WorldWideScience

Sample records for discrete leja points

  1. Solving discrete zero point problems

    van der Laan, G.; Talman, A.J.J.; Yang, Z.F.

    2004-01-01

    In this paper an algorithm is proposed to .nd a discrete zero point of a function on the collection of integral points in the n-dimensional Euclidean space IRn.Starting with a given integral point, the algorithm generates a .nite sequence of adjacent integral simplices of varying dimension and

  2. Comparison of Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs

    Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raul

    2015-01-01

    In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw–Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence

  3. Comparison of Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs

    Nobile, Fabio

    2015-11-26

    In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw–Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework.

  4. DISCRETE FIXED POINT THEOREMS AND THEIR APPLICATION TO NASH EQUILIBRIUM

    Sato, Junichi; Kawasaki, Hidefumi

    2007-01-01

    Fixed point theorems are powerful tools in not only mathematics but also economic. In some economic problems, we need not real-valued but integer-valued equilibriums. However, classical fixed point theorems guarantee only real-valued equilibria. So we need discrete fixed point theorems in order to get discrete equilibria. In this paper, we first provide discrete fixed point theorems, next apply them to a non-cooperative game and prove the existence of a Nash equilibrium of pure strategies.

  5. Identification of discrete chaotic maps with singular points

    P. G. Akishin

    2001-01-01

    Full Text Available We investigate the ability of artificial neural networks to reconstruct discrete chaotic maps with singular points. We use as a simple test model the Cusp map. We compare the traditional Multilayer Perceptron, the Chebyshev Neural Network and the Wavelet Neural Network. The numerical scheme for the accurate determination of a singular point is also developed. We show that combining a neural network with the numerical algorithm for the determination of the singular point we are able to accurately approximate discrete chaotic maps with singularities.

  6. Fixed Points in Discrete Models for Regulatory Genetic Networks

    Orozco Edusmildo

    2007-01-01

    Full Text Available It is desirable to have efficient mathematical methods to extract information about regulatory iterations between genes from repeated measurements of gene transcript concentrations. One piece of information is of interest when the dynamics reaches a steady state. In this paper we develop tools that enable the detection of steady states that are modeled by fixed points in discrete finite dynamical systems. We discuss two algebraic models, a univariate model and a multivariate model. We show that these two models are equivalent and that one can be converted to the other by means of a discrete Fourier transform. We give a new, more general definition of a linear finite dynamical system and we give a necessary and sufficient condition for such a system to be a fixed point system, that is, all cycles are of length one. We show how this result for generalized linear systems can be used to determine when certain nonlinear systems (monomial dynamical systems over finite fields are fixed point systems. We also show how it is possible to determine in polynomial time when an ordinary linear system (defined over a finite field is a fixed point system. We conclude with a necessary condition for a univariate finite dynamical system to be a fixed point system.

  7. Discretized energy minimization in a wave guide with point sources

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  8. Integrable lattices and their sublattices: From the discrete Moutard (discrete Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme

    Doliwa, A.; Grinevich, P.; Nieszporski, M.; Santini, P. M.

    2007-01-01

    We present the sublattice approach, a procedure to generate, from a given integrable lattice, a sublattice which inherits its integrability features. We consider, as illustrative example of this approach, the discrete Moutard 4-point equation and its sublattice, the self-adjoint 5-point scheme on the star of the square lattice, which are relevant in the theory of the integrable discrete geometries and in the theory of discrete holomorphic and harmonic functions (in this last context, the discrete Moutard equation is called discrete Cauchy-Riemann equation). Therefore an integrable, at one energy, discretization of elliptic two-dimensional operators is considered. We use the sublattice point of view to derive, from the Darboux transformations and superposition formulas of the discrete Moutard equation, the Darboux transformations and superposition formulas of the self-adjoint 5-point scheme. We also construct, from algebro-geometric solutions of the discrete Moutard equation, algebro-geometric solutions of the self-adjoint 5-point scheme. In particular, we show that the corresponding restrictions on the finite-gap data are of the same type as those for the fixed energy problem for the two-dimensional Schroedinger operator. We finally use these solutions to construct explicit examples of discrete holomorphic and harmonic functions, as well as examples of quadrilateral surfaces in R 3

  9. Percolation analysis for cosmic web with discrete points

    Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung

    2018-01-01

    Percolation analysis has long been used to quantify the connectivity of the cosmic web. Most of the previous work is based on density fields on grids. By smoothing into fields, we lose information about galaxy properties like shape or luminosity. The lack of mathematical modeling also limits our understanding for the percolation analysis. To overcome these difficulties, we have studied percolation analysis based on discrete points. Using a friends-of-friends (FoF) algorithm, we generate the S -b b relation, between the fractional mass of the largest connected group (S ) and the FoF linking length (b b ). We propose a new model, the probability cloud cluster expansion theory to relate the S -b b relation with correlation functions. We show that the S -b b relation reflects a combination of all orders of correlation functions. Using N-body simulation, we find that the S -b b relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with halo abundance matching (HAM), we have generated a mock galaxy catalog. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalog with the latest galaxy catalog from Sloan Digital Sky Survey (SDSS) Data Release (DR)12, we have found significant differences in their S -b b relations. This indicates that the mock galaxy catalog cannot accurately retain higher-order correlation functions than the two-point correlation function, which reveals the limit of the HAM method. As a new measurement, the S -b b relation is applicable to a wide range of data types, fast to compute, and robust against redshift distortion and incompleteness and contains information of all orders of correlation functions.

  10. An application of a discrete fixed point theorem to the Cournot model

    Sato, Junichi

    2008-01-01

    In this paper, we apply a discrete fixed point theorem of [7] to the Cournot model [1]. Then we can deal with the Cournot model where the production of the enterprises is discrete. To handle it, we define a discrete Cournot-Nash equilibrium, and prove its existence.

  11. ZS "Lejas Dandēni" attīstības iespējas

    Makars, Aigars

    2014-01-01

    Lai uzņēmums būtu konkurētspējīgs un iegūtu ilgtspējīgu attīstību, ir svarīgi izpētīt tā iekšējo un ārējo vidi, lai atklātu esošās problēmas, kas ietekmē uzņēmuma konkurētspēju un attīstības iespējas. Maģistra darba mērķis izstrādāt rīcības risinājumus tālākai ZS "Lejas Dandēni" konkurētspējas uzlabošanai un attīstībai. Lai sasniegtu maģistra darba mērķi, autors ir izvirzījis sekojošus uzdevumus - analizēt konkurētspējas teorētiskos aspektus, analizēt uzņēmuma iekšējo un ārējo vidi, veikt SV...

  12. Discrete Approximations of Determinantal Point Processes on Continuous Spaces: Tree Representations and Tail Triviality

    Osada, Hirofumi; Osada, Shota

    2018-01-01

    We prove tail triviality of determinantal point processes μ on continuous spaces. Tail triviality has been proved for such processes only on discrete spaces, and hence we have generalized the result to continuous spaces. To do this, we construct tree representations, that is, discrete approximations of determinantal point processes enjoying a determinantal structure. There are many interesting examples of determinantal point processes on continuous spaces such as zero points of the hyperbolic Gaussian analytic function with Bergman kernel, and the thermodynamic limit of eigenvalues of Gaussian random matrices for Sine_2 , Airy_2 , Bessel_2 , and Ginibre point processes. Our main theorem proves all these point processes are tail trivial.

  13. Feature Extraction from 3D Point Cloud Data Based on Discrete Curves

    Yi An

    2013-01-01

    Full Text Available Reliable feature extraction from 3D point cloud data is an important problem in many application domains, such as reverse engineering, object recognition, industrial inspection, and autonomous navigation. In this paper, a novel method is proposed for extracting the geometric features from 3D point cloud data based on discrete curves. We extract the discrete curves from 3D point cloud data and research the behaviors of chord lengths, angle variations, and principal curvatures at the geometric features in the discrete curves. Then, the corresponding similarity indicators are defined. Based on the similarity indicators, the geometric features can be extracted from the discrete curves, which are also the geometric features of 3D point cloud data. The threshold values of the similarity indicators are taken from [0,1], which characterize the relative relationship and make the threshold setting easier and more reasonable. The experimental results demonstrate that the proposed method is efficient and reliable.

  14. Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds.

    Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav

    2016-01-01

    The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.

  15. Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices

    Axelsson, Owe; Blaheta, Radim; Byczanski, Petr

    2012-01-01

    Roč. 15, č. 4 (2012), s. 191-207 ISSN 1432-9360 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : poroelasticity * saddle point matrices * preconditioning * stability of discretization Subject RIV: BA - General Mathematics http://link.springer.com/article/10.1007/s00791-013-0209-0

  16. Discrete Frenet frame, inflection point solitons, and curve visualization with applications to folded proteins

    Hu, Shuangwei; Lundgren, Martin; Niemi, Antti J.

    2011-06-01

    We develop a transfer matrix formalism to visualize the framing of discrete piecewise linear curves in three-dimensional space. Our approach is based on the concept of an intrinsically discrete curve. This enables us to more effectively describe curves that in the limit where the length of line segments vanishes approach fractal structures in lieu of continuous curves. We verify that in the case of differentiable curves the continuum limit of our discrete equation reproduces the generalized Frenet equation. In particular, we draw attention to the conceptual similarity between inflection points where the curvature vanishes and topologically stable solitons. As an application we consider folded proteins, their Hausdorff dimension is known to be fractal. We explain how to employ the orientation of Cβ carbons of amino acids along a protein backbone to introduce a preferred framing along the backbone. By analyzing the experimentally resolved fold geometries in the Protein Data Bank we observe that this Cβ framing relates intimately to the discrete Frenet framing. We also explain how inflection points (a.k.a. soliton centers) can be located in the loops and clarify their distinctive rôle in determining the loop structure of folded proteins.

  17. Time discretization of the point kinetic equations using matrix exponential method and First-Order Hold

    Park, Yujin; Kazantzis, Nikolaos; Parlos, Alexander G.; Chong, Kil To

    2013-01-01

    Highlights: • Numerical solution for stiff differential equations using matrix exponential method. • The approximation is based on First Order Hold assumption. • Various input examples applied to the point kinetics equations. • The method shows superior useful and effective activity. - Abstract: A system of nonlinear differential equations is derived to model the dynamics of neutron density and the delayed neutron precursors within a point kinetics equation modeling framework for a nuclear reactor. The point kinetic equations are mathematically characterized as stiff, occasionally nonlinear, ordinary differential equations, posing significant challenges when numerical solutions are sought and traditionally resulting in the need for smaller time step intervals within various computational schemes. In light of the above realization, the present paper proposes a new discretization method inspired by system-theoretic notions and technically based on a combination of the matrix exponential method (MEM) and the First-Order Hold (FOH) assumption. Under the proposed time discretization structure, the sampled-data representation of the nonlinear point kinetic system of equations is derived. The performance of the proposed time discretization procedure is evaluated using several case studies with sinusoidal reactivity profiles and multiple input examples (reactivity and neutron source function). It is shown, that by applying the proposed method under a First-Order Hold for the neutron density and the precursor concentrations at each time step interval, the stiffness problem associated with the point kinetic equations can be adequately addressed and resolved. Finally, as evidenced by the aforementioned detailed simulation studies, the proposed method retains its validity and accuracy for a wide range of reactor operating conditions, including large sampling periods dictated by physical and/or technical limitations associated with the current state of sensor and

  18. Numerical instability of time-discretized one-point kinetic equations

    Hashimoto, Kengo; Ikeda, Hideaki; Takeda, Toshikazu

    2000-01-01

    The one-point kinetic equations with numerical errors induced by the explicit, implicit and Crank-Nicolson integration methods are derived. The zero-power transfer functions based on the present equations are demonstrated to investigate the numerical stability of the discretized systems. These demonstrations indicate unconditional stability for the implicit and Crank-Nicolson methods but present the possibility of numerical instability for the explicit method. An upper limit of time mesh spacing for the stability is formulated and several numerical calculations are made to confirm the validity of this formula

  19. Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points

    Migliorati, Giovanni; Nobile, Fabio; Tempone, Raul

    2015-01-01

    We study the accuracy of the discrete least-squares approximation on a finite dimensional space of a real-valued target function from noisy pointwise evaluations at independent random points distributed according to a given sampling probability

  20. A Model Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete Point Linear Models

    2016-04-01

    AND ROTORCRAFT FROM DISCRETE -POINT LINEAR MODELS Eric L. Tobias and Mark B. Tischler Aviation Development Directorate Aviation and Missile...Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete -Point Linear Models 5...of discrete -point linear models and trim data. The model stitching simulation architecture is applicable to any aircraft configuration readily

  1. Discrete Model Predictive Control-Based Maximum Power Point Tracking for PV Systems: Overview and Evaluation

    Lashab, Abderezak; Sera, Dezso; Guerrero, Josep M.

    2018-01-01

    The main objective of this work is to provide an overview and evaluation of discrete model predictive controlbased maximum power point tracking (MPPT) for PV systems. A large number of MPC based MPPT methods have been recently introduced in the literature with very promising performance, however......, an in-depth investigation and comparison of these methods have not been carried out yet. Therefore, this paper has set out to provide an in-depth analysis and evaluation of MPC based MPPT methods applied to various common power converter topologies. The performance of MPC based MPPT is directly linked...... with the converter topology, and it is also affected by the accurate determination of the converter parameters, sensitivity to converter parameter variations is also investigated. The static and dynamic performance of the trackers are assessed according to the EN 50530 standard, using detailed simulation models...

  2. Dynamics in discrete two-dimensional nonlinear Schrödinger equations in the presence of point defects

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    The dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity and point impurities is taken into account. The stability properties...... of the stationary solutions are examined. The essential importance of the existence of stable immobile solitons in the two-dimensional dynamics of the traveling pulses is demonstrated. The typical scenario of the two-dimensional quasicollapse of a moving intense pulse represents the formation of standing trapped...... narrow spikes. The influence of the point impurities on this dynamics is also investigated....

  3. Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains

    Adler, V. E.

    2018-04-01

    We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.

  4. Generalized synchronization in discrete maps. New point of view on weak and strong synchronization

    Koronovskii, Alexey A.; Moskalenko, Olga I.; Shurygina, Svetlana A.; Hramov, Alexander E.

    2013-01-01

    In the present Letter we show that the concept of the generalized synchronization regime in discrete maps needs refining in the same way as it has been done for the flow systems Koronovskii et al. [Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors, phase tubes, and generalized synchronization. Phys Rev E 2011;84:037201]. We have shown that, in the general case, when the relationship between state vectors of the interacting chaotic maps are considered, the prehistory must be taken into account. We extend the phase tube approach to the systems with a discrete time coupled both unidirectionally and mutually and analyze the essence of the generalized synchronization by means of this technique. Obtained results show that the division of the generalized synchronization into the weak and the strong ones also must be reconsidered. Unidirectionally coupled logistic maps and Hénon maps coupled mutually are used as sample systems.

  5. Examining Passenger Flow Choke Points at Airports Using Discrete Event Simulation

    Brown, Jeremy R.; Madhavan, Poomima

    2011-01-01

    The movement of passengers through an airport quickly, safely, and efficiently is the main function of the various checkpoints (check-in, security. etc) found in airports. Human error combined with other breakdowns in the complex system of the airport can disrupt passenger flow through the airport leading to lengthy waiting times, missing luggage and missed flights. In this paper we present a model of passenger flow through an airport using discrete event simulation that will provide a closer look into the possible reasons for breakdowns and their implications for passenger flow. The simulation is based on data collected at Norfolk International Airport (ORF). The primary goal of this simulation is to present ways to optimize the work force to keep passenger flow smooth even during peak travel times and for emergency preparedness at ORF in case of adverse events. In this simulation we ran three different scenarios: real world, increased check-in stations, and multiple waiting lines. Increased check-in stations increased waiting time and instantaneous utilization. while the multiple waiting lines decreased both the waiting time and instantaneous utilization. This simulation was able to show how different changes affected the passenger flow through the airport.

  6. Applications of a Sequence of Points in Teaching Linear Algebra, Numerical Methods and Discrete Mathematics

    Shi, Yixun

    2009-01-01

    Based on a sequence of points and a particular linear transformation generalized from this sequence, two recent papers (E. Mauch and Y. Shi, "Using a sequence of number pairs as an example in teaching mathematics". Math. Comput. Educ., 39 (2005), pp. 198-205; Y. Shi, "Case study projects for college mathematics courses based on a particular…

  7. Discrete-event simulation of coordinated multi-point joint transmission in LTE-Advanced with constrained backhaul

    Artuso, Matteo; Christiansen, Henrik Lehrmann

    2014-01-01

    Inter-cell interference in LTE-Advanced can be mitigated using coordinated multi-point (CoMP) techniques with joint transmission of user data . However, this requires tight coordination of the eNodeBs, usin g the X2 interface. In this paper we use discrete-event simulation to evaluate the latency...... requirements for the X2 interface and investigate the consequences of a constrained ba ckhaul. Our simulation results show a gain of the system throug hput of up to 120% compared to the case without CoMP for low-latency backhaul. With X2 latencies above 5 ms CoMP is no longer a benefit to the network....

  8. The Predominance Of Integrative Tests Over Discrete Point Tests In Evaluating The Medical Students' General English Knowledge

    maryam Heydarpour Meymeh

    2009-03-01

    Full Text Available Background and purpose: Multiple choice tests are the most common type of tests used in evaluating the general English knowledge of the students in most medical universities, however the efficacy of these tests are not examined precisely. Wecompare and examine the integrative tests and discrete point tests as measures of the English language knowledge of medical students.Methods: Three tests were given to 60 undergraduate physiotherapy and Audiology students in their second year of study (after passing their general English course. They were divided into 2 groups.The first test for both groups was an integrative test, writing. The second test was a multiple - choice test 0.(prepositions for group one and a multiple - choice test of tensesfor group two. The same items which were mostfi-equently used wrongly in thefirst test were used in the items of the second test. A third test, a TOEFL, was given to the subjects in order to estimate the correlation between this test and tests one and two.Results: The students performed better in the second test, discrete point test rather than the first which was an integrative test. The same grammatical mistakes in the composition were used correctly in the multiple choice tests by the students.Conclusion:Our findings show that student perform better in non-productive rather than productive test. Since being competent English language user is an expected outcome of university language courses it seems warranted to switch to integrative tests as a measure of English language competency.Keywords: INTEGRATIVE TESTS, ENGLISH LANGUAGE FOR MEDICINE, ACADEMIC ENGLISH

  9. Convergence estimates in probability and in expectation for discrete least squares with noisy evaluations at random points

    Migliorati, Giovanni

    2015-08-28

    We study the accuracy of the discrete least-squares approximation on a finite dimensional space of a real-valued target function from noisy pointwise evaluations at independent random points distributed according to a given sampling probability measure. The convergence estimates are given in mean-square sense with respect to the sampling measure. The noise may be correlated with the location of the evaluation and may have nonzero mean (offset). We consider both cases of bounded or square-integrable noise / offset. We prove conditions between the number of sampling points and the dimension of the underlying approximation space that ensure a stable and accurate approximation. Particular focus is on deriving estimates in probability within a given confidence level. We analyze how the best approximation error and the noise terms affect the convergence rate and the overall confidence level achieved by the convergence estimate. The proofs of our convergence estimates in probability use arguments from the theory of large deviations to bound the noise term. Finally we address the particular case of multivariate polynomial approximation spaces with any density in the beta family, including uniform and Chebyshev.

  10. A Comparison of Vibroacoustic Response of Isotropic Plate with Attached Discrete Patches and Point Masses Having Different Thickness Variation with Different Taper Ratios

    Bipin Kumar

    2016-01-01

    Full Text Available A comparison of sound radiation behavior of plate in air medium with attached discrete patches/point masses having different thickness variations with different taper ratio of 0.3, 0.6, and 0.9 is analysed. Finite element method is used to find the vibration characteristics while Rayleigh integral is used to predict the sound radiation characteristics. Minimum peak sound power level obtained is at a taper ratio of 0.6 with parabolic increasing-decreasing thickness variation for plate with four discrete patches. At higher taper ratio, linearly increasing-decreasing thickness variation is another alternative for minimum peak sound power level suppression with discrete patches. It is found that, in low frequency range, average radiation efficiency remains almost the same, but near first peak, four patches or four point masses cause increase in average radiation efficiency; that is, redistribution of point masses/patches does have effect on average radiation efficiency at a given taper ratio.

  11. Comprehensive Interpretation of a Three-Point Gauss Quadrature with Variable Sampling Points and Its Application to Integration for Discrete Data

    Young-Doo Kwon

    2013-01-01

    Full Text Available This study examined the characteristics of a variable three-point Gauss quadrature using a variable set of weighting factors and corresponding optimal sampling points. The major findings were as follows. The one-point, two-point, and three-point Gauss quadratures that adopt the Legendre sampling points and the well-known Simpson’s 1/3 rule were found to be special cases of the variable three-point Gauss quadrature. In addition, the three-point Gauss quadrature may have out-of-domain sampling points beyond the domain end points. By applying the quadratically extrapolated integrals and nonlinearity index, the accuracy of the integration could be increased significantly for evenly acquired data, which is popular with modern sophisticated digital data acquisition systems, without using higher-order extrapolation polynomials.

  12. Benchmarking of EPRI-cell epithermal methods with the point-energy discrete-ordinates code (OZMA)

    Williams, M.L.; Wright, R.Q.; Barhen, J.; Rothenstein, W.

    1982-01-01

    The purpose of the present study is to benchmark E-C resonance-shielding and cell-averaging methods against a rigorous deterministic solution on a fine-group level (approx. 30 groups between 1 eV and 5.5 keV). The benchmark code used is OZMA, which solves the space-dependent slowing-down equations using continuous-energy discrete ordinates or integral transport theory to produce fine-group cross sections. Results are given for three water-moderated lattices - a mixed oxide, a uranium method, and a tight-pitch high-conversion uranium oxide configuration. The latter two lattices were chosen because of the strong self shielding of the 238 U resonances

  13. Discrete-time market models from the small investor point of view and the first fundamental-type theorem

    Marek Karaś

    2017-12-01

    Full Text Available In this paper, we discuss the no-arbitrage condition in a discrete financial market model which does not hold the same interest rate assumptions. Our research was based on, essentially, one of the most important results in mathematical finance, called the Fundamental Theorem of Asset Pricing. For the standard approach a risk-free bank account process is used as numeraire. In those models it is assumed that the interest rates for borrowing and saving money are the same. In our paper we consider the model of a market (with d risky assets, which does not hold the same interest rate assumptions. We introduce two predictable processes for modelling deposits and loans. We propose a new concept of a martingale pair for the market and prove that if there exists a martingale pair for the considered market, then there is no arbitrage opportunity. We also consider special cases in which the existence of a martingale pair is necessary and the sufficient conditions for these markets to be arbitrage free

  14. Numerical methods for finding periodic points in discrete maps. High order islands chains and noble barriers in a toroidal magnetic configuration

    Steinbrecher, G. [Association Euratom-Nasti Romania, Dept. of Theoretical Physics, Physics Faculty, University of Craiova (Romania); Reuss, J.D.; Misguich, J.H. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2001-11-01

    We first remind usual physical and mathematical concepts involved in the dynamics of Hamiltonian systems, and namely in chaotic systems described by discrete 2D maps (representing the intersection points of toroidal magnetic lines in a poloidal plane in situations of incomplete magnetic chaos in Tokamaks). Finding the periodic points characterizing chains of magnetic islands is an essential step not only to determine the skeleton of the phase space picture, but also to determine the flux of magnetic lines across semi-permeable barriers like Cantori. We discuss here several computational methods used to determine periodic points in N dimensions, which amounts to solve a set of N nonlinear coupled equations: Newton method, minimization techniques, Laplace or steepest descend method, conjugated direction method and Fletcher-Reeves method. We have succeeded to improve this last method in an important way, without modifying its useful double-exponential convergence. This improved method has been tested and applied to finding periodic points of high order m in the 2D 'Tokamap' mapping, for values of m along rational chains of winding number n/m converging towards a noble value where a Cantorus exists. Such precise positions of periodic points have been used in the calculation of the flux across this Cantorus. (authors)

  15. Development of discrete choice model considering internal reference points and their effects in travel mode choice context

    Sarif; Kurauchi, Shinya; Yoshii, Toshio

    2017-06-01

    In the conventional travel behavior models such as logit and probit, decision makers are assumed to conduct the absolute evaluations on the attributes of the choice alternatives. On the other hand, many researchers in cognitive psychology and marketing science have been suggesting that the perceptions of attributes are characterized by the benchmark called “reference points” and the relative evaluations based on them are often employed in various choice situations. Therefore, this study developed a travel behavior model based on the mental accounting theory in which the internal reference points are explicitly considered. A questionnaire survey about the shopping trip to the CBD in Matsuyama city was conducted, and then the roles of reference points in travel mode choice contexts were investigated. The result showed that the goodness-of-fit of the developed model was higher than that of the conventional model, indicating that the internal reference points might play the major roles in the choice of travel mode. Also shown was that the respondents seem to utilize various reference points: some tend to adopt the lowest fuel price they have experienced, others employ fare price they feel in perceptions of the travel cost.

  16. Determination of point isotropic buildup factors of gamma rays including incoherent and coherent scattering for aluminum, iron, lead, and water by discrete ordinates method

    Kitsos, S.; Assad, A.; Diop, C.M.; Nimal, J.C.

    1994-01-01

    Exposure and energy absorption buildup factors for aluminum, iron, lead, and water are calculated by the SNID discrete ordinates code for an isotropic point source in a homogeneous medium. The calculation of the buildup factors takes into account the effects of both bound-electron Compton (incoherent) and coherent (Rayleigh) scattering. A comparison with buildup factors from the literature shows that these two effects greatly increase the buildup factors for energies below a few hundred kilo-electron-volts, and thus the new results are improved relative to the experiment. This greater accuracy is due to the increase in the linear attenuation coefficient, which leads to the calculation of the buildup factors for a mean free path with a smaller shield thickness. On the other hand, for the same shield thickness, exposure increases when only incoherent scattering is included and decreases when only coherent scattering is included, so that the exposure finally decreases when both effects are included. Great care must also be taken when checking the approximations for gamma-ray deep-penetration transport calculations, as well as for the cross-section treatment and origin

  17. Homogenization of discrete media

    Pradel, F.; Sab, K.

    1998-01-01

    Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.)

  18. A paradigm for discrete physics

    Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.

    1987-01-01

    An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity

  19. Discrete Mathematics

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  20. Discrete Mathematics

    Sørensen, John Aasted

    2011-01-01

    ; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics...... to new problems. Relations and functions: Define a product set; define and apply equivalence relations; construct and apply functions. Apply these concepts to new problems. Natural numbers and induction: Define the natural numbers; apply the principle of induction to verify a selection of properties...

  1. Digital Discretion

    Busch, Peter Andre; Zinner Henriksen, Helle

    2018-01-01

    discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...

  2. Discrete fractional calculus

    Goodrich, Christopher

    2015-01-01

    This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...

  3. Discrete Mathematics

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...

  4. Discrete Mathematics

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...

  5. Integrable structure in discrete shell membrane theory.

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  6. Homogenization of discrete media

    Pradel, F.; Sab, K. [CERAM-ENPC, Marne-la-Vallee (France)

    1998-11-01

    Material such as granular media, beam assembly are easily seen as discrete media. They look like geometrical points linked together thanks to energetic expressions. Our purpose is to extend discrete kinematics to the one of an equivalent continuous material. First we explain how we build the localisation tool for periodic materials according to estimated continuum medium type (classical Cauchy, and Cosserat media). Once the bridge built between discrete and continuum media, we exhibit its application over two bidimensional beam assembly structures : the honey comb and a structural reinforced variation. The new behavior is then applied for the simple plan shear problem in a Cosserat continuum and compared with the real discrete solution. By the mean of this example, we establish the agreement of our new model with real structures. The exposed method has a longer range than mechanics and can be applied to every discrete problems like electromagnetism in which relationship between geometrical points can be summed up by an energetic function. (orig.) 7 refs.

