y-band. To test how much improvement in galaxy parameter measurements (e.g. bulge + disk) can be achieved using the new PS1 data, we make use of ultra-deep imaging data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). We fit bulge+disk models to images of 372 bright (mi < 18.5) galaxies detected in all three surveys. Comparison of galaxy parameters derived from SDSS and PS1 images with those measured from HSC-SSP images shows a tighter correlation between PS1 and SSP measurements for both bulge and disk parameters. Bulge parameters, such as bulge-to-total fraction and bulge radius, show the strongest improvement. However, measurements of all parameters degrade for galaxies with total r-band magnitude below the SDSS spectroscopic limit, mr = 17.7. We plan to use the PS1 3π survey data to produce an updated catalog of bulge+disk decomposition measurements for the entire SDSS DR7 spectroscopic galaxy sample.

  13. Nuclei of nearby disk galaxies .1. A Hubble Space Telescope imaging survey

    NARCIS (Netherlands)

    Phillips, AC; Illingworth, GD; MacKenty, JW; Franx, M

    We present deconvolved images of the central regions of 20 nearby disk galaxies, obtained with the original Planetary Camera of the Hubble Space Telescope. The galaxies span a range in Hubble type from SO to Sm. We have measured surface brightness profiles, and inverted these to estimate

  14. Revealing S0 Galaxies' Formation Histories Using the Stellar Kinematics of the Faint Outer Disks

    NARCIS (Netherlands)

    Cortesi, A.; Merrifield, M. R.; Noordermeer, E.; Coccato, L.; Bamford, S.; Napolitano, N. R.; Arnaboldi, M.; Gerhard, O.; Romanowsky, A. J.; Das, P.; Douglas, N. G.; Kuijken, K.; Freeman, K. C.; Capaccioli, M.; Debattista, Victor P.; Popescu, Cristina C.

    Lenticular galaxies display the prominent disks that are characteristic of late-type galaxies, but contain no gas, dust or star formation like early-type systems. So are they more closely related to spiral or ellipticals?. One important clue to their origin is recorded in the kinematics. If they are

  15. Ages of galaxy bulges and disks from optical and near-infrared colours

    NARCIS (Netherlands)

    Peletier, RF; Balcells, M; Bender, R; Davies, RL

    1996-01-01

    For a sample of bright nearby early-type galaxies we have obtained surface photometry in bands ranging from U to K. Since the galaxies have inclinations larger than 50 degrees it is easy to separate bulges and disks. By measuring the colours in special regions, we minimize the effects of extinction,

  16. Dark and luminous matter in the NGC 3992 group of galaxies - II. The dwarf companions UGC 6923, UGC 6940, UGC 6969, and the Tully-Fisher relation

    NARCIS (Netherlands)

    Bottema, R

    Detailed neutral hydrogen observations have been obtained of the large barred spiral galaxy NGC 3992 and its three small companion spiral galaxies, UGC 6923, UGC 6940, and UGC 6969. Contrary to the large galaxy, for the companions the Hi distribution ends quite abruptly at the optical edges.

  17. A SEARCH FOR DISK-GALAXY LENSES IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Feron, Chloe; Hjorth, Jens; Samsing, Johan; McKean, John P.

    2009-01-01

    We present the first automated spectroscopic search for disk-galaxy lenses, using the Sloan Digital Sky Survey (SDSS) database. We follow up eight gravitational lens candidates, selected among a sample of ∼40,000 candidate massive disk galaxies, using a combination of ground-based imaging and long-slit spectroscopy. We confirm two gravitational lens systems: one probable disk galaxy and one probable S0 galaxy. The remaining systems are four promising disk-galaxy lens candidates, as well as two probable gravitational lenses whose lens galaxy might be an S0 galaxy. The redshifts of the lenses are z lens ∼ 0.1. The redshift range of the background sources is z source ∼ 0.3-0.7. The systems presented here are (confirmed or candidate) galaxy-galaxy lensing systems, that is, systems where the multiple images are faint and extended, allowing an accurate determination of the lens galaxy mass and light distributions without contamination from the background galaxy. Moreover, the low redshift of the (confirmed or candidates) lens galaxies is favorable for measuring rotation points to complement the lensing study. We estimate the rest-frame total mass-to-light ratio within the Einstein radius for the two confirmed lenses: we find M tot /L I = 5.4 ± 1.5 within 3.9 ± 0.9 kpc for SDSS J081230.30+543650.9 and M tot /L I = 1.5 ± 0.9 within 1.4 ± 0.8 kpc for SDSS J145543.55+530441.2 (all in solar units). Hubble Space Telescope or adaptive optics imaging is needed to further study the systems.

  18. Sloshing in its cD halo: MUSE kinematics of the central galaxy NGC 3311 in the Hydra I cluster

    Science.gov (United States)

    Barbosa, C. E.; Arnaboldi, M.; Coccato, L.; Gerhard, O.; Mendes de Oliveira, C.; Hilker, M.; Richtler, T.

    2018-01-01

    Context. Early-type galaxies (ETGs) show a strong size evolution with redshift. This evolution is explained by fast "in-situ" star formation at high-z followed by a late mass assembly mostly driven by minor mergers that deposit stars primarily in the outer halo. Aims: We aim to identify the main structural components of the Hydra I cD galaxy NGC 3311 to investigate the connection between the central galaxy and the surrounding stellar halo. Methods: We produce maps of the line-of-sight velocity distribution (LOSVD) moments from a mosaic of MUSE pointings covering NGC 3311 out to 25 kpc. Combining deep photometric and spectroscopic data, we model the LOSVD maps using a finite mixture distribution, including four non-concentric components that are nearly isothermal spheroids, with different line-of-sight systemic velocities V, velocity dispersions σ, and small (constant) values of the higher order Gauss-Hermite moments h3 and h4. Results: The kinemetry analysis indicates that NGC 3311 is classified as a slow rotator, although the galaxy shows a line-of-sight velocity gradient along the photometric major axis. The comparison of the correlations between h3 and h4 with V/σ with simulated galaxies indicates that NGC 3311 assembled mainly through dry mergers. The σ profile rises to ≃ 400 km s-1 at 20 kpc, a significant fraction (0.55) of the Hydra I cluster velocity dispersion, indicating that stars there were stripped from progenitors orbiting in the cluster core. The finite mixture distribution modeling supports three inner components related to the central galaxy and a fourth component with large effective radius (51 kpc) and velocity dispersion (327 km s-1) consistent with a cD envelope. We find that the cD envelope is offset from the center of NGC 3311 both spatially (8.6 kpc) and in velocity (ΔV = 204 km s-1), but coincides with the cluster core X-ray isophotes and the mean velocity of core galaxies. Also, the envelope contributes to the broad wings of the

  19. Spectral Characteristics of Radiation from the Nucleus of the Seyfert Galaxy NGC 1275 After an Epoch of its Maximum Activity

    Science.gov (United States)

    Bikmaev, I. F.; Sharipova, L. M.; Galeev, A. I.; Akhmetkhanova, A. É.

    2016-03-01

    The spectral characteristics of radiation from the nucleus of the Seyfert galaxy NGC 1275 are studied on a long time scale. Changes in the profiles of some emission lines and changes in the relative intensities of hydrogen and forbidden lines and their equivalent widths (EWλ ) are demonstrated on a time scale of decades. These studies employed spectral data obtained with the 1.5-m Russian-Turkish telescope (RTT-150) during January 2012 and drew on spectral data published earlier in the literature. These results made it possible to trace the state of the nucleus of NGC 1275 after an activity maximum that occurred during the 1960's.

  20. Chemical characterisation of the globular cluster NGC 5634 associated to the Sagittarius dwarf spheroidal galaxy

    Science.gov (United States)

    Carretta, E.; Bragaglia, A.; Lucatello, S.; D'Orazi, V.; Gratton, R. G.; Donati, P.; Sollima, A.; Sneden, C.

    2017-04-01

    As part of our on-going project on the homogeneous chemical characterisation of multiple stellar populations in globular clusters (GCs), we studied NGC 5634, associated to the Sagittarius dwarf spheroidal galaxy, using high-resolution spectroscopy of red giant stars collected with VLT/FLAMES. We present here the radial velocity distribution of the 45 observed stars, 43 of which are cluster members, the detailed chemical abundance of 22 species for the seven stars observed with UVES-FLAMES, and the abundance of six elements for stars observed with GIRAFFE. On our homogeneous UVES metallicity scale, we derived a low-metallicity [Fe/H] =-1.867 ± 0.019 ± 0.065 dex (±statistical ±systematic error) with σ = 0.050 dex (7 stars). We found the normal anticorrelations between light elements (Na and O, Mg and Al), a signature of multiple populations typical of massive and old GCs. We confirm the associations of NGC 5634 to the Sgr dSph, from which the cluster was lost a few Gyr ago, on the basis of its velocity and position, and the abundance ratios of α and neutron capture elements. Based on observations collected at ESO telescopes under programme 093.B-0583.Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A118

  1. The Young Starburst Nucleus of the Wolf-Rayet LINER Galaxy NGC 6764

    Science.gov (United States)

    Schinnerer, E.; Eckart, A.; Boller, Th.

    2000-12-01

    Near-infrared (NIR) K-band imaging spectroscopy of the central 8" (1.3 kpc) in the Wolf-Rayet LINER galaxy NGC 6764 shows that the most recent star formation is most likely still unresolved at subarcsecond resolution (bar still transports gas down to radii close to the nucleus. This suggests that the massive star formation activity is directly competing with the AGN for the fuel. We also present the results of a 44 ks HRI ROSAT exposure. The HRI data show the presence of an X-ray source (probably an AGN) which varies by more than a factor of 2 over a timescale of 7 days. This implies the presence of a compact source with a discrete or at most 1000 AU source size. In addition, we find an extended X-ray component which looks similar to the radio continuum emission presented in published VLA maps. Both data sets confirm the composite nature of the center of NGC 6764: the presence of a compact AGN as well as recent violent nuclear star formation.

  2. ENERGY-DEPENDENT TIME LAGS IN THE SEYFERT 1 GALAXY NGC 4593

    International Nuclear Information System (INIS)

    Sriram, K.; Agrawal, V. K.; Rao, A. R.

    2009-01-01

    We investigate the energy-time lag dependence of the source NGC 4593 using XMM-Newton/EPIC pn data. We found that the time lag dependency is linear in nature with respect to the logarithm of different energy bands. We also investigate the frequency-dependent time lags and identify that at some frequency range (5 x 10 -5 Hz to 2 x 10 -4 Hz) the X-ray emission is highly coherent, mildly frequency dependent, and very strongly energy dependent. These observations can be explained in the framework of the thermal Comptonization process, and they indicate a truncated accretion disk very close to the black hole. We discuss the plausible spectral state to explain the phenomenon and conclude that the observed properties bear a close resemblance to the intermediate state or the steep power-law state, found in galactic black hole sources.

  3. Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    DEFF Research Database (Denmark)

    Vestergaard, Marianne; Peterson, B. M.

    2005-01-01

    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability...... of the optical Fe II emission is 50% - 75% that of Hbeta and the ultraviolet Fe II emission varies with an even larger amplitude than Hbeta. However, accurate measurement of the flux in these blends proves to be very difficult even using excellent Fe II templates to fit the spectra. We are able to constrain only...... weakly the optical Fe II emission-line response timescale to a value less than several weeks; this upper limit exceeds all the reliably measured emission-line lags in this source so it is not particularly meaningful. Nevertheless, the fact that the optical Fe II and continuum flux variations...

  4. Chandra Observations of the Evening Core of the Starburst Galaxy NGC 253

    Science.gov (United States)

    Weaver, K. A.; Heckman, T. M.; Dahlem, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Chandra observations of the core of the nearby starburst galaxy NGC 253 reveal a heavily absorbed source of hard X-rays embedded within the nuclear starburst region. The source has an unabsorbed, 2 to 10 keV luminosity of greater than or equal to 10(exp 39) erg per s and photoionizes the surrounding gas. We observe this source through a dusty torus with a neutral absorbing column density of N(sub eta) approximately 2 x 10(exp 23)cm (exp -2). The torus is hundreds of pc across and collimates the starburst-driven nuclear outflow. We suggest that the ionizing source is an intermediate-mass black hole or a weakly accreting supermassive black hole, which may signal the beginnings or endings of AGN (active galactic nuclei) activity.

  5. The Mass of the Black Hole in the Seyfert 1 Galaxy NGC 4593 from Reverberation Mapping

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Bentz, Misty C.; Peterson, Bradley M.

    2006-01-01

    We present new observations leading to an improved black hole mass estimate for the Seyfert 1 galaxy NGC 4593 as part of a reverberation-mapping campaign conducted at the MDM Observatory. Cross-correlation analysis of the H_beta emission-line light curve with the optical continuum light curve...... reveals an emission-line time delay of 3.73 (+-0.75) days. By combining this time delay with the H_beta line width, we derive a central black hole mass of M_BH = 9.8(+-2.1)x10^6 M_sun, an improvement in precision of a factor of several over past results....

  6. NGC 188, the age of the galactic disk, and the evolution of the Li abundance

    Energy Technology Data Exchange (ETDEWEB)

    Twarog, B.A.; Anthony-Twarog, B.J.

    1989-03-01

    The implications of an age for the open cluster NGC 188 only slightly larger than that of M67 are investigated. It is demonstrated that a differential and absolute comparison of the cluster color-magnitude diagrams leads to no inconsistencies if the reddening for NGC 188 is 0.09 mag larger than that for M67, while the apparent modulus of NGC 188 is 1.8 mag larger. Assuming E(B-V) = 0.03 and (m-M) = 9.7 for M67 results in an age of approximately 5 billion yr for M67 and 6.5 billion yr for NGC 188. The shift required by the differential reddening and distance modulus also removes the Li anomaly recently found by Hobbs and Pilachowski (1988) for NGC 188. If the metallicity of NGC 188 is significantly higher than that of M67, the required reddening differential would be smaller for the same age difference. A younger age for NGC 188 produces no inconsistencies with current theories of stellar and Galactic evolution, and may actually be more consistent than an age similar to the metal-rich globular cluster 47 Tucanae. 55 references.

  7. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind.

    Science.gov (United States)

    Bolatto, Alberto D; Warren, Steven R; Leroy, Adam K; Walter, Fabian; Veilleux, Sylvain; Ostriker, Eve C; Ott, Jürgen; Zwaan, Martin; Fisher, David B; Weiss, Axel; Rosolowsky, Erik; Hodge, Jacqueline

    2013-07-25

    The under-abundance of very massive galaxies in the Universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable, most of the expelled mass (that is, the total mass flowing out from the nuclear region) is likely to be in atomic and molecular phases that are cooler than the ionized phases. Expanding molecular shells observed in starburst systems such as NGC 253 (ref. 12) and M 82 (refs 13, 14) may facilitate the entrainment of molecular gas in the wind. Although shell properties are well constrained, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution better than 100 parsecs coupled with sensitivity to a wide range of spatial scales, a combination hitherto not available. Here we report observations of NGC 253, a nearby starburst galaxy (distance ∼ 3.4 megaparsecs) known to possess a wind, that trace the cool molecular wind at 50-parsec resolution. At this resolution, the extraplanar molecular gas closely tracks the Hα filaments, and it appears to be connected to expanding molecular shells located in the starburst region. These observations allow us to determine that the molecular outflow rate is greater than 3 solar masses per year and probably about 9 solar masses per year. This implies a ratio of mass-outflow rate to star-formation rate of at least 1, and probably ∼3, indicating that the starburst-driven wind limits the star-formation activity and the final stellar content.

  8. COMPARING X-RAY AND DYNAMICAL MASS PROFILES IN THE EARLY-TYPE GALAXY NGC 4636

    International Nuclear Information System (INIS)

    Johnson, Ria; Raychaudhury, Somak; Chakrabarty, Dalia; O'Sullivan, Ewan

    2009-01-01

    We present the results of an X-ray mass analysis of the early-type galaxy NGC 4636, using Chandra data. We have compared the X-ray mass density profile with that derived from a dynamical analysis of the system's globular clusters (GCs). Given the observed interaction between the central active galactic nucleus and the X-ray emitting gas in NGC 4636, we would expect to see a discrepancy in the masses recovered by the two methods. Such a discrepancy exists within the central ∼10 kpc, which we interpret as the result of non-thermal pressure support or a local inflow. However, over the radial range ∼10-30 kpc, the mass profiles agree within the 1σ errors, indicating that even in this highly disturbed system, agreement can be sought at an acceptable level of significance over intermediate radii, with both methods also indicating the need for a dark matter halo. However, at radii larger than 30 kpc, the X-ray mass exceeds the dynamical mass, by a factor of 4-5 at the largest disagreement. A Fully Bayesian Significance Test finds no statistical reason to reject our assumption of velocity isotropy, and an analysis of X-ray mass profiles in different directions from the galaxy center suggests that local disturbances at large radius are not the cause of the discrepancy. We instead attribute the discrepancy to the paucity of GC kinematics at large radius, coupled with not knowing the overall state of the gas at the radius where we are reaching the group regime (>30 kpc), or a combination of the two.

  9. The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr; Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States); Abramson, Louis E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles CA 90095-1547 (United States); Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Poggianti, Bianca M. [INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta [School of Physics, The University of Melbourne, VIC 3010 (Australia)

    2017-07-20

    We reexamine the properties of local galaxy populations using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below that of the so-called “main sequence” of star formation versus mass. We find an unexpectedly large population of quiescent galaxies with star formation rates intermediate between the main sequence and passive populations and with disproportionately high star formation rates. We demonstrate that a tight main sequence is a natural outcome of most histories of star formation and has little astrophysical significance but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff of gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for star formation probably set by disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion and the end of star formation requires another process, probably wind-driven mass loss. The environmental dependence of the three galaxy populations is consistent with recent numerical modeling, which indicates that cold gas inflows into galaxies are truncated at earlier epochs in denser environments.

  10. Globular clusters as tracers of stellar bimodality in elliptical galaxies: the case of NGC 1399

    Science.gov (United States)

    Forte, Juan C.; Faifer, Favio; Geisler, Doug

    2005-02-01

    Globular cluster systems (GCSs) frequently show a bimodal distribution of cluster integrated colours. This work explores the arguments to support the idea that the same feature is shared by the diffuse stellar population of the galaxy they are associated with. The particular case of NGC 1399, one of the dominant central galaxies in the Fornax cluster, for which a new B surface brightness profile and (B-RKC) colours are presented, is discussed taking advantage of a recently published wide-field study of its GCS. The results show that the galaxy brightness profile and colour gradient, as well as the behaviour of the cumulative globular cluster specific frequency, are compatible with the presence of two dominant stellar populations, associated with the so-called `blue' and `red' globular cluster families. These globular families are characterized by different intrinsic specific frequencies (defined in terms of each stellar population): Sn= 3.3 +/- 0.3 in the case of the red globulars and Sn= 14.3 +/- 2.5 for the blue ones. We stress that this result does not necessarily conflict with recent works that point out a clear difference between the metallicity distribution of (resolved) halo stars and globulars when comparing their number statistics. The region within 0.5arcmin of the centre shows a deviation from the model profile (in both surface brightness and colour) that may be explained in terms of the presence of a bulge-like high-metallicity component. Otherwise, the model gives an excellent fit up to 12arcmin (or 66.5Kpc) from the centre, the galactocentric limit of our blue brightness profile. The inferred specific frequencies imply that, in terms of their associated stellar populations, the formation of the blue globulars took place with an efficiency about six times higher than that corresponding to their red counterparts. The similarity of the spatial distribution of the blue globulars with that inferred for dark matter, as well as with that of the X

  11. DWARFS GOBBLING DWARFS: A STELLAR TIDAL STREAM AROUND NGC 4449 AND HIERARCHICAL GALAXY FORMATION ON SMALL SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Delgado, David; Rix, Hans-Walter; Maccio, Andrea V. [Max-Planck-Institut fuer Astronomy, Heidelberg (Germany); Romanowsky, Aaron J.; Arnold, Jacob A.; Brodie, Jean P. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Jay Gabany, R. [Black Bird Observatory, Mayhill, New Mexico (United States); Annibali, Francesca [Osservatorio Astronomico di Bologna, INAF, Via Ranzani 1, I-40127 Bologna (Italy); Fliri, Juergen [LERMA, CNRS UMR 8112, Observatoire de Paris, 61 Avenue de l' Observatoire, F-75014 Paris (France); Zibetti, Stefano [Dark Cosmology Centre, Niels Bohr Institute-University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Van der Marel, Roeland P.; Aloisi, Alessandra [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Chonis, Taylor S. [Department of Astronomy, University of Texas at Austin, Texas (United States); Carballo-Bello, Julio A. [Instituto de Astrofisica de Canarias, Tenerife (Spain); Gallego-Laborda, J. [Fosca Nit Observatory, Montsec Astronomical Park, Ager (Spain); Merrifield, Michael R. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2012-04-01

    A candidate diffuse stellar substructure was previously reported in the halo of the nearby dwarf starburst galaxy NGC 4449 by Karachentsev et al. We map and analyze this feature using a unique combination of deep integrated-light images from the BlackBird 0.5 m telescope, and high-resolution wide-field images from the 8 m Subaru Telescope, which resolve the nebulosity into a stream of red giant branch stars, and confirm its physical association with NGC 4449. The properties of the stream imply a massive dwarf spheroidal progenitor, which after complete disruption will deposit an amount of stellar mass that is comparable to the existing stellar halo of the main galaxy. The stellar mass ratio between the two galaxies is {approx}1:50, while the indirectly measured dynamical mass ratio, when including dark matter, may be {approx}1:10-1:5. This system may thus represent a 'stealth' merger, where an infalling satellite galaxy is nearly undetectable by conventional means, yet has a substantial dynamical influence on its host galaxy. This singular discovery also suggests that satellite accretion can play a significant role in building up the stellar halos of low-mass galaxies, and possibly in triggering their starbursts.

  12. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  13. The power spectra of non-circular motions in disk galaxies

    Science.gov (United States)

    Westfall, Kyle; Laws, Anna S. E.; MaNGA Team

    2016-01-01

    Using data from the first year of the SDSS-IV/MaNGA survey, we present a preliminary study of the amplitude of non-circular motions in a sample of disk galaxies. We select galaxies that have either a visual classification as a spiral galaxy by the Galaxy Zoo project (Lintott et al. 2011) and/or a measured Sersic index of less than 2.5 from the NASA-Sloan Atlas (nsatlas.org). We also remove high-inclination systems by selecting galaxies with isophotal ellipticity measurements of less than 0.6, implying an inclination of less than 65 degrees. For each galaxy, we fit a tilted-disk model to the observed line-of-sight velocities (Andersen & Bershady 2013). The geometric projection of the circularly rotating disk is simultaneously fit to both the ionized-gas (H-alpha) and stellar kinematics, whereas the rotation curves of the two dynamical tracers are allowed to be independent. We deproject the residuals of the velocity-field fit to the disk-plane polar coordinates and select a radial region that is fully covered in aziumuth, yet not undersampled by the on-sky spaxel. Similar to the approach taken by Bovy et al. (2015) for the Milky Way, we then compute the two-dimensional power spectrum of this velocity-residual map, which provides the amplitude of non-circular motions at all modes probed by the data. Our preliminary analysis reveals disk-plane non-circular motions in both the stars and ionized-gas with typical peak amplitudes of approximately 20 km/s. Additionally, our initial findings appear to demonstrate that non-circular motions in barred galaxies are stronger in the ionized gas than in the stars, a trend not seen in unbarred galaxies.

  14. Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT*

    Directory of Open Access Journals (Sweden)

    Cody Ann Marie

    2014-01-01

    Full Text Available Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 (“CSI 2264”– a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway.

  15. Total and Gas Flow Activity of the Seyfert Galaxy NGC3227 Nucleus for its Different Evolutionary Epochs

    Science.gov (United States)

    Bikmaev, I. F.; Pronik, I. I.; Sharipova, L. M.

    A comparative analysis of time variations of spectral characteristics of the Seyfert galaxy NGC 3227 nucleus: equivalent widths (EW γ), relative intensities, the width of the Balmer line profiles was carried out. Spectral data obtained in April 2009 with the 1.5-m Russian-Turkish telescope (RTT-150) and data published in the literature were used. Results of the comparative analysis showed the weakening of total activity and, consequently, gas flow activity of the galaxy nucleus in the time interval of more than 30 years.

  16. The Araucaria Project. The Distance to the Sculptor Group Galaxy NGC 7793 from Near-infrared Photometry of Cepheid Variables

    Energy Technology Data Exchange (ETDEWEB)

    Zgirski, Bartlomiej; Pietrzyński, Grzegorz; Wielgorski, Piotr; Narloch, Weronika; Graczyk, Dariusz [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw (Poland); Gieren, Wolfgang; Gorski, Marek [Universidad de Concepcion, Departamento de Astronomia, Casilla 160-C, Concepcion (Chile); Karczmarek, Paulina [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warsaw (Poland); Kudritzki, Rolf-Peter; Bresolin, Fabio, E-mail: bzgirski@camk.edu.pl, E-mail: pietrzyn@camk.edu.pl, E-mail: pwielgor@camk.edu.pl, E-mail: wnarloch@camk.edu.pl, E-mail: darek@astro-udec.cl, E-mail: mgorski@astrouw.edu.pl, E-mail: wgieren@astro-udec.cl, E-mail: pkarczmarek@astrouw.edu.pl, E-mail: kud@ifa.hawaii.edu, E-mail: bresolin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Drive, Honolulu HI 96822 (United States)

    2017-10-01

    Following the earlier discovery of classical Cepheid variables in the Sculptor Group spiral galaxy NGC 7793 from an optical wide-field imaging survey, we have performed deep near-infrared J - and K -band follow-up photometry of a subsample of these Cepheids to derive the distance to this galaxy with a higher accuracy than what was possible from optical photometry alone, by minimizing the effects of reddening and metallicity on the distance result. Combining our new near-infrared period–luminosity relations with previous optical photometry, we obtain a true distance modulus to NGC 7793 of (27.66 ± 0.04) mag (statistical) ±0.07 mag (systematic), i.e., a distance of (3.40 ± 0.17) Mpc. We also determine the mean reddening affecting the Cepheids to be E(B − V) = (0.08 ± 0.02) mag, demonstrating that there is significant dust extinction intrinsic to the galaxy in addition to the small foreground extinction. A comparison of the new, improved Cepheid distance to earlier distance determinations of NGC 7793 from the Tully–Fisher and TRGB methods is in agreement within the reported uncertainties of these previous measurements.

  17. The Araucaria Project. The Distance to the Sculptor Group Galaxy NGC 7793 from Near-infrared Photometry of Cepheid Variables

    Science.gov (United States)

    Zgirski, Bartlomiej; Gieren, Wolfgang; Pietrzyński, Grzegorz; Karczmarek, Paulina; Gorski, Marek; Wielgorski, Piotr; Narloch, Weronika; Graczyk, Dariusz; Kudritzki, Rolf-Peter; Bresolin, Fabio

    2017-10-01

    Following the earlier discovery of classical Cepheid variables in the Sculptor Group spiral galaxy NGC 7793 from an optical wide-field imaging survey, we have performed deep near-infrared J- and K-band follow-up photometry of a subsample of these Cepheids to derive the distance to this galaxy with a higher accuracy than what was possible from optical photometry alone, by minimizing the effects of reddening and metallicity on the distance result. Combining our new near-infrared period-luminosity relations with previous optical photometry, we obtain a true distance modulus to NGC 7793 of (27.66 ± 0.04) mag (statistical) ±0.07 mag (systematic), I.e., a distance of (3.40 ± 0.17) Mpc. We also determine the mean reddening affecting the Cepheids to be E(B - V) = (0.08 ± 0.02) mag, demonstrating that there is significant dust extinction intrinsic to the galaxy in addition to the small foreground extinction. A comparison of the new, improved Cepheid distance to earlier distance determinations of NGC 7793 from the Tully-Fisher and TRGB methods is in agreement within the reported uncertainties of these previous measurements.

  18. Radial Profiles of Star Formation in the Far Outer Regions of Galaxy Disks

    OpenAIRE

    Elmegreen, Bruce G.; Hunter, Deidre A.

    2005-01-01

    Star formation in galaxies is triggered by a combination of processes, including gravitational instabilities, spiral wave shocks, stellar compression, and turbulence compression. Some of these persist in the far outer regions where the column density is far below the threshold for instabilities, making the outer disk cutoff somewhat gradual. We show that in a galaxy with a single exponential gas profile the star formation rate can have a double exponential with a shallow one in the inner part...

  19. CO excitation in the Seyfert galaxy NGC 34: stars, shock or AGN driven?

    Science.gov (United States)

    Mingozzi, M.; Vallini, L.; Pozzi, F.; Vignali, C.; Mignano, A.; Gruppioni, C.; Talia, M.; Cimatti, A.; Cresci, G.; Massardi, M.

    2018-03-01

    We present a detailed analysis of the X-ray and molecular gas emission in the nearby galaxy NGC 34, to constrain the properties of molecular gas, and assess whether, and to what extent, the radiation produced by the accretion on to the central black hole affects the CO line emission. We analyse the CO spectral line energy distribution (SLED) as resulting mainly from Herschel and ALMA data, along with X-ray data from NuSTAR and XMM-Newton. The X-ray data analysis suggests the presence of a heavily obscured active galactic nucleus (AGN) with an intrinsic luminosity of L1-100 keV ≃ 4.0 × 1042 erg s-1. ALMA high-resolution data (θ ≃ 0.2 arcsec) allow us to scan the nuclear region down to a spatial scale of ≈100 pc for the CO(6-5) transition. We model the observed SLED using photodissociation region (PDR), X-ray-dominated region (XDR), and shock models, finding that a combination of a PDR and an XDR provides the best fit to the observations. The PDR component, characterized by gas density log(n/cm-3) = 2.5 and temperature T = 30 K, reproduces the low-J CO line luminosities. The XDR is instead characterized by a denser and warmer gas (log(n/cm-3) = 4.5, T = 65 K), and is necessary to fit the high-J transitions. The addition of a third component to account for the presence of shocks has been also tested but does not improve the fit of the CO SLED. We conclude that the AGN contribution is significant in heating the molecular gas in NGC 34.

  20. The complex radio and X-ray structure in the nuclear regions of the active galaxy NGC 1365

    Science.gov (United States)

    Stevens, Ian R.; Forbes, Duncan A.; Norris, Ray P.

    1999-06-01

    We present a multiwavelength analysis of the prominent active galaxy NGC 1365, in particular looking at the radio and X-ray properties of the central regions of the galaxy. We analyse ROSAT (PSPC and HRI) observations of NGC 1365, and discuss recent ASCA results. In addition to a number of point sources in the vicinity of NGC 1365, we find a region of extended X-ray emission extending along the central bar of the galaxy, combined with an emission peak near the centre of the galaxy. This central X-ray emission is centred on the optical/radio nucleus, but is spatially extended. The X-ray spectrum can be well fitted by a thermal plasma model, with a temperature of kT=0.6-0.8 keV and a very low local absorbing column. The thermal spectrum is suggestive of starburst emission rather than emission from a central black hole. The ATCA radio observations show a number of hotspots, located in a ring around a weak radio nucleus. Synchrotron emission from electrons accelerated by supernovae and supernova remnants (SNRs) is the likely origin of these hotspots. The radio nucleus has a steep spectrum, indicative perhaps of an active galactic nucleus (AGN) or SNRs. The evidence for a jet emanating from the nucleus (as has been previously claimed) is at best marginal. The extent of the radio ring is comparable to that of the extended central X-ray source. We discuss the nature of the central activity in NGC 1365 in the light of these observations. The extended X-ray emission and the thermal spectra strongly suggest that at soft X-ray energies we are not seeing emission predominantly from a central black hole, although the presence of Fe K line emission at higher energies does suggest the presence of an AGN. Consequently, a black hole is probably not the dominant contributor to the energetics of the central regions of NGC 1365 at radio, optical or soft X-ray wavelengths. Activity associated with a starburst is likely the dominant explanation for the observed properties of NGC 1365.

  1. Dearth of dark matter or massive dark halo? Mass-shape-anisotropy degeneracies revealed by NMAGIC dynamical models of the elliptical galaxy NGC 3379

    NARCIS (Netherlands)

    De Lorenzi, F.; Gerhard, O.; Coccato, L.; Arnaboldi, M.; Capaccioli, M.; Douglas, N. G.; Freeman, K. C.; Kuijken, K.; Merrifield, M. R.; Napolitano, N. R.; Noordermeer, E.; Romanowsky, A. J.; Debattista, V. P.

    2009-01-01

    Recent results from the Planetary Nebula Spectrograph (PNS) survey have revealed a rapidly falling velocity dispersion profile in the nearby elliptical galaxy NGC 3379, casting doubts on whether this intermediate-luminosity galaxy has the kind of dark matter (DM) halo expected in A cold dark matter

  2. The Elaboration of Disk in Spiral Galaxies: Analyses of their Progenitors, 6 Gyrs Ago

    Science.gov (United States)

    Hammer, F.; Images Team

    2010-10-01

    The Large program (Intermediate MAss Galaxy Evolution Sequence, IMAGES) aims at measuring the velocity fields of a representative sample of 100 massive galaxies at z=0.4-0.75, taken from the CDFS, the CFRS and the HDFS fields. It uses the unique mode of multiple integral field units of FLAMES/GIRAFFE at VLT. The resolved kinematics data allow to sample the large scale motions at few kpc scale for each individual galaxy. They have been combined with the deepest HST/ACS, Spitzer (MIPS and IRAC) and VLT/FORS2 ever achieved observations. Most intermediate redshift galaxies show anomalous velocity fields implying that, 6 Gyrs ago, half of the present day spirals were out of equilibrium and have peculiar morphologies. The wealth of data in these fields allows to modelize the physical processes in each galaxy with an accuracy almost similar to what is done in the local Universe. These detailed analyses reveal the importance of merger processes, including their remnant phases. It points out the importance of disk survival and it supports the disk rebuilding scenario, suggesting that the hierarchical scenario may apply to the elaboration of disk galaxies as well as it does for ellipticals.

