WorldWideScience

Sample records for discrete optimization problems

  1. Finite Volumes Discretization of Topology Optimization Problems

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter

    , FVMs represent a standard method of discretization within engineering communities dealing with computational uid dy- namics, transport, and convection-reaction problems. Among various avours of FVMs, cell based approaches, where all variables are associated only with cell centers, are particularly...... computations is done using nite element methods (FEMs). Despite some limited recent eorts [1, 2], we have only started to develop our understanding of the interplay between the control in the coecients and FVMs. Recent advances in discrete functional analysis allow us to analyze convergence of FVM...... of the induced parametrization of the design space that allows optimization algorithms to eciently explore it, and the ease of integration with existing computational codes in a variety of application areas, the simplicity and eciency of sensitivity analyses|all stemming from the use of the same grid throughout...

  2. Integrals of Motion for Discrete-Time Optimal Control Problems

    OpenAIRE

    Torres, Delfim F. M.

    2003-01-01

    We obtain a discrete time analog of E. Noether's theorem in Optimal Control, asserting that integrals of motion associated to the discrete time Pontryagin Maximum Principle can be computed from the quasi-invariance properties of the discrete time Lagrangian and discrete time control system. As corollaries, results for first-order and higher-order discrete problems of the calculus of variations are obtained.

  3. Comments on `A discrete optimal control problem for descriptor systems'

    DEFF Research Database (Denmark)

    Ravn, Hans

    1990-01-01

    In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates that there ......In the above-mentioned work (see ibid., vol.34, p.177-81 (1989)), necessary and sufficient optimality conditions are derived for a discrete-time optimal problem, as well as other specific cases of implicit and explicit dynamic systems. The commenter corrects a mistake and demonstrates...

  4. Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem

    Directory of Open Access Journals (Sweden)

    S Sarathambekai

    2017-03-01

    Full Text Available Discrete particle swarm optimization is one of the most recently developed population-based meta-heuristic optimization algorithm in swarm intelligence that can be used in any discrete optimization problems. This article presents a discrete particle swarm optimization algorithm to efficiently schedule the tasks in the heterogeneous multiprocessor systems. All the optimization algorithms share a common algorithmic step, namely population initialization. It plays a significant role because it can affect the convergence speed and also the quality of the final solution. The random initialization is the most commonly used method in majority of the evolutionary algorithms to generate solutions in the initial population. The initial good quality solutions can facilitate the algorithm to locate the optimal solution or else it may prevent the algorithm from finding the optimal solution. Intelligence should be incorporated to generate the initial population in order to avoid the premature convergence. This article presents a discrete particle swarm optimization algorithm, which incorporates opposition-based technique to generate initial population and greedy algorithm to balance the load of the processors. Make span, flow time, and reliability cost are three different measures used to evaluate the efficiency of the proposed discrete particle swarm optimization algorithm for scheduling independent tasks in distributed systems. Computational simulations are done based on a set of benchmark instances to assess the performance of the proposed algorithm.

  5. Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Problem

    DEFF Research Database (Denmark)

    Petersen, Mette Kirschmeyer; Hansen, Lars Henrik; Bendtsen, Jan Dimon

    2014-01-01

    We consider a Virtual Power Plant, which is given the task of dispatching a fluctuating power supply to a portfolio of flexible consumers. The flexible consumers are modeled as discrete batch processes, and the associated optimization problem is denoted the Discrete Virtual Power Plant Dispatch...... Problem. First NP-completeness of the Discrete Virtual Power Plant Dispatch Problem is proved formally. We then proceed to develop tailored versions of the meta-heuristic algorithms Hill Climber and Greedy Randomized Adaptive Search Procedure (GRASP). The algorithms are tuned and tested on portfolios...... of varying sizes. We find that all the tailored algorithms perform satisfactorily in the sense that they are able to find sub-optimal, but usable, solutions to very large problems (on the order of 10 5 units) at computation times on the scale of just 10 seconds, which is far beyond the capabilities...

  6. Discrete bat algorithm for optimal problem of permutation flow shop scheduling.

    Science.gov (United States)

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem.

  7. Discrete Bat Algorithm for Optimal Problem of Permutation Flow Shop Scheduling

    Science.gov (United States)

    Luo, Qifang; Zhou, Yongquan; Xie, Jian; Ma, Mingzhi; Li, Liangliang

    2014-01-01

    A discrete bat algorithm (DBA) is proposed for optimal permutation flow shop scheduling problem (PFSP). Firstly, the discrete bat algorithm is constructed based on the idea of basic bat algorithm, which divide whole scheduling problem into many subscheduling problems and then NEH heuristic be introduced to solve subscheduling problem. Secondly, some subsequences are operated with certain probability in the pulse emission and loudness phases. An intensive virtual population neighborhood search is integrated into the discrete bat algorithm to further improve the performance. Finally, the experimental results show the suitability and efficiency of the present discrete bat algorithm for optimal permutation flow shop scheduling problem. PMID:25243220

  8. Discrete bacteria foraging optimization algorithm for graph based problems - a transition from continuous to discrete

    Science.gov (United States)

    Sur, Chiranjib; Shukla, Anupam

    2018-03-01

    Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.

  9. Guaranteed Discrete Energy Optimization on Large Protein Design Problems.

    Science.gov (United States)

    Simoncini, David; Allouche, David; de Givry, Simon; Delmas, Céline; Barbe, Sophie; Schiex, Thomas

    2015-12-08

    In Computational Protein Design (CPD), assuming a rigid backbone and amino-acid rotamer library, the problem of finding a sequence with an optimal conformation is NP-hard. In this paper, using Dunbrack's rotamer library and Talaris2014 decomposable energy function, we use an exact deterministic method combining branch and bound, arc consistency, and tree-decomposition to provenly identify the global minimum energy sequence-conformation on full-redesign problems, defining search spaces of size up to 10(234). This is achieved on a single core of a standard computing server, requiring a maximum of 66GB RAM. A variant of the algorithm is able to exhaustively enumerate all sequence-conformations within an energy threshold of the optimum. These proven optimal solutions are then used to evaluate the frequencies and amplitudes, in energy and sequence, at which an existing CPD-dedicated simulated annealing implementation may miss the optimum on these full redesign problems. The probability of finding an optimum drops close to 0 very quickly. In the worst case, despite 1,000 repeats, the annealing algorithm remained more than 1 Rosetta unit away from the optimum, leading to design sequences that could differ from the optimal sequence by more than 30% of their amino acids.

  10. Discrete optimization

    CERN Document Server

    Parker, R Gary

    1988-01-01

    This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o

  11. Global optimization of discrete truss topology design problems using a parallel cut-and-branch method

    DEFF Research Database (Denmark)

    Rasmussen, Marie-Louise Højlund; Stolpe, Mathias

    2008-01-01

    the physics, and the cuts (Combinatorial Benders’ and projected Chvátal–Gomory) come from an understanding of the particular mathematical structure of the reformulation. The impact of a stronger representation is investigated on several truss topology optimization problems in two and three dimensions.......The subject of this article is solving discrete truss topology optimization problems with local stress and displacement constraints to global optimum. We consider a formulation based on the Simultaneous ANalysis and Design (SAND) approach. This intrinsically non-convex problem is reformulated...

  12. Global optimization of truss topology with discrete bar areas—Part I: Theory of relaxed problems

    DEFF Research Database (Denmark)

    Achtziger, Wolfgang; Stolpe, Mathias

    2008-01-01

    the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single bar area, i.e., a 0/1-problem. In contrast to heuristic methods considered in other approaches, Part I....... The main issue of the paper and of the approach lies in the fact that the relaxed nonlinear optimization problem can be formulated as a quadratic program (QP). Here the paper generalizes and extends the available theory from the literature. Although the Hessian of this QP is indefinite, it is possible...

  13. The Expanded Invasive Weed Optimization Metaheuristic for Solving Continuous and Discrete Optimization Problems

    Directory of Open Access Journals (Sweden)

    Henryk Josiński

    2014-01-01

    Full Text Available This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature.

  14. The continuous 1.5D terrain guarding problem: Discretization, optimal solutions, and PTAS

    Directory of Open Access Journals (Sweden)

    Stephan Friedrichs

    2016-05-01

    Full Text Available In the NP-hard continuous 1.5D Terrain Guarding Problem (TGP we are given an $x$-monotone chain of line segments in $R^2$ (the terrain $T$, and ask for the minimum number of guards (located anywhere on $T$ required to guard all of $T$. We construct guard candidate and witness sets $G, W \\subset T$ of polynomial size such that any feasible (optimal guard cover $G^* \\subseteq G$ for $W$ is also feasible (optimal for the continuous TGP. This discretization allows us to: (1 settle NP-completeness for the continuous TGP; (2 provide a Polynomial Time Approximation Scheme (PTAS for the continuous TGP using the PTAS for the discrete TGP by Gibson et al.; (3 formulate the continuous TGP as an Integer Linear Program (IP. Furthermore, we propose several filtering techniques reducing the size of our discretization, allowing us to devise an efficient IP-based algorithm that reliably provides optimal guard placements for terrains with up to $10^6$ vertices within minutes on a standard desktop computer.

  15. Machine learning meliorates computing and robustness in discrete combinatorial optimization problems.

    Directory of Open Access Journals (Sweden)

    Fushing Hsieh

    2016-11-01

    Full Text Available Discrete combinatorial optimization problems in real world are typically defined via an ensemble of potentially high dimensional measurements pertaining to all subjects of a system under study. We point out that such a data ensemble in fact embeds with system's information content that is not directly used in defining the combinatorial optimization problems. Can machine learning algorithms extract such information content and make combinatorial optimizing tasks more efficient? Would such algorithmic computations bring new perspectives into this classic topic of Applied Mathematics and Theoretical Computer Science? We show that answers to both questions are positive. One key reason is due to permutation invariance. That is, the data ensemble of subjects' measurement vectors is permutation invariant when it is represented through a subject-vs-measurement matrix. An unsupervised machine learning algorithm, called Data Mechanics (DM, is applied to find optimal permutations on row and column axes such that the permuted matrix reveals coupled deterministic and stochastic structures as the system's information content. The deterministic structures are shown to facilitate geometry-based divide-and-conquer scheme that helps optimizing task, while stochastic structures are used to generate an ensemble of mimicries retaining the deterministic structures, and then reveal the robustness pertaining to the original version of optimal solution. Two simulated systems, Assignment problem and Traveling Salesman problem, are considered. Beyond demonstrating computational advantages and intrinsic robustness in the two systems, we propose brand new robust optimal solutions. We believe such robust versions of optimal solutions are potentially more realistic and practical in real world settings.

  16. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    Science.gov (United States)

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.

  17. A Hybrid Multiobjective Discrete Particle Swarm Optimization Algorithm for a SLA-Aware Service Composition Problem

    Directory of Open Access Journals (Sweden)

    Hao Yin

    2014-01-01

    Full Text Available For SLA-aware service composition problem (SSC, an optimization model for this algorithm is built, and a hybrid multiobjective discrete particle swarm optimization algorithm (HMDPSO is also proposed in this paper. According to the characteristic of this problem, a particle updating strategy is designed by introducing crossover operator. In order to restrain particle swarm’s premature convergence and increase its global search capacity, the swarm diversity indicator is introduced and a particle mutation strategy is proposed to increase the swarm diversity. To accelerate the process of obtaining the feasible particle position, a local search strategy based on constraint domination is proposed and incorporated into the proposed algorithm. At last, some parameters in the algorithm HMDPSO are analyzed and set with relative proper values, and then the algorithm HMDPSO and the algorithm HMDPSO+ incorporated by local search strategy are compared with the recently proposed related algorithms on different scale cases. The results show that algorithm HMDPSO+ can solve the SSC problem more effectively.

  18. A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem.

    Directory of Open Access Journals (Sweden)

    Zi-Bin Jiang

    Full Text Available The fruit fly optimization algorithm (FOA is a newly developed bio-inspired algorithm. The continuous variant version of FOA has been proven to be a powerful evolutionary approach to determining the optima of a numerical function on a continuous definition domain. In this study, a discrete FOA (DFOA is developed and applied to the traveling salesman problem (TSP, a common combinatorial problem. In the DFOA, the TSP tour is represented by an ordering of city indices, and the bio-inspired meta-heuristic search processes are executed with two elaborately designed main procedures: the smelling and tasting processes. In the smelling process, an effective crossover operator is used by the fruit fly group to search for the neighbors of the best-known swarm location. During the tasting process, an edge intersection elimination (EXE operator is designed to improve the neighbors of the non-optimum food location in order to enhance the exploration performance of the DFOA. In addition, benchmark instances from the TSPLIB are classified in order to test the searching ability of the proposed algorithm. Furthermore, the effectiveness of the proposed DFOA is compared to that of other meta-heuristic algorithms. The results indicate that the proposed DFOA can be effectively used to solve TSPs, especially large-scale problems.

  19. A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Bendsøe, Martin P.

    2007-01-01

    This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...

  20. A non-linear branch and cut method for solving discrete minimum compliance problems to global optimality

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Bendsøe, Martin P.

    2007-01-01

    This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities......) and cuts....

  1. Discrete PSO algorithm based optimization of transmission lines loading in TNEP problem

    International Nuclear Information System (INIS)

    Shayeghi, H.; Mahdavi, M.; Bagheri, A.

    2010-01-01

    Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, lines adequacy rate has not been considered at the end of planning horizon, i.e. expanded network misses adequacy after some times and needs to be expanded again. In this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using discrete particle swarm optimization (DPSO) algorithm. Expanded network will possess a maximum adequacy to provide load demand and also the transmission lines overloaded later. The proposed idea has been tested on the Garvers network and an actual transmission network of the Azerbaijan regional electric company, Iran, and the results are compared with the decimal codification genetic algorithm (DCGA) technique. The results evaluation shows that the network will possess maximum efficiency economically. Also, it is shown that precision and convergence speed of the proposed DPSO based method for the solution of the STNEP problem is superior to DCGA approach.

  2. Multi-objective flexible job-shop scheduling problem using modified discrete particle swarm optimization.

    Science.gov (United States)

    Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng

    2016-01-01

    Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.

  3. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    Science.gov (United States)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  4. Newton-type method for the variational discretization of topology optimization problems

    DEFF Research Database (Denmark)

    Evgrafov, Anton

    2013-01-01

    We present a locally quadratically convergent optimization algorithm for solving topology optimization problems. The distinguishing feature of the algorithm is to treat the design as a smooth function of the state and not vice versa as in the traditional nested approach to topology optimization, ...

  5. Discrete Teaching-learning-based optimization Algorithm for Traveling Salesman Problems

    Directory of Open Access Journals (Sweden)

    Wu Lehui

    2017-01-01

    Full Text Available In this paper, a discrete variant of TLBO (DTLBO is proposed for solving the traveling salesman problem (TSP. In the proposed method, an effective learner representation scheme is redefined based on the characteristics of TSP problem. Moreover, all learners are randomly divided into several sub-swarms with equal amounts of learners so as to increase the diversity of population and reduce the probability of being trapped in local optimum. In each sub-swarm, the new positions of learners in the teaching phase and the learning phase are generated by the crossover operation, the legality detection and mutation operation, and then the offspring learners are determined based on greedy selection. Finally, to verify the performance of the proposed algorithm, benchmark TSP problems are examined and the results indicate that DTLBO is effective compared with other algorithms used for TSP problems.

  6. Discrete Optimization Model for Vehicle Routing Problem with Scheduling Side Cosntraints

    Science.gov (United States)

    Juliandri, Dedy; Mawengkang, Herman; Bu'ulolo, F.

    2018-01-01

    Vehicle Routing Problem (VRP) is an important element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a hard combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve the demands a set of customers It is required that these vehicles return to the depot after serving customers’ demand. The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the overall costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model.

  7. Existence and discrete approximation for optimization problems governed by fractional differential equations

    Science.gov (United States)

    Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng

    2018-06-01

    We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.

  8. Handbook on modelling for discrete optimization

    CERN Document Server

    Pitsoulis, Leonidas; Williams, H

    2006-01-01

    The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...

  9. Set-Based Discrete Particle Swarm Optimization Based on Decomposition for Permutation-Based Multiobjective Combinatorial Optimization Problems.

    Science.gov (United States)

    Yu, Xue; Chen, Wei-Neng; Gu, Tianlong; Zhang, Huaxiang; Yuan, Huaqiang; Kwong, Sam; Zhang, Jun

    2017-08-07

    This paper studies a specific class of multiobjective combinatorial optimization problems (MOCOPs), namely the permutation-based MOCOPs. Many commonly seen MOCOPs, e.g., multiobjective traveling salesman problem (MOTSP), multiobjective project scheduling problem (MOPSP), belong to this problem class and they can be very different. However, as the permutation-based MOCOPs share the inherent similarity that the structure of their search space is usually in the shape of a permutation tree, this paper proposes a generic multiobjective set-based particle swarm optimization methodology based on decomposition, termed MS-PSO/D. In order to coordinate with the property of permutation-based MOCOPs, MS-PSO/D utilizes an element-based representation and a constructive approach. Through this, feasible solutions under constraints can be generated step by step following the permutation-tree-shaped structure. And problem-related heuristic information is introduced in the constructive approach for efficiency. In order to address the multiobjective optimization issues, the decomposition strategy is employed, in which the problem is converted into multiple single-objective subproblems according to a set of weight vectors. Besides, a flexible mechanism for diversity control is provided in MS-PSO/D. Extensive experiments have been conducted to study MS-PSO/D on two permutation-based MOCOPs, namely the MOTSP and the MOPSP. Experimental results validate that the proposed methodology is promising.

  10. Optimization strategies for discrete multi-material stiffness optimization

    DEFF Research Database (Denmark)

    Hvejsel, Christian Frier; Lund, Erik; Stolpe, Mathias

    2011-01-01

    Design of composite laminated lay-ups are formulated as discrete multi-material selection problems. The design problem can be modeled as a non-convex mixed-integer optimization problem. Such problems are in general only solvable to global optimality for small to moderate sized problems. To attack...... which numerically confirm the sought properties of the new scheme in terms of convergence to a discrete solution....

  11. A current value Hamiltonian Approach for Discrete time Optimal Control Problems arising in Economic Growth

    OpenAIRE

    Naz, Rehana

    2018-01-01

    Pontrygin-type maximum principle is extended for the present value Hamiltonian systems and current value Hamiltonian systems of nonlinear difference equations for uniform time step $h$. A new method termed as a discrete time current value Hamiltonian method is established for the construction of first integrals for current value Hamiltonian systems of ordinary difference equations arising in Economic growth theory.

  12. An Improved Version of Discrete Particle Swarm Optimization for Flexible Job Shop Scheduling Problem with Fuzzy Processing Time

    Directory of Open Access Journals (Sweden)

    Song Huang

    2016-01-01

    Full Text Available The fuzzy processing time occasionally exists in job shop scheduling problem of flexible manufacturing system. To deal with fuzzy processing time, fuzzy flexible job shop model was established in several papers and has attracted numerous researchers’ attention recently. In our research, an improved version of discrete particle swarm optimization (IDPSO is designed to solve flexible job shop scheduling problem with fuzzy processing time (FJSPF. In IDPSO, heuristic initial methods based on triangular fuzzy number are developed, and a combination of six initial methods is applied to initialize machine assignment and random method is used to initialize operation sequence. Then, some simple and effective discrete operators are employed to update particle’s position and generate new particles. In order to guide the particles effectively, we extend global best position to a set with several global best positions. Finally, experiments are designed to investigate the impact of four parameters in IDPSO by Taguchi method, and IDPSO is tested on five instances and compared with some state-of-the-art algorithms. The experimental results show that the proposed algorithm can obtain better solutions for FJSPF and is more competitive than the compared algorithms.

  13. An Approximate Method for Solving Optimal Control Problems for Discrete Systems Based on Local Approximation of an Attainability Set

    Directory of Open Access Journals (Sweden)

    V. A. Baturin

    2017-03-01

    Full Text Available An optimal control problem for discrete systems is considered. A method of successive improvements along with its modernization based on the expansion of the main structures of the core algorithm about the parameter is suggested. The idea of the method is based on local approximation of attainability set, which is described by the zeros of the Bellman function in the special problem of optimal control. The essence of the problem is as follows: from the end point of the phase is required to find a path that minimizes functional deviations of the norm from the initial state. If the initial point belongs to the attainability set of the original controlled system, the value of the Bellman function equal to zero, otherwise the value of the Bellman function is greater than zero. For this special task Bellman equation is considered. The support approximation and Bellman equation are selected. The Bellman function is approximated by quadratic terms. Along the allowable trajectory, this approximation gives nothing, because Bellman function and its expansion coefficients are zero. We used a special trick: an additional variable is introduced, which characterizes the degree of deviation of the system from the initial state, thus it is obtained expanded original chain. For the new variable initial nonzero conditions is selected, thus obtained trajectory is lying outside attainability set and relevant Bellman function is greater than zero, which allows it to hold a non-trivial approximation. As a result of these procedures algorithms of successive improvements is designed. Conditions for relaxation algorithms and conditions for the necessary conditions of optimality are also obtained.

  14. A Heuristic Design Information Sharing Framework for Hard Discrete Optimization Problems

    National Research Council Canada - National Science Library

    Jacobson, Sheldon H

    2007-01-01

    .... This framework has been used to gain new insights into neighborhood structure designs that allow different neighborhood functions to share information when using the same heuristic applied to the same problem...

  15. Systematization of Accurate Discrete Optimization Methods

    Directory of Open Access Journals (Sweden)

    V. A. Ovchinnikov

    2015-01-01

    Full Text Available The object of study of this paper is to define accurate methods for solving combinatorial optimization problems of structural synthesis. The aim of the work is to systemize the exact methods of discrete optimization and define their applicability to solve practical problems.The article presents the analysis, generalization and systematization of classical methods and algorithms described in the educational and scientific literature.As a result of research a systematic presentation of combinatorial methods for discrete optimization described in various sources is given, their capabilities are described and properties of the tasks to be solved using the appropriate methods are specified.

  16. On the application of Discrete Time Optimal Control Concepts to ...

    African Journals Online (AJOL)

    On the application of Discrete Time Optimal Control Concepts to Economic Problems. ... Journal of the Nigerian Association of Mathematical Physics ... Abstract. An extension of the use of the maximum principle to solve Discrete-time Optimal Control Problems (DTOCP), in which the state equations are in the form of general ...

  17. Emissivity of discretized diffusion problems

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Davidson, Gregory; Carrington, David B.

    2006-01-01

    The numerical modeling of radiative transfer by the diffusion approximation can produce artificially damped radiation propagation if spatial cells are too optically thick. In this paper, we investigate this nonphysical behavior at external problem boundaries by examining the emissivity of the discretized diffusion approximation. We demonstrate that the standard cell-centered discretization produces an emissivity that is too low for optically thick cells, a situation that leads to the lack of radiation propagation. We then present a modified boundary condition that yields an accurate emissivity regardless of cell size. This modified boundary condition can be used with a deterministic calculation or as part of a hybrid transport-diffusion method for increasing the efficiency of Monte Carlo simulations. We also discuss the range of applicability, as a function of cell size and material properties, when this modified boundary condition is employed in a hybrid technique. With a set of numerical calculations, we demonstrate the accuracy and usefulness of this modified boundary condition

  18. Discrete-time optimal control and games on large intervals

    CERN Document Server

    Zaslavski, Alexander J

    2017-01-01

    Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discret...

  19. Engineering applications of discrete-time optimal control

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ravn, Hans V.

    1990-01-01

    Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...... of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems...

  20. Solving discrete zero point problems

    NARCIS (Netherlands)

    van der Laan, G.; Talman, A.J.J.; Yang, Z.F.

    2004-01-01

    In this paper an algorithm is proposed to .nd a discrete zero point of a function on the collection of integral points in the n-dimensional Euclidean space IRn.Starting with a given integral point, the algorithm generates a .nite sequence of adjacent integral simplices of varying dimension and

  1. Discrete optimization in architecture architectural & urban layout

    CERN Document Server

    Zawidzki, Machi

    2016-01-01

    This book presents three projects that demonstrate the fundamental problems of architectural design and urban composition – the layout design, evaluation and optimization. Part I describes the functional layout design of a residential building, and an evaluation of the quality of a town square (plaza). The algorithm for the functional layout design is based on backtracking using a constraint satisfaction approach combined with coarse grid discretization. The algorithm for the town square evaluation is based on geometrical properties derived directly from its plan. Part II introduces a crowd-simulation application for the analysis of escape routes on floor plans, and optimization of a floor plan for smooth crowd flow. The algorithms presented employ agent-based modeling and cellular automata.

  2. Discrete-continuous analysis of optimal equipment replacement

    OpenAIRE

    YATSENKO, Yuri; HRITONENKO, Natali

    2008-01-01

    In Operations Research, the equipment replacement process is usually modeled in discrete time. The optimal replacement strategies are found from discrete (or integer) programming problems, well known for their analytic and computational complexity. An alternative approach is represented by continuous-time vintage capital models that explicitly involve the equipment lifetime and are described by nonlinear integral equations. Then the optimal replacement is determined via the opt...

  3. Discrete and Continuous Models for Partitioning Problems

    KAUST Repository

    Lellmann, Jan

    2013-04-11

    Recently, variational relaxation techniques for approximating solutions of partitioning problems on continuous image domains have received considerable attention, since they introduce significantly less artifacts than established graph cut-based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider in depth the consequences of a recent theoretical result concerning the optimality of solutions obtained using a particular relaxation method. Since the employed regularizer is quite tight, the considered relaxation generally involves a large computational cost. We propose a method to significantly reduce these costs in a fully automatic way for a large class of metrics including tree metrics, thus generalizing a method recently proposed by Strekalovskiy and Cremers (IEEE conference on computer vision and pattern recognition, pp. 1905-1911, 2011). © 2013 Springer Science+Business Media New York.

  4. Galerkin v. discrete-optimal projection in nonlinear model reduction

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Kevin Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antil, Harbir [George Mason Univ., Fairfax, VA (United States)

    2015-04-01

    Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes. We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.

  5. Optimization of Operations Resources via Discrete Event Simulation Modeling

    Science.gov (United States)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  6. Recent developments of discrete material optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Lund, Erik; Sørensen, Rene

    2015-01-01

    This work will give a quick summary of recent developments of the Discrete Material Optimization approach for structural optimization of laminated composite structures. This approach can be seen as a multi-material topology optimization approach for selecting the best ply material and number...... of plies in a laminated composite structure. The conceptual combinatorial design problem is relaxed to a continuous problem such that well-established gradient based optimization techniques can be applied, and the optimization problem is solved on basis of interpolation schemes with penalization...

  7. Optimal Robust Fault Detection for Linear Discrete Time Systems

    Directory of Open Access Journals (Sweden)

    Nike Liu

    2008-01-01

    Full Text Available This paper considers robust fault-detection problems for linear discrete time systems. It is shown that the optimal robust detection filters for several well-recognized robust fault-detection problems, such as ℋ−/ℋ∞, ℋ2/ℋ∞, and ℋ∞/ℋ∞ problems, are the same and can be obtained by solving a standard algebraic Riccati equation. Optimal filters are also derived for many other optimization criteria and it is shown that some well-studied and seeming-sensible optimization criteria for fault-detection filter design could lead to (optimal but useless fault-detection filters.

  8. Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.

    Science.gov (United States)

    Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao

    2015-04-01

    Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A discrete optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-01-01

    Nuclear fuel management can be seen as a large discrete optimization problem under constraints, and optimization methods on such problems are numerically costly. After an introduction of the main aspects of nuclear fuel management, this paper presents a new way to treat the combinatorial problem by using information included in the gradient of optimized cost function. A new search process idea is to choose, by direct observation of the gradient, the more interesting changes in fuel loading patterns. An example is then developed to illustrate an operating mode of the method. Finally, connections with classical simulated annealing and genetic algorithms are described as an attempt to improve search processes. 16 refs., 2 figs

  10. Truss topology optimization with discrete design variables by outer approximation

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2015-01-01

    Several variants of an outer approximation method are proposed to solve truss topology optimization problems with discrete design variables to proven global optimality. The objective is to minimize the volume of the structure while satisfying constraints on the global stiffness of the structure...... for classical outer approximation approaches applied to optimal design problems. A set of two- and three-dimensional benchmark problems are solved and the numerical results suggest that the proposed approaches are competitive with other special-purpose global optimization methods for the considered class...... under the applied loads. We extend the natural problem formulation by adding redundant force variables and force equilibrium constraints. This guarantees that the designs suggested by the relaxed master problems are capable of carrying the applied loads, a property which is generally not satisfied...

  11. Meshes optimized for discrete exterior calculus (DEC).

    Energy Technology Data Exchange (ETDEWEB)

    Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.

  12. Optimal Portfolios in Wishart Models and Effects of Discrete Rebalancing on Portfolio Distribution and Strategy Selection

    OpenAIRE

    Li, Zejing

    2012-01-01

    This dissertation is mainly devoted to the research of two problems - the continuous-time portfolio optimization in different Wishart models and the effects of discrete rebalancing on portfolio wealth distribution and optimal portfolio strategy.

  13. Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding

    Directory of Open Access Journals (Sweden)

    Linguo Li

    2017-01-01

    Full Text Available The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO, which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur’s entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO, the differential evolution (DE, the Artifical Bee Colony (ABC, and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability.

  14. A note on the depth function of combinatorial optimization problems

    NARCIS (Netherlands)

    Woeginger, G.J.

    2001-01-01

    In a recent paper [Discrete Appl. Math. 43 (1993) 115–129], Kern formulates two conjectures on the relationship between the computational complexity of computing the depth function of a discrete optimization problem and the computational complexity of solving this optimization problem to optimality.

  15. Truss topology optimization with discrete design variables — Guaranteed global optimality and benchmark examples

    DEFF Research Database (Denmark)

    Achtziger, Wolfgang; Stolpe, Mathias

    2007-01-01

    this problem is well-studied for continuous bar areas, we consider in this study the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single available bar area, i.......e., a 0/1 problem. In contrast to the heuristic methods considered in many other approaches, our goal is to compute guaranteed globally optimal structures. This is done by a branch-and-bound method for which convergence can be proven. In this branch-and-bound framework, lower bounds of the optimal......-integer problems. The main intention of this paper is to provide optimal solutions for single and multiple load benchmark examples, which can be used for testing and validating other methods or heuristics for the treatment of this discrete topology design problem....

  16. Combined Simulated Annealing Algorithm for the Discrete Facility Location Problem

    Directory of Open Access Journals (Sweden)

    Jin Qin

    2012-01-01

    Full Text Available The combined simulated annealing (CSA algorithm was developed for the discrete facility location problem (DFLP in the paper. The method is a two-layer algorithm, in which the external subalgorithm optimizes the decision of the facility location decision while the internal subalgorithm optimizes the decision of the allocation of customer's demand under the determined location decision. The performance of the CSA is tested by 30 instances with different sizes. The computational results show that CSA works much better than the previous algorithm on DFLP and offers a new reasonable alternative solution method to it.

  17. Thickness optimization of fiber reinforced laminated composites using the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Søren Nørgaard; Lund, Erik

    2012-01-01

    This work concerns a novel large-scale multi-material topology optimization method for simultaneous determination of the optimum variable integer thickness and fiber orientation throughout laminate structures with fixed outer geometries while adhering to certain manufacturing constraints....... The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved on basis of the so-called Discrete Material Optimization method, explicitly including the manufacturing constraints as linear constraints....

  18. Augmented Lagrangian Method For Discretized Optimal Control ...

    African Journals Online (AJOL)

    In this paper, we are concerned with one-dimensional time invariant optimal control problem, whose objective function is quadratic and the dynamical system is a differential equation with initial condition .Since most real life problems are nonlinear and their analytical solutions are not readily available, we resolve to ...

  19. Discrete optimization in architecture extremely modular systems

    CERN Document Server

    Zawidzki, Machi

    2017-01-01

    This book is comprised of two parts, both of which explore modular systems: Pipe-Z (PZ) and Truss-Z (TZ), respectively. It presents several methods of creating PZ and TZ structures subjected to discrete optimization. The algorithms presented employ graph-theoretic and heuristic methods. The underlying idea of both systems is to create free-form structures using the minimal number of types of modular elements. PZ is more conceptual, as it forms single-branch mathematical knots with a single type of module. Conversely, TZ is a skeletal system for creating free-form pedestrian ramps and ramp networks among any number of terminals in space. In physical space, TZ uses two types of modules that are mirror reflections of each other. The optimization criteria discussed include: the minimal number of units, maximal adherence to the given guide paths, etc.

  20. Benders decomposition for discrete material optimization in laminate design with local failure criteria

    DEFF Research Database (Denmark)

    Munoz, Eduardo; Stolpe, Mathias; Bendsøe, Martin P.

    2009-01-01

    in any discrete angle optimization design, or material selection problems. The mathematical modeling of this problem is more general than the one of standard topology optimization. When considering only two material candidates with a considerable difference in stiffness, it corresponds exactly...... to a topology optimization problem. The problem is modeled as a discrete design problem coming from a finite element discretization of the continuum problem. This discretization is made of shell or plate elements. For each element (selection domain), only one of the material candidates must be selected...... of the relaxed master problem and the current best compliance (weight) found get close enough with respect to certain tolerance. The method is investigated by computational means, using the finite element method to solve the analysis problems, and a commercial branch and cut method for solving the relaxed master...

  1. Optimization of stochastic discrete systems and control on complex networks computational networks

    CERN Document Server

    Lozovanu, Dmitrii

    2014-01-01

    This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...

  2. Sampled-data and discrete-time H2 optimal control

    NARCIS (Netherlands)

    Trentelman, Harry L.; Stoorvogel, Anton A.

    1993-01-01

    This paper deals with the sampled-data H2 optimal control problem. Given a linear time-invariant continuous-time system, the problem of minimizing the H2 performance over all sampled-data controllers with a fixed sampling period can be reduced to a pure discrete-time H2 optimal control problem. This

  3. A Discrete Spectral Problem and Related Hierarchy of Discrete Hamiltonian Lattice Equations

    International Nuclear Information System (INIS)

    Xu Xixiang; Cao Weili

    2007-01-01

    Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.

  4. Robust buckling optimization of laminated composite structures using discrete material optimization considering “worst” shape imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust buckling optimal design of laminated composite structures is conducted in this work. Optimal designs are obtained by considering geometric imperfections in the optimization procedure. Discrete Material Optimization is applied to obtain optimal laminate designs. The optimal geometric...... imperfection is represented by the “worst” shape imperfection. The two optimization problems are combined through the recurrence optimization. Hereby the imperfection sensitivity of the considered structures can be studied. The recurrence optimization is demonstrated through a U-profile and a cylindrical panel...... example. The imperfection sensitivity of the optimized structure decreases during the recurrence optimization for both examples, hence robust buckling optimal structures are designed....

  5. Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter

    2011-01-01

    We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal......, whereas the convergence of the coefficients happens only with respect to the "volumetric" Lebesgue measure. Additionally, depending on whether the stationarity conditions are stated for the discretized or the original continuous problem, two distinct concepts of stationarity at a discrete level arise. We...... provide characterizations of limit points, with respect to FV mesh size, of globally optimal solutions and two types of stationary points to the discretized problems. We illustrate the practical behaviour of our cell-based FV discretization algorithm on a numerical example....

  6. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds.

    Science.gov (United States)

    Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.

  7. Generalized Benders’ Decomposition for topology optimization problems

    DEFF Research Database (Denmark)

    Munoz Queupumil, Eduardo Javier; Stolpe, Mathias

    2011-01-01

    ) problems with discrete design variables to global optimality. We present the theoretical aspects of the method, including a proof of finite convergence and conditions for obtaining global optimal solutions. The method is also linked to, and compared with, an Outer-Approximation approach and a mixed 0......–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality.......This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness...

  8. Search Parameter Optimization for Discrete, Bayesian, and Continuous Search Algorithms

    Science.gov (United States)

    2017-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CONTINUOUS SEARCH ALGORITHMS by...to 09-22-2017 4. TITLE AND SUBTITLE SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CON- TINUOUS SEARCH ALGORITHMS 5. FUNDING NUMBERS 6...simple search and rescue acts to prosecuting aerial/surface/submersible targets on mission. This research looks at varying the known discrete and

  9. Discrete and Continuous Models for Partitioning Problems

    KAUST Repository

    Lellmann, Jan; Lellmann, Bjö rn; Widmann, Florian; Schnö rr, Christoph

    2013-01-01

    -based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider

  10. Global optimization of truss topology with discrete bar areas-Part II: Implementation and numerical results

    DEFF Research Database (Denmark)

    Achtziger, Wolfgang; Stolpe, Mathias

    2009-01-01

    we use the theory developed in Part I to design a convergent nonlinear branch-and-bound method tailored to solve large-scale instances of the original discrete problem. The problem formulation and the needed theoretical results from Part I are repeated such that this paper is self-contained. We focus...... the largest discrete topology design problems solved by means of global optimization....