  7. Discrete mechanics

    Caltagirone, Jean-Paul

    2014-01-01

    This book presents the fundamental principles of mechanics to re-establish the equations of Discrete Mechanics. It introduces physics and thermodynamics associated to the physical modeling.  The development and the complementarity of sciences lead to review today the old concepts that were the basis for the development of continuum mechanics. The differential geometry is used to review the conservation laws of mechanics. For instance, this formalism requires a different location of vector and scalar quantities in space. The equations of Discrete Mechanics form a system of equations where the H

  8. Discrete mechanics

    Lee, T.D.

    1985-01-01

    This paper reviews the role of time throughout all phases of mechanics: classical mechanics, non-relativistic quantum mechanics, and relativistic quantum theory. As an example of the relativistic quantum field theory, the case of a massless scalar field interacting with an arbitrary external current is discussed. The comparison between the new discrete theory and the usual continuum formalism is presented. An example is given of a two-dimensional random lattice and its duel. The author notes that there is no evidence that the discrete mechanics is more appropriate than the usual continuum mechanics

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship FAIRWEATHER and POINT SUR in the Columbia River estuary - Washington/Oregon, Gulf of the Farallones National Marine Sanctuary and others from 2013-08-03 to 2013-08-29 (NCEI Accession 0157622)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157622 includes biological, chemical, discrete sample, physical and profile data collected from NOAA Ship FAIRWEATHER and POINT SUR in the Columbia...

  10. Discrete systems and integrability

    Hietarinta, J; Nijhoff, F W

    2016-01-01

    This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...

  11. Discrete optimization

    Parker, R Gary

    1988-01-01

    This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas o

  12. Discrete gradients in discrete classical mechanics

    Renna, L.

    1987-01-01

    A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated

  13. Perfect discretization of path integrals

    Steinhaus, Sebastian

    2012-01-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.

  14. Perfect discretization of path integrals

    Steinhaus, Sebastian

    2012-05-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.

  15. Perfect discretization of path integrals

    Steinhaus, Sebastian

    2011-01-01

    In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discu...

  16. Discrete transforms

    Firth, Jean M

    1992-01-01

    The analysis of signals and systems using transform methods is a very important aspect of the examination of processes and problems in an increasingly wide range of applications. Whereas the initial impetus in the development of methods appropriate for handling discrete sets of data occurred mainly in an electrical engineering context (for example in the design of digital filters), the same techniques are in use in such disciplines as cardiology, optics, speech analysis and management, as well as in other branches of science and engineering. This text is aimed at a readership whose mathematical background includes some acquaintance with complex numbers, linear differen­ tial equations, matrix algebra, and series. Specifically, a familiarity with Fourier series (in trigonometric and exponential forms) is assumed, and an exposure to the concept of a continuous integral transform is desirable. Such a background can be expected, for example, on completion of the first year of a science or engineering degree cour...

  17. Discrete Curvatures and Discrete Minimal Surfaces

    Sun, Xiang

    2012-01-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads

  18. Limit sets for the discrete spectrum of complex Jacobi matrices

    Golinskii, L B; Egorova, I E

    2005-01-01

    The discrete spectrum of complex Jacobi matrices that are compact perturbations of the discrete Laplacian is studied. The precise stabilization rate (in the sense of order) of the matrix elements ensuring the finiteness of the discrete spectrum is found. An example of a Jacobi matrix with discrete spectrum having a unique limit point is constructed. These results are discrete analogues of Pavlov's well-known results on Schroedinger operators with complex potential on a half-axis.

  19. Discrete Curvatures and Discrete Minimal Surfaces

    Sun, Xiang

    2012-06-01

    This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied. The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes. As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.

  20. Fermion systems in discrete space-time

    Finster, Felix

    2007-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure

  1. Fermion systems in discrete space-time

    Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-05-15

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  2. Fermion Systems in Discrete Space-Time

    Finster, Felix

    2006-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  3. Fermion systems in discrete space-time

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  4. Chaotic properties between the nonintegrable discrete nonlinear Schroedinger equation and a nonintegrable discrete Heisenberg model

    Ding Qing

    2007-01-01

    We prove that the integrable-nonintegrable discrete nonlinear Schroedinger equation (AL-DNLS) introduced by Cai, Bishop and Gronbech-Jensen (Phys. Rev. Lett. 72 591(1994)) is the discrete gauge equivalent to an integrable-nonintegrable discrete Heisenberg model from the geometric point of view. Then we study whether the transmission and bifurcation properties of the AL-DNLS equation are preserved under the action of discrete gauge transformations. Our results reveal that the transmission property of the AL-DNLS equation is completely preserved and the bifurcation property is conditionally preserved to those of the integrable-nonintegrable discrete Heisenberg model

  5. Current Density and Continuity in Discretized Models

    Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…

  6. Finite discrete field theory

    Souza, Manoelito M. de

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of implementation in classical field theories. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the light cone; a finite and consistent field theory requires a light-cone generator as the field support. Then, we introduce a classical field theory with support on the light cone generators. It results on a description of discrete (point-like) interactions in terms of localized particle-like fields. We find the propagators of these particle-like fields and discuss their physical meaning, properties and consequences. They are conformally invariant, singularity-free, and describing a manifestly covariant (1 + 1)-dimensional dynamics in a (3 = 1) spacetime. Remarkably this conformal symmetry remains even for the propagation of a massive field in four spacetime dimensions. We apply this formalism to Classical electrodynamics and to the General Relativity Theory. The standard formalism with its distributed fields is retrieved in terms of spacetime average of the discrete field. Singularities are the by-products of the averaging process. This new formalism enlighten the meaning and the problem of field theory, and may allow a softer transition to a quantum theory. (author)

  7. Mimetic discretization methods

    Castillo, Jose E

    2013-01-01

    To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and

  8. Time Discretization Techniques

    Gottlieb, S.; Ketcheson, David I.

    2016-01-01

    The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include

  9. A Variational Approach to Perturbed Discrete Anisotropic Equations

    Amjad Salari

    2016-01-01

    Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.

  10. Process algebra with timing : real time and discrete time

    Baeten, J.C.M.; Middelburg, C.A.; Bergstra, J.A.; Ponse, A.J.; Smolka, S.A.

    2001-01-01

    We present real time and discrete time versions of ACP with absolute timing and relative timing. The starting-point is a new real time version with absolute timing, called ACPsat, featuring urgent actions and a delay operator. The discrete time versions are conservative extensions of the discrete

  11. Discretization of four types of Weyl group orbit functions

    Hrivnák, Jiří

    2013-01-01

    The discrete Fourier calculus of the four families of special functions, called C–, S–, S s – and S l -functions, is summarized. Functions from each of the four families of special functions are discretely orthogonal over a certain finite set of points. The generalizations of discrete cosine and sine transforms of one variable — the discrete S s – and S l -transforms of the group F 4 — are considered in detail required for their exploitation in discrete Fourier spectral methods. The continuous interpolations, induced by the discrete expansions, are presented

  12. Spatially localized, temporally quasiperiodic, discrete nonlinear excitations

    Cai, D.; Bishop, A.R.; Gronbech-Jensen, N.

    1995-01-01

    In contrast to the commonly discussed discrete breather, which is a spatially localized, time-periodic solution, we present an exact solution of a discrete nonlinear Schroedinger breather which is a spatially localized, temporally quasiperiodic nonlinear coherent excitation. This breather is a multiple-soliton solution in the sense of the inverse scattering transform. A discrete breather of multiple frequencies is conceptually important in studies of nonlinear lattice systems. We point out that, for this breather, the incommensurability of its frequencies is a discrete lattice effect and these frequencies become commensurate in the continuum limit. To understand the dynamical properties of the breather, we also discuss its stability and its behavior in the presence of an external potential. Finally, we indicate how to obtain an exact N-soliton breather as a discrete generalization of the continuum multiple-soliton solution

  13. Discrete approximations to vector spin models

    Van Enter, Aernout C D [University of Groningen, Johann Bernoulli Institute of Mathematics and Computing Science, Postbus 407, 9700 AK Groningen (Netherlands); Kuelske, Christof [Ruhr-Universitaet Bochum, Fakultaet fuer Mathematik, D44801 Bochum (Germany); Opoku, Alex A, E-mail: A.C.D.v.Enter@math.rug.nl, E-mail: Christof.Kuelske@ruhr-uni-bochum.de, E-mail: opoku@math.leidenuniv.nl [Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA, Leiden (Netherlands)

    2011-11-25

    We strengthen a result from Kuelske and Opoku (2008 Electron. J. Probab. 13 1307-44) on the existence of effective interactions for discretized continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretizing continuous-spin models, and show that except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions. (paper)

  14. Discrete approximations to vector spin models

    Van Enter, Aernout C D; Külske, Christof; Opoku, Alex A

    2011-01-01

    We strengthen a result from Külske and Opoku (2008 Electron. J. Probab. 13 1307–44) on the existence of effective interactions for discretized continuous-spin models. We also point out that such an interaction cannot exist at very low temperatures. Moreover, we compare two ways of discretizing continuous-spin models, and show that except for very low temperatures, they behave similarly in two dimensions. We also discuss some possibilities in higher dimensions. (paper)

  15. Discrete energy formulation of neutron transport theory applied to solving the discrete ordinates equations

    Ching, J.; Oblow, E.M.; Goldstein, H.

    1976-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated that allows the development of a discrete energy, discrete ordinates method for the solution of radiation transport problems. In the discrete energy method, the group averaging required in the cross-section processing for multigroup calculations is replaced by a faster numerical quadrature scheme capable of generating transfer cross sections describing all the physical processes of interest on a fine point-energy grid. Test calculations in which the discrete energy method is compared with the multigroup method show that, for the same energy grid, the discrete energy method is much faster, although somewhat less accurate, than the multigroup method. However, the accuracy of the discrete energy method increases rapidly as the spacing between energy grid points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum, the discrete energy method is therefore expected to be far more economical than the multigroup technique for equivalent accuracy solutions. This advantage of the point method is demonstrated by application to the study of neutron transport in a thick iron slab

  16. Current density and continuity in discretized models

    Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.

  17. Domain Discretization and Circle Packings

    Dias, Kealey

    A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...... and constrained meshes having predefined vertices as constraints. A standard method of two-dimensional mesh generation involves conformal mapping of the surface or domain to standardized shapes, such as a disk. Since circle packing is a new technique for constructing discrete conformal mappings, it is possible...

  18. Baecklund transformations for discrete Painleve equations: Discrete PII-PV

    Sakka, A.; Mugan, U.

    2006-01-01

    Transformation properties of discrete Painleve equations are investigated by using an algorithmic method. This method yields explicit transformations which relates the solutions of discrete Painleve equations, discrete P II -P V , with different values of parameters. The particular solutions which are expressible in terms of the discrete analogue of the classical special functions of discrete Painleve equations can also be obtained from these transformations

  19. Discrete Gabor transform and discrete Zak transform

    Bastiaans, M.J.; Namazi, N.M.; Matthews, K.

    1996-01-01

    Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal or synthesis window is introduced, along with the inverse operation, i.e. the Gabor transform, which uses an analysis window that is related to the synthesis window and with the help of

  20. Discrete Mathematics Re "Tooled."

    Grassl, Richard M.; Mingus, Tabitha T. Y.

    1999-01-01

    Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)

  1. Discrete density of states

    Aydin, Alhun; Sisman, Altug

    2016-01-01

    By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.

  2. Discrete density of states

    Aydin, Alhun; Sisman, Altug, E-mail: sismanal@itu.edu.tr

    2016-03-22

    By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic. - Highlights: • Discrete density of states considering minimum energy difference is proposed. • Analytical DOS and NOS formulas based on Weyl conjecture are given. • Discrete DOS and NOS functions are examined for various dimensions. • Relative errors of analytical formulas are much better than the conventional ones.

  3. Discrete control systems

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  4. Discrete repulsive oscillator wavefunctions

    Munoz, Carlos A; Rueda-Paz, Juvenal; Wolf, Kurt Bernardo

    2009-01-01

    For the study of infinite discrete systems on phase space, the three-dimensional Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of the repulsive oscillator. Its eigenfunctions are found in the principal irreducible representation series, where the compact generator-that we identify with the position operator-has the infinite discrete spectrum of the integers Z, while the spectrum of energies is a double continuum. The right- and left-moving wavefunctions are given by hypergeometric functions that form a Dirac basis for l 2 (Z). Under contraction, the discrete system limits to the well-known quantum repulsive oscillator. Numerical computations of finite approximations raise further questions on the use of Dirac bases for infinite discrete systems.

  5. Discrete Element Modeling

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  6. Compatible Spatial Discretizations for Partial Differential Equations

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  7. Discrete Calculus by Analogy

    Izadi, F A; Bagirov, G

    2009-01-01

    With its origins stretching back several centuries, discrete calculus is now an increasingly central methodology for many problems related to discrete systems and algorithms. The topics covered here usually arise in many branches of science and technology, especially in discrete mathematics, numerical analysis, statistics and probability theory as well as in electrical engineering, but our viewpoint here is that these topics belong to a much more general realm of mathematics; namely calculus and differential equations because of the remarkable analogy of the subject to this branch of mathemati

  8. Finite Discrete Gabor Analysis

    Søndergaard, Peter Lempel

    2007-01-01

    frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...

  9. Adaptive Discrete Hypergraph Matching.

    Yan, Junchi; Li, Changsheng; Li, Yin; Cao, Guitao

    2018-02-01

    This paper addresses the problem of hypergraph matching using higher-order affinity information. We propose a solver that iteratively updates the solution in the discrete domain by linear assignment approximation. The proposed method is guaranteed to converge to a stationary discrete solution and avoids the annealing procedure and ad-hoc post binarization step that are required in several previous methods. Specifically, we start with a simple iterative discrete gradient assignment solver. This solver can be trapped in an -circle sequence under moderate conditions, where is the order of the graph matching problem. We then devise an adaptive relaxation mechanism to jump out this degenerating case and show that the resulting new path will converge to a fixed solution in the discrete domain. The proposed method is tested on both synthetic and real-world benchmarks. The experimental results corroborate the efficacy of our method.

  10. Discrete quantum gravity

    Williams, Ruth M

    2006-01-01

    A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday

  11. Discrete computational structures

    Korfhage, Robert R

    1974-01-01

    Discrete Computational Structures describes discrete mathematical concepts that are important to computing, covering necessary mathematical fundamentals, computer representation of sets, graph theory, storage minimization, and bandwidth. The book also explains conceptual framework (Gorn trees, searching, subroutines) and directed graphs (flowcharts, critical paths, information network). The text discusses algebra particularly as it applies to concentrates on semigroups, groups, lattices, propositional calculus, including a new tabular method of Boolean function minimization. The text emphasize

  12. Discrete expansions of continuum wave functions

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1980-01-01

    Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type. (orig.)

  13. Discrete dislocation modelling of submicron indentation

    Widjaja, A; Van der Giessen, E; Needleman, A

    2005-01-01

    Indentation of a planar single crystal by a circular rigid indenter is analyzed using discrete dislocation plasticity. The crystal has three slip systems and is initially dislocation-free, but edge dislocations can nucleate from point sources inside the crystal. The lattice resistance to dislocation

  14. Gauge origin of discrete flavor symmetries in heterotic orbifolds

    Florian Beye

    2014-09-01

    Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.

  15. A study of discrete nonlinear systems

    Dhillon, H.S.

    2001-04-01

    An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)

  16. Non-Lipschitz Dynamics Approach to Discrete Event Systems

    Zak, M.; Meyers, R.

    1995-01-01

    This paper presents and discusses a mathematical formalism for simulation of discrete event dynamics (DED) - a special type of 'man- made' system designed to aid specific areas of information processing. A main objective is to demonstrate that the mathematical formalism for DED can be based upon the terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.

  17. DISCRETE MATHEMATICS/NUMBER THEORY

    Mrs. Manju Devi*

    2017-01-01

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics such as integers, graphs, and statements do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by ...

  18. Discrete-Event Simulation

    Prateek Sharma

    2015-04-01

    Full Text Available Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of events in time. So this paper aims at introducing about Discrete-Event Simulation and analyzing how it is beneficial to the real world systems.

  19. Discrete Sparse Coding.

    Exarchakis, Georgios; Lücke, Jörg

    2017-11-01

    Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.

  20. Discretization-induced delays and their role in the dynamics

    Ramani, A; Grammaticos, B; Satsuma, J; Willox, R

    2008-01-01

    We show that a discretization of a continuous system may entail 'hidden' delays and thus introduce instabilities. In this case, while the continuous system has an attractive fixed point, the instabilities present in the equivalent discrete one may lead to the appearance of a limit cycle. We explain that it is possible, thanks to the proper staggering of the discrete variables, to eliminate the hidden delay. However, in general, other instabilities may appear in the discrete system which can even lead to chaotic behaviour

  1. Mathematical aspects of the discrete space-time hypothesis

    Sardanashvili, G.A.

    1979-01-01

    A hypothesis of a microcosm space discreteness is considered from the theoretical-mathematical point of view. The type of topological spaces, which formalizes representations on the discrete space-time, is determined. It is explained, how these spaces arise in physical models. The physical task, in which the discrete space could arise as a version of its solution, is considered. It is shown that the discrete structure of space can arise with a certain interaction type in the system, for example, with its considerable self-shielding, which can take place, in particular, in the particles or in the cosmological and astrophysical singularities

  2. Introductory discrete mathematics

    Balakrishnan, V K

    2010-01-01

    This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv

  3. Discrete-Event Simulation

    Prateek Sharma

    2015-01-01

    Abstract Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the generation of the history of a system and then analyzing that history to predict the outcome and improve the working of real systems. Simulations can be of various kinds but the topic of interest here is one of the most important kind of simulation which is Discrete-Event Simulation which models the system as a discrete sequence of ev...

  4. Semiclassical expanding discrete space-times

    Cobb, W.K.; Smalley, L.L.

    1981-01-01

    Given the close ties between general relativity and geometry one might reasonably expect that quantum effects associated with gravitation might also be tied to the geometry of space-time, namely, to some sort of discreteness in space-time itself. In particular it is supposed that space-time consists of a discrete lattice of points rather than the usual continuum. Since astronomical evidence seems to suggest that the universe is expanding, the lattice must also expand. Some of the implications of such a model are that the proton should presently be stable, and the universe should be closed although the mechanism for closure is quantum mechanical. (author)

  5. Discretizing the transcritical and pitchfork bifurcations – conjugacy results

    Ló czi, Lajos

    2015-01-01

    © 2015 Taylor & Francis. We present two case studies in one-dimensional dynamics concerning the discretization of transcritical (TC) and pitchfork (PF) bifurcations. In the vicinity of a TC or PF bifurcation point and under some natural assumptions

  6. Existence results for anisotropic discrete boundary value problems

    Avci Avci

    2016-06-01

    Full Text Available In this article, we prove the existence of nontrivial weak solutions for a class of discrete boundary value problems. The main tools used here are the variational principle and critical point theory.

  7. Discrete-Time Systems

    We also describe discrete-time systems in terms of difference ... A more modern alternative, especially for larger systems, is to convert ... In other words, ..... picture?) State-variable equations are also called state-space equations because the ...

  8. Discrete Lorentzian quantum gravity

    Loll, R.

    2000-01-01

    Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated

  9. What Is Discrete Mathematics?

    Sharp, Karen Tobey

    This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…

  10. Discrete geometric structures for architecture

    Pottmann, Helmut

    2010-06-13

    The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This

  11. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2017-01-01

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy

  12. Natural Preconditioning and Iterative Methods for Saddle Point Systems

    Pestana, Jennifer; Wathen, Andrew J.

    2015-01-01

    or the discrete setting, so saddle point systems arising from the discretization of partial differential equation problems, such as those describing electromagnetic problems or incompressible flow, lead to equations with this structure, as do, for example

  13. Discrete mKdV and discrete sine-Gordon flows on discrete space curves

    Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro

    2014-01-01

    In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformation on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym–Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces. (paper)

  14. Generalised discrete torsion and mirror symmetry for G2 manifolds

    Gaberdiel, Matthias R.; Kaste, Peter

    2004-01-01

    A generalisation of discrete torsion is introduced in which different discrete torsion phases are considered for the different fixed points or twist fields of a twisted sector. The constraints that arise from modular invariance are analysed carefully. As an application we show how all the different resolutions of the T 7 /Z 2 3 orbifold of Joyce have an interpretation in terms of such generalised discrete torsion orbifolds. Furthermore, we show that these manifolds are pairwise identified under G 2 mirror symmetry. From a conformal field theory point of view, this mirror symmetry arises from an automorphism of the extended chiral algebra of the G 2 compactification. (author)

  15. Discrete mathematics with applications

    Koshy, Thomas

    2003-01-01

    This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects*...

  16. Discrete and computational geometry

    Devadoss, Satyan L

    2011-01-01

    Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulations, curve reconstruction, and locked chains. It also touches on more advanced material, including Dehn invariants, associahedra, quasigeodesics, Morse theory, and the recent resolution of the Poincaré conjecture. Connections to real-world applications are made throughout, and algorithms are presented independently of any programming language. This richly illustrated textbook also fe...

  17. Lectures on discrete geometry

    2002-01-01

    Discrete geometry investigates combinatorial properties of configurations of geometric objects. To a working mathematician or computer scientist, it offers sophisticated results and techniques of great diversity and it is a foundation for fields such as computational geometry or combinatorial optimization. This book is primarily a textbook introduction to various areas of discrete geometry. In each area, it explains several key results and methods, in an accessible and concrete manner. It also contains more advanced material in separate sections and thus it can serve as a collection of surveys in several narrower subfields. The main topics include: basics on convex sets, convex polytopes, and hyperplane arrangements; combinatorial complexity of geometric configurations; intersection patterns and transversals of convex sets; geometric Ramsey-type results; polyhedral combinatorics and high-dimensional convexity; and lastly, embeddings of finite metric spaces into normed spaces. Jiri Matousek is Professor of Com...

  18. Time Discretization Techniques

    Gottlieb, S.

    2016-10-12

    The time discretization of hyperbolic partial differential equations is typically the evolution of a system of ordinary differential equations obtained by spatial discretization of the original problem. Methods for this time evolution include multistep, multistage, or multiderivative methods, as well as a combination of these approaches. The time step constraint is mainly a result of the absolute stability requirement, as well as additional conditions that mimic physical properties of the solution, such as positivity or total variation stability. These conditions may be required for stability when the solution develops shocks or sharp gradients. This chapter contains a review of some of the methods historically used for the evolution of hyperbolic PDEs, as well as cutting edge methods that are now commonly used.

  19. Discrete Symmetries Analysis and Exact Solutions of the Inviscid Burgers Equation

    Hongwei Yang

    2012-01-01

    Full Text Available We discuss the Lie point symmetries and discrete symmetries of the inviscid Burgers equation. By employing the Lie group method of infinitesimal transformations, symmetry reductions and similarity solutions of the governing equation are given. Based on discrete symmetries analysis, two groups of discrete symmetries are obtained, which lead to new exact solutions of the inviscid Burgers equation.

  20. Discrete pseudo-integrals

    Mesiar, Radko; Li, J.; Pap, E.

    2013-01-01

    Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo-multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals.pdf

  1. Discrete variational Hamiltonian mechanics

    Lall, S; West, M

    2006-01-01

    The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms

  2. Discrete Routh reduction

    Jalnapurkar, Sameer M; Leok, Melvin; Marsden, Jerrold E; West, Matthew

    2006-01-01

    This paper develops the theory of Abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with Abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J 2 correction, as well as the double spherical pendulum. The J 2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a non-trivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the non-canonical nature of the symplectic structure

  3. Discrete port-Hamiltonian systems

    Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der

    2006-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  4. Discrete approach to complex planar geometries

    Cupini, E.; De Matteis, A.

    1974-01-01

    Planar regions in Monte Carlo transport problems have been represented by a finite set of points with a corresponding region index for each. The simulation of particle free-flight reduces then to the simple operations necessary for scanning appropriate grid points to determine whether a region other than the starting one is encountered. When the complexity of the geometry is restricted to only some regions of the assembly examined, a mixed discrete-continuous philosophy may be adopted. By this approach, the lattice of a thermal reactor has been treated, discretizing only the central regions of the cell containing the fuel rods. Excellent agreement with experimental results has been obtained in the computation of cell parameters in the energy range from fission to thermalization through the 238 U resonance region. (U.S.)

  5. Discrete variable theory of triatomic photodissociation

    Heather, R.W.; Light, J.C.

    1983-01-01

    The coupled equations describing the photodissociation process are expressed in the discrete variable representation (DVR) in which the coupled equations are labeled by quadrature points rather than by internal basis functions. A large reduction in the dimensionality of the coupled equations can be realized since the spatially localized bound state nuclear wave function vanishes at most of the quadrature points, making only certain orientations of the fragments important in the region of strong interaction (small separation). The discrete variable theory of photodissociation is applied to the model dissociation of bent HCN in which the CN fragment is treated as a rigid rotor. The truncated DVR rotational distributions are compared with the exact close coupled rotational distributions, and excellent agreement with greatly reduced dimensionality of the equations is found

  6. Two new discrete integrable systems

    Chen Xiao-Hong; Zhang Hong-Qing

    2013-01-01

    In this paper, we focus on the construction of new (1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra à 1 . By designing two new (1+1)-dimensional discrete spectral problems, two new discrete integrable systems are obtained, namely, a 2-field lattice hierarchy and a 3-field lattice hierarchy. When deriving the two new discrete integrable systems, we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy. Moreover, we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity

  7. Discrete dark matter

    Hirsch, M; Peinado, E; Valle, J W F

    2010-01-01

    We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z2 subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while reactor angle equal to zero gives no CP violation in neutrino oscillations.

  8. Discrete Dynamics Lab

    Wuensche, Andrew

    DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

  9. Discrete variable representation for singular Hamiltonians

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...... solely on an orthogonal polynomial basis is adequate, provided the Gauss-Lobatto or Gauss-Radau quadrature rule is used. This ensures that the mesh contains the singular points and by simply discarding the DVR functions corresponding to those points, all matrix elements become well behaved. the boundary...

  10. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    Mohamed, Mamdouh S.

    2017-05-23

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.

  11. Advances in discrete differential geometry

    2016-01-01

    This is one of the first books on a newly emerging field of discrete differential geometry and an excellent way to access this exciting area. It surveys the fascinating connections between discrete models in differential geometry and complex analysis, integrable systems and applications in computer graphics. The authors take a closer look at discrete models in differential geometry and dynamical systems. Their curves are polygonal, surfaces are made from triangles and quadrilaterals, and time is discrete. Nevertheless, the difference between the corresponding smooth curves, surfaces and classical dynamical systems with continuous time can hardly be seen. This is the paradigm of structure-preserving discretizations. Current advances in this field are stimulated to a large extent by its relevance for computer graphics and mathematical physics. This book is written by specialists working together on a common research project. It is about differential geometry and dynamical systems, smooth and discrete theories, ...

  12. Poisson hierarchy of discrete strings

    Ioannidou, Theodora; Niemi, Antti J.

    2016-01-01

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  13. Poisson hierarchy of discrete strings

    Ioannidou, Theodora, E-mail: ti3@auth.gr [Faculty of Civil Engineering, School of Engineering, Aristotle University of Thessaloniki, 54249, Thessaloniki (Greece); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200, Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2016-01-28

    The Poisson geometry of a discrete string in three dimensional Euclidean space is investigated. For this the Frenet frames are converted into a spinorial representation, the discrete spinor Frenet equation is interpreted in terms of a transfer matrix formalism, and Poisson brackets are introduced in terms of the spinor components. The construction is then generalised, in a self-similar manner, into an infinite hierarchy of Poisson algebras. As an example, the classical Virasoro (Witt) algebra that determines reparametrisation diffeomorphism along a continuous string, is identified as a particular sub-algebra, in the hierarchy of the discrete string Poisson algebra. - Highlights: • Witt (classical Virasoro) algebra is derived in the case of discrete string. • Infinite dimensional hierarchy of Poisson bracket algebras is constructed for discrete strings. • Spinor representation of discrete Frenet equations is developed.

  14. Discretizing the transcritical and pitchfork bifurcations – conjugacy results

    Lóczi, Lajos

    2015-01-07

    © 2015 Taylor & Francis. We present two case studies in one-dimensional dynamics concerning the discretization of transcritical (TC) and pitchfork (PF) bifurcations. In the vicinity of a TC or PF bifurcation point and under some natural assumptions on the one-step discretization method of order (Formula presented.) , we show that the time- (Formula presented.) exact and the step-size- (Formula presented.) discretized dynamics are topologically equivalent by constructing a two-parameter family of conjugacies in each case. As a main result, we prove that the constructed conjugacy maps are (Formula presented.) -close to the identity and these estimates are optimal.