  3. Forming Disk Galaxies in Wet Major Mergers. I. Three Fiducial Examples

    Science.gov (United States)

    Athanassoula, E.; Rodionov, S. A.; Peschken, N.; Lambert, J. C.

    2016-04-01

    Using three fiducial N-body+SPH simulations, we follow the merging of two disk galaxies that each have a hot gaseous halo component, and examine whether the merger remnant can be a spiral galaxy. The stellar progenitor disks are destroyed by violent relaxation during the merging and most of their stars form a classical bulge, while the remaining stars, as well as stars born during the merging times, form a thick disk and its bar. A new stellar disk forms subsequently and gradually in the remnant from the gas accreted mainly from the halo. It is vertically thin and well extended in its equatorial plane. A bar starts forming before the disk is fully in place, which is contrary to what is assumed in idealized simulations of isolated bar-forming galaxies, and has morphological features such as ansae and boxy/peanut bulges. Stars of different ages populate different parts of the box/peanut. A disky pseudobulge also forms, so that by the end of the simulation all three types of bulges coexist. The oldest stars are found in the classical bulge, followed by those of the thick disk, then by those in the thin disk. The youngest stars are in the spiral arms and the disky pseudobulge. The disk surface density profiles are of type II (exponential with downbending); the circular velocity curves are flat and show that the disks are submaximum in these examples: two clearly so and one near-borderline between maximum and submaximum. On average, only roughly between 10% and 20% of the stellar mass is in the classical bulge of the final models, I.e., much less than in previous simulations.

  4. Hubble Space Telescope Pixel Analysis of the Interacting Face-on Spiral Galaxy NGC 5194 (M51A)

    Science.gov (United States)

    Lee, Joon Hyeop; Kim, Sang Chul; Park, Hong Soo; Ree, Chang Hee; Kyeong, Jaemann; Chung, Jiwon

    2011-10-01

    A pixel analysis is carried out on the interacting face-on spiral galaxy NGC 5194 (M51A), using the Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) images in the F435W, F555W, and F814W (BVI) bands. After 4 × 4 binning of the HST/ACS images to secure a sufficient signal-to-noise ratio for each pixel, we derive several quantities describing the pixel color-magnitude diagram (pCMD) of NGC 5194: blue/red color cut, red pixel sequence parameters, blue pixel sequence parameters, and blue-to-red pixel ratio. The red sequence pixels are mostly older than 1 Gyr, while the blue sequence pixels are mostly younger than 1 Gyr, in their luminosity-weighted mean stellar ages. The color variation in the red pixel sequence from V = 20 mag arcsec-2 to V = 17 mag arcsec-2 corresponds to a metallicity variation of Δ[Fe/H] ~2 or an optical depth variation of Δτ V ~ 4 by dust, but the actual sequence is thought to originate from the combination of those two effects. At V compressing process by spiral density waves: dense dust → newly formed stars. The tidal interaction between NGC 5194 and NGC 5195 appears to enhance the star formation at the tidal bridge connecting the two galaxies. We find that the pixels corresponding to the central active galactic nucleus (AGN) area of NGC 5194 show a tight sequence at the bright-end of the pCMD, which are in the region of R ~ 100 pc and may be a photometric indicator of AGN properties.

  5. Chandra Reveals Heavy Obscuration and Circumnuclear Star Formation in Seyfert 2 Galaxy NGC 4968

    Science.gov (United States)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Levenson, N. A.; Boorman, Peter; Heckman, Timothy M.; Gandhi, Poshak; Rigby, Jane R.; Urry, C. Megan; Ptak, Andrew F.

    2017-01-01

    We present the Chandra imaging and spectral analysis of NGC 4968, a nearby (z = 0.00986) Seyfert 2 galaxy. We discover extended (approx. 1 kpc) X-ray emission in the soft band (0.5-2 keV) that is neither coincident with the narrow line region nor the extended radio emission. Based on spectral modeling, it is linked to on-going star formation [approx. 2.6-4 Mass compared to Earth yr(exp.- 1)]. The soft emission at circumnuclear scales (inner approx. 400 pc) originates from hot gas, with kT approx. 0.7 keV, while the most extended thermal emission is cooler (kT approx. 0.3 keV). We refine previous measurements of the extreme Fe K alpha equivalent width in this source (EW 2.5 + 2.6/-1.0 keV), which suggests the central engine is completely embedded within Compton-thick levels of obscuration. Using physically motivated models fit to the Chandra spectrum, we derive a Compton-thick column density [N(sub H) is greater than 1.25× 10(exp 24) cm(exp.- 2)] and an intrinsic hard (2-10 keV) X-ray luminosity of approx. 3-8× 10(exp. 42) erg s(exp. - 1) (depending on the presumed geometry of the obscurer), which is over two orders of magnitude larger than that observed. The large Fe K Alpha EW suggests a spherical covering geometry, which could be confirmed with X-ray measurements above 10 keV. NGC 4968 is similar to other active galaxies that exhibit extreme Fe K Alpha EWs (i.e., greater than 2 keV) in that they also contain on-going star formation. This work supports the idea that gas associated with nuclear star formation may increase the covering factor of the enshrouding gas and play a role in obscuring active galactic nuclei.

  6. PROBING THE X-RAY BINARY POPULATIONS OF THE RING GALAXY NGC 1291

    International Nuclear Information System (INIS)

    Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D.-W.; Wang Junfeng; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Zezas, A.

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are ≈40% of the bulge sources and ≈25% of the ring sources showing >3σ long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (≈75%) and ring (≈65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity active galactic nucleus (AGN) with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of ≈1.5 × 10 37 and ≈2.2 × 10 37 erg s –1 for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291, which suggests that the observed combined XLF is dominated by an old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative overdensity of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.

  7. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    Science.gov (United States)

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  8. A distinctive disk-jet coupling in the Seyfert-1 active galactic nucleus NGC 4051

    NARCIS (Netherlands)

    King, A.L.; Miller, J.M.; Cackett, E.M.; Fabian, A.C.; Markoff, S.; Nowak, M.A.; Rupen, M.; Gültekin, K.; Reynolds, M.T.

    2011-01-01

    We report on the results of a simultaneous monitoring campaign employing eight Chandra X-ray (0.5-10 keV) and six Very Large Array/Extended Very Large Array (8.4 GHz) radio observations of NGC 4051 over seven months. Evidence for compact jets is observed in the 8.4 GHz radio band; this builds on

  9. ACCRETION-DRIVEN TURBULENCE AND THE TRANSITION TO GLOBAL INSTABILITY IN YOUNG GALAXY DISKS

    International Nuclear Information System (INIS)

    Elmegreen, Bruce G.; Burkert, Andreas

    2010-01-01

    A simple model of gas accretion in young galaxy disks suggests that fast turbulent motions can be driven by accretion energy for a time t acc ∼ 2(ε 0.5 GM 2 /ξV 3 ) 0.5 where ε is the fraction of the accretion energy going into disk turbulence, M and V are the galaxy mass and rotation speed, and ξ is the accretion rate. After t acc , accretion is replaced by disk instabilities as a source of turbulence driving, and shortly after that, energetic feedback by young stars should become important. The star formation rate equilibrates at the accretion rate after 1 to 2 t acc , depending on the star formation efficiency per dynamical time. The fast turbulence that is observed in high-redshift starburst disks is not likely to be driven by accretion because the initial t acc phase is over by the time the starburst is present. However, the high turbulent speeds that must have been present earlier, when the observed massive clumps first formed, could have been driven by accretion energy. The combined observations of a high relative velocity dispersion in the gas of z ∼ 2 clumpy galaxies and a gas mass comparable to the stellar mass suggest that either the star formation efficiency is fairly high, perhaps 10x higher than in local galaxies, or the observed turbulence is powered by young stars.

  10. The DiskMass Survey. X. Radio synthesis imaging of spiral galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Bershady, Matthew A.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.

    2016-01-01

    We present results from 21 cm radio synthesis imaging of 28 spiral galaxies from the DiskMass Survey obtained with the VLA, WSRT, and GMRT facilities. We detail the observations and data reduction procedures and present a brief analysis of the radio data. We construct 21 cm continuum images, global

  11. Kinematic modelling of disk galaxies - I. A new method to fit tilted rings to data cubes

    NARCIS (Netherlands)

    Jozsa, G. I. G.; Kenn, F.; Klein, U.; Oosterloo, T. A.

    This is the first of a series of papers in which the kinematics of disk galaxies over a range of scales is scrutinised by employing spectroscopy. A fundamental aspect of these studies is presented here: the new publicly available software tool TiRiFiC (http://www.astro.uni-bonn.de/(similar to)

  12. Ages of galaxy bulges and disks from optical and near-infrared colors

    NARCIS (Netherlands)

    Peletier, RF; Balcells, M

    We compare optical and near-infrared colors of disks and bulges in a diameter-limited sample of inclined, bright, nearby, early-type spirals. Color profiles along wedge apertures at 15 degrees from the major axis and on the minor axis on the side of the galaxy opposite to the dust lane are used to

  13. A state-of-the-art analysis of the dwarf irregular galaxy NGC 6822

    Science.gov (United States)

    Fusco, F.; Buonanno, R.; Hidalgo, S. L.; Aparicio, A.; Pietrinferni, A.; Bono, G.; Monelli, M.; Cassisi, S.

    2014-12-01

    We present a detailed photometric study of the dwarf irregular galaxy NGC 6822 aimed at investigating the properties of its stellar populations and, in particular, the presence of stellar radial gradients. Our goal is to analyse the stellar populations in six fields, which cover the whole bar of this dwarf galaxy. We derived the quantitative star formation history (SFH) of the six fields using the IAC method, involving IAC-pop/MinnIAC codes. The solutions we derived show an enhanced star formation rate (SFR) in Fields 1 and 3 during the past 500 Myr. The SFRs of the other fields are almost extinguished at very recent epochs and. We study the radial gradients of the SFR and consider the total mass converted into stars in two time intervals (between 0 and 0.5 Gyr ago and between 0.5 and 13.5 Gyr ago). We find that the scale lengths of the young and intermediate-to-old populations are perfectly compatible, with the exception of the young populations in Fields 1 and 3. The recent SF in these two fields is greater than in the other ones. This might be an indication that in these two fields we are sampling incipient spiral arms. Further evidence and new observations are required to prove this hypothesis. In addition, we derived the age-metallicity relations. As expected, the metallicity increases with time for all of the fields. We do not observe any radial gradient in the metallicity. Based on observations collected with the ACS on board the NASA/ESA HST.The photometric catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A26

  14. Spatially resolving a starburst galaxy at hard X-ray energies: NuSTAR, CHANDRA, AND VLBA observations of NGC 253

    DEFF Research Database (Denmark)

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.

    2014-01-01

    for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and Very Long Baseline Array monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within...... 253 is typical of starburst galaxies at higher redshift, their contribution to the E > 10 keV cosmic X-ray background is...

  15. Spatially-resolved SFR in nearby disk galaxies using IFS data

    Science.gov (United States)

    Catalán-Torrecilla, C.; Gil de Paz, A.; Castillo-Morales, A.; Méndez-Abreu, J.; Pascual, S.; Ruiz-Lara, T.; de Lorenzo-Cáceres, A.; Sánchez-Menguiano, L.

    2017-03-01

    Exploring the spatial distribution of the star formation rate (SFR) in nearby galaxies is essential to understand their evolution through cosmic time. With this aim in mind, we use a representative sample that contains a variety of morphological types, the CALIFA Integral Field Spectroscopy (IFS) sample. Previous to this work, we have verified that our extinction-corrected Hα measurements successfully reproduce the values derived from other SFR tracers such as Hα obs + IR or UV obs + IR (Catalán-Torrecilla et al. 2015). Now, we go one step further applying 2-dimensional photometric decompositions (Méndez-Abreu et al. (2008), Méndez-Abreu et al. (2014)) over these datacubes. This method allows us to obtain the amount of SFR in the central part (bulge or nuclear source), the bar and the disk, separately. First, we determine the light coming from each component as the ratio between the luminosity in every component (bulge, bar or disk) and the total luminosity of the galaxy. Then, for each galaxy we multiply the IFS datacubes by these previous factors to recover the luminosity in each component. Finally, we derive the spectrum associated to each galaxy component integrating the spatial information in the weighted datacube using an elliptical aperture covering the whole galaxy. 2D photometric decomposition applied over 3D datacubes will give us a more detailed understanding of the role that disks play in more massive galaxies. Knowing if the disks in more massive SF galaxies have on average a lower or higher level of star formation activity and how these results are affected by the presence of nuclear bars are still open questions that we can now solve. We describe the behavior of these components in the SFR vs. stellar mass diagram. In particular, we highlight the role of the disks and their contribution to both the integrated SFR for the whole galaxy and the SFR in the disk at different stellar masses in the SFR vs. stellar mass diagram together with their

  16. Multi-wavelength study of the Seyfert 1 galaxy NGC 3783 with XMM-Newton

    CERN Document Server

    Blustin, A J; Behar, E; Kaastra, J S; Kahn, S M; Page, M J; Sako, M; Steenbrugge, K C

    2002-01-01

    We present the analysis of multi-wavelength XMM-Newton data from the Seyfert galaxy NGC 3783, including UV imaging, X-ray and UV lightcurves, the 0.2-10 keV X-ray continuum, the iron K-alpha emission line, and high-resolution spectroscopy and modelling of the soft X-ray warm absorber. The 0.2-10 keV spectral continuum can be well reproduced by a power-law at higher energies; we detect a prominent Fe K-alpha emission line, with both broad and narrow components, and a weaker emission line at 6.9 keV which is probably a combination of Fe K-beta and Fe XXVI. We interpret the significant deficit of counts in the soft X-ray region as being due to absorption by ionised gas in the line of sight. This is demonstrated by the large number of narrow absorption lines in the RGS spectrum from iron, oxygen, nitrogen, carbon, neon, argon, magnesium, silicon and sulphur. The wide range of iron states present in the spectrum enables us to deduce the ionisation structure of the absorbing medium. We find that our spectrum contai...

  17. Probing the Hot X-Ray Corona around the Massive Spiral Galaxy, NGC 6753, Using Deep XMM-Newton Observations

    Science.gov (United States)

    Bogdán, Ákos; Bourdin, Hervé; Forman, William R.; Kraft, Ralph P.; Vogelsberger, Mark; Hernquist, Lars; Springel, Volker

    2017-11-01

    X-ray emitting gaseous coronae around massive galaxies are a basic prediction of galaxy formation models. Although the coronae around spiral galaxies offer a fundamental test of these models, observational constraints on their characteristics are still scarce. While the presence of extended hot coronae has been established around a handful of massive spiral galaxies, the short X-ray observations only allowed for measurements of the basic characteristics of the coronae. In this work, we utilize deep XMM-Newton observations of NGC 6753 to explore its extended X-ray corona in unprecedented detail. Specifically, we establish the isotropic morphology of the hot gas, suggesting that it resides in hydrostatic equilibrium. The temperature profile of the gas shows a decrease with an increasing radius: it drops from {kT}≈ 0.7 {keV} in the innermost parts to {kT}≈ 0.4 {keV} at a 50 kpc radius. The temperature map reveals the complex temperature structure of the gas. We study the metallicity distribution of the gas, which is uniform at Z≈ 0.1 Solar. This value is about an order of magnitude lower than that obtained for elliptical galaxies with similar dark matter halo mass, hinting that the hot gas in spiral galaxies predominantly originates from external gas inflows rather than from internal sources. By extrapolating the density profile of the hot gas out to the virial radius, we estimate the total gas mass and derive the total baryon mass of NGC 6753. We conclude that the baryon mass fraction is {f}{{b}}≈ 0.06, implying that about half of the baryons are missing.

  18. THE SPACE DENSITY OF EXTENDED ULTRAVIOLET (XUV) DISKS IN THE LOCAL UNIVERSE AND IMPLICATIONS FOR GAS ACCRETION ONTO GALAXIES

    International Nuclear Information System (INIS)

    Lemonias, Jenna J.; Schiminovich, David; Thilker, David; Bianchi, Luciana; Wyder, Ted K.; Martin, D. Christopher; Seibert, Mark; Madore, Barry F.; Treyer, Marie A.; Heckman, Timothy M.; Rich, R. Michael

    2011-01-01

    We present results of the first unbiased search for extended ultraviolet (XUV)-disk galaxies undertaken to determine the space density of such galaxies. Our sample contains 561 local (0.001 1.5 x 10 4 s) and Sloan Digital Sky Survey DR7 footprints. We explore modifications to the standard classification scheme for our sample that includes both disk- and bulge-dominated galaxies. Visual classification of each galaxy in the sample reveals an XUV-disk frequency of up to 20% for the most nearby portion of our sample. On average over the entire sample (out to z = 0.05) the frequency ranges from a hard limit of 4%-14%. The GALEX imaging allows us to detect XUV disks beyond 100 Mpc. The XUV regions around XUV-disk galaxies are consistently bluer than the main bodies. We find a surprisingly high frequency of XUV emission around luminous red (NUV-r > 5) and green valley (3 (1.5-4.2) x 10 -3 Mpc -3 . Using the XUV emission as an indicator of recent gas accretion, we estimate that the cold gas accretion rate onto these galaxies is >(1.7-4.6) x 10 -3 M sun Mpc -3 yr -1 . The number of XUV disks in the green valley and the estimated accretion rate onto such galaxies points to the intriguing possibility that 7%-18% of galaxies in this population are transitioning away from the red sequence.

  19. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.

    Science.gov (United States)

    Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M

    2006-08-17

    Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.

  20. KINEMATIC CLASSIFICATIONS OF LOCAL INTERACTING GALAXIES: IMPLICATIONS FOR THE MERGER/DISK CLASSIFICATIONS AT HIGH-z

    International Nuclear Information System (INIS)

    Hung, Chao-Ling; Larson, Kirsten L.; Sanders, D. B.; Rich, Jeffrey A.; Yuan, Tiantian; Kewley, Lisa J.; Casey, Caitlin M.; Smith, Howard A.; Hayward, Christopher C.

    2015-01-01

    The classification of galaxy mergers and isolated disks is key for understanding the relative importance of galaxy interactions and secular evolution during the assembly of galaxies. Galaxy kinematics as traced by emission lines have been used to suggest the existence of a significant population of high-z star-forming galaxies consistent with isolated rotating disks. However, recent studies have cautioned that post-coalescence mergers may also display disk-like kinematics. To further investigate the robustness of merger/disk classifications based on kinematic properties, we carry out a systematic classification of 24 local (U)LIRGs spanning a range of morphologies: from isolated spiral galaxies, ongoing interacting systems, to fully merged remnants. We artificially redshift the Wide Field Spectrograph observations of these local (U)LIRGs to z = 1.5 to make a realistic comparison with observations at high-z, and also to ensure that all galaxies have the same spatial sampling of ∼900 pc. Using both kinemetry-based and visual classifications, we find that the reliability of kinematic classification shows a strong trend with the interaction stage of galaxies. Mergers with two nuclei and tidal tails have the most distinct kinematics compared to isolated disks, whereas a significant population of the interacting disks and merger remnants are indistinguishable from isolated disks. The high fraction of mergers displaying disk-like kinematics reflects the complexity of the dynamics during galaxy interactions. Additional merger indicators such as morphological properties traced by stars or molecular gas are required to further constrain the merger/disk classifications at high-z

  1. Impact of magnetic fields on ram pressure stripping in disk galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Ruszkowski, M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Brüggen, M. [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Lee, D. [The Flash Center for Computational Science, The University of Chicago, 5747 South Ellis, Chicago, IL 60637 (United States); Shin, M.-S., E-mail: mateuszr@umich.edu [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom)

    2014-03-20

    Ram pressure stripping can remove significant amounts of gas from galaxies in clusters and massive groups and thus has a large impact on the evolution of cluster galaxies. Recent observations have shown that key properties of ram-pressure-stripped tails of galaxies, such as their width and structure, are in conflict with predictions by simulations. To increase the realism of existing simulations, we simulated for the first time a disk galaxy exposed to a uniformly magnetized wind including radiative cooling and self-gravity of the gas. We find that magnetic fields have a strong effect on the morphology of the gas in the tail of the galaxy. While in the purely hydrodynamical case the tail is very clumpy, the magnetohydrodynamical case shows very filamentary structures in the tail. The filaments can be strongly supported by magnetic pressure and, wherever this is the case, the magnetic fields vectors tend to be aligned with the filaments. The ram pressure stripping process may lead to the formation of magnetized density tails that appear as bifurcated in the plane of the sky and resemble the double tails observed in ESO 137-001 and ESO 137-002. Such tails can be formed under a variety of situations, both for the disks oriented face-on with respect to the intracluster medium (ICM) wind and for the tilted ones. While this bifurcation is the consequence of the generic tendency for the magnetic fields to produce very filamentary tail morphology, the tail properties are further shaped by the combination of the magnetic field orientation and the sliding of the field past the disk surface exposed to the wind. Despite the fact that the effect of the magnetic field on the morphology of the tail is strong, magnetic draping does not strongly change the rate of gas stripping. For a face-on galaxy, the field tends to reduce the amount of gas stripping compared to the pure hydrodynamical case, and is associated with the formation of a stable magnetic draping layer on the side of

  2. DISK GALAXY SCALING RELATIONS IN THE SFI++: INTRINSIC SCATTER AND APPLICATIONS

    International Nuclear Information System (INIS)

    Saintonge, Amelie; Spekkens, Kristine

    2011-01-01

    We study the scaling relations between the luminosities, sizes, and rotation velocities of disk galaxies in the SFI++, with a focus on the size-luminosity (RL) and size-rotation velocity (RV) relations. Using isophotal radii instead of disk scale lengths as a size indicator, we find relations that are significantly tighter than previously reported: the correlation coefficients of the template RL and RV relations are r = 0.97 and r= 0.85, respectively, which rival that of the more widely studied LV (Tully-Fisher) relation. The scatter in the SFI++ RL relation is 2.5-4 times smaller than previously reported for various samples, which we attribute to the reliability of isophotal radii relative to disk scale lengths. After carefully accounting for all measurement errors, our scaling relation error budgets are consistent with a constant intrinsic scatter in the LV and RV relations for velocity widths log W ∼> 2.4, with evidence for increasing intrinsic scatter below this threshold. The scatter in the RL relation is consistent with constant intrinsic scatter that is biased by incompleteness at the low-L end. Possible applications of the unprecedentedly tight SFI++ RV and RL relations are investigated. Just like the Tully-Fisher relation, the RV relation can be used as a distance indicator: we derive distances to galaxies with primary Cepheid distances that are accurate to 25%, and reverse the problem to measure a Hubble constant H 0 = 72 ± 7 km s -1 Mpc -1 . Combining the small intrinsic scatter of our RL relation (ε int = 0.034 ± 0.001log [h -1 kpc]) with a simple model for disk galaxy formation, we find an upper limit in the range of disk spin parameters that is a factor of ∼7 smaller than that of the halo spin parameters predicted by cosmological simulations. This likely implies that the halos hosting Sc galaxies have a much narrower distribution of spin parameters than previously thought.

  3. Imaging and spectroscopic observations of a strange elliptical bubble in the northern arm of the spiral galaxy NGC 6946

    OpenAIRE

    Efremov, Yuri N.; Moiseev, Alexei V.

    2016-01-01

    NGC 6946, known as the Fireworks galaxy because of its high supernova rate and high star formation, is embedded in a very extended HI halo. Its northern spiral arm is well detached from the galactic main body. We found that this arm contains a large (~300 pc in size) Red Ellipse, named according to a strong contamination of the H-alpha emission line on its optical images. The ellipse is accompanied by a short parallel arc and a few others still smaller and less regular; a bright star cluster ...

  4. THE RISE AND FALL OF PASSIVE DISK GALAXIES: MORPHOLOGICAL EVOLUTION ALONG THE RED SEQUENCE REVEALED BY COSMOS

    International Nuclear Information System (INIS)

    Bundy, Kevin; Hopkins, Philip; Ma, Chung-Pei; Scarlata, Claudia; Capak, Peter; Carollo, C. M.; Oesch, Pascal; Ellis, Richard S.; Salvato, Mara; Scoville, Nick; Drory, Niv; Leauthaud, Alexie; Koekemoer, Anton M.; Murray, Norman; Ilbert, Olivier; Pozzetti, Lucia

    2010-01-01

    The increasing abundance of passive 'red-sequence' galaxies since z ∼ 1-2 is mirrored by a coincident rise in the number of galaxies with spheroidal morphologies. In this paper, however, we show in detail, that, the correspondence between galaxy morphology and color is not perfect, providing insight into the physical origin of this evolution. Using the COSMOS survey, we study a significant population of red-sequence galaxies with disk-like morphologies. These passive disks typically have Sa-Sb morphological types with large bulges, but they are not confined to dense environments. They represent nearly one-half of all red-sequence galaxies and dominate at lower masses (∼ 10 M sun ) where they are increasingly disk-dominated. As a function of time, the abundance of passive disks with M * ∼ 11 M sun increases, but not as fast as red-sequence spheroidals in the same mass range. At higher mass, the passive disk population has declined since z ∼ 1, likely because they transform into spheroidals. Based on these trends, we estimate that as much as 60% of galaxies transitioning onto the red sequence evolve through a passive disk phase. The origin of passive disks therefore has broad implications for our understanding of how star formation shuts down. Because passive disks tend to be more bulge-dominated than their star-forming counterparts, a simple fading of blue disks does not fully explain their origin. We explore the strengths and weaknesses of several more sophisticated explanations, including environmental effects, internal stabilization, and disk regrowth during gas-rich mergers. While previous work has sought to explain color and morphological transformations with a single process, these observations open the way to new insight by highlighting the fact that galaxy evolution may actually proceed through several separate stages.

  5. Resolving the Disk-Halo Degeneracy using Planetary Nebulae

    Science.gov (United States)

    Aniyan, S.; Freeman, K. C.; Arnaboldi, M.; Gerhard, O.; Coccato, L.; Fabricius, M.; Kuijken, K.; Merrifield, M.

    2017-10-01

    The decomposition of the 21 cm rotation curve of galaxies into contribution from the disk and dark halo depends on the adopted mass to light ratio (M/L) of the disk. Given the vertical velocity dispersion (σ z ) of stars in the disk and its scale height (h z ), the disk surface density and hence the M/L can be estimated. Earlier works have used this technique to conclude that galaxy disks are submaximal. Here we address an important conceptual problem: star-forming spirals have an old (kinematically hot) disk population and a young cold disk population. Both of these populations contribute to the integrated light spectra from which σ z is measured. The measured scale height h z is for the old disk population. In the Jeans equation, σ z and h z must pertain to the same population. We have developed techniques to extract the velocity dispersion of the old disk from integrated light spectra and from samples of planetary nebulae. We present the analysis of the disk kinematics of the galaxy NGC 628 using IFU data in the inner regions and planetary nebulae as tracers in the outer regions of the disk. We demonstrate that using the scale height of the old thin disk with the vertical velocity dispersion of the same population, traced by PNe, results in a maximal disk for NGC 628. Our analysis concludes that previous studies underestimate the disk surface mass density by ~ 2, sufficient to make a maximal disk for NGC 628 appear like a submaximal disk.

  6. Internal Variations in Empirical Oxygen Abundances for Giant H II Regions in the Galaxy NGC 2403

    Science.gov (United States)

    Mao, Ye-Wei; Lin, Lin; Kong, Xu

    2018-02-01

    This paper presents a spectroscopic investigation of 11 {{H}} {{II}} regions in the nearby galaxy NGC 2403. The {{H}} {{II}} regions are observed with a long-slit spectrograph mounted on the 2.16 m telescope at XingLong station of National Astronomical Observatories of China. For each of the {{H}} {{II}} regions, spectra are extracted at different nebular radii along the slit-coverage. Oxygen abundances are empirically estimated from the strong-line indices R23, N2O2, O3N2, and N2 for each spectrophotometric unit, with both observation- and model-based calibrations adopted into the derivation. Radial profiles of these diversely estimated abundances are drawn for each nebula. In the results, the oxygen abundances separately estimated with the prescriptions on the basis of observations and models, albeit from the same spectral index, systematically deviate from each other; at the same time, the spectral indices R23 and N2O2 are distributed with flat profiles, whereas N2 and O3N2 exhibit apparent gradients with the nebular radius. Because our study naturally samples various ionization levels, which inherently decline at larger radii within individual {{H}} {{II}} regions, the radial distributions indicate not only the robustness of R23 and N2O2 against ionization variations but also the sensitivity of N2 and O3N2 to the ionization parameter. The results in this paper provide observational corroboration of the theoretical prediction about the deviation in the empirical abundance diagnostics. Our future work is planned to investigate metal-poor {{H}} {{II}} regions with measurable T e, in an attempt to recalibrate the strong-line indices and consequently disclose the cause of the discrepancies between the empirical oxygen abundances.

  7. Supercloud formation by nonaxisymmetric gravitational instabilities in sheared magnetic galaxy disks

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1987-01-01

    The gravitational stability of sheared perturbations in magnetic gas disks is investigated. Realistic shapes and amplitudes for the initial perturbations are considered. The magnetic field destabilizes the gas for all densities. The collapse is primarily along the mean field direction, and for a pressure-equilibrium field strength, the growth rate is similar to that for the nonrotating, nonmagnetic Jeans instability. The ambient interstellar medium in normal disk galaxies should spontaneously form low-density, 10 million solar mass cloud complexes on time scales of 100 million yr. 84 references

  8. Chandra Evidence of a Flattened, Triaxial Dark Matter Halo in the Elliptical Galaxy NGC 720

    Science.gov (United States)

    Buote, David A.; Jeltema, Tesla E.; Canizares, Claude R.; Garmire, Gordon P.

    2002-09-01

    We present an analysis of a Chandra ACIS-S observation of the elliptical galaxy NGC 720, to verify the existence of a dark matter halo and to measure its ellipticity. The ACIS-S3 image reveals over 60 point sources distributed throughout the field, most of which were undetected and therefore unaccounted for in previous X-ray studies. For semimajor axes a~150'' out to a=185'' (22.4h-170 kpc), which is near the edge of the S3 CCD, ɛX and P.A. diverge from their values at smaller a. Possible origins of this behavior at the largest a are discussed. Overall, the ellipticities and P.A. twist for aRomanowsky & Kochanek (which could not produce the abrupt P.A. twist in the ROSAT HRI data). Since the optical image displays no substantial isophote twisting, the X-ray P.A. twist requires a massive dark matter halo if the hot gas is in hydrostatic equilibrium. Furthermore, the values of ɛX obtained by Chandra are too large to be explained if the gravitating mass follows the optical light (M~L*), irrespective of the P.A. twist. The M~L* hypothesis is inconsistent with the Chandra ellipticities at the 96% confidence level, assuming oblate symmetry, and at the 98% confidence level for prolate symmetry. Thus, both the P.A. twist and the ellipticities of the Chandra image imply the existence of dark matter, independent of the temperature profile of the gas. This geometric evidence for dark matter cannot be explained by alternative gravity theories, such as the modification of Newtonian dynamics (MOND). To constrain the ellipticity of the dark matter halo, we considered both oblate and prolate spheroidal mass models to bracket the full range of (projected) ellipticities of a triaxial ellipsoid. The dark matter density model, ρ~(a2s+a2)-1, provides the best fit to the data and gives ellipticities and 1 σ errors of ɛ=0.37+/-0.03 for oblate and ɛ=0.36+/-0.02 for prolate models. Navarro-Frenk-White (NFW) and Hernquist models give similar ellipticities for the dark matter. These

  9. The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068

    Science.gov (United States)

    Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline

    2005-01-01

    We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance

  10. A comprehensive study of the spatially-resolved SFR in nearby disk galaxies using CALIFA IF data

    Science.gov (United States)

    Catalán-Torrecilla, C.; Gil de Paz, A.; Castillo-Morales, A.; Méndez-Abreu, J.; Califa Team

    2017-03-01

    A detailed analysis of the Star Formation Rate (SFR) distribution in nearby galaxies is essential to understand the mechanisms that drive the formation and evolution of galaxies. Although measurements of the integrated SFR in galaxies as a whole are also required to fulfill this goal, we focus here on the relative contribution of the SFR in the different components that shape galaxies (bulges, bars and disks). With this aim in mind, we combine for the first time in a large sample of nearby galaxies from the CALIFA survey, 2D multicomponent photometric decomposition with Integral Field Spectroscopy (IFS) data to enable measurements of the SFR in the different galaxy components. We find that not only more massive galaxies are being quenched more efficiently but also more massive disks tend to exhibit lower SFRs for a fixed value of their disk stellar masses in the SFR-M_* plane. We show that type-2 AGN host galaxies are mostly found in galaxies with the higher values of their stellar masses and that they contribute to decrease the specific SFR for bulges and disks, being this effect more important for the case of the bulges.