  11. Models for the discrete berth allocation problem: A computational comparison

    DEFF Research Database (Denmark)

    Buhrkal, Katja Frederik; Zuglian, Sara; Røpke, Stefan

    2011-01-01

    In this paper we consider the problem of allocating arriving ships to discrete berth locations at container terminals. This problem is recognized as one of the most important processes for any container terminal. We review and describe three main models of the discrete dynamic berth allocation...

  12. Models for the Discrete Berth Allocation Problem: A Computational Comparison

    DEFF Research Database (Denmark)

    Buhrkal, Katja; Zuglian, Sara; Røpke, Stefan

    In this paper we consider the problem of allocating arriving ships to discrete berth locations at container terminals. This problem is recognized as one of the most important processes for any container terminal. We review and describe the three main models of the discrete dynamic berth allocation...

  13. Constitutive equations for discrete electromagnetic problems over polyhedral grids

    International Nuclear Information System (INIS)

    Codecasa, Lorenzo; Trevisan, Francesco

    2007-01-01

    In this paper a novel approach is proposed for constructing discrete counterparts of constitutive equations over polyhedral grids which ensure both consistency and stability of the algebraic equations discretizing an electromagnetic field problem. The idea is to construct discrete constitutive equations preserving the thermodynamic relations for constitutive equations. In this way, consistency and stability of the discrete equations are ensured. At the base, a purely geometric condition between the primal and the dual grids has to be satisfied for a given primal polyhedral grid, by properly choosing the dual grid. Numerical experiments demonstrate that the proposed discrete constitutive equations lead to accurate approximations of the electromagnetic field

  14. Discrete stochastic processes and optimal filtering

    CERN Document Server

    Bertein, Jean-Claude

    2012-01-01

    Optimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which ar

  15. A stochastic discrete optimization model for designing container terminal facilities

    Science.gov (United States)

    Zukhruf, Febri; Frazila, Russ Bona; Burhani, Jzolanda Tsavalista

    2017-11-01

    As uncertainty essentially affect the total transportation cost, it remains important in the container terminal that incorporates several modes and transshipments process. This paper then presents a stochastic discrete optimization model for designing the container terminal, which involves the decision of facilities improvement action. The container terminal operation model is constructed by accounting the variation of demand and facilities performance. In addition, for illustrating the conflicting issue that practically raises in the terminal operation, the model also takes into account the possible increment delay of facilities due to the increasing number of equipment, especially the container truck. Those variations expectantly reflect the uncertainty issue in the container terminal operation. A Monte Carlo simulation is invoked to propagate the variations by following the observed distribution. The problem is constructed within the framework of the combinatorial optimization problem for investigating the optimal decision of facilities improvement. A new variant of glow-worm swarm optimization (GSO) is thus proposed for solving the optimization, which is rarely explored in the transportation field. The model applicability is tested by considering the actual characteristics of the container terminal.

  16. Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.

    Science.gov (United States)

    Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang

    2017-11-01

    Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.

  17. Optimal weights for circle fitting with discrete granular data

    International Nuclear Information System (INIS)

    Chernov, N.; Kolganova, E.; Ososkov, G.

    1995-01-01

    The problem of the data approximation measured along a circle by modern detectors in high energy physics, as for example, RICH (Ring Imaging Cherenkov) is considered. Such detectors having the discrete cell structure register the energy dissipation produced by a passing elementary particle not in a single point, but in several adjacent cells where all this energy is distributed. The presence of background hits makes inapplicable circle fitting methods based on the least square fit due to their noise sensitivity. In this paper it's shown that the efficient way to overcome these problems of the curve fitting is the robust fitting technique based on a reweighted least square method with optimally chosen weights, obtained by the use of maximum likelihood estimates. Results of numerical experiments are given proving the high efficiency of the suggested method. 9 refs., 5 figs., 1 tab

  18. Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadeh, Hassan; Moradinasab, Nazanin; Gerami, Ali

    2017-07-01

    Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.

  19. Solving no-wait two-stage flexible flow shop scheduling problem with unrelated parallel machines and rework time by the adjusted discrete Multi Objective Invasive Weed Optimization and fuzzy dominance approach

    International Nuclear Information System (INIS)

    Jafarzadeh, Hassan; Moradinasab, Nazanin; Gerami, Ali

    2017-01-01

    Adjusted discrete Multi-Objective Invasive Weed Optimization (DMOIWO) algorithm, which uses fuzzy dominant approach for ordering, has been proposed to solve No-wait two-stage flexible flow shop scheduling problem. Design/methodology/approach: No-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times and probable rework in both stations, different ready times for all jobs and rework times for both stations as well as unrelated parallel machines with regards to the simultaneous minimization of maximum job completion time and average latency functions have been investigated in a multi-objective manner. In this study, the parameter setting has been carried out using Taguchi Method based on the quality indicator for beater performance of the algorithm. Findings: The results of this algorithm have been compared with those of conventional, multi-objective algorithms to show the better performance of the proposed algorithm. The results clearly indicated the greater performance of the proposed algorithm. Originality/value: This study provides an efficient method for solving multi objective no-wait two-stage flexible flow shop scheduling problem by considering sequence-dependent setup times, probable rework in both stations, different ready times for all jobs, rework times for both stations and unrelated parallel machines which are the real constraints.

  20. Optimal control of LQR for discrete time-varying systems with input delays

    Science.gov (United States)

    Yin, Yue-Zhu; Yang, Zhong-Lian; Yin, Zhi-Xiang; Xu, Feng

    2018-04-01

    In this work, we consider the optimal control problem of linear quadratic regulation for discrete time-variant systems with single input and multiple input delays. An innovative and simple method to derive the optimal controller is given. The studied problem is first equivalently converted into a problem subject to a constraint condition. Last, with the established duality, the problem is transformed into a static mathematical optimisation problem without input delays. The optimal control input solution to minimise performance index function is derived by solving this optimisation problem with two methods. A numerical simulation example is carried out and its results show that our two approaches are both feasible and very effective.

  1. Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables

    Directory of Open Access Journals (Sweden)

    Hideki Katagiri

    2017-10-01

    Full Text Available This paper considers linear programming problems (LPPs where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables. New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments.

  2. Multi-objective optimization of discrete time-cost tradeoff problem in project networks using non-dominated sorting genetic algorithm

    Science.gov (United States)

    Shahriari, Mohammadreza

    2016-06-01

    The time-cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate extra resources to short the finishing time of project and the project managers are intended to spend the lowest possible amount of money and achieve the maximum crashing time, as a result, both direct and indirect costs will be influenced in the project, and here, we are facing into the time value of money. It means that when we crash the starting activities in a project, the extra investment will be tied in until the end date of the project; however, when we crash the final activities, the extra investment will be tied in for a much shorter period. This study is presenting a two-objective mathematical model for balancing compressing the project time with activities delay to prepare a suitable tool for decision makers caught in available facilities and due to the time of projects. Also drawing the scheduling problem to real world conditions by considering nonlinear objective function and the time value of money are considered. The presented problem was solved using NSGA-II, and the effect of time compressing reports on the non-dominant set.

  3. Existence results for anisotropic discrete boundary value problems

    Directory of Open Access Journals (Sweden)

    Avci Avci

    2016-06-01

    Full Text Available In this article, we prove the existence of nontrivial weak solutions for a class of discrete boundary value problems. The main tools used here are the variational principle and critical point theory.

  4. Discrete-time inverse optimal control for nonlinear systems

    CERN Document Server

    Sanchez, Edgar N

    2013-01-01

    Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th

  5. Class and Home Problems: Optimization Problems

    Science.gov (United States)

    Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard

    2011-01-01

    Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…

  6. Discrete Control Processes, Dynamic Games and Multicriterion Control Problems

    Directory of Open Access Journals (Sweden)

    Dumitru Lozovanu

    2002-07-01

    Full Text Available The discrete control processes with state evaluation in time of dynamical system is considered. A general model of control problems with integral-time cost criterion by a trajectory is studied and a general scheme for solving such classes of problems is proposed. In addition the game-theoretical and multicriterion models for control problems are formulated and studied.

  7. Some unsolved problems in discrete mathematics and mathematical cybernetics

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, Aleksei D [S.L. Sobolev Institute for Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2009-10-31

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.

  8. Some unsolved problems in discrete mathematics and mathematical cybernetics

    Science.gov (United States)

    Korshunov, Aleksei D.

    2009-10-01

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.

  9. Some unsolved problems in discrete mathematics and mathematical cybernetics

    International Nuclear Information System (INIS)

    Korshunov, Aleksei D

    2009-01-01

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.

  10. Discrete symmetries, strong CP problem and gravity

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1993-05-01

    Spontaneous breaking of parity or time reversal invariance offers a solution to the strong CP problem, the stability of which under quantum gravitational effects provides an upper limit on the scale of symmetry breaking. Even more important, these Planck scale effects may provide a simple and natural way out of the resulting domain wall problem. (author). 22 refs

  11. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com [Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris Diderot (France)

    2016-12-15

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  12. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    International Nuclear Information System (INIS)

    Pham, Huyên; Wei, Xiaoli

    2016-01-01

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  13. BEST-4, Fuel Cycle and Cost Optimization for Discrete Power Levels

    International Nuclear Information System (INIS)

    1973-01-01

    1 - Nature of physical problem solved: Determination of optimal power strategy for a fuel cycle, for discrete power levels and n temporal stages, taking into account replacement energy costs and de-rating. 2 - Method of solution: Dynamic programming. 3 - Restrictions on the complexity of the problem: Restrictions may arise from number of power levels and temporal stages, due to machine limitations

  14. A Global Network Alignment Method Using Discrete Particle Swarm Optimization.

    Science.gov (United States)

    Huang, Jiaxiang; Gong, Maoguo; Ma, Lijia

    2016-10-19

    Molecular interactions data increase exponentially with the advance of biotechnology. This makes it possible and necessary to comparatively analyse the different data at a network level. Global network alignment is an important network comparison approach to identify conserved subnetworks and get insight into evolutionary relationship across species. Network alignment which is analogous to subgraph isomorphism is known to be an NP-hard problem. In this paper, we introduce a novel heuristic Particle-Swarm-Optimization based Network Aligner (PSONA), which optimizes a weighted global alignment model considering both protein sequence similarity and interaction conservations. The particle statuses and status updating rules are redefined in a discrete form by using permutation. A seed-and-extend strategy is employed to guide the searching for the superior alignment. The proposed initialization method "seeds" matches with high sequence similarity into the alignment, which guarantees the functional coherence of the mapping nodes. A greedy local search method is designed as the "extension" procedure to iteratively optimize the edge conservations. PSONA is compared with several state-of-art methods on ten network pairs combined by five species. The experimental results demonstrate that the proposed aligner can map the proteins with high functional coherence and can be used as a booster to effectively refine the well-studied aligners.

  15. Dynamic Optimization of a Polymer Flooding Process Based on Implicit Discrete Maximum Principle

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2012-01-01

    Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and some inequality constraints as polymer concentration and injection amount limitation. The optimal control model is discretized by full implicit finite-difference method. To cope with the discrete optimal control problem (OCP, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s discrete maximum principle. A modified gradient method with new adjoint construction is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.

  16. Discrete Material and Thickness Optimization of laminated composite structures including failure criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2017-01-01

    This work extends the Discrete Material and Thickness Optimization approach to structural optimization problems where strength considerations in the form of failure criteria are taken into account for laminated composite structures. It takes offset in the density approaches applied for stress...... constrained topology optimization of single-material problems and develops formulations for multi-material topology optimization problems applied for laminated composite structures. The method can be applied for both stress- and strain-based failure criteria. The large number of local constraints is reduced...

  17. Generalized Second-Order Parametric Optimality Conditions in Semiinfinite Discrete Minmax Fractional Programming and Second-Order Univexity

    Directory of Open Access Journals (Sweden)

    Ram Verma

    2016-02-01

    Full Text Available This paper deals with mainly establishing numerous sets of generalized second order paramertic sufficient optimality conditions for a semiinfinite discrete minmax fractional programming problem, while the results on semiinfinite discrete minmax fractional programming problem achieved based on some partitioning schemes under various types of generalized second order univexity assumptions. 

  18. Some extensions of the discrete lotsizing and scheduling problem

    NARCIS (Netherlands)

    M. Salomon (Marc); L.G. Kroon (Leo); R. Kuik (Roelof); L.N. van Wassenhove (Luk)

    1991-01-01

    textabstractIn this paper the Discrete Lotsizing and Scheduling Problem (DLSP) is considered. DLSP relates to capacitated lotsizing as well as to job scheduling problems and is concerned with determining a feasible production schedule with minimal total costs in a single-stage manufacturing process.

  19. Using Continuous Action Spaces to Solve Discrete Problems

    NARCIS (Netherlands)

    van Hasselt, Hado; Wiering, Marco

    2009-01-01

    Real-world control problems are often modeled as Markov Decision Processes (MDPs) with discrete action spaces to facilitate the use of the many reinforcement learning algorithms that exist to find solutions for such MDPs. For many of these problems an underlying continuous action space can be

  20. Quasicanonical structure of optimal control in constrained discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2003-06-01

    This paper considers discrete processes governed by difference rather than differential equations for the state transformation. The basic question asked is if and when Hamiltonian canonical structures are possible in optimal discrete systems. Considering constrained discrete control, general optimization algorithms are derived that constitute suitable theoretical and computational tools when evaluating extremum properties of constrained physical models. The mathematical basis of the general theory is the Bellman method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage criterion which allows a variation of the terminal state that is otherwise fixed in the Bellman's method. Two relatively unknown, powerful optimization algorithms are obtained: an unconventional discrete formalism of optimization based on a Hamiltonian for multistage systems with unconstrained intervals of holdup time, and the time interval constrained extension of the formalism. These results are general; namely, one arrives at: the discrete canonical Hamilton equations, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory along with all basic results of variational calculus. Vast spectrum of applications of the theory is briefly discussed.

  1. Discrete and Continuous Optimization Based on Hierarchical Artificial Bee Colony Optimizer

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC, to tackle complex high-dimensional problems. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operator is applied to enhance the global search ability between species. Experiments are conducted on a set of 20 continuous and discrete benchmark problems. The experimental results demonstrate remarkable performance of the HABC algorithm when compared with other six evolutionary algorithms.

  2. A Problem on Optimal Transportation

    Science.gov (United States)

    Cechlarova, Katarina

    2005-01-01

    Mathematical optimization problems are not typical in the classical curriculum of mathematics. In this paper we show how several generalizations of an easy problem on optimal transportation were solved by gifted secondary school pupils in a correspondence mathematical seminar, how they can be used in university courses of linear programming and…

  3. An optimal control approach to manpower planning problem

    Directory of Open Access Journals (Sweden)

    H. W. J. Lee

    2001-01-01

    Full Text Available A manpower planning problem is studied in this paper. The model includes scheduling different types of workers over different tasks, employing and terminating different types of workers, and assigning different types of workers to various trainning programmes. The aim is to find an optimal way to do all these while keeping the time-varying demand for minimum number of workers working on each different tasks satisfied. The problem is posed as an optimal discrete-valued control problem in discrete time. A novel numerical scheme is proposed to solve the problem, and an illustrative example is provided.

  4. Similarities of discrete and continuous Sturm-Liouville problems

    Directory of Open Access Journals (Sweden)

    Kazem Ghanbari

    2007-12-01

    Full Text Available In this paper we present a study on the analogous properties of discrete and continuous Sturm-Liouville problems arising in matrix analysis and differential equations, respectively. Green's functions in both cases have analogous expressions in terms of the spectral data. Most of the results associated to inverse problems in both cases are identical. In particular, in both cases Weyl's m-function determines the Sturm-Liouville operators uniquely. Moreover, the well known Rayleigh-Ritz Theorem in linear algebra can be proved by using the concept of Green's function in discrete case.

  5. Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

    Science.gov (United States)

    2014-01-01

    Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295

  6. Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

    Directory of Open Access Journals (Sweden)

    Shih-Wei Lin

    2014-01-01

    Full Text Available Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP, which aims to minimize total service time, and proposes an iterated greedy (IG algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set.

  7. Discrete Optimization in Chemical Space Reference Manual

    Science.gov (United States)

    2012-10-01

    includes instructions on setting up constrained optimizations of substitutional frameworks and the full application programming interface ( API ) necessary...space size • bool space size computed • ulong bits • bool bits computed • string Nam 4.26.1 Detailed Description This class provides the API that...1, 0) 1102 (O, 0, 1.4, -3, 120, -2, 180) 1103 (C, 1, 1.5, 0, 120, -3, -30(150)) 1104 (H, 2, 1.1, 1, 109.47, 0,180) 1105 (H, 2, 1.1, 1, 109.47, 3, 120

  8. Thermodynamic framework for discrete optimal control in multiphase flow systems

    Science.gov (United States)

    Sieniutycz, Stanislaw

    1999-08-01

    Bellman's method of dynamic programming is used to synthesize diverse optimization approaches to active (work producing) and inactive (entropy generating) multiphase flow systems. Thermal machines, optimally controlled unit operations, nonlinear heat conduction, spontaneous relaxation processes, and self-propagating wave fronts are all shown to satisfy a discrete Hamilton-Jacobi-Bellman equation and a corresponding discrete optimization algorithm of Pontryagin's type, with the maximum principle for a Hamiltonian. The extremal structures are always canonical. A common unifying criterion is set for all considered systems, which is the criterion of a minimum generated entropy. It is shown that constraints can modify the entropy functionals in a different way for each group of the processes considered; thus the resulting structures of these functionals may differ significantly. Practical conclusions are formulated regarding the energy savings and energy policy in optimally controlled systems.

  9. Applications of functional analysis to optimal control problems

    International Nuclear Information System (INIS)

    Mizukami, K.

    1976-01-01

    Some basic concepts in functional analysis, a general norm, the Hoelder inequality, functionals and the Hahn-Banach theorem are described; a mathematical formulation of two optimal control problems is introduced by the method of functional analysis. The problem of time-optimal control systems with both norm constraints on control inputs and on state variables at discrete intermediate times is formulated as an L-problem in the theory of moments. The simplex method is used for solving a non-linear minimizing problem inherent in the functional analysis solution to this problem. Numerical results are presented for a train operation. The second problem is that of optimal control of discrete linear systems with quadratic cost functionals. The problem is concerned with the case of unconstrained control and fixed endpoints. This problem is formulated in terms of norms of functionals on suitable Banach spaces. (author)

  10. Fourth-order discrete anisotropic boundary-value problems

    Directory of Open Access Journals (Sweden)

    Maciej Leszczynski

    2015-09-01

    Full Text Available In this article we consider the fourth-order discrete anisotropic boundary value problem with both advance and retardation. We apply the direct method of the calculus of variations and the mountain pass technique to prove the existence of at least one and at least two solutions. Non-existence of non-trivial solutions is also undertaken.

  11. Continuous and Discrete-Time Optimal Controls for an Isolated Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Jiyuan Tan

    2017-01-01

    Full Text Available A classical control problem for an isolated oversaturated intersection is revisited with a focus on the optimal control policy to minimize total delay. The difference and connection between existing continuous-time planning models and recently proposed discrete-time planning models are studied. A gradient descent algorithm is proposed to convert the optimal control plan of the continuous-time model to the plan of the discrete-time model in many cases. Analytic proof and numerical tests for the algorithm are also presented. The findings shed light on the links between two kinds of models.

  12. Diabatic potential-optimized discrete variable representation: application to photodissociation process of the CO molecule

    International Nuclear Information System (INIS)

    Bitencourt, Ana Carla P; Prudente, Frederico V; Vianna, Jose David M

    2007-01-01

    We propose a new numerically optimized discrete variable representation using eigenstates of diabatic Hamiltonians. This procedure provides an efficient method to solve non-adiabatic coupling problems since the generated basis sets take into account information on the diabatic potentials. The method is applied to the B 1 Σ + - D' 1 Σ + Rydberg-valence predissociation interaction in the CO molecule. Here we give an account of the discrete variable representation and present the procedure for the calculation of its optimized version, which we apply to obtain the total photodissociation cross sections of the CO molecule

  13. On some fundamental properties of structural topology optimization problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2010-01-01

    We study some fundamental mathematical properties of discretized structural topology optimization problems. Either compliance is minimized with an upper bound on the volume of the structure, or volume is minimized with an upper bound on the compliance. The design variables are either continuous o....... The presented examples can be used as teaching material in graduate and undergraduate courses on structural topology optimization....

  14. Diffusion-synthetic acceleration methods for discrete-ordinates problems

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1984-01-01

    The diffusion-synthetic acceleration (DSA) method is an iterative procedure for obtaining numerical solutions of discrete-ordinates problems. The DSA method is operationally more complicated than the standard source-iteration (SI) method, but if encoded properly it converges much more rapidly, especially for problems with diffusion-like regions. In this article we describe the basic ideas behind the DSA method and give a (roughly chronological) review of its long development. We conclude with a discussion which covers additional topics, including some remaining open problems an the status of current efforts aimed at solving these problems

  15. SOLVING FLOWSHOP SCHEDULING PROBLEMS USING A DISCRETE AFRICAN WILD DOG ALGORITHM

    Directory of Open Access Journals (Sweden)

    M. K. Marichelvam

    2013-04-01

    Full Text Available The problem of m-machine permutation flowshop scheduling is considered in this paper. The objective is to minimize the makespan. The flowshop scheduling problem is a typical combinatorial optimization problem and has been proved to be strongly NP-hard. Hence, several heuristics and meta-heuristics were addressed by the researchers. In this paper, a discrete African wild dog algorithm is applied for solving the flowshop scheduling problems. Computational results using benchmark problems show that the proposed algorithm outperforms many other algorithms addressed in the literature.

  16. A Novel adaptative Discrete Cuckoo Search Algorithm for parameter optimization in computer vision

    Directory of Open Access Journals (Sweden)

    loubna benchikhi

    2017-10-01

    Full Text Available Computer vision applications require choosing operators and their parameters, in order to provide the best outcomes. Often, the users quarry on expert knowledge and must experiment many combinations to find manually the best one. As performance, time and accuracy are important, it is necessary to automate parameter optimization at least for crucial operators. In this paper, a novel approach based on an adaptive discrete cuckoo search algorithm (ADCS is proposed. It automates the process of algorithms’ setting and provides optimal parameters for vision applications. This work reconsiders a discretization problem to adapt the cuckoo search algorithm and presents the procedure of parameter optimization. Some experiments on real examples and comparisons to other metaheuristic-based approaches: particle swarm optimization (PSO, reinforcement learning (RL and ant colony optimization (ACO show the efficiency of this novel method.

  17. Topology Optimization for Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  18. The optimal graph partitioning problem

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros; Holm, Søren

    1993-01-01

    . This problem can be formulated as a MILP, which turns out to be completely symmetrical with respect to the p classes, and the gap between the relaxed LP solution and the optimal solution is the largest one possible. These two properties make it very difficult to solve even smaller problems. In this paper...

  19. A discrete-ordinates solution for a radiation therapy problem

    International Nuclear Information System (INIS)

    Goldschmidt, Gustavo Brun; Reichert, Janice Teresinha; Barichello, Liliane Basso

    2008-01-01

    A concise and accurate procedure for evaluating dose distribution, in a radiation therapy planning, is presented. The analytical discrete-ordinates method (ADO method) is used to develop a complete solution for a spectral dependent radiative transfer equation, in a one-dimensional medium, according to a multigroup scheme. Numerical results are presented for test problems, where the Klein-Nishina scattering kernel was used to describe the interaction processes. (author)

  20. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    Science.gov (United States)

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-07-14

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  1. The boundary value problem for discrete analytic functions

    KAUST Repository

    Skopenkov, Mikhail

    2013-06-01

    This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete analytic, if for each face the difference quotients along the two diagonals are equal.We prove that the Dirichlet boundary value problem for the real part of a discrete analytic function has a unique solution. In the case when each face has orthogonal diagonals we prove that this solution uniformly converges to a harmonic function in the scaling limit. This solves a problem of S.Smirnov from 2010. This was proved earlier by R.Courant-K.Friedrichs-H.Lewy and L.Lusternik for square lattices, by D.Chelkak-S.Smirnov and implicitly by P.G.Ciarlet-P.-A.Raviart for rhombic lattices.In particular, our result implies uniform convergence of the finite element method on Delaunay triangulations. This solves a problem of A.Bobenko from 2011. The methodology is based on energy estimates inspired by alternating-current network theory. © 2013 Elsevier Ltd.

  2. Topology optimization of flow problems

    DEFF Research Database (Denmark)

    Gersborg, Allan Roulund

    2007-01-01

    This thesis investigates how to apply topology optimization using the material distribution technique to steady-state viscous incompressible flow problems. The target design applications are fluid devices that are optimized with respect to minimizing the energy loss, characteristic properties...... transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the thesis gives a proof-of-concept for the application of the method within fluid dynamic problems and it remains of interest for the design of microfluidic devices. Furthermore, the thesis contributes...... at the Technical University of Denmark. Large topology optimization problems with 2D and 3D Stokes flow modeling are solved with direct and iterative strategies employing the parallelized Sun Performance Library and the OpenMP parallelization technique, respectively....

  3. About an Optimal Visiting Problem

    Energy Technology Data Exchange (ETDEWEB)

    Bagagiolo, Fabio, E-mail: bagagiol@science.unitn.it; Benetton, Michela [Unversita di Trento, Dipartimento di Matematica (Italy)

    2012-02-15

    In this paper we are concerned with the optimal control problem consisting in minimizing the time for reaching (visiting) a fixed number of target sets, in particular more than one target. Such a problem is of course reminiscent of the famous 'Traveling Salesman Problem' and brings all its computational difficulties. Our aim is to apply the dynamic programming technique in order to characterize the value function of the problem as the unique viscosity solution of a suitable Hamilton-Jacobi equation. We introduce some 'external' variables, one per target, which keep in memory whether the corresponding target is already visited or not, and we transform the visiting problem in a suitable Mayer problem. This fact allows us to overcome the lacking of the Dynamic Programming Principle for the originary problem. The external variables evolve with a hysteresis law and the Hamilton-Jacobi equation turns out to be discontinuous.

  4. Discrete optimization of isolator locations for vibration isolation systems: An analytical and experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ponslet, E.R.; Eldred, M.S. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1996-05-17

    An analytical and experimental study is conducted to investigate the effect of isolator locations on the effectiveness of vibration isolation systems. The study uses isolators with fixed properties and evaluates potential improvements to the isolation system that can be achieved by optimizing isolator locations. Because the available locations for the isolators are discrete in this application, a Genetic Algorithm (GA) is used as the optimization method. The system is modeled in MATLAB{trademark} and coupled with the GA available in the DAKOTA optimization toolkit under development at Sandia National Laboratories. Design constraints dictated by hardware and experimental limitations are implemented through penalty function techniques. A series of GA runs reveal difficulties in the search on this heavily constrained, multimodal, discrete problem. However, the GA runs provide a variety of optimized designs with predicted performance from 30 to 70 times better than a baseline configuration. An alternate approach is also tested on this problem: it uses continuous optimization, followed by rounding of the solution to neighboring discrete configurations. Results show that this approach leads to either infeasible or poor designs. Finally, a number of optimized designs obtained from the GA searches are tested in the laboratory and compared to the baseline design. These experimental results show a 7 to 46 times improvement in vibration isolation from the baseline configuration.

  5. Optimal Topology Design of Discrete Structures Resisting Degradation Effects

    DEFF Research Database (Denmark)

    Achtziger, W.; Bendsøe, Martin P.

    1999-01-01

    In this technical note we treat the problem of finding the optimal topology of a truss, so that stiffness after degradation is maximized. It is shown that for the problem setting at hand, the optimal topology has uniform relative degradation in all bars and the topology is unchanged from the topo...

  6. A New Multidisciplinary Design Optimization Method Accounting for Discrete and Continuous Variables under Aleatory and Epistemic Uncertainties

    Directory of Open Access Journals (Sweden)

    Hong-Zhong Huang

    2012-02-01

    Full Text Available Various uncertainties are inevitable in complex engineered systems and must be carefully treated in design activities. Reliability-Based Multidisciplinary Design Optimization (RBMDO has been receiving increasing attention in the past decades to facilitate designing fully coupled systems but also achieving a desired reliability considering uncertainty. In this paper, a new formulation of multidisciplinary design optimization, namely RFCDV (random/fuzzy/continuous/discrete variables Multidisciplinary Design Optimization (RFCDV-MDO, is developed within the framework of Sequential Optimization and Reliability Assessment (SORA to deal with multidisciplinary design problems in which both aleatory and epistemic uncertainties are present. In addition, a hybrid discrete-continuous algorithm is put forth to efficiently solve problems where both discrete and continuous design variables exist. The effectiveness and computational efficiency of the proposed method are demonstrated via a mathematical problem and a pressure vessel design problem.

  7. Size and Topology Optimization for Trusses with Discrete Design Variables by Improved Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Yue Wu

    2017-01-01

    Full Text Available Firefly Algorithm (FA, for short is inspired by the social behavior of fireflies and their phenomenon of bioluminescent communication. Based on the fundamentals of FA, two improved strategies are proposed to conduct size and topology optimization for trusses with discrete design variables. Firstly, development of structural topology optimization method and the basic principle of standard FA are introduced in detail. Then, in order to apply the algorithm to optimization problems with discrete variables, the initial positions of fireflies and the position updating formula are discretized. By embedding the random-weight and enhancing the attractiveness, the performance of this algorithm is improved, and thus an Improved Firefly Algorithm (IFA, for short is proposed. Furthermore, using size variables which are capable of including topology variables and size and topology optimization for trusses with discrete variables is formulated based on the Ground Structure Approach. The essential techniques of variable elastic modulus technology and geometric construction analysis are applied in the structural analysis process. Subsequently, an optimization method for the size and topological design of trusses based on the IFA is introduced. Finally, two numerical examples are shown to verify the feasibility and efficiency of the proposed method by comparing with different deterministic methods.

  8. Well-posed optimization problems

    CERN Document Server

    Dontchev, Asen L

    1993-01-01

    This book presents in a unified way the mathematical theory of well-posedness in optimization. The basic concepts of well-posedness and the links among them are studied, in particular Hadamard and Tykhonov well-posedness. Abstract optimization problems as well as applications to optimal control, calculus of variations and mathematical programming are considered. Both the pure and applied side of these topics are presented. The main subject is often introduced by heuristics, particular cases and examples. Complete proofs are provided. The expected knowledge of the reader does not extend beyond textbook (real and functional) analysis, some topology and differential equations and basic optimization. References are provided for more advanced topics. The book is addressed to mathematicians interested in optimization and related topics, and also to engineers, control theorists, economists and applied scientists who can find here a mathematical justification of practical procedures they encounter.

  9. Infinite Horizon Discrete Time Control Problems for Bounded Processes

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We establish Pontryagin Maximum Principles in the strong form for infinite horizon optimal control problems for bounded processes, for systems governed by difference equations. Results due to Ioffe and Tihomirov are among the tools used to prove our theorems. We write necessary conditions with weakened hypotheses of concavity and without invertibility, and we provide new results on the adjoint variable. We show links between bounded problems and nonbounded ones. We also give sufficient conditions of optimality.

  10. On the optimal sizing problem

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui

    1994-01-01

    The paper studies the problem of determining the number and dimensions of sizes of apparel so as to maximize profits. It develops a simple one-variable bisection search algorithm that gives the optimal solution. An example is solved interactively using a Macintosh LC and Math CAD, a mathematical...

  11. Problems of radiation protection optimization

    International Nuclear Information System (INIS)

    Morkunas, G.

    2003-01-01

    One of the basic principles - optimization of radiation protection - is rather well understood by everybody engaged in protection of humans from ionizing radiation. However, the practical application of this principle is very problematic. This fact can be explained by vagueness of concept of dose constraints, possible legal consequences of any decision based on this principle, traditions of prescriptive system of radiation protection requirements in some countries, insufficiency of qualified expertise. The examples of optimization problems are the different attention given to different kinds of practices, not optimized application of remedial measures, strict requirements for radioactive contamination of imported products, uncertainties in optimization in medical applications of ionizing radiation. Such tools as international co-operation including regional networks of information exchange, training of qualified experts, identification of measurable indicators used for judging about the level of optimization may be the helpful practical means in solving of these problems. It is evident that the principle of optimization can not be replaced by any other alternative despite its complexity. The means for its practical implementation shall be searched for. (author)

  12. A matrix problem over a discrete valuation ring

    International Nuclear Information System (INIS)

    Zavadskii, A G; Revitskaya, U S

    1999-01-01

    A flat matrix problem of mixed type (over a discrete valuation ring and its skew field of fractions) is considered which naturally arises in connection with several problems in the theory of integer-valued representations and in ring theory. For this problem, a criterion for module boundedness is proved, which is stated in terms of a pair of partially ordered sets (P(A),P(B)) associated with the pair of transforming algebras (A,B) defining the problem. The corresponding statement coincides in effect with the formulation of Kleiner's well-known finite-type criterion for representations of pairs of partially ordered sets over a field. The proof is based on a reduction (which uses the techniques of differentiation) to representations of semimaximal rings (tiled orders) and partially ordered sets

  13. Discrete particle swarm optimization for identifying community structures in signed social networks.

    Science.gov (United States)

    Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng

    2014-10-01

    Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Topology and layout optimization of discrete and continuum structures

    Science.gov (United States)

    Bendsoe, Martin P.; Kikuchi, Noboru

    1993-01-01

    The basic features of the ground structure method for truss structure an continuum problems are described. Problems with a large number of potential structural elements are considered using the compliance of the structure as the objective function. The design problem is the minimization of compliance for a given structural weight, and the design variables for truss problems are the cross-sectional areas of the individual truss members, while for continuum problems they are the variable densities of material in each of the elements of the FEM discretization. It is shown how homogenization theory can be applied to provide a relation between material density and the effective material properties of a periodic medium with a known microstructure of material and voids.

  15. Discrete size optimization of steel trusses using a refined big bang-big crunch algorithm

    Science.gov (United States)

    Hasançebi, O.; Kazemzadeh Azad, S.

    2014-01-01

    This article presents a methodology that provides a method for design optimization of steel truss structures based on a refined big bang-big crunch (BB-BC) algorithm. It is shown that a standard formulation of the BB-BC algorithm occasionally falls short of producing acceptable solutions to problems from discrete size optimum design of steel trusses. A reformulation of the algorithm is proposed and implemented for design optimization of various discrete truss structures according to American Institute of Steel Construction Allowable Stress Design (AISC-ASD) specifications. Furthermore, the performance of the proposed BB-BC algorithm is compared to its standard version as well as other well-known metaheuristic techniques. The numerical results confirm the efficiency of the proposed algorithm in practical design optimization of truss structures.

  16. Fast and Epsilon-Optimal Discretized Pursuit Learning Automata.

    Science.gov (United States)

    Zhang, JunQi; Wang, Cheng; Zhou, MengChu

    2015-10-01

    Learning automata (LA) are powerful tools for reinforcement learning. A discretized pursuit LA is the most popular one among them. During an iteration its operation consists of three basic phases: 1) selecting the next action; 2) finding the optimal estimated action; and 3) updating the state probability. However, when the number of actions is large, the learning becomes extremely slow because there are too many updates to be made at each iteration. The increased updates are mostly from phases 1 and 3. A new fast discretized pursuit LA with assured ε -optimality is proposed to perform both phases 1 and 3 with the computational complexity independent of the number of actions. Apart from its low computational complexity, it achieves faster convergence speed than the classical one when operating in stationary environments. This paper can promote the applications of LA toward the large-scale-action oriented area that requires efficient reinforcement learning tools with assured ε -optimality, fast convergence speed, and low computational complexity for each iteration.

  17. Discrete spectrum of the two-center problem of p bar He+ atomcule

    International Nuclear Information System (INIS)

    Pavlov, D.V.; Puzynin, I.V.; Vinitskij, S.I.

    1999-01-01

    A discrete spectrum of the two-center Coulomb problem of p bar He + system is studied. For solving this problem the finite-difference scheme of the 4th-order and the continuous analog of Newton's method are applied. The algorithm for calculation of eigenvalues and eigenfunctions with optimization of the parameter of the fractional-rational transformation of the quasiradial variable to a finite interval is developed. The specific behaviour of the solutions in a vicinity of the united and separated atoms is discussed

  18. A novel optimization method, Effective Discrete Firefly Algorithm, for fuel reload design of nuclear reactors

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2015-01-01

    Highlights: • An advanced version of firefly algorithm, EDFA, is proposed for the core pattern optimization problem. • The movement of each firefly toward the best firefly with a dynamic probability is the major improvement of EDFA. • LPO results represent the faster convergence and better performance of EDFA in comparison to CFA and DFA. - Abstract: Inspired by fireflies behavior in nature, a firefly algorithm has been developed for solving optimization problems. In this approach, each firefly movement is based on absorption of the other one. For enhancing the performance of firefly algorithm in the optimization process of nuclear reactor loading pattern optimization (LPO), we introduce a new variant of firefly algorithm, i.e. Effective Discrete Firefly Algorithm (EDFA). In EDFA, a new behavior is the movement of fireflies to current global best position with a dynamic probability, i.e. the movement of each firefly can be determined to be toward the brighter or brightest firefly’s position in any iteration of the algorithm. In this paper, our optimization objectives for the LPO are the maximization of K eff along with the minimization of the power peaking factor (PPF). In order to represent the increase of convergence speed of EDFA, basic firefly algorithms including the continuous firefly algorithm (CFA) and the discrete firefly algorithm (DFA) also have been implemented. Loading pattern optimization results of two well-known problems confirm better performance of EDFA in obtaining nearly optimized fuel arrangements in comparison to CFA and DFA. All in all, we can suggest applying the EDFA to other optimization problems of nuclear engineering field in order to investigate its performance in gaining considered objectives

  19. A Framework for the Optimization of Discrete-Event Simulation Models

    Science.gov (United States)

    Joshi, B. D.; Unal, R.; White, N. H.; Morris, W. D.