  15. Computing the Gromov hyperbolicity of a discrete metric space

    Fournier, Hervé ; Ismail, Anas; Vigneron, Antoine E.

    2015-01-01

    We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using

  16. Cycles of a discrete time bipolar artificial neural network

    Cheng Suisun; Chen, J.-S.; Yueh, W.-C.

    2009-01-01

    A discrete time bipolar neural network depending on two parameters is studied. It is observed that its dynamical behaviors can be classified into six cases. For each case, the long time behaviors can be summarized in terms of fixed points, periodic points, basin of attractions, and related initial distributions. Mathematical reasons are supplied for these observations and applications in cellular automata are illustrated.

  17. Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement

    Dershowitz, William S.; Cladouhos, Trenton

    2001-09-06

    This progress report describes activities during the period January 1, 1999 to June 30, 1999. Work was carried out on 21 tasks. The major activity during the reporting period was the development and preliminary application of discrete fracture network (DFN) models for Stoney Point, South Oregon Basin, and North Oregon Basins project study sites. In addition, research was carried out on analysis algorithms for discrete future orientation.

  18. Existence and multiplicity of solutions for nonlinear discrete inclusions

    Nicu Marcu

    2012-11-01

    Full Text Available A non-smooth abstract result is used for proving the existence of at least one nontrivial solution of an algebraic discrete inclusion. Successively, a multiplicity theorem for the same class of discrete problems is also established by using a locally Lipschitz continuous version of the famous Brezis-Nirenberg theoretical result in presence of splitting. Some applications to tridiagonal, fourth-order and partial difference inclusions are pointed out.

  19. Discrete Wigner function and quantum-state tomography

    Leonhardt, Ulf

    1996-05-01

    The theory of discrete Wigner functions and of discrete quantum-state tomography [U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995)] is studied in more detail guided by the picture of precession tomography. Odd- and even-dimensional systems (angular momenta and spins, bosons, and fermions) are considered separately. Relations between simple number theory and the quantum mechanics of finite-dimensional systems are pointed out. In particular, the multicomplementarity of the precession states distinguishes prime dimensions from composite ones.

  20. Discrete Weighted Pseudo Asymptotic Periodicity of Second Order Difference Equations

    Zhinan Xia

    2014-01-01

    Full Text Available We define the concept of discrete weighted pseudo-S-asymptotically periodic function and prove some basic results including composition theorem. We investigate the existence, and uniqueness of discrete weighted pseudo-S-asymptotically periodic solution to nonautonomous semilinear difference equations. Furthermore, an application to scalar second order difference equations is given. The working tools are based on the exponential dichotomy theory and fixed point theorem.

  1. Principles of discrete time mechanics

    Jaroszkiewicz, George

    2014-01-01

    Could time be discrete on some unimaginably small scale? Exploring the idea in depth, this unique introduction to discrete time mechanics systematically builds the theory up from scratch, beginning with the historical, physical and mathematical background to the chronon hypothesis. Covering classical and quantum discrete time mechanics, this book presents all the tools needed to formulate and develop applications of discrete time mechanics in a number of areas, including spreadsheet mechanics, classical and quantum register mechanics, and classical and quantum mechanics and field theories. A consistent emphasis on contextuality and the observer-system relationship is maintained throughout.

  2. Dark discrete gauge symmetries

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  3. Discrete anti-gravity

    Noyes, H.P.; Starson, S.

    1991-03-01

    Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces ''fields'' with the relativistic Wheeler-Feynman ''action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will ''fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs

  4. On the Importance of Both Dimensional and Discrete Models of Emotion

    Eddie Harmon-Jones

    2017-09-01

    Full Text Available We review research on the structure and functions of emotions that has benefitted from a serious consideration of both discrete and dimensional perspectives on emotion. To illustrate this point, we review research that demonstrates: (1 how affective valence within discrete emotions differs as a function of individuals and situations, and how these differences relate to various functions; (2 that anger (and other emotional states should be considered as a discrete emotion but there are dimensions around and within anger; (3 that similarities exist between approach-related positive and negative discrete emotions and they have unique motivational functions; (4 that discrete emotions and broad dimensions of emotions both have unique functions; and (5 evidence that a “new” discrete emotion with discrete functions exists within a broader emotion family. We hope that this consideration of both discrete and dimensional perspectives on emotion will assist in understanding the functions of emotions.

  5. On the Importance of Both Dimensional and Discrete Models of Emotion

    Harmon-Jones, Eddie

    2017-01-01

    We review research on the structure and functions of emotions that has benefitted from a serious consideration of both discrete and dimensional perspectives on emotion. To illustrate this point, we review research that demonstrates: (1) how affective valence within discrete emotions differs as a function of individuals and situations, and how these differences relate to various functions; (2) that anger (and other emotional states) should be considered as a discrete emotion but there are dimensions around and within anger; (3) that similarities exist between approach-related positive and negative discrete emotions and they have unique motivational functions; (4) that discrete emotions and broad dimensions of emotions both have unique functions; and (5) evidence that a “new” discrete emotion with discrete functions exists within a broader emotion family. We hope that this consideration of both discrete and dimensional perspectives on emotion will assist in understanding the functions of emotions. PMID:28961185

  6. On the Importance of Both Dimensional and Discrete Models of Emotion.

    Harmon-Jones, Eddie; Harmon-Jones, Cindy; Summerell, Elizabeth

    2017-09-29

    We review research on the structure and functions of emotions that has benefitted from a serious consideration of both discrete and dimensional perspectives on emotion. To illustrate this point, we review research that demonstrates: (1) how affective valence within discrete emotions differs as a function of individuals and situations, and how these differences relate to various functions; (2) that anger (and other emotional states) should be considered as a discrete emotion but there are dimensions around and within anger; (3) that similarities exist between approach-related positive and negative discrete emotions and they have unique motivational functions; (4) that discrete emotions and broad dimensions of emotions both have unique functions; and (5) evidence that a "new" discrete emotion with discrete functions exists within a broader emotion family. We hope that this consideration of both discrete and dimensional perspectives on emotion will assist in understanding the functions of emotions.

  7. Application of a discrete-energy, discrete-ordinates technique to the study of neutron transport in iron

    Ching, J.T.

    1975-01-01

    An algebraic equivalence between the point-energy and multigroup forms of the Boltzmann transport equation is demonstrated which allows the development of a discrete-energy, discrete-ordinates method for the solution of radiation transport problems. The method utilizes a modified version of a cross section processing scheme devised for the moments method code BMT and the transport equation solution algorithm from the one-dimensional discrete-ordinates transport code ANISN. The combined system, identified as MOMANS, computes fluxes directly from point cross sections in a single operation. In the cross-section processing, the group averaging required for multigroup calculations is replaced by a fast numerical scheme capable of generating a set of transfer cross sections containing all the physical features of interest, thereby increasing the detail in the calculated results. Test calculations in which the discrete-energy method was compared with the multigroup method have shown that for the same energy grid (number of points = number of groups), the discrete-energy method is faster but somewhat less accurate than the multigroup method. However, the accuracy of the discrete-energy method increases rapidly as the spacing between energy points is decreased, approaching that of multigroup calculations. For problems requiring great detail in the energy spectrum the discrete-energy method has therefore proven to be as accurate as, and more economical than, the multigroup technique. This was demonstrated by the application of the method to the study of the transport of neutrons in an iron sphere. Using the capability of the discrete-energy method for rapidly treating changes in cross-section sets, the propagation of neutrons from a 14 MeV source in a 22 cm radius sphere of iron was analyzed for sensitivity to changes in the microscopic scattering mechanisms

  8. Discrete instability in the DNA double helix

    Tabi, Conrad Bertrand; Mohamadou, Alidou; Kofane, Timoleon Crepin

    2009-06-01

    Modulational instability (MI) is explored in the framework of the base-rotor model of DNA dynamics. We show in fact that, the helicoidal coupling introduced in the spin model of DNA reduces the system to a modified discrete sine-Gordon (sG) equation. The MI criterion is thus modified and displays interesting features because of the helicoidal coupling. This is confirmed in the numerical analysis where a critical value of the helicoidal coupling constant is derived. In the simulations, we have found that a train of pulses are generated when the lattice is subjected to MI, in agreement with analytical results obtained in a modified discrete sG equation. Also, the competitive effects of the harmonic longitudinal and helicoidal constants on the dynamics of the system are notably pointed out. In the same way, it is shown that MI can lead to energy localization which is high for some values of the helicoidal coupling constant. (author)

  9. Discrete PID Tuning Using Artificial Intelligence Techniques

    Petr DOLEŽEL

    2009-06-01

    Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.

  10. On a discrete version of the CP 1 sigma model and surfaces immersed in R3

    Grundland, A M; Levi, D; Martina, L

    2003-01-01

    We present a discretization of the CP 1 sigma model. We show that the discrete CP 1 sigma model is described by a nonlinear partial second-order difference equation with rational nonlinearity. To derive discrete surfaces immersed in three-dimensional Euclidean space a 'complex' lattice is introduced. The so-obtained surfaces are characterized in terms of the quadrilateral cross-ratio of four surface points. In this way we prove that all surfaces associated with the discrete CP 1 sigma model are of constant mean curvature. An explicit example of such discrete surfaces is constructed

  11. Control of Discrete Event Systems

    Smedinga, Rein

    1989-01-01

    Systemen met discrete gebeurtenissen spelen in vele gebieden een rol. In dit proefschrift staat de volgorde van gebeurtenissen centraal en worden tijdsaspecten buiten beschouwing gelaten. In dat geval kunnen systemen met discrete gebeurtenissen goed worden gemodelleerd door gebruik te maken van

  12. Discrete Mathematics and Its Applications

    Oxley, Alan

    2010-01-01

    The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…

  13. Discrete Mathematics and Curriculum Reform.

    Kenney, Margaret J.

    1996-01-01

    Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)

  14. Connections on discrete fibre bundles

    Manton, N.S.; Cambridge Univ.

    1987-01-01

    A new approach to gauge fields on a discrete space-time is proposed, in which the fundamental object is a discrete version of a principal fibre bundle. If the bundle is twisted, the gauge fields are topologically non-trivial automatically. (orig.)

  15. Discrete dynamics versus analytic dynamics

    Toxværd, Søren

    2014-01-01

    For discrete classical Molecular dynamics obtained by the “Verlet” algorithm (VA) with the time increment h there exists a shadow Hamiltonian H˜ with energy E˜(h) , for which the discrete particle positions lie on the analytic trajectories for H˜ . Here, we proof that there, independent...... of such an analytic analogy, exists an exact hidden energy invariance E * for VA dynamics. The fact that the discrete VA dynamics has the same invariances as Newtonian dynamics raises the question, which of the formulations that are correct, or alternatively, the most appropriate formulation of classical dynamics....... In this context the relation between the discrete VA dynamics and the (general) discrete dynamics investigated by Lee [Phys. Lett. B122, 217 (1983)] is presented and discussed....

  16. Modern approaches to discrete curvature

    Romon, Pascal

    2017-01-01

     This book provides a valuable glimpse into discrete curvature, a rich new field of research which blends discrete mathematics, differential geometry, probability and computer graphics. It includes a vast collection of ideas and tools which will offer something new to all interested readers. Discrete geometry has arisen as much as a theoretical development as in response to unforeseen challenges coming from applications. Discrete and continuous geometries have turned out to be intimately connected. Discrete curvature is the key concept connecting them through many bridges in numerous fields: metric spaces, Riemannian and Euclidean geometries, geometric measure theory, topology, partial differential equations, calculus of variations, gradient flows, asymptotic analysis, probability, harmonic analysis, graph theory, etc. In spite of its crucial importance both in theoretical mathematics and in applications, up to now, almost no books have provided a coherent outlook on this emerging field.

  17. Discretion and Disproportionality

    Jason A. Grissom

    2015-12-01

    Full Text Available Students of color are underrepresented in gifted programs relative to White students, but the reasons for this underrepresentation are poorly understood. We investigate the predictors of gifted assignment using nationally representative, longitudinal data on elementary students. We document that even among students with high standardized test scores, Black students are less likely to be assigned to gifted services in both math and reading, a pattern that persists when controlling for other background factors, such as health and socioeconomic status, and characteristics of classrooms and schools. We then investigate the role of teacher discretion, leveraging research from political science suggesting that clients of government services from traditionally underrepresented groups benefit from diversity in the providers of those services, including teachers. Even after conditioning on test scores and other factors, Black students indeed are referred to gifted programs, particularly in reading, at significantly lower rates when taught by non-Black teachers, a concerning result given the relatively low incidence of assignment to own-race teachers among Black students.

  18. Discrete Planck spectra

    Vlad, Valentin I.; Ionescu-Pallas, Nicholas

    2000-10-01

    The Planck radiation spectrum of ideal cubic and spherical cavities, in the region of small adiabatic invariance, γ = TV 1/3 , is shown to be discrete and strongly dependent on the cavity geometry and temperature. This behavior is the consequence of the random distribution of the state weights in the cubic cavity and of the random overlapping of the successive multiplet components, for the spherical cavity. The total energy (obtained by summing up the exact contributions of the eigenvalues and their weights, for low values of the adiabatic invariance) does not obey any longer Stefan-Boltzmann law. The new law includes a corrective factor depending on γ and imposes a faster decrease of the total energy to zero, for γ → 0. We have defined the double quantized regime both for cubic and spherical cavities by the superior and inferior limits put on the principal quantum numbers or the adiabatic invariance. The total energy of the double quantized cavities shows large differences from the classical calculations over unexpected large intervals, which are measurable and put in evidence important macroscopic quantum effects. (author)

  19. Equations for arithmetic pointed tori

    Sijsling, J.R.

    2010-01-01

    In 1983, Kisao Takeuchi enumerated all 71 arithmetic (1;e)-groups. This is a special set of discrete subgroups of SL(2,R) of finite covolume and signature (1;e). The corresponding quotients of the upper half plane (called (1;e)-curves) have genus equal to 1 and a single elliptic point of order e.

  20. Police investigations: discretion denied yet undeniably exercised

    Belur, J.; Tilley, N.; Osrin, D.; Daruwalla, N.; Kumar, M.; Tiwari, V.

    2014-01-01

    Police investigations involve determining whether a crime has been committed, and if so what type of crime, who has committed it and whether there is the evidence to charge the perpetrators. Drawing on fieldwork in Delhi and Mumbai, this paper explores how police investigations unfolded in the specific context of women’s deaths by burning in India. In particular, it focuses on the use of discretion despite its denial by those exercising it. In India, there are distinctive statutes relating to women’s suspicious deaths, reflecting the widespread expectation that the bride’s family will pay a dowry to the groom’s family and the tensions to which this may on occasion give rise in the early years of a marriage. Often, there are conflicting claims influencing how the woman’s death is classified. These in turn affect police investigation. The nature and direction of police discretion in investigating women’s deaths by burning reflect in part the unique nature of the legislation and the particular sensitivities in relation to these types of death. They also highlight processes that are liable to be at work in any crime investigation. It was found that police officers exercised unacknowledged discretion at seven specific points in the investigative process, with potentially significant consequences for the achievement of just outcomes: first response, recording the victim’s ‘dying declaration’, inquest, registering of the ‘First Information Report’, collecting evidence, arrest and framing of the charges. PMID:26376482

  1. The origin of discrete particles

    Bastin, T

    2009-01-01

    This book is a unique summary of the results of a long research project undertaken by the authors on discreteness in modern physics. In contrast with the usual expectation that discreteness is the result of mathematical tools for insertion into a continuous theory, this more basic treatment builds up the world from the discrimination of discrete entities. This gives an algebraic structure in which certain fixed numbers arise. As such, one agrees with the measured value of the fine-structure constant to one part in 10,000,000 (10 7 ). Sample Chapter(s). Foreword (56 KB). Chapter 1: Introduction

  2. Discrete bacteria foraging optimization algorithm for graph based problems - a transition from continuous to discrete

    Sur, Chiranjib; Shukla, Anupam

    2018-03-01

    Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.

  3. Synchronization Techniques in Parallel Discrete Event Simulation

    Lindén, Jonatan

    2018-01-01

    Discrete event simulation is an important tool for evaluating system models in many fields of science and engineering. To improve the performance of large-scale discrete event simulations, several techniques to parallelize discrete event simulation have been developed. In parallel discrete event simulation, the work of a single discrete event simulation is distributed over multiple processing elements. A key challenge in parallel discrete event simulation is to ensure that causally dependent ...

  4. 3-D Discrete Analytical Ridgelet Transform

    Helbert , David; Carré , Philippe; Andrès , Éric

    2006-01-01

    International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...

  5. Exact analysis of discrete data

    Hirji, Karim F

    2005-01-01

    Researchers in fields ranging from biology and medicine to the social sciences, law, and economics regularly encounter variables that are discrete or categorical in nature. While there is no dearth of books on the analysis and interpretation of such data, these generally focus on large sample methods. When sample sizes are not large or the data are otherwise sparse, exact methods--methods not based on asymptotic theory--are more accurate and therefore preferable.This book introduces the statistical theory, analysis methods, and computation techniques for exact analysis of discrete data. After reviewing the relevant discrete distributions, the author develops the exact methods from the ground up in a conceptually integrated manner. The topics covered range from univariate discrete data analysis, a single and several 2 x 2 tables, a single and several 2 x K tables, incidence density and inverse sampling designs, unmatched and matched case -control studies, paired binary and trinomial response models, and Markov...

  6. Discrete geometric structures for architecture

    Pottmann, Helmut

    2010-01-01

    . The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization

  7. Causal Dynamics of Discrete Surfaces

    Pablo Arrighi

    2014-03-01

    Full Text Available We formalize the intuitive idea of a labelled discrete surface which evolves in time, subject to two natural constraints: the evolution does not propagate information too fast; and it acts everywhere the same.

  8. Applied discrete-time queues

    Alfa, Attahiru S

    2016-01-01

    This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...

  9. Effect of the surface charge discretization on electric double layers. A Monte Carlo simulation study

    Madurga Díez, Sergio; Martín-Molina, Alberto; Vilaseca i Font, Eudald; Mas i Pujadas, Francesc; Quesada-Pérez, Manuel

    2007-01-01

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are...

  10. Tipping Point

    Full Text Available ... en español Blog About OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by ... danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe ...

  11. Indirect adaptive control of discrete chaotic systems

    Salarieh, Hassan; Shahrokhi, Mohammad

    2007-01-01

    In this paper an indirect adaptive control algorithm is proposed to stabilize the fixed points of discrete chaotic systems. It is assumed that the functionality of the chaotic dynamics is known but the system parameters are unknown. This assumption is usually applicable to many chaotic systems, such as the Henon map, logistic and many other nonlinear maps. Using the recursive-least squares technique, the system parameters are identified and based on the feedback linearization method an adaptive controller is designed for stabilizing the fixed points, or unstable periodic orbits of the chaotic maps. The stability of the proposed scheme has been shown and the effectiveness of the control algorithm has been demonstrated through computer simulations

  12. Digital Resonant Controller based on Modified Tustin Discretization Method

    STOJIC, D.

    2016-11-01

    Full Text Available Resonant controllers are used in power converter voltage and current control due to their simplicity and accuracy. However, digital implementation of resonant controllers introduces problems related to zero and pole mapping from the continuous to the discrete time domain. Namely, some discretization methods introduce significant errors in the digital controller resonant frequency, resulting in the loss of the asymptotic AC reference tracking, especially at high resonant frequencies. The delay compensation typical for resonant controllers can also be compromised. Based on the existing analysis, it can be concluded that the Tustin discretization with frequency prewarping represents a preferable choice from the point of view of the resonant frequency accuracy. However, this discretization method has a shortcoming in applications that require real-time frequency adaptation, since complex trigonometric evaluation is required for each frequency change. In order to overcome this problem, in this paper the modified Tustin discretization method is proposed based on the Taylor series approximation of the frequency prewarping function. By comparing the novel discretization method with commonly used two-integrator-based proportional-resonant (PR digital controllers, it is shown that the resulting digital controller resonant frequency and time delay compensation errors are significantly reduced for the novel controller.

  13. Discrete Curvature Theories and Applications

    Sun, Xiang

    2016-08-25

    Discrete Di erential Geometry (DDG) concerns discrete counterparts of notions and methods in di erential geometry. This thesis deals with a core subject in DDG, discrete curvature theories on various types of polyhedral surfaces that are practically important for free-form architecture, sunlight-redirecting shading systems, and face recognition. Modeled as polyhedral surfaces, the shapes of free-form structures may have to satisfy di erent geometric or physical constraints. We study a combination of geometry and physics { the discrete surfaces that can stand on their own, as well as having proper shapes for the manufacture. These proper shapes, known as circular and conical meshes, are closely related to discrete principal curvatures. We study curvature theories that make such surfaces possible. Shading systems of freeform building skins are new types of energy-saving structures that can re-direct the sunlight. From these systems, discrete line congruences across polyhedral surfaces can be abstracted. We develop a new curvature theory for polyhedral surfaces equipped with normal congruences { a particular type of congruences de ned by linear interpolation of vertex normals. The main results are a discussion of various de nitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula. In addition to architecture, we consider the role of discrete curvatures in face recognition. We use geometric measure theory to introduce the notion of asymptotic cones associated with a singular subspace of a Riemannian manifold, which is an extension of the classical notion of asymptotic directions. We get a simple expression of these cones for polyhedral surfaces, as well as convergence and approximation theorems. We use the asymptotic cones as facial descriptors and demonstrate the

  14. From discrete particles to continuum fields near a boundary

    Weinhart, Thomas; Thornton, Anthony Richard; Luding, Stefan; Bokhove, Onno

    An expression for the stress tensor near an external boundary of a discrete mechanical system is derived explicitly in terms of the constituents’ degrees of freedom and interaction forces. Starting point is the exact and general coarse graining formulation presented by Goldhirsch in [I.Goldhirsch,

  15. Computing the continuous discretely

    Beck, Matthias

    2015-01-01

    This richly illustrated textbook explores the amazing interaction between combinatorics, geometry, number theory, and analysis which arises in the interplay between polyhedra and lattices. Highly accessible to advanced undergraduates, as well as beginning graduate students, this second edition is perfect for a capstone course, and adds two new chapters, many new exercises, and updated open problems. For scientists, this text can be utilized as a self-contained tooling device. The topics include a friendly invitation to Ehrhart’s theory of counting lattice points in polytopes, finite Fourier analysis, the Frobenius coin-exchange problem, Dedekind sums, solid angles, Euler–Maclaurin summation for polytopes, computational geometry, magic squares, zonotopes, and more. With more than 300 exercises and open research problems, the reader is an active participant, carried through diverse but tightly woven mathematical fields that are inspired by an innocently elementary question: What are the relationships betwee...

  16. Analysis of Discrete Mittag - Leffler Functions

    N. Shobanadevi

    2015-03-01

    Full Text Available Discrete Mittag - Leffler functions play a major role in the development of the theory of discrete fractional calculus. In the present article, we analyze qualitative properties of discrete Mittag - Leffler functions and establish sufficient conditions for convergence, oscillation and summability of the infinite series associated with discrete Mittag - Leffler functions.

  17. Foundations of a discrete physics

    McGoveran, D.; Noyes, P.

    1988-01-01

    Starting from the principles of finiteness, discreteness, finite computability and absolute nonuniqueness, we develop the ordering operator calculus, a strictly constructive mathematical system having the empirical properties required by quantum mechanical and special relativistic phenomena. We show how to construct discrete distance functions, and both rectangular and spherical coordinate systems(with a discrete version of ''π''). The richest discrete space constructible without a preferred axis and preserving translational and rotational invariance is shown to be a discrete 3-space with the usual symmetries. We introduce a local ordering parameter with local (proper) time-like properties and universal ordering parameters with global (cosmological) time-like properties. Constructed ''attribute velocities'' connect ensembles with attributes that are invariant as the appropriate time-like parameter increases. For each such attribute, we show how to construct attribute velocities which must satisfy the '' relativistic Doppler shift'' and the ''relativistic velocity composition law,'' as well as the Lorentz transformations. By construction, these velocities have finite maximum and minimum values. In the space of all attributes, the minimum of these maximum velocities will predominate in all multiple attribute computations, and hence can be identified as a fundamental limiting velocity, General commutation relations are constructed which under the physical interpretation are shown to reduce to the usual quantum mechanical commutation relations. 50 refs., 18 figs

  18. The endogenous grid method for discrete-continuous dynamic choice models with (or without) taste shocks

    Iskhakov, Fedor; Jørgensen, Thomas H.; Rust, John

    2017-01-01

    We present a fast and accurate computational method for solving and estimating a class of dynamic programming models with discrete and continuous choice variables. The solution method we develop for structural estimation extends the endogenous grid-point method (EGM) to discrete-continuous (DC) p...

  19. Discrete Orthogonal Transforms and Neural Networks for Image Interpolation

    J. Polec

    1999-09-01

    Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.

  20. Discrete differential geometry. Consistency as integrability

    Bobenko, Alexander I.; Suris, Yuri B.

    2005-01-01

    A new field of discrete differential geometry is presently emerging on the border between differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with finite number of elements (such as polyhedra), the discrete differential geometry aims at the development of discrete equivalents of notions and methods of smooth surface theory. Current interest in this field derives not ...

  1. Degree distribution in discrete case

    Wang, Li-Na; Chen, Bin; Yan, Zai-Zai

    2011-01-01

    Vertex degree of many network models and real-life networks is limited to non-negative integer. By means of measure and integral, the relation of the degree distribution and the cumulative degree distribution in discrete case is analyzed. The degree distribution, obtained by the differential of its cumulative, is only suitable for continuous case or discrete case with constant degree change. When degree change is not a constant but proportional to degree itself, power-law degree distribution and its cumulative have the same exponent and the mean value is finite for power-law exponent greater than 1. -- Highlights: → Degree change is the crux for using the cumulative degree distribution method. → It suits for discrete case with constant degree change. → If degree change is proportional to degree, power-law degree distribution and its cumulative have the same exponent. → In addition, the mean value is finite for power-law exponent greater than 1.

  2. On the discrete Gabor transform and the discrete Zak transform

    Bastiaans, M.J.; Geilen, M.C.W.

    1996-01-01

    Gabor's expansion of a discrete-time signal into a set of shifted and modulated versions of an elementary signal (or synthesis window) and the inverse operation -- the Gabor transform -- with which Gabor's expansion coefficients can be determined, are introduced. It is shown how, in the case of a

  3. Discrete Choice and Rational Inattention

    Fosgerau, Mogens; Melo, Emerson; de Palma, André

    2017-01-01

    This paper establishes a general equivalence between discrete choice and rational inattention models. Matejka and McKay (2015, AER) showed that when information costs are modelled using the Shannon entropy, the result- ing choice probabilities in the rational inattention model take the multinomial...... logit form. We show that when information costs are modelled using a class of generalized entropies, then the choice probabilities in any rational inattention model are observationally equivalent to some additive random utility discrete choice model and vice versa. This equivalence arises from convex...

  4. Fixed Points

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 5. Fixed Points - From Russia with Love - A Primer of Fixed Point Theory. A K Vijaykumar. Book Review Volume 5 Issue 5 May 2000 pp 101-102. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Tipping Point

    Full Text Available ... OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point ... 24 hours a day. For young children whose home is a playground, it’s the best way to ...

  6. Tipping Point

    Full Text Available ... 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe Flash ...

  7. Data visualization for ONEDANT and TWODANT discrete ordinates codes

    Lee, C.L.