  11. Hydrostatic equilibrium of the gaseous disk of the galaxy and the extent of cosmic ray confinement

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Stephens, S.A.

    1975-01-01

    An analysis of the hydrostatic equilibrium of the galaxy in the direction perpendicular to the galactic plane has been carried out to determine the distribution of cosmic rays and the magnetic field, taking into account the role of the halo gas. It is found that the cosmic ray distribution is much wider than the gas distribution with thickness consistent with the thickness of the radio disk. (orig./BJ) [de

  12. THE RECENT STELLAR ARCHEOLOGY OF M31-THE NEAREST RED DISK GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Davidge, T. J.; McConnachie, A. W. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Fardal, M. A. [Department of Astronomy, University of Massachusetts, LGRT 619-E, Amherst, MA 01003-9305 (United States); Fliri, J.; Valls-Gabaud, D. [LERMA, UMR CNRS 8112, Observatoire de Paris, 61 Avenue de l' Observatoire, 75014 Paris (France); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Lewis, G. F. [Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW 2006 (Australia); Rich, R. M. [Division of Astronomy and Astrophysics, University of California, Los Angeles, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States)

    2012-05-20

    We examine the star-forming history of the M31 disk during the past few hundred Myr. The luminosity functions (LFs) of main-sequence stars at distances R{sub GC} > 21 kpc (i.e., >4 disk scale lengths) are matched by models that assume a constant star formation rate (SFR). However, at smaller R{sub GC} the LFs suggest that during the past {approx}10 Myr the SFR was 2-3 times higher than during the preceding {approx}100 Myr. The rings of cool gas that harbor a significant fraction of the current star-forming activity are traced by stars with ages {approx}100 Myr, indicating that (1) these structures have ages of at least 100 Myr and (2) stars in these structures do not follow the same relation between age and random velocity as their counterparts throughout the disks of other spiral galaxies, probably due to the inherently narrow orbital angular momentum distribution of the giant molecular clouds in these structures. The distribution of evolved red stars is not azimuthally symmetric, in the sense that the projected density along the northeast segment of the major axis is roughly twice that on the opposite side of the galaxy. The northeast arm of the major axis thus appears to be a fossil star-forming area that dates to intermediate epochs. Such a structure may be the consequence of interactions with a companion galaxy.

  13. {sup 13}CO/C{sup 18}O Gradients across the Disks of Nearby Spiral Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Leroy, Adam K.; Gallagher, Molly [Department of Astronomy, The Ohio State University, 140 W 18th St, Columbus, OH 43210 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Usero, Antonio [Observatorio Astronómico Nacional, Alfonso XII 3, E-28014, Madrid (Spain); Hughes, Annie [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Kramer, Carsten [Instituto de Astrofísica de Andalucía IAA-CSIC, Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Meier, David [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Pl, Soccoro, NM 87801 (United States); Murphy, Eric [National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903 (United States); Pety, Jérôme; Schuster, Karl [Institut de Radioastronomie Millimétrique (IRAM), 300 Rue de la Piscine, F-38406 Saint Martin d’Hères (France); Schinnerer, Eva; Sliwa, Kazimierz; Tomicic, Neven [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Schruba, Andreas, E-mail: m.jimenez@zah.uni-heidelberg.de [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2017-02-20

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure {sup 13}CO(1-0)/C{sup 18}O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of {sup 12}CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved {sup 13}CO/C{sup 18}O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean {sup 13}CO/C{sup 18}O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the {sup 13}CO/C{sup 18}O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  14. HIGH STAR FORMATION RATES IN TURBULENT ATOMIC-DOMINATED GAS IN THE INTERACTING GALAXIES IC 2163 AND NGC 2207

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Kaufman, Michele [110 Westchester Rd, Newton, MA 02458 (United States); Bournaud, Frédéric; Juneau, Stéphanie [Laboratoire AIM-Paris-Saclay, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif sur Yvette (France); Elmegreen, Debra Meloy [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Struck, Curtis [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Brinks, Elias, E-mail: bge@us.ibm.com, E-mail: kaufmanrallis@icloud.com, E-mail: frederic.bournaud@gmail.com, E-mail: stephanie.juneau@cea.fr, E-mail: elmegreen@vassar.edu, E-mail: struck@iastate.edu, E-mail: e.brinks@herts.ac.uk [University of Hertfordshire, Centre for Astrophysics Research, College Lane, Hatfield AL10 9AB (United Kingdom)

    2016-05-20

    CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, H α , and 24 μ m observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 km s{sup −1}. We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.

  15. HIGH STAR FORMATION RATES IN TURBULENT ATOMIC-DOMINATED GAS IN THE INTERACTING GALAXIES IC 2163 AND NGC 2207

    International Nuclear Information System (INIS)

    Elmegreen, Bruce G.; Kaufman, Michele; Bournaud, Frédéric; Juneau, Stéphanie; Elmegreen, Debra Meloy; Struck, Curtis; Brinks, Elias

    2016-01-01

    CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, H α , and 24 μ m observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 km s −1 . We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.

  16. Detection of faint BLR components in the starburst/Seyfert galaxy NGC 6221 and measure of the central BH mass

    Directory of Open Access Journals (Sweden)

    Fabio eLa Franca

    2016-04-01

    Full Text Available In the last decade, using single epoch virial based techniques in the optical band, it has been possible to measure the central black hole mass on large type 1 Active Galactive Nuclei (AGN samples. However these measurements use the width of the broad line region as a proxy of the virial velocities and are therefore difficult to be carried out on those obscured (type 2 or low luminosity AGN where the nuclear component does not dominate in the optical. Here we present the optical and near infrared spectrum of the starburst/Seyfert galaxy NGC 6221, observed with X-shooter/VLT. Previous observations of NGC 6221 in the X-ray band shows an absorbed (N_H=8.5 +/- 0.4 x 10^21 cm^-2 spectrum typical of a type 2 AGN with luminosity log(L_14-195/ erg s^-1 = 42.05, while in the optical band its spectrum is typical of a reddened (A_V=3 starburst. Our deep X-shooter/VLT observations have allowed us to detect faint broad emission in the H_alpha, HeI and Pa_beta lines (FWHM=1400-2300 km s^-1 confirming previous studies indicating that NGC 6221 is a reddened starbust galaxy which hosts an AGN. We use the measure of the broad components to provide a first estimate of its central black hole mass (M_BH = 10^6.6+/-0.3 Msol, lambda_Edd=0.01-0.03, obtained using recently calibrated virial relations suitable for moderately obscured (N_H<10^24 cm^-2 AGN.

  17. The HST/ACS Coma Cluster Survey. VIII. Barred Disk Galaxies in the Core of the Coma Cluster

    NARCIS (Netherlands)

    Marinova, Irina; Jogee, Shardha; Weinzirl, Tim; Erwin, Peter; Trentham, Neil; Ferguson, Henry C.; Hammer, Derek; den Brok, Mark; Graham, Alister W.; Carter, David; Balcells, Marc; Goudfrooij, Paul; Guzmán, Rafael; Hoyos, Carlos; Mobasher, Bahram; Mouhcine, Mustapha; Peletier, Reynier F.; Peng, Eric W.; Verdoes Kleijn, Gijs

    We use high-resolution (~0farcs1) F814W Advanced Camera for Surveys (ACS) images from the Hubble Space Telescope ACS Treasury survey of the Coma cluster at z ~ 0.02 to study bars in massive disk galaxies (S0s), as well as low-mass dwarf galaxies in the core of the Coma cluster, the densest

  18. The HST/ACS Coma Cluster Survey : VIII. Barred Disk Galaxies in the Core of the Coma Cluster

    NARCIS (Netherlands)

    Marinova, Irina; Jogee, Shardha; Weinzirl, Tim; Erwin, Peter; Trentham, Neil; Ferguson, Henry C.; Hammer, Derek; den Brok, Mark; Graham, Alister W.; Carter, David; Balcells, Marc; Goudfrooij, Paul; Guzman, Rafael; Hoyos, Carlos; Mobasher, Bahram; Mouhcine, Mustapha; Peletier, Reynier F.; Peng, Eric W.; Kleijn, Gijs V.

    2012-01-01

    We use high-resolution (similar to 0.'' 1) F814W Advanced Camera for Surveys (ACS) images from the Hubble Space Telescope ACS Treasury survey of the Coma cluster at z similar to 0.02 to study bars in massive disk galaxies (S0s), as well as low-mass dwarf galaxies in the core of the Coma cluster, the

  19. Disk

    NARCIS (Netherlands)

    P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu

    2008-01-01

    htmlabstractIn disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of

  20. CALIFA reveals prolate rotation in massive early-type galaxies: A polar galaxy merger origin?

    NARCIS (Netherlands)

    Tsatsi, A.; Lyubenova, M.; van de Ven, G.; Chang, J.; Aguerri, J. A. L.; Falcón-Barroso, J.; Macciò, A. V.

    2017-01-01

    We present new evidence for eight early-type galaxies (ETGs) from the CALIFA Survey that show clear rotation around their major photometric axis ("prolate rotation"). These are LSBCF560-04, NGC 0647, NGC 0810, NGC 2484, NGC 4874, NGC 5216, NGC 6173, and NGC 6338. Including NGC 5485, a known case of

  1. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    International Nuclear Information System (INIS)

    Stewart, K.

    2009-01-01

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z ∼ 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M DM ∼ 10 11 - 10 13 M · . These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M star ∼ 10 10 M · (M DM ∼ 10 11.5 M · ) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M star ∼ 10 11 M · (M DM ∼ 10 13 M · the fraction of baryons amassed in mergers is even higher, ∼ 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a limit on the fraction of a galaxy's cold baryons that can originate in cold flows or from hot halo cooling

  2. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kyle R.; Bullock, James S.; /UC, Irvine; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Maller, Ariyeh H.; /New York City Coll. Tech.

    2009-08-03

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11} - 10{sup 13} M{sub {circle_dot}}. These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M{sub star} {approx} 10{sup 10} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 11.5} M{sub {circle_dot}}) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 13} M{sub {circle_dot}} the fraction of baryons amassed in mergers is even higher, {approx} 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a

  3. SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Lelli, Federico; McGaugh, Stacy S. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Schombert, James M., E-mail: federico.lelli@case.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2016-12-01

    We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6  μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i   mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii)  V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.

  4. The optical spectrum and morphology of the probable X-ray galaxy NGC 5506 (3U 1410-03)

    International Nuclear Information System (INIS)

    Wilson, A.S.; Penston, M.V.; Fosbury, R.A.E.; Boksenberg, A.

    1976-01-01

    Spectra of the nucleus and plates of the galaxy NGC 5506, suggested by Bahcall et al. as the identification of the X-ray source 3U 1410-03, have been obtained with the Isaac Newton and Anglo-Australian Telescopes. The photographs show it to be a highly elongated system, crossed by dust lanes and possessing a prominent nucleus. It appears to be of irregular Type II and superficially resembles M 82. The nuclear spectrum is dominated by intense emission lines of [O III], [O I], [N II], [S II] and the Balmer series. Lines of high ionized species (e.g. He II, [Ne V], [Fe VII]) are also found, implying that the object is active and greatly enhancing the probability of association with the X-ray source. Numerous weak lines of [Fe II] emission are observed. The strong lines are narrower than is characteristic of Seyfert galaxies, and have widths (FWHM) of about 400 km s -1 . The measured Balmer decrement indicates the nucleus is significantly reddened, from which a visual absorption Asub(v) approximately equal to 4.5 mag is deduced. The dereddened line intensities are remarkably similar to those derived for the radio galaxy Cyg A by Osterbrock and Miller. The forbidden lines from NGC 5506 are emitted in a region with log 10 Tsub(e) =4.2 and log 10 Nsub(e) = 3.4. The observed continuum may be described by a power law S varies as νsup(+α) with α = - 3.6 +- 0.5; after correction for reddening the spectral index becomes α = - 1.3 +- 0.6. If the X-ray source is associated with the nucleus, the high visual absorption implies a low energy cut-off in its spectrum near 0.9 keV. (author)

  5. Detection of the high-energy cut-off from the Seyfert 1.5 galaxy NGC 5273

    Science.gov (United States)

    Pahari, Mayukh; McHardy, I. M.; Mallick, Labani; Dewangan, G. C.; Misra, R.

    2017-09-01

    We perform the NuSTAR and Swift/XRT joint energy spectral fitting of simultaneous observations from the broad-line Seyfert 1.5 galaxy NGC 5273. When fitted with the combination of an exponential cut-off power law and a reflection model, a high-energy cut-off is detected at 143^{+96}_{-40} keV with 2σ significance. Existence of such cut-off is also consistent with the observed Comptonizing electron temperature when fitted with a Comptonization model independently. We observe a moderate hard X-ray variability of the source over the time-scale of ∼12 yr using INTEGRAL/ISGRI observations in the energy range of 20-100 keV. When the hard-band count rate (6-20 keV) is plotted against the soft-band count rate (3-6 keV), a hard offset is observed. Our results indicate that the cut-off energy may not correlate with the coronal X-ray luminosity in a simple manner. Similarities in parameters that describe coronal properties indicate that the coronal structure of NGC 5273 may be similar to that of the broad-line radio galaxy 3C 390.3 and another galaxy MCG-5-23-16, where the coronal plasma is dominated by electrons, rather than electron-positron pairs. Therefore, the coronal cooling is equally efficient to the heating mechanism keeping the cut-off energy at low even at the low accretion rate.

  6. Mass Distribution in Rotating Thin-Disk Galaxies According to Newtonian Dynamics

    Directory of Open Access Journals (Sweden)

    James Q. Feng

    2014-04-01

    Full Text Available An accurate computational method is presented for determining the mass distribution in a mature spiral galaxy from a given rotation curve by applying Newtonian dynamics for an axisymmetrically rotating thin disk of finite size with or without a central spherical bulge. The governing integral equation for mass distribution is transformed via a boundary-element method into a linear algebra matrix equation that can be solved numerically for rotation curves with a wide range of shapes. To illustrate the effectiveness of this computational method, mass distributions in several mature spiral galaxies are determined from their measured rotation curves. All the surface mass density profiles predicted by our model exhibit approximately a common exponential law of decay, quantitatively consistent with the observed surface brightness distributions. When a central spherical bulge is present, the mass distribution in the galaxy is altered in such a way that the periphery mass density is reduced, while more mass appears toward the galactic center. By extending the computational domain beyond the galactic edge, we can determine the rotation velocity outside the cut-off radius, which appears to continuously decrease and to gradually approach the Keplerian rotation velocity out over twice the cut-off radius. An examination of circular orbit stability suggests that galaxies with flat or rising rotation velocities are more stable than those with declining rotation velocities especially in the region near the galactic edge. Our results demonstrate the fact that Newtonian dynamics can be adequate for describing the observed rotation behavior of mature spiral galaxies.

  7. The formation of superdense gaseous cores in the nuclei of disk galaxies. II

    Science.gov (United States)

    Basu, B.; Bhattacharya, T.

    1981-02-01

    In a previous paper (hereafter referred to as Paper I) we have tried to show that superdense cores in the nuclei of disk galaxies can be formed by accretion of gas ejected by the evolved stars which populate the central bulge of these galaxies. Solving the equations for radial flow of a magnetized gas, we found that the accretion of an explodable mass at the core can be achieved over a time-scale ranging from a few times iO~ and a few times 108 yr. It was shown, however, that the accretion process is seriously inhibited if the gas possesses sufficient rotational velocity but lacks any dissipative mechanism within the system. Since rotational velocity is an observed parameter of the stars which shed the gas to be accreted, one must consider the existence of some dissipative force in it in order that the accretion process may be efficient. In the present paper, therefore, we have solved the problem of the flow of a rotating, viscous (variable), magnetized gas. With plausible assumptions regarding some of the parameters involved, the time-scale for the accretion of an explodable mass (~- i09 M®) at the core again turns out to be ranging between a few times iÃ&~cedil; and a few times 108 yr. Such time-scale has been proposed by several authors as that for repeated explosions in nuclei of these galaxies. It has also been proposed by many authors that the spiral arms are generated and destroyed in disk galaxies over the same time-scale. Our solution also yields a nearly linear rotational velocity law which is usually observed in the central regions of these galaxies

  8. MISSING LENSED IMAGES AND THE GALAXY DISK MASS IN CXOCY J220132.8-320144

    International Nuclear Information System (INIS)

    Chen, Jacqueline; Lee, Samuel K.; Schechter, Paul L.; Castander, Francisco-Javier; Maza, José

    2013-01-01

    The CXOCY J220132.8-320144 system consists of an edge-on spiral galaxy lensing a background quasar into two bright images. Previous efforts to constrain the mass distribution in the galaxy have suggested that at least one additional image must be present. These extra images may be hidden behind the disk which features a prominent dust lane. We present and analyze Hubble Space Telescope observations of the system. We do not detect any extra images, but the observations further narrow the observable parameters of the lens system. We explore a range of models to describe the mass distribution in the system and find that a variety of acceptable model fits exist. All plausible models require 2 mag of dust extinction in order to obscure extra images from detection, and some models may require an offset between the center of the galaxy and the center of the dark matter halo of 1 kpc. Currently unobserved images will be detectable by future James Webb Space Telescope observations and will provide strict constraints on the fraction of mass in the disk.

  9. FORMATION OF LATE-TYPE SPIRAL GALAXIES: GAS RETURN FROM STELLAR POPULATIONS REGULATES DISK DESTRUCTION AND BULGE GROWTH

    International Nuclear Information System (INIS)

    Martig, Marie; Bournaud, Frederic

    2010-01-01

    Spiral galaxies have most of their stellar mass in a large rotating disk, and only a modest fraction in a central spheroidal bulge. This challenges present models of galaxy formation: galaxies form at the center of dark matter halos through a combination of hierarchical merging and gas accretion along cold streams. Cosmological simulations thus predict that galaxies rapidly grow their bulge through mergers and instabilities and end up with most of their mass in the bulge and an angular momentum much below the observed level, except in dwarf galaxies. We propose that the continuous return of gas by stellar populations over cosmic times could help to solve this issue. A population of stars formed at a given instant typically returns half of its initial mass in the form of gas over 10 billion years, and the process is not dominated by supernovae explosions but by the long-term mass-loss from low- and intermediate-mass stars. Using simulations of galaxy formation, we show that this gas recycling can strongly affect the structural evolution of massive galaxies, potentially solving the bulge fraction issue, as the bulge-to-disk ratio of a massive galaxy can be divided by a factor of 3. The continuous recycling of baryons through star formation and stellar mass loss helps the growth of disks and their survival to interactions and mergers. Instead of forming only early-type, spheroid-dominated galaxies (S0 and ellipticals), the standard cosmological model can successfully account for massive late-type, disk-dominated spiral galaxies (Sb-Sc).

  10. Correlated X-ray/UV/optical emission and short-term variability in a Seyfert 1 galaxy NGC 4593

    Science.gov (United States)

    Pal, Main; Naik, Sachindra

    2018-03-01

    We present a detailed multifrequency analysis of an intense monitoring programme of Seyfert 1 galaxy NGC 4593 over a duration of nearly for a month with Swift observatory. We used 185 pointings to study the variability in six ultraviolet/optical and two soft (0.3-1.5 keV) and hard X-ray (1.5-10 keV) bands. The amplitude of the observed variability is found to decrease from high energy to low energy (X-ray to optical) bands. Count-count plots of ultraviolet/optical bands with hard X-rays clearly suggest the presence of a mixture of two major components: (i) highly variable component such as hard X-ray emission, and (ii) slowly varying disc-like component. The variations observed in the ultraviolet/optical emission are strongly correlated with the hard X-ray band. Cross-correlation analysis provides the lags for the longer wavelengths compared to the hard X-rays. Such lags clearly suggest that the changes in the ultraviolet/optical bands follow the variations in the hard X-ray band. This implies that the observed variation in longer wavelengths is due to X-ray reprocessing. Though, the measured lag spectrum (lag versus wavelength) is well described by λ4/3 as expected from the standard disc model, the observed lags are found to be longer than the predicted values from standard disc model. This implies that the actual size of the disc of NGC 4593 is larger than the estimated size of standard thin disc as reported in active galactic nuclei such as NGC 5548 and Fairall 9.

  11. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Agertz, Oscar [Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom); Teyssier, Romain; Feldmann, Robert [Centre for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Zurich, 8057 (Switzerland); Butler, Michael J. [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Ceverino, Daniel [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, D-69120 Heidelberg (Germany); Choi, Jun-Hwan [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Keller, Ben W. [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Lupi, Alessandro [Institut d’Astrophysique de Paris, Sorbonne Universites, UPMC Univ Paris 6 et CNRS, F-75014 Paris (France); Quinn, Thomas; Wallace, Spencer [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Revaz, Yves [Institute of Physics, Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Gnedin, Nickolay Y. [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Leitner, Samuel N. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Shen, Sijing [Kavli Institute for Cosmology, University of Cambridge, Cambridge, CB3 0HA (United Kingdom); Smith, Britton D., E-mail: me@jihoonkim.org [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Collaboration: AGORA Collaboration; and others

    2016-12-20

    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, we find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.

  12. Galactic Angular Momentum in Cosmological Zoom-in Simulations. I. Disk and Bulge Components and the Galaxy-Halo Connection

    Science.gov (United States)

    Sokołowska, Aleksandra; Capelo, Pedro R.; Fall, S. Michael; Mayer, Lucio; Shen, Sijing; Bonoli, Silvia

    2017-02-01

    We investigate the angular momentum evolution of four disk galaxies residing in Milky-Way-sized halos formed in cosmological zoom-in simulations with various sub-grid physics and merging histories. We decompose these galaxies, kinematically and photometrically, into their disk and bulge components. The simulated galaxies and their components lie on the observed sequences in the j *-M * diagram, relating the specific angular momentum and mass of the stellar component. We find that galaxies in low-density environments follow the relation {j}* \\propto {M}* α past major mergers, with α ˜ 0.6 in the case of strong feedback, when bulge-to-disk ratios are relatively constant, and α ˜ 1.4 in the other cases, when secular processes operate on shorter timescales. We compute the retention factors (I.e., the ratio of the specific angular momenta of stars and dark matter) for both disks and bulges and show that they vary relatively slowly after averaging over numerous but brief fluctuations. For disks, the retention factors are usually close to unity, while for bulges, they are a few times smaller. Our simulations therefore indicate that galaxies and their halos grow in a quasi-homologous way.

  13. NuSTAR spectral analysis of two bright Seyfert 1 galaxies: MCG +8-11-11 and NGC 6814

    Science.gov (United States)

    Tortosa, A.; Bianchi, S.; Marinucci, A.; Matt, G.; Middei, R.; Piconcelli, E.; Brenneman, L. W.; Cappi, M.; Dadina, M.; De Rosa, A.; Petrucci, P. O.; Ursini, F.; Walton, D. J.

    2018-01-01

    We report on the NuSTAR observations of two bright Seyfert 1 galaxies, namely MCG +8-11-11 (100 ks) and NGC 6814 (150 ks). The main goal of these observations was to investigate the Comptonization mechanisms acting in the innermost regions of an active galactic nucleus (AGN) which are believed to be responsible for the UV/X-ray emission. The spectroscopic analysis of the NuSTAR spectra of these two sources revealed that although they had different properties overall (black hole masses, luminosity and Eddington ratios), they had very similar coronal properties. Both presented a power-law spectrum with a high-energy cut-off at ∼150-200 keV, a relativistically broadened Fe K α line and the associated disc reflection component, plus a narrow iron line likely emitted in Compton thin and distant matter. The intrinsic continuum was well described by Comptonization models that show for MCG +8-11-11 a temperature of the coronal plasma of kTe ∼ 60 keV and an extrapolated optical depth τ = 1.8; for NGC 6814, the coronal temperature was kTe ∼ 45 keV with an extrapolated optical depth of τ = 2.5. We compare and discuss these values to some most common Comptonization models that aim at explaining the energy production and stability of coronae in AGNs.

  14. Globular clusters and planetary nebulae kinematics and X-ray emission in the early-type galaxy NGC 5128

    Directory of Open Access Journals (Sweden)

    Samurović S.

    2006-01-01

    Full Text Available The estimates of the mass of the galaxy NGC 5128 based on the different mass tracers, globular clusters (GCs and planetary nebulae (PNe, are presented. These estimates are compared with the estimate based on the X-ray methodology and it is found that the results for the mass (and mass-to-light ratio for all three approaches are in very good agreement interior to 25 arcmin; beyond 25 arcmin the X-rays predict the mass which is too high with respect to the one found using GCs and PNe. Some possible explanations for this discrepancy were discussed. The Jeans equation is also solved and its predictions for the velocity dispersion are then compared with the observed values, which extend to ~8 effective radii in the case of the GCs and ~15 effective radii in the case of the PNe. It is found that interior to ~25 arcmin (~5 effective radii dark matter does not dominate because the total mass-to-light ratio in the B band in solar units is less than 10. Based on the GCs and PNe beyond ~25 arcmin the total mass-to-light ratio increases to ~14 (at ~80 arcmin which indicates the existence of dark matter in the outer regions of NGC 5128.

  15. Scaling Relations for the Efficiency of Radial Migration in Disk Galaxies

    Science.gov (United States)

    Daniel, Kathryne J.

    2018-01-01

    Radial migration is frequently recognized as an internal, secular process that could play an important role in disk galaxy evolution. The driving mechanism for radial migration is transient spiral patterns, which rearrange the orbital angular momentum distribution of disk stars around corotation without causing kinematic heating. Should radial migration be an efficient process, it could cause a substantial fraction of disk stars to move large radial distances over the lifetime of the disk, thus having a significant impact on the disk’s kinematic, structural and chemical evolution. Observational and simulated data are consistent with radial migration being important for kinematically cold stellar populations and less so for populations with hot kinematics. I will present an analytic criterion that determines which stars are in orbits that could lead to radial migration. I will then show some scaling relations for the efficacy of radial migration that result from applying this analytic criterion to a series of models that have a variety of distribution functions and spiral patterns in systems with an assumed flat rotation curve. Most importantly, I will argue that these scaling relations can be used to place constraints on the efficiency of radial migration, where stronger spiral patterns and kinematically cold populations will lead to a higher fraction of stars in orbits that can lead to radial migration.

  16. Bar formation in disk galaxies, and the normalized angular momentum of the bulge

    Energy Technology Data Exchange (ETDEWEB)

    Zasov, A.V.

    1985-09-01

    In 1971 Polyachenko et al. suggested that the spheroidal bulge in a spiral galaxy would retain a biaxial shape unless its normalized angular momentum, defined as M = KM/sub b//sup -5/3/ (K is the ordinary angular momentum and M/sub b/ the mass of the bulge), exceeds some critical value; in that event a triaxial ellipsoid: a bar: would develop. This proposal is in fact consistent with bulge rotational velocities observed in disk-type systems. The bar presumably represents a bulge component having a high M value.

  17. HYDRODYNAMICS OF HIGH-REDSHIFT GALAXY COLLISIONS: FROM GAS-RICH DISKS TO DISPERSION-DOMINATED MERGERS AND COMPACT SPHEROIDS

    International Nuclear Information System (INIS)

    Bournaud, Frederic; Chapon, Damien; Teyssier, Romain; Powell, Leila C.; Duc, Pierre-Alain; Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Contini, Thierry; Epinat, Benoit; Shapiro, Kristen L.

    2011-01-01

    Disk galaxies at high redshift (z ∼ 2) are characterized by high fractions of cold gas, strong turbulence, and giant star-forming clumps. Major mergers of disk galaxies at high redshift should then generally involve such turbulent clumpy disks. Merger simulations, however, model the interstellar medium as a stable, homogeneous, and thermally pressurized medium. We present the first merger simulations with high fractions of cold, turbulent, and clumpy gas. We discuss the major new features of these models compared to models where the gas is artificially stabilized and warmed. Gas turbulence, which is already strong in high-redshift disks, is further enhanced in mergers. Some phases are dispersion dominated, with most of the gas kinetic energy in the form of velocity dispersion and very chaotic velocity fields, unlike merger models using a thermally stabilized gas. These mergers can reach very high star formation rates, and have multi-component gas spectra consistent with SubMillimeter Galaxies. Major mergers with high fractions of cold turbulent gas are also characterized by highly dissipative gas collapse to the center of mass, with the stellar component following in a global contraction. The final galaxies are early type with relatively small radii and high Sersic indices, like high-redshift compact spheroids. The mass fraction in a disk component that survives or re-forms after a merger is severely reduced compared to models with stabilized gas, and the formation of a massive disk component would require significant accretion of external baryons afterwards. Mergers thus appear to destroy extended disks even when the gas fraction is high, and this lends further support to smooth infall as the main formation mechanism for massive disk galaxies.

  18. A REVISED PARALLEL-SEQUENCE MORPHOLOGICAL CLASSIFICATION OF GALAXIES: STRUCTURE AND FORMATION OF S0 AND SPHEROIDAL GALAXIES

    International Nuclear Information System (INIS)

    Kormendy, John; Bender, Ralf

    2012-01-01

    We update van den Bergh's parallel-sequence galaxy classification in which S0 galaxies form a sequence S0a-S0b-S0c that parallels the sequence Sa-Sb-Sc of spiral galaxies. The ratio B/T of bulge-to-total light defines the position of a galaxy in this tuning-fork diagram. Our classification makes one major improvement. We extend the S0a-S0b-S0c sequence to spheroidal ('Sph') galaxies that are positioned in parallel to irregular galaxies in a similarly extended Sa-Sb-Sc-Im sequence. This provides a natural 'home' for spheroidals, which previously were omitted from galaxy classification schemes or inappropriately combined with ellipticals. To motivate our juxtaposition of Sph and Im galaxies, we present photometry and bulge-disk decompositions of four rare, late-type S0s that bridge the gap between the more common S0b and Sph galaxies. NGC 4762 is an edge-on SB0bc galaxy with a very small classical-bulge-to-total ratio of B/T = 0.13 ± 0.02. NGC 4452 is an edge-on SB0 galaxy with an even tinier pseudobulge-to-total ratio of PB/T = 0.017 ± 0.004. It is therefore an SB0c. VCC 2048, whose published classification is S0, contains an edge-on disk, but its 'bulge' plots in the structural parameter sequence of spheroidals. It is therefore a disky Sph. And NGC 4638 is similarly a 'missing link' between S0s and Sphs—it has a tiny bulge and an edge-on disk embedded in an Sph halo. In the Appendix, we present photometry and bulge-disk decompositions of all Hubble Space Telescope Advanced Camera for Surveys Virgo Cluster Survey S0s that do not have published decompositions. We use these data to update the structural parameter correlations of Sph, S+Im, and E galaxies. We show that Sph galaxies of increasing luminosity form a continuous sequence with the disks (but not bulges) of S0c-S0b-S0a galaxies. Remarkably, the Sph-S0-disk sequence is almost identical to that of Im galaxies and spiral galaxy disks. We review published observations for galaxy transformation processes

  19. A Revised Parallel-sequence Morphological Classification of Galaxies: Structure and Formation of S0 and Spheroidal Galaxies

    Science.gov (United States)

    Kormendy, John; Bender, Ralf

    2012-01-01

    We update van den Bergh's parallel-sequence galaxy classification in which S0 galaxies form a sequence S0a-S0b-S0c that parallels the sequence Sa-Sb-Sc of spiral galaxies. The ratio B/T of bulge-to-total light defines the position of a galaxy in this tuning-fork diagram. Our classification makes one major improvement. We extend the S0a-S0b-S0c sequence to spheroidal ("Sph") galaxies that are positioned in parallel to irregular galaxies in a similarly extended Sa-Sb-Sc-Im sequence. This provides a natural "home" for spheroidals, which previously were omitted from galaxy classification schemes or inappropriately combined with ellipticals. To motivate our juxtaposition of Sph and Im galaxies, we present photometry and bulge-disk decompositions of four rare, late-type S0s that bridge the gap between the more common S0b and Sph galaxies. NGC 4762 is an edge-on SB0bc galaxy with a very small classical-bulge-to-total ratio of B/T = 0.13 ± 0.02. NGC 4452 is an edge-on SB0 galaxy with an even tinier pseudobulge-to-total ratio of PB/T = 0.017 ± 0.004. It is therefore an SB0c. VCC 2048, whose published classification is S0, contains an edge-on disk, but its "bulge" plots in the structural parameter sequence of spheroidals. It is therefore a disky Sph. And NGC 4638 is similarly a "missing link" between S0s and Sphs—it has a tiny bulge and an edge-on disk embedded in an Sph halo. In the Appendix, we present photometry and bulge-disk decompositions of all Hubble Space Telescope Advanced Camera for Surveys Virgo Cluster Survey S0s that do not have published decompositions. We use these data to update the structural parameter correlations of Sph, S+Im, and E galaxies. We show that Sph galaxies of increasing luminosity form a continuous sequence with the disks (but not bulges) of S0c-S0b-S0a galaxies. Remarkably, the Sph-S0-disk sequence is almost identical to that of Im galaxies and spiral galaxy disks. We review published observations for galaxy transformation processes

  20. XMM-Newton and Chandra Observations of the Galaxy Group NGC 5044. 1; Evidence for Limited Multiphase Hot Gas

    Science.gov (United States)

    Buote, David A.; Lewis, Aaron D.; Brighenti, Fabrizio; Mathews, William G.