    1996-01-01

    With the growing use of computer modeling and simulation, in all aspects of engineering, the scope of traditional optimization has to be extended to include simulation models. Some unique aspects have to be addressed while optimizing via stochastic simulation models. The optimization procedure has to explicitly account for the randomness inherent in the stochastic measures predicted by the model. This paper outlines a general purpose framework for optimization of terminating discrete-event simulation models. The methodology combines a chance constraint approach for problem formulation, together with standard statistical estimation and analyses techniques. The applicability of the optimization framework is illustrated by minimizing the operation and support resources of a launch vehicle, through a simulation model.

  20. Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.

    Science.gov (United States)

    Wei, Qinglai; Li, Benkai; Song, Ruizhuo

    2018-04-01

    In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.

  1. Improved Genetic Algorithm with Two-Level Approximation for Truss Optimization by Using Discrete Shape Variables

    Directory of Open Access Journals (Sweden)

    Shen-yan Chen

    2015-01-01

    Full Text Available This paper presents an Improved Genetic Algorithm with Two-Level Approximation (IGATA to minimize truss weight by simultaneously optimizing size, shape, and topology variables. On the basis of a previously presented truss sizing/topology optimization method based on two-level approximation and genetic algorithm (GA, a new method for adding shape variables is presented, in which the nodal positions are corresponding to a set of coordinate lists. A uniform optimization model including size/shape/topology variables is established. First, a first-level approximate problem is constructed to transform the original implicit problem to an explicit problem. To solve this explicit problem which involves size/shape/topology variables, GA is used to optimize individuals which include discrete topology variables and shape variables. When calculating the fitness value of each member in the current generation, a second-level approximation method is used to optimize the continuous size variables. With the introduction of shape variables, the original optimization algorithm was improved in individual coding strategy as well as GA execution techniques. Meanwhile, the update strategy of the first-level approximation problem was also improved. The results of numerical examples show that the proposed method is effective in dealing with the three kinds of design variables simultaneously, and the required computational cost for structural analysis is quite small.

  2. Optimal Capacitor Placement in Wind Farms by Considering Harmonics Using Discrete Lightning Search Algorithm

    Directory of Open Access Journals (Sweden)

    Reza Sirjani

    2017-09-01

    Full Text Available Currently, many wind farms exist throughout the world and, in some cases, supply a significant portion of energy to networks. However, numerous uncertainties remain with respect to the amount of energy generated by wind turbines and other sophisticated operational aspects, such as voltage and reactive power management, which requires further development and consideration. To fix the problem of poor reactive power compensation in wind farms, optimal capacitor placement has been proposed in existing wind farms as a simple and relatively inexpensive method. However, the use of induction generators, transformers, and additional capacitors represent potential problems for the harmonics of a system and therefore must be taken into account at wind farms. The optimal location and size of capacitors at buses of an 80-MW wind farm were determined according to modelled wind speed, system equivalent circuits, and harmonics in order to minimize energy losses, optimize reactive power and reduce the management costs. The discrete version of the lightning search algorithm (DLSA is a powerful and flexible nature-inspired optimization technique that was developed and implemented herein for optimal capacitor placement in wind farms. The obtained results are compared with the results of the genetic algorithm (GA and the discrete harmony search algorithm (DHSA.

  3. Dimension Reduction and Discretization in Stochastic Problems by Regression Method

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    1996-01-01

    The chapter mainly deals with dimension reduction and field discretizations based directly on the concept of linear regression. Several examples of interesting applications in stochastic mechanics are also given.Keywords: Random fields discretization, Linear regression, Stochastic interpolation, ...

  4. DMTO – a method for Discrete Material and Thickness Optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Sørensen, Søren Nørgaard; Sørensen, Rene; Lund, Erik

    2014-01-01

    This paper presents a gradient based topology optimization method for Discrete Material and Thickness Optimization of laminated composite structures, labelled the DMTOmethod. The capabilities of the proposed method are demonstrated on mass minimization, subject to constraints on the structural...... criteria; buckling load factors, eigenfrequencies, and limited displacements. Furthermore, common design guidelines or rules, referred to as manufacturing constraints, are included explicitly in the optimization problem as series of linear inequalities. The material selection and thickness variation...... to manufacturability. The results will thus give insight into the relation between potential weight saving and design complexity. The results show that the DMTO method is capable of solving the problems robustly with only few intermediate valued design variables....

  5. Discrete ternary particle swarm optimization for area optimization of MPRM circuits

    International Nuclear Information System (INIS)

    Yu Haizhen; Wang Pengjun; Wang Disheng; Zhang Huihong

    2013-01-01

    Having the advantage of simplicity, robustness and low computational costs, the particle swarm optimization (PSO) algorithm is a powerful evolutionary computation tool for synthesis and optimization of Reed-Muller logic based circuits. Exploring discrete PSO and probabilistic transition rules, the discrete ternary particle swarm optimization (DTPSO) is proposed for mixed polarity Reed-Muller (MPRM) circuits. According to the characteristics of mixed polarity OR/XNOR expression, a tabular technique is improved, and it is applied in the polarity conversion of MPRM functions. DTPSO is introduced to search the best polarity for an area of MPRM circuits by building parameter mapping relationships between particles and polarities. The computational results show that the proposed DTPSO outperforms the reported method using maxterm conversion starting from POS Boolean functions. The average saving in the number of terms is about 11.5%; the algorithm is quite efficient in terms of CPU time and achieves 12.2% improvement on average. (semiconductor integrated circuits)

  6. Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems

    International Nuclear Information System (INIS)

    Haber, E; Horesh, L; Tenorio, L

    2010-01-01

    Design of experiments for discrete ill-posed problems is a relatively new area of research. While there has been some limited work concerning the linear case, little has been done to study design criteria and numerical methods for ill-posed nonlinear problems. We present an algorithmic framework for nonlinear experimental design with an efficient numerical implementation. The data are modeled as indirect, noisy observations of the model collected via a set of plausible experiments. An inversion estimate based on these data is obtained by a weighted Tikhonov regularization whose weights control the contribution of the different experiments to the data misfit term. These weights are selected by minimization of an empirical estimate of the Bayes risk that is penalized to promote sparsity. This formulation entails a bilevel optimization problem that is solved using a simple descent method. We demonstrate the viability of our design with a problem in electromagnetic imaging based on direct current resistivity and magnetotelluric data

  7. An A Posteriori Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

    KAUST Repository

    Karlsson, Peer Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2015-01-01

    This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system

  8. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems

    Science.gov (United States)

    Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  9. A discrete optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-04-01

    Nuclear loading pattern elaboration can be seen as a combinational optimization problem of tremendous size and with non-linear cost-functions, and search are always numerically expensive. After a brief introduction of the main aspects of nuclear fuel management, this paper presents a new idea to treat the combinational problem by using informations included in the gradient of a cost function. The method is to choose, by direct observation of the gradient, the more interesting changes in fuel loading patterns. An example is then developed to illustrate an operating mode of the method, and finally, connections with simulated annealing and genetic algorithms are described as an attempt to improve search processes

  10. The boundary value problem for discrete analytic functions

    KAUST Repository

    Skopenkov, Mikhail

    2013-01-01

    This paper is on further development of discrete complex analysis introduced by R.Isaacs, J.Ferrand, R.Duffin, and C.Mercat. We consider a graph lying in the complex plane and having quadrilateral faces. A function on the vertices is called discrete

  11. Efficient methods for solving discrete topology design problems in the PLATO-N project

    DEFF Research Database (Denmark)

    Canh, Nam Nguyen; Stolpe, Mathias

    This paper considers the general multiple load structural topology design problems in the framework of the PLATO-N project. The problems involve a large number of discrete design variables and were modeled as a non-convex mixed 0–1 program. For the class of problems considered, a global...... optimization method based on the branch-and-cut concept was developed and implemented. In the method a large number of continuous relaxations were solved. We also present an algorithm for generating cuts to strengthen the quality of the relaxations. Several heuristics were also investigated to obtain efficient...... algorithms. The branch and cut method is used to solve benchmark examples which can be used to validate other methods and heuristics....

  12. SOCIAL NETWORK OPTIMIZATION A NEW METHAHEURISTIC FOR GENERAL OPTIMIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Hassan Sherafat

    2017-12-01

    Full Text Available In the recent years metaheuristics were studied and developed as powerful technics for hard optimization problems. Some of well-known technics in this field are: Genetic Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization, and Swarm Intelligence, which are applied successfully to many complex optimization problems. In this paper, we introduce a new metaheuristic for solving such problems based on social networks concept, named as Social Network Optimization – SNO. We show that a wide range of np-hard optimization problems may be solved by SNO.

  13. Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: a case study

    Science.gov (United States)

    Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke

    2018-06-01

    In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.

  14. Existence for a class of discrete hyperbolic problems

    Directory of Open Access Journals (Sweden)

    Luca Rodica

    2006-01-01

    Full Text Available We investigate the existence and uniqueness of solutions to a class of discrete hyperbolic systems with some nonlinear extreme conditions and initial data, in a real Hilbert space.

  15. Optimization problem in quantum cryptography

    International Nuclear Information System (INIS)

    Brandt, Howard E

    2003-01-01

    A complete optimization was recently performed, yielding the maximum information gain by a general unitary entangling probe in the four-state protocol of quantum cryptography. A larger set of optimum probe parameters was found than was known previously from an incomplete optimization. In the present work, a detailed comparison is made between the complete and incomplete optimizations. Also, a new set of optimum probe parameters is identified for the four-state protocol

  16. ALGORITM PENTRU DETERMINAREA STRATEGIILOR OPTIME STAŢIONARE ÎN PROBLEMELE STOCASTICE DE CONTROL OPTIMAL DISCRET PE REŢELE DECIZIONALE CU MULTIPLE CLASE RECURENTE

    Directory of Open Access Journals (Sweden)

    Maria CAPCELEA

    2015-12-01

    Full Text Available Este elaborat şi argumentat teoretic un algoritm eficient pentru determinarea strategiilor optime staţionare în proble-mele stocastice de control optimal discret cu perioada de dirijare infinită, definite pe reţele decizionale cu multiple clase recurente, în care este aplicat criteriul de optimizare a combinaţiei convexe a costurilor medii în clasele recurente. Sunt examinate probleme în care costurile de tranziţie între stările sistemului dinamic şi probabilităţile de tranziţie, definite în stările necontrolabile, sunt constante independente de timp. Algoritmul elaborat este bazat pe modelul de programare liniară pentru determinarea strategiilor optime în problemele de control definite pe reţele decizionale perfecte [3,4].AN ALGORITHM FOR DETERMINING STATIONARY OPTIMAL STRATEGIES FOR STOCHASTIC DISCRETE OPTIMAL CONTROL PROBLEMS DEFINED ON NETWORKS WITH MULTIPLE RECURRENT CLASSESAn efficient algorithm for determining optimal stationary strategies for the stochastic discrete optimal control problems with infinite time horizon is developed and theoretically justified. The problems are defined on decision networks with multiple recurrent classes. The average costs convex combination optimization criterion is applied. We examine problems in which the costs of transitions between the states of the dynamic system and transition probabilities, defined on the uncontrollable states, are constants independent on time. The algorithm is based on the linear programming model developed for determining optimal strategies in control problems defined on perfect decision networks [3,4].

  17. New block matrix spectral problem and Hamiltonian structure of the discrete integrable coupling system

    International Nuclear Information System (INIS)

    Yu Fajun

    2008-01-01

    In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity

  18. New block matrix spectral problem and Hamiltonian structure of the discrete integrable coupling system

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)], E-mail: yufajun888@163.com

    2008-06-09

    In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity.

  19. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks

    Directory of Open Access Journals (Sweden)

    Na Lin

    2017-03-01

    Full Text Available In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS2Os, which extend the single population particle swarm optimization (PSO algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS2O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS2O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm’s performance. Then PS2O is used for solving the radio frequency identification (RFID network planning (RNP problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  20. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks.

    Science.gov (United States)

    Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan

    2017-03-01

    In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  1. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.

    Science.gov (United States)

    Kiumarsi, Bahare; Lewis, Frank L

    2015-01-01

    This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.

  2. A discrete optimization method for nuclear fuel management

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-04-01

    Nuclear loading pattern elaboration can be seen as a combinational optimization problem, of tremendous size and with non-linear cost-functions, and search are always numerically expensive. After a brief introduction of the main aspects of nuclear fuel management, this note presents a new idea to treat the combinational problem by using informations included in the gradient of a cost function. The method is to choose, by direct observation of the gradient, the more interesting changes in fuel loading patterns. An example is then developed to illustrate an operating mode of the method, and finally, connections with simulated annealing and genetic algorithms are described as an attempt to improve search processes. (author). 1 fig., 16 refs

  3. A concept for global optimization of topology design problems

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Achtziger, Wolfgang; Kawamoto, Atsushi

    2006-01-01

    We present a concept for solving topology design problems to proven global optimality. We propose that the problems are modeled using the approach of simultaneous analysis and design with discrete design variables and solved with convergent branch and bound type methods. This concept is illustrated...... on two applications. The first application is the design of stiff truss structures where the bar areas are chosen from a finite set of available areas. The second considered application is simultaneous topology and geometry design of planar articulated mechanisms. For each application we outline...

  4. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  5. Topology optimization of wave-propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....

  6. A Mathematical Optimization Problem in Bioinformatics

    Science.gov (United States)

    Heyer, Laurie J.

    2008-01-01

    This article describes the sequence alignment problem in bioinformatics. Through examples, we formulate sequence alignment as an optimization problem and show how to compute the optimal alignment with dynamic programming. The examples and sample exercises have been used by the author in a specialized course in bioinformatics, but could be adapted…

  7. Discrete Optimal Multirate Techniques for Excitation Controller Design of a Synchronous Machine

    Directory of Open Access Journals (Sweden)

    D. I. Pappas

    2016-02-01

    Full Text Available An optimal control strategy based on Two-Point-Multirate Controllers (TPMRCs, is used to design a desirable excitation controller of a hydrogenerator system, in order to enhance its dynamic stability characteristics. In the TPMRCs based scheme, the control is constrained to a certain piecewise constant signal, while each of the controlled plant outputs is detected many times over a fundamental sampling period T0. On the basis on this strategy, the original problem is reduced to an associate discrete-time linear quadratic (LQ regulation problem for the performance index with cross product terms, for which a fictitious static state feedback controller is needed to be computed. Simulation results for the actual 117 MVA synchronous generator with conventional exciter supplying line to an infinite grid show the effectiveness of the proposed method which has a quite satisfactory performance.

  8. Truss optimization with discrete design variables: a critical review

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2016-01-01

    problems. This, and other, observations lead to a set of recommended research tasks and objectives to bring the field forward. The development of a publicly available benchmark library is urgently needed to support development and assessment of existing and new heuristics and methods. Combined...... methods and meta heuristics. The field has experienced a shift in focus from deterministic methods to meta heuristics, i.e. stochastic search methods. Based on the reported numerical results it is however not possible to conclude that this shift has improved the competences to solve application relevant...... with this effort, it is recommended that the field begins to use modern methods such as performance profiles for fair and accurate comparison of optimization methods. Finally, theoretical results are rare in this field. This means that most recent methods and heuristics are not supported by mathematical theory...

  9. Topology optimization for acoustic problems

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2006-01-01

    In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 designs...

  10. In-plane material continuity for the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    When performing discrete material optimization of laminated composite structures, the variation of the in-plane material continuity is typically governed by the size of the finite element discretization. For a fine mesh, this can lead to designs that cannot be manufactured due to the complexity...

  11. Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem

    Directory of Open Access Journals (Sweden)

    Ibidun Christiana Obagbuwa

    2016-09-01

    Full Text Available The Cockroach Swarm Optimization (CSO algorithm is inspired by cockroach social behavior. It is a simple and efficient meta-heuristic algorithm and has been applied to solve global optimization problems successfully. The original CSO algorithm and its variants operate mainly in continuous search space and cannot solve binary-coded optimization problems directly. Many optimization problems have their decision variables in binary. Binary Cockroach Swarm Optimization (BCSO is proposed in this paper to tackle such problems and was evaluated on the popular Traveling Salesman Problem (TSP, which is considered to be an NP-hard Combinatorial Optimization Problem (COP. A transfer function was employed to map a continuous search space CSO to binary search space. The performance of the proposed algorithm was tested firstly on benchmark functions through simulation studies and compared with the performance of existing binary particle swarm optimization and continuous space versions of CSO. The proposed BCSO was adapted to TSP and applied to a set of benchmark instances of symmetric TSP from the TSP library. The results of the proposed Binary Cockroach Swarm Optimization (BCSO algorithm on TSP were compared to other meta-heuristic algorithms.

  12. The discrete maximum principle for Galerkin solutions of elliptic problems

    Czech Academy of Sciences Publication Activity Database

    Vejchodský, Tomáš

    2012-01-01

    Roč. 10, č. 1 (2012), s. 25-43 ISSN 1895-1074 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete maximum principle * monotone methods * Galerkin solution Subject RIV: BA - General Mathematics Impact factor: 0.405, year: 2012 http://www.springerlink.com/content/x73624wm23x4wj26

  13. Optimization and inverse problems in electromagnetism

    CERN Document Server

    Wiak, Sławomir

    2003-01-01

    From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...

  14. ON PROBLEM OF REGIONAL WAREHOUSE AND TRANSPORT INFRASTRUCTURE OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    I. Yu. Miretskiy

    2017-01-01

    Full Text Available The article suggests an approach of solving the problem of warehouse and transport infrastructure optimization in a region. The task is to determine the optimal capacity and location of the support network of warehouses in the region, as well as power, composition and location of motor fleets. Optimization is carried out using mathematical models of a regional warehouse network and a network of motor fleets. These models are presented as mathematical programming problems with separable functions. The process of finding the optimal solution of problems is complicated due to high dimensionality, non-linearity of functions, and the fact that a part of variables are constrained to integer, and some variables can take values only from a discrete set. Given the mentioned above complications search for an exact solution was rejected. The article suggests an approximate approach to solving problems. This approach employs effective computational schemes for solving multidimensional optimization problems. We use the continuous relaxation of the original problem to obtain its approximate solution. An approximately optimal solution of continuous relaxation is taken as an approximate solution of the original problem. The suggested solution method implies linearization of the obtained continuous relaxation and use of the separable programming scheme and the scheme of branches and bounds. We describe the use of the simplex method for solving the linearized continuous relaxation of the original problem and the specific moments of the branches and bounds method implementation. The paper shows the finiteness of the algorithm and recommends how to accelerate process of finding a solution.

  15. Reliability-Based Design Optimization of Trusses with Linked-Discrete Design Variables using the Improved Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    N. M. Okasha

    2016-04-01

    Full Text Available In this paper, an approach for conducting a Reliability-Based Design Optimization (RBDO of truss structures with linked-discrete design variables is proposed. The sections of the truss members are selected from the AISC standard tables and thus the design variables that represent the properties of each section are linked. Latin hypercube sampling is used in the evaluation of the structural reliability. The improved firefly algorithm is used for the optimization solution process. It was found that in order to use the improved firefly algorithm for efficiently solving problems of reliability-based design optimization with linked-discrete design variables; it needs to be modified as proposed in this paper to accelerate its convergence.

  16. Discrete Dynamical Systems Meet the Classic Monkey-and-the-Bananas Problem.

    Science.gov (United States)

    Gannon, Gerald E.; Martelli, Mario U.

    2001-01-01

    Presents a solution of the three-sailors-and-the-bananas problem and attempts a generalization. Introduces an interesting way of looking at the mathematics with an idea drawn from discrete dynamical systems. (KHR)

  17. Hybrid discrete PSO and OPF approach for optimization of biomass fueled micro-scale energy system

    International Nuclear Information System (INIS)

    Gómez-González, M.; López, A.; Jurado, F.

    2013-01-01

    Highlights: ► Method to determine the optimal location and size of biomass power plants. ► The proposed approach is a hybrid of PSO algorithm and optimal power flow. ► Comparison among the proposed algorithm and other methods. ► Computational costs are enough lower than that required for exhaustive search. - Abstract: This paper addresses generation of electricity in the specific aspect of finding the best location and sizing of biomass fueled gas micro-turbine power plants, taking into account the variables involved in the problem, such as the local distribution of biomass resources, biomass transportation and extraction costs, operation and maintenance costs, power losses costs, network operation costs, and technical constraints. In this paper a hybrid method is introduced employing discrete particle swarm optimization and optimal power flow. The approach can be applied to search the best sites and capacities to connect biomass fueled gas micro-turbine power systems in a distribution network among a large number of potential combinations and considering the technical constraints of the network. A fair comparison among the proposed algorithm and other methods is performed.

  18. C5 Benchmark Problem with Discrete Ordinate Radiation Transport Code DENOVO

    Energy Technology Data Exchange (ETDEWEB)

    Yesilyurt, Gokhan [ORNL; Clarno, Kevin T [ORNL; Evans, Thomas M [ORNL; Davidson, Gregory G [ORNL; Fox, Patricia B [ORNL

    2011-01-01

    The C5 benchmark problem proposed by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency was modeled to examine the capabilities of Denovo, a three-dimensional (3-D) parallel discrete ordinates (S{sub N}) radiation transport code, for problems with no spatial homogenization. Denovo uses state-of-the-art numerical methods to obtain accurate solutions to the Boltzmann transport equation. Problems were run in parallel on Jaguar, a high-performance supercomputer located at Oak Ridge National Laboratory. Both the two-dimensional (2-D) and 3-D configurations were analyzed, and the results were compared with the reference MCNP Monte Carlo calculations. For an additional comparison, SCALE/KENO-V.a Monte Carlo solutions were also included. In addition, a sensitivity analysis was performed for the optimal angular quadrature and mesh resolution for both the 2-D and 3-D infinite lattices of UO{sub 2} fuel pin cells. Denovo was verified with the C5 problem. The effective multiplication factors, pin powers, and assembly powers were found to be in good agreement with the reference MCNP and SCALE/KENO-V.a Monte Carlo calculations.

  19. FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Evans BAIDOO

    2017-03-01

    Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.

  20. Two hierarchies of integrable lattice equations associated with a discrete matrix spectral problem

    International Nuclear Information System (INIS)

    Li Xinyue; Xu Xixiang; Zhao Qiulan

    2008-01-01

    Two hierarchies of nonlinear integrable positive and negative lattice models are derived from a discrete spectral problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws of the positive hierarchy, then, the integrable coupling systems of the positive hierarchy are derived from enlarging Lax pair

  1. The inverse problem of the calculus of variations for discrete systems

    Science.gov (United States)

    Barbero-Liñán, María; Farré Puiggalí, Marta; Ferraro, Sebastián; Martín de Diego, David

    2018-05-01

    We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a transition between the discrete and the continuous problems and propose variationality as an interesting geometric property to take into account in the design and computer simulation of numerical integrators for constrained systems. For instance, nonholonomic mechanics is generally non variational but some special cases admit an alternative variational description. We apply some standard nonholonomic integrators to such an example to study which ones conserve this property.

  2. Approximative solutions of stochastic optimization problem

    Czech Academy of Sciences Publication Activity Database

    Lachout, Petr

    2010-01-01

    Roč. 46, č. 3 (2010), s. 513-523 ISSN 0023-5954 R&D Projects: GA ČR GA201/08/0539 Institutional research plan: CEZ:AV0Z10750506 Keywords : Stochastic optimization problem * sensitivity * approximative solution Subject RIV: BA - General Mathematics Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/SI/lachout-approximative solutions of stochastic optimization problem.pdf

  3. Problem of detecting inclusions by topological optimization

    Directory of Open Access Journals (Sweden)

    I. Faye

    2014-01-01

    Full Text Available In this paper we propose a new method to detect inclusions. The proposed method is based on shape and topological optimization tools. In fact after presenting the problem, we use topologication optimization tools to detect inclusions in the domain. Numerical results are presented.

  4. Evaluation and optimization of footwear comfort parameters using finite element analysis and a discrete optimization algorithm

    Science.gov (United States)

    Papagiannis, P.; Azariadis, P.; Papanikos, P.

    2017-10-01

    Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.

  5. Efficient Output Solution for Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences

    Directory of Open Access Journals (Sweden)

    Sie Long Kek

    2015-01-01

    Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.

  6. Stochastic global optimization as a filtering problem

    International Nuclear Information System (INIS)

    Stinis, Panos

    2012-01-01

    We present a reformulation of stochastic global optimization as a filtering problem. The motivation behind this reformulation comes from the fact that for many optimization problems we cannot evaluate exactly the objective function to be optimized. Similarly, we may not be able to evaluate exactly the functions involved in iterative optimization algorithms. For example, we may only have access to noisy measurements of the functions or statistical estimates provided through Monte Carlo sampling. This makes iterative optimization algorithms behave like stochastic maps. Naive global optimization amounts to evolving a collection of realizations of this stochastic map and picking the realization with the best properties. This motivates the use of filtering techniques to allow focusing on realizations that are more promising than others. In particular, we present a filtering reformulation of global optimization in terms of a special case of sequential importance sampling methods called particle filters. The increasing popularity of particle filters is based on the simplicity of their implementation and their flexibility. We utilize the flexibility of particle filters to construct a stochastic global optimization algorithm which can converge to the optimal solution appreciably faster than naive global optimization. Several examples of parametric exponential density estimation are provided to demonstrate the efficiency of the approach.

  7. Applying Column Generation to the Discrete Fleet Planning Problem

    NARCIS (Netherlands)

    Bosman, M.G.C.; Bakker, Vincent; Molderink, Albert; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2010-01-01

    The paper discusses an Integer Linear Programming (ILP) formulation that describes the problem of planning the use of domestic distributed generators, under individual as well as fleet constraints. The planning problem comprises the assignment of time intervals during which the local generator must

  8. Topology optimization for transient heat transfer problems

    DEFF Research Database (Denmark)

    Zeidan, Said; Sigmund, Ole; Lazarov, Boyan Stefanov

    The focus of this work is on passive control of transient heat transfer problems using the topology optimization (TopOpt) method [1]. The goal is to find distributions of a limited amount of phase change material (PCM), within a given design domain, which optimizes the heat energy storage [2]. Our......, TopOpt has later been extended to transient problems in mechanics and photonics (e.g. [5], [6] and [7]). In the presented approach, the optimization is gradient-based, where in each iteration the non-steady heat conduction equation is solved,using the finite element method and an appropriate time......-stepping scheme. A PCM can efficiently absorb heat while keeping its temperature nearly unchanged [8]. The use of PCM ine.g. electronics [9] and mechanics [10], yields improved performance and lower costs depending on a.o., the spatial distribution of PCM.The considered problem consists in optimizing...

  9. Belief Propagation Algorithm for Portfolio Optimization Problems.

    Science.gov (United States)

    Shinzato, Takashi; Yasuda, Muneki

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  10. Belief Propagation Algorithm for Portfolio Optimization Problems.

    Directory of Open Access Journals (Sweden)

    Takashi Shinzato

    Full Text Available The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  11. Sensitivity analysis in optimization and reliability problems

    International Nuclear Information System (INIS)

    Castillo, Enrique; Minguez, Roberto; Castillo, Carmen

    2008-01-01

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods

  12. Sensitivity analysis in optimization and reliability problems

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Enrique [Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda. Castros s/n., 39005 Santander (Spain)], E-mail: castie@unican.es; Minguez, Roberto [Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: roberto.minguez@uclm.es; Castillo, Carmen [Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: mariacarmen.castillo@uclm.es

    2008-12-15

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods.

  13. Stochastic Linear Quadratic Optimal Control Problems

    International Nuclear Information System (INIS)

    Chen, S.; Yong, J.

    2001-01-01

    This paper is concerned with the stochastic linear quadratic optimal control problem (LQ problem, for short) for which the coefficients are allowed to be random and the cost functional is allowed to have a negative weight on the square of the control variable. Some intrinsic relations among the LQ problem, the stochastic maximum principle, and the (linear) forward-backward stochastic differential equations are established. Some results involving Riccati equation are discussed as well

  14. Topology optimization of Channel flow problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.

    2005-01-01

    function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical......This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low to moderate Reynolds numbers. This makes the flow problem non-linear and hence a non-trivial extension of the work of [Borrvall&Petersson 2002......]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...

  15. Discrete-State Simulated Annealing For Traveling-Wave Tube Slow-Wave Circuit Optimization

    Science.gov (United States)

    Wilson, Jeffrey D.; Bulson, Brian A.; Kory, Carol L.; Williams, W. Dan (Technical Monitor)

    2001-01-01

    Algorithms based on the global optimization technique of simulated annealing (SA) have proven useful in designing traveling-wave tube (TWT) slow-wave circuits for high RF power efficiency. The characteristic of SA that enables it to determine a globally optimized solution is its ability to accept non-improving moves in a controlled manner. In the initial stages of the optimization, the algorithm moves freely through configuration space, accepting most of the proposed designs. This freedom of movement allows non-intuitive designs to be explored rather than restricting the optimization to local improvement upon the initial configuration. As the optimization proceeds, the rate of acceptance of non-improving moves is gradually reduced until the algorithm converges to the optimized solution. The rate at which the freedom of movement is decreased is known as the annealing or cooling schedule of the SA algorithm. The main disadvantage of SA is that there is not a rigorous theoretical foundation for determining the parameters of the cooling schedule. The choice of these parameters is highly problem dependent and the designer needs to experiment in order to determine values that will provide a good optimization in a reasonable amount of computational time. This experimentation can absorb a large amount of time especially when the algorithm is being applied to a new type of design. In order to eliminate this disadvantage, a variation of SA known as discrete-state simulated annealing (DSSA), was recently developed. DSSA provides the theoretical foundation for a generic cooling schedule which is problem independent, Results of similar quality to SA can be obtained, but without the extra computational time required to tune the cooling parameters. Two algorithm variations based on DSSA were developed and programmed into a Microsoft Excel spreadsheet graphical user interface (GUI) to the two-dimensional nonlinear multisignal helix traveling-wave amplifier analysis program TWA3

  16. Discrete-Time Pricing and Optimal Exercise of American Perpetual Warrants in the Geometric Random Walk Model

    Energy Technology Data Exchange (ETDEWEB)

    Vanderbei, Robert J., E-mail: rvdb@princeton.edu [Princeton University, Department of Operations Research and Financial Engineering (United States); P Latin-Small-Letter-Dotless-I nar, Mustafa C., E-mail: mustafap@bilkent.edu.tr [Bilkent University, Department of Industrial Engineering (Turkey); Bozkaya, Efe B. [Sabanc Latin-Small-Letter-Dotless-I University, Faculty of Administrative Sciences (Turkey)

    2013-02-15

    An American option (or, warrant) is the right, but not the obligation, to purchase or sell an underlying equity at any time up to a predetermined expiration date for a predetermined amount. A perpetual American option differs from a plain American option in that it does not expire. In this study, we solve the optimal stopping problem of a perpetual American option (both call and put) in discrete time using linear programming duality. Under the assumption that the underlying stock price follows a discrete time and discrete state Markov process, namely a geometric random walk, we formulate the pricing problem as an infinite dimensional linear programming (LP) problem using the excessive-majorant property of the value function. This formulation allows us to solve complementary slackness conditions in closed-form, revealing an optimal stopping strategy which highlights the set of stock-prices where the option should be exercised. The analysis for the call option reveals that such a critical value exists only in some cases, depending on a combination of state-transition probabilities and the economic discount factor (i.e., the prevailing interest rate) whereas it ceases to be an issue for the put.

  17. Discrete-Time Pricing and Optimal Exercise of American Perpetual Warrants in the Geometric Random Walk Model

    International Nuclear Information System (INIS)

    Vanderbei, Robert J.; Pınar, Mustafa Ç.; Bozkaya, Efe B.

    2013-01-01

    An American option (or, warrant) is the right, but not the obligation, to purchase or sell an underlying equity at any time up to a predetermined expiration date for a predetermined amount. A perpetual American option differs from a plain American option in that it does not expire. In this study, we solve the optimal stopping problem of a perpetual American option (both call and put) in discrete time using linear programming duality. Under the assumption that the underlying stock price follows a discrete time and discrete state Markov process, namely a geometric random walk, we formulate the pricing problem as an infinite dimensional linear programming (LP) problem using the excessive-majorant property of the value function. This formulation allows us to solve complementary slackness conditions in closed-form, revealing an optimal stopping strategy which highlights the set of stock-prices where the option should be exercised. The analysis for the call option reveals that such a critical value exists only in some cases, depending on a combination of state-transition probabilities and the economic discount factor (i.e., the prevailing interest rate) whereas it ceases to be an issue for the put.

  18. Discrete Geometry Toolkit for Shape Optimization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation-based design optimization has been steadily maturing over the past two decades, but not without its own unique and persistent challenges. The proposed...

  19. A multi-fidelity analysis selection method using a constrained discrete optimization formulation

    Science.gov (United States)

    Stults, Ian C.

    uncertainty present in analyses with 4 or fewer input variables could be effectively quantified using a strategic distribution creation method; if more than 4 input variables exist, a Frontier Finding Particle Swarm Optimization should instead be used. Once model uncertainty in contributing analysis code choices has been quantified, a selection method is required to determine which of these choices should be used in simulations. Because much of the selection done for engineering problems is driven by the physics of the problem, these are poor candidate problems for testing the true fitness of a candidate selection method. Specifically moderate and high dimensional problems' variability can often be reduced to only a few dimensions and scalability often cannot be easily addressed. For these reasons a simple academic function was created for the uncertainty quantification, and a canonical form of the Fidelity Selection Problem (FSP) was created. Fifteen best- and worst-case scenarios were identified in an effort to challenge the candidate selection methods both with respect to the characteristics of the tradeoff between time cost and model uncertainty and with respect to the stringency of the constraints and problem dimensionality. The results from this experiment show that a Genetic Algorithm (GA) was able to consistently find the correct answer, but under certain circumstances, a discrete form of Particle Swarm Optimization (PSO) was able to find the correct answer more quickly. To better illustrate how the uncertainty quantification and discrete optimization might be conducted for a "real world" problem, an illustrative example was conducted using gas turbine engines.

  20. Numerical sensitivity computation for discontinuous gradient-only optimization problems using the complex-step method

    CSIR Research Space (South Africa)

    Wilke, DN

    2012-07-01

    Full Text Available problems that utilise remeshing (i.e. the mesh topology is allowed to change) between design updates. Here, changes in mesh topology result in abrupt changes in the discretization error of the computed response. These abrupt changes in turn manifests... in shape optimization but may be present whenever (partial) differential equations are ap- proximated numerically with non-constant discretization methods e.g. remeshing of spatial domains or automatic time stepping in temporal domains. Keywords: Complex...

  1. Improved decomposition–coordination and discrete differential dynamic programming for optimization of large-scale hydropower system

    International Nuclear Information System (INIS)

    Li, Chunlong; Zhou, Jianzhong; Ouyang, Shuo; Ding, Xiaoling; Chen, Lu

    2014-01-01

    Highlights: • Optimization of large-scale hydropower system in the Yangtze River basin. • Improved decomposition–coordination and discrete differential dynamic programming. • Generating initial solution randomly to reduce generation time. • Proposing relative coefficient for more power generation. • Proposing adaptive bias corridor technology to enhance convergence speed. - Abstract: With the construction of major hydro plants, more and more large-scale hydropower systems are taking shape gradually, which brings up a challenge to optimize these systems. Optimization of large-scale hydropower system (OLHS), which is to determine water discharges or water levels of overall hydro plants for maximizing total power generation when subjecting to lots of constrains, is a high dimensional, nonlinear and coupling complex problem. In order to solve the OLHS problem effectively, an improved decomposition–coordination and discrete differential dynamic programming (IDC–DDDP) method is proposed in this paper. A strategy that initial solution is generated randomly is adopted to reduce generation time. Meanwhile, a relative coefficient based on maximum output capacity is proposed for more power generation. Moreover, an adaptive bias corridor technology is proposed to enhance convergence speed. The proposed method is applied to long-term optimal dispatches of large-scale hydropower system (LHS) in the Yangtze River basin. Compared to other methods, IDC–DDDP has competitive performances in not only total power generation but also convergence speed, which provides a new method to solve the OLHS problem

  2. Path optimization method for the sign problem

    Directory of Open Access Journals (Sweden)

    Ohnishi Akira

    2018-01-01

    Full Text Available We propose a path optimization method (POM to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t(f ϵ R and by optimizing f(t to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.