    1993-01-01

    Effective graphical display of code calculations allow for efficient analysis of results. This is especially true in the case of discrete ordinates transport codes, which can generate thousands of flux or reaction rate data points per calculation. For this reason, a package of portable interface programs called OTTUI (ONEDANT-TWODANT-Tecplot trademark Unix-Based Interface) has been developed at Los Alamos National Laboratory to permit rapid visualization of ONEDANT and TWODANT discrete ordinates results using the graphics package Tecplot. This paper describes the various uses of OTTUI for display of ONEDANT and TWODANT problem geometries and calculational results

  8. Discretion in the “Backyard of Law”: Case Handling of Debt Relief in Sweden

    Bengt Larsson

    2013-04-01

    Full Text Available This article explores discretion in welfare professional work. The aim is to analyse what room for discretionary decision-making that exist in case handling of debt relief at the Swedish Enforcement Authority (SEA. The analysis is guided by a conceptual distinction between structural and epistemic aspects of discretion, as well as between substantive and procedural aspects. The data comprises official and internal SEA documents, interviews with management and staff and field notes from observations. The analysis points to a change in the balance between standards and discretion in relation to the on-going formalization of case handling at the SEA, though not in the simplistic sense that discretion is diminished through formalization. When taking into account the different analytical aspects of discretion, it is concluded that discretion is narrowed only in some respects. There is still space for case officers in selecting and interpreting information and assess-ing the conditions regarding subject matter.

  9. Discrete Hamiltonian evolution and quantum gravity

    Husain, Viqar; Winkler, Oliver

    2004-01-01

    We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization

  10. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-01-01

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a

  11. Succinct Sampling from Discrete Distributions

    Bringmann, Karl; Larsen, Kasper Green

    2013-01-01

    We revisit the classic problem of sampling from a discrete distribution: Given n non-negative w-bit integers x_1,...,x_n, the task is to build a data structure that allows sampling i with probability proportional to x_i. The classic solution is Walker's alias method that takes, when implemented...

  12. Symplectomorphisms and discrete braid invariants

    Czechowski, Aleksander; Vandervorst, Robert

    2017-01-01

    Area and orientation preserving diffeomorphisms of the standard 2-disc, referred to as symplectomorphisms of D2, allow decompositions in terms of positive twist diffeomorphisms. Using the latter decomposition, we utilize the Conley index theory of discrete braid classes as introduced in Ghrist et

  13. The remarkable discreteness of being

    Life is a discrete, stochastic phenomenon: for a biological organism, the time of the two most important events of its life (reproduction and death) is random and these events change the number of individuals of the species by single units. These facts can have surprising, counterintuitive consequences. I review here three ...

  14. Discrete tomography in neutron radiography

    Kuba, Attila; Rodek, Lajos; Kiss, Zoltan; Rusko, Laszlo; Nagy, Antal; Balasko, Marton

    2005-01-01

    Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT

  15. A Discrete Model for Color Naming

    J. M. Boi

    2007-01-01

    Full Text Available The ability to associate labels to colors is very natural for human beings. Though, this apparently simple task hides very complex and still unsolved problems, spreading over many different disciplines ranging from neurophysiology to psychology and imaging. In this paper, we propose a discrete model for computational color categorization and naming. Starting from the 424 color specimens of the OSA-UCS set, we propose a fuzzy partitioning of the color space. Each of the 11 basic color categories identified by Berlin and Kay is modeled as a fuzzy set whose membership function is implicitly defined by fitting the model to the results of an ad hoc psychophysical experiment (Experiment 1. Each OSA-UCS sample is represented by a feature vector whose components are the memberships to the different categories. The discrete model consists of a three-dimensional Delaunay triangulation of the CIELAB color space which associates each OSA-UCS sample to a vertex of a 3D tetrahedron. Linear interpolation is used to estimate the membership values of any other point in the color space. Model validation is performed both directly, through the comparison of the predicted membership values to the subjective counterparts, as evaluated via another psychophysical test (Experiment 2, and indirectly, through the investigation of its exploitability for image segmentation. The model has proved to be successful in both cases, providing an estimation of the membership values in good agreement with the subjective measures as well as a semantically meaningful color-based segmentation map.

  16. A Discrete Model for Color Naming

    Menegaz, G.; Le Troter, A.; Sequeira, J.; Boi, J. M.

    2006-12-01

    The ability to associate labels to colors is very natural for human beings. Though, this apparently simple task hides very complex and still unsolved problems, spreading over many different disciplines ranging from neurophysiology to psychology and imaging. In this paper, we propose a discrete model for computational color categorization and naming. Starting from the 424 color specimens of the OSA-UCS set, we propose a fuzzy partitioning of the color space. Each of the 11 basic color categories identified by Berlin and Kay is modeled as a fuzzy set whose membership function is implicitly defined by fitting the model to the results of an ad hoc psychophysical experiment (Experiment 1). Each OSA-UCS sample is represented by a feature vector whose components are the memberships to the different categories. The discrete model consists of a three-dimensional Delaunay triangulation of the CIELAB color space which associates each OSA-UCS sample to a vertex of a 3D tetrahedron. Linear interpolation is used to estimate the membership values of any other point in the color space. Model validation is performed both directly, through the comparison of the predicted membership values to the subjective counterparts, as evaluated via another psychophysical test (Experiment 2), and indirectly, through the investigation of its exploitability for image segmentation. The model has proved to be successful in both cases, providing an estimation of the membership values in good agreement with the subjective measures as well as a semantically meaningful color-based segmentation map.

  17. Dew Point

    Goldsmith, Shelly

    1999-01-01

    Dew Point was a solo exhibition originating at PriceWaterhouseCoopers Headquarters Gallery, London, UK and toured to the Centre de Documentacio i Museu Textil, Terrassa, Spain and Gallery Aoyama, Tokyo, Japan.

  18. Tipping Point

    Full Text Available ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe Flash ...

  19. Tipping Point

    ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe Flash ...

  20. Tipping Point

    Full Text Available ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head ... see news reports about horrible accidents involving young children and furniture, appliance and tv tip-overs. The ...

  1. Tipping Point

    Full Text Available ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head ... TV falls with about the same force as child falling from the third story of a building. ...

  2. Tipping Point

    Full Text Available ... Tipping Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture ... about horrible accidents involving young children and furniture, appliance and tv tip-overs. The force of a ...

  3. Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

    Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter

    2011-01-01

    We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal......, whereas the convergence of the coefficients happens only with respect to the "volumetric" Lebesgue measure. Additionally, depending on whether the stationarity conditions are stated for the discretized or the original continuous problem, two distinct concepts of stationarity at a discrete level arise. We...... provide characterizations of limit points, with respect to FV mesh size, of globally optimal solutions and two types of stationary points to the discretized problems. We illustrate the practical behaviour of our cell-based FV discretization algorithm on a numerical example....

  4. Discrete elements method of neutron transport

    Mathews, K.A.

    1988-01-01

    In this paper a new neutron transport method, called discrete elements (L N ) is derived and compared to discrete ordinates methods, theoretically and by numerical experimentation. The discrete elements method is based on discretizing the Boltzmann equation over a set of elements of angle. The discrete elements method is shown to be more cost-effective than discrete ordinates, in terms of accuracy versus execution time and storage, for the cases tested. In a two-dimensional test case, a vacuum duct in a shield, the L N method is more consistently convergent toward a Monte Carlo benchmark solution

  5. Distinct timing mechanisms produce discrete and continuous movements.

    Raoul Huys

    2008-04-01

    Full Text Available The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems to accomplish varying behavioral functions such as speed constraints.

  6. Surface Design Based on Discrete Conformal Transformations

    Duque, Carlos; Santangelo, Christian; Vouga, Etienne

    Conformal transformations are angle-preserving maps from one domain to another. Although angles are preserved, the lengths between arbitrary points are not generally conserved. As a consequence there is always a given amount of distortion associated to any conformal map. Different uses of such transformations can be found in various fields, but have been used by us to program non-uniformly swellable gel sheets to buckle into prescribed three dimensional shapes. In this work we apply circle packings as a kind of discrete conformal map in order to find conformal maps from the sphere to the plane that can be used as nearly uniform swelling patterns to program non-Euclidean sheets to buckle into spheres. We explore the possibility of tuning the area distortion to fit the experimental range of minimum and maximum swelling by modifying the boundary of the planar domain through the introduction of different cutting schemes.

  7. Angular discretization errors in transport theory

    Nelson, P.; Yu, F.

    1992-01-01

    Elements of the information-based complexity theory are computed for several types of information and associated algorithms for angular approximations in the setting of a on-dimensional model problem. For point-evaluation information, the local and global radii of information are computed, a (trivial) optimal algorithm is determined, and the local and global error of a discrete ordinates algorithm are shown to be infinite. For average cone-integral information, the local and global radii of information are computed, the local and global error tends to zero as the underlying partition is indefinitely refined. A central algorithm for such information and an optimal partition (of given cardinality) are described. It is further shown that the analytic first-collision source method has zero error (for the purely absorbing model problem). Implications of the restricted problem domains suitable for the various types of information are discussed

  8. Discrete canonical transforms that are Hadamard matrices

    Healy, John J; Wolf, Kurt Bernardo

    2011-01-01

    The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.

  9. Discrete symmetries in periodic-orbit theory

    Robbins, J.M.

    1989-01-01

    The application of periodic-orbit theory to systems which possess a discrete symmetry is considered. A semiclassical expression for the symmetry-projected Green's function is obtained; it involves a sum over classical periodic orbits on a symmetry-reduced phase space, weighted by characters of the symmetry group. These periodic orbits correspond to trajectories on the full phase space which are not necessarily periodic, but whose end points are related by symmetry. If the symmetry-projected Green's functions are summed, the contributions of the unperiodic orbits cancel, and one recovers the usual periodic-orbit sum for the full Green's function. Several examples are considered, including the stadium billiard, a particle in a periodic potential, the Sinai billiard, the quartic oscillator, and the rotational spectrum of SF 6

  10. Discrete gauge symmetries in discrete MSSM-like orientifolds

    Ibáñez, L.E.; Schellekens, A.N.; Uranga, A.M.

    2012-01-01

    Motivated by the necessity of discrete Z N symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z 2 (R-parity) and Z 3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.

  11. Positivity for Convective Semi-discretizations

    Fekete, Imre; Ketcheson, David I.; Loczi, Lajos

    2017-01-01

    We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations

  12. Quantum chaos on discrete graphs

    Smilansky, Uzy

    2007-01-01

    Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)

  13. Dark energy from discrete spacetime.

    Aaron D Trout

    Full Text Available Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  14. Applied geometry and discrete mathematics

    Sturm; Gritzmann, Peter; Sturmfels, Bernd

    1991-01-01

    This volume, published jointly with the Association for Computing Machinery, comprises a collection of research articles celebrating the occasion of Victor Klee's sixty-fifth birthday in September 1990. During his long career, Klee has made contributions to a wide variety of areas, such as discrete and computational geometry, convexity, combinatorics, graph theory, functional analysis, mathematical programming and optimization, and theoretical computer science. In addition, Klee made important contributions to mathematics education, mathematical methods in economics and the decision sciences, applications of discrete mathematics in the biological and social sciences, and the transfer of knowledge from applied mathematics to industry. In honor of Klee's achievements, this volume presents more than forty papers on topics related to Klee's research. While the majority of the papers are research articles, a number of survey articles are also included. Mirroring the breadth of Klee's mathematical contributions, th...

  15. Emissivity of discretized diffusion problems

    Densmore, Jeffery D.; Davidson, Gregory; Carrington, David B.

    2006-01-01

    The numerical modeling of radiative transfer by the diffusion approximation can produce artificially damped radiation propagation if spatial cells are too optically thick. In this paper, we investigate this nonphysical behavior at external problem boundaries by examining the emissivity of the discretized diffusion approximation. We demonstrate that the standard cell-centered discretization produces an emissivity that is too low for optically thick cells, a situation that leads to the lack of radiation propagation. We then present a modified boundary condition that yields an accurate emissivity regardless of cell size. This modified boundary condition can be used with a deterministic calculation or as part of a hybrid transport-diffusion method for increasing the efficiency of Monte Carlo simulations. We also discuss the range of applicability, as a function of cell size and material properties, when this modified boundary condition is employed in a hybrid technique. With a set of numerical calculations, we demonstrate the accuracy and usefulness of this modified boundary condition

  16. Discrete symmetries in the MSSM

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  17. Discrete Bose-Einstein spectra

    Vlad, Valentin I.; Ionescu-Pallas, Nicholas

    2001-03-01

    The Bose-Einstein energy spectrum of a quantum gas, confined in a rigid cubic box, is shown to become discrete and strongly dependent on the box geometry (size L), temperature, T and atomic mass number, A at , in the region of small γ=A at TV 1/3 . This behavior is the consequence of the random state degeneracy in the box. Furthermore, we demonstrate that the total energy does not obey the conventional law any longer, but a new law, which depends on γ and on the quantum gas fugacity. This energy law imposes a faster decrease to zero than it is classically expected, for γ→0. The lighter the gas atoms, the higher the temperatures or the box size, for the same effects in the discrete Bose-Einstein regime. (author)

  18. Discrete symmetries in the MSSM

    Schieren, Roland

    2010-01-01

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)

  19. Dark energy from discrete spacetime.

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  20. Discrete mathematics using a computer

    Hall, Cordelia

    2000-01-01

    Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica­ tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...

  1. Duality for discrete integrable systems

    Quispel, G R W; Capel, H W; Roberts, J A G

    2005-01-01

    A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones

  2. Observability of discretized partial differential equations

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  3. Effective lagrangian description on discrete gauge symmetries

    Banks, T.

    1989-01-01

    We exhibit a simple low-energy lagrangian which describes a system with a discrete remnant of a spontaneously broken continuous gauge symmetry. The lagrangian gives a simple description of the effects ascribed to such systems by Krauss and Wilczek: black holes carry discrete hair and interact with cosmic strings, and wormholes cannot lead to violation of discrete gauge symmetries. (orig.)

  4. Discrete port-Hamiltonian systems : mixed interconnections

    Talasila, Viswanath; Clemente-Gallardo, J.; Schaft, A.J. van der

    2005-01-01

    Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling

  5. Discrete fractional solutions of a Legendre equation

    Yılmazer, Resat

    2018-01-01

    One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.

  6. Continuous versus discrete structures II -- Discrete Hamiltonian systems and Helmholtz conditions

    Cresson, Jacky; Pierret, Frédéric

    2015-01-01

    We define discrete Hamiltonian systems in the framework of discrete embeddings. An explicit comparison with previous attempts is given. We then solve the discrete Helmholtz's inverse problem for the discrete calculus of variation in the Hamiltonian setting. Several applications are discussed.

  7. Asymptotic behavior of discrete holomorphic maps z^c, log(z) and discrete Painleve transcedents

    Agafonov, S. I.

    2005-01-01

    It is shown that discrete analogs of z^c and log(z) have the same asymptotic behavior as their smooth counterparts. These discrete maps are described in terms of special solutions of discrete Painleve-II equations, asymptotics of these solutions providing the behaviour of discrete z^c and log(z) at infinity.

  8. Discrete integrable couplings associated with Toda-type lattice and two hierarchies of discrete soliton equations

    Zhang Yufeng; Fan Engui; Zhang Yongqing

    2006-01-01

    With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations

  9. Parametric statistical change point analysis

    Chen, Jie

    2000-01-01

    This work is an in-depth study of the change point problem from a general point of view and a further examination of change point analysis of the most commonly used statistical models Change point problems are encountered in such disciplines as economics, finance, medicine, psychology, signal processing, and geology, to mention only several The exposition is clear and systematic, with a great deal of introductory material included Different models are presented in each chapter, including gamma and exponential models, rarely examined thus far in the literature Other models covered in detail are the multivariate normal, univariate normal, regression, and discrete models Extensive examples throughout the text emphasize key concepts and different methodologies are used, namely the likelihood ratio criterion, and the Bayesian and information criterion approaches A comprehensive bibliography and two indices complete the study

  10. Emissions of Photonic Crystal Waveguides with Discretely Modulated Surfaces

    Dong-Hua, Tang; Li-Xue, Chen; Yan, Liu; Xiu-Dong, Sun; Wei-Qiang, Ding

    2009-01-01

    Transmission properties of photonic crystal (PC) waveguides with discretely modulated exit surfaces are investigated numerically using the unite-difference time-domain (FDTD) method. Unlike the case of periodically modulated surfaces, where the transmission beam tends to be a single and directional beam, when the exit surfaces are modulated only at several discrete points, the emission power tends to split into multiple and directional beams. We explain this phenomenon using a multiple point source interference model. Based on these results, we propose a 1-to-N beam splitter, and numerically realized high efficiency coupling between a PC sub-wavelength waveguide and three traditional dielectric waveguides with a total efficiency larger than 92%. This simple, easy fabrication, and controllable mechanism may find more potential applications in integrated optical circuits. (fundamental areas of phenomenology(including applications))

  11. Cuspidal discrete series for projective hyperbolic spaces

    Andersen, Nils Byrial; Flensted-Jensen, Mogens

    2013-01-01

    Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series......, and at most finitely many non-cuspidal discrete series, including in particular the spherical discrete series. For the projective spaces, the spherical discrete series are the only non-cuspidal discrete series. Below, we extend these results to the other hyperbolic spaces, and we also study the question...

  12. Space-Time Discrete KPZ Equation

    Cannizzaro, G.; Matetski, K.

    2018-03-01

    We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.

  13. Zak Phase in Discrete-Time Quantum Walks

    Puentes, G.; Santillán, O.

    2015-01-01

    We report on a simple scheme that may present a non-trivial geometric Zak phase ($\\Phi_{Zak}$) structure, which is based on a discrete-time quantum walk architecture. By detecting the Zak phase difference between two trajectories connecting adjacent Dirac points where the quasi-energy gap closes for opposite values of quasi-momentum ($k$), it is possible to identify geometric invariants. These geometric invariants correspond to $|\\Phi_{Zak}^{+(-)}-\\Phi_{Zak}^{-(+)}|=\\pi$ and $|\\Phi_{Zak}^{+(-...

  14. Integrable discretizations of the short pulse equation

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.

  15. VT Mile Points - 1/10-Mile Intervals

    Vermont Center for Geographic Information — The mile points data layer is comprised of discrete locations based on specific measured intervals along a route. These intervals are represented along a...

  16. High-temperature discrete dislocation plasticity

    Keralavarma, S. M.; Benzerga, A. A.

    2015-09-01

    A framework for solving problems of dislocation-mediated plasticity coupled with point-defect diffusion is presented. The dislocations are modeled as line singularities embedded in a linear elastic medium while the point defects are represented by a concentration field as in continuum diffusion theory. Plastic flow arises due to the collective motion of a large number of dislocations. Both conservative (glide) and nonconservative (diffusion-mediated climb) motions are accounted for. Time scale separation is contingent upon the existence of quasi-equilibrium dislocation configurations. A variational principle is used to derive the coupled governing equations for point-defect diffusion and dislocation climb. Superposition is used to obtain the mechanical fields in terms of the infinite-medium discrete dislocation fields and an image field that enforces the boundary conditions while the point-defect concentration is obtained by solving the stress-dependent diffusion equations on the same finite-element grid. Core-level boundary conditions for the concentration field are avoided by invoking an approximate, yet robust kinetic law. Aspects of the formulation are general but its implementation in a simple plane strain model enables the modeling of high-temperature phenomena such as creep, recovery and relaxation in crystalline materials. With emphasis laid on lattice vacancies, the creep response of planar single crystals in simple tension emerges as a natural outcome in the simulations. A large number of boundary-value problem solutions are obtained which depict transitions from diffusional to power-law creep, in keeping with long-standing phenomenological theories of creep. In addition, some unique experimental aspects of creep in small scale specimens are also reproduced in the simulations.

  17. Radiative transfer on discrete spaces

    Preisendorfer, Rudolph W; Stark, M; Ulam, S

    1965-01-01

    Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran

  18. Convergence of discrete Aubry–Mather model in the continuous limit

    Su, Xifeng; Thieullen, Philippe

    2018-05-01

    We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry–Mather–Fathi theory. The Hamiltonian is supposed to be Tonelli, time-independent and periodic in space. By Legendre transform it is equivalent to find a fixed point of some nonlinear operator, called Lax-Oleinik operator, which may be discounted or not. By discretizing in time, we are led to solve an additive eigenvalue problem involving a discrete Lax–Oleinik operator. We show how to approximate the effective Hamiltonian and some weak KAM solutions by letting the time step in the discrete model tend to zero. We also obtain a selected discrete weak KAM solution as in Davini et al (2016 Invent. Math. 206 29–55), and show that it converges to a particular solution of the cell equation. In order to unify the two settings, continuous and discrete, we develop a more general formalism of the short-range interactions.

  19. 3-D discrete analytical ridgelet transform.

    Helbert, David; Carré, Philippe; Andres, Eric

    2006-12-01

    In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.

  20. Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.

    Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria

    2015-10-15

    Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.

  1. Stable grid refinement and singular source discretization for seismic wave simulations

    Petersson, N A; Sjogreen, B

    2009-10-30

    An energy conserving discretization of the elastic wave equation in second order formulation is developed for a composite grid, consisting of a set of structured rectangular component grids with hanging nodes on the grid refinement interface. Previously developed summation-by-parts properties are generalized to devise a stable second order accurate coupling of the solution across mesh refinement interfaces. The discretization of singular source terms of point force and point moment tensor type are also studied. Based on enforcing discrete moment conditions that mimic properties of the Dirac distribution and its gradient, previous single grid formulas are generalized to work in the vicinity of grid refinement interfaces. These source discretization formulas are shown to give second order accuracy in the solution, with the error being essentially independent of the distance between the source and the grid refinement boundary. Several numerical examples are given to illustrate the properties of the proposed method.

  2. On E-discretization of tori of compact simple Lie groups. II

    Hrivnák, Jiří; Juránek, Michal

    2017-10-01

    Ten types of discrete Fourier transforms of Weyl orbit functions are developed. Generalizing one-dimensional cosine, sine, and exponential, each type of the Weyl orbit function represents an exponential symmetrized with respect to a subgroup of the Weyl group. Fundamental domains of even affine and dual even affine Weyl groups, governing the argument and label symmetries of the even orbit functions, are determined. The discrete orthogonality relations are formulated on finite sets of points from the refinements of the dual weight lattices. Explicit counting formulas for the number of points of the discrete transforms are deduced. Real-valued Hartley orbit functions are introduced, and all ten types of the corresponding discrete Hartley transforms are detailed.

  3. A class of conservative Hamiltonians with exactly integrable discrete two-dimensional parametric maps

    Dikande, Alain M; Njumbe, E Epie

    2010-01-01

    A class of discrete conservative Hamiltonians with completely integrable two-dimensional (2D) mappings is constructed whose generic models are three families of non-integrable discrete Hamiltonians with on-site potentials whose double-well shapes vary. Unlike the discrete 2D mappings associated with the generic models, which all display pitchfork bifurcations towards randomly pinned states with chaotic features, for the derived models the pitchfork bifurcation leads to fixed points always surrounded by periodic trajectories. A nonlinear stability analysis reveals a finite crossover on the bifurcation line at which the pitchfork transition takes the maps from regular real periodic trajectories towards a regime dominated by a cluster of periodic point trajectories representing the allowed real solutions. The rich variety of structures displayed by the new class of discrete maps, combined with their complete integrability, offer rich perspectives for theoretical modelling of a wide class of systems undergoing structural instabilities without noticeable chaotic precursors.

  4. Global exponential stability of mixed discrete and distributively delayed cellular neural network

    Yao Hong-Xing; Zhou Jia-Yan

    2011-01-01

    This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov—Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result. (general)

  5. Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus

    Liu Jiang; Wang Deng-Shan; Yin Yan-Bin

    2017-01-01

    In this work, the Lie point symmetries of the inhomogeneous Toda lattice equation are obtained by semi-discrete exterior calculus, which is a semi-discrete version of Harrison and Estabrook’s geometric approach. A four-dimensional Lie algebra and its one-, two- and three-dimensional subalgebras are given. Two similarity reductions of the inhomogeneous Toda lattice equation are obtained by using the symmetry vectors. (paper)

  6. Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene

    Oettinger, D.; Mendoza, M.; Herrmann, H. J.

    2013-01-01

    We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in m...

  7. Fermion Systems in Discrete Space-Time Exemplifying the Spontaneous Generation of a Causal Structure

    Diethert, A.; Finster, F.; Schiefeneder, D.

    As toy models for space-time at the Planck scale, we consider examples of fermion systems in discrete space-time which are composed of one or two particles defined on two up to nine space-time points. We study the self-organization of the particles as described by a variational principle both analytically and numerically. We find an effect of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure.

  8. The inverse of winnowing: a FORTRAN subroutine and discussion of unwinnowing discrete data

    Bracken, Robert E.

    2004-01-01

    This report describes an unwinnowing algorithm that utilizes a discrete Fourier transform, and a resulting Fortran subroutine that winnows or unwinnows a 1-dimensional stream of discrete data; the source code is included. The unwinnowing algorithm effectively increases (by integral factors) the number of available data points while maintaining the original frequency spectrum of a data stream. This has utility when an increased data density is required together with an availability of higher order derivatives that honor the original data.

  9. Discrete fourier transformations with weight

    Wang Qin; Jiang Yong

    1988-01-01

    DFT and FFT with weight were considered and their properties were studied. The usual DFT and FFT were modified by reducing the number of sample points within a certain error band and therefore speeded up the computation. Finally, the practical applications of the new method in the fields of spectrum analysis, pulse tracing research and so on were pointed out

  10. Inevitable randomness in discrete mathematics

    Beck, Jozsef

    2009-01-01

    Mathematics has been called the science of order. The subject is remarkably good for generalizing specific cases to create abstract theories. However, mathematics has little to say when faced with highly complex systems, where disorder reigns. This disorder can be found in pure mathematical arenas, such as the distribution of primes, the 3n+1 conjecture, and class field theory. The purpose of this book is to provide examples--and rigorous proofs--of the complexity law: (1) discrete systems are either simple or they exhibit advanced pseudorandomness; (2) a priori probabilities often exist even when there is no intrinsic symmetry. Part of the difficulty in achieving this purpose is in trying to clarify these vague statements. The examples turn out to be fascinating instances of deep or mysterious results in number theory and combinatorics. This book considers randomness and complexity. The traditional approach to complexity--computational complexity theory--is to study very general complexity classes, such as P...

  11. Quantum evolution by discrete measurements

    Roa, L; Guevara, M L Ladron de; Delgado, A; Olivares-RenterIa, G; Klimov, A B

    2007-01-01

    In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases

  12. Quantum evolution by discrete measurements

    Roa, L [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Guevara, M L Ladron de [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Delgado, A [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Olivares-RenterIa, G [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile); Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)

    2007-10-15

    In this article we review two ways of driving a quantum system to a known pure state via a sequence discrete of von Neumann measurements. The first of them assumes that the initial state of the system is unknown, and the evolution is attained only with the help of two non-commuting observables. For this method, the overall success probability is maximized when the eigentstates of the involved observables constitute mutually unbiased bases. The second method assumes the initial state is known and it uses N observables which are consecutively measured to make the state of the system approach the target state. The probability of success of this procedure converges to 1 as the number of observables increases.

  13. Discrete stochastic processes and applications

    Collet, Jean-François

    2018-01-01

    This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.

  14. Discrete calculus methods for counting

    Mariconda, Carlo

    2016-01-01

    This book provides an introduction to combinatorics, finite calculus, formal series, recurrences, and approximations of sums. Readers will find not only coverage of the basic elements of the subjects but also deep insights into a range of less common topics rarely considered within a single book, such as counting with occupancy constraints, a clear distinction between algebraic and analytical properties of formal power series, an introduction to discrete dynamical systems with a thorough description of Sarkovskii’s theorem, symbolic calculus, and a complete description of the Euler-Maclaurin formulas and their applications. Although several books touch on one or more of these aspects, precious few cover all of them. The authors, both pure mathematicians, have attempted to develop methods that will allow the student to formulate a given problem in a precise mathematical framework. The aim is to equip readers with a sound strategy for classifying and solving problems by pursuing a mathematically rigorous yet ...

  15. Modeling discrete competitive facility location

    Karakitsiou, Athanasia

    2015-01-01

    This book presents an up-to-date review of modeling and optimization approaches for location problems along with a new bi-level programming methodology which captures the effect of competition of both producers and customers on facility location decisions. While many optimization approaches simplify location problems by assuming decision making in isolation, this monograph focuses on models which take into account the competitive environment in which such decisions are made. New insights in modeling, algorithmic and theoretical possibilities are opened by this approach and new applications are possible. Competition on equal term plus competition between market leader and followers are considered in this study, consequently bi-level optimization methodology is emphasized and further developed. This book provides insights regarding modeling complexity and algorithmic approaches to discrete competitive location problems. In traditional location modeling, assignment of customer demands to supply sources are made ...