    2003-01-01

    Using new XMM and Chandra observations, we present an analysis of the temperature structure of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. A spectral deprojection analysis of data extracted from circular annuli reveals that a two-temperature model (2T) of the hot gas is favored over single-phase or cooling flow (M = 4.5 +/- 0.2 solar mass/yr) models within the central approx.30 kpc. Alternatively, the data can be fitted equally well if the temperature within each spherical shell varies continuously from approx.T(sub h) to T(sub c) approx. T(sub h)/2, but no lower. The high spatial resolution of the Chandra data allows us to determine that the temperature excursion T(sub h) approaches T(sub c) required in each shell exceeds the temperature range between the boundaries of the same shell in the best-fitting single-phase model. This is strong evidence for a multiphase gas having a limited temperature range. We do not find any evidence that azimuthal temperature variations within each annulus on the sky can account for the range in temperatures within each shell. We provide a detailed investigation of the systematic errors on the derived spectral models considering the effects of calibration, plasma codes, bandwidth, variable NH, and background rate. We find that the RGS gratings and the EPIC and ACIS CCDs give fully consistent results when the same models are fitted over the same energy ranges for each instrument. The cooler component of the 2T model has a temperature (T(sub c) approx. 0.7 keV) similar to the kinetic temperature of the stars. The hot phase has a temperature (T(sub h) approx. 1.4 keV) characteristic of the virial temperature of the solar mass halo expected in the NGC 5044 group. However, in view of the morphological disturbances and X-ray holes visible in the Chandra image within R approx. equals 10 kpc, bubbles of gas heated to approx.T(sub h) in this region may be formed by intermittent AGN feedback. Some

  1. DETECTION OF OUTFLOWING AND EXTRAPLANAR GAS IN DISKS IN AN ASSEMBLING GALAXY CLUSTER AT z = 0.37

    International Nuclear Information System (INIS)

    Freeland, Emily; Tran, Kim-Vy H.; Irwin, Trevor; Giordano, Lea; Saintonge, Amélie; Gonzalez, Anthony H.; Zaritsky, Dennis; Just, Dennis

    2011-01-01

    We detect ionized gas characteristics indicative of winds in three disk-dominated galaxies that are members of a super-group at z = 0.37 that will merge to form a Coma-mass cluster. All three galaxies are IR luminous (L IR > 4 × 10 10 L ☉ , SFR > 8 M ☉ yr –1 ) and lie outside the X-ray cores of the galaxy groups. We find that the most IR-luminous galaxy has strong blueshifted and redshifted emission lines with velocities of ∼ ± 200 km s –1 and a third, blueshifted (∼900 km s –1 ) component. This galaxy's line widths (Hβ, [O III]λ5007, [N II], Hα) correspond to velocities of 100-1000 km s –1 . We detect extraplanar gas in two of the three galaxies with SFR >8 M ☉ yr –1 whose orientations are approximately edge-on and which have integral field unit (IFU) spaxels off the stellar disk. IFU maps reveal that the extraplanar gas extends to r h ∼ 10 kpc; [N II] and Hα line widths correspond to velocities of ∼200-400 km s –1 in the disk and decrease to ∼50-150 km s –1 above the disk. Multi-wavelength observations indicate that the emission is dominated by star formation. Including the most IR-luminous galaxy we find that 18% of supergroup members with SFR >8 M ☉ yr –1 show ionized gas characteristics indicative of outflows. This is a lower limit as showing that gas is outflowing in the remaining, moderately inclined, galaxies requires a non-trivial decoupling of contributions to the emission lines from rotational and turbulent motion. Ionized gas mass loss in these winds is ∼0.1 M ☉ yr –1 for each galaxy, although the winds are likely to entrain significantly larger amounts of mass in neutral and molecular gases.

  2. No more active galactic nuclei in clumpy disks than in smooth galaxies at z ∼ 2 in CANDELS/3D-HST

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Jonathan R.; Luo, Bin; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Barro, Guillermo; Guo, Yicheng; Koo, David C.; Faber, S. M. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Juneau, Stéphanie [Irfu/Service d' Astrophysique, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Weiner, Benjamin J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Brammer, Gabriel B.; Ferguson, Henry C.; Grogin, Norman A.; Kartaltepe, Jeyhan; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Hopkins, Philip F. [California Institute of Technology, MC 105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Kocevski, Dale D. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); McIntosh, Daniel H. [Department of Physics and Astronomy, University of Missouri-Kansas City, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Momcheva, Ivelina [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2014-10-01

    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3 < z < 2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that despite being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z ∼ 2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z ∼ 2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile, the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z ∼ 1.85—whether violent disk instabilities or secular processes—are as efficient in smooth galaxies as they are in clumpy galaxies.

  3. GRAVITATIONAL INSTABILITIES IN TWO-COMPONENT GALAXY DISKS WITH GAS DISSIPATION

    International Nuclear Information System (INIS)

    Elmegreen, Bruce G.

    2011-01-01

    Growth rates for gravitational instabilities in a thick disk of gas and stars are determined for a turbulent gas that dissipates on the local crossing time. The scale heights are derived from vertical equilibrium. The accuracy of the usual thickness correction, (1 + kH) -1 , is better than 6% in the growth rate when compared to exact integrations for the gravitational acceleration in the disk. Gas dissipation extends the instability to small scales, removing the minimum Jeans length. This makes infinitesimally thin disks unstable for all Toomre-Q values and reasonably thick disks stable at high Q primarily because of thickness effects. The conventional gas+star threshold, Q tot , increases from ∼1 without dissipation to 2 or 3 when dissipation has a rate equal to the crossing rate over a perturbation scale. Observations of Q tot ∼ 2-3 and the presence of supersonic turbulence suggest that disks are unstable over a wide range of scales. Such instabilities drive spiral structure if there is shear and clumpy structure if shear is weak; they may dominate the generation of turbulence. Feedback regulation of Q tot is complex because the stellar component does not cool; the range of spiral strengths from multiple arm to flocculent galaxies suggests that feedback is weak. Gravitational instabilities may have a connection to star formation even when the star formation rate scales directly with the molecular mass because the instabilities return dispersed gas to molecular clouds and complete the cycle of cloud formation and destruction. The mass flow to dense clouds by instabilities can be 10 times larger than the star formation rate.

  4. Observational evidence for the accretion-disk origin for a radio jet in an active galaxy.

    Science.gov (United States)

    Marscher, Alan P; Jorstad, Svetlana G; Gómez, José-Luis; Aller, Margo F; Teräsranta, Harri; Lister, Matthew L; Stirling, Alastair M

    2002-06-06

    Accretion of gas onto black holes is thought to power the relativistic jets of material ejected from active galactic nuclei (AGN) and the 'microquasars' located in our Galaxy. In microquasars, superluminal radio-emitting features appear and propagate along the jet shortly after sudden decreases in the X-ray fluxes. This establishes a direct observational link between the black hole and the jet: the X-ray dip is probably caused by the disappearance of a section of the inner accretion disk as it falls past the event horizon, while the remainder of the disk section is ejected into the jet, creating the appearance of a superluminal bright spot. No such connection has hitherto been established for AGN, because of insufficient multi-frequency data. Here we report the results of three years of monitoring the X-ray and radio emission of the galaxy 3C120. As has been observed for microquasars, we find that dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. The mean time between X-ray dips appears to scale roughly with the mass of the black hole, although there are at present only a few data points.

  5. A new measurement of the baryonic fraction using the sparse NGC 3258 group of galaxies

    DEFF Research Database (Denmark)

    Pedersen, Kristian; Yoshii, Y.; Sommer-Larsen, J.

    1997-01-01

    )(-1) kpc is found to be 0.065(-0.020)(+0.051) for h(50) = 1, where h(50) = H-0/50 km s(-1) Mpc(-1), in good agreement with the universal value of 0.05 +/- 0.01 predicted by standard big bang nucleosynthesis for a universe with Omega(0) = 1 and h(50) = 1. Since the deep potential of the NGC 3258 group...

  6. Testing the nature of SO galaxies using planetary nebula kinematics in NGC 1023

    NARCIS (Netherlands)

    Noordermeer, E.; Merrifield, M. R.; Coccato, L.; Arnaboldi, M.; Capaccioli, M.; Douglas, N. G.; Freeman, K. C.; Gerhard, O.; Kuijken, K.; De Lorenzi, F.; Napolitano, N. R.; Romanowsky, A. J.

    2008-01-01

    We investigate the manner in which lenticular galaxies are formed by studying their stellar kinematics: an S0 formed from a fading spiral galaxy should display similar cold outer disc kinematics to its progenitor, while an S0 formed in a minor merger should be more dominated by random motions. In a

  7. MOND prediction of a new giant shell in the elliptical galaxy NGC 3923

    Czech Academy of Sciences Publication Activity Database

    Bílek, Michal; Bartošková, Kateřina; Ebrová, Ivana; Jungwiert, Bruno

    2014-01-01

    Roč. 566, June (2014), A151/1-A151/11 ISSN 0004-6361 Grant - others:GA MŠk(CZ) LM2010005; UK(CZ) SVV-26089 Institutional support: RVO:67985815 Keywords : gravitation * galaxies: kinematics and dynamics * galaxies: formation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  8. A WARP IN PROGRESS: H I AND RADIO CONTINUUM OBSERVATIONS OF THE SPIRAL NGC 3145

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, Michele [110 Westchester Rd, Newton, MA 02458 (United States); Brinks, Elias [University of Hertfordshire, Centre for Astrophysics Research, College Lane, Hatfield AL10 9AB (United Kingdom); Struck, Curtis [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Rd., Yorktown Heights, NY 10598 (United States); Elmegreen, Debra M., E-mail: kaufmanrallis@icloud.com, E-mail: E.Brinks@herts.ac.uk, E-mail: curt@iastate.edu, E-mail: bge@us.ibm.com, E-mail: elmegreen@vassar.edu [Department of Physics and Astronomy, Vassar College, 124 Raymond Av., Poughkeepsie, NY 12604 (United States)

    2015-09-15

    VLA H i observations and λ6 cm radio continuum observations are presented of the barred-spiral galaxy NGC 3145. In optical images NGC 3145 has stellar arms that appear to cross, forming “X”-features. Our radio continuum observations rule out shock fronts at three of the four “X”-features, and our H i data provide evidence of gas motions perpendicular to the disk of NGC 3145. In large portions of NGC 3145, particularly in the middle-to-outer disk, the H i line profiles are skewed. Relative to the disk, the gas in the skewed wing of the line profiles has z-motions away from us on the approaching side of the galaxy and z-motions of about the same magnitude (∼40 km s{sup −1}) toward us on the receding side. These warping motions imply that there has been a perturbation with a sizeable component perpendicular to the disk over large spatial scales. Two features in NGC 3145 have velocities indicating that they are out-of-plane tidal arms. One is an apparent branch of a main spiral arm on the northeastern side of NGC 3145; the velocity of the branch is ∼150 km s{sup −1} greater than the spiral arm where they appear to intersect in projection. The other is the arm on the southwestern side that forms three of the “X”-features. It differs in velocity by ∼56 km s{sup −1} from that of the disk at the same projected location. H i observations are presented also of the two small companions NGC 3143 and PGC 029578. Based on its properties (enhanced SFR, H i emission 50% more extended on its northeastern side, etc.), NGC 3143 is the more likely of the two companions to have interacted with NGC 3145 recently. A simple analytic model demonstrates that an encounter between NGC 3143 and NGC 3145 is a plausible explanation for the observed warping motions in NGC 3145.

  9. A WARP IN PROGRESS: H I AND RADIO CONTINUUM OBSERVATIONS OF THE SPIRAL NGC 3145

    International Nuclear Information System (INIS)

    Kaufman, Michele; Brinks, Elias; Struck, Curtis; Elmegreen, Bruce G.; Elmegreen, Debra M.

    2015-01-01

    VLA H i observations and λ6 cm radio continuum observations are presented of the barred-spiral galaxy NGC 3145. In optical images NGC 3145 has stellar arms that appear to cross, forming “X”-features. Our radio continuum observations rule out shock fronts at three of the four “X”-features, and our H i data provide evidence of gas motions perpendicular to the disk of NGC 3145. In large portions of NGC 3145, particularly in the middle-to-outer disk, the H i line profiles are skewed. Relative to the disk, the gas in the skewed wing of the line profiles has z-motions away from us on the approaching side of the galaxy and z-motions of about the same magnitude (∼40 km s −1 ) toward us on the receding side. These warping motions imply that there has been a perturbation with a sizeable component perpendicular to the disk over large spatial scales. Two features in NGC 3145 have velocities indicating that they are out-of-plane tidal arms. One is an apparent branch of a main spiral arm on the northeastern side of NGC 3145; the velocity of the branch is ∼150 km s −1 greater than the spiral arm where they appear to intersect in projection. The other is the arm on the southwestern side that forms three of the “X”-features. It differs in velocity by ∼56 km s −1 from that of the disk at the same projected location. H i observations are presented also of the two small companions NGC 3143 and PGC 029578. Based on its properties (enhanced SFR, H i emission 50% more extended on its northeastern side, etc.), NGC 3143 is the more likely of the two companions to have interacted with NGC 3145 recently. A simple analytic model demonstrates that an encounter between NGC 3143 and NGC 3145 is a plausible explanation for the observed warping motions in NGC 3145

  10. Indications of M-Dwarf Deficits in the Halo and Thick Disk of the Galaxy

    Science.gov (United States)

    Konishi, Mihoko; Shibai, Hiroshi; Sumi, Takahiro; Fukagawa, Misato; Matsuo, Taro; Samland, Matthias S.; Yamamoto, Kodai; Sudo, Jun; Itoh, Yoichi; Arimoto, Nobuo; hide

    2014-01-01

    We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased ( approx. 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.

  11. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    Science.gov (United States)

    Butsky, Iryna; Zrake, Jonathan; Kim, Ji-hoon; Yang, Hung-I.; Abel, Tom

    2017-07-01

    We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way-mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.

  12. Ab Initio Simulations of a Supernova-driven Galactic Dynamo in an Isolated Disk Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Butsky, Iryna [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Zrake, Jonathan; Kim, Ji-hoon; Yang, Hung-I; Abel, Tom [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)

    2017-07-10

    We study the magnetic field evolution of an isolated spiral galaxy, using isolated Milky Way–mass galaxy formation simulations and a novel prescription for magnetohydrodynamic (MHD) supernova feedback. Our main result is that a galactic dynamo can be seeded and driven by supernova explosions, resulting in magnetic fields whose strength and morphology are consistent with observations. In our model, supernovae supply thermal energy and a low-level magnetic field along with their ejecta. The thermal expansion drives turbulence, which serves a dual role by efficiently mixing the magnetic field into the interstellar medium and amplifying it by means of a turbulent dynamo. The computational prescription for MHD supernova feedback has been implemented within the publicly available ENZO code and is fully described in this paper. This improves upon ENZO 's existing modules for hydrodynamic feedback from stars and active galaxies. We find that the field attains microgauss levels over gigayear timescales throughout the disk. The field also develops a large-scale structure, which appears to be correlated with the disk’s spiral arm density structure. We find that seeding of the galactic dynamo by supernova ejecta predicts a persistent correlation between gas metallicity and magnetic field strength. We also generate all-sky maps of the Faraday rotation measure from the simulation-predicted magnetic field, and we present a direct comparison with observations.

  13. Molecular line emission in NGC 1068 imaged with ALMA : I. An AGN-driven outflow in the dense molecular gas

    NARCIS (Netherlands)

    García-Burillo, S.; Combes, F.; Usero, A.; Aalto, S.; Krips, M.; Viti, S.; Alonso-Herrero, A.; Hunt, L. K.; Schinnerer, E.; Baker, A. J.; Boone, F.; Casasola, V.; Colina, L.; Costagliola, F.; Eckart, A.; Fuente, A.; Henkel, C.; Labiano, A.; Martín, S.; Márquez, I.; Muller, S.; Planesas, P.; Ramos Almeida, C.; Spaans, M.; Tacconi, L. J.; van der Werf, P. P.

    Aims: We investigate the fueling and the feedback of star formation and nuclear activity in NGC 1068, a nearby (D = 14 Mpc) Seyfert 2 barred galaxy, by analyzing the distribution and kinematics of the molecular gas in the disk. We aim to understand if and how gas accretion can self-regulate.

  14. The Interaction of Hot and Cold Gas in the Disk and Halo of Galaxies

    Science.gov (United States)

    Slavin, Jonathan; Salamon, Michael (Technical Monitor)

    2004-01-01

    Most of the thermal energy in the Galaxy and perhaps most of the baryons in the Universe are found in hot (log T approximately 5.5 - 7) gas. Hot gas is detected in the local interstellar medium, in supernova remnants (SNR), the Galactic halo, galaxy clusters and the intergalactic medium (IGM). In our own Galaxy, hot gas exists in large superbubbles up to several hundred pc in diameter that locally dominate the interstellar medium (ISM) and determine its thermal and dynamic evolution. While X-ray observations using ROSAT, Chandra and XMM have allowed us to make dramatic progress in mapping out the morphology of the hot gas and in understanding some of its spectral characteristics, there remain fundamental questions that are unanswered. Chief among these questions is the way that hot gas interacts with cooler phase gas and the effects these interactions have on hot gas energetics. The theoretical investigations we proposed in this grant aim to explore these interactions and to develop observational diagnostics that will allow us to gain much improved information on the evolution of hot gas in the disk and halo of galaxies. The first of the series of investigations that we proposed was a thorough exploration of turbulent mixing layers and cloud evaporation. We proposed to employ a multi-dimensional hydrodynamical code that includes non-equilibrium ionization (NEI), radiative cooling and thermal conduction. These models are to be applied to high velocity clouds in our galactic halo that are seen to have O VI by FUSE (Sembach et ai. 2000) and other clouds for which sufficient constraining observations exist.

  15. Inner and outer star forming regions over the disks of spiral galaxies. I. Sample characterization

    Science.gov (United States)

    Rodríguez-Baras, M.; Díaz, A. I.; Rosales-Ortega, F. F.; Sánchez, S. F.

    2018-01-01

    Context. The knowledge of abundance distributions is central to understanding the formation and evolution of galaxies. Most of the relations employed for the derivation of gas abundances have so far been derived from observations of outer disk H ii regions, despite the known differences between inner and outer regions. Aims: Using integral field spectroscopy (IFS) observations we aim to perform a systematic study and comparison of two inner and outer H ii regions samples. The spatial resolution of the IFS, the number of objects and the homogeneity and coherence of the observations allow a complete characterization of the main observational properties and differences of the regions. Methods: We analyzed a sample of 725 inner H ii regions and a sample of 671 outer H ii regions, all of them detected and extracted from the observations of a sample of 263 nearby, isolated, spiral galaxies observed by the CALIFA survey. Results: We find that inner H ii regions show smaller equivalent widths, greater extinction and luminosities, along with greater values of [N ii] λ6583/Hα and [O ii] λ3727/[O iii] λ5007 emission-line ratios, indicating higher metallicities and lower ionization parameters. Inner regions have also redder colors and higher photometric and ionizing masses, although MionMphot is slighty higher for the outer regions. Conclusions: This work shows important observational differences between inner and outer H ii regions in star forming galaxies not previously studied in detail. These differences indicate that inner regions have more evolved stellar populations and are in a later evolution state with respect to outer regions, which goes in line with the inside-out galaxy formation paradigm. Table 4 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A102

  16. Submillimeter Array/Plateau de Bure Interferometer Multiple Line Observations of the Nearby Seyfert 2 Galaxy NGC 1068: Shock-related Gas Kinematics and Heating in the Central 100 pc?

    Czech Academy of Sciences Publication Activity Database

    Krips, M.; Martin, S.; Eckart, A.; Neri, R.; Garcia-Burillo, S.; Matsushita, S.; Peck, A.; Stoklasová, Ivana; Petitpas, G.; Usero, A.; Combes, F.; Schinnerer, E.; Humphreys, L.; Baker, A.

    2011-01-01

    Roč. 736, 1-4 (2011), 37/1-37/27 ISSN 0004-637X R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxies * active galaxies * NGC 1068 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.024, year: 2011

  17. The DiskMass Survey : VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy

    NARCIS (Netherlands)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Schechtman-Rook, Andrew; Andersen, David R.; Swaters, Rob A.

    We present ionized-gas ([OIII]lambda 5007 angstrom) and stellar kinematics (velocities and velocity dispersions) for 30 nearly face-on spiral galaxies out to as many as three K-band disk scale lengths (h(R)). These data have been derived from PPak integral-field-unit spectroscopy from 4980-5370

  18. The DiskMass Survey. VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy

    NARCIS (Netherlands)

    Martinsson, T.P.K.; Verheijen, M.; Westfall, K.; Bershady, M.; Schechtman-Rook, A.; Andersen, D.; Swaters, R.

    2013-01-01

    We present ionized-gas ([Oiii]{$λ$}5007 å) and stellar kinematics (velocities and velocity dispersions) for 30 nearly face-on spiral galaxies out to as many as three K-band disk scale lengths (h$_R$). These data have been derived from PPak integral-field-unit spectroscopy from 4980-5370 å observed

  19. Green bank telescope observations of low column density H I around NGC 2997 and NGC 6946

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, D. J., E-mail: djpisano@mail.wvu.edu [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States)

    2014-03-01

    Observations of ongoing H I accretion in nearby galaxies have only identified about 10% of the fuel necessary to sustain star formation in these galaxies. Most of these observations have been conducted using interferometers and may have missed lower column density, diffuse, H I gas that may trace the missing 90% of gas. Such gas may represent the so-called cold flows predicted by current theories of galaxy formation to have never been heated above the virial temperature of the dark matter halo. As a first attempt to identify such cold flows around nearby galaxies and complete the census of H I down to N {sub H} {sub I} ∼ 10{sup 18} cm{sup –2}, I used the Robert C. Byrd Green Bank Telescope (GBT) to map the circumgalactic (r ≲ 100-200 kpc) H I environment around NGC 2997 and NGC 6946. The resulting GBT observations cover a 4 deg{sup 2} area around each galaxy with a 5σ detection limit of N{sub H} {sub I} ∼ 10{sup 18} cm{sup –2} over a 20 km s{sup –1} line width. This project complements absorption line studies, which are well-suited to the regime of lower N{sub H} {sub I}. Around NGC 2997, the GBT H I data reveal an extended H I disk and all of its surrounding gas-rich satellite galaxies, but no filamentary features. Furthermore, the H I mass as measured with the GBT is only 7% higher than past interferometric measurements. After correcting for resolution differences, the H I extent of the galaxy is 23% larger at the N{sub H} {sub I} = 1.2 × 10{sup 18} cm{sup –2} level as measured by the GBT. On the other hand, the H I observations of NGC 6946 reveal a filamentary feature apparently connecting NGC 6946 with its nearest companions. This H I filament has N{sub H} {sub I} ∼ 5 × 10{sup 18} cm{sup –2} and an FWHM of 55 ± 5 km s{sup –1} and was invisible in past interferometer observations. The properties of this filament are broadly consistent with being a cold flow or debris from a past tidal interaction between NGC 6946 and its satellites.

  20. NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam [University of California, Riverside, CA 92512 (United States); Nayyeri, Hooshang; Miller, Sarah [University of California, Irvine, CA 92697 (United States); Sobral, David, E-mail: shemm001@ucr.edu [Universidade de Lisboa, PT1349-018 Lisbon (Portugal)

    2015-11-20

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  1. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-01-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear

  2. The discovery of an O VII emission line in the ASCA spectrum of the Seyfert galaxy NGC 3783

    Science.gov (United States)

    George, I. M.; Turner, T. J.; Netzer, H.

    1995-01-01

    We report the first observation of an O VII 0.57 keV emission line in a Seyfert 1 galaxy. NGC 3783 was observed by ASCA twice over a period of 4 days in 1993 December. The source exhibited a approximately 30% change in intensity between the two observations, with most of the variability taking place as a result of steepening of the continuum less than or approximately equal to 1 keV. Spectra from both observations show intense absorption features in the 0.5-1.5 keV band, which can be well fitted by an ionized absorber model of solar composition, column density of 10(exp 22.2)/sq cm and ionization parameter of approximately 7-8; the strongest absorption features being due to O VII and O VIII. Two emission features are also seen in the spectra which we identify as O VII 0.57 keV (equivalent width approximately equals 36 eV) and O VIII 0.65 keV (equivalent width approximately equals 11 eV). We also show that the 3-6 keV continuum of the source is well fitted by a Gamma = 1.3-1.4 power-law continuum, a narrow neutral iron K-shell fluorescence line and a strong iron K-shell absorption edge, possibly corresponding to highly ionized iron.

  3. Galaxy And Mass Assembly (GAMA): Gas Fuelling of Spiral Galaxies in the Local Universe II. - Direct Measurement of the Dependencies on Redshift and Host Halo Mass of Stellar Mass Growth in Central Disk Galaxies

    Science.gov (United States)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-03-01

    We present a detailed analysis of the specific star formation rate - stellar mass (sSFR - M*) of z ≤ 0.13 disk central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR - M* relations of disk-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR - M* relation of non-grouped (field) central disk galaxies with redshift, even over a Δz ≈ 0.04 (≈5 . 108yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the "main-sequence-of-star-forming-galaxies" from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star-formation in disks, with the inflow being determined by the product of the cosmological accretion rate and a fuelling-efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling-efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3M⊙ over z = 0 - 0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disk-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for disks are unclear.

  4. Deep imaging of the shell elliptical galaxy NGC3923 with MegaCam

    Czech Academy of Sciences Publication Activity Database

    Bílek, Michal; Cuillandre, J.-C.; Gwyn, S.; Ebrová, Ivana; Bartošková, Kateřina; Jungwiert, Bruno; Jílková, L.

    2016-01-01

    Roč. 588, April (2016), A77/1-A77/12 ISSN 0004-6361 Institutional support: RVO:67985815 Keywords : elliptical and lenticular galaxies * peculiar * photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  5. Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry, and Water and Methanol Masers in the Nuclear Starburst of NGC 253

    Science.gov (United States)

    Gorski, Mark; Ott, Jürgen; Rand, Richard; Meier, David S.; Momjian, Emmanuel; Schinnerer, Eva

    2017-06-01

    We present Karl G. Jansky Very Large Array molecular line observations of the nearby starburst galaxy NGC 253, from SWAN, the Survey of Water and Ammonia in Nearby galaxies. SWAN is a molecular line survey at centimeter wavelengths designed to reveal the physical conditions of star-forming gas over a range of star-forming galaxies. NGC 253 has been observed in four 1 GHz bands from 21 to 36 GHz at 6″ ˜ 100 pc) spatial and 3.5 km s-1 spectral resolution. In total we detect 19 transitions from 7 molecular and atomic species. We have targeted the metastable inversion transitions of ammonia (NH3) from (1, 1) to (5, 5) and the (9, 9) line, the 22.2 GHz water (H2O) ({6}16{--}{5}23) maser, and the 36.1 GHz methanol (CH3OH) ({4}-1{--}{3}0) maser. Using NH3 as a thermometer, we present evidence for uniform heating over the central kpc of NGC 253. The molecular gas is best described by a two kinetic temperature model with a warm 130 K and a cooler 57 K component. A comparison of these observations with previous ALMA results suggests that the molecular gas is not heated in photon-dominated regions or shocks. It is possible that the gas is heated by turbulence or cosmic rays. In the galaxy center we find evidence for NH3(3, 3) masers. Furthermore, we present velocities and luminosities of three water maser features related to the nuclear starburst. We partially resolve CH3OH masers seen at the edges of the bright molecular emission, which coincides with expanding molecular superbubbles. This suggests that the masers are pumped by weak shocks in the bubble surfaces.

  6. DETECTION OF GAMMA-RAY EMISSION FROM THE STARBURST GALAXIES M82 AND NGC 253 WITH THE LARGE AREA TELESCOPE ON FERMI

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bonamente, E.; Brigida, M.; Bruel, P.; Burnett, T. H.

    2010-01-01

    We report the detection of high-energy γ-ray emission from two starburst galaxies using data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been detected at significance levels of 6.8σ and 4.8σ, respectively, from sources positionally coincident with locations of the starburst galaxies M82 and NGC 253. The total fluxes of the sources are consistent with γ-ray emission originating from the interaction of cosmic rays with local interstellar gas and radiation fields and constitute evidence for a link between massive star formation and γ-ray emission in star-forming galaxies.

  7. Tests of star formation metrics in the low-metallicity galaxy NGC 5253 using ALMA observations of H30α line emission

    Science.gov (United States)

    Bendo, G. J.; Miura, R. E.; Espada, D.; Nakanishi, K.; Beswick, R. J.; D'Cruze, M. J.; Dickinson, C.; Fuller, G. A.

    2017-11-01

    We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of H30α (231.90 GHz) emission from the low-metallicity dwarf galaxy NGC 5253 to measure the star formation rate (SFR) within the galaxy and to test the reliability of SFRs derived from other commonly used metrics. The H30α emission, which originates mainly from the central starburst, yields a photoionizing photon production rate of (1.9 ± 0.3) × 1052 s-1 and an SFR of 0.087 ± 0.013 M⊙ yr-1 based on conversions that account for the low metallicity of the galaxy and for stellar rotation. Among the other star formation metrics we examined, the SFR calculated from the total infrared flux was statistically equivalent to the values from the H30α data. The SFR based on a previously published version of the H α flux that was extinction corrected using Paα and Paβ lines was lower than but also statistically similar to the H30α value. The mid-infrared (22 μm) flux density and the composite star formation tracer based on H α and mid-infrared emission give SFRs that were significantly higher because the dust emission appears unusually hot compared to typical spiral galaxies. Conversely, the 70 and 160 μm flux densities yielded SFRs lower than the H30α value, although the SFRs from the 70 μm and H30α data were within 1σ-2σ of each other. While further analysis on a broader range of galaxies is needed, these results are instructive of the best and worst methods to use when measuring SFR in low-metallicity dwarf galaxies like NGC 5253.

  8. Evidence for large-scale winds from starburst galaxies. I. The nature of the ionized gas in M82 and NGC 253

    International Nuclear Information System (INIS)

    Mccarthy, P.J.; Van breugel, W.; Heckman, T.; Maryland Univ., College Park)

    1987-01-01

    The results of long-slit spectroscopy and narrow-band imaging of M82 and NGC 253, the two nearest examples of FIR luminous galaxies believed to be undergoing intense bursts of star formation, are presented. The profile of the gas pressure in the emission-line filaments in M82 is derived and found to be in good agreement with the model of Chevalier and Clegg (1985) of a supernovae-driven wind from a starburst nucleus. Lower quality data from NGC 253 support the same interpretation. Analysis of the emission-line ratios suggests that the line-emitting gas may be heated by low-velocity shocks, although photoionization from dilute UV radiation from unusually hot stars in the central starburst may also be important. 56 references

  9. Structure of the Circumnuclear Region of Seyfert 2 Galaxies Revealed by RXTE Hard X-Ray Observations of NGC 4945

    Science.gov (United States)

    Madejski, G.; Zycki, P.; Done, C.; Valinia, A.; Blanco, P.; Rothschild, R.; Turek, B.

    2000-01-01

    NGC 4945 is one of the brightest Se.yfert galaxies on the sky at 100 keV, but is completely absorbed below 10 keV, implying an optical depth of the absorber to electron scattering of a few; its absorption column is probably the largest which still allows a direct view of the nucleus at hard X-ray energies. Our observations of it with the Rossi X-ray Timing Explorer (RXTE) satellite confirm the large absorption, which for a simple phenomenological fit using an absorber with Solar abundances implies a column of 4.5(sup 0.4, sub -0.4) x 10(exp 24) /sq cm. Using a a more realistic scenario (requiring Monte Carlo modeling of the scattering), we infer the optical depth to Thomson scattering of approximately 2.4. If such a scattering medium were to subtend a large solid angle from the nucleus, it should smear out any intrinsic hard X-ray variability on time scales shorter than the light travel time through it. The rapid (with a time scale of approximately a day) hard X-ray variability of NGC 4945 we observed with the RXTE implies that the bulk of the extreme absorption in this object does not originate in a parsec-size, geometrically thick molecular torus. Limits on the amount of scattered flux require that the optically thick material on parsec scales must be rather geometrically thin, subtending a half-angle < 10 deg. This is only marginally consistent with the recent determinations of the obscuring column in hard X-rays, where only a quarter of Seyfert 2s have columns which are optically thick, and presents a problem in accounting for the Cosmic X-ray Background primarily with AGN possessing the geometry as that inferred by us. The small solid angle of the obscuring material, together with the black hole mass (of approximately 1.4 x 10(exp 6) solar mass) from megamaser measurements. allows a robust determination of the source luminosity, which in turn implies that the source radiates at approximately 10% of the Eddington limit.

  10. The DiskMass Survey. VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy

    Science.gov (United States)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Schechtman-Rook, Andrew; Andersen, David R.; Swaters, Rob A.