  3. Discrete conservation of nonnegativity for elliptic problems solved by the hp-FEM

    Czech Academy of Sciences Publication Activity Database

    Šolín, P.; Vejchodský, Tomáš; Araiza, R.

    2007-01-01

    Roč. 76, 1-3 (2007), s. 205-210 ISSN 0378-4754 R&D Projects: GA ČR GP201/04/P021 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete nonnegativity conservation * discrete Green's function * elliptic problems * hp-FEM * higher-order finite element methods * Poisson equation * numerical experimetns Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007

  4. Application of direct discrete method (DDM) to multigroup neutron transport problems

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Salehi, Ali Akbar; Shahriari, Majid

    2003-01-01

    The Direct Discrete Method (DDM), which produced excellent results for one-group neutron transport problems, has been developed for multigroup energy. A multigroup neutron transport discrete equation has been produced for a cylindrical shape fuel element with and without associated coolant regions with two boundary conditions. The calculations are illustrated for two-group energy by graphs showing the fast and thermal fluxes. The validity of the results are tested against the results obtained by the ANISN code. (author)

  5. A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems

    Directory of Open Access Journals (Sweden)

    Nader Ghaffari-Nasab

    2010-07-01

    Full Text Available During the past two decades, there have been increasing interests on permutation flow shop with different types of objective functions such as minimizing the makespan, the weighted mean flow-time etc. The permutation flow shop is formulated as a mixed integer programming and it is classified as NP-Hard problem. Therefore, a direct solution is not available and meta-heuristic approaches need to be used to find the near-optimal solutions. In this paper, we present a new discrete firefly meta-heuristic to minimize the makespan for the permutation flow shop scheduling problem. The results of implementation of the proposed method are compared with other existing ant colony optimization technique. The preliminary results indicate that the new proposed method performs better than the ant colony for some well known benchmark problems.

  6. State transformations and Hamiltonian structures for optimal control in discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2006-04-01

    Preserving usual definition of Hamiltonian H as the scalar product of rates and generalized momenta we investigate two basic classes of discrete optimal control processes governed by the difference rather than differential equations for the state transformation. The first class, linear in the time interval θ, secures the constancy of optimal H and satisfies a discrete Hamilton-Jacobi equation. The second class, nonlinear in θ, does not assure the constancy of optimal H and satisfies only a relationship that may be regarded as an equation of Hamilton-Jacobi type. The basic question asked is if and when Hamilton's canonical structures emerge in optimal discrete systems. For a constrained discrete control, general optimization algorithms are derived that constitute powerful theoretical and computational tools when evaluating extremum properties of constrained physical systems. The mathematical basis is Bellman's method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage optimality criterion which allows a variation of the terminal state that is otherwise fixed in Bellman's method. For systems with unconstrained intervals of the holdup time θ two powerful optimization algorithms are obtained: an unconventional discrete algorithm with a constant H and its counterpart for models nonlinear in θ. We also present the time-interval-constrained extension of the second algorithm. The results are general; namely, one arrives at: discrete canonical equations of Hamilton, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory, along with basic results of variational calculus. A vast spectrum of applications and an example are briefly discussed with particular attention paid to models nonlinear in the time interval θ.

  7. Topology optimization of fluid mechanics problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan

    While topology optimization for solid continuum structures have been studied for about 20 years and for the special case of trusses for many more years, topology optimization of fluid mechanics problems is more recent. Borrvall and Petersson [1] is the seminal reference for topology optimization......D Navier-Stokes equation as well as an example with convection dominated transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the present work gives a proof-of-concept for the application of the method within fluid mechanics problems and it remains...... processing tool. Prior to design manufacturing this allows the engineer to quantify the performance of the computed topology design using standard, credible analysis tools with a body-fitted mesh. [1] Borrvall and Petersson (2003) "Topology optimization of fluids in Stokes flow", Int. J. Num. Meth. Fluids...

  8. Topology Optimization for Transient Wave Propagation Problems

    DEFF Research Database (Denmark)

    Matzen, René

    The study of elastic and optical waves together with intensive material research has revolutionized everyday as well as cutting edge technology in very tangible ways within the last century. Therefore it is important to continue the investigative work towards improving existing as well as innovate...... new technology, by designing new materials and their layout. The thesis presents a general framework for applying topology optimization in the design of material layouts for transient wave propagation problems. In contrast to the high level of modeling in the frequency domain, time domain topology...... optimization is still in its infancy. A generic optimization problem is formulated with an objective function that can be field, velocity, and acceleration dependent, as well as it can accommodate the dependency of filtered signals essential in signal shape optimization [P3]. The analytical design gradients...

  9. A joint routing and speed optimization problem

    OpenAIRE

    Fukasawa, Ricardo; He, Qie; Santos, Fernando; Song, Yongjia

    2016-01-01

    Fuel cost contributes to a significant portion of operating cost in cargo transportation. Though classic routing models usually treat fuel cost as input data, fuel consumption heavily depends on the travel speed, which has led to the study of optimizing speeds over a given fixed route. In this paper, we propose a joint routing and speed optimization problem to minimize the total cost, which includes the fuel consumption cost. The only assumption made on the dependence between the fuel cost an...

  10. Optimal consumption problem in the Vasicek model

    Directory of Open Access Journals (Sweden)

    Jakub Trybuła

    2015-01-01

    Full Text Available We consider the problem of an optimal consumption strategy on the infinite time horizon based on the hyperbolic absolute risk aversion utility when the interest rate is an Ornstein-Uhlenbeck process. Using the method of subsolution and supersolution we obtain the existence of solutions of the dynamic programming equation. We illustrate the paper with a numerical example of the optimal consumption strategy and the value function.

  11. Mimetic Discretization of Vector-valued Diffusion Problems

    DEFF Research Database (Denmark)

    Olesen, Kennet

    this is the balance of the change of mass in a finite volume with mass fluxes across the surfaces bounding this volume? In the FDM and FEM the derivatives in the gradient-, curl- and divergence operator are approximated by formulating expressions with respect to a finite number of selected points. The continuous...... gradient-, curl- and divergence operators are derived based on geometrical considerations on finite domains, and by introducing geometry into the numerical scheme these operators can be replicated exactly. To incorporate the geometry into the PDEs the field of differential geometry is applied, which has...... of different dimensions through Stokes' theorem. - A clear separation of balance/equilibrium equations and constitutive equations is possible. As mentioned the emphasis is put on diffusion dominated problems containing second order tensors. Earlier work has developed a rigorous framework for problems involving...

  12. On discrete maximum principles for nonlinear elliptic problems

    Czech Academy of Sciences Publication Activity Database

    Karátson, J.; Korotov, S.; Křížek, Michal

    2007-01-01

    Roč. 76, č. 1 (2007), s. 99-108 ISSN 0378-4754 R&D Projects: GA MŠk 1P05ME749; GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z10190503 Keywords : nonlinear elliptic problem * mixed boundary conditions * finite element method Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007

  13. Multiparameter Optimization for Electromagnetic Inversion Problem

    Directory of Open Access Journals (Sweden)

    M. Elkattan

    2017-10-01

    Full Text Available Electromagnetic (EM methods have been extensively used in geophysical investigations such as mineral and hydrocarbon exploration as well as in geological mapping and structural studies. In this paper, we developed an inversion methodology for Electromagnetic data to determine physical parameters of a set of horizontal layers. We conducted Forward model using transmission line method. In the inversion part, we solved multi parameter optimization problem where, the parameters are conductivity, dielectric constant, and permeability of each layer. The optimization problem was solved by simulated annealing approach. The inversion methodology was tested using a set of models representing common geological formations.

  14. Solving global optimization problems on GPU cluster

    Energy Technology Data Exchange (ETDEWEB)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)

    2016-06-08

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  15. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

    Science.gov (United States)

    Wei, Qinglai; Liu, Derong; Lin, Hanquan

    2016-03-01

    In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

  16. Optimization method for an evolutional type inverse heat conduction problem

    International Nuclear Information System (INIS)

    Deng Zuicha; Yu Jianning; Yang Liu

    2008-01-01

    This paper deals with the determination of a pair (q, u) in the heat conduction equation u t -u xx +q(x,t)u=0, with initial and boundary conditions u(x,0)=u 0 (x), u x vertical bar x=0 =u x vertical bar x=1 =0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced

  17. Optimization method for an evolutional type inverse heat conduction problem

    Science.gov (United States)

    Deng, Zui-Cha; Yu, Jian-Ning; Yang, Liu

    2008-01-01

    This paper deals with the determination of a pair (q, u) in the heat conduction equation u_t-u_{xx}+q(x,t)u=0, with initial and boundary conditions u(x,0)=u_0(x),\\qquad u_x|_{x=0}=u_x|_{x=1}=0, from the overspecified data u(x, t) = g(x, t). By the time semi-discrete scheme, the problem is transformed into a sequence of inverse problems in which the unknown coefficients are purely space dependent. Based on the optimal control framework, the existence, uniqueness and stability of the solution (q, u) are proved. A necessary condition which is a couple system of a parabolic equation and parabolic variational inequality is deduced.

  18. A computational technique to identify the optimal stiffness matrix for a discrete nuclear fuel assembly model

    International Nuclear Information System (INIS)

    Park, Nam-Gyu; Kim, Kyoung-Joo; Kim, Kyoung-Hong; Suh, Jung-Min

    2013-01-01

    Highlights: ► An identification method of the optimal stiffness matrix for a fuel assembly structure is discussed. ► The least squares optimization method is introduced, and a closed form solution of the problem is derived. ► The method can be expanded to the system with the limited number of modes. ► Identification error due to the perturbed mode shape matrix is analyzed. ► Verification examples show that the proposed procedure leads to a reliable solution. -- Abstract: A reactor core structural model which is used to evaluate the structural integrity of the core contains nuclear fuel assembly models. Since the reactor core consists of many nuclear fuel assemblies, the use of a refined fuel assembly model leads to a considerable amount of computing time for performing nonlinear analyses such as the prediction of seismic induced vibration behaviors. The computational time could be reduced by replacing the detailed fuel assembly model with a simplified model that has fewer degrees of freedom, but the dynamic characteristics of the detailed model must be maintained in the simplified model. Such a model based on an optimal design method is proposed in this paper. That is, when a mass matrix and a mode shape matrix are given, the optimal stiffness matrix of a discrete fuel assembly model can be estimated by applying the least squares minimization method. The verification of the method is completed by comparing test results and simulation results. This paper shows that the simplified model's dynamic behaviors are quite similar to experimental results and that the suggested method is suitable for identifying reliable mathematical model for fuel assemblies

  19. A new epidemic modeling approach: Multi-regions discrete-time model with travel-blocking vicinity optimal control strategy.

    Science.gov (United States)

    Zakary, Omar; Rachik, Mostafa; Elmouki, Ilias

    2017-08-01

    First, we devise in this paper, a multi-regions discrete-time model which describes the spatial-temporal spread of an epidemic which starts from one region and enters to regions which are connected with their neighbors by any kind of anthropological movement. We suppose homogeneous Susceptible-Infected-Removed (SIR) populations, and we consider in our simulations, a grid of colored cells, which represents the whole domain affected by the epidemic while each cell can represent a sub-domain or region. Second, in order to minimize the number of infected individuals in one region, we propose an optimal control approach based on a travel-blocking vicinity strategy which aims to control only one cell by restricting movements of infected people coming from all neighboring cells. Thus, we show the influence of the optimal control approach on the controlled cell. We should also note that the cellular modeling approach we propose here, can also describes infection dynamics of regions which are not necessarily attached one to an other, even if no empty space can be viewed between cells. The theoretical method we follow for the characterization of the travel-locking optimal controls, is based on a discrete version of Pontryagin's maximum principle while the numerical approach applied to the multi-points boundary value problems we obtain here, is based on discrete progressive-regressive iterative schemes. We illustrate our modeling and control approaches by giving an example of 100 regions.

  20. Optimized waveform relaxation domain decomposition method for discrete finite volume non stationary convection diffusion equation

    International Nuclear Information System (INIS)

    Berthe, P.M.

    2013-01-01

    In the context of nuclear waste repositories, we consider the numerical discretization of the non stationary convection diffusion equation. Discontinuous physical parameters and heterogeneous space and time scales lead us to use different space and time discretizations in different parts of the domain. In this work, we choose the discrete duality finite volume (DDFV) scheme and the discontinuous Galerkin scheme in time, coupled by an optimized Schwarz waveform relaxation (OSWR) domain decomposition method, because this allows the use of non-conforming space-time meshes. The main difficulty lies in finding an upwind discretization of the convective flux which remains local to a sub-domain and such that the multi domain scheme is equivalent to the mono domain one. These difficulties are first dealt with in the one-dimensional context, where different discretizations are studied. The chosen scheme introduces a hybrid unknown on the cell interfaces. The idea of up winding with respect to this hybrid unknown is extended to the DDFV scheme in the two-dimensional setting. The well-posedness of the scheme and of an equivalent multi domain scheme is shown. The latter is solved by an OSWR algorithm, the convergence of which is proved. The optimized parameters in the Robin transmission conditions are obtained by studying the continuous or discrete convergence rates. Several test-cases, one of which inspired by nuclear waste repositories, illustrate these results. (author) [fr

  1. Implementing size-optimal discrete neural networks requires analog circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-03-01

    Neural networks (NNs) have been experimentally shown to be quite effective in many applications. This success has led researchers to undertake a rigorous analysis of the mathematical properties that enable them to perform so well. It has generated two directions of research: (i) to find existence/constructive proofs for what is now known as the universal approximation problem; (ii) to find tight bounds on the size needed by the approximation problem (or some particular cases). The paper will focus on both aspects, for the particular case when the functions to be implemented are Boolean.

  2. A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan

    Science.gov (United States)

    Rameshkumar, K.; Rajendran, C.

    2018-02-01

    In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.

  3. The Expected Loss in the Discretization of Multistage Stochastic Programming Problems - Estimation and Convergence Rate

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Martin

    2009-01-01

    Roč. 165, č. 1 (2009), s. 29-45 ISSN 0254-5330 R&D Projects: GA ČR GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : multistage stochastic programming problems * approximation * discretization * Monte Carlo Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.961, year: 2009 http://library.utia.cas.cz/separaty/2008/E/smid-the expected loss in the discretization of multistage stochastic programming problems - estimation and convergence rate.pdf

  4. Problems of the power plant shield optimization

    International Nuclear Information System (INIS)

    Abagyan, A.A.; Dubinin, A.A.; Zhuravlev, V.I.; Kurachenko, Yu.A.; Petrov, Eh.E.

    1981-01-01

    General approaches to the solution of problems on the nuclear power plant radiation shield optimization are considered. The requirements to the shield parameters are formulated in a form of restrictions on a number of functionals, determined by the solution of γ quantum and neutron transport equations or dimensional and weight characteristics of shield components. Functional determined by weight-dimensional parameters (shield cost, mass and thickness) and functionals, determined by radiation fields (equivalent dose rate, produced by neutrons and γ quanta, activation functional, radiation functional, heat flux, integral heat flux in a particular part of the shield volume, total energy flux through a particular shield surface are considered. The following methods of numerical solution of simplified optimization problems are discussed: semiempirical methods using radiation transport physical leaks, numerical solution of approximate transport equations, numerical solution of transport equations for the simplest configurations making possible to decrease essentially a number of variables in the problem. The conclusion is drawn that the attained level of investigations on the problem of nuclear power plant shield optimization gives the possibility to pass on at present to the solution of problems with a more detailed account of the real shield operating conditions (shield temperature field account, its strength and other characteristics) [ru

  5. Vertical discretizations for compressible Euler equation atmospheric models giving optimal representation of normal modes

    International Nuclear Information System (INIS)

    Thuburn, J.; Woollings, T.J.

    2005-01-01

    Accurate representation of different kinds of wave motion is essential for numerical models of the atmosphere, but is sensitive to details of the discretization. In this paper, numerical dispersion relations are computed for different vertical discretizations of the compressible Euler equations and compared with the analytical dispersion relation. A height coordinate, an isentropic coordinate, and a terrain-following mass-based coordinate are considered, and, for each of these, different choices of prognostic variables and grid staggerings are considered. The discretizations are categorized according to whether their dispersion relations are optimal, are near optimal, have a single zero-frequency computational mode, or are problematic in other ways. Some general understanding of the factors that affect the numerical dispersion properties is obtained: heuristic arguments concerning the normal mode structures, and the amount of averaging and coarse differencing in the finite difference scheme, are shown to be useful guides to which configurations will be optimal; the number of degrees of freedom in the discretization is shown to be an accurate guide to the existence of computational modes; there is only minor sensitivity to whether the equations for thermodynamic variables are discretized in advective form or flux form; and an accurate representation of acoustic modes is found to be a prerequisite for accurate representation of inertia-gravity modes, which, in turn, is found to be a prerequisite for accurate representation of Rossby modes

  6. Implementing size-optimal discrete neural networks require analog circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-01

    This paper starts by overviewing results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on a constructive solution for Kolmogorov`s superpositions the authors show that implementing Boolean functions can be done using neurons having an identity transfer function. Because in this case the size of the network is minimized, it follows that size-optimal solutions for implementing Boolean functions can be obtained using analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  7. Incorporating a modified uniform crossover and 2-exchange neighborhood mechanism in a discrete bat algorithm to solve the quadratic assignment problem

    Directory of Open Access Journals (Sweden)

    Mohammed Essaid Riffi

    2017-11-01

    Full Text Available The bat algorithm is one of the recent nature-inspired algorithms, which has been emerged as a powerful search method for solving continuous as well as discrete problems. The quadratic assignment problem is a well-known NP-hard problem in combinatorial optimization. The goal of this problem is to assign n facilities to n locations in such a way as to minimize the assignment cost. For that purpose, this paper introduces a novel discrete variant of bat algorithm to deal with this combinatorial optimization problem. The proposed algorithm was evaluated on a set of benchmark instances from the QAPLIB library and the performance was compared to other algorithms. The empirical results of exhaustive experiments were promising and illustrated the efficacy of the suggested approach.

  8. Ising Processing Units: Potential and Challenges for Discrete Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Coffrin, Carleton James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagarajan, Harsha [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bent, Russell Whitford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-05

    The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, presents new opportunities for hybrid-optimization algorithms that leverage these kinds of specialized hardware. In this work, we propose the idea of an Ising processing unit as a computational abstraction for these emerging tools. Challenges involved in using and bench- marking these devices are presented, and open-source software tools are proposed to address some of these challenges. The proposed benchmarking tools and methodology are demonstrated by conducting a baseline study of established solution methods to a D-Wave 2X adiabatic quantum computer, one example of a commercially available Ising processing unit.

  9. Statistical physics of hard optimization problems

    International Nuclear Information System (INIS)

    Zdeborova, L.

    2009-01-01

    Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfy ability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named ”locked” constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfy ability.

  10. Statistical physics of hard optimization problems

    International Nuclear Information System (INIS)

    Zdeborova, L.

    2009-01-01

    Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an non-deterministic polynomial-complete problem the practically arising instances might, in fact, be easy to solve. The principal the question we address in the article is: How to recognize if an non-deterministic polynomial-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named 'locked' constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability (Authors)

  11. Statistical physics of hard optimization problems

    Science.gov (United States)

    Zdeborová, Lenka

    2009-06-01

    Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.

  12. Application of enhanced discrete differential evolution approach to unit commitment problem

    International Nuclear Information System (INIS)

    Yuan Xiaohui; Su Anjun; Nie Hao; Yuan Yanbin; Wang Liang

    2009-01-01

    This paper proposes a discrete binary differential evolution (DBDE) approach to solve the unit commitment problem (UCP). The proposed method is enhanced by priority list based on the unit characteristics and heuristic search strategies to handle constraints effectively. The implementation of the proposed method for UCP consists of three stages. Firstly, the DBDE based on priority list is applied for unit scheduling when neglecting the minimum up/down time constraints. Secondly, repairing strategies are used to handle the minimum up/down time constraints and decommit excess spinning reserve units. Finally, heuristic unit substitution search and gray zone modification algorithm are used to improve optimal solution further. Furthermore, the effects of two crucial parameters on performance of the DBDE for solving UCP are studied as well. To verify the advantages of the method, the proposed method is tested and compared to the other methods on the systems with the number of units in the range of 10-100. Numerical results demonstrate that the proposed method is superior to other methods reported in the literature.

  13. Size and Topology Optimization for Trusses with Discrete Design Variables by Improved Firefly Algorithm

    NARCIS (Netherlands)

    Wu, Yue; Li, Q.; Hu, Qingjie; Borgart, A.

    2017-01-01

    Firefly Algorithm (FA, for short) is inspired by the social behavior of fireflies and their phenomenon of bioluminescent communication. Based on the fundamentals of FA, two improved strategies are proposed to conduct size and topology optimization for trusses with discrete design variables. Firstly,

  14. On the Solution of the Eigenvalue Assignment Problem for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    El-Sayed M. E. Mostafa

    2017-01-01

    Full Text Available The output feedback eigenvalue assignment problem for discrete-time systems is considered. The problem is formulated first as an unconstrained minimization problem, where a three-term nonlinear conjugate gradient method is proposed to find a local solution. In addition, a cut to the objective function is included, yielding an inequality constrained minimization problem, where a logarithmic barrier method is proposed for finding the local solution. The conjugate gradient method is further extended to tackle the eigenvalue assignment problem for the two cases of decentralized control systems and control systems with time delay. The performance of the methods is illustrated through various test examples.

  15. Discrete Analysis of Portfolio Selection with Optimal Stopping Time

    Directory of Open Access Journals (Sweden)

    Jianfeng Liang

    2009-01-01

    Full Text Available Most of the investments in practice are carried out without certain horizons. There are many factors to drive investment to a stop. In this paper, we consider a portfolio selection policy with market-related stopping time. Particularly, we assume that the investor exits the market once his wealth reaches a given investment target or falls below a bankruptcy threshold. Our objective is to minimize the expected time when the investment target is obtained, at the same time, we guarantee the probability that bankruptcy happens is no larger than a given level. We formulate the problem as a mix integer linear programming model and make analysis of the model by using a numerical example.

  16. BRAIN Journal - Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    OpenAIRE

    Ahmet Demir; Utku Kose

    2016-01-01

    ABSTRACT In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Sc...

  17. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    OpenAIRE

    Ahmet Demir; Utku kose

    2017-01-01

    In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an...

  18. Discrete ordinates transport methods for problems with highly forward-peaked scattering

    International Nuclear Information System (INIS)

    Pautz, S.D.

    1998-04-01

    The author examines the solutions of the discrete ordinates (S N ) method for problems with highly forward-peaked scattering kernels. He derives conditions necessary to obtain reasonable solutions in a certain forward-peaked limit, the Fokker-Planck (FP) limit. He also analyzes the acceleration of the iterative solution of such problems and offer improvements to it. He extends the analytic Fokker-Planck limit analysis to the S N equations. This analysis shows that in this asymptotic limit the S N solution satisfies a pseudospectral discretization of the FP equation, provided that the scattering term is handled in a certain way (which he describes) and that the analytic transport solution satisfies an analytic FP equation. Similar analyses of various spatially discretized S N equations reveal that they too produce solutions that satisfy discrete FP equations, given the same provisions. Numerical results agree with these theoretical predictions. He defines a multidimensional angular multigrid (ANMG) method to accelerate the iterative solution of highly forward-peaked problems. The analyses show that a straightforward application of this scheme is subject to high-frequency instabilities. However, by applying a diffusive filter to the ANMG corrections he is able to stabilize this method. Fourier analyses of model problems show that the resulting method is effective at accelerating the convergence rate when the scattering is forward-peaked. The numerical results demonstrate that these analyses are good predictors of the actual performance of the ANMG method

  19. Exploiting residual information in the parameter choice for discrete ill-posed problems

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Kilmer, Misha E.; Kjeldsen, Rikke Høj

    2006-01-01

    Most algorithms for choosing the regularization parameter in a discrete ill-posed problem are based on the norm of the residual vector. In this work we propose a different approach, where we seek to use all the information available in the residual vector. We present important relations between...

  20. The problem with time in mixed continuous/discrete time modelling

    NARCIS (Netherlands)

    Rovers, K.C.; Kuper, Jan; Smit, Gerardus Johannes Maria

    The design of cyber-physical systems requires the use of mixed continuous time and discrete time models. Current modelling tools have problems with time transformations (such as a time delay) or multi-rate systems. We will present a novel approach that implements signals as functions of time,

  1. Robust output observer-based control of neutral uncertain systems with discrete and distributed time delays: LMI optimization approach

    International Nuclear Information System (INIS)

    Chen, J.-D.

    2007-01-01

    In this paper, the robust control problem of output dynamic observer-based control for a class of uncertain neutral systems with discrete and distributed time delays is considered. Linear matrix inequality (LMI) optimization approach is used to design the new output dynamic observer-based controls. Three classes of observer-based controls are proposed and the maximal perturbed bound is given. Based on the results of this paper, the constraint of matrix equality is not necessary for designing the observer-based controls. Finally, a numerical example is given to illustrate the usefulness of the proposed method

  2. Optimal Hedging and Pricing of Equity-Linked Life Insurance Contracts in a Discrete-Time Incomplete Market

    Directory of Open Access Journals (Sweden)

    Norman Josephy

    2011-01-01

    Full Text Available We present a method of optimal hedging and pricing of equity-linked life insurance products in an incomplete discrete-time financial market. A pure endowment life insurance contract with guarantee is used as an example. The financial market incompleteness is caused by the assumption that the underlying risky asset price ratios are distributed in a compact interval, generalizing the assumptions of multinomial incomplete market models. For a range of initial hedging capitals for the embedded financial option, we numerically solve an optimal hedging problem and determine a risk-return profile of each optimal non-self-financing hedging strategy. The fair price of the insurance contract is determined according to the insurer's risk-return preferences. Illustrative numerical results of testing our algorithm on hypothetical insurance contracts are documented. A discussion and a test of a hedging strategy recalibration technique for long-term contracts are presented.

  3. Finite Optimal Stopping Problems: The Seller's Perspective

    Science.gov (United States)

    Hemmati, Mehdi; Smith, J. Cole

    2011-01-01

    We consider a version of an optimal stopping problem, in which a customer is presented with a finite set of items, one by one. The customer is aware of the number of items in the finite set and the minimum and maximum possible value of each item, and must purchase exactly one item. When an item is presented to the customer, she or he observes its…

  4. An optimal iterative algorithm to solve Cauchy problem for Laplace equation

    KAUST Repository

    Majeed, Muhammad Usman

    2015-05-25

    An optimal mean square error minimizer algorithm is developed to solve severely ill-posed Cauchy problem for Laplace equation on an annulus domain. The mathematical problem is presented as a first order state space-like system and an optimal iterative algorithm is developed that minimizes the mean square error in states. Finite difference discretization schemes are used to discretize first order system. After numerical discretization algorithm equations are derived taking inspiration from Kalman filter however using one of the space variables as a time-like variable. Given Dirichlet and Neumann boundary conditions are used on the Cauchy data boundary and fictitious points are introduced on the unknown solution boundary. The algorithm is run for a number of iterations using the solution of previous iteration as a guess for the next one. The method developed happens to be highly robust to noise in Cauchy data and numerically efficient results are illustrated.

  5. Oblique projections and standard-form transformations for discrete inverse problems

    DEFF Research Database (Denmark)

    Hansen, Per Christian

    2013-01-01

    This tutorial paper considers a specific computational tool for the numerical solution of discrete inverse problems, known as the standard-form transformation, by which we can treat general Tikhonov regularization problems efficiently. In the tradition of B. N. Datta's expositions of numerical li...... linear algebra, we use the close relationship between oblique projections, pseudoinverses, and matrix computations to derive a simple geometric motivation and algebraic formulation of the standard-form transformation....

  6. Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium

    International Nuclear Information System (INIS)

    Chen, Xudong

    2010-01-01

    This paper proposes a version of the subspace-based optimization method to solve the inverse scattering problem with an inhomogeneous background medium where the known inhomogeneities are bounded in a finite domain. Although the background Green's function at each discrete point in the computational domain is not directly available in an inhomogeneous background scenario, the paper uses the finite element method to simultaneously obtain the Green's function at all discrete points. The essence of the subspace-based optimization method is that part of the contrast source is determined from the spectrum analysis without using any optimization, whereas the orthogonally complementary part is determined by solving a lower dimension optimization problem. This feature significantly speeds up the convergence of the algorithm and at the same time makes it robust against noise. Numerical simulations illustrate the efficacy of the proposed algorithm. The algorithm presented in this paper finds wide applications in nondestructive evaluation, such as through-wall imaging

  7. Discretization and Numerical Solution of a Plane Problem in the Mechanics of Interfacial Cracks

    Science.gov (United States)

    Khoroshun, L. P.

    2017-01-01

    The Fourier transform is used to reduce the linear plane problem of the tension of a body with an interfacial crack to a system of dual equations for the transformed stresses and, then, to a system of integro-differential equations for the difference of displacements of the crack faces. After discretization, this latter system transforms into a system of algebraic equations for displacements of the crack faces. The effect of the bielastic constant and the number of discretization points on the half-length of the crack faces and the distribution of stresses at the interface is studied

  8. Design of an optimal preview controller for linear discrete-time descriptor systems with state delay

    Science.gov (United States)

    Cao, Mengjuan; Liao, Fucheng

    2015-04-01

    In this paper, the linear discrete-time descriptor system with state delay is studied, and a design method for an optimal preview controller is proposed. First, by using the discrete lifting technique, the original system is transformed into a general descriptor system without state delay in form. Then, taking advantage of the first-order forward difference operator, we construct a descriptor augmented error system, including the state vectors of the lifted system, error vectors, and desired target signals. Rigorous mathematical proofs are given for the regularity, stabilisability, causal controllability, and causal observability of the descriptor augmented error system. Based on these, the optimal preview controller with preview feedforward compensation for the original system is obtained by using the standard optimal regulator theory of the descriptor system. The effectiveness of the proposed method is shown by numerical simulation.

  9. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    Science.gov (United States)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  10. Optimal control problem for the extended Fisher–Kolmogorov equation

    Indian Academy of Sciences (India)

    In this paper, the optimal control problem for the extended Fisher–Kolmogorov equation is studied. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.

  11. Adaptive discretizations for the choice of a Tikhonov regularization parameter in nonlinear inverse problems

    International Nuclear Information System (INIS)

    Kaltenbacher, Barbara; Kirchner, Alana; Vexler, Boris

    2011-01-01

    Parameter identification problems for partial differential equations usually lead to nonlinear inverse problems. A typical property of such problems is their instability, which requires regularization techniques, like, e.g., Tikhonov regularization. The main focus of this paper will be on efficient methods for determining a suitable regularization parameter by using adaptive finite element discretizations based on goal-oriented error estimators. A well-established method for the determination of a regularization parameter is the discrepancy principle where the residual norm, considered as a function i of the regularization parameter, should equal an appropriate multiple of the noise level. We suggest to solve the resulting scalar nonlinear equation by an inexact Newton method, where in each iteration step, a regularized problem is solved at a different discretization level. The proposed algorithm is an extension of the method suggested in Griesbaum A et al (2008 Inverse Problems 24 025025) for linear inverse problems, where goal-oriented error estimators for i and its derivative are used for adaptive refinement strategies in order to keep the discretization level as coarse as possible to save computational effort but fine enough to guarantee global convergence of the inexact Newton method. This concept leads to a highly efficient method for determining the Tikhonov regularization parameter for nonlinear ill-posed problems. Moreover, we prove that with the so-obtained regularization parameter and an also adaptively discretized Tikhonov minimizer, usual convergence and regularization results from the continuous setting can be recovered. As a matter of fact, it is shown that it suffices to use stationary points of the Tikhonov functional. The efficiency of the proposed method is demonstrated by means of numerical experiments. (paper)

  12. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmet Demir

    2017-01-01

    Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions. 

  13. The discrete cones methods for two-dimensional neutral particle transport problems with voids

    International Nuclear Information System (INIS)

    Watanabe, Y.; Maynard, C.W.

    1983-01-01

    One of the most widely applied deterministic methods for time-independent, two-dimensional neutron transport calculations is the discrete ordinates method (DSN). The DSN solution, however, fails to be accurate in a void due to the ray effect. In order to circumvent this drawback, the authors have been developing a novel approximation: the discrete cones method (DCN), where a group of particles in a cone are simultaneously traced instead of particles in discrete directions for the DSN method. Programs, which apply to the DSN method in a non-vacuum region and the DCN method in a void, have been written for transport calculations in X-Y coordinates. The solutions for test problems demonstrate mitigation of the ray effect in voids without loosing the computational efficiency of the DSN method

  14. Error analysis for a monolithic discretization of coupled Darcy and Stokes problems

    KAUST Repository

    Girault, V.

    2014-01-01

    © de Gruyter 2014. The coupled Stokes and Darcy equations are approximated by a strongly conservative finite element method. The discrete spaces are the divergence-conforming velocity space with matching pressure space such as the Raviart-Thomas spaces. This work proves optimal error estimate of the velocity in the L2 norm in the domain and on the interface. Lipschitz regularity of the interface is sufficient to obtain the results.

  15. The choice of optimal Discrete Interaction Approximation to the kinetic integral for ocean waves

    Directory of Open Access Journals (Sweden)

    V. G. Polnikov

    2003-01-01

    Full Text Available A lot of discrete configurations for the four-wave nonlinear interaction processes have been calculated and tested by the method proposed earlier in the frame of the concept of Fast Discrete Interaction Approximation to the Hasselmann's kinetic integral (Polnikov and Farina, 2002. It was found that there are several simple configurations, which are more efficient than the one proposed originally in Hasselmann et al. (1985. Finally, the optimal multiple Discrete Interaction Approximation (DIA to the kinetic integral for deep-water waves was found. Wave spectrum features have been intercompared for a number of different configurations of DIA, applied to a long-time solution of kinetic equation. On the basis of this intercomparison the better efficiency of the configurations proposed was confirmed. Certain recommendations were given for implementation of new approximations to the wave forecast practice.

  16. Elementary Baecklund transformations for a discrete Ablowitz-Ladik eigenvalue problem

    International Nuclear Information System (INIS)

    Rourke, David E

    2004-01-01

    Elementary Baecklund transformations (BTs) are described for a discretization of the Zakharov-Shabat eigenvalue problem (a special case of the Ablowitz-Ladik eigenvalue problem). Elementary BTs allow the process of adding bound states to a system (i.e., the add-one-soliton BT) to be 'factorized' to solving two simpler sub-problems. They are used to determine the effect on the scattering data when bound states are added. They are shown to provide a method of calculating discrete solitons-this is achieved by constructing a lattice of intermediate potentials, with the parameters used in the calculation of the lattice simply related to the soliton scattering data. When the potentials, S n , T n , in the system are related by S n = -T n , they enable simple derivations to be obtained of the add-one-soliton BT and the nonlinear superposition formula

  17. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations

    Directory of Open Access Journals (Sweden)

    Olivier Sarbach

    2012-08-01

    Full Text Available Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.

  18. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations.

    Science.gov (United States)

    Sarbach, Olivier; Tiglio, Manuel

    2012-01-01

    Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.

  19. Design of an Optimal Preview Controller for Linear Discrete-Time Descriptor Noncausal Multirate Systems

    Directory of Open Access Journals (Sweden)

    Mengjuan Cao

    2014-01-01

    Full Text Available The linear discrete-time descriptor noncausal multirate system is considered for the presentation of a new design approach for optimal preview control. First, according to the characteristics of causal controllability and causal observability, the descriptor noncausal system is constructed into a descriptor causal closed-loop system. Second, by using the characteristics of the causal system and elementary transformation, the descriptor causal closed-loop system is transformed into a normal system. Then, taking advantage of the discrete lifting technique, the normal multirate system is converted to a single-rate system. By making use of the standard preview control method, we construct the descriptor augmented error system. The quadratic performance index for the multirate system is given, which can be changed into one for the single-rate system. In addition, a new single-rate system is obtained, the optimal control law of which is given. Returning to the original system, the optimal preview controller for linear discrete-time descriptor noncausal multirate systems is derived. The stabilizability and detectability of the lifted single-rate system are discussed in detail. The optimal preview control design techniques are illustrated by simulation results for a simple example.

  20. Discrete-Trial Functional Analysis and Functional Communication Training with Three Adults with Intellectual Disabilities and Problem Behavior

    Science.gov (United States)

    Chezan, Laura C.; Drasgow, Erik; Martin, Christian A.

    2014-01-01

    We conducted a sequence of two studies on the use of discrete-trial functional analysis and functional communication training. First, we used discrete-trial functional analysis (DTFA) to identify the function of problem behavior in three adults with intellectual disabilities and problem behavior. Results indicated clear patterns of problem…

  1. Simultaneous Optimization of Tallies in Difficult Shielding Problems

    International Nuclear Information System (INIS)

    Peplow, Douglas E.; Evans, Thomas M.; Wagner, John C.