  16. Discrete modelling of drapery systems

    Thoeni, Klaus; Giacomini, Anna

    2016-04-01

    Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R

  17. Discrete coherent and squeezed states of many-qudit systems

    Klimov, Andrei B.; Munoz, Carlos; Sanchez-Soto, Luis L.

    2009-01-01

    We consider the phase space for n identical qudits (each one of dimension d, with d a primer number) as a grid of d n xd n points and use the finite Galois field GF(d n ) to label the corresponding axes. The associated displacement operators permit to define s-parametrized quasidistributions on this grid, with properties analogous to their continuous counterparts. These displacements allow also for the construction of finite coherent states, once a fiducial state is fixed. We take this reference as one eigenstate of the discrete Fourier transform and study the factorization properties of the resulting coherent states. We extend these ideas to include discrete squeezed states, and show their intriguing relation with entangled states of different qudits.

  18. Anyonic order parameters for discrete gauge theories on the lattice

    Bais, F.A.; Romers, J.C.

    2009-01-01

    We present a new family of gauge invariant non-local order parameters Δ α A for (non-abelian) discrete gauge theories on a Euclidean lattice, which are in one-to-one correspondence with the excitation spectrum that follows from the representation theory of the quantum double D(H) of the finite group H. These combine magnetic flux-sector labeled by a conjugacy class with an electric representation of the centralizer subgroup that commutes with the flux. In particular, cases like the trivial class for magnetic flux, or the trivial irrep for electric charge, these order parameters reduce to the familiar Wilson and the 't Hooft operators, respectively. It is pointed out that these novel operators are crucial for probing the phase structure of a class of discrete lattice models we define, using Monte Carlo simulations.

  19. Notes on qubit phase space and discrete symplectic structures

    Livine, Etera R

    2010-01-01

    We start from Wootter's construction of discrete phase spaces and Wigner functions for qubits and more generally for finite-dimensional Hilbert spaces. We look at this framework from a non-commutative space perspective and we focus on the Moyal product and the differential calculus on these discrete phase spaces. In particular, the qubit phase space provides the simplest example of a four-point non-commutative phase space. We give an explicit expression of the Moyal bracket as a differential operator. We then compare the quantum dynamics encoded by the Moyal bracket to the classical dynamics: we show that the classical Poisson bracket does not satisfy the Jacobi identity thus leaving the Moyal bracket as the only consistent symplectic structure. We finally generalize our analysis to Hilbert spaces of prime dimensions d and their associated d x d phase spaces.

  20. Critical bifurcation surfaces of 3D discrete dynamics

    Michael Sonis

    2000-01-01

    Full Text Available This paper deals with the analytical representation of bifurcations of each 3D discrete dynamics depending on the set of bifurcation parameters. The procedure of bifurcation analysis proposed in this paper represents the 3D elaboration and specification of the general algorithm of the n-dimensional linear bifurcation analysis proposed by the author earlier. It is proven that 3D domain of asymptotic stability (attraction of the fixed point for a given 3D discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and flutter surfaces. The analytical construction of these surfaces is achieved with the help of classical Routh–Hurvitz conditions of asymptotic stability. As an application the adjustment process proposed by T. Puu for the Cournot oligopoly model is considered in detail.

  1. Dynamic nonlinear interaction of elastic plates on discrete supports

    Coutinho, A.L.G.A.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.

    1984-01-01

    A study on the dynamic nonlinear interaction of elastic plates using the finite element method is presented. The elastic plate is discretized by 4-node isoparametric Mindlin elements. The constitutive relation of the discrete supports can be any nonlinear curve given by pairs of force-displacement points. The nonlinear behaviour is represented by the overlay approach. This model also allows the simulation of a progressive decrease on the supports stiffnesses during load cycles. The dynamic nonlinear incremental movement equations are integrated by the Newmark implicit operator. Two alternatives for the incremental-iterative formulation are compared. The paper ends with a discussion of the advantages and limitations of the presented numerical models. (Author) [pt

  2. Simulating Electrophoresis with Discrete Charge and Drag

    Mowitz, Aaron J.; Witten, Thomas A.

    A charged asymmetric rigid cluster of colloidal particles in saline solution can respond in exotic ways to an electric field: it may spin or move transversely. These distinctive motions arise from the drag force of the neutralizing countercharge surrounding the cluster. Because of this drag, calculating the motion of arbitrary asymmetric objects with nonuniform charge is impractical by conventional methods. Here we present a new method of simulating electrophoresis, in which we replace the continuous object and the surrounding countercharge with discrete point-draggers, called Stokeslets. The balance of forces imposes a linear, self-consistent relation among the drag and Coulomb forces on the Stokeslets, which allows us to easily determine the object's motion via matrix inversion. By explicitly enforcing charge+countercharge neutrality, the simulation recovers the distinctive features of electrophoretic motion to few-percent accuracy using as few as 1000 Stokeslets. In particular, for uniformly charged objects, we observe the characteristic Smoluchowski independence of mobility on object size and shape. We then discuss electrophoretic motion of asymmetric objects, where our simulation method is particularly advantageous. This work is supported by a Grant from the US-Israel Binational Science Foundation.

  3. Lectures on financial mathematics discrete asset pricing

    Anderson, Greg

    2010-01-01

    This is a short book on the fundamental concepts of the no-arbitrage theory of pricing financial derivatives. Its scope is limited to the general discrete setting of models for which the set of possible states is finite and so is the set of possible trading times--this includes the popular binomial tree model. This setting has the advantage of being fairly general while not requiring a sophisticated understanding of analysis at the graduate level. Topics include understanding the several variants of "arbitrage", the fundamental theorems of asset pricing in terms of martingale measures, and applications to forwards and futures. The authors' motivation is to present the material in a way that clarifies as much as possible why the often confusing basic facts are true. Therefore the ideas are organized from a mathematical point of view with the emphasis on understanding exactly what is under the hood and how it works. Every effort is made to include complete explanations and proofs, and the reader is encouraged t...

  4. Analysis of the stability and accuracy of the discrete least-squares approximation on multivariate polynomial spaces

    Migliorati, Giovanni

    2016-01-01

    We review the main results achieved in the analysis of the stability and accuracy of the discrete leastsquares approximation on multivariate polynomial spaces, with noiseless evaluations at random points, noiseless evaluations at low

  5. A Discrete Spectral Problem and Related Hierarchy of Discrete Hamiltonian Lattice Equations

    Xu Xixiang; Cao Weili

    2007-01-01

    Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.

  6. Computing the Gromov hyperbolicity constant of a discrete metric space

    Ismail, Anas

    2012-07-01

    Although it was invented by Mikhail Gromov, in 1987, to describe some family of groups[1], the notion of Gromov hyperbolicity has many applications and interpretations in different fields. It has applications in Biology, Networking, Graph Theory, and many other areas of research. The Gromov hyperbolicity constant of several families of graphs and geometric spaces has been determined. However, so far, the only known algorithm for calculating the Gromov hyperbolicity constant δ of a discrete metric space is the brute force algorithm with running time O (n4) using the four-point condition. In this thesis, we first introduce an approximation algorithm which calculates a O (log n)-approximation of the hyperbolicity constant δ, based on a layering approach, in time O(n2), where n is the number of points in the metric space. We also calculate the fixed base point hyperbolicity constant δr for a fixed point r using a (max, min)−matrix multiplication algorithm by Duan in time O(n2.688)[2]. We use this result to present a 2-approximation algorithm for calculating the hyper-bolicity constant in time O(n2.688). We also provide an exact algorithm to compute the hyperbolicity constant δ in time O(n3.688) for a discrete metric space. We then present some partial results we obtained for designing some approximation algorithms to compute the hyperbolicity constant δ.

  7. Transitions between discrete and rhythmic primitives in a unimanual task

    Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville

    2013-01-01

    Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139

  8. Transitions between Discrete and Rhythmic Primitives in a Unimanual Task

    Dagmar eSternad

    2013-07-01

    Full Text Available Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements, in order to stress the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: Starting at 2s the metronome intervals decreased by 36ms per cycle to 200ms, stayed at 200ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models.

  9. Geometry and Hamiltonian mechanics on discrete spaces

    Talasila, V; Clemente-Gallardo, J; Schaft, A J van der

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed

  10. Cuspidal discrete series for semisimple symmetric spaces

    Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik

    2012-01-01

    We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...

  11. Discrete Riccati equation solutions: Distributed algorithms

    D. G. Lainiotis

    1996-01-01

    Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.

  12. Painleve test and discrete Boltzmann equations

    Euler, N.; Steeb, W.H.

    1989-01-01

    The Painleve test for various discrete Boltzmann equations is performed. The connection with integrability is discussed. Furthermore the Lie symmetry vector fields are derived and group-theoretical reduction of the discrete Boltzmann equations to ordinary differentiable equations is performed. Lie Backlund transformations are gained by performing the Painleve analysis for the ordinary differential equations. 16 refs

  13. Variance Swap Replication: Discrete or Continuous?

    Fabien Le Floc’h

    2018-02-01

    Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.

  14. Discretization vs. Rounding Error in Euler's Method

    Borges, Carlos F.

    2011-01-01

    Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…

  15. Discrete/PWM Ballast-Resistor Controller

    King, Roger J.

    1994-01-01

    Circuit offers low switching loss and automatic compensation for failure of ballast resistor. Discrete/PWM ballast-resistor controller improved shunt voltage-regulator circuit designed to supply power from high-resistance source to low-impedance bus. Provides both coarse discrete voltage levels (by switching of ballast resistors) and continuous fine control of voltage via pulse-width modulation.

  16. Geometry and Hamiltonian mechanics on discrete spaces

    Talasila, V.; Clemente-Gallardo, J.; Schaft, A.J. van der

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a ‘smooth’ model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to

  17. Geometry and Hamiltonian mechanics on discrete spaces

    Talasila, V.; Clemente Gallardo, J.J.; Clemente-Gallardo, J.; van der Schaft, Arjan

    2004-01-01

    Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to

  18. Discrete mathematics in the high school curriculum

    Anderson, I.; Asch, van A.G.; van Lint, J.H.

    2004-01-01

    In this paper we present some topics from the field of discrete mathematics which might be suitable for the high school curriculum. These topics yield both easy to understand challenging problems and important applications of discrete mathematics. We choose elements from number theory and various

  19. Discrete Fourier analysis of multigrid algorithms

    van der Vegt, Jacobus J.W.; Rhebergen, Sander

    2011-01-01

    The main topic of this report is a detailed discussion of the discrete Fourier multilevel analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for discretizations of both linear and nonlinear partial differential equations. Special attention is given to the

  20. Handbook on modelling for discrete optimization

    Pitsoulis, Leonidas; Williams, H

    2006-01-01

    The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...

  1. Discrete elements method of neutral particle transport

    Mathews, K.A.

    1983-01-01

    A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method

  2. Laplacians on discrete and quantum geometries

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2013-01-01

    We extend discrete calculus for arbitrary (p-form) fields on embedded lattices to abstract discrete geometries based on combinatorial complexes. We then provide a general definition of discrete Laplacian using both the primal cellular complex and its combinatorial dual. The precise implementation of geometric volume factors is not unique and, comparing the definition with a circumcentric and a barycentric dual, we argue that the latter is, in general, more appropriate because it induces a Laplacian with more desirable properties. We give the expression of the discrete Laplacian in several different sets of geometric variables, suitable for computations in different quantum gravity formalisms. Furthermore, we investigate the possibility of transforming from position to momentum space for scalar fields, thus setting the stage for the calculation of heat kernel and spectral dimension in discrete quantum geometries. (paper)

  3. Discrete breathers in graphane: Effect of temperature

    Baimova, J. A., E-mail: julia.a.baimova@gmail.com [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Murzaev, R. T.; Lobzenko, I. P.; Dmitriev, S. V. [Russian Academy of Sciences, Institute for Metals Superplasticity Problems (Russian Federation); Zhou, Kun [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)

    2016-05-15

    The discrete breathers in graphane in thermodynamic equilibrium in the temperature range 50–600 K are studied by molecular dynamics simulation. A discrete breather is a hydrogen atom vibrating along the normal to a sheet of graphane at a high amplitude. As was found earlier, the lifetime of a discrete breather at zero temperature corresponds to several tens of thousands of vibrations. The effect of temperature on the decay time of discrete breathers and the probability of their detachment from a sheet of graphane are studied in this work. It is shown that closely spaced breathers can exchange energy with each other at zero temperature. The data obtained suggest that thermally activated discrete breathers can be involved in the dehydrogenation of graphane, which is important for hydrogen energetics.

  4. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  5. Analysis of the stability and accuracy of the discrete least-squares approximation on multivariate polynomial spaces

    Migliorati, Giovanni

    2016-01-05

    We review the main results achieved in the analysis of the stability and accuracy of the discrete leastsquares approximation on multivariate polynomial spaces, with noiseless evaluations at random points, noiseless evaluations at low-discrepancy point sets, and noisy evaluations at random points.

  6. Perfect discretization of reparametrization invariant path integrals

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-01-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  7. Perfect discretization of reparametrization invariant path integrals

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-05-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  8. Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study.

    Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel

    2007-06-21

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

  9. Spatial Treatment of the Slab-geometry Discrete Ordinates Equations Using Artificial Neural Networks

    Brantley, P S

    2001-01-01

    An artificial neural network (ANN) method is developed for treating the spatial variable of the one-group slab-geometry discrete ordinates (S N ) equations in a homogeneous medium with linearly anisotropic scattering. This ANN method takes advantage of the function approximation capability of multilayer ANNs. The discrete ordinates angular flux is approximated by a multilayer ANN with a single input representing the spatial variable x and N outputs representing the angular flux in each of the discrete ordinates angular directions. A global objective function is formulated which measures how accurately the output of the ANN approximates the solution of the discrete ordinates equations and boundary conditions at specified spatial points. Minimization of this objective function determines the appropriate values for the parameters of the ANN. Numerical results are presented demonstrating the accuracy of the method for both fixed source and incident angular flux problems

  10. Time dependence linear transport III convergence of the discrete ordinate method

    Wilson, D.G.

    1983-01-01

    In this paper the uniform pointwise convergence of the discrete ordinate method for weak and strong solutions of the time dependent, linear transport equation posed in a multidimensional, rectangular parallelepiped with partially reflecting walls is established. The first result is that a sequence of discrete ordinate solutions converges uniformly on the quadrature points to a solution of the continuous problem provided that the corresponding sequence of truncation errors for the solution of the continuous problem converges to zero in the same manner. The second result is that continuity of the solution with respect to the velocity variables guarantees that the truncation erros in the quadrature formula go the zero and hence that the discrete ordinate approximations converge to the solution of the continuous problem as the discrete ordinate become dense. An existence theory for strong solutions of the the continuous problem follows as a result

  11. Discrete Model for the Structure and Strength of Cementitious Materials

    Balopoulos, Victor D.; Archontas, Nikolaos; Pantazopoulou, Stavroula J.

    2017-12-01

    Cementitious materials are characterized by brittle behavior in direct tension and by transverse dilatation (due to microcracking) under compression. Microcracking causes increasingly larger transverse strains and a phenomenological Poisson's ratio that gradually increases to about ν =0.5 and beyond, at the limit point in compression. This behavior is due to the underlying structure of cementitious pastes which is simulated here with a discrete physical model. The computational model is generic, assembled from a statistically generated, continuous network of flaky dendrites consisting of cement hydrates that emanate from partially hydrated cement grains. In the actual amorphous material, the dendrites constitute the solid phase of the cement gel and interconnect to provide the strength and stiffness against load. The idealized dendrite solid is loaded in compression and tension to compute values for strength and Poisson's effects. Parametric studies are conducted, to calibrate the statistical parameters of the discrete model with the physical and mechanical characteristics of the material, so that the familiar experimental trends may be reproduced. The model provides a framework for the study of the mechanical behavior of the material under various states of stress and strain and can be used to model the effects of additives (e.g., fibers) that may be explicitly simulated in the discrete structure.

  12. Rainbow-shift mechanism behind discrete optical-potential ambiguities

    Brandan, M.E.; McVoy, K.W.

    1991-01-01

    Some years ago, Drisko et al. suggested that the discrete ambiguity often encountered for elastic scattering optical potentials could be understood as being due to the interior or small-l S-matrix elements for two ''equivalent'' potentials differing in phase by 2π, l-by-l. We point out that the absence of this phase change for peripheral partial waves is equally essential, and suggest that a deeper understanding of the ambiguity may be achieved by viewing it as a consequence of a farside interference between interior and peripheral partial waves. It is this interference which produces the broad ''Airy maxima'' of a nuclear rainbow, and we show that a Drisko-type phase-shift increment δ l →(δ l +π) for low-l phases relative to the high-l ones is exactly what is needed to shift a farside rainbow pattern by one Airy maximum, thus providing an equivalent ''rainbow-shift'' interpretation of the discrete ambiguity. The physical importance of both interpretations lies in the fact that the existence of discrete ambiguities (as well as of nuclear rainbows) is explicit evidence for low-l transparency in nucleus-nucleus collisions. The essential role played by low partial waves explains why peripheral reactions have generally not proven helpful in resolving this ambiguity

  13. Discrete-time control system design with applications

    Rabbath, C A

    2014-01-01

    This book presents practical techniques of discrete-time control system design. In general, the design techniques lead to low-order dynamic compensators that ensure satisfactory closed-loop performance for a wide range of sampling rates. The theory is given in the form of theorems, lemmas, and propositions. The design of the control systems is presented as step-by-step procedures and algorithms. The proposed feedback control schemes are applied to well-known dynamic system models. This book also discusses: Closed-loop performance of generic models of mobile robot and airborne pursuer dynamic systems under discrete-time feedback control with limited computing capabilities Concepts of discrete-time models and sampled-data models of continuous-time systems, for both single- and dual-rate operation Local versus global digital redesign Optimal, closed-loop digital redesign methods Plant input mapping design Generalized holds and samplers for use in feedback control loops, Numerical simulation of fixed-point arithm...

  14. Higher dimensional discrete Cheeger inequalities

    Anna Gundert

    2015-01-01

    Full Text Available For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that $\\lambda(G \\leq h(G$, where $\\lambda(G$ is the second smallest eigenvalue of the Laplacian of a graph $G$ and $h(G$ is the Cheeger constant measuring the edge expansion of $G$. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs. Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on $\\mathbb{Z}_2$-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no direct higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by $h(X$, was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed $\\lambda(X \\leq h(X$, where $\\lambda(X$ is the smallest non-trivial eigenvalue of the ($(k-1$-dimensional upper Laplacian, for the case of $k$-dimensional simplicial complexes $X$ with complete $(k-1$-skeleton. Whether this inequality also holds for $k$-dimensional complexes with non-com\\-plete$(k-1$-skeleton has been an open question.We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed,and each allows for a different kind of additional strengthening of the original result.

  15. Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues

    Maruno, Ken-ichi; Biondini, Gino

    2004-01-01

    We present a class of solutions of the two-dimensional Toda lattice equation, its fully discrete analogue and its ultra-discrete limit. These solutions demonstrate the existence of soliton resonance and web-like structure in discrete integrable systems such as differential-difference equations, difference equations and cellular automata (ultra-discrete equations)

  16. Hairs of discrete symmetries and gravity

    Choi, Kang Sin [Scranton Honors Program, Ewha Womans University, Seodaemun-Gu, Seoul 03760 (Korea, Republic of); Center for Fields, Gravity and Strings, CTPU, Institute for Basic Sciences, Yuseong-Gu, Daejeon 34047 (Korea, Republic of); Kim, Jihn E., E-mail: jihnekim@gmail.com [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of); Center for Axion and Precision Physics Research (IBS), 291 Daehakro, Yuseong-Gu, Daejeon 34141 (Korea, Republic of); Kyae, Bumseok [Department of Physics, Pusan National University, 2 Busandaehakro-63-Gil, Geumjeong-Gu, Busan 46241 (Korea, Republic of); Nam, Soonkeon [Department of Physics, Kyung Hee University, 26 Gyungheedaero, Dongdaemun-Gu, Seoul 02447 (Korea, Republic of)

    2017-06-10

    Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair) at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.

  17. Hairs of discrete symmetries and gravity

    Kang Sin Choi

    2017-06-01

    Full Text Available Gauge symmetries are known to be respected by gravity because gauge charges carry flux lines, but global charges do not carry flux lines and are not conserved by gravitational interaction. For discrete symmetries, they are spontaneously broken in the Universe, forming domain walls. Since the realization of discrete symmetries in the Universe must involve the vacuum expectation values of Higgs fields, a string-like configuration (hair at the intersection of domain walls in the Higgs vacua can be realized. Therefore, we argue that discrete charges are also respected by gravity.

  18. Discrete Morse functions for graph configuration spaces

    Sawicki, A

    2012-01-01

    We present an alternative application of discrete Morse theory for two-particle graph configuration spaces. In contrast to previous constructions, which are based on discrete Morse vector fields, our approach is through Morse functions, which have a nice physical interpretation as two-body potentials constructed from one-body potentials. We also give a brief introduction to discrete Morse theory. Our motivation comes from the problem of quantum statistics for particles on networks, for which generalized versions of anyon statistics can appear. (paper)

  19. Discrete Tomography and Imaging of Polycrystalline Structures

    Alpers, Andreas

    High resolution transmission electron microscopy is commonly considered as the standard application for discrete tomography. While this has yet to be technically realized, new applications with a similar flavor have emerged in materials science. In our group at Ris� DTU (Denmark's National...... Laboratory for Sustainable Energy), for instance, we study polycrystalline materials via synchrotron X-ray diffraction. Several reconstruction problems arise, most of them exhibit inherently discrete aspects. In this talk I want to give a concise mathematical introduction to some of these reconstruction...... problems. Special focus is on their relationship to classical discrete tomography. Several open mathematical questions will be mentioned along the way....

  20. Ensemble simulations with discrete classical dynamics

    Toxværd, Søren

    2013-01-01

    For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde......{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics...

  1. Stochastic Kuramoto oscillators with discrete phase states

    Jörg, David J.

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  2. Stochastic Kuramoto oscillators with discrete phase states.

    Jörg, David J

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  3. Discrete-Time Biomedical Signal Encryption

    Victor Grigoraş

    2017-12-01

    Full Text Available Chaotic modulation is a strong method of improving communication security. Analog and discrete chaotic systems are presented in actual literature. Due to the expansion of digital communication, discrete-time systems become more efficient and closer to actual technology. The present contribution offers an in-depth analysis of the effects chaos encryption produce on 1D and 2D biomedical signals. The performed simulations show that modulating signals are precisely recovered by the synchronizing receiver if discrete systems are digitally implemented and the coefficients precisely correspond. Channel noise is also applied and its effects on biomedical signal demodulation are highlighted.

  4. Discrete symmetries and de Sitter spacetime

    Cotăescu, Ion I., E-mail: gpascu@physics.uvt.ro; Pascu, Gabriel, E-mail: gpascu@physics.uvt.ro [West University of Timişoara, V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)

    2014-11-24

    Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.

  5. Distance of Sample Measurement Points to Prototype Catalog Curve

    Hjorth, Poul G.; Karamehmedovic, Mirza; Perram, John

    2006-01-01

    We discuss strategies for comparing discrete data points to a catalog (reference) curve by means of the Euclidean distance from each point to the curve in a pump's head H vs. flow Qdiagram. In particular we find that a method currently in use is inaccurate. We propose several alternatives...

  6. Discrete Fourier Transform in a Complex Vector Space

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  7. Einstein causal quantum fields on lattices with discrete Lorentz invariance

    Baumgaertel, H.

    1986-01-01

    Results on rigorous construction of quantum fields on the hypercubic lattice Z 4 considered as a lattice in the Minkowski space R 4 are presented. Two associated fields are constructed: The first one having on the lattice points of Z 4 is causal and Poincare invariant in the discrete sense. The second one is an interpolating field over R 4 which is pointlike, translationally covariant and spectral in such a manner that the 'real' lattices field is the restriction of the interpolating field to Z 4 . Furthermore, results on a rigorous perturbation theory of such fields are mentioned

  8. Design of Experiment Using Simulation of a Discrete Dynamical System

    Mašek Jan

    2016-12-01

    Full Text Available The topic of the presented paper is a promising approach to achieve optimal Design of Experiment (DoE, i.e. spreading of points within a design domain, using a simulation of a discrete dynamical system of interacting particles within an n-dimensional design space. The system of mutually repelling particles represents a physical analogy of the Audze-Eglājs (AE optimization criterion and its periodical modification (PAE, respectively. The paper compares the performance of two approaches to implementation: a single-thread process using the JAVA language environment and a massively parallel solution employing the nVidia CUDA platform.

  9. Orthogonal functions, discrete variable representation, and generalized gauss quadratures

    Schneider, B. I.; Nygaard, Nicolai

    2002-01-01

    in the original representation. This has been exploited in bound-state, scattering, and time-dependent problems using the so-called, discrete variable representation (DVR). At the core of this approach is the mathematical three-term recursion relationship satisfied by the classical orthogonal functions...... functions, this is not the case. However, they may be computed in a stable numerical fashion, via the recursion. In essence, this is an application of the well-known Lanczos recursion approach. Once the recursion coefficients are known, it is possible to compute the points and weights of quadratures on...

  10. Exterior difference systems and invariance properties of discrete mechanics

    Xie Zheng; Xie Duanqiang; Li Hongbo

    2008-01-01

    Invariance properties describe the fundamental physical laws in discrete mechanics. Can those properties be described in a geometric way? We investigate an exterior difference system called the discrete Euler-Lagrange system, whose solution has one-to-one correspondence with solutions of discrete Euler-Lagrange equations, and use it to define the first integrals. The preservation of the discrete symplectic form along the discrete Hamilton phase flows and the discrete Noether's theorem is also described in the language of difference forms

  11. On organizing principles of discrete differential geometry. Geometry of spheres

    Bobenko, Alexander I; Suris, Yury B

    2007-01-01

    Discrete differential geometry aims to develop discrete equivalents of the geometric notions and methods of classical differential geometry. This survey contains a discussion of the following two fundamental discretization principles: the transformation group principle (smooth geometric objects and their discretizations are invariant with respect to the same transformation group) and the consistency principle (discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets). The main concrete geometric problem treated here is discretization of curvature-line parametrized surfaces in Lie geometry. Systematic use of the discretization principles leads to a discretization of curvature-line parametrization which unifies circular and conical nets.

  12. Can time be a discrete dynamical variable

    Lee, T.D.

    1983-01-01

    The possibility that time can be regarded as a discrete dynamical variable is examined through all phases of mechanics: from classical mechanics to nonrelativistic quantum mechanics, and to relativistic quantum field theories. (orig.)

  13. Local discrete symmetries from superstring derived models

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations

  14. Breatherlike impurity modes in discrete nonlinear lattices

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.

    1995-01-01

    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  15. Inferring gene networks from discrete expression data

    Zhang, L.; Mallick, B. K.

    2013-01-01

    graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which

  16. A discrete control model of PLANT

    Mitchell, C. M.

    1985-01-01

    A model of the PLANT system using the discrete control modeling techniques developed by Miller is described. Discrete control models attempt to represent in a mathematical form how a human operator might decompose a complex system into simpler parts and how the control actions and system configuration are coordinated so that acceptable overall system performance is achieved. Basic questions include knowledge representation, information flow, and decision making in complex systems. The structure of the model is a general hierarchical/heterarchical scheme which structurally accounts for coordination and dynamic focus of attention. Mathematically, the discrete control model is defined in terms of a network of finite state systems. Specifically, the discrete control model accounts for how specific control actions are selected from information about the controlled system, the environment, and the context of the situation. The objective is to provide a plausible and empirically testable accounting and, if possible, explanation of control behavior.

  17. Running Parallel Discrete Event Simulators on Sierra

    Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  18. Effective Hamiltonian for travelling discrete breathers

    MacKay, Robert S.; Sepulchre, Jacques-Alexandre

    2002-05-01

    Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.

  19. Comparing the Discrete and Continuous Logistic Models

    Gordon, Sheldon P.

    2008-01-01

    The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)

  20. Discrete-time nonlinear sliding mode controller

    user

    Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.