    2013-09-01

    We present ionized-gas ([Oiii]λ5007 Å) and stellar kinematics (velocities and velocity dispersions) for 30 nearly face-on spiral galaxies out to as many as three K-band disk scale lengths (hR). These data have been derived from PPak integral-field-unit spectroscopy from 4980-5370 Å observed at a mean resolution of λ/Δλ = 7700 (σinst = 17 km s-1). These data are a fundamental product of our survey and will be used in companion papers to, e.g., derive the detailed (baryonic+dark) mass budget of each galaxy in our sample. Our presentation provides a comprehensive description of the observing strategy and data reduction, including a robust measurement and removal of shift, scale, and rotation effects in the data due to instrumental flexure. Using an in-plane coordinate system determined by fitting circular-speed curves to our velocity fields, we derive azimuthally averaged rotation curves and line-of-sight velocity dispersion (σLOS) and luminosity profiles for both the stars and [Oiii]-emitting gas. Along with a clear presentation of the data, we demonstrate: (1) The [Oiii] and stellar rotation curves exhibit a clear signature of asymmetric drift with a rotation difference that is 11% of the maximum rotation speed of the galaxy disk, comparable to measurements in the solar neighborhood in the Milky Way. (2) The e-folding length of the stellar velocity dispersion (hσ) is 2hR on average, as expected for a disk with a constant scale height and mass-to-light ratio, with a scatter that is notably smaller for massive, high-surface-brightness disks in the most luminous galaxies. (3) At radii larger than 1.5hR, σLOS tends to decline slower than the best-fitting exponential function, which may be due to an increase in the disk mass-to-light ratio, disk flaring, or disk heating by the dark-matter halo. (4) A strong correlation exists between the central vertical stellar velocity dispersion of the disks (σz,0) and their circular rotational speed at 2.2hR (V2.2h

  11. HST IMAGING OF DUST STRUCTURES AND STARS IN THE RAM PRESSURE STRIPPED VIRGO SPIRALS NGC 4402 AND NGC 4522: STRIPPED FROM THE OUTSIDE IN WITH DENSE CLOUD DECOUPLING

    International Nuclear Information System (INIS)

    Abramson, A.; Kenney, J.; Crowl, H.; Tal, T.

    2016-01-01

    We describe and constrain the origins of interstellar medium (ISM) structures likely created by ongoing intracluster medium (ICM) ram pressure stripping in two Virgo Cluster spirals, NGC 4522 and NGC 4402, using Hubble Space Telescope (HST) BVI images of dust extinction and stars, as well as supplementary H i, H α , and radio continuum images. With a spatial resolution of ∼10 pc in the HST images, this is the highest-resolution study to date of the physical processes that occur during an ICM–ISM ram pressure stripping interaction, ram pressure stripping's effects on the multi-phase, multi-density ISM, and the formation and evolution of ram-pressure-stripped tails. In dust extinction, we view the leading side of NGC 4402 and the trailing side of NGC 4522, and so we see distinct types of features in both. In both galaxies, we identify some regions where dense clouds are decoupling or have decoupled and others where it appears that kiloparsec-sized sections of the ISM are moving coherently. NGC 4522 has experienced stronger, more recent pressure and has the “jellyfish” morphology characteristic of some ram-pressure-stripped galaxies. Its stripped tail extends up from the disk plane in continuous upturns of dust and stars curving up to ∼2 kpc above the disk plane. On the other side of the galaxy, there is a kinematically and morphologically distinct extraplanar arm of young, blue stars and ISM above a mostly stripped portion of the disk, and between it and the disk plane are decoupled dust clouds that have not been completely stripped. The leading side of NGC 4402 contains two kiloparsec-scale linear dust filaments with complex substructure that have partially decoupled from the surrounding ISM. NGC 4402 also contains long dust ridges, suggesting that large parts of the ISM are being pushed out at once. Both galaxies contain long ridges of polarized radio continuum emission indicating the presence of large-scale, ordered magnetic fields. We propose that

  12. Centaurus A galaxy, type EO peculiar elliptical, also radio source

    Science.gov (United States)

    2002-01-01

    Centaurus A galaxy, type EO peculiar elliptical, also radio source. CTIO 4-meter telescope, 1975. NGC 5128, a Type EO peculiar elliptical galaxy in the constellation Centaurus. This galaxy is one of the most luminous and massive galaxies known and is a strong source of both radio and X-ray radiation. Current theories suggest that the nucleus is experiencing giant explosions involving millions of stars and that the dark band across the galactic disk is material being ejected outward. Cerro Toloto 4-meter telescope photo. Photo credit: National Optical Astronomy Observatories

  13. Early-type galaxies with extended HI reservoirs

    Science.gov (United States)

    Donovan Meyer, Jennifer

    2018-01-01

    I will present observations of NGC 404 and ESO 381-47, both early-type galaxies known for hosting extended HI rings and recent star formation in their outskirts. Thanks to the Green Bank Telescope, an instrument uniquely suited to observing diffuse, low column density HI around nearby galaxies, we report new measurements of the extent of the disk around NGC 404 as well as the presence of a large, coherent HI filament which appears to be accreting onto the ring surrounding the galaxy. We compare the environments of the two systems and interpret the potential utility of such gas-bearing field early-type galaxies as tracers of galaxy accretion and growth.

  14. Optical and near-infrared IFU spectroscopy of the nuclear region of the AGN-starburst galaxy NGC 7582

    Science.gov (United States)

    Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.

    2018-02-01

    NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.

  15. Atomic hydrogen bridge fueling NGC 4418 with gas from VV 655

    Science.gov (United States)

    Varenius, E.; Costagliola, F.; Klöckner, H.-R.; Aalto, S.; Spoon, H.; Martí-Vidal, I.; Conway, J. E.; Privon, G. C.; König, S.

    2017-11-01

    Context. The galaxy NGC 4418 harbours a compact (well as emission and absorption from atomic hydrogen. Gaussian distributions are fitted to observed HI emission and absorption spectra. We estimate the star formation rates (SFRs) of NGC 4418 and VV 655 from the 1.4 GHz radio emission and compare them with estimates from archival 70 μm Herschel observations. Results: An atomic HI bridge is seen in emission, connecting NGC 4418 to the nearby galaxy VV 655. An HI tail is also seen extending south-west from VV 655. While NGC 4418 is bright in continuum emission and seen in HI absorption, VV 655 is barely detected in the continuum, but shows bright HI emission (MHI 109 M⊙). We estimate SFRs from the 1.4 GHz continuum of 3.2 M⊙ yr-1 and 0.13 M⊙ yr-1 for NGC 4418 and VV 655, respectively. Systemic HI velocities of 2202 ± 20 km s-1 (emission) and 2105.4 ± 10 km s-1 (absorption) are measured for VV 655 and NGC 4418, respectively. Redshifted HI absorption is seen (vc = 2194.0 ± 4.4 km s-1) towards NGC 4418, suggesting gas infall. North-west of NGC 4418, we detect HI in emission, blueshifted (vc = 2061.9 ± 5.1 km s-1) with respect to NGC 4418, consistent with an outflow perpendicular to the galaxy disk. We derive a deprojected outflow speed of 178 km s-1, which, assuming a simple cylindrical model, gives an order-of-magnitude estimate of the HI mass outflow rate of 2.5 M⊙ yr-1. Conclusions: The morphology and velocity structure seen in HI is consistent with an interaction scenario where gas was transferred from VV 655 to NGC 4418. We argue that the galaxies have passed each other once, about 190 Myr ago, and that this interaction has caused the tidal HI bridge and HI tail seen today. Some gas is falling towards NGC 4418, and may fuel the activity in the centre. We interpret blueshifted HI-emission north-west of NGC 4418 as a continuation of the outflow previously reported on smaller scales, powered by star formation and/or black hole accretion in the centre. The

  16. STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Tan, Jonathan C.

    2009-01-01

    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of three-dimensional adaptive mesh refinement numerical simulations that follow both the global evolution on scales of ∼20 kpc and resolve down to scales ∼ H ≥ 100 cm -3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ∼140 Myr a large fraction of the gas in the disk has fragmented into clouds with masses ∼10 6 M sun and a mass spectrum similar to that of Galactic GMCs. The disk settles into a quasi-steady-state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ∼1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This helps to keep clouds only moderately gravitationally bound, with virial parameters of order unity. Many other observed GMC properties, such as mass surface density, angular momentum, velocity dispersion, and vertical distribution, can be accounted for in this simple model with no stellar feedback.

  17. The distribution of dark matter in galaxies. I. Models of spiral galaxies

    International Nuclear Information System (INIS)

    Lake, G.; Feinswog, L.

    1989-01-01

    The distribution of dark matter in galaxies is studied under the assumption of a constant mass-to-light ratio for the luminous components and an isothermal model for the halo. An analysis of 37 optical rotation curves for Sb and Sc galaxies and 16 H-I rotation curves have been performed in order to constrain the halo's core radius, r(c), and the asymptotic velocity, v(max). For the cases of the Scs NGC 2403, NGC 2903, and NGC 3198, limits of about 8 kpc for r(c) and about 170 km/s for v(max) are found. It is shown that high-quality data to 6.5-8 disk scale lengths is necessary to constrain the parameters. 24 refs

  18. The X-ray Power Density Spectrum of the Seyfert 2 Galaxy NGC 4945: Analysis and Application of the Method of Light Curve Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Martin; /SLAC

    2010-12-16

    The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from active galactic nuclei (AGN) complements spectral studies in giving us a view into the processes operating in accreting compact objects. An important line of investigation is the comparison of the PDS from AGN with those from galactic black hole binaries; a related area of focus is the scaling relation between time scales for the variability and the black hole mass. The PDS of AGN is traditionally modeled using segments of power laws joined together at so-called break frequencies; associations of the break time scales, i.e., the inverses of the break frequencies, with time scales of physical processes thought to operate in these sources are then sought. I analyze the Method of Light Curve Simulations that is commonly used to characterize the PDS in AGN with a view to making the method as sensitive as possible to the shape of the PDS. I identify several weaknesses in the current implementation of the method and propose alternatives that can substitute for some of the key steps in the method. I focus on the complications introduced by uneven sampling in the light curve, the development of a fit statistic that is better matched to the distributions of power in the PDS, and the statistical evaluation of the fit between the observed data and the model for the PDS. Using archival data on one AGN, NGC 3516, I validate my changes against previously reported results. I also report new results on the PDS in NGC 4945, a Seyfert 2 galaxy with a well-determined black hole mass. This source provides an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies differ. It is also an attractive object for placement on the black hole mass-break time scale relation. Unfortunately, with the available data on NGC 4945, significant uncertainties on the break frequency in its PDS remain.

  19. Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Context

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Robyn Deborah [Univ. of Colorado, Boulder, CO (United States)

    2008-01-01

    Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmological scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Lyα forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting completely

  20. Investigating early-type galaxy evolution with a multiwavelength approach. II. The UV structure of 11 galaxies with Swift-UVOT

    Science.gov (United States)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Uslenghi, M.; Trinchieri, G.; Wolter, A.

    2017-06-01

    Context. GALEX detected a significant fraction of early-type galaxies, in particular S0s, showing far-UV bright structures, sometimes involving an entire galaxy out to its outskirts. These features suggest the presence of either recent ongoing and/or prolonged star formation episodes, shedding new light on the evolution of these systems. Aims: We aim at understanding the evolutionary path[s] of these early-type galaxies and the mechanisms at the origin of their UV-bright structures. We investigate with a multiwavelength approach the link between the inner and outer galaxy regions of a set of 11 early-type galaxies that were selected because of their nearly passive stage of evolution in the nuclear region. Methods: This paper, second of a series, focuses on the information coming from the comparison between UV features detected by Swift-UVOT, which trace recent star formation, and the galaxy optical structure, which maps older stellar populations. We performed a surface photometric study of these early-type galaxies, observed with the Swift-UVOT UV filters W2 2030 Å λ0, M2 2231 Å λ0, W1 2634 Å λ0 and the UBV bands. BVRI photometry from other sources in the literature was also used. Our integrated magnitude measurements were analyzed and compared with corresponding values in the literature. We characterize the overall galaxy structure that best fits the UV and optical luminosity profiles using a single Sérsic law. Results: The galaxies NGC 1366, NGC 1426, NGC 3818, NGC 3962, and NGC 7192 show featureless luminosity profiles. Excluding NGC 1366, which has a clear edge-on disk (n ≈ 1-2), and NGC 3818, the remaining three galaxies have Sérsic's indices n ≈ 3-4 in the optical and a lower index in the UV. Bright ring- or arm-like structures are revealed by UV images and luminosity profiles of NGC 1415, NGC 1533, NGC 1543, NGC 2685, NGC 2974, and IC 2006. The ring- or arm-like structures differ from galaxy to galaxy. Sérsic indices of UV profiles for these

  1. A search for supernova remnants in the nearby spiral galaxy M 74 (NGC 628)

    Science.gov (United States)

    Sonbaş, E.; Akyüz, A.; Balman, Ş.; Özel, M. E.

    2010-07-01

    An optical search was carried out for supernova remnants (SNRs) in the Sc type nearby spiral galaxy M 74, using ground-based observations at the TUBITAK National Observatory (TUG, Antalya/Turkey) and the Special Astrophysics Observatory (SAO, Russia). Observations were supplemented by the spectral analysis of archived X-ray data from XMM-Newton and Chandra. The survey of M 74 covered ~9 arcmin2 with [S II], Hα, and their continuum filters. Interference filter images of M 74 were obtained the with the 1.5 m Russian Turkish Telescope (RTT150) at TUG and spectral data taken with the 6 m Bolsoi Azimuthal Telescope (BTA) at SAO. The emission nebulae with continuum-subtracted line ratio values of [S II]λλ6716,6731 /Hα ≥ 0.4 are identified as SNRs. Follow-up spectroscopy confirmed optical SNR identifications. We have identified nine new SNR candidates in M 74 with [S II]/Hα ≥ 0.4 as the basic criterion. The [S II]/Hα ratio ranges from 0.40 to 0.91 and Hα intensities from 2.8 × 10-15 erg cm-2 s-1 to 1.7 × 10-14 erg cm-2 s-1. We also present spectral follow-up observations of these SNR candidates, however, we are able to spectrally confirm only three of them (SNR2, SNR3, and SNR5). The lack of confirmation for the rest might come from contamination by the nearby H II emission regions, as well as from the inaccurate positioning of the long slit on these objects. In addition, we searched the XMM-Newton and Chandra Observatory archival data for the X-ray counterparts to the optically identified candidates. We find positional coincidence with only three SNR candidates, SNR1, SNR2, and SNR8. The spectrum of SNR2 yields a shock temperature of 10.8 keV with an ionization timescale of 1.6 × 1010 s cm-3, indicating a relatively young remnant in an early Sedov phase, which is not supported by our optical wavelength analysis. Given the high luminosity of 1039 erg s-1 and the characteristics of the X-ray spectrum, we favor an ultra luminous X-ray source interpretation for

  2. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  3. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  4. The gravitational interaction between N-body (star clusters) and hydrodynamic (ISM) codes in disk galaxy simulations

    International Nuclear Information System (INIS)

    Schroeder, M.C.; Comins, N.F.

    1986-01-01

    During the past twenty years, three approaches to numerical simulations of the evolution of galaxies have been developed. The first approach, N-body programs, models the motion of clusters of stars as point particles which interact via their gravitational potentials to determine the system dynamics. Some N-body codes model molecular clouds as colliding, inelastic particles. The second approach, hydrodynamic models of galactic dynamics, simulates the activity of the interstellar medium as a compressible gas. These models presently do not include stars, the effect of gravitational fields, or allow for stellar evolution and exchange of mass or angular momentum between stars and the interstellar medium. The third approach, stochastic star formation simulations of disk galaxies, allows for the interaction between stars and interstellar gas, but does not allow the star particles to move under the influence of gravity

  5. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC 3226?

    International Nuclear Information System (INIS)

    Appleton, P. N.; Bitsakis, T.; Alatalo, K.; Mundell, C.; Lacy, M.; Armus, L.; Charmandaris, V.; Duc, P.-A.; Lisenfeld, U.; Ogle, P.

    2014-01-01

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar ''Green Valley'' elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC 3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16 μm reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30 kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 × 10 7 M ☉ detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H 2 is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ∼0.04 M ☉ yr –1 averaged over the last 100 Myr. A mid-IR component to the spectral energy distribution (SED) contributes ∼20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC 3226's global UV-optical ''green'' colors via the resurgence of star formation in a ''red and dead'' galaxy. This form of ''cold accretion'' from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation

  6. Discovery of Candidate H2O Disk Masers in Active Galactic Nuclei and Estimations Of Centripetal Accelerations

    Science.gov (United States)

    Greenhill, Lincoln J.; Kondratko, Paul T.; Moran, James M.; Tilak, Avanti

    2009-12-01

    Based on spectroscopic signatures, about one-third of known H2O maser sources in active galactic nuclei (AGNs) are believed to arise in highly inclined accretion disks around central engines. These "disk maser candidates" are of interest primarily because angular structure and rotation curves can be resolved with interferometers, enabling dynamical study. We identify five new disk maser candidates in studies with the Green Bank Telescope, bringing the total number published to 30. We discovered two (NGC 1320, NGC 17) in a survey of 40 inclined active galaxies (v sys rotation speeds are 130-500 km s-1. Monitoring of three more rapidly rotating candidate disks (CG 211, NGC 6264, VV 340A) has enabled measurement of likely orbital centripetal acceleration, and estimation of central masses ((2-7) ×107 M sun) and mean disk radii (0.2-0.4 pc). Accelerations may ultimately permit estimation of distances when combined with interferometer data. This is notable because the three AGNs are relatively distant (10,000 km s-1 motion of the galaxies, would be small. As signposts of highly inclined geometries at galactocentric radii of ~0.1-1 pc, disk masers also provide robust orientation references that allow analysis of (mis)alignment between AGNs and surrounding galactic stellar disks, even without extensive interferometric mapping. We find no preference among published disk maser candidates to lie in high-inclination galaxies. This provides independent support for conclusions that in late-type galaxies, central engine accretion disks and galactic plane orientations are not correlated.

  7. Anisotropy in Dynamical Models of Elliptical Galaxy Dark Halos

    Science.gov (United States)

    Forestell, Amy; Gebhardt, K.

    2013-07-01

    Abstract (2,250 Maximum Characters): We discuss the orbital anisotropy results of axisymmetric orbit-superposition dynamical models of elliptical galaxies NGC 821 and NGC 4697. For NGC 821 stellar kinematics are used to determine the best-fitted dark halo (Forestell 2010), then we determine the orbital properties required for planetary nebulae to match the observed kinematic data (Romanowsky et al. 2003) in that assumed dark halo. For NGC 4697 we use both stellar and planetary nebula kinematics (Pinkney et al. 2003, Mendez et al. 2009) to model the galaxy dark halo. In both galaxies we find that the planetary nebulae, which are located at large radii, show radial anisotropy. This is consistent with the results of Dekel et al. (2005), who use disk galaxy merger simulations to show that large anisotropies can be created in the resulting elliptical galaxies and that this anisotropy in combination with the different density profile of a young population could explain how the low dispersions from planetary nebulae measurements are also consistent with typical dark matter halos.

  8. On the Mass-loss Rate of Massive Stars in the Low-metallicity Galaxies IC 1613, WLM, and NGC 3109

    Science.gov (United States)

    Tramper, F.; Sana, H.; de Koter, A.; Kaper, L.

    2011-11-01

    We present a spectroscopic analysis of Very Large Telescope/X-Shooter observations of six O-type stars in the low-metallicity (Z ~ 1/7 Z sun) galaxies IC 1613, WLM, and NGC 3109. The stellar and wind parameters of these sources allow us, for the first time, to probe the mass loss versus metallicity dependence of stellar winds at metallicities below that of the Small Magellanic Cloud (at Z ~ 1/5 Z sun) by means of a modified wind momentum versus luminosity diagram. The wind strengths that we obtain for the objects in WLM and NGC 3109 are unexpectedly high and do not agree with theoretical predictions. The objects in IC 1613 tend toward a higher than expected mass-loss rate, but remain consistent with predictions within their error bars. We discuss potential systematic uncertainties in the mass-loss determinations to explain our results. However, if further scrutinization of these findings point towards an intrinsic cause for this unexpected sub-SMC mass-loss behavior, implications would include a higher than anticipated number of Wolf-Rayet stars and Ib/Ic supernovae in low-metallicity environments, but a reduced number of long-duration gamma-ray bursts produced through a single-star evolutionary channel. Based on VLT/X-Shooter observations under program 085D.0741.

  9. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M

    2004-01-01

    HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY......HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY...

  10. Probing the cold and warm molecular gas in the Whirlpool Galaxy: Herschel SPIRE-FTS observations of the central region of M51 (NGC 5194)

    Science.gov (United States)

    Schirm, M. R. P.; Wilson, C. D.; Kamenetzky, J.; Parkin, T. J.; Glenn, J.; Maloney, P.; Rangwala, N.; Spinoglio, L.; Baes, M.; Boselli, A.; Cooray, A.; De Looze, I.; Fernández-Ontiveros, J. A.; Karczewski, O. Ł.; Wu, R.

    2017-10-01

    We present Herschel Spectral and Photometric Imaging Receiver (SPIRE)-Fourier Transform Spectrometer (FTS) intermediate-sampled mapping observations of the central ˜8 kpc (˜150 arcsec) of M51, with a spatial resolution of 40 arcsec. We detect four 12CO transitions (J = 4-3 to J = 7-6) and the [C I] 3P2-3P1 and 3P1-3P0 transitions. We supplement these observations with ground-based observations of 12CO J = 1-0 to J = 3-2 and perform a two-component non-local thermodynamic equilibrium analysis. We find that the molecular gas in the nucleus and centre regions has a cool component (Tkin ˜ 10-20 K) with a moderate but poorly constrained density (n(H2) ˜ 103-106 cm-3), as well as significant molecular gas in a warmer (Tkin ˜ 300-3000 K), lower density (n(H2) ˜ 101.6-102.5 cm-3) component. We compare our CO line ratios and calculated densities along with ratios of CO to total infrared luminosity to a grid of photon-dominated region (PDR) models and find that the cold molecular gas likely resides in PDRs with a field strength of G0 ˜ 102. The warm component likely requires an additional source of mechanical heating, from supernovae and stellar winds or possibly shocks produced in the strong spiral density wave. When compared to similar two-component models of other star-forming galaxies published as part of the Very Nearby Galaxies Survey (Arp 220, M82 and NGC 4038/39), M51 has the lowest density for the warm component, while having a warm gas mass fraction that is comparable to those of Arp 220 and M82, and significantly higher than that of NGC 4038/39.

  11. Enormous Disc of Cool Gas Surrounding the Nearby Powerful Radio Galaxy NGC 612 (PKS 0131-36)

    Science.gov (United States)

    2008-05-22

    of dark matter is still under debate (see e.g. Romanowsky et al. 2003; Humphrey et al. 2006), but our derived value of Menc/LB for NGC 612 is in good...2002, New Astronomy Review, 46, 313 Raimann D., Storchi-Bergmann T., Quintana H., Hunstead R., Wisotzki L., 2005, MNRAS, 364, 1239 Romanowsky A. J

  12. X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    International Nuclear Information System (INIS)

    Moran, Edward C.; Lehnert, Matthew D.; Helfand, David J.

    1999-01-01

    The infrared-luminous galaxy NGC 3256 is a classic example of a merger-induced nuclear starburst system. We find here that it is the most X-ray-luminous star-forming galaxy yet detected (L 0.5-10keV =1.6x10 42 ergs s-1). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a ''superwind'' which accounts for ∼20% of the observed soft X-ray emission. Analysis of X-ray spectral data from ASCA indicates this gas has a characteristic temperature of kT≅0.3 keV. Our model for the broadband X-ray emission of NGC 3256 contains two additional components: a warm thermal plasma (kT≅0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of α X ≅0.7. We discuss the energy budget for the two thermal plasmas and find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift. (c) (c) 1999. The American Astronomical Society

  13. Herschel's "Cold Debris Disks": Background Galaxies or Quiescent Rims of Planetary Systems?

    Science.gov (United States)

    Krivov, A. V.; Eiroa, C.; Loehne, T.; Marshall, J. P.; Montesinos, B.; DelBurgo, C.; Absil, O.; Ardila, D.; Augereau, J.-C.; Bayo, A.; hide

    2013-01-01

    Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around approx, 100 micron or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant-and in some cases extended-excess emission at 160 micron, which is larger than the 100 micron excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than approx. 100 micron, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but

  14. Playing with Positive Feedback: External Pressure-triggering of a Star-forming Disk Galaxy

    Science.gov (United States)

    Bieri, Rebekka; Dubois, Yohan; Silk, Joseph; Mamon, Gary A.

    2015-10-01

    In massive galaxies, the currently favored method for quenching star formation is via active galactic nuclei (AGN) feedback, which ejects gas from the galaxy using a central supermassive black hole. At high redshifts however, explanation of the huge rates of star formation often found in galaxies containing AGNs may require a more vigorous mode of star formation than is attainable by simply enriching the gas content of galaxies in the usual gravitationally driven mode that is associated with the nearby universe. Using idealized hydrodynamical simulations, we show that AGN-pressure-driven star formation potentially provides the positive feedback that may be required to generate the accelerated star formation rates observed in the distant universe.

  15. Non-instantaneous gas recycling and chemical evolution in N-body disk galaxies

    Czech Academy of Sciences Publication Activity Database

    Jungwiert, Bruno; Carraro, G.; Dalla Vecchia, C.

    2004-01-01

    Roč. 289, 3-4 (2004), s. 441-444 ISSN 0004-640X. [From observations to self-consistent modelling of the ISM in galaxies. Porto, 03.09.2002-05.09.2002] R&D Projects: GA ČR GP202/01/D075 Institutional research plan: CEZ:AV0Z1003909 Keywords : N-body simulations * galaxy evolution * gas recycling Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004

  16. A statistical study of giant molecular clouds traced by 13CO, C18O, CS, and CH3OH in the disk of NGC 1068 based on ALMA observations

    Science.gov (United States)

    Tosaki, Tomoka; Kohno, Kotaro; Harada, Nanase; Tanaka, Kunihiko; Egusa, Fumi; Izumi, Takuma; Takano, Shuro; Nakajima, Taku; Taniguchi, Akio; Tamura, Yoichi

    2017-04-01

    We present 1{^''.}4 (98 pc) resolution ALMA observations of 13CO(J = 1-0), C18O(J = 1-0), CS(J = 2-1), and CH3OH(JK = 2K-1K) molecular rotational lines in the central 1΄ (4.2 kpc) diameter region of NGC 1068 to study the physical and chemical properties of giant molecular clouds (GMCs) and to test whether these GMC-scale properties are linked to the larger-scale galactic environment. Using the derived 13CO cube, we have identified 187 high-significance (>8 σ) GMCs by employing the CLUMPFIND algorithm. The molecular gas masses of GMCs (M_^{13CO}), derived from the 13CO data, range from 1.8 × 104 M⊙ to 4.2 × 107 M⊙. A mass function of GMCs in NGC 1068 has been obtained for the first time at ∼100 pc resolution. We find the slope of the mass function γ = -1.25 ± 0.07 for a mass range of M_^{13CO} ≥ 105 M⊙. This is shallower than the GMCs in the disk regions of the Milky Way, M 51, and NGC 300. Further, we find that the high mass cut-off of the GMC mass function occurs at M_^{13CO} ˜ 6 × 107 M⊙, which is an order of magnitude larger than that in the nuclear bar region of M 51, indicating that the more massive clouds dominate the mass budget in NGC 1068. The observed C18O(J = 1-0)/13CO(J = 1-0) intensity ratios are found to be fairly uniform (0.27 ± 0.05) among the identified GMCs. In contrast, the CH3OH(JK = 2K-1K)/13CO(J = 1-0) ratios exhibit striking spatial variation across the disk, with the smallest values around the bar-end (<0.03), and larger ratios along the spiral arms (∼0.1-0.2). We find that GMCs with detectable methanol emission tend to have systematically larger velocity widths than those without methanol emission, suggesting that (relatively weak) shocks are responsible for the enhancement of the CH3OH/13CO ratios of GMCs in the disk of NGC 1068.

  17. REMOVING BIASES IN RESOLVED STELLAR MASS MAPS OF GALAXY DISKS THROUGH SUCCESSIVE BAYESIAN MARGINALIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Eric E. [Cerrada del Rey 40-A, Chimalcoyoc Tlalpan, Ciudad de México, C.P. 14630, México (Mexico); González-Lópezlira, Rosa A.; Bruzual A, Gustavo [Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, C.P. 58089, México (Mexico); Magris C, Gladis, E-mail: martinezgarciaeric@gmail.com [Centro de Investigaciones de Astronomía, Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of)

    2017-01-20

    Stellar masses of galaxies are frequently obtained by fitting stellar population synthesis models to galaxy photometry or spectra. The state of the art method resolves spatial structures within a galaxy to assess the total stellar mass content. In comparison to unresolved studies, resolved methods yield, on average, higher fractions of stellar mass for galaxies. In this work we improve the current method in order to mitigate a bias related to the resolved spatial distribution derived for the mass. The bias consists in an apparent filamentary mass distribution and a spatial coincidence between mass structures and dust lanes near spiral arms. The improved method is based on iterative Bayesian marginalization, through a new algorithm we have named Bayesian Successive Priors (BSP). We have applied BSP to M51 and to a pilot sample of 90 spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. By quantitatively comparing both methods, we find that the average fraction of stellar mass missed by unresolved studies is only half what previously thought. In contrast with the previous method, the output BSP mass maps bear a better resemblance to near-infrared images.

  18. THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zheng; Thilker, David A.; Heckman, Timothy M. [Department of Physics and Astronomy, Johns Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218 (United States); Meurer, Gerhardt R. [International Center for Radio Astronomy Research, The University of Western Australia, M468, 35 StirlingHighway, Crawley, WA 6009 (Australia); Burgett, W. S.; Huber, M. E.; Kaiser, N.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Chambers, K. C.; Metcalfe, N. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2015-02-20

    We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples of galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.

  19. INSIDE OUT AND UPSIDE DOWN: TRACING THE ASSEMBLY OF A SIMULATED DISK GALAXY USING MONO-AGE STELLAR POPULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Jonathan C.; Kazantzidis, Stelios; Weinberg, David H. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Guedes, Javiera [Institute for Astronomy, ETH Zuerich, Wolgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland); Callegari, Simone [Anthropology Institute and Museum, University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Mayer, Lucio [Institute for Theoretical Physics, University of Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2013-08-10

    We analyze the present day structure and assembly history of a high-resolution hydrodynamic simulation of the formation of a Milky-Way-(MW)-like disk galaxy, from the ''Eris'' simulation suite, dissecting it into cohorts of stars formed at different epochs of cosmic history. At z = 0, stars with t{sub form} < 2 Gyr mainly occupy the stellar spheroid, with the oldest (earliest forming) stars having more centrally concentrated profiles. The younger age cohorts populate disks of progressively longer radial scale lengths and shorter vertical scale heights. At a given radius, the vertical density profiles and velocity dispersions of stars vary smoothly as a function of age, and the superposition of old, vertically extended and young, vertically compact cohorts gives rise to a double-exponential profile like that observed in the MW. Turning to formation history, we find that the trends of spatial structure and kinematics with stellar age are largely imprinted at birth, or immediately thereafter. Stars that form during the active merger phase at z > 3 are quickly scattered into rounded, kinematically hot configurations. The oldest disk cohorts form in structures that are radially compact and relatively thick, while subsequent cohorts form in progressively larger, thinner, colder configurations from gas with increasing levels of rotational support. The disk thus forms ''inside out'' in a radial sense and ''upside down'' in a vertical sense. Secular heating and radial migration influence the final state of each age cohort, but the changes they produce are small compared to the trends established at formation. The predicted correlations of stellar age with spatial and kinematic structure are in good qualitative agreement with the correlations observed for mono-abundance stellar populations in the MW.

  20. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  1. A GREEN BANK TELESCOPE SURVEY FOR H I 21 cm ABSORPTION IN THE DISKS AND HALOS OF LOW-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Borthakur, Sanchayeeta; Tripp, Todd M.; Yun, Min S.; Meiring, Joseph D.; Bowen, David V.; York, Donald G.; Momjian, Emmanuel

    2011-01-01

    We present an H I 21 cm absorption survey with the Green Bank Telescope (GBT) of galaxy-quasar pairs selected by combining galaxy data from the Sloan Digital Sky Survey (SDSS) and radio sources from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. Our sample consists of 23 sight lines through 15 low-redshift foreground galaxy-background quasar pairs with impact parameters ranging from 1.7 kpc up to 86.7 kpc. We detected one absorber in the GBT survey from the foreground dwarf galaxy, GQ1042+0747, at an impact parameter of 1.7 kpc and another possible absorber in our follow-up Very Large Array (VLA) imaging of the nearby foreground galaxy UGC 7408. The line widths of both absorbers are narrow (FWHM of 3.6 and 4.8km s -1 ). The absorbers have sub-damped Lyα column densities, and most likely originate in the disk gas of the foreground galaxies. We also detected H I emission from three foreground galaxies including UGC 7408. Although our sample contains both blue and red galaxies, the two H I absorbers as well as the H I emissions are associated with blue galaxies. We discuss the physical conditions in the 21 cm absorbers and some drawbacks of the large GBT beam for this type of survey.

  2. Resolved H I Observations of Local Analogs to z ∼ 1 Luminous Compact Blue Galaxies: Evidence for Rotation-supported Disks

    Science.gov (United States)

    Rabidoux, Katie; Pisano, D. J.; Garland, C. A.; Guzmán, Rafael; Castander, Francisco J.; Wolfe, Spencer A.