    2008-01-01

    Monte Carlo is quite useful for calculating specific quantities in complex transport problems. Many variance reduction strategies have been developed that accelerate Monte Carlo calculations for specific tallies. However, when trying to calculate multiple tallies or a mesh tally, users have had to accept different levels of relative uncertainty among the tallies or run separate calculations optimized for each individual tally. To address this limitation, an extension of the CADIS (Consistent Adjoint Driven Importance Sampling) method, which is used for difficult source/detector problems, has been developed to optimize several tallies or the cells of a mesh tally simultaneously. The basis for this method is the development of an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. This method utilizes the results of a forward discrete ordinates solution, which may be based on a quick, coarse-mesh calculation, to develop a forward-weighted source for the adjoint calculation. The importance map and the biased source computed from the adjoint flux are then used in the forward Monte Carlo calculation to obtain approximately uniform relative uncertainties for the desired tallies. This extension is called forward-weighted CADIS, or FW-CADIS

  2. A hierarchical method for discrete structural topology design problems with local stress and displacement constraints

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Stidsen, Thomas K.

    2007-01-01

    In this paper, we present a hierarchical optimization method for finding feasible true 0-1 solutions to finite-element-based topology design problems. The topology design problems are initially modelled as non-convex mixed 0-1 programs. The hierarchical optimization method is applied to the problem...... and then successively refined as needed. At each level of design mesh refinement, a neighbourhood optimization method is used to treat the problem considered. The non-convex topology design problems are equivalently reformulated as convex all-quadratic mixed 0-1 programs. This reformulation enables the use of methods...... of minimizing the weight of a structure subject to displacement and local design-dependent stress constraints. The method iteratively treats a sequence of problems of increasing size of the same type as the original problem. The problems are defined on a design mesh which is initially coarse...

  3. Minimization of Linear Functionals Defined on| Solutions of Large-Scale Discrete Ill-Posed Problems

    DEFF Research Database (Denmark)

    Elden, Lars; Hansen, Per Christian; Rojas, Marielba

    2003-01-01

    The minimization of linear functionals de ned on the solutions of discrete ill-posed problems arises, e.g., in the computation of con dence intervals for these solutions. In 1990, Elden proposed an algorithm for this minimization problem based on a parametric-programming reformulation involving...... the solution of a sequence of trust-region problems, and using matrix factorizations. In this paper, we describe MLFIP, a large-scale version of this algorithm where a limited-memory trust-region solver is used on the subproblems. We illustrate the use of our algorithm in connection with an inverse heat...

  4. Optimal control of LQG problem with an explicit trade-off between mean and variance

    Science.gov (United States)

    Qian, Fucai; Xie, Guo; Liu, Ding; Xie, Wenfang

    2011-12-01

    For discrete-time linear-quadratic Gaussian (LQG) control problems, a utility function on the expectation and the variance of the conventional performance index is considered. The utility function is viewed as an overall objective of the system and can perform the optimal trade-off between the mean and the variance of performance index. The nonlinear utility function is first converted into an auxiliary parameters optimisation problem about the expectation and the variance. Then an optimal closed-loop feedback controller for the nonseparable mean-variance minimisation problem is designed by nonlinear mathematical programming. Finally, simulation results are given to verify the algorithm's effectiveness obtained in this article.

  5. Linux software for large topology optimization problems

    DEFF Research Database (Denmark)

    evolving product, which allows a parallel solution of the PDE, it lacks the important feature that the matrix-generation part of the computations is localized to each processor. This is well-known to be critical for obtaining a useful speedup on a Linux cluster and it motivates the search for a COMSOL......-like package for large topology optimization problems. One candidate for such software is developed for Linux by Sandia Nat’l Lab in the USA being the Sundance system. Sundance also uses a symbolic representation of the PDE and a scalable numerical solution is achieved by employing the underlying Trilinos...

  6. Generating Importance Map for Geometry Splitting using Discrete Ordinates Code in Deep Shielding Problem

    International Nuclear Information System (INIS)

    Kim, Jong Woon; Lee, Young Ouk

    2016-01-01

    When we use MCNP code for a deep shielding problem, we prefer to use variance reduction technique such as geometry splitting, or weight window, or source biasing to have relative error within reliable confidence interval. To generate importance map for geometry splitting in MCNP calculation, we should know the track entering number and previous importance on each cells since a new importance is calculated based on these information. If a problem is deep shielding problem such that we have zero tracks entering on a cell, we cannot generate new importance map. In this case, discrete ordinates code can provide information to generate importance map easily. In this paper, we use AETIUS code as a discrete ordinates code. Importance map for MCNP is generated based on a zone average flux of AETIUS calculation. The discretization of space, angle, and energy is not necessary for MCNP calculation. This is the big merit of MCNP code compared to the deterministic code. However, deterministic code (i.e., AETIUS) can provide a rough estimate of the flux throughout a problem relatively quickly. This can help MCNP by providing variance reduction parameters. Recently, ADVANTG code is released. This is an automated tool for generating variance reduction parameters for fixed-source continuous-energy Monte Carlo simulations with MCNP5 v1.60

  7. Hybrid intelligent optimization methods for engineering problems

    Science.gov (United States)

    Pehlivanoglu, Yasin Volkan

    The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and

  8. Relaxations to Sparse Optimization Problems and Applications

    Science.gov (United States)

    Skau, Erik West

    Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we

  9. Combinatorial expressions of the solutions to initial value problems of the discrete and ultradiscrete Toda molecules

    International Nuclear Information System (INIS)

    Kamioka, Shuhei; Takagaki, Tomoaki

    2013-01-01

    Combinatorial expressions are presented of the solutions to initial value problems of the discrete and ultradiscrete Toda molecules. For the discrete Toda molecule, a subtraction-free expression of the solution is derived in terms of non-intersecting paths, for which two results in combinatorics, Flajolet’s interpretation of continued fractions and Gessel–Viennot’s lemma on determinants, are applied. By ultradiscretizing the subtraction-free expression, the solution to the ultradiscrete Toda molecule is obtained. It is finally shown that the initial value problem of the ultradiscrete Toda molecule is exactly solved in terms of shortest paths on a specific graph. The behavior of the solution is also investigated in comparison with the box–ball system. (paper)

  10. Road maintenance optimization through a discrete-time semi-Markov decision process

    International Nuclear Information System (INIS)

    Zhang Xueqing; Gao Hui

    2012-01-01

    Optimization models are necessary for efficient and cost-effective maintenance of a road network. In this regard, road deterioration is commonly modeled as a discrete-time Markov process such that an optimal maintenance policy can be obtained based on the Markov decision process, or as a renewal process such that an optimal maintenance policy can be obtained based on the renewal theory. However, the discrete-time Markov process cannot capture the real time at which the state transits while the renewal process considers only one state and one maintenance action. In this paper, road deterioration is modeled as a semi-Markov process in which the state transition has the Markov property and the holding time in each state is assumed to follow a discrete Weibull distribution. Based on this semi-Markov process, linear programming models are formulated for both infinite and finite planning horizons in order to derive optimal maintenance policies to minimize the life-cycle cost of a road network. A hypothetical road network is used to illustrate the application of the proposed optimization models. The results indicate that these linear programming models are practical for the maintenance of a road network having a large number of road segments and that they are convenient to incorporate various constraints on the decision process, for example, performance requirements and available budgets. Although the optimal maintenance policies obtained for the road network are randomized stationary policies, the extent of this randomness in decision making is limited. The maintenance actions are deterministic for most states and the randomness in selecting actions occurs only for a few states.

  11. Monotone methods for solving a boundary value problem of second order discrete system

    Directory of Open Access Journals (Sweden)

    Wang Yuan-Ming

    1999-01-01

    Full Text Available A new concept of a pair of upper and lower solutions is introduced for a boundary value problem of second order discrete system. A comparison result is given. An existence theorem for a solution is established in terms of upper and lower solutions. A monotone iterative scheme is proposed, and the monotone convergence rate of the iteration is compared and analyzed. The numerical results are given.

  12. Discrete quintic spline for boundary value problem in plate deflation theory

    Science.gov (United States)

    Wong, Patricia J. Y.

    2017-07-01

    We propose a numerical scheme for a fourth-order boundary value problem arising from plate deflation theory. The scheme involves a discrete quintic spline, and it is of order 4 if a parameter takes a specific value, else it is of order 2. We also present a well known numerical example to illustrate the efficiency of our method as well as to compare with other numerical methods proposed in the literature.

  13. A numerical method for multigroup slab-geometry discrete ordinates problems with no spatial truncation error

    International Nuclear Information System (INIS)

    Barros, R.C. de; Larsen, E.W.

    1991-01-01

    A generalization of the one-group Spectral Green's Function (SGF) method is developed for multigroup, slab-geometry discrete ordinates (S N ) problems. The multigroup SGF method is free from spatial truncation errors; it generated numerical values for the cell-edge and cell-average angular fluxes that agree with the analytic solution of the multigroup S N equations. Numerical results are given to illustrate the method's accuracy

  14. Multiple and sign-changing solutions for discrete Robin boundary value problem with parameter dependence

    Directory of Open Access Journals (Sweden)

    Long Yuhua

    2017-12-01

    Full Text Available In this paper, we study second-order nonlinear discrete Robin boundary value problem with parameter dependence. Applying invariant sets of descending flow and variational methods, we establish some new sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions of the system when the parameter belongs to appropriate intervals. In addition, an example is given to illustrate our results.

  15. Inverse periodic problem for the discrete approximation of the Schroedinger nonlinear equation

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.; Prikarpatskij, A.K.; AN Ukrainskoj SSR, Lvov. Inst. Prikladnykh Problem Mekhaniki i Matematiki)

    1982-01-01

    The problem of numerical solution of the Schroedinger nonlinear equation (1) iPSIsub(t) = PSIsub(xx)+-2(PSI)sup(2)PSI. The numerical solution of nonlinear differential equation supposes its discrete approximation is required for the realization of the computer calculation process. Tor the equation (1) there exists the following discrete approximation by variable x(2) iPSIsub(n, t) = (PSIsub(n+1)-2PSIsub(n)+PSIsub(n-1))/(Δx)sup(2)+-(PSIsub(n))sup(2)(PSIsub(n+1)+PSIsub(n-1)), n=0, +-1, +-2... where PSIsub(n)(+) is the corresponding value of PSI(x, t) function in the node and divisions with the equilibrium step Δx. The main problem is obtaining analytically exact solutions of the equations (2). The analysis of the equation system (2) is performed on the base of the discrete analogue of the periodic variant of the inverse scattering problem method developed with the aid of nonlinear equations of the Korteweg-de Vries type. Obtained in explicit form are analytical solutions of the equations system (2). The solutions are expressed through the Riemann THETA-function [ru

  16. Discrete restricted four-body problem: Existence of proof of equilibria and reproducibility of periodic orbits

    Energy Technology Data Exchange (ETDEWEB)

    Minesaki, Yukitaka [Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514 (Japan)

    2015-01-01

    We propose the discrete-time restricted four-body problem (d-R4BP), which approximates the orbits of the restricted four-body problem (R4BP). The d-R4BP is given as a special case of the discrete-time chain regularization of the general N-body problem published in Minesaki. Moreover, we analytically prove that the d-R4BP yields the correct orbits corresponding to the elliptic relative equilibrium solutions of the R4BP when the three primaries form an equilateral triangle at any time. Such orbits include the orbit of a relative equilibrium solution already discovered by Baltagiannis and Papadakis. Until the proof in this work, there has been no discrete analog that preserves the orbits of elliptic relative equilibrium solutions in the R4BP. For a long time interval, the d-R4BP can precisely compute some stable periodic orbits in the Sun–Jupiter–Trojan asteroid–spacecraft system that cannot necessarily be reproduced by other generic integrators.

  17. Models and Methods for Structural Topology Optimization with Discrete Design Variables

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    in the conceptual design phase to find innovative designs. The strength of topology optimization is the capability of determining both the optimal shape and the topology of the structure. In some cases also the optimal material properties can be determined. Optimal structural design problems are modeled...... such as bridges, airplanes, wind turbines, cars, etc. Topology optimization is a collection of theory, mathematical models, and numerical methods and is often used in the conceptual design phase to find innovative designs. The strength of topology optimization is the capability of determining both the optimal......Structural topology optimization is a multi-disciplinary research field covering optimal design of load carrying mechanical structures such as bridges, airplanes, wind turbines, cars, etc. Topology optimization is a collection of theory, mathematical models, and numerical methods and is often used...

  18. Continuous Measurements and Quantitative Constraints: Challenge Problems for Discrete Modeling Techniques

    Science.gov (United States)

    Goodrich, Charles H.; Kurien, James; Clancy, Daniel (Technical Monitor)

    2001-01-01

    We present some diagnosis and control problems that are difficult to solve with discrete or purely qualitative techniques. We analyze the nature of the problems, classify them and explain why they are frequently encountered in systems with closed loop control. This paper illustrates the problem with several examples drawn from industrial and aerospace applications and presents detailed information on one important application: In-Situ Resource Utilization (ISRU) on Mars. The model for an ISRU plant is analyzed showing where qualitative techniques are inadequate to identify certain failure modes and to maintain control of the system in degraded environments. We show why the solution to the problem will result in significantly more robust and reliable control systems. Finally, we illustrate requirements for a solution to the problem by means of examples.

  19. A hybrid iterative scheme for optimal control problems governed by ...

    African Journals Online (AJOL)

    MRT

    KEY WORDS: Optimal control problem; Fredholm integral equation; ... control problems governed by Fredholm integral and integro-differential equations is given in (Brunner and Yan, ..... The exact optimal trajectory and control functions are. 2.

  20. Particle Swarm Optimization for Structural Design Problems

    Directory of Open Access Journals (Sweden)

    Hamit SARUHAN

    2010-02-01

    Full Text Available The aim of this paper is to employ the Particle Swarm Optimization (PSO technique to a mechanical engineering design problem which is minimizing the volume of a cantilevered beam subject to bending strength constraints. Mechanical engineering design problems are complex activities which are computing capability are more and more required. The most of these problems are solved by conventional mathematical programming techniques that require gradient information. These techniques have several drawbacks from which the main one is becoming trapped in local optima. As an alternative to gradient-based techniques, the PSO does not require the evaluation of gradients of the objective function. The PSO algorithm employs the generation of guided random positions when they search for the global optimum point. The PSO which is a nature inspired heuristics search technique imitates the social behavior of bird flocking. The results obtained by the PSO are compared with Mathematical Programming (MP. It is demonstrated that the PSO performed and obtained better convergence reliability on the global optimum point than the MP. Using the MP, the volume of 2961000 mm3 was obtained while the beam volume of 2945345 mm3 was obtained by the PSO.

  1. In-plane Material Filters for the Discrete Material Optimization Method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    , because the projection filter is a non-linear function of the design variables, the projected variables have to be re-scaled in a final so-called normalization filter. This is done to prevent the optimizer in creating superior, but non-physical pseudo-materials. The method is demonstrated on a series......This paper presents in-plane material filters for the Discrete Material Optimization method used for optimizing laminated composite structures. The filters make it possible for engineers to specify a minimum length scale which governs the minimum size of areas with constant material continuity....... Consequently, engineers can target the available production methods, and thereby increase its manufacturability while the optimizer is free to determine which material to apply together with an optimum location, shape, and size of these areas with constant material continuity. By doing so, engineers no longer...

  2. System and economic optimization problems of NPPs and its ideology

    International Nuclear Information System (INIS)

    Klimenko, A.V.; Mironovich, V.L.

    2016-01-01

    The iterative circuit design of optimization of system of links of nuclear fuel and energy complex (NFEC) is presented in the paper. Problems of system optimization of links NFEC as functional of NPP optimization are indicated and investigated [ru

  3. The Iterative Solution to Discrete-Time H∞ Control Problems for Periodic Systems

    Directory of Open Access Journals (Sweden)

    Ivan G. Ivanov

    2016-03-01

    Full Text Available This paper addresses the problem of solving discrete-time H ∞ control problems for periodic systems. The approach for solving such a type of equations is well known in the literature. However, the focus of our research is set on the numerical computation of the stabilizing solution. In particular, two effective methods for practical realization of the known iterative processes are described. Furthermore, a new iterative approach is investigated and applied. On the basis of numerical experiments, we compare the presented methods. A major conclusion is that the new iterative approach is faster than rest of the methods and it uses less RAM memory than other methods.

  4. Finite approximations in discrete-time stochastic control quantized models and asymptotic optimality

    CERN Document Server

    Saldi, Naci; Yüksel, Serdar

    2018-01-01

    In a unified form, this monograph presents fundamental results on the approximation of centralized and decentralized stochastic control problems, with uncountable state, measurement, and action spaces. It demonstrates how quantization provides a system-independent and constructive method for the reduction of a system with Borel spaces to one with finite state, measurement, and action spaces. In addition to this constructive view, the book considers both the information transmission approach for discretization of actions, and the computational approach for discretization of states and actions. Part I of the text discusses Markov decision processes and their finite-state or finite-action approximations, while Part II builds from there to finite approximations in decentralized stochastic control problems. This volume is perfect for researchers and graduate students interested in stochastic controls. With the tools presented, readers will be able to establish the convergence of approximation models to original mo...

  5. The ADO-nodal method for solving two-dimensional discrete ordinates transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Picoloto, C.B.; Cunha, R.D. da

    2017-01-01

    Highlights: • Two-dimensional discrete ordinates neutron transport. • Analytical Discrete Ordinates (ADO) nodal method. • Heterogeneous media fixed source problems. • Local solutions. - Abstract: In this work, recent results on the solution of fixed-source two-dimensional transport problems, in Cartesian geometry, are reported. Homogeneous and heterogeneous media problems are considered in order to incorporate the idea of arbitrary number of domain division into regions (nodes) when applying the ADO method, which is a method of analytical features, to those problems. The ADO-nodal formulation is developed, for each node, following previous work devoted to heterogeneous media problem. Here, however, the numerical procedure is extended to higher number of domain divisions. Such extension leads, in some cases, to the use of an iterative method for solving the general linear system which defines the arbitrary constants of the general solution. In addition to solve alternative heterogeneous media configurations than reported in previous works, the present approach allows comparisons with results provided by other metodologies generated with refined meshes. Numerical results indicate the ADO solution may achieve a prescribed accuracy using coarser meshes than other schemes.

  6. Basic problems solving for two-dimensional discrete 3 × 4 order hidden markov model

    International Nuclear Information System (INIS)

    Wang, Guo-gang; Gan, Zong-liang; Tang, Gui-jin; Cui, Zi-guan; Zhu, Xiu-chang

    2016-01-01

    A novel model is proposed to overcome the shortages of the classical hypothesis of the two-dimensional discrete hidden Markov model. In the proposed model, the state transition probability depends on not only immediate horizontal and vertical states but also on immediate diagonal state, and the observation symbol probability depends on not only current state but also on immediate horizontal, vertical and diagonal states. This paper defines the structure of the model, and studies the three basic problems of the model, including probability calculation, path backtracking and parameters estimation. By exploiting the idea that the sequences of states on rows or columns of the model can be seen as states of a one-dimensional discrete 1 × 2 order hidden Markov model, several algorithms solving the three questions are theoretically derived. Simulation results further demonstrate the performance of the algorithms. Compared with the two-dimensional discrete hidden Markov model, there are more statistical characteristics in the structure of the proposed model, therefore the proposed model theoretically can more accurately describe some practical problems.

  7. Optimization methods for activities selection problems

    Science.gov (United States)

    Mahad, Nor Faradilah; Alias, Suriana; Yaakop, Siti Zulaika; Arshad, Norul Amanina Mohd; Mazni, Elis Sofia

    2017-08-01

    Co-curriculum activities must be joined by every student in Malaysia and these activities bring a lot of benefits to the students. By joining these activities, the students can learn about the time management and they can developing many useful skills. This project focuses on the selection of co-curriculum activities in secondary school using the optimization methods which are the Analytic Hierarchy Process (AHP) and Zero-One Goal Programming (ZOGP). A secondary school in Negeri Sembilan, Malaysia was chosen as a case study. A set of questionnaires were distributed randomly to calculate the weighted for each activity based on the 3 chosen criteria which are soft skills, interesting activities and performances. The weighted was calculated by using AHP and the results showed that the most important criteria is soft skills. Then, the ZOGP model will be analyzed by using LINGO Software version 15.0. There are two priorities to be considered. The first priority which is to minimize the budget for the activities is achieved since the total budget can be reduced by RM233.00. Therefore, the total budget to implement the selected activities is RM11,195.00. The second priority which is to select the co-curriculum activities is also achieved. The results showed that 9 out of 15 activities were selected. Thus, it can concluded that AHP and ZOGP approach can be used as the optimization methods for activities selection problem.

  8. Application of Discrete Fourier Transform in solving the inverse problem in gamma-ray logging

    International Nuclear Information System (INIS)

    Zorski, T.

    1980-01-01

    A new approach to the solution of inverse problem in gamma-ray logging is presented. The equation: I(z) = ∫sup(+infinite)sub(-infinite) phi (z-z')Isub(infinite)(z')dz', which relates the measured intensity I(z) with the intensity Isub(infinite)(z) not disturbed by finite thickness of an elementary layer, is solved for Isub(infinite)(z). Discrete Fourier Transform and convolution theorem are used. As a result of our solution discrete values of Isub(infinite)(z) given at a step of Δh are obtained. Examples of application of this method for Δh <= 4.5 cm and for the curves I(z) theoretically calculated are also discussed. (author)

  9. Multiscale analysis for ill-posed problems with semi-discrete Tikhonov regularization

    International Nuclear Information System (INIS)

    Zhong, Min; Lu, Shuai; Cheng, Jin

    2012-01-01

    Using compactly supported radial basis functions of varying radii, Wendland has shown how a multiscale analysis can be applied to the approximation of Sobolev functions on a bounded domain, when the available data are discrete and noisy. Here, we examine the application of this analysis to the solution of linear moderately ill-posed problems using semi-discrete Tikhonov–Phillips regularization. As in Wendland’s work, the actual multiscale approximation is constructed by a sequence of residual corrections, where different support radii are employed to accommodate different scales. The convergence of the algorithm for noise-free data is given. Based on the Morozov discrepancy principle, a posteriori parameter choice rule and error estimates for the noisy data are derived. Two numerical examples are presented to illustrate the appropriateness of the proposed method. (paper)

  10. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    International Nuclear Information System (INIS)

    Tahvili, Sahar; Österberg, Jonas; Silvestrov, Sergei; Biteus, Jonas

    2014-01-01

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation

  11. Solving complex maintenance planning optimization problems using stochastic simulation and multi-criteria fuzzy decision making

    Energy Technology Data Exchange (ETDEWEB)

    Tahvili, Sahar [Mälardalen University (Sweden); Österberg, Jonas; Silvestrov, Sergei [Division of Applied Mathematics, Mälardalen University (Sweden); Biteus, Jonas [Scania CV (Sweden)

    2014-12-10

    One of the most important factors in the operations of many cooperations today is to maximize profit and one important tool to that effect is the optimization of maintenance activities. Maintenance activities is at the largest level divided into two major areas, corrective maintenance (CM) and preventive maintenance (PM). When optimizing maintenance activities, by a maintenance plan or policy, we seek to find the best activities to perform at each point in time, be it PM or CM. We explore the use of stochastic simulation, genetic algorithms and other tools for solving complex maintenance planning optimization problems in terms of a suggested framework model based on discrete event simulation.

  12. Penalized linear regression for discrete ill-posed problems: A hybrid least-squares and mean-squared error approach

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Kammoun, Abla; Al-Naffouri, Tareq Y.

    2016-01-01

    This paper proposes a new approach to find the regularization parameter for linear least-squares discrete ill-posed problems. In the proposed approach, an artificial perturbation matrix with a bounded norm is forced into the discrete ill-posed model

  13. Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Al-Naffouri, Tareq Y.

    2016-01-01

    Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.

  14. Multiobjective Two-Stage Stochastic Programming Problems with Interval Discrete Random Variables

    Directory of Open Access Journals (Sweden)

    S. K. Barik

    2012-01-01

    Full Text Available Most of the real-life decision-making problems have more than one conflicting and incommensurable objective functions. In this paper, we present a multiobjective two-stage stochastic linear programming problem considering some parameters of the linear constraints as interval type discrete random variables with known probability distribution. Randomness of the discrete intervals are considered for the model parameters. Further, the concepts of best optimum and worst optimum solution are analyzed in two-stage stochastic programming. To solve the stated problem, first we remove the randomness of the problem and formulate an equivalent deterministic linear programming model with multiobjective interval coefficients. Then the deterministic multiobjective model is solved using weighting method, where we apply the solution procedure of interval linear programming technique. We obtain the upper and lower bound of the objective function as the best and the worst value, respectively. It highlights the possible risk involved in the decision-making tool. A numerical example is presented to demonstrate the proposed solution procedure.

  15. Perturbation-Based Regularization for Signal Estimation in Linear Discrete Ill-posed Problems

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2016-11-29

    Estimating the values of unknown parameters from corrupted measured data faces a lot of challenges in ill-posed problems. In such problems, many fundamental estimation methods fail to provide a meaningful stabilized solution. In this work, we propose a new regularization approach and a new regularization parameter selection approach for linear least-squares discrete ill-posed problems. The proposed approach is based on enhancing the singular-value structure of the ill-posed model matrix to acquire a better solution. Unlike many other regularization algorithms that seek to minimize the estimated data error, the proposed approach is developed to minimize the mean-squared error of the estimator which is the objective in many typical estimation scenarios. The performance of the proposed approach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation results demonstrate that the proposed approach outperforms a set of benchmark regularization methods in most cases. In addition, the approach also enjoys the lowest runtime and offers the highest level of robustness amongst all the tested benchmark regularization methods.

  16. Evaluation of a proposed optimization method for discrete-event simulation models

    Directory of Open Access Journals (Sweden)

    Alexandre Ferreira de Pinho

    2012-12-01

    Full Text Available Optimization methods combined with computer-based simulation have been utilized in a wide range of manufacturing applications. However, in terms of current technology, these methods exhibit low performance levels which are only able to manipulate a single decision variable at a time. Thus, the objective of this article is to evaluate a proposed optimization method for discrete-event simulation models based on genetic algorithms which exhibits more efficiency in relation to computational time when compared to software packages on the market. It should be emphasized that the variable's response quality will not be altered; that is, the proposed method will maintain the solutions' effectiveness. Thus, the study draws a comparison between the proposed method and that of a simulation instrument already available on the market and has been examined in academic literature. Conclusions are presented, confirming the proposed optimization method's efficiency.

  17. Particle Swarm Optimization applied to combinatorial problem aiming the fuel recharge problem solution in a nuclear reactor

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Schirru, Roberto

    2005-01-01

    This work focuses on the usage the Artificial Intelligence technique Particle Swarm Optimization (PSO) to optimize the fuel recharge at a nuclear reactor. This is a combinatorial problem, in which the search of the best feasible solution is done by minimizing a specific objective function. However, in this first moment it is possible to compare the fuel recharge problem with the Traveling Salesman Problem (TSP), since both of them are combinatorial, with one advantage: the evaluation of the TSP objective function is much more simple. Thus, the proposed methods have been applied to two TSPs: Oliver 30 and Rykel 48. In 1995, KENNEDY and EBERHART presented the PSO technique to optimize non-linear continued functions. Recently some PSO models for discrete search spaces have been developed for combinatorial optimization. Although all of them having different formulation from the ones presented here. In this paper, we use the PSO theory associated with to the Random Keys (RK)model, used in some optimizations with Genetic Algorithms. The Particle Swarm Optimization with Random Keys (PSORK) results from this association, which combines PSO and RK. The adaptations and changings in the PSO aim to allow the usage of the PSO at the nuclear fuel recharge. This work shows the PSORK being applied to the proposed combinatorial problem and the obtained results. (author)

  18. Global blending optimization of laminated composites with discrete material candidate selection and thickness variation

    DEFF Research Database (Denmark)

    Sørensen, Søren N.; Stolpe, Mathias

    2015-01-01

    rate. The capabilities of the method and the effect of active versus inactive manufacturing constraints are demonstrated on several numerical examples of limited size, involving at most 320 binary variables. Most examples are solved to guaranteed global optimality and may constitute benchmark examples...... but is, however, convex in the original mixed binary nested form. Convexity is the foremost important property of optimization problems, and the proposed method can guarantee the global or near-global optimal solution; unlike most topology optimization methods. The material selection is limited...... for popular topology optimization methods and heuristics based on solving sequences of non-convex problems. The results will among others demonstrate that the difficulty of the posed problem is highly dependent upon the composition of the constitutive properties of the material candidates....

  19. Ant Colony Optimization ACO For The Traveling Salesman Problem TSP Using Partitioning

    Directory of Open Access Journals (Sweden)

    Alok Bajpai

    2015-08-01

    Full Text Available Abstract An ant colony optimization is a technique which was introduced in 1990s and which can be applied to a variety of discrete combinatorial optimization problem and to continuous optimization. The ACO algorithm is simulated with the foraging behavior of the real ants to find the incremental solution constructions and to realize a pheromone laying-and-following mechanism. This pheromone is the indirect communication among the ants. In this paper we introduces the partitioning technique based on the divide and conquer strategy for the traveling salesman problem which is one of the most important combinatorial problem in which the original problem is partitioned into the group of sub problems. And then we apply the ant colony algorithm using candidate list strategy for each smaller sub problems. After that by applying the local optimization and combining the sub problems to find the good solution for the original problem by improving the exploration efficiency of the ants. At the end of this paper we have also be presented the comparison of result with the normal ant colony system for finding the optimal solution to the traveling salesman problem.

  20. h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems

    Science.gov (United States)

    Botti, L.; Colombo, A.; Bassi, F.

    2017-10-01

    In this work we exploit agglomeration based h-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature h-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.

  1. Mathematical Modeling of Contact Problems of Elasticity Theory with Unilateral Discrete Contact

    Directory of Open Access Journals (Sweden)

    I. V. Stankevich

    2015-01-01

    Full Text Available Development and operation of modern machinery and latest technology require reliable estimates of the strength characteristics of the critical elements of structures and technological equipment under the impact of high-intensity thermomechanical loading, accompanied, as a rule, by complex contact interaction. Mathematical modeling of stress-strain state of such parts and components in the contact area, based on adequate mathematical models, modern numerical methods and efficient algorithms that implement the direct determination of displacement fields, strains and stresses, is the main tool that allows fast acquisition of data required for the calculations of strength and durability. The paper considers an algorithm for constructing the numerical solution of the contact problem of elasticity theory in relation to the body, which has an obvious one-sided discrete contact interaction with an elastic half-space. The proposed algorithm is specially designed to have a correction of the tangential forces at discrete contact points, allowing us to achieve sufficiently accurate implementation of the adopted law of friction. The algorithm is embedded in a general finite element technology, with which the application code is generated. Numerical study of discrete unilateral contact interaction of an elastic plate and a rigid half-space showed a high efficiency of the developed algorithm and the application code that implements it.

  2. The nodal discrete-ordinate transport calculation of anisotropy scattering problem in three-dimensional cartesian geometry

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Zhu Xuehua

    1994-01-01

    The nodal discrete-ordinate transport calculating model of anisotropy scattering problem in three-dimensional cartesian geometry is given. The computing code NOTRAN/3D has been encoded and the satisfied conclusion is gained

  3. Spatial and Angular Moment Analysis of Continuous and Discretized Transport Problems

    International Nuclear Information System (INIS)

    Brantley, Patrick S.; Larsen, Edward W.

    2000-01-01

    A new theoretical tool for analyzing continuous and discretized transport equations is presented. This technique is based on a spatial and angular moment analysis of the analytic transport equation, which yields exact expressions for the 'center of mass' and 'squared radius of gyration' of the particle distribution. Essentially the same moment analysis is applied to discretized particle transport problems to determine numerical expressions for the center of mass and squared radius of gyration. Because this technique makes no assumption about the optical thickness of the spatial cells or about the amount of absorption in the system, it is applicable to problems that cannot be analyzed by a truncation analysis or an asymptotic diffusion limit analysis. The spatial differencing schemes examined (weighted- diamond, lumped linear discontinuous, and multiple balance) yield a numerically consistent expression for computing the squared radius of gyration plus an error term that depends on the mesh spacing, quadrature constants, and material properties of the system. The numerical results presented suggest that the relative accuracy of spatial differencing schemes for different types of problems can be assessed by comparing the magnitudes of these error terms

  4. Firefly Mating Algorithm for Continuous Optimization Problems

    Directory of Open Access Journals (Sweden)

    Amarita Ritthipakdee

    2017-01-01

    Full Text Available This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA, for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i the mutual attraction between males and females causes them to mate and (ii fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.

  5. Optimal management with hybrid dynamics : The shallow lake problem

    NARCIS (Netherlands)

    Reddy, P.V.; Schumacher, Hans; Engwerda, Jacob; Camlibel, M.K.; Julius, A.A.; Pasumarthy, R.

    2015-01-01

    In this article we analyze an optimal management problem that arises in ecological economics using hybrid systems modeling. First, we introduce a discounted autonomous infinite horizon hybrid optimal control problem and develop few tools to analyze the necessary conditions for optimality. Next,

  6. On a Highly Nonlinear Self-Obstacle Optimal Control Problem

    Energy Technology Data Exchange (ETDEWEB)

    Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)

    2015-10-15

    We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.

  7. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  8. Delay-area trade-off for MPRM circuits based on hybrid discrete particle swarm optimization

    International Nuclear Information System (INIS)

    Jiang Zhidi; Wang Zhenhai; Wang Pengjun

    2013-01-01

    Polarity optimization for mixed polarity Reed—Muller (MPRM) circuits is a combinatorial issue. Based on the study on discrete particle swarm optimization (DPSO) and mixed polarity, the corresponding relation between particle and mixed polarity is established, and the delay-area trade-off of large-scale MPRM circuits is proposed. Firstly, mutation operation and elitist strategy in genetic algorithm are incorporated into DPSO to further develop a hybrid DPSO (HDPSO). Then the best polarity for delay and area trade-off is searched for large-scale MPRM circuits by combining the HDPSO and a delay estimation model. Finally, the proposed algorithm is testified by MCNC Benchmarks. Experimental results show that HDPSO achieves a better convergence than DPSO in terms of search capability for large-scale MPRM circuits. (semiconductor integrated circuits)

  9. LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.

    Science.gov (United States)

    Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong

    2017-03-01

    In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.

  10. GPU implementation of discrete particle swarm optimization algorithm for endmember extraction from hyperspectral image

    Science.gov (United States)

    Yu, Chaoyin; Yuan, Zhengwu; Wu, Yuanfeng

    2017-10-01

    Hyperspectral image unmixing is an important part of hyperspectral data analysis. The mixed pixel decomposition consists of two steps, endmember (the unique signatures of pure ground components) extraction and abundance (the proportion of each endmember in each pixel) estimation. Recently, a Discrete Particle Swarm Optimization algorithm (DPSO) was proposed for accurately extract endmembers with high optimal performance. However, the DPSO algorithm shows very high computational complexity, which makes the endmember extraction procedure very time consuming for hyperspectral image unmixing. Thus, in this paper, the DPSO endmember extraction algorithm was parallelized, implemented on the CUDA (GPU K20) platform, and evaluated by real hyperspectral remote sensing data. The experimental results show that with increasing the number of particles the parallelized version obtained much higher computing efficiency while maintain the same endmember exaction accuracy.

  11. An Improved Test Selection Optimization Model Based on Fault Ambiguity Group Isolation and Chaotic Discrete PSO

    Directory of Open Access Journals (Sweden)

    Xiaofeng Lv

    2018-01-01

    Full Text Available Sensor data-based test selection optimization is the basis for designing a test work, which ensures that the system is tested under the constraint of the conventional indexes such as fault detection rate (FDR and fault isolation rate (FIR. From the perspective of equipment maintenance support, the ambiguity isolation has a significant effect on the result of test selection. In this paper, an improved test selection optimization model is proposed by considering the ambiguity degree of fault isolation. In the new model, the fault test dependency matrix is adopted to model the correlation between the system fault and the test group. The objective function of the proposed model is minimizing the test cost with the constraint of FDR and FIR. The improved chaotic discrete particle swarm optimization (PSO algorithm is adopted to solve the improved test selection optimization model. The new test selection optimization model is more consistent with real complicated engineering systems. The experimental result verifies the effectiveness of the proposed method.

  12. Solution Algorithm for a New Bi-Level Discrete Network Design Problem

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2013-12-01

    Full Text Available A new discrete network design problem (DNDP was pro-posed in this paper, where the variables can be a series of integers rather than just 0-1. The new DNDP can determine both capacity improvement grades of reconstruction roads and locations and capacity grades of newly added roads, and thus complies with the practical projects where road capacity can only be some discrete levels corresponding to the number of lanes of roads. This paper designed a solution algorithm combining branch-and-bound with Hooke-Jeeves algorithm, where feasible integer solutions are recorded in searching the process of Hooke-Jeeves algorithm, lend -ing itself to determine the upper bound of the upper-level problem. The thresholds for branch cutting and ending were set for earlier convergence. Numerical examples are given to demonstrate the efficiency of the proposed algorithm.