  1. Rich dynamics of discrete delay ecological models

    Peng Mingshu

    2005-01-01

    We study multiple bifurcations and chaotic behavior of a discrete delay ecological model. New form of chaos for the 2-D map is observed: the combination of potential period doubling and reverse period-doubling leads to cascading bubbles

  2. Discrete and Continuous Models for Partitioning Problems

    Lellmann, Jan; Lellmann, Bjö rn; Widmann, Florian; Schnö rr, Christoph

    2013-01-01

    -based techniques. This work is concerned with the sources of such artifacts. We discuss the importance of differentiating between artifacts caused by discretization and those caused by relaxation and provide supporting numerical examples. Moreover, we consider

  3. Memorized discrete systems and time-delay

    Luo, Albert C J

    2017-01-01

    This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.

  4. Testing Preference Axioms in Discrete Choice experiments

    Hougaard, Jens Leth; Østerdal, Lars Peter; Tjur, Tue

    Recent studies have tested the preference axioms of completeness and transitivity, and have detected other preference phenomena such as unstability, learning- and tiredness effects, ordering effects and dominance, in stated preference discrete choice experiments. However, it has not been explicitly...... of the preference axioms and other preference phenomena in the context of stated preference discrete choice experiments, and examine whether or how these can be subject to meaningful (statistical) tests...

  5. Quadratic Term Structure Models in Discrete Time

    Marco Realdon

    2006-01-01

    This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...

  6. Symmetries in discrete-time mechanics

    Khorrami, M.

    1996-01-01

    Based on a general formulation for discrete-time quantum mechanics, introduced by M. Khorrami (Annals Phys. 224 (1995), 101), symmetries in discrete-time quantum mechanics are investigated. It is shown that any classical continuous symmetry leads to a conserved quantity in classical mechanics, as well as quantum mechanics. The transformed wave function, however, has the correct evolution if and only if the symmetry is nonanomalous. Copyright copyright 1996 Academic Press, Inc

  7. Nonlinear integrodifferential equations as discrete systems

    Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.

    1999-06-01

    We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.

  8. Definable maximal discrete sets in forcing extensions

    Törnquist, Asger Dag; Schrittesser, David

    2018-01-01

    Let  be a Σ11 binary relation, and recall that a set A is -discrete if no two elements of A are related by . We show that in the Sacks and Miller forcing extensions of L there is a Δ12 maximal -discrete set. We use this to answer in the negative the main question posed in [5] by showing...

  9. Application of multivariate splines to discrete mathematics

    Xu, Zhiqiang

    2005-01-01

    Using methods developed in multivariate splines, we present an explicit formula for discrete truncated powers, which are defined as the number of non-negative integer solutions of linear Diophantine equations. We further use the formula to study some classical problems in discrete mathematics as follows. First, we extend the partition function of integers in number theory. Second, we exploit the relation between the relative volume of convex polytopes and multivariate truncated powers and giv...

  10. Discrete symmetries and solar neutrino mixing

    Kapetanakis, D.; Mayr, P.; Nilles, H.P. (Physik Dept., Technische Univ. Muenchen, Garching (Germany) Max-Planck-Inst. fuer Physik, Werner-Heisenberg-Inst., Muenchen (Germany))

    1992-05-21

    We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z{sub N}-symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.).

  11. Discrete symmetries and solar neutrino mixing

    Kapetanakis, D.; Mayr, P.; Nilles, H.P.

    1992-01-01

    We study the question of resonant solar neutrino mixing in the framework of the supersymmetric extension of the standard model. Discrete symmetries that are consistent with solar neutrino mixing and proton stability are classified. In the minimal model they are shown to lead to two distinct patterns of allowed dimension-four operators. Imposing anomaly freedom, only three different discrete Z N -symmetries (with N=2, 3, 6) are found to be phenomenologically acceptable. (orig.)

  12. Discrete symmetries and coset space dimensional reduction

    Kapetanakis, D.; Zoupanos, G.

    1989-01-01

    We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)

  13. On discrete models of space-time

    Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.

    1992-02-01

    Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)

  14. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    Mohamed, Mamdouh S.

    2016-02-11

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  15. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  16. Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

    Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro

    2012-01-01

    We construct explicit solutions to continuous motion of discrete plane curves described by a semi-discrete potential modified KdV equation. Explicit formulas in terms of the τ function are presented. Bäcklund transformations of the discrete curves are also discussed. We finally consider the continuous limit of discrete motion of discrete plane curves described by the discrete potential modified KdV equation to motion of smooth plane curves characterized by the potential modified KdV equation. (paper)

  17. Discrete modeling considerations in multiphase fluid dynamics

    Ransom, V.H.; Ramshaw, J.D.

    1988-01-01

    The modeling of multiphase flows play a fundamental role in light water reactor safety. The main ingredients in our discrete modeling Weltanschauung are the following considerations: (1) Any physical model must be cast into discrete form for a digital computer. (2) The usual approach of formulating models in differential form and then discretizing them is potentially hazardous. It may be preferable to formulate the model in discrete terms from the outset. (3) Computer time and storage constraints limit the resolution that can be employed in practical calculations. These limits effectively define the physical phenomena, length scales, and time scales which cannot be directly represented in the calculation and therefore must be modeled. This information should be injected into the model formulation process at an early stage. (4) Practical resolution limits are generally so coarse that traditional convergence and truncation-error analyses become irrelevant. (5) A discrete model constitutes a reduced description of a physical system, from which fine-scale details are eliminated. This elimination creates a statistical closure problem. Methods from statistical physics may therefore be useful in the formulation of discrete models. In the present paper we elaborate on these themes and illustrate them with simple examples. 48 refs

  18. Theoretical Basics of Teaching Discrete Mathematics

    Y. A. Perminov

    2012-01-01

    Full Text Available  The paper deals with the research findings concerning the process of mastering the theoretical basics of discrete mathematics by the students of vocational pedagogic profile. The methodological analysis is based on the subject and functions of the modern discrete mathematics and its role in mathematical modeling and computing. The modern discrete mathematics (i.e. mathematics of the finite type structures plays the important role in modernization of vocational training. It is especially rele- vant to training students for vocational pedagogic qualifications, as in the future they will be responsible for training the middle and the senior level specialists in engineer- ing and technical spheres. Nowadays in different industries, there arise the problems which require for their solving both continual – based on the classical mathematical methods – and discrete modeling. The teaching course of discrete mathematics for the future vocational teachers should be relevant to the target qualification and aimed at mastering the mathematical modeling, systems of computer mathematics and computer technologies. The author emphasizes the fundamental role of mastering the language of algebraic and serial structures, as well as the logical, algorithmic, combinatory schemes dominating in dis- crete mathematics. The guidelines for selecting the content of the course in discrete mathematics are specified. The theoretical findings of the research can be put into practice whilst developing curricula and working programs for bachelors and masters’ training. 

  19. Discrete Calculus as a Bridge between Scales

    Degiuli, Eric; McElwaine, Jim

    2012-02-01

    Understanding how continuum descriptions of disordered media emerge from the microscopic scale is a fundamental challenge in condensed matter physics. In many systems, it is necessary to coarse-grain balance equations at the microscopic scale to obtain macroscopic equations. We report development of an exact, discrete calculus, which allows identification of discrete microscopic equations with their continuum equivalent [1]. This allows the application of powerful techniques of calculus, such as the Helmholtz decomposition, the Divergence Theorem, and Stokes' Theorem. We illustrate our results with granular materials. In particular, we show how Newton's laws for a single grain reproduce their continuum equivalent in the calculus. This allows introduction of a discrete Airy stress function, exactly as in the continuum. As an application of the formalism, we show how these results give the natural mean-field variation of discrete quantities, in agreement with numerical simulations. The discrete calculus thus acts as a bridge between discrete microscale quantities and continuous macroscale quantities. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  20. Recent developments in discrete ordinates electron transport

    Morel, J.E.; Lorence, L.J. Jr.

    1986-01-01

    The discrete ordinates method is a deterministic method for numerically solving the Boltzmann equation. It was originally developed for neutron transport calculations, but is routinely used for photon and coupled neutron-photon transport calculations as well. The computational state of the art for coupled electron-photon transport (CEPT) calculations is not as developed as that for neutron transport calculations. The only production codes currently available for CEPT calculations are condensed-history Monte Carlo codes such as the ETRAN and ITS codes. A deterministic capability for production calculations is clearly needed. In response to this need, we have begun the development of a production discrete ordinates code for CEPT calculations. The purpose of this paper is to describe the basic approach we are taking, discuss the current status of the project, and present some new computational results. Although further characterization of the coupled electron-photon discrete ordinates method remains to be done, the results to date indicate that the discrete ordinates method can be just as accurate and from 10 to 100 times faster than the Monte Carlo method for a wide variety of problems. We stress that these results are obtained with standard discrete ordinates codes such as ONETRAN. It is clear that even greater efficiency can be obtained by developing a new generation of production discrete ordinates codes specifically designed to solve the Boltzmann-Fokker-Planck equation. However, the prospects for such development in the near future appear to be remote

  1. Discrete symmetries and their stringy origin

    Mayorga Pena, Damian Kaloni

    2014-05-01

    Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.

  2. Method for coupling two-dimensional to three-dimensional discrete ordinates calculations

    Thompson, J.L.; Emmett, M.B.; Rhoades, W.A.; Dodds, H.L. Jr.

    1985-01-01

    A three-dimensional (3-D) discrete ordinates transport code, TORT, has been developed at the Oak Ridge National Laboratory for radiation penetration studies. It is not feasible to solve some 3-D penetration problems with TORT, such as a building located a large distance from a point source, because (a) the discretized 3-D problem is simply too big to fit on the computer or (b) the computing time (and corresponding cost) is prohibitive. Fortunately, such problems can be solved with a hybrid approach by coupling a two-dimensional (2-D) description of the point source, which is assumed to be azimuthally symmetric, to a 3-D description of the building, the region of interest. The purpose of this paper is to describe this hybrid methodology along with its implementation and evaluation in the DOTTOR (Discrete Ordinates to Three-dimensional Oak Ridge Transport) code

  3. Discrete integrable systems and deformations of associative algebras

    Konopelchenko, B G

    2009-01-01

    Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. Theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the deformation driving algebra and governed by the central system of equations. It is demonstrated that many discrete equations such as discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful. An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.

  4. Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation

    Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C

    2014-01-01

    The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)

  5. Bifurcation Analysis and Chaos Control in a Discrete Epidemic System

    Wei Tan

    2015-01-01

    Full Text Available The dynamics of discrete SI epidemic model, which has been obtained by the forward Euler scheme, is investigated in detail. By using the center manifold theorem and bifurcation theorem in the interior R+2, the specific conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation have been derived. Numerical simulation not only presents our theoretical analysis but also exhibits rich and complex dynamical behavior existing in the case of the windows of period-1, period-3, period-5, period-6, period-7, period-9, period-11, period-15, period-19, period-23, period-34, period-42, and period-53 orbits. Meanwhile, there appears the cascade of period-doubling 2, 4, 8 bifurcation and chaos sets from the fixed point. These results show the discrete model has more richer dynamics compared with the continuous model. The computations of the largest Lyapunov exponents more than 0 confirm the chaotic behaviors of the system x→x+δ[rN(1-N/K-βxy/N-(μ+mx], y→y+δ[βxy/N-(μ+dy]. Specifically, the chaotic orbits at an unstable fixed point are stabilized by using the feedback control method.

  6. TMACS I/O termination point listing. Revision 1

    Scaief, C.C. III

    1994-09-13

    This document provides a listing of all analog and discrete input/output (I/O) points connected to the Tank Monitor and Control System (TMACS). The list also provides other information such as the point tag name, termination location, description, drawing references and other parameters. The purpose is to define each point`s unique tag name and to cross reference the point with other associated information that may be necessary for activities such as maintenance, calibration, diagnostics, or design changes. It provides a list in one document of all I/O points that would otherwise only be available by referring to all I/O termination drawings.

  7. Post-Processing in the Material-Point Method

    Andersen, Søren; Andersen, Lars Vabbersgaard

    The material-point method (MPM) is a numerical method for dynamic or static analysis of solids using a discretization in time and space. The method has shown to be successful in modelling physical problems involving large deformations, which are difficult to model with traditional numerical tools...... such as the finite element method. In the material-point method, a set of material points is utilized to track the problem in time and space, while a computational background grid is utilized to obtain spatial derivatives relevant to the physical problem. Currently, the research within the material-point method......-point method. The first idea involves associating a volume with each material point and displaying the deformation of this volume. In the discretization process, the physical domain is divided into a number of smaller volumes each represented by a simple shape; here quadrilaterals are chosen for the presented...

  8. The parallel algorithm for the 2D discrete wavelet transform

    Barina, David; Najman, Pavel; Kleparnik, Petr; Kula, Michal; Zemcik, Pavel

    2018-04-01

    The discrete wavelet transform can be found at the heart of many image-processing algorithms. Until now, the transform on general-purpose processors (CPUs) was mostly computed using a separable lifting scheme. As the lifting scheme consists of a small number of operations, it is preferred for processing using single-core CPUs. However, considering a parallel processing using multi-core processors, this scheme is inappropriate due to a large number of steps. On such architectures, the number of steps corresponds to the number of points that represent the exchange of data. Consequently, these points often form a performance bottleneck. Our approach appropriately rearranges calculations inside the transform, and thereby reduces the number of steps. In other words, we propose a new scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we consistently overcome the original lifting scheme. The evaluation was performed on 61-core Intel Xeon Phi and 8-core Intel Xeon processors.

  9. Dynamic generation of light states with discrete symmetries

    Cordero, S.; Nahmad-Achar, E.; Castaños, O.; López-Peña, R.

    2018-01-01

    A dynamic procedure is established within the generalized Tavis-Cummings model to generate light states with discrete point symmetries, given by the cyclic group Cn. We consider arbitrary dipolar coupling strengths of the atoms with a one-mode electromagnetic field in a cavity. The method uses mainly the matter-field entanglement properties of the system, which can be extended to any number of three-level atoms. An initial state constituted by the superposition of two states with definite total excitation numbers, |ψ〉 M1,and |ψ〉 M 2, is considered. It can be generated by the proper selection of the time of flight of an atom passing through the cavity. We demonstrate that the resulting Husimi function of the light is invariant under cyclic point transformations of order n =| M1-M2| .

  10. The discrete dynamics of symmetric competition in the plane.

    Jiang, H; Rogers, T D

    1987-01-01

    We consider the generalized Lotka-Volterra two-species system xn + 1 = xn exp(r1(1 - xn) - s1yn) yn + 1 = yn exp(r2(1 - yn) - s2xn) originally proposed by R. M. May as a model for competitive interaction. In the symmetric case that r1 = r2 and s1 = s2, a region of ultimate confinement is found and the dynamics therein are described in some detail. The bifurcations of periodic points of low period are studied, and a cascade of period-doubling bifurcations is indicated. Within the confinement region, a parameter region is determined for the stable Hopf bifurcation of a pair of symmetrically placed period-two points, which imposes a second component of oscillation near the stable cycles. It is suggested that the symmetric competitive model contains much of the dynamical complexity to be expected in any discrete two-dimensional competitive model.

  11. Kato's chaos in set-valued discrete systems

    Gu Rongbao

    2007-01-01

    In this paper, we investigate the relationships between Kato's chaoticity of a dynamical system (X,f) and Kato's chaoticity of the set-valued discrete system (K(X),f-bar ) associated to (X,f), where X is a compact metric space and f:X->X is a continuous map. We show that Kato's chaoticity of (K(X),f-bar ) implies the Kato's chaoticity of (X,f) in general and (X,f) is chaotic in the sense of Kato if and only if (K(X),f-bar ) is Kato chaotic in w e -topology. We also show that Ruelle-Takens' chaoticity implies Kato's chaoticity for a continuous map with a fixed point from a complete metric space without isolated point into itself

  12. The limits on prosecutorial discretion in Singapore: Past, present, and future

    Siyuan Chen

    2013-02-01

    Full Text Available The exercise of prosecutorial discretion is a unique executive act that continues to be very well-protected from public scrutiny in many jurisdictions throughout the world. In this article, I attempt to survey virtually the entire body of case law on the limits of prosecutorial discretion in Singapore. Probably because prosecutorial discretion is protected by the Constitution, it took a while for the Singapore courts to retreat from its initial characterisation of the discretion as absolute and outside the scope of any form of review. Against a wider backdrop of increasing rights-consciousness (especially within the courts and the public demand for transparency and accountability, the legal position has evolved to its current and more legally defensible form, viz, prosecutorial discretion is not absolute, and can be subject to, inter alia, constitutional challenge. It may well be a while before this position evolves again, but the natural progression from this, as seen in other jurisdictions, is the public release of general guidelines for prosecution. While such a progression brings about certain benefits, it is not without its challenges and may be motivated (though not exclusively by extra-legal considerations such as politics and populism. Ultimately, only the state and its people can decide on the conception of the rule of law that it subscribes to, and it is with humble hope that this article may be used as a reference point when future issues pertaining to prosecutorial discretion are considered.

  13. Anisotropy, propagation failure, and wave speedup in traveling waves of discretizations of a Nagumo PDE

    Elmer, Christopher E.; Vleck, Erik S. van

    2003-01-01

    This article is concerned with effect of spatial and temporal discretizations on traveling wave solutions to parabolic PDEs (Nagumo type) possessing piecewise linear bistable nonlinearities. Solution behavior is compared in terms of waveforms and in terms of the so-called (a,c) relationship where a is a parameter controlling the bistable nonlinearity by varying the potential energy difference of the two phases and c is the wave speed of the traveling wave. Uniform spatial discretizations and A(α) stable linear multistep methods in time are considered. Results obtained show that although the traveling wave solutions to parabolic PDEs are stationary for only one value of the parameter a,a 0 , spatial discretization of these PDEs produce traveling waves which are stationary for a nontrivial interval of a values which include a 0 , i.e., failure of the solution to propagate in the presence of a driving force. This is true no matter how wide the interface is with respect to the discretization. For temporal discretizations at large wave speeds the set of parameter a values for which there are traveling wave solutions is constrained. An analysis of a complete discretization points out the potential for nonuniqueness in the (a,c) relationship

  14. Discrete least squares polynomial approximation with random evaluations - application to PDEs with Random parameters

    Nobile, Fabio

    2015-01-01

    the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial

  15. A novel least-square Fourier algorithm for decomposition of discrete, non-equidistant acquisition data

    Bouthéon, M; Potier, J P

    1977-01-01

    A novel procedure for evaluating directly the Fourier series coefficients of a function described by unequally spaced but symmetrically disposed interval discrete points is given and an example illustrated. The procedure's simplicity enables it to be used for harmonic analyses of non-equidistant interval data without using the intermediate curve-fitting techniques. (2 refs).

  16. Multiple periodic solutions for a fourth-order discrete Hamiltonian system

    Yongkun Li

    2010-12-01

    Full Text Available By means of a three critical points theorem proposed by Brezis and Nirenberg and a general version of Mountain Pass Theorem, we obtain some multiplicity results for periodic solutions of a fourth-order discrete Hamiltonian system Δ4u(t-2+∇ F(t,u(t=0 for all t∈ Z.

  17. Four point functions in the SL(2,R) WZW model

    Minces, Pablo [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina)]. E-mail: minces@iafe.uba.ar; Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio (IAFE), C.C. 67 Suc. 28, 1428 Buenos Aires (Argentina) and Physics Department, University of Buenos Aires, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)]. E-mail: carmen@iafe.uba.ar

    2007-04-19

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions.

  18. Four point functions in the SL(2,R) WZW model

    Minces, Pablo; Nunez, Carmen

    2007-01-01

    We consider winding conserving four point functions in the SL(2,R) WZW model for states in arbitrary spectral flow sectors. We compute the leading order contribution to the expansion of the amplitudes in powers of the cross ratio of the four points on the worldsheet, both in the m- and x-basis, with at least one state in the spectral flow image of the highest weight discrete representation. We also perform certain consistency check on the winding conserving three point functions

  19. Convergence of posteriors for discretized log Gaussian Cox processes

    Waagepetersen, Rasmus Plenge

    2004-01-01

    In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations...... when the cell sizes of the discretization tends to zero. The effect of discretization is studied in a data example....

  20. Discrete Feature Model (DFM) User Documentation

    Geier, Joel

    2008-06-01

    This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this software, the

  1. Discrete Feature Model (DFM) User Documentation

    Geier, Joel (Clearwater Hardrock Consulting, Corvallis, OR (United States))

    2008-06-15

    This manual describes the Discrete-Feature Model (DFM) software package for modelling groundwater flow and solute transport in networks of discrete features. A discrete-feature conceptual model represents fractures and other water-conducting features around a repository as discrete conductors surrounded by a rock matrix which is usually treated as impermeable. This approximation may be valid for crystalline rocks such as granite or basalt, which have very low permeability if macroscopic fractures are excluded. A discrete feature is any entity that can conduct water and permit solute transport through bedrock, and can be reasonably represented as a piecewise-planar conductor. Examples of such entities may include individual natural fractures (joints or faults), fracture zones, and disturbed-zone features around tunnels (e.g. blasting-induced fractures or stress-concentration induced 'onion skin' fractures around underground openings). In a more abstract sense, the effectively discontinuous nature of pathways through fractured crystalline bedrock may be idealized as discrete, equivalent transmissive features that reproduce large-scale observations, even if the details of connective paths (and unconnected domains) are not precisely known. A discrete-feature model explicitly represents the fundamentally discontinuous and irregularly connected nature of systems of such systems, by constraining flow and transport to occur only within such features and their intersections. Pathways for flow and solute transport in this conceptualization are a consequence not just of the boundary conditions and hydrologic properties (as with continuum models), but also the irregularity of connections between conductive/transmissive features. The DFM software package described here is an extensible code for investigating problems of flow and transport in geological (natural or human-altered) systems that can be characterized effectively in terms of discrete features. With this

  2. Discrete stochastic analogs of Erlang epidemic models.

    Getz, Wayne M; Dougherty, Eric R

    2018-12-01

    Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.

  3. Positivity for Convective Semi-discretizations

    Fekete, Imre

    2017-04-19

    We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations of 1D scalar hyperbolic conservation laws. This technique is a generalization of the approach suggested in Khalsaraei (J Comput Appl Math 235(1): 137–143, 2010). We give more relaxed conditions on the time-step for positivity preservation for slope-limited semi-discretizations integrated in time with explicit Runge–Kutta methods. We show that the step-size restrictions derived are sharp in a certain sense, and that many higher-order explicit Runge–Kutta methods, including the classical 4th-order method and all non-confluent methods with a negative Butcher coefficient, cannot generally maintain positivity for these semi-discretizations under any positive step size. We also apply the proposed technique to centered finite difference discretizations of scalar hyperbolic and parabolic problems.

  4. Noether symmetries of discrete mechanico–electrical systems

    Fu Jingli; Xie Fengping; Chen Benyong

    2008-01-01

    This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electrical systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange–Maxwell equations, the discrete analogue of Noether theorems for Lagrange–Maxwell and Lagrange mechanico-electrical systems. Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results. (general)

  5. Discrete breathers for a discrete nonlinear Schrödinger ring coupled to a central site.

    Jason, Peter; Johansson, Magnus

    2016-01-01

    We examine the existence and properties of certain discrete breathers for a discrete nonlinear Schrödinger model where all but one site are placed in a ring and coupled to the additional central site. The discrete breathers we focus on are stationary solutions mainly localized on one or a few of the ring sites and possibly also the central site. By numerical methods, we trace out and study the continuous families the discrete breathers belong to. Our main result is the discovery of a split bifurcation at a critical value of the coupling between neighboring ring sites. Below this critical value, families form closed loops in a certain parameter space, implying that discrete breathers with and without central-site occupation belong to the same family. Above the split bifurcation the families split up into several separate ones, which bifurcate with solutions with constant ring amplitudes. For symmetry reasons, the families have different properties below the split bifurcation for even and odd numbers of sites. It is also determined under which conditions the discrete breathers are linearly stable. The dynamics of some simpler initial conditions that approximate the discrete breathers are also studied and the parameter regimes where the dynamics remain localized close to the initially excited ring site are related to the linear stability of the exact discrete breathers.

  6. Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations

    Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.

    1996-01-01

    Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...

  7. Discrete Mathematics in the Schools. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 36.

    Rosenstein, Joseph G., Ed.; Franzblau, Deborah S., Ed.; Roberts, Fred S., Ed.

    This book is a collection of articles by experienced educators and explains why and how discrete mathematics should be taught in K-12 classrooms. It includes evidence for "why" and practical guidance for "how" and also discusses how discrete mathematics can be used as a vehicle for achieving the broader goals of the major…

  8. Stability Analysis of Continuous-Time and Discrete-Time Quaternion-Valued Neural Networks With Linear Threshold Neurons.

    Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong

    2018-07-01

    This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.

  9. Discrete factor approximations in simultaneous equation models: estimating the impact of a dummy endogenous variable on a continuous outcome.

    Mroz, T A

    1999-10-01

    This paper contains a Monte Carlo evaluation of estimators used to control for endogeneity of dummy explanatory variables in continuous outcome regression models. When the true model has bivariate normal disturbances, estimators using discrete factor approximations compare favorably to efficient estimators in terms of precision and bias; these approximation estimators dominate all the other estimators examined when the disturbances are non-normal. The experiments also indicate that one should liberally add points of support to the discrete factor distribution. The paper concludes with an application of the discrete factor approximation to the estimation of the impact of marriage on wages.

  10. Euler-Poincare reduction for discrete field theories

    Vankerschaver, Joris

    2007-01-01

    In this note, we develop a theory of Euler-Poincare reduction for discrete Lagrangian field theories. We introduce the concept of Euler-Poincare equations for discrete field theories, as well as a natural extension of the Moser-Veselov scheme, and show that both are equivalent. The resulting discrete field equations are interpreted in terms of discrete differential geometry. An application to the theory of discrete harmonic mappings is also briefly discussed

  11. Integrals of Motion for Discrete-Time Optimal Control Problems

    Torres, Delfim F. M.

    2003-01-01

    We obtain a discrete time analog of E. Noether's theorem in Optimal Control, asserting that integrals of motion associated to the discrete time Pontryagin Maximum Principle can be computed from the quasi-invariance properties of the discrete time Lagrangian and discrete time control system. As corollaries, results for first-order and higher-order discrete problems of the calculus of variations are obtained.

  12. On the stability analysis of a general discrete-time population model involving predation and Allee effects

    Merdan, H.; Duman, O.

    2009-01-01

    This paper presents the stability analysis of equilibrium points of a general discrete-time population dynamics involving predation with and without Allee effects which occur at low population density. The mathematical analysis and numerical simulations show that the Allee effect has a stabilizing role on the local stability of the positive equilibrium points of this model.

  13. The ultimatum game: Discrete vs. continuous offers

    Dishon-Berkovits, Miriam; Berkovits, Richard

    2014-09-01

    In many experimental setups in social-sciences, psychology and economy the subjects are requested to accept or dispense monetary compensation which is usually given in discrete units. Using computer and mathematical modeling we show that in the framework of studying the dynamics of acceptance of proposals in the ultimatum game, the long time dynamics of acceptance of offers in the game are completely different for discrete vs. continuous offers. For discrete values the dynamics follow an exponential behavior. However, for continuous offers the dynamics are described by a power-law. This is shown using an agent based computer simulation as well as by utilizing an analytical solution of a mean-field equation describing the model. These findings have implications to the design and interpretation of socio-economical experiments beyond the ultimatum game.

  14. Symmetric, discrete fractional splines and Gabor systems

    Søndergaard, Peter Lempel

    2006-01-01

    In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....

  15. Sputtering calculations with the discrete ordinated method

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1977-01-01

    The purpose of this work is to investigate the applicability of the discrete ordinates (S/sub N/) method to light ion sputtering problems. In particular, the neutral particle discrete ordinates computer code, ANISN, was used to calculate sputtering yields. No modifications to this code were necessary to treat charged particle transport. However, a cross section processing code was written for the generation of multigroup cross sections; these cross sections include a modification to the total macroscopic cross section to account for electronic interactions and small-scattering-angle elastic interactions. The discrete ordinates approach enables calculation of the sputtering yield as functions of incident energy and angle and of many related quantities such as ion reflection coefficients, angular and energy distributions of sputtering particles, the behavior of beams penetrating thin foils, etc. The results of several sputtering problems as calculated with ANISN are presented

  16. Modeling discrete time-to-event data

    Tutz, Gerhard

    2016-01-01

    This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...