    2018-01-01

    While bright, blue, compact galaxies are common at z∼ 1, they are relatively rare in the local universe, and their evolutionary paths are uncertain. We have obtained resolved H I observations of nine z∼ 0 luminous compact blue galaxies (LCBGs) using the Giant Metrewave Radio Telescope and Very Large Array in order to measure their kinematic and dynamical properties and better constrain their evolutionary possibilities. We find that the LCBGs in our sample are rotating galaxies that tend to have nearby companions, relatively high central velocity dispersions, and can have disturbed velocity fields. We calculate rotation velocities for each galaxy by measuring half of the velocity gradient along their major axes and correcting for inclination using axis ratios derived from SDSS images of each galaxy. We compare our measurements to those previously made with single dishes and find that single-dish measurements tend to overestimate LCBGs’ rotation velocities and H I masses. We also compare the ratio of LCBGs’ rotation velocities and velocity dispersions to those of other types of galaxies and find that LCBGs are strongly rotationally supported at large radii, similar to other disk galaxies, though within their half-light radii the {V}{rot}/σ values of their H I are comparable to stellar {V}{rot}/σ values of dwarf elliptical galaxies. We find that LCBGs’ disks on average are gravitationally stable, though conditions may be conducive to local gravitational instabilities at the largest radii. Such instabilities could lead to the formation of star-forming gas clumps in the disk, resulting eventually in a small central bulge or bar.

  3. The Peculiar Filamentary H i Structure of NGC 6145

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Enci; Kong, Xu; Mou, Guobin [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Jing [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Guo, Fulai; Lin, Lin; Li, Cheng; Xiao, Ting, E-mail: ecwang16@ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Astronomical Society, 80 Nandan Road, Shanghai 200030 (China)

    2017-08-01

    In this paper, we report the peculiar H i morphology of the cluster spiral galaxy NGC 6145, which has a 150 kpc H i filament on one side that is nearly parallel to its major axis. This filament is made up of several H i clouds and the diffuse H i gas between them, with no optical counterparts. We compare its H i distribution with other one-sided H i distributions in the literature and find that the overall H i distribution is very different from the typical tidal and ram-pressure stripped H i shape, and that its morphology is inconsistent with that of a pure accretion event. Only ∼30% of the total H i gas is anchored on the stellar disk, while most of the H i gas forms the filament in the west. At a projected distance of 122 kpc, we find a massive elliptical companion (NGC 6146) with extended radio emission whose axis points to an H i gap in NGC 6145. The velocity of the H i filament shows an overall line-of-sight motion of 80–180 km s{sup −1} with respect to NGC 6145. Using the long-slit spectra of NGC 6145 along its major stellar axis, we find that some outer regions show enhanced star formation, while in contrast, almost no star formation activities are found in its center (<2 kpc). Pure accretion, tidal, or ram-pressure stripping are not likely to produce the observed H i filament. An alternative explanation is the jet stripping from NGC 6146, although direct evidence for a jet-cold gas interaction has not been found.

  4. Unveiling the sources of disk heating in spiral galaxies with the CALIFA survey

    NARCIS (Netherlands)

    Pinna, F.; Falcón-Barroso, J.; Martig, M.; van de Ven, G.; Lyubenova, M.; Leaman, R.

    The stellar velocity ellipsoid (SVE) quantifies the amount of velocity dispersion in the vertical, radial and azimuthal directions. Since different disk heating mechanisms (e.g. spiral arms, giant molecular clouds, mergers, etc) affect these components differently, the SVE can constrain the sources

  5. The DiskMass Survey : IV. The Dark-matter-dominated Galaxy UGC 463

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Martinsson, Thomas P. K.; Swaters, Robert A.; Schechtman-Rook, Andrew

    2011-01-01

    We present a detailed and unique mass budget for the high surface brightness galaxy UGC 463, showing it is dominated by dark matter (DM) at radii beyond one scale length (h(R)) and has a baryonic-to-DM mass ratio of approximately 1:3 within 4.2h(R). Assuming a constant scale height (h(z); calculated

  6. The DiskMass Survey. IV. The Dark-matter-dominated Galaxy UGC 463

    NARCIS (Netherlands)

    Westfall, Kyle B.; Bershady, Matthew A.; Verheijen, Marc A. W.; Andersen, David R.; Martinsson, Thomas P. K.; Swaters, Robert A.; Schechtman-Rook, Andrew

    2011-01-01

    We present a detailed and unique mass budget for the high surface brightness galaxy UGC 463, showing it is dominated by dark matter (DM) at radii beyond one scale length (hR ) and has a baryonic-to-DM mass ratio of approximately 1:3 within 4.2hR . Assuming a constant scale height (hz ; calculated

  7. The structure of galactic disks - Studying late-type spiral galaxies using SDSS

    NARCIS (Netherlands)

    Pohlen, M.; Trujillo, I.

    Using imaging data from the SDSS survey, we present the g' and r' radial stellar light distribution of a complete sample of similar to 90 face-on to intermediate inclined, nearby, late-type (Sb-Sdm) spiral galaxies. The surface brightness profiles are reliable (1s uncertainty less than 0.2 mag) down

  8. Local anti-correlation between star-formation rate and gas-phase metallicity in disk galaxies

    Science.gov (United States)

    Sánchez Almeida, J.; Caon, N.; Muñoz-Tuñón, C.; Filho, M.; Cerviño, M.

    2018-02-01

    Using a representative sample of 14 star-forming dwarf galaxies in the local Universe, we show the existence of a spaxel-to-spaxel anti-correlation between the index N2 ≡ log ([NII]λ6583/Hα) and the Hα flux. These two quantities are commonly employed as proxies for gas-phase metallicity and star formation rate (SFR), respectively. Thus, the observed N2 to Hα relation may reflect the existence of an anti-correlation between the metallicity of the gas forming stars and the SFR it induces. Such an anti-correlation is to be expected if variable external metal-poor gas fuels the star-formation process. Alternatively, it can result from the contamination of the star-forming gas by stellar winds and SNe, provided that intense outflows drive most of the metals out of the star-forming regions. We also explore the possibility that the observed anti-correlation is due to variations in the physical conditions of the emitting gas, other than metallicity. Using alternative methods to compute metallicity, as well as previous observations of HII regions and photoionization models, we conclude that this possibility is unlikely. The radial gradient of metallicity characterizing disk galaxies does not produce the correlation either.

  9. CHANDRA observations of the NGC 1550 galaxy group: Implication for the temperature and entropy profiles of 1 keV galaxy groups

    DEFF Research Database (Denmark)

    Sun, M.; Forman, W.; Vikhlinin, A.

    2003-01-01

    is remarkably similar to those of two other 1 keV groups with accurate temperature determination. The temperature begins to decline at 0.07r(vir) - 0.1r(vir), while in hot clusters the decline begins at or beyond 0.2rvir. Thus, there are at least some 1 keV groups that have temperature profiles significantly...... different from those of hot clusters, which may reflect the role of nongravitational processes in intracluster medium/intergalactic medium evolution. NGC 1550 has no isentropic core in its entropy pro. le, in contrast to the predictions of "entropy floor'' simulations. We compare the scaled entropy profiles...

  10. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  11. NO EVIDENCE FOR CLASSICAL CEPHEIDS AND A NEW DWARF GALAXY BEHIND THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Pietrzyński, G.; Wyrzykowski, Ł.; Poleski, R.; Ulaczyk, K.; Skowron, J.; Mróz, P.; Pawlak, M.; Kozłowski, S. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2015-11-10

    Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS), we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l ≈ −27° and recently tentatively classified as classical Cepheids belonging to, hence claimed, a dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all, and the third one with a period of 5.695 days and a nearly sinusoidal light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the K{sub s}-band light curve of the fourth star indicate that it is very likely that none of them is a Cepheid and, thus there is no evidence for a background dwarf galaxy. Our observations show that great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light curves, especially with a small number of measurements. We also provide a sample of high-amplitude spotted stars with periods of a few days that can mimic pulsations and even eclipses.

  12. Optical Observations of X-ray Bright, Optically Normal Galaxies

    Science.gov (United States)

    Sadun, Alberto C.; Aryan, N. S.; Ghosh, K. K.

    2007-05-01

    X-ray bright, optically normal galaxies (XBONGs) are galaxies that seem to have normal spectra and morphology, but are relatively bright x-ray sources. The large ratio of the x-ray to optical emission suggests that some activity, similar to that of active galactic nuclei (AGN), is occurring. Since the galaxies do not show any obvious sign of nuclear activity in their optical spectra, one possible explanation is that these galaxies do not have an optically thick accretion disk at small radii, as previously assumed. Previous data for NGC 7626 classifies it as an XBONG, and so we are studying optical features of this galaxy in order to determine better its features. After confirming an x-ray jet, we are now comparing this to optical features that we have found, including warped dust lanes and a possible optical jet.

  13. Star formation histories in NGC 147 and NGC 185

    Science.gov (United States)

    Hamedani Golshan, R.; Javadi, A.; van Loon, J. Th

    2017-06-01

    NGC 147 and NGC 185 are two of the most massive satellites of the Andromeda galaxy (M 31). With similar mass and morphological type dE, they possess different amounts of interstellar gas and tidal distortion. The question therefore is, how do their histories compare? We present the first reconstruction of the star formation histories of NGC 147 and NGC 185 using long-period variable stars (LPVs). LPVs are low- to intermediate-mass stars at the asymptotic giant branch, which their luminosity is related to their birth mass. Combining near-infrared photometry with stellar evolution models, we construct the mass function and hence the star formation history. For NGC 185 we found that the main epoch of star formation occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate. In the case of NGC 147, the star formation rate peaked only 7 Gyr ago, staying intense until ∼ 3 Gyr ago, but no star formation has occurred for at least 300 Myr. Despite their similar masses, NGC 147 has evolved more slowly than NGC 185 initially, but more dramatically in more recent times.

  14. Instability of counter-rotating stellar disks

    Science.gov (United States)

    Hohlfeld, R. G.; Lovelace, R. V. E.

    2015-09-01

    We use an N-body simulation, constructed using GADGET-2, to investigate an accretion flow onto an astrophysical disk that is in the opposite sense to the disk's rotation. In order to separate dynamics intrinsic to the counter-rotating flow from the impact of the flow onto the disk, we consider an initial condition in which the counter-rotating flow is in an annular region immediately exterior the main portion of the astrophysical disk. Such counter-rotating flows are seen in systems such as NGC 4826 (known as the "Evil Eye Galaxy"). Interaction between the rotating and counter-rotating components is due to two-stream instability in the boundary region. A multi-armed spiral density wave is excited in the astrophysical disk and a density distribution with high azimuthal mode number is excited in the counter-rotating flow. Density fluctuations in the counter-rotating flow aggregate into larger clumps and some of the material in the counter-rotating flow is scattered to large radii. Accretion flow processes such as this are increasingly seen to be of importance in the evolution of multi-component galactic disks.

  15. A characteristic oxygen abundance gradient in galaxy disks unveiled with CALIFA

    Czech Academy of Sciences Publication Activity Database

    Sanchez, S.F.; Rosales-Ortega, F.F.; Iglesias-Paramo, J.; Molla, M.; Barrera-Ballesteros, J.; Marino, R.A.; Pérez, E.; Sanchez-Blazquez, P.; Gonzalez Delgado, R.; Jungwiert, Bruno

    2014-01-01

    Roč. 563, March (2014), A49/1-A49/25 ISSN 0004-6361 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100031241; Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100031201 Program:M Institutional support: RVO:67985815 Keywords : HII regions * galaxies * ISM: abundances Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  16. Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies .4. Using color profiles to study stellar and dust content of galaxies

    NARCIS (Netherlands)

    deJong, RS

    The stellar and dust content of spiral galaxies as function of radius has been investigated using near-infrared and optical broadband surface photometry of 86 face-on spiral galaxies. Colors of galaxies correlate with the azimuthally averaged local surface brightness both within and among galaxies,

  17. High spatial resolution mid-infrared spectroscopy of the starburst galaxies NGC3256, IIZw 40 and Henize 2-10

    NARCIS (Netherlands)

    Martin-Hernandez, N. L.; Schaerer, D.; Peeters, E.; Tielens, A. G. G. M.; Sauvage, M.

    Aims. In order to show the importance of high spatial resolution observations of extra-galactic sources when compared to observations obtained with larger apertures such as ISO, we present N-band spectra (8-13 mu m) of some locations in three starburst galaxies. In particular, we show the two

  18. Three-dimensional simulations of supernovae dominated interstellar media in disk galaxies

    International Nuclear Information System (INIS)

    Cioffi, D.F.

    1985-01-01

    Evolution of the interstellar media of spiral galaxies was studied, assuming that their dynamical and thermal properties are dominated by supernova remnants (SNRs). To do this, a computer simulation was developed that uses standard SNR evolutionary solutions (Sedov-Taylor, pressure-modified snowplow) to redistribute mass and energy throughout a rectangular, three-level grid which models the interstellar medium (ISM). This comprehensive treatment includes bremsstrahlung or metal cooling, the creation and evaporation of clouds, mass injection and return from a galactic halo, multiple SNRs, and internally determined SNR lifetimes. The importance of spatially correlating supernovae sites, which can increase the global evolution rate of the (ISM), is confirmed. The simulations of primeval (zero metal abundance) galaxies revealed that the enhancement ability of bremsstrahlung-cooled SNR to transport mass can continually agitate the ISM, preventing the establishment of long-lived tunnel networks (i.e., hot rarefied volumes). This demonstrated the inadequacy of porosity theory for predicting the topology of the ISM, because it does not account for mass transport

  19. Chandra Studies of Nearby Radio and Seyfert Galaxies

    Science.gov (United States)

    Wilson, A. S.

    2001-09-01

    I shall describe some of the results of a Chandra ACIS program on the extended, universally bi-polar, X-ray emission of nearby radio galaxies and Seyfert galaxies, with emphasis on the diversity of the radiation mechanisms involved and the implications for our understanding of the AGN phenomenon. a) Radio galaxies. The X-ray emission from the hot spots of Cygnus A are synchrotron self-Compton emission from the synchrotron radio emitting electrons in a magnetic field which is close to equipartition (the papers by Young et al. and Smith et al. describe our Chandra results on the nucleus and cluster gas of Cygnus A, respectively). The X-ray knots of the M87 jet are almost certainly synchrotron radiation, as judged by their steep spectra. Preliminary results of a long integration on the Virgo cluster ICM will be presented. The X-ray radiation mechanism of the jet and western hot spot of Pictor A remains uncertain, with evidence favoring synchrotron radiation and bulk relativistic outflow of the jet and, remarkably, the western hot spot. b) Seyfert galaxies. For the Circinus galaxy, NGC 1068 and NGC 4151, the bulk of the X-ray emitting gas is photoionized by the nucleus. There is some evidence for thermal plasma emission powered by the starburst in Circinus and by the jet-driven outflows in NGC 1068. In M51, the bi-polar nuclear lobes previously found in radio continuum and optical line emission show up in X-rays as thermal plasma emission from shocked gas with kT ~ 0.5 keV. The nucleus is obscured by a column density in excess of 1024 cm-2 (see paper by Terashima et al.). In NGC 4258, the X-rays (which are thermal plasma emission from gas with kT ~ 0.3 - 0.6 keV) are dominated by the ``anomalous arms''. These arms represent dense gas in the galaxy disk shocked by mass motions driven into the low density halo gas (which then collides with the disk) by the out-of-disk radio jet. The extended X-ray emission powered by active galaxies thus depends on the relative

  20. The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261*

    Science.gov (United States)

    Kuzma, P. B.; Da Costa, G. S.; Mackey, A. D.

    2018-01-01

    We present a second set of results from a wide-field photometric survey of the environs of Milky Way globular clusters. The clusters studied are NGC 1261, NGC 1851 and NGC 5824: all have data from the Dark Energy Camera on the Blanco 4 m telescope. NGC 5824 also has data from the Magellan Clay telescope with MegaCam. We confirm the existence of a large diffuse stellar envelope surrounding NGC 1851 of size at least 240 pc in radius. The radial density profile of the envelope follows a power-law decline with index γ = -1.5 ± 0.2 and the projected shape is slightly elliptical. For NGC 5824, there is no strong detection of a diffuse stellar envelope, but we find the cluster is remarkably extended and is similar in size (at least 230 pc in radius) to the envelope of NGC 1851. A stellar envelope is also revealed around NGC 1261. However, it is notably smaller in size with radius ∼105 pc. The radial density profile of the envelope is also much steeper with γ = -3.8 ± 0.2. We discuss the possible nature of the diffuse stellar envelopes, but are unable to draw definitive conclusions based on the current data. NGC 1851, and potentially NGC 5824, could be stripped dwarf galaxy nuclei, akin to the cases of ω Cen, M54 and M2. On the other hand, the different characteristics of the NGC 1261 envelope suggest that it may be the product of dynamical evolution of the cluster.

  1. NGC 1614: A Laboratory for Starburst Evolution

    Science.gov (United States)

    Alonso-Herrero, A.; Engelbracht, C. W.; Rieke, M. J.; Rieke, G. H.; Quillen, A. C.

    2000-01-01

    The modest extinction and reasonably face-on viewing geometry make the luminous infrared galaxy NGC 1614 an ideal laboratory for study of a powerful starburst. HST/NICMOS observations show: (1) deep CO stellar absorption, tracing a starburst nucleus about 45 pc in diameter; (2) surrounded by an approx. 600 pc diameter ring of supergiant H II regions revealed in Pa-alpha line emission; (3) lying within a molecular ring indicated by its extinction shadow in H - K; and (4) all at the center of a disturbed spiral galaxy. The luminosities of the giant H II regions in the ring axe extremely high, an order of magnitude brighter than 30 Doradus; very luminous H II regions, comparable with 30 Dor, are also found in the spiral arms of the galaxy. Luminous stellar clusters surround the nucleus and lie in the spiral arms, similar to clusters observed in other infrared luminous and ultraluminous galaxies. The star forming activity may have been initiated by a merger between a disk galaxy and a companion satellite, whose nucleus appears in projection about 300 pc to the NE of the nucleus of the primary galaxy. The relation of deep stellar CO bands to surrounding ionized gas ring to molecular gas indicates that the luminous starburst started in the nucleus and is propagating outward into the surrounding molecular ring. This hypothesis is supported by evolutionary starburst modeling that shows that the properties of NGC 1614 can be fitted with two short-lived bursts of star formation separated by 5 Myr (and by inference by a variety of models with a similar duration of star formation). The total dynamical mass of the starburst region of 1.3 x 10(exp 9) solar masses is mostly accounted for by the old pre-starburst stellar population. Although our starburst models use a modified Salpeter initial mass function (turning over near one solar mass), the tight mass budget suggests that the IMF may contain relatively more 10 - 30 solar masses stars and fewer low mass stars than the

  2. Companions of Bright Barred Shapley Ames Galaxies

    OpenAIRE

    Garcia-Barreto, J. Antonio; Carrillo, Rene; Vera-Villamizar, Nelson

    2003-01-01

    Companion galaxy environment for a subset of 78 bright and nearby barred galaxies from the Shapley Ames Catalog is presented. Among spiral barred galaxies there are Seyfert galaxies, galaxies with circumnuclear structures, galaxies not associated with any large scale galaxy cloud structure, galaxies with peculiar disk morphology (crooked arms) and galaxies with normal disk morphology; the list includes all Hubble types. The companion galaxy list includes number of companion galaxies within 20...

  3. MAPPING THE SPATIAL DISTRIBUTION OF DUST EXTINCTION IN NGC 959 USING BROADBAND VISIBLE AND MID-INFRARED FILTERS

    International Nuclear Information System (INIS)

    Tamura, K.; Jansen, R. A.; Windhorst, R. A.

    2009-01-01

    We present a method to estimate and map the two-dimensional distribution of dust extinction in the late-type spiral galaxy NGC 959 from the theoretical and observed flux ratio of optical V and mid-IR (MIR) 3.6 μm images. Our method is applicable to both young and old stellar populations for a range of metallicities, and is not restricted to lines of sight toward star-formation (SF) regions. We explore this method using a pixel-based analysis on images of NGC 959 obtained in the V band at the Vatican Advanced Technology Telescope and at 3.6 μm (L band) with Spitzer/Infrared Array Camera. We present the original and extinction corrected Galaxy Evolution Explorer (GALEX) far-UV (FUV) and near-UV (NUV) images, as well as optical UBVR images of NGC 959. While the dust lanes are not clearly evident at GALEX resolution, our dust map clearly traces the dust that can be seen silhouetted against the galaxy's disk in the high-resolution Hubble Space Telescope (HST) images of NGC 959. The advantages of our method are (1) it only depends on two relatively common broadband images in the optical V band and in the MIR at 3.6 μm (but adding a near-UV band improves its fidelity); and (2) it is able to map the two-dimensional spatial distribution of dust within a galaxy. This powerful tool could be used to measure the detailed distribution of dust extinction within higher redshift galaxies to be observed with, e.g., the Hubble Space Telescope (HST)/WFC3 (optical near-IR) and James Webb Space Telescope (mid-IR), and to distinguish properties of dust within galaxy bulges, spiral arms, and inter-arm regions.

  4. UNCOVERING THE NUCLEUS CANDIDATE FOR NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Günthardt, G. I.; Camperi, J. A. [Observatorio Astronómico, Universidad Nacional de Córdoba (Argentina); Agüero, M. P. [Observatorio Astronómico, Universidad Nacional de Córdoba, and CONICET (Argentina); Díaz, R. J.; Gomez, P. L.; Schirmer, M. [Gemini Observatory, AURA (United States); Bosch, G., E-mail: gunth@oac.uncor.edu, E-mail: camperi@oac.uncor.edu, E-mail: mpaguero@oac.uncor.edu, E-mail: rdiaz@gemini.edu, E-mail: pgomez@gemini.edu, E-mail: mschirmer@gemini.edu, E-mail: guille@fcaglp.unlp.edu.ar [Instituto de Astrofísica de La Plata (CONICET-UNLP) (Argentina)

    2015-11-15

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H{sub 2} rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this

  5. Gradients of Stellar Population Properties and Evolution Clues in a Nearby Galaxy M101

    Science.gov (United States)

    Lin, Lin; Zou, Hu; Kong, Xu; Lin, Xuanbin; Mao, Yewei; Cheng, Fuzhen; Jiang, Zhaoji; Zhou, Xu

    2013-06-01

    Multiband photometric images from ultraviolet and optical to infrared are collected to derive spatially resolved properties of the nearby Scd-type galaxy M101. With evolutionary stellar population synthesis models, two-dimensional distributions and radial profiles of age, metallicity, dust attenuation, and star formation timescale in the form of the Sandage star formation history are obtained. When fitting with the models, we use the IRX-A FUV relation, found to depend on a second parameter of birth rate b (ratio of present- and past-averaged star formation rates), to constrain the dust attenuation. There are obvious parameter gradients in the disk of M101, which supports the theory of an "inside-out" disk growth scenario. Two distinct disk regions with different gradients of age and color are discovered, similar to another late-type galaxy, NGC 628. The metallicity gradient of the stellar content is flatter than that of H II regions. The stellar disk is optically thicker inside than outside and the global dust attenuation of this galaxy is lower compared with galaxies of similar and earlier morphological type. We note that a variational star formation timescale describes the real star formation history of a galaxy. The timescale increases steadily from the center to the outskirt. We also confirm that the bulge in this galaxy is a disk-like pseudobulge, whose evolution is likely to be induced by some secular processes of the small bar which is relatively young, metal-rich, and contains much dust.

  6. THE MASS DISTRIBUTION AND M/L RATIOS IN NGC 5953/5954

    International Nuclear Information System (INIS)

    Hernández Toledo, H. M.; Moreno, E.; García-Barreto, J. A.

    2013-01-01

    In this first paper, we combine a structural analysis of the near-IR surface brightness profiles and [N II] rotation curves for the galaxies in the pair NGC 5953/5954 to model the mass distribution in each member by using two independent axisymmetric analytical mass models: (1) a standard model given by the sum of a spherical bulge with the Sérsic law, a stellar exponential disk, and a cold dark matter halo represented by the improved fitting formula of Navarro et al.; and (2) a simple model given by the sum of a spherical bulge, a finite oblate spheroid representing the disk, and a spherical dark halo, all three mass components with simple density laws. In our surface brightness fits, a central luminous source is considered in both galaxies. We obtained K-band M/L ratios, Y D , Y B , for the disks and bulges, and total masses for each mass component in both galaxies. With the standard model we find in NGC 5953, (Y D ,Y B ) = (0.29 -0.29 +1 , 0.37 ± 0.03) M ☉ /L ☉ , and in NGC 5954, (Y D ,Y B ) = (0.88 ± 0.18, 0.21 ± 0.09) M ☉ /L ☉ . Corresponding values found with the simple model are (Y D ,Y B ) = (1.41 ± 0.15, 0.29 ± 0.04) M ☉ /L ☉ and (Y D ,Y B ) = (0.51 ± 0.05, 0.52 -0.12 +0.23 ) M ☉ /L ☉ . Our M/L estimates are compared with predictions from other methods in the literature, finding reasonable agreement. The dark halos estimated using the simple model have a small mass, of the order of 10 7 M ☉ , within the maximum distance in the rotation velocity data

  7. Damped Lyman-alpha absorption by disk galaxies with large redshifts. III. Intermediate-resolution spectroscopy

    International Nuclear Information System (INIS)

    Turnshek, D.A.; Wolfe, A.M.; Lanzetta, K.M.; Briggs, F.H.; Cohen, R.D.

    1989-01-01

    New intermediate-resolution spectroscopy for six members of a sample of 68 moderate- to high-redshift QSOs is presented. Evidence is reported which indicates that seven strong absorption features in the QSO spectra are due to damped Ly-alpha absorption. A standard curve-of-growth analysis on five of the damped systems is performed, and relevant properties are tabulated and discussed. Six of the seven damped Ly-alpha systems have H I column densities of 2 x 10 to the 20th/sq cm or larger, while the remaining system has an H I column density of about 10 to the 20th/sq cm. It is suggested that damped Ly-alpha systems arise when a sight line intercepts a high-redshift protogalaxy disk containing a quiescent cloud component characterized by high column density and low effective velocity dispersion. At the same time, the sight line usually intercepts a broader turbulent component, which is identified as the halo, characterized by much lower column density and higher effective velocity dispersion. 42 refs

  8. Illuminating the Disk/Corona/Jet Connection in NLS1 Galaxies

    Science.gov (United States)

    Brenneman, L.

    2017-10-01

    We report on the 200-ks NuSTAR observation of the narrow-line Seyfert 1 (NLS1) AGN, PMN J0948+0022, executed simultaneously with an 80-ks XMM-Newton observation in 2016. PMN J0948+0022 was chosen because it is one of seven known, powerfully-jetted radio-loud (RL) NLS1s that have been observed with Fermi. We will detail our progress toward meeting the following campaign objectives with the analysis of these datasets: (1) Confirming the presence of the soft excess and look for any evidence of reflection, either in Fe K emission or the Compton hump above 10 keV; (2) Determining the correct spectral model across the entire X-ray bandpass (e.g., Comptonization vs. blurred reflection for the soft excess); (3) Measuring the coronal parameters (temperature, optical depth, compactness) by constraining the high-energy cutoff of the power-law and the low-energy UV/optical data simultaneously; (4) Looking for any correlations between the corona, jet and accretion properties by examining radio and Fermi monitoring of the source contemporaneous with the X-ray and UV/optical data and comparing fits to pure disk/corona models vs. jet models; (5) Furthering our understanding of the jet emission mechanism(s) in RLNLS1s by adding new information to the SED modeling of this source.

  9. The Optical Structure of the Starburst Galaxy M82. I. Dynamics of the Disk and Inner-Wind

    Science.gov (United States)

    Westmoquette, M. S.; Smith, L. J.; Gallagher, J. S., III; Trancho, G.; Bastian, N.; Konstantopoulos, I. S.

    2009-05-01

    rotation axis of the ionized emission-line gas is offset from the stellar rotation axis and the photometric major axis by ~12°, not only within the nuclear regions but over the whole inner 2 kpc of the disk. This attests to the perturbations introduced from M82's past interactions within the M81 group. Finally, finding a turn-over in the stellar and ionized gas rotation curves on both sides of the galaxy indicates that our sight line, in places, extends at least half way through disk, and conflicts with the high levels of obscuration usually associated with the nuclear regions of M82. Based on observations with the Gemini and WIYN telescopes.

  10. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    Science.gov (United States)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  11. Active galactic nuclei, neutrinos, and interacting cosmic rays in NGC 253 and NGC 1068

    Energy Technology Data Exchange (ETDEWEB)

    Yoast-Hull, Tova M.; Zweibel, Ellen G. [Department of Physics, University of Wisconsin-Madison, WI 53706 (United States); Gallagher III, J. S. [Department of Astronomy, University of Wisconsin-Madison, WI 53706 (United States); Everett, John E., E-mail: yoasthull@wisc.edu [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, IL 60208 (United States)

    2014-01-10

    The galaxies M82, NGC 253, NGC 1068, and NGC 4945 have been detected in γ-rays by Fermi. Previously, we developed and tested a model for cosmic-ray interactions in the starburst galaxy M82. Now, we aim to explore the differences between starburst and active galactic nucleus (AGN) environments by applying our self-consistent model to the starburst galaxy NGC 253 and the Seyfert galaxy NGC 1068. Assuming a constant cosmic-ray acceleration efficiency by supernova remnants with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations, predict the radio and γ-ray spectra, and compare with published measurements. We find that our models easily fit the observed γ-ray spectrum for NGC 253 while constraining the cosmic-ray source spectral index and acceleration efficiency. However, we encountered difficultly modeling the observed radio data and constraining the speed of the galactic wind and the magnetic field strength, unless the gas mass is less than currently preferred values. Additionally, our starburst model consistently underestimates the observed γ-ray flux and overestimates the radio flux for NGC 1068; these issues would be resolved if the AGN is the primary source of γ-rays. We discuss the implications of these results and make predictions for the neutrino fluxes for both galaxies.

  12. Dark matter in NGC 4472

    Science.gov (United States)

    Loewenstein, Michael

    1992-01-01

    An attempt is made to constrain the total mass distribution of the giant elliptical galaxy NGC 4472 by constructing simultaneous equilibrium models for the gas and stars. Emphasis is given to reconciling the value of the emission-weighted average value of kT derived from the Ginga spectrum with the amount of dark matter needed to account for velocity dispersion observations.

  13. A rapidly spinning supermassive black hole at the centre of NGC 1365

    DEFF Research Database (Denmark)

    Risaliti, G.; Harrison, F. A.; Madsen, K. K.

    2013-01-01

    and relativistic effects near the black hole, the line shape being sensitive to its spin. Alternative models in which the distortions result from absorption by intervening structures provide an equally good description of the data, and there has been no general agreement on which is correct. Recent claims...... that the black hole (2 × 10(6) solar masses) at the centre of the galaxy NGC 1365 is rotating at close to its maximum possible speed rest on the assumption of relativistic reflection. Here we report X-ray observations of NGC 1365 that reveal the relativistic disk features through broadened Fe-line emission...... and an associated Compton scattering excess of 10-30 kiloelectronvolts. Using temporal and spectral analyses, we disentangle continuum changes due to time-variable absorption from reflection, which we find arises from a region within 2.5 gravitational radii of the rapidly spinning black hole. Absorption...

  14. Probing the interstellar medium in early-type galaxies with Infrared Space Oberservatory observations

    Science.gov (United States)

    Malhotra, S.; Hollenbach, D.; Helou, D.; Silbermann, N.; Valjavec, E.; Rubin, R.; Dale, D.; Hunter, D.; Lu, N.; Lord, S.; hide

    2000-01-01

    Four IRAS-detected early-type galaxies were observed with the Infrared Space Observatory (ISO). With the exception of the 15 mu m image of NGC 1052, the mid-IR images of NGC 1052, NGC 1155, NGC 5866, and NGC 6958 at 4.5, 7, and 15 mu m show extended emission.

  15. The Antennae Galaxies (NGC 4038/4039) Revisited: Advanced Camera for Surveys and NICMOS Observations of a Prototypical Merger

    Science.gov (United States)

    Whitmore, Bradley C.; Chandar, Rupali; Schweizer, François; Rothberg, Barry; Leitherer, Claus; Rieke, Marcia; Rieke, George; Blair, W. P.; Mengel, S.; Alonso-Herrero, A.