  13. Composite Differential Evolution with Modified Oracle Penalty Method for Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Minggang Dong

    2014-01-01

    Full Text Available Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE for constrained optimization problems (COPs. More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.

  14. An analytical nodal method for time-dependent one-dimensional discrete ordinates problems

    International Nuclear Information System (INIS)

    Barros, R.C. de

    1992-01-01

    In recent years, relatively little work has been done in developing time-dependent discrete ordinates (S N ) computer codes. Therefore, the topic of time integration methods certainly deserves further attention. In this paper, we describe a new coarse-mesh method for time-dependent monoenergetic S N transport problesm in slab geometry. This numerical method preserves the analytic solution of the transverse-integrated S N nodal equations by constants, so we call our method the analytical constant nodal (ACN) method. For time-independent S N problems in finite slab geometry and for time-dependent infinite-medium S N problems, the ACN method generates numerical solutions that are completely free of truncation errors. Bsed on this positive feature, we expect the ACN method to be more accurate than conventional numerical methods for S N transport calculations on coarse space-time grids

  15. Replica analysis for the duality of the portfolio optimization problem.

    Science.gov (United States)

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  16. Replica analysis for the duality of the portfolio optimization problem

    Science.gov (United States)

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  17. A generalization of Fatou's lemma for extended real-valued functions on σ-finite measure spaces: with an application to infinite-horizon optimization in discrete time.

    Science.gov (United States)

    Kamihigashi, Takashi

    2017-01-01

    Given a sequence [Formula: see text] of measurable functions on a σ -finite measure space such that the integral of each [Formula: see text] as well as that of [Formula: see text] exists in [Formula: see text], we provide a sufficient condition for the following inequality to hold: [Formula: see text] Our condition is considerably weaker than sufficient conditions known in the literature such as uniform integrability (in the case of a finite measure) and equi-integrability. As an application, we obtain a new result on the existence of an optimal path for deterministic infinite-horizon optimization problems in discrete time.

  18. Toward solving the sign problem with path optimization method

    Science.gov (United States)

    Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira

    2017-12-01

    We propose a new approach to circumvent the sign problem in which the integration path is optimized to control the sign problem. We give a trial function specifying the integration path in the complex plane and tune it to optimize the cost function which represents the seriousness of the sign problem. We call it the path optimization method. In this method, we do not need to solve the gradient flow required in the Lefschetz-thimble method and then the construction of the integration-path contour arrives at the optimization problem where several efficient methods can be applied. In a simple model with a serious sign problem, the path optimization method is demonstrated to work well; the residual sign problem is resolved and precise results can be obtained even in the region where the global sign problem is serious.

  19. An optimal design problem in wave propagation

    DEFF Research Database (Denmark)

    Bellido, J.C.; Donoso, Alberto

    2007-01-01

    of finding the best distributions of the two initial materials in a rod in order to minimize the vibration energy in the structure under periodic loading of driving frequency Omega. We comment on relaxation and optimality conditions, and perform numerical simulations of the optimal configurations. We prove...... also the existence of classical solutions in certain cases....

  20. Identification and optimization problems in plasma physics

    International Nuclear Information System (INIS)

    Gilbert, J.C.

    1986-06-01

    Parameter identification of the current in a tokamak plasma is studied. Plasma equilibrium in a vacuum container with a diaphragm is analyzed. A variable metric method with reduced optimization with nonlinear equality constraints; and a quasi-Newton reduced optimization method with constraints giving priority to restoration are presented [fr

  1. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    Science.gov (United States)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  2. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  3. Optimal solutions for routing problems with profits

    NARCIS (Netherlands)

    Archetti, C.; Bianchessi, N.; Speranza, M. G.

    2013-01-01

    In this paper, we present a branch-and-price algorithm to solve two well-known vehicle routing problems with profits, the Capacitated Team Orienteering Problem and the Capacitated Profitable Tour Problem. A restricted master heuristic is applied at each node of the branch-and-bound tree in order to

  4. ISOGEOMETRIC SHAPE OPTIMIZATION FOR ELECTROMAGNETIC SCATTERING PROBLEMS

    DEFF Research Database (Denmark)

    Nguyen, D. M.; Evgrafov, Anton; Gravesen, Jens

    2012-01-01

    We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach...

  5. Advances in bio-inspired computing for combinatorial optimization problems

    CERN Document Server

    Pintea, Camelia-Mihaela

    2013-01-01

    Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a

  6. A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem

    Directory of Open Access Journals (Sweden)

    Mio Horai

    2016-01-01

    Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.

  7. Solving discretely-constrained MPEC problems with applications in electric power markets

    International Nuclear Information System (INIS)

    Gabriel, Steven A.; Leuthold, Florian U.

    2010-01-01

    Many of the European energy markets are characterized by dominant players that own a large share of their respective countries' generation capacities. In addition to that, there is a significant lack of cross-border transmission capacity. Combining both facts justifies the assumption that these dominant players are able to influence the market outcome of an internal European energy market due to strategic behavior. In this paper, we present a mathematical formulation in order to solve a Stackelberg game for a network-constrained energy market using integer programming. The strategic player is the Stackelberg leader and the independent system operator (including the decisions of the competitive fringe firms) acts as follower. We assume that there is one strategic player which results in a mathematical program with equilibrium constraints (MPEC). This MPEC is reformulated as mixed-integer linear program (MILP) by using disjunctive constraints and linearization. The MILP formulation gives the opportunity to solve the problems reliably and paves the way to add discrete constraints to the original MPEC formulation which can be used in order to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). We report computational results for a small illustrative network as well as a stylized Western European grid with realistic data. (author)

  8. Solving discretely-constrained MPEC problems with applications in electric power markets

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Steven A. [1143 Glenn L. Martin Hall, Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742-3021 (United States); Leuthold, Florian U. [Chair of Energy Economics and Public Sector Management, Dresden University of Technology, 01069 Dresden (Germany)

    2010-01-15

    Many of the European energy markets are characterized by dominant players that own a large share of their respective countries' generation capacities. In addition to that, there is a significant lack of cross-border transmission capacity. Combining both facts justifies the assumption that these dominant players are able to influence the market outcome of an internal European energy market due to strategic behavior. In this paper, we present a mathematical formulation in order to solve a Stackelberg game for a network-constrained energy market using integer programming. The strategic player is the Stackelberg leader and the independent system operator (including the decisions of the competitive fringe firms) acts as follower. We assume that there is one strategic player which results in a mathematical program with equilibrium constraints (MPEC). This MPEC is reformulated as mixed-integer linear program (MILP) by using disjunctive constraints and linearization. The MILP formulation gives the opportunity to solve the problems reliably and paves the way to add discrete constraints to the original MPEC formulation which can be used in order to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). We report computational results for a small illustrative network as well as a stylized Western European grid with realistic data. (author)

  9. Illustrating chaos: a schematic discretization of the general three-body problem in Newtonian gravity

    Science.gov (United States)

    Leigh, Nathan W. C.; Wegsman, Shalma

    2018-05-01

    We present a formalism for constructing schematic diagrams to depict chaotic three-body interactions in Newtonian gravity. This is done by decomposing each interaction into a series of discrete transformations in energy- and angular momentum-space. Each time a transformation is applied, the system changes state as the particles re-distribute their energy and angular momenta. These diagrams have the virtue of containing all of the quantitative information needed to fully characterize most bound or unbound interactions through time and space, including the total duration of the interaction, the initial and final stable states in addition to every intervening temporary meta-stable state. As shown via an illustrative example for the bound case, prolonged excursions of one of the particles, which by far dominates the computational cost of the simulations, are reduced to a single discrete transformation in energy- and angular momentum-space, thereby potentially mitigating any computational expense. We further generalize our formalism to sequences of (unbound) three-body interactions, as occur in dense stellar environments during binary hardening. Finally, we provide a method for dynamically evolving entire populations of binaries via three-body scattering interactions, using a purely analytic formalism. In principle, the techniques presented here are adaptable to other three-body problems that conserve energy and angular momentum.

  10. A Linear Programming Reformulation of the Standard Quadratic Optimization Problem

    NARCIS (Netherlands)

    de Klerk, E.; Pasechnik, D.V.

    2005-01-01

    The problem of minimizing a quadratic form over the standard simplex is known as the standard quadratic optimization problem (SQO).It is NPhard, and contains the maximum stable set problem in graphs as a special case.In this note we show that the SQO problem may be reformulated as an (exponentially

  11. Discrete-Trial Functional Analysis and Functional Communication Training with Three Individuals with Autism and Severe Problem Behavior

    Science.gov (United States)

    Schmidt, Jonathan D.; Drasgow, Erik; Halle, James W.; Martin, Christian A.; Bliss, Sacha A.

    2014-01-01

    Discrete-trial functional analysis (DTFA) is an experimental method for determining the variables maintaining problem behavior in the context of natural routines. Functional communication training (FCT) is an effective method for replacing problem behavior, once identified, with a functionally equivalent response. We implemented these procedures…

  12. Improved method for solving the neutron transport problem by discretization of space and energy variables

    International Nuclear Information System (INIS)

    Bosevski, T.

    1971-01-01

    The polynomial interpolation of neutron flux between the chosen space and energy variables enabled transformation of the integral transport equation into a system of linear equations with constant coefficients. Solutions of this system are the needed values of flux for chosen values of space and energy variables. The proposed improved method for solving the neutron transport problem including the mathematical formalism is simple and efficient since the number of needed input data is decreased both in treating the spatial and energy variables. Mathematical method based on this approach gives more stable solutions with significantly decreased probability of numerical errors. Computer code based on the proposed method was used for calculations of one heavy water and one light water reactor cell, and the results were compared to results of other very precise calculations. The proposed method was better concerning convergence rate, decreased computing time and needed computer memory. Discretization of variables enabled direct comparison of theoretical and experimental results

  13. LAGRANGE SOLUTIONS TO THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    There is no known integrator that yields exact orbits for the general three-body problem (G3BP). It is difficult to verify whether a numerical procedure yields the correct solutions to the G3BP because doing so requires knowledge of all 11 conserved quantities, whereas only six are known. Without tracking all of the conserved quantities, it is possible to show that the discrete general three-body problem (d-G3BP) yields the correct orbits corresponding to Lagrange solutions of the G3BP. We show that the d-G3BP yields the correct solutions to the G3BP for two special cases: the equilateral triangle and collinear configurations. For the triangular solution, we use the fact that the solution to the three-body case is a superposition of the solutions to the three two-body cases, and we show that the three bodies maintain the same relative distances at all times. To obtain the collinear solution, we assume a specific permutation of the three bodies arranged along a straight rotating line, and we show that the d-G3BP maintains the same distance ratio between two bodies as in the G3BP. Proving that the d-G3BP solutions for these cases are equivalent to those of the G3BP makes it likely that the d-G3BP and G3BP solutions are equivalent in other cases. To our knowledge, this is the first work that proves the equivalence of the discrete solutions and the Lagrange orbits.

  14. Optimal maintenance policy for a system subject to damage in a discrete time process

    International Nuclear Information System (INIS)

    Chien, Yu-Hung; Sheu, Shey-Huei; Zhang, Zhe George

    2012-01-01

    Consider a system operating over n discrete time periods (n=1, 2, …). Each operation period causes a random amount of damage to the system which accumulates over time periods. The system fails when the cumulative damage exceeds a failure level ζ and a corrective maintenance (CM) action is immediately taken. To prevent such a failure, a preventive maintenance (PM) may be performed. In an operation period without a CM or PM, a regular maintenance (RM) is conducted at the end of that period to maintain the operation of the system. We propose a maintenance policy which prescribes a PM when the accumulated damage exceeds a pre-specified level δ ( ⁎ and N ⁎ and discuss some useful properties about them. It has been shown that a δ-based PM outperforms a N-based PM in terms of cost minimization. Numerical examples are presented to demonstrate the optimization of this class of maintenance policies.

  15. Frequency response as a surrogate eigenvalue problem in topology optimization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Ferrari, Federico; Sigmund, Ole

    2018-01-01

    This article discusses the use of frequency response surrogates for eigenvalue optimization problems in topology optimization that may be used to avoid solving the eigenvalue problem. The motivation is to avoid complications that arise from multiple eigenvalues and the computational complexity as...

  16. Ant Colony Optimization and the Minimum Cut Problem

    DEFF Research Database (Denmark)

    Kötzing, Timo; Lehre, Per Kristian; Neumann, Frank

    2010-01-01

    Ant Colony Optimization (ACO) is a powerful metaheuristic for solving combinatorial optimization problems. With this paper we contribute to the theoretical understanding of this kind of algorithm by investigating the classical minimum cut problem. An ACO algorithm similar to the one that was prov...

  17. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    Science.gov (United States)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  18. Sufficient conditions for Lagrange, Mayer, and Bolza optimization problems

    Directory of Open Access Journals (Sweden)

    Boltyanski V.

    2001-01-01

    Full Text Available The Maximum Principle [2,13] is a well known necessary condition for optimality. This condition, generally, is not sufficient. In [3], the author proved that if there exists regular synthesis of trajectories, the Maximum Principle also is a sufficient condition for time-optimality. In this article, we generalize this result for Lagrange, Mayer, and Bolza optimization problems.

  19. Optimal Control Problems for Nonlinear Variational Evolution Inequalities

    Directory of Open Access Journals (Sweden)

    Eun-Young Ju

    2013-01-01

    Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.

  20. Mathematical programming methods for large-scale topology optimization problems

    DEFF Research Database (Denmark)

    Rojas Labanda, Susana

    for mechanical problems, but has rapidly extended to many other disciplines, such as fluid dynamics and biomechanical problems. However, the novelty and improvements of optimization methods has been very limited. It is, indeed, necessary to develop of new optimization methods to improve the final designs......, and at the same time, reduce the number of function evaluations. Nonlinear optimization methods, such as sequential quadratic programming and interior point solvers, have almost not been embraced by the topology optimization community. Thus, this work is focused on the introduction of this kind of second...... for the classical minimum compliance problem. Two of the state-of-the-art optimization algorithms are investigated and implemented for this structural topology optimization problem. A Sequential Quadratic Programming (TopSQP) and an interior point method (TopIP) are developed exploiting the specific mathematical...

  1. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  2. Inverse Problem for Two-Dimensional Discrete Schr`dinger Equation

    CERN Document Server

    Serdyukova, S I

    2000-01-01

    For two-dimensional discrete Schroedinger equation the boundary-value problem in rectangle M times N with zero boundary conditions is solved. It's stated in this work, that inverse problem reduces to reconstruction of C symmetric five-diagonal matrix with given spectrum and given first k(M,N), 1<-kproblem to the end in the process of concrete calculations. Deriving and solving the huge polynomial systems had been perfor...

  3. Particle swarm optimization with random keys applied to the nuclear reactor reload problem

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear; Fundacao Educacional de Macae (FUNEMAC), RJ (Brazil). Faculdade Professor Miguel Angelo da Silva Santos; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: ameneses@con.ufrj.br; marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; schirru@lmp.ufrj.br

    2007-07-01

    In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)

  4. Particle swarm optimization with random keys applied to the nuclear reactor reload problem

    International Nuclear Information System (INIS)

    Meneses, Anderson Alvarenga de Moura; Fundacao Educacional de Macae; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto

    2007-01-01

    In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)

  5. 3D Topology optimization of Stokes flow problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Dammann, Bernd

    of energy efficient devices for 2D Stokes flow. Creeping flow problems are described by the Stokes equations which model very viscous fluids at macro scales or ordinary fluids at very small scales. The latter gives the motivation for topology optimization problems based on the Stokes equations being a model......The present talk is concerned with the application of topology optimization to creeping flow problems in 3D. This research is driven by the fact that topology optimization has proven very successful as a tool in academic and industrial design problems. Success stories are reported from such diverse...

  6. Optimization Problems in Supply Chain Management

    NARCIS (Netherlands)

    D. Romero Morales (Dolores)

    2000-01-01

    textabstractMaria Dolores Romero Morales was born on Augustus 5th, 1971, in Sevilla (Spain). She studied Mathematics at University of Sevilla from 1989 to 1994 and specialized in Statistics and Operations Research. She wrote her Master's thesis on Global Optimization in Location Theory under the

  7. Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem

    Directory of Open Access Journals (Sweden)

    Baozhen Yao

    2014-02-01

    Full Text Available This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem.

  8. Topology optimization of fluid-structure-interaction problems in poroelasticity

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    2013-01-01

    This paper presents a method for applying topology optimization to fluid-structure interaction problems in saturated poroelastic media. The method relies on a multiple-scale method applied to periodic media. The resulting model couples the Stokes flow in the pores of the structure with the deform...... by topology optimization in order to optimize the performance of a shock absorber and test the pressure loading capabilities and optimization of an internally pressurized lid. © 2013 Published by Elsevier B.V....

  9. Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media

    International Nuclear Information System (INIS)

    Coelho, Pedro J.

    2014-01-01

    Many methods are available for the solution of radiative heat transfer problems in participating media. Among these, the discrete ordinates method (DOM) and the finite volume method (FVM) are among the most widely used ones. They provide a good compromise between accuracy and computational requirements, and they are relatively easy to integrate in CFD codes. This paper surveys recent advances on these numerical methods. Developments concerning the grid structure (e.g., new formulations for axisymmetrical geometries, body-fitted structured and unstructured meshes, embedded boundaries, multi-block grids, local grid refinement), the spatial discretization scheme, and the angular discretization scheme are described. Progress related to the solution accuracy, solution algorithm, alternative formulations, such as the modified DOM and FVM, even-parity formulation, discrete-ordinates interpolation method and method of lines, and parallelization strategies is addressed. The application to non-gray media, variable refractive index media, and transient problems is also reviewed. - Highlights: • We survey recent advances in the discrete ordinates and finite volume methods. • Developments in spatial and angular discretization schemes are described. • Progress in solution algorithms and parallelization methods is reviewed. • Advances in the transient solution of the radiative transfer equation are appraised. • Non-gray media and variable refractive index media are briefly addressed

  10. Some Optimization Problems for p-Laplacian Type Equations

    International Nuclear Information System (INIS)

    Del Pezzo, L. M.; Fernandez Bonder, J.

    2009-01-01

    In this paper we study some optimization problems for nonlinear elastic membranes. More precisely, we consider the problem of optimizing the cost functional over some admissible class of loads f where u is the (unique) solution to the problem -Δ p u+ vertical bar u vertical bar p-2 u=0 in Ω with vertical bar ∇u vertical bar p-2 u ν =f on ∂Ω

  11. A Global Optimization Algorithm for Sum of Linear Ratios Problem

    OpenAIRE

    Yuelin Gao; Siqiao Jin

    2013-01-01

    We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the c...

  12. Conforming discretizations of boundary element solutions to the electroencephalography forward problem

    Science.gov (United States)

    Rahmouni, Lyes; Adrian, Simon B.; Cools, Kristof; Andriulli, Francesco P.

    2018-01-01

    In this paper, we present a new discretization strategy for the boundary element formulation of the Electroencephalography (EEG) forward problem. Boundary integral formulations, classically solved with the Boundary Element Method (BEM), are widely used in high resolution EEG imaging because of their recognized advantages, in several real case scenarios, in terms of numerical stability and effectiveness when compared with other differential equation based techniques. Unfortunately, however, it is widely reported in literature that the accuracy of standard BEM schemes for the forward EEG problem is often limited, especially when the current source density is dipolar and its location approaches one of the brain boundary surfaces. This is a particularly limiting problem given that during an high-resolution EEG imaging procedure, several EEG forward problem solutions are required, for which the source currents are near or on top of a boundary surface. This work will first present an analysis of standardly and classically discretized EEG forward problem operators, reporting on a theoretical issue of some of the formulations that have been used so far in the community. We report on the fact that several standardly used discretizations of these formulations are consistent only with an L2-framework, requiring the expansion term to be a square integrable function (i.e., in a Petrov-Galerkin scheme with expansion and testing functions). Instead, those techniques are not consistent when a more appropriate mapping in terms of fractional-order Sobolev spaces is considered. Such a mapping allows the expansion function term to be a less regular function, thus sensibly reducing the need for mesh refinements and low-precisions handling strategies that are currently required. These more favorable mappings, however, require a different and conforming discretization, which must be suitably adapted to them. In order to appropriately fulfill this requirement, we adopt a mixed

  13. Constraint interface preconditioning for topology optimization problems

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Loghin, D.; Turner, J.

    2016-01-01

    Roč. 38, č. 1 (2016), A128-A145 ISSN 1064-8275 R&D Projects: GA AV ČR IAA100750802 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : topology optimization * domain decomposition * Newton-Krylov Subject RIV: BA - General Mathematics Impact factor: 2.195, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0460325.pdf

  14. Portfolio optimization and the random magnet problem

    Science.gov (United States)

    Rosenow, B.; Plerou, V.; Gopikrishnan, P.; Stanley, H. E.

    2002-08-01

    Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movements of assets are mutually correlated and therefore knowledge of cross-correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this "random magnet problem" are given by the cross-correlation matrix C of stock returns. We find that random matrix theory allows us to make an estimate for C which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.

  15. Potential effects of the introduction of the discrete address beacon system data link on air/ground information transfer problems

    Science.gov (United States)

    Grayson, R. L.

    1981-01-01

    This study of Aviation Safety Reporting System reports suggests that benefits should accure from implementation of discrete address beacon system data link. The phase enhanced terminal information system service is expected to provide better terminal information than present systems by improving currency and accuracy. In the exchange of air traffic control messages, discrete address insures that only the intended recipient receives and acts on a specific message. Visual displays and printer copy of messages should mitigate many of the reported problems associated with voice communications. The problems that remain unaffected include error in addressing the intended recipient and messages whose content is wrong but are otherwise correct as to format and reasonableness.

  16. Topology optimization problems with design-dependent sets of constraints

    DEFF Research Database (Denmark)

    Schou, Marie-Louise Højlund

    Topology optimization is a design tool which is used in numerous fields. It can be used whenever the design is driven by weight and strength considerations. The basic concept of topology optimization is the interpretation of partial differential equation coefficients as effective material...... properties and designing through changing these coefficients. For example, consider a continuous structure. Then the basic concept is to represent this structure by small pieces of material that are coinciding with the elements of a finite element model of the structure. This thesis treats stress constrained...... structural topology optimization problems. For such problems a stress constraint for an element should only be present in the optimization problem when the structural design variable corresponding to this element has a value greater than zero. We model the stress constrained topology optimization problem...

  17. Applications of the Discrete ordinates of Oak ridge System (DOORS) package to Nuclear Engineering problems

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Y.Y. [The Pennsylvania State University, 229 Reber Building, University Park, PA 16802 (United States)]. e-mail: yya3@psu.edu

    2004-07-01

    Particle transport problems are notorious for their difficulty. This fact requires that production level computer codes designed to address realistic engineering problems possess three important features: (i) high computational efficiency as measured by solution accuracy for a fixed computational cost; (ii) a wide variety of options to enhance robustness of the transport solver; and (iii) a broad collection of support codes that extend the reach of the transport solver to a wide variety of applications. The Discrete Ordinates of Oak Ridge System (DOORS) code package was designed with these features in mind. In this paper, capabilities of member codes in the DOORS package are overviewed with particular emphasis on two newly developed peripheral codes: BOT3P the mesh-generation and visualization code package, and GipGui the graphical user interface for the cross section manipulation code, GIP. Two large applications are used to illustrate the tight coupling between the peripheral codes and the DORT and TORT transport solvers in two and three dimensional geometries, respectively. These are: (i) criticality calculations for the C5G7MOX core benchmark; and (ii) dose distribution calculations for the Target Service Cell (TSC) of the Spallation Neutron Source (SNS). (Author)

  18. Applications of the Discrete ordinates of Oak ridge System (DOORS) package to Nuclear Engineering problems

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    2004-01-01

    Particle transport problems are notorious for their difficulty. This fact requires that production level computer codes designed to address realistic engineering problems possess three important features: (i) high computational efficiency as measured by solution accuracy for a fixed computational cost; (ii) a wide variety of options to enhance robustness of the transport solver; and (iii) a broad collection of support codes that extend the reach of the transport solver to a wide variety of applications. The Discrete Ordinates of Oak Ridge System (DOORS) code package was designed with these features in mind. In this paper, capabilities of member codes in the DOORS package are overviewed with particular emphasis on two newly developed peripheral codes: BOT3P the mesh-generation and visualization code package, and GipGui the graphical user interface for the cross section manipulation code, GIP. Two large applications are used to illustrate the tight coupling between the peripheral codes and the DORT and TORT transport solvers in two and three dimensional geometries, respectively. These are: (i) criticality calculations for the C5G7MOX core benchmark; and (ii) dose distribution calculations for the Target Service Cell (TSC) of the Spallation Neutron Source (SNS). (Author)

  19. Optimal Wafer Cutting in Shuttle Layout Problems

    DEFF Research Database (Denmark)

    Nisted, Lasse; Pisinger, David; Altman, Avri

    2011-01-01

    . The shuttle layout problem is frequently solved in two phases: first, a floorplan of the shuttle is generated. Then, a cutting plan is found which minimizes the overall number of wafers needed to satisfy the demand of each die type. Since some die types require special production technologies, only compatible...

  20. Constraint Optimization for Highly Constrained Logistic Problems

    DEFF Research Database (Denmark)

    Mochnacs, Maria Kinga; Tanaka, Meang Akira; Nyborg, Anders

    This report investigates whether propagators combined with branch and bound algorithm are suitable for solving the storage area stowage problem within reasonable time. The approach has not been attempted before and experiments show that the implementation was not capable of solving the storage ar...

  1. Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods

    KAUST Repository

    Kubatko, Ethan J.; Yeager, Benjamin A.; Ketcheson, David I.

    2013-01-01

    Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.

  2. Optimal Strong-Stability-Preserving Runge–Kutta Time Discretizations for Discontinuous Galerkin Methods

    KAUST Repository

    Kubatko, Ethan J.

    2013-10-29

    Discontinuous Galerkin (DG) spatial discretizations are often used in a method-of-lines approach with explicit strong-stability-preserving (SSP) Runge–Kutta (RK) time steppers for the numerical solution of hyperbolic conservation laws. The time steps that are employed in this type of approach must satisfy Courant–Friedrichs–Lewy stability constraints that are dependent on both the region of absolute stability and the SSP coefficient of the RK method. While existing SSPRK methods have been optimized with respect to the latter, it is in fact the former that gives rise to stricter constraints on the time step in the case of RKDG stability. Therefore, in this work, we present the development of new “DG-optimized” SSPRK methods with stability regions that have been specifically designed to maximize the stable time step size for RKDG methods of a given order in one space dimension. These new methods represent the best available RKDG methods in terms of computational efficiency, with significant improvements over methods using existing SSPRK time steppers that have been optimized with respect to SSP coefficients. Second-, third-, and fourth-order methods with up to eight stages are presented, and their stability properties are verified through application to numerical test cases.

  3. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2011-01-01

    Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.

  4. Optimality conditions for the numerical solution of optimization problems with PDE constraints :

    Energy Technology Data Exchange (ETDEWEB)

    Aguilo Valentin, Miguel Alejandro; Ridzal, Denis

    2014-03-01

    A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.

  5. Present-day Problems and Methods of Optimization in Mechatronics

    Directory of Open Access Journals (Sweden)

    Tarnowski Wojciech

    2017-06-01

    Full Text Available It is justified that design is an inverse problem, and the optimization is a paradigm. Classes of design problems are proposed and typical obstacles are recognized. Peculiarities of the mechatronic designing are specified as a proof of a particle importance of optimization in the mechatronic design. Two main obstacles of optimization are discussed: a complexity of mathematical models and an uncertainty of the value system, in concrete case. Then a set of non-standard approaches and methods are presented and discussed, illustrated by examples: a fuzzy description, a constraint-based iterative optimization, AHP ranking method and a few MADM functions in Matlab.

  6. Topology optimization for acoustic-structure interaction problems

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    We propose a gradient based topology optimization algorithm for acoustic-structure (vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...... to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz......-dimensional acoustic-structure interaction problems are optimized to show the validity of the proposed method....

  7. AN ACCURATE ORBITAL INTEGRATOR FOR THE RESTRICTED THREE-BODY PROBLEM AS A SPECIAL CASE OF THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators

  8. Penalized linear regression for discrete ill-posed problems: A hybrid least-squares and mean-squared error approach

    KAUST Repository

    Suliman, Mohamed Abdalla Elhag

    2016-12-19

    This paper proposes a new approach to find the regularization parameter for linear least-squares discrete ill-posed problems. In the proposed approach, an artificial perturbation matrix with a bounded norm is forced into the discrete ill-posed model matrix. This perturbation is introduced to enhance the singular-value (SV) structure of the matrix and hence to provide a better solution. The proposed approach is derived to select the regularization parameter in a way that minimizes the mean-squared error (MSE) of the estimator. Numerical results demonstrate that the proposed approach outperforms a set of benchmark methods in most cases when applied to different scenarios of discrete ill-posed problems. Jointly, the proposed approach enjoys the lowest run-time and offers the highest level of robustness amongst all the tested methods.

  9. Introductory discrete mathematics

    CERN Document Server

    Balakrishnan, V K

    2010-01-01

    This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv

  10. Comparison of optimal design methods in inverse problems

    International Nuclear Information System (INIS)

    Banks, H T; Holm, K; Kappel, F

    2011-01-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst–Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667–77; De Gaetano A and Arino O 2000 J. Math. Biol. 40 136–68; Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979–90)

  11. Comparison of optimal design methods in inverse problems

    Science.gov (United States)

    Banks, H. T.; Holm, K.; Kappel, F.

    2011-07-01

    Typical optimal design methods for inverse or parameter estimation problems are designed to choose optimal sampling distributions through minimization of a specific cost function related to the resulting error in parameter estimates. It is hoped that the inverse problem will produce parameter estimates with increased accuracy using data collected according to the optimal sampling distribution. Here we formulate the classical optimal design problem in the context of general optimization problems over distributions of sampling times. We present a new Prohorov metric-based theoretical framework that permits one to treat succinctly and rigorously any optimal design criteria based on the Fisher information matrix. A fundamental approximation theory is also included in this framework. A new optimal design, SE-optimal design (standard error optimal design), is then introduced in the context of this framework. We compare this new design criterion with the more traditional D-optimal and E-optimal designs. The optimal sampling distributions from each design are used to compute and compare standard errors; the standard errors for parameters are computed using asymptotic theory or bootstrapping and the optimal mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model (Banks H T and Tran H T 2009 Mathematical and Experimental Modeling of Physical and Biological Processes (Boca Raton, FL: Chapman and Hall/CRC)), the standard harmonic oscillator model (Banks H T and Tran H T 2009) and a popular glucose regulation model (Bergman R N, Ider Y Z, Bowden C R and Cobelli C 1979 Am. J. Physiol. 236 E667-77 De Gaetano A and Arino O 2000 J. Math. Biol. 40 136-68 Toffolo G, Bergman R N, Finegood D T, Bowden C R and Cobelli C 1980 Diabetes 29 979-90).

  12. New Exact Penalty Functions for Nonlinear Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Bingzhuang Liu

    2014-01-01

    Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.

  13. Topology Optimization of Large Scale Stokes Flow Problems

    DEFF Research Database (Denmark)

    Aage, Niels; Poulsen, Thomas Harpsøe; Gersborg-Hansen, Allan

    2008-01-01

    This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs.......This note considers topology optimization of large scale 2D and 3D Stokes flow problems using parallel computations. We solve problems with up to 1.125.000 elements in 2D and 128.000 elements in 3D on a shared memory computer consisting of Sun UltraSparc IV CPUs....

  14. Optimal stability polynomials for numerical integration of initial value problems

    KAUST Repository

    Ketcheson, David I.; Ahmadia, Aron

    2013-01-01

    We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step

  15. Infinite-horizon optimal control problems in economics

    Energy Technology Data Exchange (ETDEWEB)

    Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V

    2012-04-30

    This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.

  16. An inverse optimal control problem in the electrical discharge ...

    Indian Academy of Sciences (India)

    Marin Gostimirovic

    2018-05-10

    May 10, 2018 ... Keywords. EDM process; discharge energy; heat source parameters; inverse problem; optimization. 1. Introduction .... ation, thermal modeling of the EDM process would become ..... simulation of die-sinking EDM. CIRP Ann.

  17. Infinite-horizon optimal control problems in economics

    International Nuclear Information System (INIS)

    Aseev, Sergei M; Besov, Konstantin O; Kryazhimskii, Arkadii V

    2012-01-01

    This paper extends optimal control theory to a class of infinite-horizon problems that arise in studying models of optimal dynamic allocation of economic resources. In a typical problem of this sort the initial state is fixed, no constraints are imposed on the behaviour of the admissible trajectories at large times, and the objective functional is given by a discounted improper integral. We develop the method of finite-horizon approximations in a broad context and use it to derive complete versions of the Pontryagin maximum principle for such problems. We provide sufficient conditions for the normality of infinite-horizon optimal control problems and for the validity of the 'standard' limit transversality conditions with time going to infinity. As a meaningful example, we consider a new two-sector model of optimal economic growth subject to a random jump in prices. Bibliography: 53 titles.

  18. Triple solutions for a Dirichlet boundary value problem involving a perturbed discrete p(k-Laplacian operator

    Directory of Open Access Journals (Sweden)

    Khaleghi Moghadam Mohsen

    2017-08-01

    Full Text Available Triple solutions are obtained for a discrete problem involving a nonlinearly perturbed one-dimensional p(k-Laplacian operator and satisfying Dirichlet boundary conditions. The methods for existence rely on a Ricceri-local minimum theorem for differentiable functionals. Several examples are included to illustrate the main results.

  19. A non-standard optimal control problem arising in an economics application

    Directory of Open Access Journals (Sweden)

    Alan Zinober

    2013-04-01

    Full Text Available A recent optimal control problem in the area of economics has mathematical properties that do not fall into the standard optimal control problem formulation. In our problem the state value at the final time the state, y(T = z, is free and unknown, and additionally the Lagrangian integrand in the functional is a piecewise constant function of the unknown value y(T. This is not a standard optimal control problem and cannot be solved using Pontryagin's Minimum Principle with the standard boundary conditions at the final time. In the standard problem a free final state y(T yields a necessary boundary condition p(T = 0, where p(t is the costate. Because the integrand is a function of y(T, the new necessary condition is that y(T should be equal to a certain integral that is a continuous function of y(T. We introduce a continuous approximation of the piecewise constant integrand function by using a hyperbolic tangent approach and solve an example using a C++ shooting algorithm with Newton iteration for solving the Two Point Boundary Value Problem (TPBVP. The minimising free value y(T is calculated in an outer loop iteration using the Golden Section or Brent algorithm. Comparative nonlinear programming (NP discrete-time results are also presented.

  20. Assessment of bidirectional influences between family relationships and adolescent problem behavior: Discrete versus continuous time analysis

    NARCIS (Netherlands)

    Delsing, M.J.M.H.; Oud, J.H.L.; Bruyn, E.E.J. De

    2005-01-01

    In family research, bidirectional influences between the family and the individual are usually analyzed in discrete time. Results from discrete time analysis, however, have been shown to be highly dependent on the length of the observation interval. Continuous time analysis using stochastic

  1. The Integration of Continuous and Discrete Latent Variable Models: Potential Problems and Promising Opportunities

    Science.gov (United States)

    Bauer, Daniel J.; Curran, Patrick J.

    2004-01-01

    Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…

  2. An Optimal Linear Coding for Index Coding Problem

    OpenAIRE

    Pezeshkpour, Pouya

    2015-01-01

    An optimal linear coding solution for index coding problem is established. Instead of network coding approach by focus on graph theoric and algebraic methods a linear coding program for solving both unicast and groupcast index coding problem is presented. The coding is proved to be the optimal solution from the linear perspective and can be easily utilize for any number of messages. The importance of this work is lying mostly on the usage of the presented coding in the groupcast index coding ...

  3. Complicated problem solution techniques in optimal parameter searching

    International Nuclear Information System (INIS)

    Gergel', V.P.; Grishagin, V.A.; Rogatneva, E.A.; Strongin, R.G.; Vysotskaya, I.N.; Kukhtin, V.V.

    1992-01-01

    An algorithm is presented of a global search for numerical solution of multidimentional multiextremal multicriteria optimization problems with complicated constraints. A boundedness of object characteristic changes is assumed at restricted changes of its parameters (Lipschitz condition). The algorithm was realized as a computer code. The algorithm was realized as a computer code. The programme was used to solve in practice the different applied optimization problems. 10 refs.; 3 figs

  4. Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications

    Science.gov (United States)

    2015-06-24

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly

  5. Topology optimization of vibration and wave propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2007-01-01

    The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....

  6. An A Posteriori Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

    KAUST Repository

    Karlsson, Peer Jesper

    2015-01-07

    This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns Symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading order term consisting of an error density that is computable from Symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations.