  17. Direct Discrete Method for Neutronic Calculations

    Vosoughi, Naser; Akbar Salehi, Ali; Shahriari, Majid

    2002-01-01

    The objective of this paper is to introduce a new direct method for neutronic calculations. This method which is named Direct Discrete Method, is simpler than the neutron Transport equation and also more compatible with physical meaning of problems. This method is based on physic of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equations series without production of neutron transport differential equation and mandatory passing from differential equation bridge. We have produced neutron discrete equations for a cylindrical shape with two boundary conditions in one group energy. The correction of the results from this method are tested with MCNP-4B code execution. (authors)

  18. An algebra of discrete event processes

    Heymann, Michael; Meyer, George

    1991-01-01

    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.

  19. Is Fitts' law continuous in discrete aiming?

    Rita Sleimen-Malkoun

    Full Text Available The lawful continuous linear relation between movement time and task difficulty (i.e., index of difficulty; ID in a goal-directed rapid aiming task (Fitts' law has been recently challenged in reciprocal performance. Specifically, a discontinuity was observed at critical ID and was attributed to a transition between two distinct dynamic regimes that occurs with increasing difficulty. In the present paper, we show that such a discontinuity is also present in discrete aiming when ID is manipulated via target width (experiment 1 but not via target distance (experiment 2. Fitts' law's discontinuity appears, therefore, to be a suitable indicator of the underlying functional adaptations of the neuro-muscular-skeletal system to task properties/requirements, independently of reciprocal or discrete nature of the task. These findings open new perspectives to the study of dynamic regimes involved in discrete aiming and sensori-motor mechanisms underlying the speed-accuracy trade-off.

  20. Acceleration techniques for the discrete ordinate method

    Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego; Trautmann, Thomas

    2013-01-01

    In this paper we analyze several acceleration techniques for the discrete ordinate method with matrix exponential and the small-angle modification of the radiative transfer equation. These techniques include the left eigenvectors matrix approach for computing the inverse of the right eigenvectors matrix, the telescoping technique, and the method of false discrete ordinate. The numerical simulations have shown that on average, the relative speedup of the left eigenvector matrix approach and the telescoping technique are of about 15% and 30%, respectively. -- Highlights: ► We presented the left eigenvector matrix approach. ► We analyzed the method of false discrete ordinate. ► The telescoping technique is applied for matrix operator method. ► Considered techniques accelerate the computations by 20% in average.

  1. Controlling the chaotic discrete-Hénon system using a feedforward neural network with an adaptive learning rate

    GÖKCE, Kürşad; UYAROĞLU, Yılmaz

    2013-01-01

    This paper proposes a feedforward neural network-based control scheme to control the chaotic trajectories of a discrete-Hénon map in order to stay within an acceptable distance from the stable fixed point. An adaptive learning back propagation algorithm with online training is employed to improve the effectiveness of the proposed method. The simulation study carried in the discrete-Hénon system verifies the validity of the proposed control system.

  2. Discrete quantum geometries and their effective dimension

    Thuerigen, Johannes

    2015-01-01

    In several approaches towards a quantum theory of gravity, such as group field theory and loop quantum gravity, quantum states and histories of the geometric degrees of freedom turn out to be based on discrete spacetime. The most pressing issue is then how the smooth geometries of general relativity, expressed in terms of suitable geometric observables, arise from such discrete quantum geometries in some semiclassical and continuum limit. In this thesis I tackle the question of suitable observables focusing on the effective dimension of discrete quantum geometries. For this purpose I give a purely combinatorial description of the discrete structures which these geometries have support on. As a side topic, this allows to present an extension of group field theory to cover the combinatorially larger kinematical state space of loop quantum gravity. Moreover, I introduce a discrete calculus for fields on such fundamentally discrete geometries with a particular focus on the Laplacian. This permits to define the effective-dimension observables for quantum geometries. Analysing various classes of quantum geometries, I find as a general result that the spectral dimension is more sensitive to the underlying combinatorial structure than to the details of the additional geometric data thereon. Semiclassical states in loop quantum gravity approximate the classical geometries they are peaking on rather well and there are no indications for stronger quantum effects. On the other hand, in the context of a more general model of states which are superposition over a large number of complexes, based on analytic solutions, there is a flow of the spectral dimension from the topological dimension d on low energy scales to a real number between 0 and d on high energy scales. In the particular case of 1 these results allow to understand the quantum geometry as effectively fractal.

  3. Synchronization Of Parallel Discrete Event Simulations

    Steinman, Jeffrey S.

    1992-01-01

    Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.

  4. Speeding Up Network Simulations Using Discrete Time

    Lucas, Aaron; Armbruster, Benjamin

    2013-01-01

    We develop a way of simulating disease spread in networks faster at the cost of some accuracy. Instead of a discrete event simulation (DES) we use a discrete time simulation. This aggregates events into time periods. We prove a bound on the accuracy attained. We also discuss the choice of step size and do an analytical comparison of the computational costs. Our error bound concept comes from the theory of numerical methods for SDEs and the basic proof structure comes from the theory of numeri...

  5. PHASE CHAOS IN THE DISCRETE KURAMOTO MODEL

    Maistrenko, V.; Vasylenko, A.; Maistrenko, Y.

    2010-01-01

    The paper describes the appearance of a novel, high-dimensional chaotic regime, called phase chaos, in a time-discrete Kuramoto model of globally coupled phase oscillators. This type of chaos is observed at small and intermediate values of the coupling strength. It arises from the nonlinear...... interaction among the oscillators, while the individual oscillators behave periodically when left uncoupled. For the four-dimensional time-discrete Kuramoto model, we outline the region of phase chaos in the parameter plane and determine the regions where phase chaos coexists with different periodic...

  6. Digital and discrete geometry theory and algorithms

    Chen, Li

    2014-01-01

    This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a

  7. A Low Complexity Discrete Radiosity Method

    Chatelier , Pierre Yves; Malgouyres , Rémy

    2006-01-01

    International audience; Rather than using Monte Carlo sampling techniques or patch projections to compute radiosity, it is possible to use a discretization of a scene into voxels and perform some discrete geometry calculus to quickly compute visibility information. In such a framework , the radiosity method may be as precise as a patch-based radiosity using hemicube computation for form-factors, but it lowers the overall theoretical complexity to an O(N log N) + O(N), where the O(N) is largel...

  8. Modeling and simulation of discrete event systems

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  9. Logic and discrete mathematics a concise introduction

    Conradie, Willem

    2015-01-01

    A concise yet rigorous introduction to logic and discrete mathematics. This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade.  The chapters on logic - propositional and first-order - provide a robust toolkit for logical reasoning, emphasizing the conceptual understanding of the language and the semantics of classical logic as well as practical applications through the easy

  10. Systematization of Accurate Discrete Optimization Methods

    V. A. Ovchinnikov

    2015-01-01

    Full Text Available The object of study of this paper is to define accurate methods for solving combinatorial optimization problems of structural synthesis. The aim of the work is to systemize the exact methods of discrete optimization and define their applicability to solve practical problems.The article presents the analysis, generalization and systematization of classical methods and algorithms described in the educational and scientific literature.As a result of research a systematic presentation of combinatorial methods for discrete optimization described in various sources is given, their capabilities are described and properties of the tasks to be solved using the appropriate methods are specified.

  11. Multiband discrete ordinates method: formalism and results

    Luneville, L.

    1998-06-01

    The multigroup discrete ordinates method is a classical way to solve transport equation (Boltzmann) for neutral particles. Self-shielding effects are not correctly treated due to large variations of cross sections in a group (in the resonance range). To treat the resonance domain, the multiband method is introduced. The main idea is to divide the cross section domain into bands. We obtain the multiband parameters using the moment method; the code CALENDF provides probability tables for these parameters. We present our implementation in an existing discrete ordinates code: SN1D. We study deep penetration benchmarks and show the improvement of the method in the treatment of self-shielding effects. (author)

  12. Discretization and Numerical Solution of a Plane Problem in the Mechanics of Interfacial Cracks

    Khoroshun, L. P.

    2017-01-01

    The Fourier transform is used to reduce the linear plane problem of the tension of a body with an interfacial crack to a system of dual equations for the transformed stresses and, then, to a system of integro-differential equations for the difference of displacements of the crack faces. After discretization, this latter system transforms into a system of algebraic equations for displacements of the crack faces. The effect of the bielastic constant and the number of discretization points on the half-length of the crack faces and the distribution of stresses at the interface is studied

  13. Theory and simulation of discrete kinetic beta induced Alfven eigenmode in tokamak plasmas

    Wang, X; Zonca, F; Chen, L

    2010-01-01

    It is shown, both analytically and by numerical simulations, that, in the presence of thermal ion kinetic effects, the beta induced Alfven eigenmode (BAE)-shear Alfven wave continuous spectrum can be discretized into radially trapped eigenstates known as kinetic BAE (KBAE). While thermal ion compressibility gives rise to finite BAE accumulation point frequency, the discretization occurs via the finite Larmor radius and finite orbit width effects. Simulations and analytical theories agree both qualitatively and quantitatively. Simulations also demonstrate that KBAE can be readily excited by the finite radial gradients of energetic particles.

  14. Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus

    Liu, Jiang; Wang, Deng-Shan; Yin, Yan-Bin

    2017-06-01

    In this work, the Lie point symmetries of the inhomogeneous Toda lattice equation are obtained by semi-discrete exterior calculus, which is a semi-discrete version of Harrison and Estabrook’s geometric approach. A four-dimensional Lie algebra and its one-, two- and three-dimensional subalgebras are given. Two similarity reductions of the inhomogeneous Toda lattice equation are obtained by using the symmetry vectors. Supported by National Natural Science Foundation of China under Grant Nos. 11375030, 11472315, and Department of Science and Technology of Henan Province under Grant No. 162300410223 and Beijing Finance Funds of Natural Science Program for Excellent Talents under Grant No. 2014000026833ZK19

  15. Discrete quark-lepton symmetry need not pose a cosmological domain wall problem

    Lew, H.; Volkas, R.R.

    1992-01-01

    Quarks and leptons may be related to each other through a spontaneously broken discrete symmetry. Models with acceptable and interesting collider phenomenology have been constructed which incorporate this idea. However, the standard Hot Big Bang model of cosmology is generally considered to eschew spontaneously broken discrete symmetries because they often lead to the formation of unacceptably massive domain walls. It is pointed out that there are a number of plausible quark-lepton symmetric models in nature which do not produce cosmologically troublesome domain walls. 30 refs

  16. Discrete-time bidirectional associative memory neural networks with variable delays

    Liang Jinling; Cao Jinde; Ho, Daniel W.C.

    2005-01-01

    Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks

  17. Discrete-time bidirectional associative memory neural networks with variable delays

    Liang, variable delays [rapid communication] J.; Cao, J.; Ho, D. W. C.

    2005-02-01

    Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks.

  18. Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions

    Shamir, Yigal; Svetitsky, Benjamin; DeGrand, Thomas

    2008-01-01

    We have carried out a Schrodinger functional calculation for the SU(3) lattice gauge theory with two flavors of Wilson fermions in the sextet representation of the gauge group. We find that the discrete beta function, which governs the change in the running coupling under a discrete change of spatial scale, changes sign when the Schrodinger functional renormalized coupling is in the neighborhood of g 2 =2.0. The simplest explanation is that the theory has an infrared-attractive fixed point, but more complicated possibilities are allowed by the data. While we compare rescalings by factors of 2 and 4/3, we work at a single lattice spacing.

  19. Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.

    Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang

    2017-11-01

    Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.

  20. TMACS I/O termination point listing. Revision 1

    Scaief, C.C. III.

    1994-01-01

    This document provides a listing of all analog and discrete input/output (I/O) points connected to the Tank Monitor and Control System (TMACS). The list also provides other information such as the point tag name, termination location, description, drawing references and other parameters. The purpose is to define each point's unique tag name and to cross reference the point with other associated information that may be necessary for activities such as maintenance, calibration, diagnostics, or design changes. It provides a list in one document of all I/O points that would otherwise only be available by referring to all I/O termination drawings

  1. Computing the Gromov hyperbolicity of a discrete metric space

    Fournier, Hervé

    2015-02-12

    We give exact and approximation algorithms for computing the Gromov hyperbolicity of an n-point discrete metric space. We observe that computing the Gromov hyperbolicity from a fixed base-point reduces to a (max,min) matrix product. Hence, using the (max,min) matrix product algorithm by Duan and Pettie, the fixed base-point hyperbolicity can be determined in O(n2.69) time. It follows that the Gromov hyperbolicity can be computed in O(n3.69) time, and a 2-approximation can be found in O(n2.69) time. We also give a (2log2⁡n)-approximation algorithm that runs in O(n2) time, based on a tree-metric embedding by Gromov. We also show that hyperbolicity at a fixed base-point cannot be computed in O(n2.05) time, unless there exists a faster algorithm for (max,min) matrix multiplication than currently known.

  2. Discrete integrable systems and hodograph transformations arising from motions of discrete plane curves

    Feng Baofeng; Maruno, Ken-ichi; Inoguchi, Jun-ichi; Kajiwara, Kenji; Ohta, Yasuhiro

    2011-01-01

    We consider integrable discretizations of some soliton equations associated with the motions of plane curves: the Wadati-Konno-Ichikawa elastic beam equation, the complex Dym equation and the short pulse equation. They are related to the modified KdV or the sine-Gordon equations by the hodograph transformations. Based on the observation that the hodograph transformations are regarded as the Euler-Lagrange transformations of the curve motions, we construct the discrete analogues of the hodograph transformations, which yield integrable discretizations of those soliton equations. (paper)

  3. An innovative discrete multilevel sampler design

    Marvin, B.K.; De Clercq, P.J.; Taylor, B.B.; Mauro, D.M.

    1995-01-01

    An innovative, small-diameter PVC discrete multilevel sampler (DMLS) was designed for the Electric Power Research Institute (EPRI) to provide low-cost, discrete groundwater samples from shallow aquifers. When combined with appropriately-sized direct push soil sampling technologies, high resolution aquifer characterization can be achieved during initial site assessment or remediation monitoring activities. The sampler is constructed from 1-inch diameter PVC well materials, containing polyethylene tubing threaded through PVC disks. Self-expanding annular and internal bentonite seals were developed which isolate discrete sampling zones. The DMLS design allows customization of sampling and isolation zone lengths to suit site-specific goals. Installation of the DMLS is achieved using a temporary, expendable-tipped casting driven by direct push methods. This technique minimizes mobilization costs, site and soil column disturbances, and allows rapid installation in areas of limited overhead clearance. Successful pilot installations of the DMLS prototype have been made at a former manufactured gas plant (MGP) site and a diesel fuel spill site. Analysis of groundwater samples from these sites, using relative compound distributions and contaminant concentration profiling, confirmed that representative discrete samples were collected. This design provides both economical and versatile groundwater monitoring during all phases of site assessment and remediation

  4. Integrated two-section discrete mode laser

    Anandarajah, P.M.; Latkowski, S.; Browning, C.; Zhou, R.; O'Carroll, J.; Phelan, R.; Kelly, B.; O'Gorman, J.; Barry, L.P.

    2012-01-01

    The authors present the design and characterization of a novel integrated two-section discrete mode index patterned diode laser source. The two slotted regions etched into the laser ridge waveguide are formed in the same fabrication step as the ridge, thus avoiding the requirement for complex

  5. About Multi-Heston SDE Discretization

    Tiberiu Socaciu

    2013-07-01

    Full Text Available Abstract: in this paper we show how can estimate a financial derivative based on a support if assume for the support a Multi-Heston model.Keywords: Euler Maruyama discretization method, Monte Carlo simulation, Heston model, Double-Heston model, Multi-Heston model.

  6. Transversals in non-discrete groups

    Transversals in non-discrete groups. RAMJI LAL and R P SHUKLA. Department of Mathematics, University of Allahabad, Allahabad 211 002, India. E-mail: ramjilal@mri.ernet.in; rps@mri.ernet.in. MS received 2 August 2004; revised 4 August 2005. Abstract. The concept of 'topological right transversal' is introduced to study ...

  7. Attractors for discrete periodic dynamical systems

    John E. Franke; James F. Selgrade

    2003-01-01

    A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the unin of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an...

  8. Model-Checking Discrete Duration Calculus

    Hansen, Michael Reichhardt

    1994-01-01

    can do model-checking. The subset we consider is expressive enough to formalize the requirements to the gas burner system given by A.P. Ravn (1993); but only for a discrete time domain. Model-checking is done by reducing the correctness problem ℳ|=𝒟 to the inclusion problem of regular...

  9. Discrete Events as Units of Perceived Time

    Liverence, Brandon M.; Scholl, Brian J.

    2012-01-01

    In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…

  10. Discrete dispersion models and their Tweedie asymptotics

    Jørgensen, Bent; Kokonendji, Célestin C.

    2016-01-01

    The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place in this ap......The paper introduce a class of two-parameter discrete dispersion models, obtained by combining convolution with a factorial tilting operation, similar to exponential dispersion models which combine convolution and exponential tilting. The equidispersed Poisson model has a special place...... in this approach, whereas several overdispersed discrete distributions, such as the Neyman Type A, Pólya-Aeppli, negative binomial and Poisson-inverse Gaussian, turn out to be Poisson-Tweedie factorial dispersion models with power dispersion functions, analogous to ordinary Tweedie exponential dispersion models...... with power variance functions. Using the factorial cumulant generating function as tool, we introduce a dilation operation as a discrete analogue of scaling, generalizing binomial thinning. The Poisson-Tweedie factorial dispersion models are closed under dilation, which in turn leads to a Poisson...

  11. Multivariate Discrete First Order Stochastic Dominance

    Tarp, Finn; Østerdal, Lars Peter

    This paper characterizes the principle of first order stochastic dominance in a multivariate discrete setting. We show that a distribution  f first order stochastic dominates distribution g if and only if  f can be obtained from g by iteratively shifting density from one outcome to another...

  12. Discrete element modeling of subglacial sediment deformation

    Damsgaard, Anders; Egholm, David L.; Piotrowski, Jan A.

    2013-01-01

    The Discrete Element Method (DEM) is used in this study to explore the highly nonlinear dynamics of a granular bed when exposed to stress conditions comparable to those at the bed of warm-based glaciers. Complementary to analog experiments, the numerical approach allows a detailed analysis...

  13. Discrete variable representation for singular Hamiltonians

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...

  14. Discrete choice models with multiplicative error terms

    Fosgerau, Mogens; Bierlaire, Michel

    2009-01-01

    The conditional indirect utility of many random utility maximization (RUM) discrete choice models is specified as a sum of an index V depending on observables and an independent random term ε. In general, the universe of RUM consistent models is much larger, even fixing some specification of V due...

  15. Choice certainty in Discrete Choice Experiments

    Uggeldahl, Kennet Christian; Jacobsen, Catrine; Lundhede, Thomas

    2016-01-01

    In this study, we conduct a Discrete Choice Experiment (DCE) using eye tracking technology to investigate if eye movements during the completion of choice sets reveal information about respondents’ choice certainty. We hypothesise that the number of times that respondents shift their visual...

  16. Ordinal Welfare Comparisons with Multiple Discrete Indicators

    Arndt, Channing; Distante, Roberta; Hussain, M. Azhar

    We develop an ordinal method for making welfare comparisons between populations with multidimensional discrete well-being indicators observed at the micro level. The approach assumes that, for each well-being indicator, the levels can be ranked from worse to better; however, no assumptions are made...

  17. Discrete element modeling of subglacial sediment deformation

    Damsgaard, Anders; Egholm, David L.; Piotrowski, Jan A.

    The Discrete Element Method (DEM) is used to explore the highly nonlinear dynamics of a granular bed when exposed to stress conditions comparable to those at the bed of warm-based glaciers. In the DEM, the material is simulated on a grain-by-grain basis, and defining the micromechanical properties...

  18. Discrete breathers in Bose–Einstein condensates

    Franzosi, Roberto; Politi, Antonio; Livi, Roberto; Oppo, Gian-Luca

    2011-01-01

    Discrete breathers, originally introduced in the context of biopolymers and coupled nonlinear oscillators, are also localized modes of excitation of Bose–Einstein condensates (BEC) in periodic potentials such as those generated by counter-propagating laser beams in an optical lattice. Static and dynamical properties of breather states are analysed in the discrete nonlinear Schrödinger equation that is derived in the limit of deep potential wells, tight-binding and the superfluid regime of the condensate. Static and mobile breathers can be formed by progressive re-shaping of initial Gaussian wave-packets or by transporting atomic density towards dissipative boundaries of the lattice. Static breathers generated via boundary dissipations are determined via a transfer-matrix approach and discussed in the two analytic limits of highly localized and very broad profiles. Mobile breathers that move across the lattice are well approximated by modified analytical expressions derived from integrable models with two independent parameters: the core-phase gradient and the peak amplitude. Finally, possible experimental realizations of discrete breathers in BEC in optical lattices are discussed in the presence of residual harmonic trapping and in interferometry configurations suitable to investigate discrete breathers' interactions. (invited article)

  19. Discrete Event Simulation of Distributed Team Communication

    2012-03-22

    performs, and auditory information that is provided through multiple audio devices with speech response. This paper extends previous discrete event workload...2008, pg. 1) notes that “Architecture modeling furnishes abstrac- tions for use in managing complexities, allowing engineers to visualise the proposed

  20. Failure diagnosis using discrete event models

    Sampath, M.; Sengupta, R.; Lafortune, S.; Teneketzis, D.; Sinnamohideen, K.

    1994-01-01

    We propose a Discrete Event Systems (DES) approach to the failure diagnosis problem. We present a methodology for modeling physical systems in a DES framework. We discuss the notion of diagnosability and present the construction procedure of the diagnoser. Finally, we illustrate our approach using a Heating, Ventilation and Air Conditioning (HVAC) system

  1. A Discrete Dynamical Model of Signed Partitions

    G. Chiaselotti

    2013-01-01

    Full Text Available We use a discrete dynamical model with three evolution rules in order to analyze the structure of a partially ordered set of signed integer partitions whose main properties are actually not known. This model is related to the study of some extremal combinatorial sum problems.

  2. A Note on Discrete Mathematics and Calculus.

    O'Reilly, Thomas J.

    1987-01-01

    Much of the current literature on the topic of discrete mathematics and calculus during the first two years of an undergraduate mathematics curriculum is cited. A relationship between the recursive integration formulas and recursively defined polynomials is described. A Pascal program is included. (Author/RH)

  3. Analysis hierarchical model for discrete event systems

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  4. Fair value accounting and managerial discretion

    Byrne, A.; Clacher, I.; Hillier, D.; Hodgson, A.

    2008-01-01

    We analyse the extent to which managers exercise discretion under fair value accounting and the value relevance of these disclosures. Utilising a sample of firms that apply the UK fair value pension accounting standard, (FRS-17), we examine the main determinants of the assumptions managers use to

  5. Electroless plating apparatus for discrete microsized particles

    Mayer, A.

    1978-01-01

    Method and apparatus are disclosed for producing very uniform coatings of a desired material on discrete microsized particles by electroless techniques. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with each other for a time sufficient for such to occur

  6. Discrete structures in F-theory compactifications

    Till, Oskar

    2016-05-04

    In this thesis we study global properties of F-theory compactifications on elliptically and genus-one fibered Calabi-Yau varieties. This is motivated by phenomenological considerations as well as by the need for a deeper understanding of the set of consistent F-theory vacua. The global geometric features arise from discrete and arithmetic structures in the torus fiber and can be studied in detail for fibrations over generic bases. In the case of elliptic fibrations we study the role of the torsion subgroup of the Mordell-Weil group of sections in four dimensional compactifications. We show how the existence of a torsional section restricts the admissible matter representations in the theory. This is shown to be equivalent to inducing a non-trivial fundamental group of the gauge group. Compactifying F-theory on genus-one fibrations with multisections gives rise to discrete selection rules. In field theory the discrete symmetry is a broken U(1) symmetry. In the geometry the higgsing corresponds to a conifold transition. We explain in detail the origin of the discrete symmetry from two different M-theory phases and put the result into the context of torsion homology. Finally we systematically construct consistent gauge fluxes on genus-one fibrations and show that these induce an anomaly free chiral spectrum.

  7. Geometric phases in discrete dynamical systems

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  8. Geometric Representations for Discrete Fourier Transforms

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  9. Discrete-time rewards model-checked

    Larsen, K.G.; Andova, S.; Niebert, Peter; Hermanns, H.; Katoen, Joost P.

    2003-01-01

    This paper presents a model-checking approach for analyzing discrete-time Markov reward models. For this purpose, the temporal logic probabilistic CTL is extended with reward constraints. This allows to formulate complex measures – involving expected as well as accumulated rewards – in a precise and

  10. Discrete Mathematics Course Supported by CAS MATHEMATICA

    Ivanov, O. A.; Ivanova, V. V.; Saltan, A. A.

    2017-01-01

    In this paper, we discuss examples of assignments for a course in discrete mathematics for undergraduate students majoring in business informatics. We consider several problems with computer-based solutions and discuss general strategies for using computers in teaching mathematics and its applications. In order to evaluate the effectiveness of our…

  11. Electrolytic plating apparatus for discrete microsized particles

    Mayer, A.

    1976-01-01

    Method and apparatus are disclosed for electrolytically producing very uniform coatings of a desired material on discrete microsized particles. Agglomeration or bridging of the particles during the deposition process is prevented by imparting a sufficiently random motion to the particles that they are not in contact with a powered cathode for a time sufficient for such to occur. 4 claims, 2 figures

  12. Neutrino mass and mixing with discrete symmetry

    King, Stephen F; Luhn, Christoph

    2013-01-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A 4 , S 4 and Δ(96). (review article)

  13. Reproductive Health Services Discrete-Event Simulation

    Lee, Sungjoo; Giles, Denise F.; Goldsman, David; Cook, Douglas A.; Mishra, Ninad; McCarthy, Brian

    2006-01-01

    Low resource healthcare environments are often characteristic of patient flow patterns with varying patient risks, extensive patient waiting times, uneven workload distributions, and inefficient service delivery. Models from industrial and systems engineering allow for a greater examination of processes by applying discrete-event computer simulation techniques to evaluate and optimize hospital performance.

  14. Hybrid discrete-time neural networks.

    Cao, Hongjun; Ibarz, Borja

    2010-11-13

    Hybrid dynamical systems combine evolution equations with state transitions. When the evolution equations are discrete-time (also called map-based), the result is a hybrid discrete-time system. A class of biological neural network models that has recently received some attention falls within this category: map-based neuron models connected by means of fast threshold modulation (FTM). FTM is a connection scheme that aims to mimic the switching dynamics of a neuron subject to synaptic inputs. The dynamic equations of the neuron adopt different forms according to the state (either firing or not firing) and type (excitatory or inhibitory) of their presynaptic neighbours. Therefore, the mathematical model of one such network is a combination of discrete-time evolution equations with transitions between states, constituting a hybrid discrete-time (map-based) neural network. In this paper, we review previous work within the context of these models, exemplifying useful techniques to analyse them. Typical map-based neuron models are low-dimensional and amenable to phase-plane analysis. In bursting models, fast-slow decomposition can be used to reduce dimensionality further, so that the dynamics of a pair of connected neurons can be easily understood. We also discuss a model that includes electrical synapses in addition to chemical synapses with FTM. Furthermore, we describe how master stability functions can predict the stability of synchronized states in these networks. The main results are extended to larger map-based neural networks.