    2010-07-01

    The Advanced Camera for Surveys and the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) have been used to obtain new Hubble Space Telescope images of NGC 4038/4039 ("The Antennae"). These new observations allow us to better differentiate compact star clusters from individual stars, based on both size and color. We use this ability to extend the cluster luminosity function (LF) by approximately 2 mag over our previous WFPC2 results, and find that it continues as a single power law, dN/dL vprop L α with α = -2.13 ± 0.07, down to the observational limit of MV ≈ -7. Similarly, the mass function (MF) is a single power law dN/dM vprop M β with β = -2.10 ± 0.20 for clusters with ages agreement between values of α and β, similar to the results for the total population of clusters in the system. There is tentative evidence that the values of both α and β are flatter for the youngest clusters in some areas, but it is possible that this is caused by observational biases. Several of the areas studied show evidence for age gradients, with somewhat older clusters appearing to have triggered the formation of younger clusters. The area around Knot B is a particularly interesting example, with a ~10-50 Myr old cluster of estimated mass ~106 M sun having apparently triggered the formation of several younger, more massive (up to 5 × 106 M sun) clusters along a dust lane. A comparison with new NICMOS observations reveals that only 16% ± 6% of the IR-bright clusters in the Antennae are still heavily obscured, with values of AV >3 mag. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555. Also based on data obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST

  16. Cannibalization and rebirth in the NGC 5387 system. I. The stellar stream and star-forming region

    International Nuclear Information System (INIS)

    Beaton, Rachael L.; Majewski, Steven R.; Johnson, Kelsey E.; Verbiscer, Anne; Martínez-Delgado, David; D'Onghia, Elena; Zibetti, Stefano; Gabany, R. Jay; Blanton, Michael

    2014-01-01

    We have identified a low surface brightness stellar stream from visual inspection of Sloan Digital Sky Survey (SDSS) imaging for the edge-on, spiral galaxy NGC 5387. An optically blue overdensity coincident with the stream intersection with the NGC 5387 disk was also identified in SDSS and in the Galaxy Evolution Explorer Deep Imaging Survey contributing 38% of the total far-UV integrated flux from NGC 5387. Deeper optical imaging was acquired with the Vatican Advanced Technology Telescope that confirmed the presence of both features. The stellar stream is red in color, (B – V) = 0.7, has a stellar mass of 6 × 10 8 M ☉ , which implies a 1:50 merger ratio, has a circular radius, R circ ∼ 11.7 kpc, formed in ∼240 Myr, and the progenitor had a total mass of ∼4 × 10 10 M ☉ . Spectroscopy from LBT+MODS1 was used to determine that the blue overdensity is at the same redshift as NGC 5387, consists of young stellar populations (∼10 Myr), is metal-poor (12 + log (O/H) = 8.03), and is forming stars at an enhanced rate (∼1-3 M ☉ yr –1 ). The most likely interpretations are that the blue overdensity is (1) a region of enhanced star formation in the outer disk of NGC 5387 induced by the minor accretion event or (2) the progenitor of the stellar stream experiencing enhanced star formation. Additional exploration of these scenarios is presented in a companion paper.

  17. Cannibalization and rebirth in the NGC 5387 system. I. The stellar stream and star-forming region

    Energy Technology Data Exchange (ETDEWEB)

    Beaton, Rachael L.; Majewski, Steven R.; Johnson, Kelsey E.; Verbiscer, Anne [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Martínez-Delgado, David [Max Planck Institut fur Astronomie, D-69117 Heidelberg (Germany); D' Onghia, Elena [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Zibetti, Stefano [INAF-Osservatorio Astrofisico di Arcetri, I-50125 Firenze (Italy); Gabany, R. Jay [Black Bird II Observatory, Alder Springs, CA 93602 (United States); Blanton, Michael, E-mail: rbeaton@virginia.edu [Department of Physics, New York University, New York, NY 10003 (United States)

    2014-08-01

    We have identified a low surface brightness stellar stream from visual inspection of Sloan Digital Sky Survey (SDSS) imaging for the edge-on, spiral galaxy NGC 5387. An optically blue overdensity coincident with the stream intersection with the NGC 5387 disk was also identified in SDSS and in the Galaxy Evolution Explorer Deep Imaging Survey contributing 38% of the total far-UV integrated flux from NGC 5387. Deeper optical imaging was acquired with the Vatican Advanced Technology Telescope that confirmed the presence of both features. The stellar stream is red in color, (B – V) = 0.7, has a stellar mass of 6 × 10{sup 8} M{sub ☉}, which implies a 1:50 merger ratio, has a circular radius, R{sub circ} ∼ 11.7 kpc, formed in ∼240 Myr, and the progenitor had a total mass of ∼4 × 10{sup 10} M{sub ☉}. Spectroscopy from LBT+MODS1 was used to determine that the blue overdensity is at the same redshift as NGC 5387, consists of young stellar populations (∼10 Myr), is metal-poor (12 + log (O/H) = 8.03), and is forming stars at an enhanced rate (∼1-3 M{sub ☉} yr{sup –1}). The most likely interpretations are that the blue overdensity is (1) a region of enhanced star formation in the outer disk of NGC 5387 induced by the minor accretion event or (2) the progenitor of the stellar stream experiencing enhanced star formation. Additional exploration of these scenarios is presented in a companion paper.

  18. A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404

    Science.gov (United States)

    Nyland, Kristina; Davis, Timothy A.; Nguyen, Dieu D.; Seth, Anil; Wrobel, Joan M.; Kamble, Atish; Lacy, Mark; Alatalo, Katherine; Karovska, Margarita; Maksym, W. Peter; Mukherjee, Dipanjan; Young, Lisa M.

    2017-08-01

    The nearby dwarf galaxy NGC 404 harbors a low-luminosity active galactic nucleus powered by the lowest-mass (seeds” that formed in the early universe. Here, we present new imaging of the nucleus of NGC 404 at 12-18 GHz with the Karl G. Jansky Very Large Array (VLA) and observations of the CO(2-1) line with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we have successfully resolved the nuclear radio emission, revealing a centrally peaked, extended source spanning 17 pc. Combined with previous VLA observations, our new data place a tight constraint on the radio spectral index and indicate an optically thin synchrotron origin for the emission. The peak of the resolved radio source coincides with the dynamical center of NGC 404, the center of a rotating disk of molecular gas, and the position of a compact, hard X-ray source. We also present evidence for shocks in the NGC 404 nucleus from archival narrowband HST imaging, Chandra X-ray data, and Spitzer mid-infrared spectroscopy, and discuss possible origins for the shock excitation. Given the morphology, location, and steep spectral index of the resolved radio source, as well as constraints on nuclear star formation from the ALMA CO(2-1) data, we find the most likely scenario for the origin of the radio source in the center of NGC 404 to be a radio outflow associated with a confined jet driven by the active nucleus.

  19. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Lopezlira, Rosa A. [On sabbatical leave from the Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089, Mexico. (Mexico); Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: r.gonzalez@crya.unam.mx [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-06-20

    We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet

  20. CO mapping of the nuclear region of NGC 6946 and IC 342 with Nobeyama millimeter array

    Science.gov (United States)

    Ishizuki, Sumio; Kawabe, Ryohei; Okumura, Sachiko K.; Morita, Koh-Ichiro; Ishiguro, Masato

    1990-01-01

    CO observations of nearby galaxies with nuclear active star forming regions (and starburst galaxies) with angular resolutions around 7 seconds revealed that molecular bars with a length of a few kiloparsecs have been formed in the central regions of the galaxies. The molecular bar is interpreted as part of shock waves induced by an oval or barred potential field. By shock dissipation or dissipative cloud-cloud collisions, the molecular gas gains an infall motion and the nuclear star formation activity is fueled. But the distribution and kinematics of the molecular gas in the nuclear regions, which are sites of active star formation, remain unknown. Higher angular resolutions are needed to investigate the gas in the nuclear regions. Researchers made aperture synthesis observations of the nuclear region of the late-type spiral galaxies NGC 6946 and IC 342 with resolutions of 7.6 seconds x 4.2 seconds (P.A. = 147 deg) and 2.4 seconds x 2.3 seconds (P.A. = 149 deg), respectively. The distances to NGC 6496 and IC 342 are assumed to be 5.5 Mpc and 3.9 Mpc, respectively. Researchers have found 100-300 pc nuclear gas disk and ring inside a few kpc molecular gas bars. Researchers present the results of the observations and propose a possible mechanism of active star formation in the nuclear region.

  1. Light-year scale radio cores in four LINER galaxies

    NARCIS (Netherlands)

    Filho, ME; Barthel, PD; Ho, LC

    The LINER galaxies NGC2911, NGC3079, NGC3998, and NGC6500 were observed at 5 GHz with the European VLBI Network at a resolution of 5 milliarcsecond and found to possess at-spectrum, variable, high-brightness temperature (T-B > 10(8) K) radio cores. These radio characteristics reinforce the view that

  2. Pattern Speeds of BIMA SONG Galaxies with Molecule-dominated Interstellar Mediums Using the Tremaine-Weinberg Method

    Science.gov (United States)

    Rand, Richard J.; Wallin, John F.

    2004-10-01

    We apply the Tremaine-Weinberg method of pattern speed determination to data cubes of CO emission in six spiral galaxies from the BIMA Survey of Nearby Galaxies, each with an interstellar medium dominated by molecular gas. We compare derived pattern speeds with estimates based on other methods, usually involving the identification of a predicted behavior at one or more resonances of the pattern(s). In two cases (NGC 1068 and NGC 4736), we find evidence for a central bar pattern speed that is greater than that of the surrounding spiral and roughly consistent with previous estimates. However, the spiral pattern speed in both cases is much larger than previous determinations. For the barred spirals NGC 3627 and NGC 4321, the method is insensitive to the bar pattern speed (the bar in each is nearly parallel to the major axis; in this case the method will not work), but for the former galaxy the spiral pattern speed found agrees with previous estimates of the bar pattern speed, suggesting that these two structures are part of a single pattern. For the latter, the spiral pattern speed found is in agreement with several previous determinations. For the flocculent spiral NGC 4414 and the ``Evil Eye'' galaxy NGC 4826, the method does not support the presence of a large-scale coherent pattern. We also apply the method to a simulated barred galaxy in order to demonstrate its validity and to understand its sensitivity to various observational parameters. In addition, we study the results of applying the method to a simulated, clumpy axisymmetric disk with no wave present. The Tremaine & Weinberg method in this case may falsely indicate a well-defined pattern.

  3. Extended Neutral Hydrogen in the Aligned Shell Galaxies Arp 230 and MCG -5-7-1 : Formation of Disks in Merging Galaxies?

    NARCIS (Netherlands)

    Schiminovich, David; van Gorkom, J. H.; van der Hulst, J. M.

    As part of an ongoing study of the neutral hydrogen (H I) morphology and kinematics of "shell" elliptical galaxies, we present Very Large Array observations of two shell galaxies with aligned shells, Arp 230 and MCG -5-7-1. Our data provide the first Hi images of Arp 230 and deeper images of MCG

  4. Tails and streams around the Galactic globular clusters NGC 1851, NGC 1904, NGC 2298 and NGC 2808

    Science.gov (United States)

    Carballo-Bello, Julio A.; Martínez-Delgado, David; Navarrete, Camila; Catelan, Márcio; Muñoz, Ricardo R.; Antoja, Teresa; Sollima, Antonio

    2018-02-01

    We present Dark Energy Camera imaging for the peculiar Galactic globular clusters NGC 1851, NGC 1904 (M 79), NGC 2298 and NGC 2808. Our deep photometry reveals that all the clusters have an important contribution of stars beyond their King tidal radii and present tails with different morphologies. We have also explored the surroundings of the clusters where the presence of the Canis Major overdensity and/or the low Galactic latitude Monoceros ring at d⊙ ˜ 8 kpc is evident. A second stellar system is found at d⊙ ˜ 17 kpc and spans at least 18 deg × 15 deg in the sky. As one of the possible scenarios to explain that feature, we propose that the unveiled system is part of Monoceros explained as a density wave moving towards the outer Milky Way. Alternatively, the unveiled system might be connected with other known halo substructures or associated with the progenitor dwarf galaxy of NGC 1851 and NGC 1904, which are widely considered accreted globular clusters.

  5. The Arecibo Galaxy Environment Survey IX: the isolated galaxy sample

    Czech Academy of Sciences Publication Activity Database

    Minchin, R.F.; Auld, R.; Davies, J.I.; Karachentsev, I.D.; Keenan, O.; Momjian, E.; Rodriguez, R.; Taber, T.; Taylor, Rhys

    2016-01-01

    Roč. 455, č. 4 (2016), s. 3430-3435 ISSN 0035-8711 R&D Projects: GA MŠk LG14013; GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : individual galaxies NGC 1156 * individual galaxies NGC 5523 * individual galaxies UGC 2082 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  6. The interaction between hot and cold gas in early-type galaxies

    Science.gov (United States)

    Bregman, Joel N.; Hogg, David E.; Roberts, Morton S.

    1995-01-01

    SO and Sa galaxies have approximately equal masses of H I and X-ray emitting gas and are ideal sites for studying the interaction between hot and cold gas. An X-ray observation of the Sa galaxy NGC 1291 with the ROSAT position sensitive proportional counter (PSPC) shows a striking spatial anticorrelation between hot and cold gas where X-ray emitting material fills the large central black hole in the H I disk. This supports a previous suggestion that hot gas is a bulge phenomenon and neutral hydrogen is a disk phenomenon. The X-ray luminosity (1.5 x 10(exp 40) ergs/s) and radial surface brightness distribution (beta = 0.51) is the same as for elliptical galaxies with optical luminosities and velocity dispersions like that of the bulge of NGC 1291. Modeling of the X-ray spectrum requires a component with a temperature of 0.15 keV, similar to that expected from the velocity dispersion of the stars, and with a hotter component where kT = 1.07 keV. This hotter component is not due to emission from stars and its origin remains unclear. PSPC observations are reported for the SO NGC 4203, where a nuclear point source dominates the emission, preventing a study of the radial distribution of the hot gas relative to the H I.

  7. "Missing Mass" Found in Recycled Dwarf Galaxies

    Science.gov (United States)

    2007-05-01

    Astronomers studying dwarf galaxies formed from the debris of a collision of larger galaxies found the dwarfs much more massive than expected, and think the additional material is "missing mass" that theorists said should not be present in this kind of dwarf galaxy. Multiwavelength Image of NGC 5291 Multiwavelength image of NGC 5291 and dwarf galaxies around it. CREDIT: P-A Duc, CEA-CNRS/NRAO/AUI/NSF/NASA. Click on image for page of more graphics and full information The scientists used the National Science Foundation's Very Large Array (VLA) radio telescope to study a galaxy called NGC 5291, 200 million light-years from Earth. This galaxy collided with another 360 million years ago, and the collision shot streams of gas and stars outward. Later, the dwarf galaxies formed from the ejected debris. "Our detailed studies of three 'recycled' dwarf galaxies in this system showed that the dwarfs have twice as much unseen matter as visible matter. This was surprising, because they were expected to have very little unseen matter," said Frederic Bournaud, of the French astrophysics laboratory AIM of the French CEA and CNRS. Bournaud and his colleagues announced their discovery in the May 10 online issue of the journal Science. "Dark matter," which astronomers can detect only by its gravitational effects, comes, they believe, in two basic forms. One form is the familiar kind of matter seen in stars, planets, and humans -- called baryonic matter -- that does not emit much light or other type of radiation. The other form, called non-baryonic dark matter, comprises nearly a third of the Universe but its nature is unknown. The visible portion of spiral galaxies, like our own Milky Way, lies mostly in a flattened disk, usually with a bulge in the center. This visible portion, however, is surrounded by a much larger halo of dark matter. When spiral galaxies collide, the material expelled outward by the interaction comes from the galaxies' disks. For this reason, astronomers did

  8. THE MASS-DISTRIBUTION OF THE DWARF SPIRAL NGC-1560

    NARCIS (Netherlands)

    BROEILS, AH

    H I synthesis observations with the WSRT and optical surface photometry of the dwarf spiral galaxy NGC 1560 are presented. This galaxy has an absolute luminosity of M(B) = -15.87. The observations show that the galaxy is gas rich, with an M(HI)/L(B) of 2.4. We obtained a very detailed rotation curve

  9. Neutral hydrogen in elliptical and IO galaxies

    International Nuclear Information System (INIS)

    Bottinelli, L.; Gouguenheim, L.

    1979-01-01

    New HI detections have been obtained using the Nancay radiotelescope for NGC 2974 and 3962. These results and the large scale distribution obtained for NGC 3962 indicate that the HI-rich elliptical galaxies exhibit common properties which are not easily explained by accretion of an intergalactic cloud. The field aroud NGC 1052 has been mapped and there is an HI connection with the neighbouring galaxies. The HI content of several IO galaxies indicates that the galaxies which are members of groups are relatively HI-rich; this could be produced by additional HI coming from companion galaxies [fr

  10. A Portrait of One Hundred Thousand and One Galaxies

    Science.gov (United States)

    2002-08-01

    new and very accurate distance to NGC 300, making this galaxy a future cornerstone in the calibration of the cosmic distance scale . Moreover, they will also allow to understand in more detail how the brightness of a Cepheid-type star depends on its chemical composition, currently a major uncertainty in the application of the Cepheid method to the calibration of the extragalactic distance scale. Indeed, the effect of the abundance of different elements on the luminosity of a Cepheid can be especially well measured in NGC 300 due to the existence of large variations of these abundances in the stars located in the disk of this galaxy. Gieren and his group, in collaboration with astronomers Fabio Bresolin and Rolf Kudritzki (Institute of Astronomy, Hawaii, USA) are currently measuring the variations of these chemical abundances in stars in the disk of NGC 300, by means of spectra of about 60 blue supergiant stars, obtained with the FORS multi-mode instruments at the ESO Very Large Telescope (VLT) on Paranal. These stars, that are among the optically brightest in NGC 300, were first identified in the WFI images of this galaxy obtained in different colours - the same that were used to produce PR Photo 18a/02 . The nature of those stars was later spectroscopically confirmed at the VLT. As an important byproduct of these measurements, the luminosities of the blue supergiant stars in NGC 300 will themselves be calibrated (as a new cosmic "standard candle"), taking advantage of their stellar wind properties that can be measured from the VLT spectra. The WFI Cepheid observations in NGC 300, as well as the VLT blue supergiant star observations, form part of a large research project recently initiated by Gieren and his group that is concerned with the improvement of various stellar distance indicators in nearby galaxies (the "ARAUCARIA" project ). Clues on star formation history in NGC 300 ESO PR Photo 18c/02 ESO PR Photo 18c/02 [Preview - JPEG: 440 x 400 pix - 63k] [Normal

  11. Vertical Population Gradients in NGC 891. I. ∇Pak Instrumentation and Spectral Data

    Science.gov (United States)

    Eigenbrot, Arthur; Bershady, Matthew A.

    2018-02-01

    We have measured vertical and radial stellar population gradients in NGC 891. We compare these gradients to those known for the Milky Way from studies of resolved stars. Optical spectroscopic measurements extend spatially from the disk midplane up to 2.6 {kpc} in height and out to a radius of 12 {kpc} on both sides of the galaxy. Data were acquired with ∇Pak, a variable-pitch fiber integral field unit (IFU) on the WIYN telescope. We describe the laboratory and on-sky performance of ∇Pak, as well as modifications to the standard observational and analysis procedures necessary to calibrate data taken with this unique IFU. ∇Pak has a mean throughput of 80% at 5500 \\mathringA . To achieve an estimated precision of 10% in light-weighted mean age and metallicity, we define a set of spatial apertures in radius and height in which spectra are binned to achieve a signal-to-noise ratio of ∼20 Å‑1. We use spectral indices to measure age, metallicity, and abundance, indicating that NGC 891's stellar populations have 0.2 7 {Gyr}) stellar populations at 0.4 {kpc}, roughly the scale height of the thin disk. We also find a slight trend toward younger populations at larger radii, consistent with flaring in an inside-out disk formation scenario. The vertical age gradient in NGC 891 is in remarkable qualitative agreement with a model for disk heating tuned to studies of the Milk Way’s solar cylinder.

  12. Exploring the Dust Content of Galactic Winds with Herschel. II. Nearby Dwarf Galaxies*

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-03-01

    We present results from analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20% of the total dust mass in these galaxies resides outside of their stellar disks, but this fraction reaches ˜60% in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disk by energy inputs from on-going star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disk by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disk that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  13. The Ultraviolet Attenuation Law in Backlit Spiral Galaxies

    Science.gov (United States)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly "gray" law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that widespread

  14. Comparative study of dust and young stars in three small galaxies

    International Nuclear Information System (INIS)

    Price, J.S.

    1984-01-01

    A comparative study is presented of dust and young stars in the central regions of the three small galaxies NGC 205, NGC 185, and NGC 3077 in the U, B, V, and K filters, and at six additional optical wavelengths. All three program galaxies have been successfully modeled with the empirical models of Oemler (1976); NGC 205 and NGC 3077 were also modeled with unsharp mask models. Subtracting model galaxies from the data enabled the authors to isolate clusters of young stars and dust clouds in the central regions of each galaxy. A comparison of the colors of the young clusters in NGC 3077 and those in NGC 205 reveals that the colors of the clusters in these two small galaxies are different. In NGC 185, diffuse emission after subtracting an Oemler model was discovered. NGC 205 also showed this remnant emission, with very similar colors to those of the remnant in NGC 185, but NGC 3077 did not. The colors of this diffuse remnant emission in NGC 205 and NGC 185 are interpreted as being due to previous episodes of star formation in the two dwarf ellipticals. A comparison of the author's data with that of Caldwell (1983) on a sample of 33 dwarf elliptical galaxies in Virgo indicates that star formation in dwarf elliptical galaxies is a common phenomenon. The study of dust in NGC 185 and NGC 205 at optical wavelengths shows that the properties of dust in NGC 205 are very similar to those of galactic dust, while the dust in NGC 185 is distinctly different. The optical and 2.2 micron centers of NGC 3077 are found to be different. From comparison of the three galaxies studied here, the author concludes that it is unlikely that NGC 205 and NGC 185 tidally interacted with M31

  15. CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability

    International Nuclear Information System (INIS)

    Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.; Carey, Sean; Baglin, Annie; Micela, Giuseppina; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Carpenter, John; Findeisen, Krzysztof; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Terebey, Susan

    2014-01-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.

  16. Neutral hydrogen and optical properties of three amorphous galaxies

    Science.gov (United States)

    Hunter, Deidre A.; Woerden, Hugo Van; Gallagher, John S., III

    1994-01-01

    We present new interferometric H I and optical observations of three amorphous galaxies, systems with a smooth, high surface brightness but an asymmetrical distribution of light. All three galaxies are forming stars and have LMC-like emission-line ratios, low dust content, and high H I velocity dispersions. NGC 1140 has a boxy inner morphology with a hook off one corner. At low light levels unusual extensions of starlight are seen curving to the northwest and southeast. The galaxy contains a very luminous central star-forming region and a small chain of H II regions that coincide with the hook. The central H II region has broad H(alpha) velocity profiles full width at half maximum (FWHM) less than or equal to 140 km/s, and it is a radio continuum source. There is a rotating H I gas disk, 40 kpc in radius, at a position angle 51 deg from the optical major axis. The central gas ridge follows the chain of H II regions, and the H I peak is on the hook. The outer gas on the southeast side curves away from the H I major axis. The central gas density is high, and the surface density declines very slowly with radius. The rotation velocity yields a mass of 1 x 10(exp 11) solar mass at 3.3 Holmberg radii (R(sub H)). NGC 1800 has a hook that coincides with a large H II region, and an r(exp 1/4) luminosity distribution. There are numerous H II regions along the major axis and extraordinary filaments of ionized gas. Emanating from the major axis on either side of the galaxy are H(alpha) fingers approximately 750 pc long. About 2.3 kpc to the north is a web of filaments approximately 3 kpc in extent. H(alpha) profiles of H II regions and filaments are narrow. The H I gas disk has a position angle that is approximately 13 deg different from that of the optical axis. There are two peaks near the center, one of which is near the largest H II region. Beyond the Holmberg radius to the west is a 6 x 10(exp 6) solar mass H I cloud. Its velocity indicates a mass of approximately 6 x 10

  17. On the Relationship between Star Formation and Activity in Galaxies

    Science.gov (United States)

    Gonzalez Delgado, Rosa M.

    1995-11-01

    This thesis is made of three main parts. In the first one a sample of 55 galaxies with an active nucleus (Seyfert 1, Seyfert2 and LINERs) is analysed; these were observed with the 4.2m WHT and 1m JKT in CCD narrow band H-alpha +[NII] and [OIII] to map the distribution of HII regions and the morphology of the circumnuclear extended emission associated with the active nucleus. The analysis of the extended emission and HII regions is carried out, as a function of the level of activity and of the Hubble type. One third of the sample shows circumnuclear HII regions, but only 9% of these are S1. The number surface density of the star forming sites and the location of the brightest HII region, indicates that in S2 the star formation is more important in the inner disk; however, in S1 the distribution of the star forming sites is more uniform with distance, and the brighest HII regions are farther away from the nucleus than in S2. The luminosity function, size distribution, the relationship between the Ha flux and the size, the emission measure, and the radial distribution of the HII regions in 27 out of the 55 galaxies of the sample are studied. This comprises a statistical analysis of more than 2000 HII regions. In the second part of this thesis the giant extragalactic HII region NGC 2363 and the starburst galaxy NGC 7714 are studied; they were observed in narrow band CCD H-alpha image with the JKT and spectroscopically from 3700 to 9600 A with the WHT. Both objects are experiencing intense star formation activity. Evidence of this comes from the detection of WC and WN emission features in NGC 2363 and in NGC 7714 respectively; this suggests an age of the present burst between 3 and 5 Myr. However, evidence for the existence of a previous burst in NGC 7714 comes from the detection of the infrared CaII triplet in absorption. The physical conditions and chemical composition of the gas are derived. In both cases, the metallicity is low (12+log O/H=7.89 for NGC 2363) and

  18. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 III. Helical magnetic fields in the nuclear outflow

    Science.gov (United States)

    Heesen, V.; Beck, R.; Krause, M.; Dettmar, R.-J.

    2011-11-01

    Context. Magnetic fields are good tracers of gas compression by shock waves in the interstellar medium. These can be caused by the interaction of star-formation driven outflows from individual star formation sites as described in the chimney model. Integration along the line-of-sight and cosmic-ray diffusion may hamper detection of compressed magnetic fields in many cases. Aims. We study the magnetic field structure in the central part of the nuclear starburst galaxy NGC 253 with spatial resolutions between 40 and 150 pc to detect any filamentary emission associated with the nuclear outflow. As the nuclear region is much brighter than the rest of the disc we can distinguish this emission from that of the disc. Methods. We used radio polarimetric observations with the VLA. New observations at λ3 cm with 7.5 arcsec resolution were combined with archive data at λλ 20 and 6 cm. We created a map of the rotation measure distribution between λλ 6 and 3 cm and compared it with a synthetic polarization map. Results. We find filamentary radio continuum emission in a geometrical distribution, which we interpret as the boundary of the NW nuclear outflow cone seen in projection. The scaleheight of the continuum emission is 150 ± 20 pc, regardless of the observing frequency. The equipartition magnetic field strength is 46 ± 10 μG for the total field and 21 ± 5 μG for the regular field in the filaments. We find that the ordered magnetic field is aligned along the filaments, in agreement with amplification due to compression. The perpendicular diffusion coefficient across the filaments is κ⊥= 1.5-1028 cm2 s-1 E(GeV)0.5±0.7. In the SE part of the nuclear outflow cone the magnetic field is pointing away from the disc in form of a helix, with an azimuthal component increasing up to at least 1200 pc height, where it is about equal to the total component. The ordered magnetic field in the disc is anisotropic within a radius of 2.2 kpc. At larger radii, the large

  19. The Seyfert 2 galaxy NGC 2110: hard X-ray emission observed by NuSTAR and variability of the iron Kα line

    DEFF Research Database (Denmark)

    Marinucci, A.; Matt, G.; Bianchi, S.

    2015-01-01

    -Newton, Suzaku, BeppoSAX, Chandra and Swift. Simultaneous NuSTAR and Swift broad-band spectra (in the 3-80 keV range) indicate a cutoff energy Ec > 210 keV, with no detectable contribution from Compton reflection. NGC 2110 is one of the very few sources where no evidence for distant Compton-thick scattering...

  20. The ultraviolet attenuation law in backlit spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Keel, William C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Manning, Anna M. [Stennis Space Center, MS 39522 (United States); Holwerda, Benne W. [ESA-ESTEC, Keplerlaan 1, 2201-AZ Noordwijk (Netherlands); Lintott, Chris J. [Astrophysics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin, E-mail: wkeel@ua.edu, E-mail: ammanning@bama.ua.edu, E-mail: bholwerd@rssd.esa.int, E-mail: Twitter@BenneHolwerda, E-mail: cjl@astro.ox.ac.uk, E-mail: Twitter@chrislintott, E-mail: kevin.schawinski@phys.ethz.ch, E-mail: Twitter@kevinschawinski [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  1. The ultraviolet attenuation law in backlit spiral galaxies

    International Nuclear Information System (INIS)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin

    2014-01-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  2. Star formation and the interstellar medium in low surface brightness galaxies - I. Oxygen abundances and abundance gradients in low surface brightness disk galaxies

    NARCIS (Netherlands)

    de Blok, WJG; van der Hulst, JM

    We present measurements of the oxygen abundances in 64 HII regions in 12 LSB galaxies. We find that oxygen abundances are low. No regions with solar abundance have been found, and most have oxygen abundances similar to 0.5 to 0.1 solar. The oxygen abundance appears to be constant as a function of

  3. Star formation and the interstellar medium in low surface brightness galaxies; 1, Oxygen abundances and abundance gradients in low surface brightness disk galaxies

    NARCIS (Netherlands)

    Blok, W. J. G. de; Hulst, J. M. van der

    1998-01-01

    Submitted to: Astron. Astrophys. Abstract: We present measurements of the oxygen abundances in 64 HII regions in 12 LSB galaxies. We find that oxygen abundances are low. No regions with solar abundance have been found, and most have oxygen abundances $sim 0.5$ to 0.1 solar. The oxygen abundance

  4. Isolated ellipticals and their globular cluster systems. III. NGC 2271, NGC 2865, NGC 3962, NGC 4240, and IC 4889

    Science.gov (United States)

    Salinas, R.; Alabi, A.; Richtler, T.; Lane, R. R.

    2015-05-01

    As tracers of star formation, galaxy assembly, and mass distribution, globular clusters have provided important clues to our understanding of early-type galaxies. But their study has been mostly constrained to galaxy groups and clusters where early-type galaxies dominate, leaving the properties of the globular cluster systems (GCSs) of isolated ellipticals as a mostly uncharted territory. We present Gemini-South/GMOS g'i' observations of five isolated elliptical galaxies: NGC 3962, NGC 2865, IC 4889, NGC 2271, and NGC 4240. Photometry of their GCSs reveals clear color bimodality in three of them, but remains inconclusive for the other two. All the studied GCSs are rather poor with a mean specific frequency SN ~ 1.5, independently of the parent galaxy luminosity. Considering information from previous work as well, it is clear that bimodality and especially the presence of a significant, even dominant, population of blue clusters occurs at even the most isolated systems, which casts doubts on a possible accreted origin of metal-poor clusters, as suggested by some models. Additionally, we discuss the possible existence of ultra-compact dwarfs around the isolated elliptical NGC 3962. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).Globular cluster photometry is available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A59Appendices are available in

  5. High mass star formation to the extremes: NGC 3603 at high angular resolution in the near-infrared

    International Nuclear Information System (INIS)

    Nuernberger, Dieter E A

    2008-01-01

    High angular resolution observations play a decisive role for our understanding of high mass star formation processes, both within our Galaxy and in extragalactic starburst regions. We take the Galactic starburst template NGC 3603 as paradigm and report here on high angular resolution JHK s L' observations of the enigmatic, highly reddened sources IRS 9A-C in the NGC 3603 region, which were performed with NACO at ESO's Very Large Telescope Yepun. These broad-band imaging data strongly support the classification of IRS 9A-C as high mass protostellar candidates. We also confirm unambiguously the membership of IRS 9A-C with the NGC 3603 region as gas and dust is seen to be stripped off from their circumstellar envelopes by strong stellar winds, originating from the high mass main sequence stars of the nearby OB cluster. The orientation of these gas and dust streamers coincides with that of a very faint, only marginally detected mini-pillar protruding from the adjacent molecular clump NGC 3603 MM 2. The L' data show extended envelopes around IRS 9A-C and reveal sub-structures therein which are indicative for non-spherically distributed material. It seems obvious that protostellar mass outflows are at work to clear cavities along the polar axes of the central protostar, and / or that circumstellar disks are taking shape.

  6. High mass star formation to the extremes: NGC 3603 at high angular resolution in the near-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberger, Dieter E A [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)], E-mail: dnuernbe@eso.org

    2008-10-15

    High angular resolution observations play a decisive role for our understanding of high mass star formation processes, both within our Galaxy and in extragalactic starburst regions. We take the Galactic starburst template NGC 3603 as paradigm and report here on high angular resolution JHK{sub s}L' observations of the enigmatic, highly reddened sources IRS 9A-C in the NGC 3603 region, which were performed with NACO at ESO's Very Large Telescope Yepun. These broad-band imaging data strongly support the classification of IRS 9A-C as high mass protostellar candidates. We also confirm unambiguously the membership of IRS 9A-C with the NGC 3603 region as gas and dust is seen to be stripped off from their circumstellar envelopes by strong stellar winds, originating from the high mass main sequence stars of the nearby OB cluster. The orientation of these gas and dust streamers coincides with that of a very faint, only marginally detected mini-pillar protruding from the adjacent molecular clump NGC 3603 MM 2. The L' data show extended envelopes around IRS 9A-C and reveal sub-structures therein which are indicative for non-spherically distributed material. It seems obvious that protostellar mass outflows are at work to clear cavities along the polar axes of the central protostar, and / or that circumstellar disks are taking shape.