  7. An Error Estimate for Symplectic Euler Approximation of Optimal Control Problems

    KAUST Repository

    Karlsson, Jesper; Larsson, Stig; Sandberg, Mattias; Szepessy, Anders; Tempone, Raul

    2015-01-01

    This work focuses on numerical solutions of optimal control problems. A time discretization error representation is derived for the approximation of the associated value function. It concerns symplectic Euler solutions of the Hamiltonian system connected with the optimal control problem. The error representation has a leading-order term consisting of an error density that is computable from symplectic Euler solutions. Under an assumption of the pathwise convergence of the approximate dual function as the maximum time step goes to zero, we prove that the remainder is of higher order than the leading-error density part in the error representation. With the error representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm originally developed for ordinary differential equations. The performance is illustrated by numerical tests.

  8. Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension

    KAUST Repository

    Niemi, Antti; Collier, Nathan; Calo, Victor M.

    2013-01-01

    We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.

  9. Discontinuous Petrov-Galerkin method based on the optimal test space norm for steady transport problems in one space dimension

    KAUST Repository

    Niemi, Antti

    2013-05-01

    We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.

  10. STATEMENT OF THE OPTIMIZATION PROBLEM OF CARBON PRODUCTS PRODUCTION

    Directory of Open Access Journals (Sweden)

    O. A. Zhuchenko

    2016-08-01

    Full Text Available The paper formulated optimization problem formulation production of carbon products. The analysis of technical and economic parameters that can be used to optimize the production of carbonaceous products had been done by the author. To evaluate the efficiency of the energy-intensive production uses several technical and economic indicators. In particular, the specific cost, productivity, income and profitability of production. Based on a detailed analysis had been formulated optimality criterion that takes into account the technological components of profitability. The components in detail the criteria and the proposed method of calculating non-trivial, one of them - the production cost of each product. When solving the optimization problem of technological modes of production into account constraints on the variables are optimized. Thus, restrictions may be expressed on the number of each product produced. Have been formulated the method of calculating the cost per unit of product. Attention is paid to the quality indices of finished products as an additional constraint in the optimization problem. As a result have been formulated the general problem of optimizing the production of carbon products, which includes the optimality criterion and restrictions.

  11. SolveDB: Integrating Optimization Problem Solvers Into SQL Databases

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Pedersen, Torben Bach

    2016-01-01

    for optimization problems, (2) an extensible infrastructure for integrating different solvers, and (3) query optimization techniques to achieve the best execution performance and/or result quality. Extensive experiments with the PostgreSQL-based implementation show that SolveDB is a versatile tool offering much...

  12. Effective Teaching of Economics: A Constrained Optimization Problem?

    Science.gov (United States)

    Hultberg, Patrik T.; Calonge, David Santandreu

    2017-01-01

    One of the fundamental tenets of economics is that decisions are often the result of optimization problems subject to resource constraints. Consumers optimize utility, subject to constraints imposed by prices and income. As economics faculty, instructors attempt to maximize student learning while being constrained by their own and students'…

  13. Climate Intervention as an Optimization Problem

    Science.gov (United States)

    Caldeira, Ken; Ban-Weiss, George A.

    2010-05-01

    Typically, climate models simulations of intentional intervention in the climate system have taken the approach of imposing a change (eg, in solar flux, aerosol concentrations, aerosol emissions) and then predicting how that imposed change might affect Earth's climate or chemistry. Computations proceed from cause to effect. However, humans often proceed from "What do I want?" to "How do I get it?" One approach to thinking about intentional intervention in the climate system ("geoengineering") is to ask "What kind of climate do we want?" and then ask "What pattern of radiative forcing would come closest to achieving that desired climate state?" This involves defining climate goals and a cost function that measures how closely those goals are attained. (An important next step is to ask "How would we go about producing these desired patterns of radiative forcing?" However, this question is beyond the scope of our present study.) We performed a variety of climate simulations in NCAR's CAM3.1 atmospheric general circulation model with a slab ocean model and thermodynamic sea ice model. We then evaluated, for a specific set of climate forcing basis functions (ie, aerosol concentration distributions), the extent to which the climate response to a linear combination of those basis functions was similar to a linear combination of the climate response to each basis function taken individually. We then developed several cost functions (eg, relative to the 1xCO2 climate, minimize rms difference in zonal and annual mean land temperature, minimize rms difference in zonal and annual mean runoff, minimize rms difference in a combination of these temperature and runoff indices) and then predicted optimal combinations of our basis functions that would minimize these cost functions. Lastly, we produced forward simulations of the predicted optimal radiative forcing patterns and compared these with our expected results. Obviously, our climate model is much simpler than reality and

  14. Problems in determining the optimal use of road safety measures

    DEFF Research Database (Denmark)

    Elvik, Rune

    2014-01-01

    for intervention that ensures maximum safety benefits. The third problem is how to develop policy options to minimise the risk of indivisibilities and irreversible choices. The fourth problem is how to account for interaction effects between road safety measures when determining their optimal use. The fifth......This paper discusses some problems in determining the optimal use of road safety measures. The first of these problems is how best to define the baseline option, i.e. what will happen if no new safety measures are introduced. The second problem concerns choice of a method for selection of targets...... problem is how to obtain the best mix of short-term and long-term measures in a safety programme. The sixth problem is how fixed parameters for analysis, including the monetary valuation of road safety, influence the results of analyses. It is concluded that it is at present not possible to determine...

  15. Random Matrix Approach for Primal-Dual Portfolio Optimization Problems

    Science.gov (United States)

    Tada, Daichi; Yamamoto, Hisashi; Shinzato, Takashi

    2017-12-01

    In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We analyze both optimization problems by the Lagrange multiplier method and the random matrix approach. Thereafter, we compare the results obtained from our proposed approach with the results obtained in previous work. Moreover, we use numerical experiments to validate the results obtained from the replica approach and the random matrix approach as methods for analyzing both the primal and dual portfolio optimization problems.

  16. Use of exact albedo conditions in numerical methods for one-dimensional one-speed discrete ordinates eigenvalue problems

    International Nuclear Information System (INIS)

    Abreu, M.P. de

    1994-01-01

    The use of exact albedo boundary conditions in numerical methods applied to one-dimensional one-speed discrete ordinates (S n ) eigenvalue problems for nuclear reactor global calculations is described. An albedo operator that treats the reflector region around a nuclear reactor core implicitly is described and exactly was derived. To illustrate the method's efficiency and accuracy, it was used conventional linear diamond method with the albedo option to solve typical model problems. (author)

  17. Prederivatives of gamma paraconvex set-valued maps and Pareto optimality conditions for set optimization problems.

    Science.gov (United States)

    Huang, Hui; Ning, Jixian

    2017-01-01

    Prederivatives play an important role in the research of set optimization problems. First, we establish several existence theorems of prederivatives for γ -paraconvex set-valued mappings in Banach spaces with [Formula: see text]. Then, in terms of prederivatives, we establish both necessary and sufficient conditions for the existence of Pareto minimal solution of set optimization problems.

  18. 3D Discrete element approach to the problem on abutment pressure in a gently dipping coal seam

    Science.gov (United States)

    Klishin, S. V.; Revuzhenko, A. F.

    2017-09-01

    Using the discrete element method, the authors have carried out 3D implementation of the problem on strength loss in surrounding rock mass in the vicinity of a production heading and on abutment pressure in a gently dripping coal seam. The calculation of forces at the contacts between particles accounts for friction, rolling resistance and viscosity. Between discrete particles modeling coal seam, surrounding rock mass and broken rocks, an elastic connecting element is introduced to allow simulating coherent materials. The paper presents the kinematic patterns of rock mass deformation, stresses in particles and the graph of the abutment pressure behavior in the coal seam.

  19. ON THE OPTIMAL CONTROL OF A PROBLEM OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    José Dávalos Chuquipoma

    2016-06-01

    Full Text Available This article is studied the optimal control of distributed parameter systems applied to an environmental pollution problem. The model consists of a differential equation partial parabolic modeling of a pollutant transport in a fluid. The model is considered the speed with which the pollutant spreads in the environment and degradation that suffers the contaminant by the presence of a factor biological inhibitor, which breaks the contaminant at a rate that is not dependent on space and time. Using the method of Lagrange multipliers is possible to prove the existence solving the problem of control and obtaining optimality conditions for optimal control.

  20. Strong Duality and Optimality Conditions for Generalized Equilibrium Problems

    Directory of Open Access Journals (Sweden)

    D. H. Fang

    2013-01-01

    Full Text Available We consider a generalized equilibrium problem involving DC functions. By using the properties of the epigraph of the conjugate functions, some sufficient and/or necessary conditions for the weak and strong duality results and optimality conditions for generalized equilibrium problems are provided.

  1. Optimization of the solution of the problem of scheduling theory ...

    African Journals Online (AJOL)

    This article describes the genetic algorithm used to solve the problem related to the scheduling theory. A large number of different methods is described in the scientific literature. The main issue that faced the problem in question is that it is necessary to search the optimal solution in a large search space for the set of ...

  2. Global Optimization for Bus Line Timetable Setting Problem

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2014-01-01

    Full Text Available This paper defines bus timetables setting problem during each time period divided in terms of passenger flow intensity; it is supposed that passengers evenly arrive and bus runs are set evenly; the problem is to determine bus runs assignment in each time period to minimize the total waiting time of passengers on platforms if the number of the total runs is known. For such a multistage decision problem, this paper designed a dynamic programming algorithm to solve it. Global optimization procedures using dynamic programming are developed. A numerical example about bus runs assignment optimization of a single line is given to demonstrate the efficiency of the proposed methodology, showing that optimizing buses’ departure time using dynamic programming can save computational time and find the global optimal solution.

  3. An intutionistic fuzzy optimization approach to vendor selection problem

    Directory of Open Access Journals (Sweden)

    Prabjot Kaur

    2016-09-01

    Full Text Available Selecting the right vendor is an important business decision made by any organization. The decision involves multiple criteria and if the objectives vary in preference and scope, then nature of decision becomes multiobjective. In this paper, a vendor selection problem has been formulated as an intutionistic fuzzy multiobjective optimization where appropriate number of vendors is to be selected and order allocated to them. The multiobjective problem includes three objectives: minimizing the net price, maximizing the quality, and maximizing the on time deliveries subject to supplier's constraints. The objection function and the demand are treated as intutionistic fuzzy sets. An intutionistic fuzzy set has its ability to handle uncertainty with additional degrees of freedom. The Intutionistic fuzzy optimization (IFO problem is converted into a crisp linear form and solved using optimization software Tora. The advantage of IFO is that they give better results than fuzzy/crisp optimization. The proposed approach is explained by a numerical example.

  4. A Global Optimization Algorithm for Sum of Linear Ratios Problem

    Directory of Open Access Journals (Sweden)

    Yuelin Gao

    2013-01-01

    Full Text Available We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem. Therefore, a branch and bound algorithm for solving sum of linear ratios programming problem is put forward, and the convergence of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.

  5. One-way functions based on the discrete logarithm problem in the groups meeting conditions C(3-T (6

    Directory of Open Access Journals (Sweden)

    N. V. Bezverkhniy

    2014-01-01

    Full Text Available In this work we are consider a possibility to create schemes of open key distribution in the groups meeting conditions C(3-T(6. Our constructions use the following algorithms.1. The algorithm that solves the membership problem for cyclic subgroups, also known as the discrete logarithm problem.2. The algorithm that solves the word problem in this class of groups.Our approach is based on the geometric methods of combinatorial group theory (the method of diagrams in groups.In a cryptographic scheme based on the open key distribution one-way functions are used, i.e. functions direct calculation of which must be much easier than that of the inverse one. Our task was to construct a one-way function using groups with small cancelation conditions C(3-T(6 and to compare the calculation complexity of this function with the calculation complexity of its inverse.P.W. Shor has shown in the paper that there exists a polynomial algorithm that can be implemented in a quantum computer to solve the discrete logarithm problem in the groups of units of finite fields and the rings of congruences mod n. This stimulated a series of investigations trying to find alternative complicated mathematical problems that can be used for construction of new asymmetric cryptosystems. For example, open key distribution systems based on the conjugacy problem in matrix groups and the braid groups were proposed.In the other papers the constructions used the discrete logarithm problem in the groups of inner automorphisms of semi-direct products of SL(2,Z and Zp and GL(2,Zp and Zp. groups. The paper of E. Sakalauskas, P. Tvarijonas, A. Raulinaitis proposed a scheme that uses a composition of two problems of group theory, namely the conjugacy problem and the discrete logarithm problem.Our results show that the scheme that we propose is of polynomial complexity. Therefore its security is not sufficient for further applications in communications. However the security can be improved

  6. Error analysis for a monolithic discretization of coupled Darcy and Stokes problems

    KAUST Repository

    Girault, V.; Kanschat, G.; Riviè re, B.

    2014-01-01

    © de Gruyter 2014. The coupled Stokes and Darcy equations are approximated by a strongly conservative finite element method. The discrete spaces are the divergence-conforming velocity space with matching pressure space such as the Raviart

  7. An approach using quantum ant colony optimization applied to the problem of nuclear reactors reload

    International Nuclear Information System (INIS)

    Silva, Marcio H.; Lima, Alan M.M. de; Schirru, Roberto; Medeiros, J.A.C.C.

    2009-01-01

    The basic concept behind the nuclear reactor fuel reloading problem is to find a configuration of new and used fuel elements, to keep the plant working at full power by the largest possible duration, within the safety restrictions. The main restriction is the power peaking factor, which is the limit value for the preservation of the fuel assembly. The QACO A lfa algorithm is a modified version of Quantum Ant Colony Optimization (QACO) proposed by Wang et al, which uses a new actualization method and a pseudo evaporation step. We examined the QACO A lfa behavior associated to physics of reactors code RECNOD when applied to this problem. Although the QACO have been developed for continuous functions, the binary model used in this work allows applying it to discrete problems, such as the mentioned above. (author)

  8. Integrating packing and distribution problems and optimization through mathematical programming

    Directory of Open Access Journals (Sweden)

    Fabio Miguel

    2016-06-01

    Full Text Available This paper analyzes the integration of two combinatorial problems that frequently arise in production and distribution systems. One is the Bin Packing Problem (BPP problem, which involves finding an ordering of some objects of different volumes to be packed into the minimal number of containers of the same or different size. An optimal solution to this NP-Hard problem can be approximated by means of meta-heuristic methods. On the other hand, we consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW, which is a variant of the Travelling Salesman Problem (again a NP-Hard problem with extra constraints. Here we model those two problems in a single framework and use an evolutionary meta-heuristics to solve them jointly. Furthermore, we use data from a real world company as a test-bed for the method introduced here.

  9. On the complexity of determining tolerances for ->e--optimal solutions to min-max combinatorial optimization problems

    NARCIS (Netherlands)

    Ghosh, D.; Sierksma, G.

    2000-01-01

    Sensitivity analysis of e-optimal solutions is the problem of calculating the range within which a problem parameter may lie so that the given solution re-mains e-optimal. In this paper we study the sensitivity analysis problem for e-optimal solutions tocombinatorial optimization problems with

  10. Optimization and quantization in gradient symbol systems: a framework for integrating the continuous and the discrete in cognition.

    Science.gov (United States)

    Smolensky, Paul; Goldrick, Matthew; Mathis, Donald

    2014-08-01

    Mental representations have continuous as well as discrete, combinatorial properties. For example, while predominantly discrete, phonological representations also vary continuously; this is reflected by gradient effects in instrumental studies of speech production. Can an integrated theoretical framework address both aspects of structure? The framework we introduce here, Gradient Symbol Processing, characterizes the emergence of grammatical macrostructure from the Parallel Distributed Processing microstructure (McClelland, Rumelhart, & The PDP Research Group, 1986) of language processing. The mental representations that emerge, Distributed Symbol Systems, have both combinatorial and gradient structure. They are processed through Subsymbolic Optimization-Quantization, in which an optimization process favoring representations that satisfy well-formedness constraints operates in parallel with a distributed quantization process favoring discrete symbolic structures. We apply a particular instantiation of this framework, λ-Diffusion Theory, to phonological production. Simulations of the resulting model suggest that Gradient Symbol Processing offers a way to unify accounts of grammatical competence with both discrete and continuous patterns in language performance. Copyright © 2013 Cognitive Science Society, Inc.

  11. Finding Multiple Optimal Solutions to Optimal Load Distribution Problem in Hydropower Plant

    Directory of Open Access Journals (Sweden)

    Xinhao Jiang

    2012-05-01

    Full Text Available Optimal load distribution (OLD among generator units of a hydropower plant is a vital task for hydropower generation scheduling and management. Traditional optimization methods for solving this problem focus on finding a single optimal solution. However, many practical constraints on hydropower plant operation are very difficult, if not impossible, to be modeled, and the optimal solution found by those models might be of limited practical uses. This motivates us to find multiple optimal solutions to the OLD problem, which can provide more flexible choices for decision-making. Based on a special dynamic programming model, we use a modified shortest path algorithm to produce multiple solutions to the problem. It is shown that multiple optimal solutions exist for the case study of China’s Geheyan hydropower plant, and they are valuable for assessing the stability of generator units, showing the potential of reducing occurrence times of units across vibration areas.

  12. SOLVING ENGINEERING OPTIMIZATION PROBLEMS WITH THE SWARM INTELLIGENCE METHODS

    Directory of Open Access Journals (Sweden)

    V. Panteleev Andrei

    2017-01-01

    Full Text Available An important stage in problem solving process for aerospace and aerostructures designing is calculating their main charac- teristics optimization. The results of the four constrained optimization problems related to the design of various technical systems: such as determining the best parameters of welded beams, pressure vessel, gear, spring are presented. The purpose of each task is to minimize the cost and weight of the construction. The object functions in optimization practical problem are nonlinear functions with a lot of variables and a complex layer surface indentations. That is why using classical approach for extremum seeking is not efficient. Here comes the necessity of using such methods of optimization that allow to find a near optimal solution in acceptable amount of time with the minimum waste of computer power. Such methods include the methods of Swarm Intelligence: spiral dy- namics algorithm, stochastic diffusion search, hybrid seeker optimization algorithm. The Swarm Intelligence methods are designed in such a way that a swarm consisting of agents carries out the search for extremum. In search for the point of extremum, the parti- cles exchange information and consider their experience as well as the experience of population leader and the neighbors in some area. To solve the listed problems there has been designed a program complex, which efficiency is illustrated by the solutions of four applied problems. Each of the considered applied optimization problems is solved with all the three chosen methods. The ob- tained numerical results can be compared with the ones found in a swarm with a particle method. The author gives recommenda- tions on how to choose methods parameters and penalty function value, which consider inequality constraints.

  13. A scalable block-preconditioning strategy for divergence-conforming B-spline discretizations of the Stokes problem

    KAUST Repository

    Cortes, Adriano Mauricio

    2016-10-01

    The recently introduced divergence-conforming B-spline discretizations allow the construction of smooth discrete velocity-pressure pairs for viscous incompressible flows that are at the same time inf−supinf−sup stable and pointwise divergence-free. When applied to the discretized Stokes problem, these spaces generate a symmetric and indefinite saddle-point linear system. The iterative method of choice to solve such system is the Generalized Minimum Residual Method. This method lacks robustness, and one remedy is to use preconditioners. For linear systems of saddle-point type, a large family of preconditioners can be obtained by using a block factorization of the system. In this paper, we show how the nesting of “black-box” solvers and preconditioners can be put together in a block triangular strategy to build a scalable block preconditioner for the Stokes system discretized by divergence-conforming B-splines. Besides the known cavity flow problem, we used for benchmark flows defined on complex geometries: an eccentric annulus and hollow torus of an eccentric annular cross-section.

  14. Turnpike theory of continuous-time linear optimal control problems

    CERN Document Server

    Zaslavski, Alexander J

    2015-01-01

    Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems.  The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands.  Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...

  15. A coherent Ising machine for 2000-node optimization problems

    Science.gov (United States)

    Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki

    2016-11-01

    The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.

  16. Optimal stability polynomials for numerical integration of initial value problems

    KAUST Repository

    Ketcheson, David I.

    2013-01-08

    We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step size and corresponding method for a given problem when the spectrum of the initial value problem is known. The problem is expressed in terms of a general least deviation feasibility problem. Its solution is obtained by a new fast, accurate, and robust algorithm based on convex optimization techniques. Global convergence of the algorithm is proven in the case that the order of approximation is one and in the case that the spectrum encloses a starlike region. Examples demonstrate the effectiveness of the proposed algorithm even when these conditions are not satisfied.

  17. A response matrix method for slab-geometry discrete ordinates adjoint calculations in energy-dependent source-detector problems

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Ralph S.; Moura, Carlos A., E-mail: ralph@ime.uerj.br, E-mail: demoura@ime.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Departamento de Engenharia Mecanica; Barros, Ricardo C., E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Departamento de Modelagem Computacional

    2017-07-01

    Presented here is an application of the Response Matrix (RM) method for adjoint discrete ordinates (S{sub N}) problems in slab geometry applied to energy-dependent source-detector problems. The adjoint RM method is free from spatial truncation errors, as it generates numerical results for the adjoint angular fluxes in multilayer slabs that agree with the numerical values obtained from the analytical solution of the energy multigroup adjoint SN equations. Numerical results are given for two typical source-detector problems to illustrate the accuracy and the efficiency of the offered RM computer code. (author)

  18. Optimal recombination in genetic algorithms for combinatorial optimization problems: Part I

    Directory of Open Access Journals (Sweden)

    Eremeev Anton V.

    2014-01-01

    Full Text Available This paper surveys results on complexity of the optimal recombination problem (ORP, which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We consider efficient reductions of the ORPs, allowing to establish polynomial solvability or NP-hardness of the ORPs, as well as direct proofs of hardness results. Part I presents the basic principles of optimal recombination with a survey of results on Boolean Linear Programming Problems. Part II (to appear in a subsequent issue is devoted to the ORPs for problems which are naturally formulated in terms of search for an optimal permutation.

  19. Particle swarm as optimization tool in complex nuclear engineering problems

    International Nuclear Information System (INIS)

    Medeiros, Jose Antonio Carlos Canedo

    2005-06-01

    Due to its low computational cost, gradient-based search techniques associated to linear programming techniques are being used as optimization tools. These techniques, however, when applied to multimodal search spaces, can lead to local optima. When finding solutions for complex multimodal domains, random search techniques are being used with great efficacy. In this work we exploit the swarm optimization algorithm search power capacity as an optimization tool for the solution of complex high dimension and multimodal search spaces of nuclear problems. Due to its easy and natural representation of high dimension domains, the particle swarm optimization was applied with success for the solution of complex nuclear problems showing its efficacy in the search of solutions in high dimension and complex multimodal spaces. In one of these applications it enabled a natural and trivial solution in a way not obtained with other methods confirming the validity of its application. (author)

  20. Galerkin approximations of nonlinear optimal control problems in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Mickael D. Chekroun

    2017-07-01

    Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.

  1. Two-stage discrete-continuous multi-objective load optimization: An industrial consumer utility approach to demand response

    International Nuclear Information System (INIS)

    Abdulaal, Ahmed; Moghaddass, Ramin; Asfour, Shihab

    2017-01-01

    Highlights: •Two-stage model links discrete-optimization to real-time system dynamics operation. •The solutions obtained are non-dominated Pareto optimal solutions. •Computationally efficient GA solver through customized chromosome coding. •Modest to considerable savings are achieved depending on the consumer’s preference. -- Abstract: In the wake of today’s highly dynamic and competitive energy markets, optimal dispatching of energy sources requires effective demand responsiveness. Suppliers have adopted a dynamic pricing strategy in efforts to control the downstream demand. This method however requires consumer awareness, flexibility, and timely responsiveness. While residential activities are more flexible and schedulable, larger commercial consumers remain an obstacle due to the impacts on industrial performance. This paper combines methods from quadratic, stochastic, and evolutionary programming with multi-objective optimization and continuous simulation, to propose a two-stage discrete-continuous multi-objective load optimization (DiCoMoLoOp) autonomous approach for industrial consumer demand response (DR). Stage 1 defines discrete-event load shifting targets. Accordingly, controllable loads are continuously optimized in stage 2 while considering the consumer’s utility. Utility functions, which measure the loads’ time value to the consumer, are derived and weights are assigned through an analytical hierarchy process (AHP). The method is demonstrated for an industrial building model using real data. The proposed method integrates with building energy management system and solves in real-time with autonomous and instantaneous load shifting in the hour-ahead energy price (HAP) market. The simulation shows the occasional existence of multiple load management options on the Pareto frontier. Finally, the computed savings, based on the simulation analysis with real consumption, climate, and price data, ranged from modest to considerable amounts

  2. Optimized Parallel Discrete Event Simulation (PDES) for High Performance Computing (HPC) Clusters

    National Research Council Canada - National Science Library

    Abu-Ghazaleh, Nael

    2005-01-01

    The aim of this project was to study the communication subsystem performance of state of the art optimistic simulator Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES...

  3. Parallel and Cooperative Particle Swarm Optimizer for Multimodal Problems

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2015-01-01

    Full Text Available Although the original particle swarm optimizer (PSO method and its related variant methods show some effectiveness for solving optimization problems, it may easily get trapped into local optimum especially when solving complex multimodal problems. Aiming to solve this issue, this paper puts forward a novel method called parallel and cooperative particle swarm optimizer (PCPSO. In case that the interacting of the elements in D-dimensional function vector X=[x1,x2,…,xd,…,xD] is independent, cooperative particle swarm optimizer (CPSO is used. Based on this, the PCPSO is presented to solve real problems. Since the dimension cannot be split into several lower dimensional search spaces in real problems because of the interacting of the elements, PCPSO exploits the cooperation of two parallel CPSO algorithms by orthogonal experimental design (OED learning. Firstly, the CPSO algorithm is used to generate two locally optimal vectors separately; then the OED is used to learn the merits of these two vectors and creates a better combination of them to generate further search. Experimental studies on a set of test functions show that PCPSO exhibits better robustness and converges much closer to the global optimum than several other peer algorithms.

  4. Optimal Control Problems for Partial Differential Equations on Reticulated Domains

    CERN Document Server

    Kogut, Peter I

    2011-01-01

    In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for gradu

  5. Existence and Uniqueness of Solutions for a Discrete Fractional Mixed Type Sum-Difference Equation Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Weidong Lv

    2015-01-01

    Full Text Available By means of Schauder’s fixed point theorem and contraction mapping principle, we establish the existence and uniqueness of solutions to a boundary value problem for a discrete fractional mixed type sum-difference equation with the nonlinear term dependent on a fractional difference of lower order. Moreover, a suitable choice of a Banach space allows the solutions to be unbounded and two representative examples are presented to illustrate the effectiveness of the main results.

  6. Particle-based simulation of charge transport in discrete-charge nano-scale systems: the electrostatic problem

    OpenAIRE

    Berti, Claudio; Gillespie, Dirk; Eisenberg, Robert S; Fiegna, Claudio

    2012-01-01

    The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous...

  7. Optimization and Openmp Parallelization of a Discrete Element Code for Convex Polyhedra on Multi-Core Machines

    Science.gov (United States)

    Chen, Jian; Matuttis, Hans-Georg

    2013-02-01

    We report our experiences with the optimization and parallelization of a discrete element code for convex polyhedra on multi-core machines and introduce a novel variant of the sort-and-sweep neighborhood algorithm. While in theory the whole code in itself parallelizes ideally, in practice the results on different architectures with different compilers and performance measurement tools depend very much on the particle number and optimization of the code. After difficulties with the interpretation of the data for speedup and efficiency are overcome, respectable parallelization speedups could be obtained.

  8. Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization.

    Science.gov (United States)

    Craft, David

    2010-10-01

    A discrete set of points and their convex combinations can serve as a sparse representation of the Pareto surface in multiple objective convex optimization. We develop a method to evaluate the quality of such a representation, and show by example that in multiple objective radiotherapy planning, the number of Pareto optimal solutions needed to represent Pareto surfaces of up to five dimensions grows at most linearly with the number of objectives. The method described is also applicable to the representation of convex sets. Copyright © 2009 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Jui-Yu Wu

    2013-01-01

    Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

  10. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems.

    Science.gov (United States)

    Krohling, Renato A; Coelho, Leandro dos Santos

    2006-12-01

    In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global terms. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness.

  11. Discrete quark-lepton symmetry need not pose a cosmological domain wall problem

    International Nuclear Information System (INIS)

    Lew, H.; Volkas, R.R.

    1992-01-01

    Quarks and leptons may be related to each other through a spontaneously broken discrete symmetry. Models with acceptable and interesting collider phenomenology have been constructed which incorporate this idea. However, the standard Hot Big Bang model of cosmology is generally considered to eschew spontaneously broken discrete symmetries because they often lead to the formation of unacceptably massive domain walls. It is pointed out that there are a number of plausible quark-lepton symmetric models in nature which do not produce cosmologically troublesome domain walls. 30 refs

  12. Solving optimization problems by the public goods game

    Science.gov (United States)

    Javarone, Marco Alberto

    2017-09-01

    We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.

  13. Newton-type methods for optimization and variational problems

    CERN Document Server

    Izmailov, Alexey F

    2014-01-01

    This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will b...

  14. Global Sufficient Optimality Conditions for a Special Cubic Minimization Problem

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhang

    2012-01-01

    Full Text Available We present some sufficient global optimality conditions for a special cubic minimization problem with box constraints or binary constraints by extending the global subdifferential approach proposed by V. Jeyakumar et al. (2006. The present conditions generalize the results developed in the work of V. Jeyakumar et al. where a quadratic minimization problem with box constraints or binary constraints was considered. In addition, a special diagonal matrix is constructed, which is used to provide a convenient method for justifying the proposed sufficient conditions. Then, the reformulation of the sufficient conditions follows. It is worth noting that this reformulation is also applicable to the quadratic minimization problem with box or binary constraints considered in the works of V. Jeyakumar et al. (2006 and Y. Wang et al. (2010. Finally some examples demonstrate that our optimality conditions can effectively be used for identifying global minimizers of the certain nonconvex cubic minimization problem.

  15. Compiling Planning into Quantum Optimization Problems: A Comparative Study

    Science.gov (United States)

    2015-06-07

    to SAT, and then reduces higher order terms to quadratic terms through a series of gadgets . Our mappings allow both positive and negative preconditions...to its being specific to this type of problem) and likely benefits from an homogeneous parameter setting (Venturelli et al. 2014), as it generates a...Guzik, A. 2013. Resource efficient gadgets for compiling adiabatic quan- tum optimization problems. Annalen der Physik 525(10- 11):877–888. Blum, A

  16. Optimal Results and Numerical Simulations for Flow Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Tao Ren

    2012-01-01

    Full Text Available This paper considers the m-machine flow shop problem with two objectives: makespan with release dates and total quadratic completion time, respectively. For Fm|rj|Cmax, we prove the asymptotic optimality for any dense scheduling when the problem scale is large enough. For Fm‖ΣCj2, improvement strategy with local search is presented to promote the performance of the classical SPT heuristic. At the end of the paper, simulations show the effectiveness of the improvement strategy.

  17. Agent assisted interactive algorithm for computationally demanding multiobjective optimization problems

    OpenAIRE

    Ojalehto, Vesa; Podkopaev, Dmitry; Miettinen, Kaisa

    2015-01-01

    We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker du...

  18. Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Haitao Xu

    2018-01-01

    Full Text Available As we all know, there are a great number of optimization problems in the world. One of the relatively complicated and high-level problems is the vehicle routing problem (VRP. Dynamic vehicle routing problem (DVRP is a major variant of VRP, and it is closer to real logistic scene. In DVRP, the customers’ demands appear with time, and the unserved customers’ points must be updated and rearranged while carrying out the programming paths. Owing to the complexity and significance of the problem, DVRP applications have grabbed the attention of researchers in the past two decades. In this paper, we have two main contributions to solving DVRP. Firstly, DVRP is solved with enhanced Ant Colony Optimization (E-ACO, which is the traditional Ant Colony Optimization (ACO fusing improved K-means and crossover operation. K-means can divide the region with the most reasonable distance, while ACO using crossover is applied to extend search space and avoid falling into local optimum prematurely. Secondly, several new evaluation benchmarks are proposed, which can objectively and comprehensively estimate the proposed method. In the experiment, the results for different scale problems are compared to those of previously published papers. Experimental results show that the algorithm is feasible and efficient.

  19. On the equivalence of optimality criterion and sequential approximate optimization methods in the classical layout problem

    NARCIS (Netherlands)

    Groenwold, A.A.; Etman, L.F.P.

    2008-01-01

    We study the classical topology optimization problem, in which minimum compliance is sought, subject to linear constraints. Using a dual statement, we propose two separable and strictly convex subproblems for use in sequential approximate optimization (SAO) algorithms.Respectively, the subproblems

  20. Optimal recombination in genetic algorithms for combinatorial optimization problems: Part II

    Directory of Open Access Journals (Sweden)

    Eremeev Anton V.

    2014-01-01

    Full Text Available This paper surveys results on complexity of the optimal recombination problem (ORP, which consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. In Part II, we consider the computational complexity of ORPs arising in genetic algorithms for problems on permutations: the Travelling Salesman Problem, the Shortest Hamilton Path Problem and the Makespan Minimization on Single Machine and some other related problems. The analysis indicates that the corresponding ORPs are NP-hard, but solvable by faster algorithms, compared to the problems they are derived from.

  1. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Stephen G.

    2013-11-11

    solving discretized optimization models. Our optimization models are multi-level models, however. They are more general, involving different governing equations at each level. A major aspect of this project was the development of flexible software that can be used to solve a variety of hierarchical optimization problems.

  2. Quadratic third-order tensor optimization problem with quadratic constraints

    Directory of Open Access Journals (Sweden)

    Lixing Yang

    2014-05-01

    Full Text Available Quadratically constrained quadratic programs (QQPs problems play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Semidenite programming (SDP relaxations often provide good approximate solutions to these hard problems. For several special cases of QQP, e.g., convex programs and trust region subproblems, SDP relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective.In this paper, we consider a certain QQP where the variable is neither vector nor matrix but a third-order tensor. This problem can be viewed as a generalization of the ordinary QQP with vector or matrix as it's variant. Under some mild conditions, we rst show that SDP relaxation provides exact optimal solutions for the original problem. Then we focus on two classes of homogeneous quadratic tensor programming problems which have no requirements on the constraints number. For one, we provide an easily implemental polynomial time algorithm to approximately solve the problem and discuss the approximation ratio. For the other, we show there is no gap between the SDP relaxation and itself.

  3. Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Blaheta, Radim; Byczanski, Petr

    2012-01-01

    Roč. 15, č. 4 (2012), s. 191-207 ISSN 1432-9360 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : poroelasticity * saddle point matrices * preconditioning * stability of discretization Subject RIV: BA - General Mathematics http://link.springer.com/article/10.1007/s00791-013-0209-0

  4. Optimization of flow modeling in fractured media with discrete fracture network via percolation theory

    Science.gov (United States)

    Donado-Garzon, L. D.; Pardo, Y.

    2013-12-01

    Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical

  5. The Ordered Capacitated Multi-Objective Location-Allocation Problem for Fire Stations Using Spatial Optimization

    Directory of Open Access Journals (Sweden)

    Samira Bolouri

    2018-01-01

    Full Text Available Determining the positions of facilities, and allocating demands to them, is a vitally important problem. Location-allocation problems are optimization NP-hard procedures. This article evaluates the ordered capacitated multi-objective location-allocation problem for fire stations, using simulated annealing and a genetic algorithm, with goals such as minimizing the distance and time as well as maximizing the coverage. After tuning the parameters of the algorithms using sensitivity analysis, they were used separately to process data for Region 11, Tehran. The results showed that the genetic algorithm was more efficient than simulated annealing, and therefore, the genetic algorithm was used in later steps. Next, we increased the number of stations. Results showed that the model can successfully provide seven optimal locations and allocate high demands (280,000 to stations in a discrete space in a GIS, assuming that the stations’ capacities are known. Following this, we used a weighting program so that in each repetition, we could allot weights to each target randomly. Finally, by repeating the model over 10 independent executions, a set of solutions with the least sum and the highest number of non-dominated solutions was selected from among many non-dominated solutions as the best set of optimal solutions.

  6. The Great Deluge Algorithm applied to a nuclear reactor core design optimization problem

    International Nuclear Information System (INIS)

    Sacco, Wagner F.; Oliveira, Cassiano R.E. de

    2005-01-01

    The Great Deluge Algorithm (GDA) is a local search algorithm introduced by Dueck. It is an analogy with a flood: the 'water level' rises continuously and the proposed solution must lie above the 'surface' in order to survive. The crucial parameter is the 'rain speed', which controls convergence of the algorithm similarly to Simulated Annealing's annealing schedule. This algorithm is applied to the reactor core design optimization problem, which consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a 3-enrichment-zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. This problem was previously attacked by the canonical genetic algorithm (GA) and by a Niching Genetic Algorithm (NGA). NGAs were designed to force the genetic algorithm to maintain a heterogeneous population throughout the evolutionary process, avoiding the phenomenon known as genetic drift, where all the individuals converge to a single solution. The results obtained by the Great Deluge Algorithm are compared to those obtained by both algorithms mentioned above. The three algorithms are submitted to the same computational effort and GDA reaches the best results, showing its potential for other applications in the nuclear engineering field as, for instance, the nuclear core reload optimization problem. One of the great advantages of this algorithm over the GA is that it does not require special operators for discrete optimization. (author)

  7. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    International Nuclear Information System (INIS)

    Filho, J. F. P.; Barichello, L. B.

    2013-01-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  8. Optimization problems with equilibrium constraints and their numerical solution

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Outrata, Jiří

    Roč. 101 , č. 1 (2004), s. 119-149 ISSN 0025-5610 R&D Projects: GA AV ČR IAA1075005 Grant - others:BMBF(DE) 03ZOM3ER Institutional research plan: CEZ:AV0Z1075907 Keywords : optimization problems * MPEC * MPCC Subject RIV: BA - General Mathematics Impact factor: 1.016, year: 2004

  9. Scenario tree generation and multi-asset financial optimization problems

    DEFF Research Database (Denmark)

    Geyer, Alois; Hanke, Michael; Weissensteiner, Alex

    2013-01-01

    We compare two popular scenario tree generation methods in the context of financial optimization: moment matching and scenario reduction. Using a simple problem with a known analytic solution, moment matching-when ensuring absence of arbitrage-replicates this solution precisely. On the other hand...

  10. Optimal portfolio selection for general provisioning and terminal wealth problems

    NARCIS (Netherlands)

    van Weert, K.; Dhaene, J.; Goovaerts, M.

    2010-01-01

    In Dhaene et al. (2005), multiperiod portfolio selection problems are discussed, using an analytical approach to find optimal constant mix investment strategies in a provisioning or a savings context. In this paper we extend some of these results, investigating some specific, real-life situations.

  11. Optimal portfolio selection for general provisioning and terminal wealth problems

    NARCIS (Netherlands)

    van Weert, K.; Dhaene, J.; Goovaerts, M.

    2009-01-01

    In Dhaene et al. (2005), multiperiod portfolio selection problems are discussed, using an analytical approach to find optimal constant mix investment strategies in a provisioning or savings context. In this paper we extend some of these results, investigating some specific, real-life situations. The

  12. New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems

    International Nuclear Information System (INIS)

    Al-Bayati, A.; Al-Asadi, N.

    1997-01-01

    This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab

  13. Proposal of Evolutionary Simplex Method for Global Optimization Problem

    Science.gov (United States)

    Shimizu, Yoshiaki

    To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.

  14. Redundant interferometric calibration as a complex optimization problem

    Science.gov (United States)

    Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.

    2018-05-01

    Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.

  15. Utilizing Problem Structure in Optimization of Radiation Therapy

    International Nuclear Information System (INIS)

    Carlsson, Fredrik

    2008-04-01

    In this thesis, optimization approaches for intensity-modulated radiation therapy are developed and evaluated with focus on numerical efficiency and treatment delivery aspects. The first two papers deal with strategies for solving fluence map optimization problems efficiently while avoiding solutions with jagged fluence profiles. The last two papers concern optimization of step-and-shoot parameters with emphasis on generating treatment plans that can be delivered efficiently and accurately. In the first paper, the problem dimension of a fluence map optimization problem is reduced through a spectral decomposition of the Hessian of the objective function. The weights of the eigenvectors corresponding to the p largest eigenvalues are introduced as optimization variables, and the impact on the solution of varying p is studied. Including only a few eigenvector weights results in faster initial decrease of the objective value, but with an inferior solution, compared to optimization of the bixel weights. An approach combining eigenvector weights and bixel weights produces improved solutions, but at the expense of the pre-computational time for the spectral decomposition. So-called iterative regularization is performed on fluence map optimization problems in the second paper. The idea is to find regular solutions by utilizing an optimization method that is able to find near-optimal solutions with non-jagged fluence profiles in few iterations. The suitability of a quasi-Newton sequential quadratic programming method is demonstrated by comparing the treatment quality of deliverable step-and-shoot plans, generated through leaf sequencing with a fixed number of segments, for different number of bixel-weight iterations. A conclusion is that over-optimization of the fluence map optimization problem prior to leaf sequencing should be avoided. An approach for dynamically generating multileaf collimator segments using a column generation approach combined with optimization of

  16. Problem statement for optimal design of steel structures

    Directory of Open Access Journals (Sweden)

    Ginzburg Aleksandr Vital'evich

    2014-07-01

    Full Text Available The presented article considers the following complex of tasks. The main stages of the life cycle of a building construction with the indication of process entrance and process exit are described. Requirements imposed on steel constructions are considered. The optimum range of application for steel designs is specified, as well as merits and demerits of a design material. The nomenclature of metal designs is listed - the block diagram is constructed. Possible optimality criteria of steel designs, offered by various authors for various types of constructions are considered. It is established that most often the criterion of a minimum of design mass is accepted as criterion of optimality; more rarely - a minimum of the given expenses, a minimum of a design cost in business. In the present article special attention is paid to a type of objective function of optimization problem. It is also established that depending on the accepted optimality criterion, the use of different types of functions is possible. This complexity of objective function depends on completeness of optimality criterion application. In the work the authors consider the following objective functions: the mass of the main element of a design; objective function by criterion of factory cost; objective function by criterion of cost in business. According to these examples it can be seen that objective functions by the criteria of labor expenses for production of designs are generally non-linear, which complicates solving the optimization problem. Another important factor influencing the problem of optimal design solution for steel designs, which is analyzed, is account for operating restrictions. In the article 8 groups of restrictions are analyzed. Attempts to completely account for the parameters of objective function optimized by particular optimality criteria, taking into account all the operating restrictions, considerably complicates the problem of designing. For solving this

  17. Optimizing investment fund allocation using vehicle routing problem framework

    Science.gov (United States)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita

    2014-07-01

    The objective of investment is to maximize total returns or minimize total risks. To determine the optimum order of investment, vehicle routing problem method is used. The method which is widely used in the field of resource distribution shares almost similar characteristics with the problem of investment fund allocation. In this paper we describe and elucidate the concept of using vehicle routing problem framework in optimizing the allocation of investment fund. To better illustrate these similarities, sectorial data from FTSE Bursa Malaysia is used. Results show that different values of utility for risk-averse investors generate the same investment routes.

  18. Essays on variational approximation techniques for stochastic optimization problems

    Science.gov (United States)

    Deride Silva, Julio A.

    This dissertation presents five essays on approximation and modeling techniques, based on variational analysis, applied to stochastic optimization problems. It is divided into two parts, where the first is devoted to equilibrium problems and maxinf optimization, and the second corresponds to two essays in statistics and uncertainty modeling. Stochastic optimization lies at the core of this research as we were interested in relevant equilibrium applications that contain an uncertain component, and the design of a solution strategy. In addition, every stochastic optimization problem relies heavily on the underlying probability distribution that models the uncertainty. We studied these distributions, in particular, their design process and theoretical properties such as their convergence. Finally, the last aspect of stochastic optimization that we covered is the scenario creation problem, in which we described a procedure based on a probabilistic model to create scenarios for the applied problem of power estimation of renewable energies. In the first part, Equilibrium problems and maxinf optimization, we considered three Walrasian equilibrium problems: from economics, we studied a stochastic general equilibrium problem in a pure exchange economy, described in Chapter 3, and a stochastic general equilibrium with financial contracts, in Chapter 4; finally from engineering, we studied an infrastructure planning problem in Chapter 5. We stated these problems as belonging to the maxinf optimization class and, in each instance, we provided an approximation scheme based on the notion of lopsided convergence and non-concave duality. This strategy is the foundation of the augmented Walrasian algorithm, whose convergence is guaranteed by lopsided convergence, that was implemented computationally, obtaining numerical results for relevant examples. The second part, Essays about statistics and uncertainty modeling, contains two essays covering a convergence problem for a sequence

  19. Ordinal optimization and its application to complex deterministic problems

    Science.gov (United States)

    Yang, Mike Shang-Yu

    1998-10-01

    We present in this thesis a new perspective to approach a general class of optimization problems characterized by large deterministic complexities. Many problems of real-world concerns today lack analyzable structures and almost always involve high level of difficulties and complexities in the evaluation process. Advances in computer technology allow us to build computer models to simulate the evaluation process through numerical means, but the burden of high complexities remains to tax the simulation with an exorbitant computing cost for each evaluation. Such a resource requirement makes local fine-tuning of a known design difficult under most circumstances, let alone global optimization. Kolmogorov equivalence of complexity and randomness in computation theory is introduced to resolve this difficulty by converting the complex deterministic model to a stochastic pseudo-model composed of a simple deterministic component and a white-noise like stochastic term. The resulting randomness is then dealt with by a noise-robust approach called Ordinal Optimization. Ordinal Optimization utilizes Goal Softening and Ordinal Comparison to achieve an efficient and quantifiable selection of designs in the initial search process. The approach is substantiated by a case study in the turbine blade manufacturing process. The problem involves the optimization of the manufacturing process of the integrally bladed rotor in the turbine engines of U.S. Air Force fighter jets. The intertwining interactions among the material, thermomechanical, and geometrical changes makes the current FEM approach prohibitively uneconomical in the optimization process. The generalized OO approach to complex deterministic problems is applied here with great success. Empirical results indicate a saving of nearly 95% in the computing cost.

  20. An adaptive simplex cut-cell method for high-order discontinuous Galerkin discretizations of elliptic interface problems and conjugate heat transfer problems

    Science.gov (United States)

    Sun, Huafei; Darmofal, David L.

    2014-12-01

    In this paper we propose a new high-order solution framework for interface problems on non-interface-conforming meshes. The framework consists of a discontinuous Galerkin (DG) discretization, a simplex cut-cell technique, and an output-based adaptive scheme. We first present a DG discretization with a dual-consistent output evaluation for elliptic interface problems on interface-conforming meshes, and then extend the method to handle multi-physics interface problems, in particular conjugate heat transfer (CHT) problems. The method is then applied to non-interface-conforming meshes using a cut-cell technique, where the interface definition is completely separate from the mesh generation process. No assumption is made on the interface shape (other than Lipschitz continuity). We then equip our strategy with an output-based adaptive scheme for an accurate output prediction. Through numerical examples, we demonstrate high-order convergence for elliptic interface problems and CHT problems with both smooth and non-smooth interface shapes.

  1. Statistical physics of hard combinatorial optimization: Vertex cover problem

    Science.gov (United States)

    Zhao, Jin-Hua; Zhou, Hai-Jun

    2014-07-01

    Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.

  2. Impact of discretization of the decision variables in the search of optimized solutions for history matching and injection rate optimization; Impacto do uso de variaveis discretas na busca de solucoes otimizadas para o ajuste de historico e distribuicao de vazoes de injecao

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Sergio H.G. de; Madeira, Marcelo G. [Halliburton Servicos Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    In the classical operations research arena, there is the notion that the search for optimized solutions in continuous solution spaces is easier than on discrete solution spaces, even when the latter is a subset of the first. On the upstream oil industry, there is an additional complexity in the optimization problems because there usually are no analytical expressions for the objective function, which require some form of simulation in order to be evaluated. Thus, the use of meta heuristic optimizers like scatter search, tabu search and genetic algorithms is common. In this meta heuristic context, there are advantages in transforming continuous solution spaces in equivalent discrete ones; the goal to do so usually is to speed up the search for optimized solutions. However, these advantages can be masked when the problem has restrictions formed by linear combinations of its decision variables. In order to study these aspects of meta heuristic optimization, two optimization problems are proposed and solved with both continuous and discrete solution spaces: assisted history matching and injection rates optimization. Both cases operate on a model of the Wytch Farm onshore oil filed located in England. (author)

  3. Permutation flow-shop scheduling problem to optimize a quadratic objective function

    Science.gov (United States)

    Ren, Tao; Zhao, Peng; Zhang, Da; Liu, Bingqian; Yuan, Huawei; Bai, Danyu

    2017-09-01

    A flow-shop scheduling model enables appropriate sequencing for each job and for processing on a set of machines in compliance with identical processing orders. The objective is to achieve a feasible schedule for optimizing a given criterion. Permutation is a special setting of the model in which the processing order of the jobs on the machines is identical for each subsequent step of processing. This article addresses the permutation flow-shop scheduling problem to minimize the criterion of total weighted quadratic completion time. With a probability hypothesis, the asymptotic optimality of the weighted shortest processing time schedule under a consistency condition (WSPT-CC) is proven for sufficiently large-scale problems. However, the worst case performance ratio of the WSPT-CC schedule is the square of the number of machines in certain situations. A discrete differential evolution algorithm, where a new crossover method with multiple-point insertion is used to improve the final outcome, is presented to obtain high-quality solutions for moderate-scale problems. A sequence-independent lower bound is designed for pruning in a branch-and-bound algorithm for small-scale problems. A set of random experiments demonstrates the performance of the lower bound and the effectiveness of the proposed algorithms.

  4. Minimax approach problem with incomplete information for the two-level hierarchical discrete-time dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Shorikov, A. F. [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia and Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)

    2014-11-18

    We consider a discrete-time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector linear or convex discrete-time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solution.

  5. The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation

    Science.gov (United States)

    Campbell, Joel

    2007-01-01

    A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  6. Particle Swarm Optimization and Uncertainty Assessment in Inverse Problems

    Directory of Open Access Journals (Sweden)

    José L. G. Pallero

    2018-01-01

    Full Text Available Most inverse problems in the industry (and particularly in geophysical exploration are highly underdetermined because the number of model parameters too high to achieve accurate data predictions and because the sampling of the data space is scarce and incomplete; it is always affected by different kinds of noise. Additionally, the physics of the forward problem is a simplification of the reality. All these facts result in that the inverse problem solution is not unique; that is, there are different inverse solutions (called equivalent, compatible with the prior information that fits the observed data within similar error bounds. In the case of nonlinear inverse problems, these equivalent models are located in disconnected flat curvilinear valleys of the cost-function topography. The uncertainty analysis consists of obtaining a representation of this complex topography via different sampling methodologies. In this paper, we focus on the use of a particle swarm optimization (PSO algorithm to sample the region of equivalence in nonlinear inverse problems. Although this methodology has a general purpose, we show its application for the uncertainty assessment of the solution of a geophysical problem concerning gravity inversion in sedimentary basins, showing that it is possible to efficiently perform this task in a sampling-while-optimizing mode. Particularly, we explain how to use and analyze the geophysical models sampled by exploratory PSO family members to infer different descriptors of nonlinear uncertainty.

  7. Global Optimization of Nonlinear Blend-Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Pedro A. Castillo Castillo

    2017-04-01

    Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.

  8. Stability, Optimality and Manipulation in Matching Problems with Weighted Preferences

    Directory of Open Access Journals (Sweden)

    Maria Silvia Pini

    2013-11-01

    Full Text Available The stable matching problem (also known as the stable marriage problem is a well-known problem of matching men to women, so that no man and woman, who are not married to each other, both prefer each other. Such a problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or, more generally, to any two-sided market. In the classical stable marriage problem, both men and women express a strict preference order over the members of the other sex, in a qualitative way. Here, we consider stable marriage problems with weighted preferences: each man (resp., woman provides a score for each woman (resp., man. Such problems are more expressive than the classical stable marriage problems. Moreover, in some real-life situations, it is more natural to express scores (to model, for example, profits or costs rather than a qualitative preference ordering. In this context, we define new notions of stability and optimality, and we provide algorithms to find marriages that are stable and/or optimal according to these notions. While expressivity greatly increases by adopting weighted preferences, we show that, in most cases, the desired solutions can be found by adapting existing algorithms for the classical stable marriage problem. We also consider the manipulability properties of the procedures that return such stable marriages. While we know that all procedures are manipulable by modifying the preference lists or by truncating them, here, we consider if manipulation can occur also by just modifying the weights while preserving the ordering and avoiding truncation. It turns out that, by adding weights, in some cases, we may increase the possibility of manipulating, and this cannot be avoided by any reasonable restriction on the weights.

  9. Multiresolution strategies for the numerical solution of optimal control problems

    Science.gov (United States)

    Jain, Sachin

    There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a

  10. A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems

    Science.gov (United States)

    Heinkenschloss, Matthias

    2005-01-01

    We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.

  11. Optimizing Human Diet Problem Based on Price and Taste Using

    Directory of Open Access Journals (Sweden)

    Hossein EGHBALI

    2012-07-01

    Full Text Available Low price and good taste of foods are regarded as two major factors for optimal human nutrition. Due to price fluctuations and taste diversity, these two factors cannot be certainly and determinately evaluated. This problem must be viewed from another perspective because of the uncertainty about the amount of nutrients per unit of foods and also diversity of people’s daily needs to receive them.This paper discusses human diet problem in fuzzy environment. The approach deals with multi-objective fuzzy linear programming problem using a fuzzy programming technique for its solution. By prescribing a diet merely based on crisp data, some ofthe realities are neglected. For the same reason, we dealt with human diet problem through fuzzy approach. Results indicated uncertainty about factors of nutrition diet -including taste and price, amount of nutrients and their intake- would affect diet quality, making the proposed diet more realistic.

  12. Heuristic versus statistical physics approach to optimization problems

    International Nuclear Information System (INIS)

    Jedrzejek, C.; Cieplinski, L.

    1995-01-01

    Optimization is a crucial ingredient of many calculation schemes in science and engineering. In this paper we assess several classes of methods: heuristic algorithms, methods directly relying on statistical physics such as the mean-field method and simulated annealing; and Hopfield-type neural networks and genetic algorithms partly related to statistical physics. We perform the analysis for three types of problems: (1) the Travelling Salesman Problem, (2) vector quantization, and (3) traffic control problem in multistage interconnection network. In general, heuristic algorithms perform better (except for genetic algorithms) and much faster but have to be specific for every problem. The key to improving the performance could be to include heuristic features into general purpose statistical physics methods. (author)

  13. Solving optimum operation of single pump unit problem with ant colony optimization (ACO) algorithm

    International Nuclear Information System (INIS)

    Yuan, Y; Liu, C

    2012-01-01

    For pumping stations, the effective scheduling of daily pump operations from solutions to the optimum design operation problem is one of the greatest potential areas for energy cost-savings, there are some difficulties in solving this problem with traditional optimization methods due to the multimodality of the solution region. In this case, an ACO model for optimum operation of pumping unit is proposed and the solution method by ants searching is presented by rationally setting the object function and constrained conditions. A weighted directed graph was constructed and feasible solutions may be found by iteratively searching of artificial ants, and then the optimal solution can be obtained by applying the rule of state transition and the pheromone updating. An example calculation was conducted and the minimum cost was found as 4.9979. The result of ant colony algorithm was compared with the result from dynamic programming or evolutionary solving method in commercial software under the same discrete condition. The result of ACO is better and the computing time is shorter which indicates that ACO algorithm can provide a high application value to the field of optimal operation of pumping stations and related fields.

  14. A novel comprehensive learning artificial bee colony optimizer for dynamic optimization biological problems

    Directory of Open Access Journals (Sweden)

    Weixing Su

    2017-03-01

    Full Text Available There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell’s pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.

  15. A novel comprehensive learning artificial bee colony optimizer for dynamic optimization biological problems.

    Science.gov (United States)

    Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei

    2017-03-01

    There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.

  16. Identification of parameters of discrete-continuous models

    International Nuclear Information System (INIS)

    Cekus, Dawid; Warys, Pawel

    2015-01-01

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible

  17. Identification of parameters of discrete-continuous models

    Energy Technology Data Exchange (ETDEWEB)

    Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)

    2015-03-10

    In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.

  18. Discontinuous Petrov-Galerkin method based on the optimal test space norm for one-dimensional transport problems

    KAUST Repository

    Niemi, Antti

    2011-05-14

    We revisit the finite element analysis of convection dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the so called optimal test space norm by using an element subgrid discretization. This should make the DPG method not only stable but also robust, that is, uniformly stable with respect to the Ṕeclet number in the current application. The e_ectiveness of the algorithm is demonstrated on two problems for the linear advection-di_usion equation.

  19. On quasistability radius of a vector trajectorial problem with a principle of optimality generalizing Pareto and lexicographic principles

    Directory of Open Access Journals (Sweden)

    Sergey E. Bukhtoyarov

    2005-05-01

    Full Text Available A multicriterion linear combinatorial problem with a parametric principle of optimality is considered. This principle is defined by a partitioning of partial criteria onto Pareto preference relation groups within each group and the lexicographic preference relation between them. Quasistability of the problem is investigated. This type of stability is a discrete analog of Hausdorff lower semi-continuity of the multiple-valued mapping that defines the choice function. A formula of quasistability radius is derived for the case of the metric l∞. Some known results are stated as corollaries. Mathematics Subject Classification 2000: 90C05, 90C10, 90C29, 90C31.

  20. RECIPES FOR BUILDING THE DUAL OF CONIC OPTIMIZATION PROBLEM

    Directory of Open Access Journals (Sweden)

    Diah Chaerani

    2010-08-01

    Full Text Available Building the dual of the primal problem of Conic Optimization (CO isa very important step to make the ¯nding optimal solution. In many cases a givenproblem does not have the simple structure of CO problem (i.e., minimizing a linearfunction over an intersection between a±ne space and convex cones but there areseveral conic constraints and sometimes also equality constraints. In this paper wedeal with the question how to form the dual problem in such cases. We discuss theanswer by considering several conic constraints with or without equality constraints.The recipes for building the dual of such cases is formed in standard matrix forms,such that it can be used easily on the numerical experiment. Special attention isgiven to dual development of special classes of CO problems, i.e., conic quadraticand semide¯nite problems. In this paper, we also brie°y present some preliminariestheory on CO as an introduction to the main topic

  1. On the MSE Performance and Optimization of Regularized Problems

    KAUST Repository

    Alrashdi, Ayed

    2016-11-01

    The amount of data that has been measured, transmitted/received, and stored in the recent years has dramatically increased. So, today, we are in the world of big data. Fortunately, in many applications, we can take advantages of possible structures and patterns in the data to overcome the curse of dimensionality. The most well known structures include sparsity, low-rankness, block sparsity. This includes a wide range of applications such as machine learning, medical imaging, signal processing, social networks and computer vision. This also led to a specific interest in recovering signals from noisy compressed measurements (Compressed Sensing (CS) problem). Such problems are generally ill-posed unless the signal is structured. The structure can be captured by a regularizer function. This gives rise to a potential interest in regularized inverse problems, where the process of reconstructing the structured signal can be modeled as a regularized problem. This thesis particularly focuses on finding the optimal regularization parameter for such problems, such as ridge regression, LASSO, square-root LASSO and low-rank Generalized LASSO. Our goal is to optimally tune the regularizer to minimize the mean-squared error (MSE) of the solution when the noise variance or structure parameters are unknown. The analysis is based on the framework of the Convex Gaussian Min-max Theorem (CGMT) that has been used recently to precisely predict performance errors.

  2. Analytic semigroups and optimal regularity in parabolic problems

    CERN Document Server

    Lunardi, Alessandra

    2012-01-01

    The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in p

  3. Topology optimization of coated structures and material interface problems

    DEFF Research Database (Denmark)

    Clausen, Anders; Aage, Niels; Sigmund, Ole

    2015-01-01

    This paper presents a novel method for including coated structures and prescribed material interface properties into the minimum compliance topology optimization problem. Several elements of the method are applicable to a broader range of interface problems. The approach extends the standard SIMP......-step filtering/projection approach. The modeled coating thickness is derived analytically, and the coating is shown to be accurately controlled and applied in a highly uniform manner over the structure. An alternative interpretation of the model is to perform single-material design for additive manufacturing...

  4. An Elite Decision Making Harmony Search Algorithm for Optimization Problem

    Directory of Open Access Journals (Sweden)

    Lipu Zhang

    2012-01-01

    Full Text Available This paper describes a new variant of harmony search algorithm which is inspired by a well-known item “elite decision making.” In the new algorithm, the good information captured in the current global best and the second best solutions can be well utilized to generate new solutions, following some probability rule. The generated new solution vector replaces the worst solution in the solution set, only if its fitness is better than that of the worst solution. The generating and updating steps and repeated until the near-optimal solution vector is obtained. Extensive computational comparisons are carried out by employing various standard benchmark optimization problems, including continuous design variables and integer variables minimization problems from the literature. The computational results show that the proposed new algorithm is competitive in finding solutions with the state-of-the-art harmony search variants.

  5. Particle Swarm Optimization applied to combinatorial problem aiming the fuel recharge problem solution in a nuclear reactor; Particle swarm optimization aplicado ao problema combinatorio com vistas a solucao do problema de recarga em um reator nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura; Schirru, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mail: ameneses@con.ufrj.br; schirru@lmp.ufrj.br

    2005-07-01

    This work focuses on the usage the Artificial Intelligence technique Particle Swarm Optimization (PSO) to optimize the fuel recharge at a nuclear reactor. This is a combinatorial problem, in which the search of the best feasible solution is done by minimizing a specific objective function. However, in this first moment it is possible to compare the fuel recharge problem with the Traveling Salesman Problem (TSP), since both of them are combinatorial, with one advantage: the evaluation of the TSP objective function is much more simple. Thus, the proposed methods have been applied to two TSPs: Oliver 30 and Rykel 48. In 1995, KENNEDY and EBERHART presented the PSO technique to optimize non-linear continued functions. Recently some PSO models for discrete search spaces have been developed for combinatorial optimization. Although all of them having different formulation from the ones presented here. In this paper, we use the PSO theory associated with to the Random Keys (RK)model, used in some optimizations with Genetic Algorithms. The Particle Swarm Optimization with Random Keys (PSORK) results from this association, which combines PSO and RK. The adaptations and changings in the PSO aim to allow the usage of the PSO at the nuclear fuel recharge. This work shows the PSORK being applied to the proposed combinatorial problem and the obtained results. (author)

  6. An Algorithmic Comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a Nonlinear Thermal Problem

    Directory of Open Access Journals (Sweden)

    Felix Fritzen

    2018-02-01

    Full Text Available A novel algorithmic discussion of the methodological and numerical differences of competing parametric model reduction techniques for nonlinear problems is presented. First, the Galerkin reduced basis (RB formulation is presented, which fails at providing significant gains with respect to the computational efficiency for nonlinear problems. Renowned methods for the reduction of the computing time of nonlinear reduced order models are the Hyper-Reduction and the (Discrete Empirical Interpolation Method (EIM, DEIM. An algorithmic description and a methodological comparison of both methods are provided. The accuracy of the predictions of the hyper-reduced model and the (DEIM in comparison to the Galerkin RB is investigated. All three approaches are applied to a simple uncertainty quantification of a planar nonlinear thermal conduction problem. The results are compared to computationally intense finite element simulations.

  7. Shape optimization for Stokes problem with threshold slip

    Czech Academy of Sciences Publication Activity Database

    Haslinger, J.; Stebel, Jan; Taoufik, S.

    2014-01-01

    Roč. 59, č. 6 (2014), s. 631-652 ISSN 0862-7940 R&D Projects: GA ČR GA201/09/0917; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : Stokes problem * friction boundary condition * shape optimization Subject RIV: BA - General Mathematics Impact factor: 0.400, year: 2014 http://link.springer.com/article/10.1007%2Fs10492-014-0077-z

  8. Optimizing Distribution Problems using WinQSB Software

    Directory of Open Access Journals (Sweden)

    Daniel Mihai Amariei

    2015-07-01

    Full Text Available In the present paper we are presenting a problem of distribution using the Network Modeling Module of the WinQSB software, were we have 5 athletes which we must assign the optimal sample, function of the obtained time, so as to obtain the maximum output of the athletes. Also we analyzed the case of an accident of 2 athletes, the coupling of 3 athletes with 5 various athletic events causing the maximum coupling, done using the Hungarian algorithm.

  9. A fractional optimal control problem for maximizing advertising efficiency

    OpenAIRE

    Igor Bykadorov; Andrea Ellero; Stefania Funari; Elena Moretti

    2007-01-01

    We propose an optimal control problem to model the dynamics of the communication activity of a firm with the aim of maximizing its efficiency. We assume that the advertising effort undertaken by the firm contributes to increase the firm's goodwill and that the goodwill affects the firm's sales. The aim is to find the advertising policies in order to maximize the firm's efficiency index which is computed as the ratio between "outputs" and "inputs" properly weighted; the outputs are represented...

  10. Tokenplan: A Planner for Both Satisfaction and Optimization Problem

    OpenAIRE

    Meiller, Yannick; Fabiani, Patrick

    2001-01-01

    Tokenplan is a planner based on the use of Petri nets. Its main feature is the flexibility it offers in the way it builds the planning graph. The Fifth International Conference on Artificial Intelligence Planning and Scheduling planning competition validated its behavior with a graphplan-like behavior. The next step is to demonstrate the benefits we expect from our planner in planning problems involving optimization and uncertainty handling.

  11. Heuristics for NP-hard optimization problems - simpler is better!?

    Directory of Open Access Journals (Sweden)

    Žerovnik Janez

    2015-11-01

    Full Text Available We provide several examples showing that local search, the most basic metaheuristics, may be a very competitive choice for solving computationally hard optimization problems. In addition, generation of starting solutions by greedy heuristics should be at least considered as one of very natural possibilities. In this critical survey, selected examples discussed include the traveling salesman, the resource-constrained project scheduling, the channel assignment, and computation of bounds for the Shannon capacity.

  12. On Equivalence between Optimality Criteria and Projected Gradient Methods with Application to Topology Optimization Problem

    OpenAIRE

    Ananiev, Sergey

    2006-01-01

    The paper demonstrates the equivalence between the optimality criteria (OC) method, initially proposed by Bendsoe & Kikuchi for topology optimization problem, and the projected gradient method. The equivalence is shown using Hestenes definition of Lagrange multipliers. Based on this development, an alternative formulation of the Karush-Kuhn-Tucker (KKT) condition is suggested. Such reformulation has some advantages, which will be also discussed in the paper. For verification purposes the modi...

  13. One-Way Functions and Composition of Conjugacy and Discrete Logarithm Problems in the Small Cancellation Groups

    Directory of Open Access Journals (Sweden)

    N. V. Bezverkhniy

    2015-01-01

    Full Text Available The paper considers the possibility for building a one-way function in the small cancellation group. Thus, it uses the algorithm to solve the problem for a cyclic subgroup, also known as a discrete logarithm problem, and the algorithm to solve the word problem in this class of groups.Research is conducted using geometric methods of combinatorial group theory (the method of diagrams in groups.In public channel exchange of information are used one-way functions, direct calculation of which should be much less complicated than the calculation of the inverse function. The paper considers the combination of two problems: discrete logarithms and conjugacy. This leads to the problem of conjugate membership for a cyclic subgroup. The work proposes an algorithm based on this problem, which can be used as a basis in investigation of the appropriate one-way function for its fitness to build a public key distribution scheme.The study used doughnut charts of word conjugacy, and for one special class of such charts has been proven a property of the layer-based periodicity. The presence of such properties is obviously leads to a solution of the power conjugacy of words in the considered class of groups. Unfortunately, this study failed to show any periodicity of a doughnut chart, but for one of two possible classes this periodicity has been proven.The building process of one-way function considered in the paper was studied in terms of possibility to calculate both direct and inverse mappings. The computational complexity was not considered. Thus, the following two tasks were yet unresolved: determining the quality of one-way function in the above protocol of the public key distribution and completing the study of the periodicity of doughnut charts of word conjugacy, leading to a positive solution of the power conjugacy of words in the class groups under consideration.

  14. Particle-based simulation of charge transport in discrete-charge nano-scale systems: the electrostatic problem.

    Science.gov (United States)

    Berti, Claudio; Gillespie, Dirk; Eisenberg, Robert S; Fiegna, Claudio

    2012-02-16

    The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al.

  15. Parallel particle swarm optimization algorithm in nuclear problems

    International Nuclear Information System (INIS)

    Waintraub, Marcel; Pereira, Claudio M.N.A.; Schirru, Roberto

    2009-01-01

    Particle Swarm Optimization (PSO) is a population-based metaheuristic (PBM), in which solution candidates evolve through simulation of a simplified social adaptation model. Putting together robustness, efficiency and simplicity, PSO has gained great popularity. Many successful applications of PSO are reported, in which PSO demonstrated to have advantages over other well-established PBM. However, computational costs are still a great constraint for PSO, as well as for all other PBMs, especially in optimization problems with time consuming objective functions. To overcome such difficulty, parallel computation has been used. The default advantage of parallel PSO (PPSO) is the reduction of computational time. Master-slave approaches, exploring this characteristic are the most investigated. However, much more should be expected. It is known that PSO may be improved by more elaborated neighborhood topologies. Hence, in this work, we develop several different PPSO algorithms exploring the advantages of enhanced neighborhood topologies implemented by communication strategies in multiprocessor architectures. The proposed PPSOs have been applied to two complex and time consuming nuclear engineering problems: reactor core design and fuel reload optimization. After exhaustive experiments, it has been concluded that: PPSO still improves solutions after many thousands of iterations, making prohibitive the efficient use of serial (non-parallel) PSO in such kind of realworld problems; and PPSO with more elaborated communication strategies demonstrated to be more efficient and robust than the master-slave model. Advantages and peculiarities of each model are carefully discussed in this work. (author)

  16. Robust Optimization Model for Production Planning Problem under Uncertainty

    Directory of Open Access Journals (Sweden)

    Pembe GÜÇLÜ

    2017-01-01

    Full Text Available Conditions of businesses change very quickly. To take into account the uncertainty engendered by changes has become almost a rule while planning. Robust optimization techniques that are methods of handling uncertainty ensure to produce less sensitive results to changing conditions. Production planning, is to decide from which product, when and how much will be produced, with a most basic definition. Modeling and solution of the Production planning problems changes depending on structure of the production processes, parameters and variables. In this paper, it is aimed to generate and apply scenario based robust optimization model for capacitated two-stage multi-product production planning problem under parameter and demand uncertainty. With this purpose, production planning problem of a textile company that operate in İzmir has been modeled and solved, then deterministic scenarios’ and robust method’s results have been compared. Robust method has provided a production plan that has higher cost but, will result close to feasible and optimal for most of the different scenarios in the future.

  17. Energy Optimal Tracking Control with Discrete Fluid Power Systems using Model Predictive Control

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller

    2017-01-01

    For Discrete Displacement Cylinder (DDC) drives the control task lies in choosing force level. Hence, which force level to apply and thereby which pressure level each cylinder chambers shall be connected to. The DDC system is inherently a force system why often a force reference is generated...... and compared to a PID like tracking controller combined with a FSA. The results indicate that the energy efficiency of position tracking DDC systems may be improved significantly by using the MPC algorithm....

  18. Bi-objective optimization for multi-modal transportation routing planning problem based on Pareto optimality

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-09-01

    Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.

  19. An Improved Real-Coded Population-Based Extremal Optimization Method for Continuous Unconstrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng

    2014-01-01

    Full Text Available As a novel evolutionary optimization method, extremal optimization (EO has been successfully applied to a variety of combinatorial optimization problems. However, the applications of EO in continuous optimization problems are relatively rare. This paper proposes an improved real-coded population-based EO method (IRPEO for continuous unconstrained optimization problems. The key operations of IRPEO include generation of real-coded random initial population, evaluation of individual and population fitness, selection of bad elements according to power-law probability distribution, generation of new population based on uniform random mutation, and updating the population by accepting the new population unconditionally. The experimental results on 10 benchmark test functions with the dimension N=30 have shown that IRPEO is competitive or even better than the recently reported various genetic algorithm (GA versions with different mutation operations in terms of simplicity, effectiveness, and efficiency. Furthermore, the superiority of IRPEO to other evolutionary algorithms such as original population-based EO, particle swarm optimization (PSO, and the hybrid PSO-EO is also demonstrated by the experimental results on some benchmark functions.

  20. Decision heuristic or preference? Attribute non-attendance in discrete choice problems.

    Science.gov (United States)

    Heidenreich, Sebastian; Watson, Verity; Ryan, Mandy; Phimister, Euan

    2018-01-01

    This paper investigates if respondents' choice to not consider all characteristics of a multiattribute health service may represent preferences. Over the last decade, an increasing number of studies account for attribute non-attendance (ANA) when using discrete choice experiments to elicit individuals' preferences. Most studies assume such behaviour is a heuristic and therefore uninformative. This assumption may result in misleading welfare estimates if ANA reflects preferences. This is the first paper to assess if ANA is a heuristic or genuine preference without relying on respondents' self-stated motivation and the first study to explore this question within a health context. Based on findings from cognitive psychology, we expect that familiar respondents are less likely to use a decision heuristic to simplify choices than unfamiliar respondents. We employ a latent class model of discrete choice experiment data concerned with National Health Service managers' preferences for support services that assist with performance concerns. We present quantitative and qualitative evidence that in our study ANA mostly represents preferences. We also show that wrong assumptions about ANA result in inadequate welfare measures that can result in suboptimal policy advice. Future research should proceed with caution when assuming that ANA is a heuristic. Copyright © 2017 John Wiley & Sons, Ltd.