  7. Extended Narrow-Line Region in Seyfert Galaxies

    Directory of Open Access Journals (Sweden)

    Enrico Congiu

    2017-10-01

    Full Text Available We present our recent results about the extended narrow-line region (ENLR of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212 obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1 galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a the contribution of shocks in ionizing the high velocity gas, (b the complex kinematics showed by the profile of the emission lines, (c the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  8. Extended Narrow-Line Region in Seyfert Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Enrico [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Contini, Marcella [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel); Ciroi, Stefano; Cracco, Valentina [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Di Mille, Francesco [Las Campanas Observatory, La Serena (Chile); Berton, Marco [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero, E-mail: enrico.congiu@phd.unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy)

    2017-10-24

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  9. A Search for Near-Infrared Emission from the Halo of NGC 5907 at Radii of 10-30 Kiloparsecs

    Science.gov (United States)

    Yost, Sarah A.; Bock, James J.; Kawada, Mitsunobu; Lange, Andrew E.; Matsumoto, Toshio; Uemizu, Kazunori; Watabe, Toyoki; Wada, Takehiko

    2000-06-01

    We present a search for near-infrared (3.5-5 μm) emission from baryonic dark matter in the form of low-mass stars and/or brown dwarfs in the halo of the nearby edge-on spiral galaxy NGC 5907. The observations were made using a 256×256 InSb array with a pixel scale of 17" at the focus of a liquid-helium-cooled telescope carried above the Earth's atmosphere by a sounding rocket. In contrast to previous experiments that have detected a halo around NGC 5907 in the V, R, I, J, and K bands at galactic radii 6 kpcNGC 5907 is 250 (2 σ) in solar units. This is comparable to the lower limit we have found previously for NGC 4565. Based on recent models, our nondetection implies that hydrogen-burning stars contribute less than 15% of the mass of the dark halo of NGC 5907. Our results are consistent with the previous detection of extended emission at r<=10 kpc if the latter is caused by a stellar population that has been ejected from the disk because of tidal interactions. We conclude that the dark halo of NGC 5907, which is evident from rotation curves that extend far beyond 10 kpc, is not made up of hydrogen-burning stars.

  10. Extraordinary Cosmic Laboratory Helps Unravel Mysteries of a Galaxy's Powerful Central "Engine"

    Science.gov (United States)

    An extraordinary cosmic laboratory 21 million light-years away is providing radio astronomers their best opportunity yet to decipher the mysteries of the ultra-powerful "engines" at the hearts of many galaxies and quasars. An international research team using the National Science Foundation's Very Long Baseline Array (VLBA) and Very Large Array (VLA) radio telescopes has peered deeply into the core of the galaxy NGC 4258, learning important new information about the mysterious region from which high-speed jets of subatomic particles are ejected. The scientists announced their findings today at the American Astronomical Society meeting in Toronto, Ontario. The new research provides significant quantitative support for a theoretical model for the origin of such jets first proposed in 1979. NGC 4258 is the galaxy in which a warped disk of water molecules was discovered in 1994. That disk, observed in detail with the VLBA, was shown to be orbiting a central mass some 35 million times more massive than the Sun. That central mass, the astronomers believe, is a black hole. More recent studies of the disk and its surroundings have given astronomers their most detailed look yet at the heart of an active galactic nucleus (AGN), including the ability to pinpoint the exact center of the system, where the black hole resides. The 1994 observations provided the best evidence to date for the existence of a black hole at the heart of a galaxy. Black holes, so dense that not even light can escape their gravitational fields, have long been suspected as the driving force behind the energetic central engines of AGNs. The fortuitous existence of the molecular disk in NGC 4258 has helped astronomers use the ultrasharp radio "vision" of the continent-wide VLBA to probe with unprecedented clarity into the heart of that galaxy's central engine. The researchers are: James Herrnstein, James Moran, and Lincoln Greenhill of the Harvard-Smithsonian Center for Astrophysics; Philip Diamond of the

  11. A PETAL OF THE SUNFLOWER: PHOTOMETRY OF THE STELLAR TIDAL STREAM IN THE HALO OF MESSIER 63 (NGC 5055)

    International Nuclear Information System (INIS)

    Chonis, Taylor S.; Martínez-Delgado, David; Gabany, R. Jay; Majewski, Steven R.; Hill, Gary J.; Gralak, Ray; Trujillo, Ignacio

    2011-01-01

    We present deep surface photometry of a very faint, giant arc-loop feature in the halo of the nearby spiral galaxy NGC 5055 (M63) that is consistent with being a part of a stellar stream resulting from the disruption of a dwarf satellite galaxy. This faint feature was first detected in early photographic studies by van der Kruit; more recently, in the study of Martínez-Delgado and as presented in this work, from the loop has been realized to be the result of a recent minor merger through evidence obtained by wide-field, deep images taken with a telescope of only 0.16 m aperture. The stellar stream is clearly confirmed in additional deep images taken with the 0.5 m telescope of the BlackBird Remote Observatory and the 0.8 m telescope of the McDonald Observatory. This low surface brightness (μ R ≈ 26 mag arcsec –2 ) arc-like structure around the disk of the galaxy extends 14.'0 (∼29 kpc projected) from its center, with a projected width of 1.'6 (∼3.3 kpc). The stream's morphology is consistent with that of the visible part of a giant, 'great-circle' type stellar stream originating from the recent accretion of a ∼10 8 M ☉ dwarf satellite in the last few Gyr. The progenitor satellite's current position and final fate are not conclusive from our data. The color of the stream's stars is consistent with dwarfs in the Local Group and is similar to the outer faint regions of M63's disk and stellar halo. From our photometric study, we detect other low surface brightness 'plumes'; some of these may be extended spiral features related to the galaxy's complex spiral structure, and others may be tidal debris associated with the disruption of the galaxy's outer stellar disk as a result of the accretion event. We are able to differentiate between features related to the tidal stream and faint, blue extended features in the outskirts of the galaxy's disk previously detected by the Galaxy Evolution Explorer satellite. With its highly warped H I gaseous disk (∼20

  12. Volume filling factors of the ISM phases in star forming galaxies. I. The role of the disk-halo interaction

    Science.gov (United States)

    de Avillez, M. A.; Breitschwerdt, D.

    2004-10-01

    The role of matter circulation between the disk and halo in establishing the volume filling factors of the different ISM phases in the Galactic disk (|z|≤ 250 pc) is investigated, using a modified version of the three-dimensional supernova-driven ISM model of Avillez (\\cite{Avillez00}). We carried out adaptive mesh refinement simulations of the ISM with five supernova rates (in units of the Galactic value), σ/σGal=1, 2, 4, 8 and 16 (corresponding to starburst conditions) using three finer level resolutions of 2.5, 1.25 and 0.625 pc, allowing us to understand how resolution would affect the volumes of gas phases in pressure equilibrium. We find that the volume filling factors of the different ISM phases depend sensitively on the existence of a duty cycle between the disk and halo acting as a pressure release valve for the hot (T> 105.5 K) phase in the disk. The amount of cold gas (defined as the gas with T ∝ (σ/σGal)0.363. Such a modest dependence on the SN rate is a consequence of the evacuation of the hot phase into the halo through the duty cycle. This leads to volume filling factors of the hot phase considerably smaller than those predicted in the three-phase model of McKee & Ostriker (\\cite{McKee77}) even in the absence of magnetic fields.

  13. The Lyman alpha reference sample VI. Lyman alpha escape from the edge-on disk galaxy Mrk 1486

    Czech Academy of Sciences Publication Activity Database

    Duval, F.; Ostlin, G.; Hayes, M.; Zackrisson, E.; Verhamme, A.; Orlitová, Ivana; Adamo, A.; Guaita, L.; Melinder, J.; Cannon, J.M.; Laursen, P.; Rivera-Thorsen, T.; Herenz, E.Ch.; Gruyters, P.; Mas-Hesse, J. M.; Kunth, D.; Sandberg, A.; Schaerer, D.; Mansson, J.-E.

    2016-01-01

    Roč. 587, March (2016), A77/1-A77/24 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GP14-20666P Institutional support: RVO:67985815 Keywords : galaxies * starburst * submillimeter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  14. Continuum Reverberation Mapping of AGN Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration

    2017-12-05

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  15. CHEMICAL ABUNDANCE EVIDENCE OF ENDURING HIGH STAR FORMATION RATES IN AN EARLY-TYPE GALAXY: HIGH [Ca/Fe] IN NGC 5128 GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Durán, María Fernanda; Bernstein, Rebecca A.; McWilliam, Andrew

    2013-01-01

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between –1.6 and –0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <–0.4 is +0.37 ± 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 ± 0.09 and +0.24 ± 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope

  16. CHEMICAL ABUNDANCE EVIDENCE OF ENDURING HIGH STAR FORMATION RATES IN AN EARLY-TYPE GALAXY: HIGH [Ca/Fe] IN NGC 5128 GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Duran, Maria Fernanda; Bernstein, Rebecca A. [Department of Astronomy and Astrophysics, 1156 High Street, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); McWilliam, Andrew, E-mail: jcolucci@ucolick.org [Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States)

    2013-08-20

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 and -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <-0.4 is +0.37 {+-} 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 {+-} 0.09 and +0.24 {+-} 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope.

  17. Chemical Abundance Evidence of Enduring High Star Formation Rates in an Early-type Galaxy: High [Ca/Fe] in NGC 5128 Globular Clusters

    Science.gov (United States)

    Colucci, Janet E.; Fernanda Durán, María; Bernstein, Rebecca A.; McWilliam, Andrew

    2013-08-01

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 and -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <-0.4 is +0.37 ± 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 ± 0.09 and +0.24 ± 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. Submillimeter Imaging of NGC 891 with SHARC

    OpenAIRE

    Serabyn, E.; Lis, D. C.; Dowell, C. D.; Benford, D. J.; Hunter, T. R.; Trewhella, M.; Moseley, S. H.

    1998-01-01

    The advent of submillimeter wavelength array cameras operating on large ground-based telescopes is revolutionizing imaging at these wavelengths, enabling high-resolution submillimeter surveys of dust emission in star-forming regions and galaxies. Here we present a recent 350 micron image of the edge-on galaxy NGC 891, which was obtained with the Submillimeter High Angular Resolution Camera (SHARC) at the Caltech Submillimeter Observatory (CSO). We find that high resolution submillimeter data ...

  19. A PAndAS view of M31 dwarf elliptical satellites: NGC 147 and NGC 185

    Science.gov (United States)

    Crnojević, D.; Ferguson, A. M. N.; Irwin, M. J.; McConnachie, A. W.; Bernard, E. J.; Fardal, M. A.; Ibata, R. A.; Lewis, G. F.; Martin, N. F.; Navarro, J. F.; Noël, N. E. D.; Pasetto, S.

    2014-12-01

    We exploit data from the Pan-Andromeda Archaeological Survey (PAndAS) to study the extended structures of M31's dwarf elliptical companions, NGC 147 and NGC 185. Our wide-field, homogeneous photometry allows us to construct deep colour-magnitude diagrams which reach down to ˜3 mag below the red giant branch (RGB) tip. We trace the stellar components of the galaxies to surface brightness of μg ˜ 32 mag arcsec-2 and show that they have much larger extents (˜5 kpc radii) than previously recognized. While NGC 185 retains a regular shape in its peripheral regions, NGC 147 exhibits pronounced isophotal twisting due to the emergence of symmetric tidal tails. We fit single Sérsic models to composite surface brightness profiles constructed from diffuse light and star counts and find that NGC 147 has an effective radius almost three times that of NGC 185. In both cases, the effective radii that we calculate are larger by a factor of ˜2 compared to most literature values. We also calculate revised total magnitudes of Mg = -15.36 ± 0.04 for NGC 185 and Mg = -16.36 ± 0.04 for NGC 147. Using photometric metallicities computed for RGB stars, we find NGC 185 to exhibit a metallicity gradient of [Fe/H] ˜ -0.15 dex kpc-1 over the radial range 0.125-0.5 deg. On the other hand, NGC 147 exhibits almost no metallicity gradient, ˜-0.02 dex kpc-1 from 0.2 to 0.6 deg. The differences in the structure and stellar populations in the outskirts of these systems suggest that tidal influences have played an important role in governing the evolution of NGC 147.

  20. Integral Field Spectroscopy of the Merger Remnant NGC 7252

    Science.gov (United States)

    Weaver, John; Husemann, Bernd; Kuntschner, Harald; Martín-Navarro, Ignacio

    2018-01-01

    The merging of galaxies is a key aspect of the hierarchical ΛCDM Universe. The formation of massive quiescent elliptical galaxies may be explained through the merger of two star-forming disc galaxies. Despite nearly a century of effort, our understanding of this complex transformational process is remains incomplete and requires diligent observational study.NGC 7252 is one of the nearest starbursting major-merger galaxy remnants, formed about 1 Gyr after the collision of presumably two disc galaxies. It is therefore an ideal laboratory to study the underlying processes involved in transformation of two disc galaxies to an elliptical galaxy via a merger.We obtained wide-field IFU spectroscopy with the VLT-VIMOS integral-field spectrograph covering the central 50’’ × 50’’ of NGC 7252 to map the stellar and ionized gas kinematics, and the distribution and conditions of the ionized gas, revealing the extent of ongoing star formation and recent star formation history.Contrary to previous studies we find the inner gas disc not to be counter-rotating with respect to the overall stellar angular momentum. However, the stellar kinematics appear to be complex with a superposition of at least two nearly perpendicular angular momentum components. The host galaxy is still blue with g - i ~ 0.8 with an ongoing star formation rate of 2.2 ± 0.6 Msun/yr, placing NGC 7252 close to the blue cloud of galaxies and consistent with a disc-like molecular depletion time of ~2 Gyr.Although NGC 7252 appears as a fading starburst galaxy at the center, the elliptical-like major merger remnant appears to active, inconsistent with a fast quenching scenario. NGC 7252 may take several Gyr to reach the red sequence of galaxies unless star formation becomes quenched by either AGN feedback or inefficient gas conversion, leading to an H I-rich elliptical galaxy.

  1. The Nova Rate in NGC 2403

    Czech Academy of Sciences Publication Activity Database

    Franck, J.R.; Shafter, A.W.; Hornoch, Kamil; Misselt, K.A.

    2012-01-01

    Roč. 760, č. 1 (2012), 13-1-13-8 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : galaxy NGC 2403 * cataclysmic variables Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.733, year: 2012

  2. Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy

    Science.gov (United States)

    Bose, Subhash; Dong, Subo; Pastorello, A.; Filippenko, Alexei V.; Kochanek, C. S.; Mauerhan, Jon; Romero-Cañizales, C.; Brink, Thomas G.; Chen, Ping; Prieto, J. L.; Post, R.; Ashall, Christopher; Grupe, Dirk; Tomasella, L.; Benetti, Stefano; Shappee, B. J.; Stanek, K. Z.; Cai, Zheng; Falco, E.; Lundqvist, Peter; Mattila, Seppo; Mutel, Robert; Ochner, Paolo; Pooley, David; Stritzinger, M. D.; Villanueva, S., Jr.; Zheng, WeiKang; Beswick, R. J.; Brown, Peter J.; Cappellaro, E.; Davis, Scott; Fraser, Morgan; de Jaeger, Thomas; Elias-Rosa, N.; Gall, C.; Gaudi, B. Scott; Herczeg, Gregory J.; Hestenes, Julia; Holoien, T. W.-S.; Hosseinzadeh, Griffin; Hsiao, E. Y.; Hu, Shaoming; Jaejin, Shin; Jeffers, Ben; Koff, R. A.; Kumar, Sahana; Kurtenkov, Alexander; Lau, Marie Wingyee; Prentice, Simon; Reynolds, T.; Rudy, Richard J.; Shahbandeh, Melissa; Somero, Auni; Stassun, Keivan G.; Thompson, Todd A.; Valenti, Stefano; Woo, Jong-Hak; Yunus, Sameen

    2018-01-01

    Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a “normal” spiral galaxy (NGC 3191) in terms of stellar mass (several times 1010 M⊙) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (Mg = ‑21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ∼0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with rules out an association of this SLSN-I with known populations of gamma-ray-burst-like central engines.

  3. Estimatining biases in the stellar dynamical black hole mass measurements in barred galaxies and prospects for measuring SMBH masses with JWST

    Science.gov (United States)

    Valluri, Monica; Vasiliev, Eugene; Bentz, Misty; Shen, Juntai

    2018-04-01

    Although 60% of disk galaxies are barred, stellar dynamical measurements of the masses of supermassive black holes (SMBH) in barred galaxies have always been obtained under the assumption that the bulges are axisymmetric. We use N-body simulations with self-consistently grown SMBHs in barred and unbarred galaxies to create a suite of mock Integral Field Spectrographic (IFS) datasets for galaxies with various observed orientations. We then apply an axisymmetric orbit superposition code to these mock IFS datasets to assess the reliability with which SMBH masses can be recovered. We also assess which disk and bar orientations give rise to biases. We use these simulations to assess whether or not existing SMBH measurements in barred galaxies are likely to be biased. We also present a brief preview of our JWST Early Release Science proposal to study the nuclear dynamics of nearby Seyfert I galaxy NGC 4151 with the NIRSpec Integral Field Spectrograph and describe how simulations of disk galaxies will used to create mock NIRSpec data to prepare for the real data.

  4. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Science.gov (United States)

    Venturi, Giacomo; Marconi, Alessandro; Mingozzi, Matilde; Carniani, Stefano; Cresci, Giovanni; Risaliti, Guido; Mannucci, Filippo

    2017-12-01

    AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (⪉100 pc), as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central 5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  5. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Giacomo; Marconi, Alessandro [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mingozzi, Matilde [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); Carniani, Stefano [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom); Cresci, Giovanni [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Risaliti, Guido [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mannucci, Filippo, E-mail: gventuri@arcetri.astro.it [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy)

    2017-11-24

    AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc), as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  6. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Directory of Open Access Journals (Sweden)

    Giacomo Venturi

    2017-11-01

    Full Text Available AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc, as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  7. Anatomy of the AGN in NGC 5548. VII. Swift study of obscuration and broadband continuum variability

    Science.gov (United States)

    Mehdipour, M.; Kaastra, J. S.; Kriss, G. A.; Cappi, M.; Petrucci, P.-O.; De Marco, B.; Ponti, G.; Steenbrugge, K. C.; Behar, E.; Bianchi, S.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Di Gesu, L.; Matt, G.; Paltani, S.; Peterson, B. M.; Ursini, F.; Whewell, M.

    2016-04-01

    We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archival observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power law) originating in the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of 2013 (including XMM-Newton, NuSTAR, and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).

  8. Spatial distribution of dust in the shell elliptical NGC 5982

    NARCIS (Netherlands)

    del Burgo, C.; Carter, D.; Sikkema, G.

    Aims. Shells in Ellipticals are peculiar faint sharp edged features that are thought to be formed by galaxy mergers. We determine the shell and dust distributions, and colours of a well-resolved shell and the underlying galaxy in NGC 5982, and compare the spatial distributions of the dust and gas

  9. The Hot and Cold Outflows of NGC 3079

    NARCIS (Netherlands)

    Shafi, N.; Morganti, R.; Oosterloo, T.; Booth, R.; Smith, B.; Bastian, N.; Higdon, S.J.U.

    Very deep neutral hydrogen (HI) observations of the edge-on spiral galaxy NGC 3079 with the Westerbork Synthesis Radio Telescope (WSRT) are presented. The galaxy has been studied extensively in different wavelengths and is known for its several unique and complex features. However, the new data

  10. BURST OF STAR FORMATION DRIVES BUBBLE IN GALAXY'S CORE

    Science.gov (United States)

    2002-01-01

    These NASA Hubble Space Telescope snapshots reveal dramatic activities within the core of the galaxy NGC 3079, where a lumpy bubble of hot gas is rising from a cauldron of glowing matter. The picture at left shows the bubble in the center of the galaxy's disk. The structure is more than 3,000 light-years wide and rises 3,500 light-years above the galaxy's disk. The smaller photo at right is a close-up view of the bubble. Astronomers suspect that the bubble is being blown by 'winds' (high-speed streams of particles) released during a burst of star formation. Gaseous filaments at the top of the bubble are whirling around in a vortex and are being expelled into space. Eventually, this gas will rain down upon the galaxy's disk where it may collide with gas clouds, compress them, and form a new generation of stars. The two white dots just above the bubble are probably stars in the galaxy. The close-up reveals that the bubble's surface is lumpy, consisting of four columns of gaseous filaments that tower above the galaxy's disk. The filaments disperse at a height of 2,000 light-years. Each filament is about 75 light-years wide. Velocity measurements taken by the Canada-France-Hawaii Telescope in Hawaii show that the gaseous filaments are ascending at more than 4 million miles an hour (6 million kilometers an hour). According to theoretical models, the bubble formed when ongoing winds from hot stars mixed with small bubbles of very hot gas from supernova explosions. Observations of the core's structure by radio telescopes indicate that those processes are still active. The models suggest that this outflow began about a million years ago. They occur about every 10 million years. Eventually, the hot stars will die, and the bubble's energy source will fade away. Astronomers have seen evidence of previous outbursts from radio and X-ray observations. Those studies show rings of dust and gas and long plumes of material, all of which are larger than the bubble. NGC 3079 is 50

  11. Evolution of stars and galaxies

    International Nuclear Information System (INIS)

    Baade, W.

    1975-01-01

    Transcriptions of recorded lectures given by the author have been edited into book form. Topics covered include: historical introduction, classification of galaxies; observation of galaxies; photography of galaxies; the andromeda nebula, spiral structure; dust and gas in galaxies; outline of stellar evolution; the distances to the galaxies; galactic clusters; stellar associations; the T Tauri stars; globular clusters: color-magnitude diagrams; spectra of population II stars; variable stars in globular clusters; elliptical galaxies; irregular galaxies and star formation; the magellanic clouds; the andromeda nebula, photometry; evolution of galaxies; the structure of the galaxy; the galactic nucleus; the galactic disk; and kinematics and evolution of the galaxy. 27 tables, 26 figures

  12. THE AGES OF HIGH-MASS X-RAY BINARIES IN NGC 2403 AND NGC 300

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Benjamin F.; Binder, Breanna A.; Dalcanton, Julianne J. [Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195 (United States); Eracleous, Michael [Department of Astronomy and Astrophysics and Center for Gravitational Wave Physics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16803 (United States); Dolphin, Andrew, E-mail: ben@astro.washington.edu, E-mail: bbinder@astro.washington.edu, E-mail: jd@astro.washington.edu, E-mail: mce@astro.psu.edu, E-mail: adolphin@raytheon.com [Raytheon Company, Tucson, AZ 85734 (United States)

    2013-07-20

    We have examined resolved stellar photometry from HST imaging surrounding 18 high-mass X-ray binary (HMXB) candidates in NGC 300 and NGC 2403 as determined from combined Chandra/HST analysis. We have fit the color-magnitude distribution of the surrounding stars with stellar evolution models. All but one region in NGC 300 and two in NGC 2403 contain a population with an age between 20 and 70 Myr. One of the candidates is the ultraluminous X-ray source in NGC 2403, which we associate with a 60 {+-} 5 Myr old population. These age distributions provide additional evidence that 16 of these 18 candidates are HMXBs. Furthermore, our results suggest that the most common HMXB age in these galaxies is 40-55 Myr. This preferred age is similar to observations of HMXBs in the Small Magellanic Cloud, providing new evidence of this formation timescale, but in higher metallicity populations. We suggest that this preferred HMXB age is the result of the fortuitous combination of two physical effects. First, this is the age of a population when the greatest rate of core-collapse events should be occurring, maximizing neutron star production. Second, this is the age when B stars are most likely to be actively losing mass. We also discuss our results in the context of HMXB feedback in galaxies, confirming HMXBs as a potentially important source of energy for the interstellar medium in low-mass galaxies.

  13. VizieR Online Data Catalog: Young massive star clusters in 2 LEGUS galaxies (Ryon+, 2017)

    Science.gov (United States)

    Ryon, J. E.; Gallagher, J. S.; Smith, L. J.; Adamo, A.; Calzetti, D.; Bright, S. N.; Cignoni, M.; Cook, D. O.; Dale, D. A.; Elmegreen, B. E.; Fumagalli, M.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Kim, H.; Messa, M.; Thilker, D.; Ubeda, L.

    2018-01-01

    The Legacy Extragalactic UV Survey (LEGUS; Calzetti+ 2015AJ....149...51C) is a Hubble Space Telescope (HST) Cycle 21 Treasury program, which obtained imaging of 50 nearby galaxies (within ~13Mpc) in five filters with WFC3/UVIS and ACS/WFC. Separate catalogs are produced for each pointing on the two galaxies: NGC 628c (central pointing), NGC 628e (east pointing), NGC 1313e (east pointing), and NGC 1313w (west pointing). (2 data files).

  14. SiO and CH3OH mega-masers in NGC 1068.

    Science.gov (United States)

    Wang, Junzhi; Zhang, Jiangshui; Gao, Yu; Zhang, Zhi-Yu; Li, Di; Fang, Min; Shi, Yong

    2014-11-11

    Maser is an acronym for microwave amplification by stimulated emission of radiation; in astronomy mega-masers are masers in galaxies that are ≥ 10(6) times more luminous than typical galactic maser sources. Observational studies of mega-masers can help us to understand their origins and characteristics. More importantly, mega-masers can be used as diagnostic tracers to probe the physical properties of their parent galaxies. Since the late 1970s, only three types of molecules have been found to form mega-masers: H2O, OH and H2CO. Here we report the detection of both SiO and CH3OH mega-masers near the centre of Seyfert 2 galaxy NGC 1068 at millimetre wavelengths, obtained using the IRAM 30-m telescope. We argue that the SiO mega-maser originated from the nuclear disk and the CH3OH mega-maser originated from shock fronts. High-resolution observations in the future will enable us to investigate AGN feedback and determine the masses of central supermassive black holes in such galaxies.

  15. A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404

    Energy Technology Data Exchange (ETDEWEB)

    Nyland, Kristina; Lacy, Mark [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Davis, Timothy A. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA (United Kingdom); Nguyen, Dieu D.; Seth, Anil [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Wrobel, Joan M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Kamble, Atish; Karovska, Margarita; Maksym, W. Peter [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Alatalo, Katherine [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mukherjee, Dipanjan [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Young, Lisa M., E-mail: knyland@nrao.edu [Physics Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States)

    2017-08-10

    The nearby dwarf galaxy NGC 404 harbors a low-luminosity active galactic nucleus powered by the lowest-mass (<150,000 M {sub ⊙}) central massive black hole (MBH), with a dynamical mass constraint, currently known, thus providing a rare low-redshift analog to the MBH “seeds” that formed in the early universe. Here, we present new imaging of the nucleus of NGC 404 at 12–18 GHz with the Karl G. Jansky Very Large Array (VLA) and observations of the CO(2–1) line with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we have successfully resolved the nuclear radio emission, revealing a centrally peaked, extended source spanning 17 pc. Combined with previous VLA observations, our new data place a tight constraint on the radio spectral index and indicate an optically thin synchrotron origin for the emission. The peak of the resolved radio source coincides with the dynamical center of NGC 404, the center of a rotating disk of molecular gas, and the position of a compact, hard X-ray source. We also present evidence for shocks in the NGC 404 nucleus from archival narrowband HST imaging, Chandra X-ray data, and Spitzer mid-infrared spectroscopy, and discuss possible origins for the shock excitation. Given the morphology, location, and steep spectral index of the resolved radio source, as well as constraints on nuclear star formation from the ALMA CO(2–1) data, we find the most likely scenario for the origin of the radio source in the center of NGC 404 to be a radio outflow associated with a confined jet driven by the active nucleus.

  16. NGC6819

    DEFF Research Database (Denmark)

    Handberg, R.; Brogaard, K.; Miglio, A.

    2017-01-01

    We present an extensive peakbagging effort on Kepler data of similar to 50 red giant stars in the open star cluster NGC6819. By employing sophisticated pre-processing of the time series and Markov chain Monte Carlo techniques we extracted individual frequencies, heights and line widths for hundreds...... find a mean mass of the RGB stars and RC stars in NGC6819 to be 1.61 +/- 0.02 and 1.64 +/- 0.02M(circle dot), respectively. The difference Delta M= -0.03 +/- 0.01 M-circle dot is almost insensitive to systematics, suggesting very little RGB mass loss, if any. Stars that are outliers relative...... to the ensemble reveal overmassive members that likely evolved via mass transfer in a blue straggler phase. We suggest that KIC 4937011, a low-mass Li-rich giant, is a cluster member in the RC phase that experienced very high mass loss during its evolution. Such over- and undermassive stars need to be considered...

  17. Radio Continuum and Far-infrared Emission from the Galaxies in the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    . Stotal. Galaxy. (mJy/bm). (arc sec). (mJy). Morph. NGC 1407. 0.50. 6 × 6. 99 ± 10. Diffuse. NGC 1371. 0.22. 15 × 15. 19.7 ± 2. Linear. NGC 1415. 0.12. 4 × 4. 27 ± 3. Linear. NGC 1482. 0.81. 8 × 8. 280 ± 30. Diffuse. NGC 1385. 0.41. 15 × 15.

  18. The flare model for X-ray variability of NGC 4258

    Science.gov (United States)

    Trześniewski, T.; Czerny, B.; Karas, V.; Pecháček, T.; Dovčiak, M.; Goosmann, R.; Nikołajuk, M.

    2011-06-01

    Aims: We study the variability mechanism of active galactic nuclei (AGN) within the framework of the flare model. We examine the case of Seyfert/LINER galaxy NGC 4258, which is observed at high inclination angle and exhibits rapid fluctuations in its X-ray light curve. Methods: We construct a model light curve based on the assumption of magnetic flares localized in the equatorial plane and orbiting with Keplerian speed at each given radius. We calculate the level of variability as a function of the inclination of an observer, taking into account all effects of general relativity near a rotating supermassive black hole. Results: The variability level is a monotonic function of the source inclination. It rises more rapidly for larger values of the black hole spin (Kerr parameter a) and for steeper emissivity (index β of the radial profile). We compare the expected level of variability for the viewing angle 81.6 deg, as inferred for NGC 4258, with the case of moderate viewing angles of about 30 deg, which are typical of Seyfert type-1 galaxies. Conclusions: Highly inclined sources such as this one are particularly suitable to test the flare model because the orbital motion, Doppler boosting, and light bending are all expected to have maximum effect when the accretion disk is seen almost edge-on. The model is consistent with the NGC 4258 variability, where the obscuring material is thought to be localized mainly toward the equatorial plane rather than forming a geometrically thick torus. Once the intrinsic timescales of the flare duration are determined with higher precision, this kind of highly inclined objects with a precisely known mass of the black hole can be used to set independent constraints on the spin parameter.

  19. The physical characteristics of the gas in the disk of Centaurus a using the Herschel space observatory

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, T. J.; Wilson, C. D.; Schirm, M. R. P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada); Baes, M.; De Looze, I. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Boquien, M.; Boselli, A. [Laboratoire d' Astrophysique de Marseille, Université d' Aix-Marseille and CNRS, UMR7326, F-13388 Marseille Cedex 13 (France); Cormier, D. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Galametz, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Karczewski, O. Ł. [Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Lebouteiller, V.; Madden, S. C. [CEA, Laboratoire AIM, Université Paris VII, IRFU/Service d' Astrophysique, Bat. 709, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Roussel, H. [Institut d' Astrophysique de Paris, UMR7095 CNRS, Université Pierre and Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Smith, M. W. L. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Spinoglio, L., E-mail: parkintj@mcmaster.ca [Istituto di Astrofisica e Planetologia Spaziali, INAF-IAPS, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2014-05-20

    We search for variations in the disk of Centaurus A of the emission from atomic fine structure lines using Herschel PACS and SPIRE spectroscopy. In particular, we observe the [C II](158 μm), [N II](122 and 205 μm), [O I](63 and 145 μm), and [O III](88 μm) lines, which all play an important role in cooling the gas in photo-ionized and photodissociation regions (PDRs). We determine that the ([C II]+[O I]{sub 63})/F {sub TIR} line ratio, a proxy for the heating efficiency of the gas, shows no significant radial trend across the observed region, in contrast to observations of other nearby galaxies. We determine that 10%-20% of the observed [C II] emission originates in ionized gas. Comparison between our observations and a PDR model shows that the strength of the far-ultraviolet radiation field, G {sub 0}, varies between 10{sup 1.75} and 10{sup 2.75} and the hydrogen nucleus density varies between 10{sup 2.75} and 10{sup 3.75} cm{sup –3}, with no significant radial trend in either property. In the context of the emission line properties of the grand-design spiral galaxy M51 and the elliptical galaxy NGC 4125, the gas in Cen A appears more characteristic of that in typical disk galaxies rather than elliptical galaxies.

  20. Exploring the molecular chemistry and excitation in obscured luminous infrared galaxies. An ALMA mm-wave spectral scan of NGC 4418

    NARCIS (Netherlands)

    Costagliola, F.; Sakamoto, K.; Muller, S.; Martín, S.; Aalto, S.; Harada, N.; van der Werf, P.; Viti, S.; Garcia-Burillo, S.; Spaans, M.

    2015-01-01

    Context. Extragalactic observations allow the study of molecular chemistry and excitation under physical conditions which may differ greatly from those found in the Milky Way. The compact, obscured nuclei (CON) of luminous infrared galaxies (LIRG) combine large molecular columns with intense

  1. STATISTICS OF MICROLENSING CAUSTIC CROSSINGS IN Q 2237+0305: PECULIAR VELOCITY OF THE LENS GALAXY AND ACCRETION DISK SIZE

    Energy Technology Data Exchange (ETDEWEB)

    Mediavilla, E. [Instituto de Astrofísica de Canarias, Vía Láctea S/N, La Laguna E-38200 Tenerife (Spain); Jimenez-Vicente, J