  15. Web-Based Implementation of Discrete Mathematics

    Love, Tanzy; Keinert, Fritz; Shelley, Mack

    2006-01-01

    The Department of Mathematics at Iowa State University teaches a freshman-level Discrete Mathematics course with total enrollment of about 1,800 students per year. The traditional format includes large lectures, with about 150 students each, taught by faculty and temporary instructors in two class sessions per week and recitation sections, with…

  16. Discrete Mathematics and the Secondary Mathematics Curriculum.

    Dossey, John

    Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…

  17. Applied Behavior Analysis: Beyond Discrete Trial Teaching

    Steege, Mark W.; Mace, F. Charles; Perry, Lora; Longenecker, Harold

    2007-01-01

    We discuss the problem of autism-specific special education programs representing themselves as Applied Behavior Analysis (ABA) programs when the only ABA intervention employed is Discrete Trial Teaching (DTT), and often for limited portions of the school day. Although DTT has many advantages to recommend its use, it is not well suited to teach…

  18. Discrete modelling of front propagation in backward piping erosion

    Tran, Duc-Kien; Prime, Noémie; Froiio, Francesco; Callari, Carlo; Vincens, Eric

    2017-06-01

    A preliminary discrete numerical model of a REV at the front region of an erosion pipe in a cohesive granular soil is briefly presented. The results reported herein refer to a simulation carried out by coupling the Discrete Element Method (DEM) with the Lattice Boltzmann Method (LBM) for the representation of the granular and fluid phases, respectively. The numerical specimen, consisiting of bonded grains, is tested under fully-saturated conditions and increasing pressure difference between the inlet (confined) and the outlet (unconfined) flow regions. The key role of compression arches of force chains that transversely cross the sample and carry most part of the hydrodynamic actions is pointed out. These arches partition the REV into an upstream region that remains almost intact and a downstream region that gradually degrades and is subsequently eroded in the form of a cluster. Eventually, the collapse of the compression arches causes the upstream region to be also eroded, abruptly, as a whole. A complete presentation of the numerical model and of the results of the simulation can be found in [12].

  19. Digital Watermarks Using Discrete Wavelet Transformation and Spectrum Spreading

    Ryousuke Takai

    2003-12-01

    Full Text Available In recent tears, digital media makes rapid progress through the development of digital technology. Digital media normally assures fairly high quality, nevertheless can be easily reproduced in a perfect form. This perfect reproducibility takes and advantage from a certain point of view, while it produces an essential disadvantage, since digital media is frequently copied illegally. Thus the problem of the copyright protection becomes a very important issue. A solution of this problem is to embed digital watermarks that is not perceived clearly by usual people, but represents the proper right of original product. In our method, the images data in the frequency domain are transformed by the Discrete Wavelet Transform and analyzed by the multi resolution approximation, [1]. Further, the spectrum spreading is executed by using PN-sequences. Choi and Aizawa [7] embed watermarks by using block correlation of DCT coefficients. Thus, we apply Discrete Cosine Transformation, abbreviated to DCT, instead of the Fourier transformation in order to embed watermarks.If the value of this variance is high then we decide that the block has bigger magnitude for visual fluctuations. Henceforth, we may embed stronger watermarks, which gives resistance for images processing, such as attacks and/or compressions.

  20. Model-based Quantile Regression for Discrete Data

    Padellini, Tullia

    2018-04-10

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite the fact that this leads to a proper posterior for the regression coefficients, the resulting posterior variance is however affected by an unidentifiable parameter, hence any inferential procedure beside point estimation is unreliable. We propose a model-based approach for quantile regression that considers quantiles of the generating distribution directly, and thus allows for a proper uncertainty quantification. We then create a link between quantile regression and generalised linear models by mapping the quantiles to the parameter of the response variable, and we exploit it to fit the model with R-INLA. We extend it also in the case of discrete responses, where there is no 1-to-1 relationship between quantiles and distribution\\'s parameter, by introducing continuous generalisations of the most common discrete variables (Poisson, Binomial and Negative Binomial) to be exploited in the fitting.

  1. TQ-bifurcations in discrete dynamical systems: Analysis of qualitative rearrangements of the oscillation mode

    Makarenko, A. V., E-mail: avm.science@mail.ru [Constructive Cybernetics Research Group (Russian Federation)

    2016-10-15

    A new class of bifurcations is defined in discrete dynamical systems, and methods for their diagnostics and the analysis of their properties are presented. The TQ-bifurcations considered are implemented in discrete mappings and are related to the qualitative rearrangement of the shape of trajectories in an extended space of states. Within the demonstration of the main capabilities of the toolkit, an analysis is carried out of a logistic mapping in a domain to the right of the period-doubling limit point. Five critical values of the parameter are found for which the geometric structure of the trajectories of the mapping experiences a qualitative rearrangement. In addition, an analysis is carried out of the so-called “trace map,” which arises in the problems of quantum-mechanical description of various properties of discrete crystalline and quasicrystalline lattices.

  2. Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.

    Oettinger, D; Mendoza, M; Herrmann, H J

    2013-07-01

    We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.

  3. Infant differential behavioral responding to discrete emotions.

    Walle, Eric A; Reschke, Peter J; Camras, Linda A; Campos, Joseph J

    2017-10-01

    Emotional communication regulates the behaviors of social partners. Research on individuals' responding to others' emotions typically compares responses to a single negative emotion compared with responses to a neutral or positive emotion. Furthermore, coding of such responses routinely measure surface level features of the behavior (e.g., approach vs. avoidance) rather than its underlying function (e.g., the goal of the approach or avoidant behavior). This investigation examined infants' responding to others' emotional displays across 5 discrete emotions: joy, sadness, fear, anger, and disgust. Specifically, 16-, 19-, and 24-month-old infants observed an adult communicate a discrete emotion toward a stimulus during a naturalistic interaction. Infants' responses were coded to capture the function of their behaviors (e.g., exploration, prosocial behavior, and security seeking). The results revealed a number of instances indicating that infants use different functional behaviors in response to discrete emotions. Differences in behaviors across emotions were clearest in the 24-month-old infants, though younger infants also demonstrated some differential use of behaviors in response to discrete emotions. This is the first comprehensive study to identify differences in how infants respond with goal-directed behaviors to discrete emotions. Additionally, the inclusion of a function-based coding scheme and interpersonal paradigms may be informative for future emotion research with children and adults. Possible developmental accounts for the observed behaviors and the benefits of coding techniques emphasizing the function of social behavior over their form are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  5. Classifier-guided sampling for discrete variable, discontinuous design space exploration: Convergence and computational performance

    Backlund, Peter B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shahan, David W. [HRL Labs., LLC, Malibu, CA (United States); Seepersad, Carolyn Conner [Univ. of Texas, Austin, TX (United States)

    2014-04-22

    A classifier-guided sampling (CGS) method is introduced for solving engineering design optimization problems with discrete and/or continuous variables and continuous and/or discontinuous responses. The method merges concepts from metamodel-guided sampling and population-based optimization algorithms. The CGS method uses a Bayesian network classifier for predicting the performance of new designs based on a set of known observations or training points. Unlike most metamodeling techniques, however, the classifier assigns a categorical class label to a new design, rather than predicting the resulting response in continuous space, and thereby accommodates nondifferentiable and discontinuous functions of discrete or categorical variables. The CGS method uses these classifiers to guide a population-based sampling process towards combinations of discrete and/or continuous variable values with a high probability of yielding preferred performance. Accordingly, the CGS method is appropriate for discrete/discontinuous design problems that are ill-suited for conventional metamodeling techniques and too computationally expensive to be solved by population-based algorithms alone. In addition, the rates of convergence and computational properties of the CGS method are investigated when applied to a set of discrete variable optimization problems. Results show that the CGS method significantly improves the rate of convergence towards known global optima, on average, when compared to genetic algorithms.

  6. A 2+1 non-isospectral discrete integrable system and its discrete integrable coupling system

    Yu Fajun; Zhang Hongqing

    2006-01-01

    In this Letter by considering a (2+1)-dimensional discrete non-isospectral linear problem, a new (2+1)-dimensional integrable lattice hierarchy is constructed. It shows that generalization of the Blaszak-Marciniak lattice hierarchy can be obtained as a reduction. Then an extended algebraic system X-bar of X is presented, from which the integrable coupling system of the (2+1)-dimensional discrete non-isospectral Blaszak-Marciniak lattice equations are obtained

  7. Optimal weights for circle fitting with discrete granular data

    Chernov, N.; Kolganova, E.; Ososkov, G.

    1995-01-01

    The problem of the data approximation measured along a circle by modern detectors in high energy physics, as for example, RICH (Ring Imaging Cherenkov) is considered. Such detectors having the discrete cell structure register the energy dissipation produced by a passing elementary particle not in a single point, but in several adjacent cells where all this energy is distributed. The presence of background hits makes inapplicable circle fitting methods based on the least square fit due to their noise sensitivity. In this paper it's shown that the efficient way to overcome these problems of the curve fitting is the robust fitting technique based on a reweighted least square method with optimally chosen weights, obtained by the use of maximum likelihood estimates. Results of numerical experiments are given proving the high efficiency of the suggested method. 9 refs., 5 figs., 1 tab

  8. Sample selection and taste correlation in discrete choice transport modelling

    Mabit, Stefan Lindhard

    2008-01-01

    explain counterintuitive results in value of travel time estimation. However, the results also point at the difficulty of finding suitable instruments for the selection mechanism. Taste heterogeneity is another important aspect of discrete choice modelling. Mixed logit models are designed to capture...... the question for a broader class of models. It is shown that the original result may be somewhat generalised. Another question investigated is whether mode choice operates as a self-selection mechanism in the estimation of the value of travel time. The results show that self-selection can at least partly...... of taste correlation in willingness-to-pay estimation are presented. The first contribution addresses how to incorporate taste correlation in the estimation of the value of travel time for public transport. Given a limited dataset the approach taken is to use theory on the value of travel time as guidance...

  9. Evolutionary design of discrete controllers for hybrid mechatronic systems

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  10. Orthogonal functions, discrete variable representation, and generalized gauss quadratures

    Schneider, B. I.; Nygaard, Nicolai

    2002-01-01

    in the original representation. This has been exploited in bound-state, scattering, and time-dependent problems using the so-called, discrete variable representation (DVR). At the core of this approach is the mathematical three-term recursion relationship satisfied by the classical orthogonal functions......, the distinction between spectral and grid approaches becomes blurred. In fact, the two approaches can be related by a similarity transformation. By the exploitation of this idea, calculations can be considerably simplified by removing the need to compute difficult matrix elements of the Hamiltonian...... functions, this is not the case. However, they may be computed in a stable numerical fashion, via the recursion. In essence, this is an application of the well-known Lanczos recursion approach. Once the recursion coefficients are known, it is possible to compute the points and weights of quadratures on...

  11. A geometric renormalization group in discrete quantum space-time

    Requardt, Manfred

    2003-01-01

    We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalization group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-time on a mesoscopic or macroscopic scale, provided that the underlying discrete geometry is critical in a specific sense (geometric long range order). Our point of view is corroborated by a series of analytic and numerical results, which allow us to keep track of the geometric changes, taking place on the various scales of the resolution of space-time. Of particular conceptual importance are the notions of dimension of such random systems on the various scales and the notion of geometric criticality

  12. The Fourier U(2 Group and Separation of Discrete Variables

    Kurt Bernardo Wolf

    2011-06-01

    Full Text Available The linear canonical transformations of geometric optics on two-dimensional screens form the group Sp(4,R, whose maximal compact subgroup is the Fourier group U(2_F; this includes isotropic and anisotropic Fourier transforms, screen rotations and gyrations in the phase space of ray positions and optical momenta. Deforming classical optics into a Hamiltonian system whose positions and momenta range over a finite set of values, leads us to the finite oscillator model, which is ruled by the Lie algebra so(4. Two distinct subalgebra chains are used to model arrays of N^2 points placed along Cartesian or polar (radius and angle coordinates, thus realizing one case of separation in two discrete coordinates. The N^2-vectors in this space are digital (pixellated images on either of these two grids, related by a unitary transformation. Here we examine the unitary action of the analogue Fourier group on such images, whose rotations are particularly visible.

  13. Particular solution of the discrete-ordinate method.

    Qin, Yi; Box, Michael A; Jupp, David L

    2004-06-20

    We present two methods that can be used to derive the particular solution of the discrete-ordinate method (DOM) for an arbitrary source in a plane-parallel atmosphere, which allows us to solve the transfer equation 12-18% faster in the case of a single beam source and is even faster for the atmosphere thermal emission source. We also remove the divide by zero problem that occurs when a beam source coincides with a Gaussian quadrature point. In our implementation, solution for multiple sources can be obtained simultaneously. For each extra source, it costs only 1.3-3.6% CPU time required for a full solution. The GDOM code that we developed previously has been revised to integrate with the DOM. Therefore we are now able to compute the Green's function and DOM solutions simultaneously.

  14. Application of an efficient Bayesian discretization method to biomedical data

    Gopalakrishnan Vanathi

    2011-07-01

    Full Text Available Abstract Background Several data mining methods require data that are discrete, and other methods often perform better with discrete data. We introduce an efficient Bayesian discretization (EBD method for optimal discretization of variables that runs efficiently on high-dimensional biomedical datasets. The EBD method consists of two components, namely, a Bayesian score to evaluate discretizations and a dynamic programming search procedure to efficiently search the space of possible discretizations. We compared the performance of EBD to Fayyad and Irani's (FI discretization method, which is commonly used for discretization. Results On 24 biomedical datasets obtained from high-throughput transcriptomic and proteomic studies, the classification performances of the C4.5 classifier and the naïve Bayes classifier were statistically significantly better when the predictor variables were discretized using EBD over FI. EBD was statistically significantly more stable to the variability of the datasets than FI. However, EBD was less robust, though not statistically significantly so, than FI and produced slightly more complex discretizations than FI. Conclusions On a range of biomedical datasets, a Bayesian discretization method (EBD yielded better classification performance and stability but was less robust than the widely used FI discretization method. The EBD discretization method is easy to implement, permits the incorporation of prior knowledge and belief, and is sufficiently fast for application to high-dimensional data.

  15. On stability of fixed points and chaos in fractional systems

    Edelman, Mark

    2018-02-01

    In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0 logistic maps. Based on our analysis, we make a conjecture that chaos is impossible in the corresponding continuous fractional systems.

  16. On stability of fixed points and chaos in fractional systems.

    Edelman, Mark

    2018-02-01

    In this paper, we propose a method to calculate asymptotically period two sinks and define the range of stability of fixed points for a variety of discrete fractional systems of the order 0chaos is impossible in the corresponding continuous fractional systems.

  17. Multi-Agent Rendezvousing with a Finite Set of Candidate Rendezvous Points

    Fang, J.; Morse, A. S.; Cao, M.

    2008-01-01

    The discrete multi-agent rendezvous problem we consider in this paper is concerned with a specified set of points in the plane, called “dwell-points,” and a set of mobile autonomous agents with limited sensing range. Each agent is initially positioned at some dwell-point, and is able to determine

  18. Natural Preconditioning and Iterative Methods for Saddle Point Systems

    Pestana, Jennifer

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. The solution of quadratic or locally quadratic extremum problems subject to linear(ized) constraints gives rise to linear systems in saddle point form. This is true whether in the continuous or the discrete setting, so saddle point systems arising from the discretization of partial differential equation problems, such as those describing electromagnetic problems or incompressible flow, lead to equations with this structure, as do, for example, interior point methods and the sequential quadratic programming approach to nonlinear optimization. This survey concerns iterative solution methods for these problems and, in particular, shows how the problem formulation leads to natural preconditioners which guarantee a fast rate of convergence of the relevant iterative methods. These preconditioners are related to the original extremum problem and their effectiveness - in terms of rapidity of convergence - is established here via a proof of general bounds on the eigenvalues of the preconditioned saddle point matrix on which iteration convergence depends.

  19. Is Discrete Mathematics the New Math of the Eighties?

    Hart, Eric W.

    1985-01-01

    Considered are what discrete mathematics includes, some parallels and differences between new math and discrete mathematics (listed in a table), and lessons to be learned. A list of references is included. (MNS)

  20. Comparison of discrete Hodge star operators for surfaces

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-01-01

    We investigate the performance of various discrete Hodge star operators for discrete exterior calculus (DEC) using circumcentric and barycentric dual meshes. The performance is evaluated through the DEC solution of Darcy and incompressible Navier

  1. Supporting scalable Bayesian networks using configurable discretizer actuators

    Osunmakinde, I

    2009-04-01

    Full Text Available The authors propose a generalized model with configurable discretizer actuators as a solution to the problem of the discretization of massive numerical datasets. Their solution is based on a concurrent distribution of the actuators and uses dynamic...

  2. Dimension Reduction and Discretization in Stochastic Problems by Regression Method

    Ditlevsen, Ove Dalager

    1996-01-01

    The chapter mainly deals with dimension reduction and field discretizations based directly on the concept of linear regression. Several examples of interesting applications in stochastic mechanics are also given.Keywords: Random fields discretization, Linear regression, Stochastic interpolation, ...

  3. On some properties of the discrete Lyapunov exponent

    Amigo, Jose M.; Kocarev, Ljupco; Szczepanski, Janusz

    2008-01-01

    One of the possible by-products of discrete chaos is the application of its tools, in particular of the discrete Lyapunov exponent, to cryptography. In this Letter we explore this question in a very general setting

  4. Breatherlike excitations in discrete lattices with noise and nonlinear damping

    Christiansen, Peter Leth; Gaididei, Yuri B.; Johansson, Magnus

    1997-01-01

    We discuss the stability of highly localized, ''breatherlike,'' excitations in discrete nonlinear lattices under the influence of thermal fluctuations. The particular model considered is the discrete nonlinear Schrodinger equation in the regime of high nonlinearity, where temperature effects...

  5. Discretely tunable micromachined injection-locked lasers

    Cai, H; Yu, M B; Lo, G Q; Kwong, D L; Zhang, X M; Liu, A Q; Liu, B

    2010-01-01

    This paper reports a micromachined injection-locked laser (ILL) to provide tunable discrete wavelengths. It utilizes a non-continuously tunable laser as the master to lock a Fabry–Pérot semiconductor laser chip. Both lasers are integrated into a deep-etched silicon chip with dimensions of 3 mm × 3 mm × 0.8 mm. Based on the experimental results, significant improvements in the optical power and spectral purity have been achieved in the fully locked state, and optical hysteresis and bistability have also been observed in response to the changes of the output wavelength and optical power of the master laser. As a whole system, the micromachined ILL is able to provide single mode, discrete wavelength tuning, high power and direct modulation with small size and single-chip solution, making it promising for advanced optical communications such as wavelength division multiplexing optical access networks.

  6. Vortices trapped in discrete Josephson rings

    Van der Zanta, H.S.J.; Orlando, T.P.; Watanabe, Shinya; Strogatz, S.H.

    1994-01-01

    We report the first measurements of current- (I-V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I-V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments. ((orig.))

  7. Vortices trapped in discrete Josephson rings

    Van der Zanta, H.S.J. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Orlando, T.P. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Watanabe, Shinya [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Strogatz, S.H. [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    1994-12-01

    We report the first measurements of current- (I-V) characteristics of discrete rings of Josephson junctions. As I is increased, resonant steps appear in the I-V curve, due to phase-locking between a propagating, trapped vortex and the linear waves excited in its wake. Unexpectedly, the phase velocity of the linear waves, not the group velocity, is the physically important quantity and mode numbers outside the Brillouin zone are relevant. Our measurements show that away from the resonant steps, a single vortex can move in an environment with very little damping, making the discrete one-dimensional ring a well-defined model system for the study of ballistic and quantum vortex experiments. ((orig.)).

  8. Discrete and continuous simulation theory and practice

    Bandyopadhyay, Susmita

    2014-01-01

    When it comes to discovering glitches inherent in complex systems-be it a railway or banking, chemical production, medical, manufacturing, or inventory control system-developing a simulation of a system can identify problems with less time, effort, and disruption than it would take to employ the original. Advantageous to both academic and industrial practitioners, Discrete and Continuous Simulation: Theory and Practice offers a detailed view of simulation that is useful in several fields of study.This text concentrates on the simulation of complex systems, covering the basics in detail and exploring the diverse aspects, including continuous event simulation and optimization with simulation. It explores the connections between discrete and continuous simulation, and applies a specific focus to simulation in the supply chain and manufacturing field. It discusses the Monte Carlo simulation, which is the basic and traditional form of simulation. It addresses future trends and technologies for simulation, with par...

  9. Juxtaposed color halftoning relying on discrete lines.

    Babaei, Vahid; Hersch, Roger D

    2013-02-01

    Most halftoning techniques allow screen dots to overlap. They rely on the assumption that the inks are transparent, i.e., the inks do not scatter a significant portion of the light back to the air. However, many special effect inks, such as metallic inks, iridescent inks, or pigmented inks, are not transparent. In order to create halftone images, halftone dots formed by such inks should be juxtaposed, i.e., printed side by side. We propose an efficient juxtaposed color halftoning technique for placing any desired number of colorant layers side by side without overlapping. The method uses a monochrome library of screen elements made of discrete lines with rational thicknesses. Discrete line juxtaposed color halftoning is performed efficiently by multiple accesses to the screen element library.

  10. Finite Volumes Discretization of Topology Optimization Problems

    Evgrafov, Anton; Gregersen, Misha Marie; Sørensen, Mads Peter

    , FVMs represent a standard method of discretization within engineering communities dealing with computational uid dy- namics, transport, and convection-reaction problems. Among various avours of FVMs, cell based approaches, where all variables are associated only with cell centers, are particularly...... computations is done using nite element methods (FEMs). Despite some limited recent eorts [1, 2], we have only started to develop our understanding of the interplay between the control in the coecients and FVMs. Recent advances in discrete functional analysis allow us to analyze convergence of FVM...... of the induced parametrization of the design space that allows optimization algorithms to eciently explore it, and the ease of integration with existing computational codes in a variety of application areas, the simplicity and eciency of sensitivity analyses|all stemming from the use of the same grid throughout...

  11. Integral and discrete inequalities and their applications

    Qin, Yuming

    2016-01-01

    This book focuses on one- and multi-dimensional linear integral and discrete Gronwall-Bellman type inequalities. It provides a useful collection and systematic presentation of known and new results, as well as many applications to differential (ODE and PDE), difference, and integral equations. With this work the author fills a gap in the literature on inequalities, offering an ideal source for researchers in these topics. The present volume is part 1 of the author’s two-volume work on inequalities. Integral and discrete inequalities are a very important tool in classical analysis and play a crucial role in establishing the well-posedness of the related equations, i.e., differential, difference and integral equations.

  12. Semi-Discrete Ingham-Type Inequalities

    Komornik, Vilmos; Loreti, Paola

    2007-01-01

    One of the general methods in linear control theory is based on harmonic and non-harmonic Fourier series. The key of this approach is the establishment of various suitable adaptations and generalizations of the classical Parseval equality. A new and systematic approach was begun in our papers in collaboration with Baiocchi. Many recent results of this kind, obtained through various Ingham-type theorems, were exposed recently. Although this work concentrated on continuous models, in connection with numerical simulations a natural question is whether these results also admit useful discrete versions. The purpose of this paper is to establish discrete versions of various Ingham-type theorems by using our approach. They imply the earlier continuous results by a simple limit process

  13. Quantum RLC circuits: Charge discreteness and resonance

    Utreras-Diaz, Constantino A. [Instituto de Fisica, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Casilla 567, Valdivia (Chile)], E-mail: cutreras@uach.cl

    2008-10-20

    In a recent article [C.A. Utreras-Diaz, Phys. Lett. A 372 (2008) 5059], we have advanced a semiclassical theory of quantum circuits with discrete charge and electrical resistance. In this work, we present a few elementary applications of this theory. For the zero resistance inductive circuit, we obtain the Stark ladder energies in yet another way; for the circuit driven by a combination d.c. plus a.c. electromotive force (emf) we generalize earlier results by Chandia et al. [K. Chandia, J.C. Flores, E. Lazo, Phys. Lett. A 359 (2006) 693]. As a second application, we investigate the effect of electrical resistance and charge discreteness, in the resonance conditions of a series RLC quantum circuit.

  14. Quantum RLC circuits: Charge discreteness and resonance

    Utreras-Diaz, Constantino A.

    2008-01-01

    In a recent article [C.A. Utreras-Diaz, Phys. Lett. A 372 (2008) 5059], we have advanced a semiclassical theory of quantum circuits with discrete charge and electrical resistance. In this work, we present a few elementary applications of this theory. For the zero resistance inductive circuit, we obtain the Stark ladder energies in yet another way; for the circuit driven by a combination d.c. plus a.c. electromotive force (emf) we generalize earlier results by Chandia et al. [K. Chandia, J.C. Flores, E. Lazo, Phys. Lett. A 359 (2006) 693]. As a second application, we investigate the effect of electrical resistance and charge discreteness, in the resonance conditions of a series RLC quantum circuit

  15. Discrete event systems diagnosis and diagnosability

    Sayed-Mouchaweh, Moamar

    2014-01-01

    Discrete Event Systems: Diagnosis and Diagnosability addresses the problem of fault diagnosis of Discrete Event Systems (DES). This book provides the basic techniques and approaches necessary for the design of an efficient fault diagnosis system for a wide range of modern engineering applications. The different techniques and approaches are classified according to several criteria such as: modeling tools (Automata, Petri nets) that is used to construct the model; the information (qualitative based on events occurrences and/or states outputs, quantitative based on signal processing and data analysis) that is needed to analyze and achieve the diagnosis; the decision structure (centralized, decentralized) that is required to achieve the diagnosis. The goal of this classification is to select the efficient method to achieve the fault diagnosis according to the application constraints. This book focuses on the centralized and decentralized event based diagnosis approaches using formal language and automata as mode...

  16. Lax Pairs for Discrete Integrable Equations via Darboux Transformations

    Cao Ce-Wen; Zhang Guang-Yao

    2012-01-01

    A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler—Bobenko—Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations. (general)

  17. An exact and consistent adjoint method for high-fidelity discretization of the compressible flow equations

    Subramanian, Ramanathan Vishnampet Ganapathi

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme

  18. Discrete time analysis of a repairable machine

    Alfa, Attahiru Sule; Castro, I. T.

    2002-01-01

    We consider, in discrete time, a single machine system that operates for a period of time represented by a general distribution. This machine is subject to failures during operations and the occurrence of these failures depends on how many times the machine has previously failed. Some failures are repairable and the repair times may or may not depend on the number of times the machine was previously repaired. Repair times also have a general distribution. The operating times...

  19. Program For Parallel Discrete-Event Simulation

    Beckman, Brian C.; Blume, Leo R.; Geiselman, John S.; Presley, Matthew T.; Wedel, John J., Jr.; Bellenot, Steven F.; Diloreto, Michael; Hontalas, Philip J.; Reiher, Peter L.; Weiland, Frederick P.

    1991-01-01

    User does not have to add any special logic to aid in synchronization. Time Warp Operating System (TWOS) computer program is special-purpose operating system designed to support parallel discrete-event simulation. Complete implementation of Time Warp mechanism. Supports only simulations and other computations designed for virtual time. Time Warp Simulator (TWSIM) subdirectory contains sequential simulation engine interface-compatible with TWOS. TWOS and TWSIM written in, and support simulations in, C programming language.

  20. Discrete Alfven waves in the TORTUS tokamak

    Amagishi, Y.; Ballico, M.J.; Cross, R.C.; Donnely, I.J.

    1989-01-01

    Discrete Alfven Waves (DAWs) have been observed as antenna resistance peaks and as enhanced edge fields in the TORTUS tokamak during Alfven wave heating experiments. A kinetic theory code has been used to calculate the antenna loading and the structure of the DAW fields for a range of plasma current and density profiles. There is fair agreement between the measured and predicted amplitude of the DAW fields in the plasma edge when both are normalized to the same antenna power

  1. Nuclear data preparation and discrete ordinates calculation

    Carmignani, B.

    1980-01-01

    These lectures deal with the use of the GAM-GATHER and GAM-THERMOS chains for the calculation of lattice cross sections and within use of the discrete ordinates one dimensional ANISN code for the calculation of criticality and flux distribution of the cell and of the whole reactor. As an example the codes are applied to the calculation of a PWR. Results of different approximations are compared. (author)

  2. Discrete Ricci Flow in Higher Dimensions

    2015-02-01

    recently, we showed analytically that the SRF equations converged to the continuum RF equations for the neck-pinch 3- geometry [10]. In this analysis we also...Hamilton’s RF. It is the first dimensionally agnostic generalization of RF for PL geometries . We refer to our approach as simplicial Ricci flow (SRF). For a...Discrete Exterior Calculus , Regge Calculus , Piecewise Linear Complex 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER

  3. Discrete mathematics course supported by CAS MATHEMATICA

    Ivanov, O. A.; Ivanova, V. V.; Saltan, A. A.

    2017-08-01

    In this paper, we discuss examples of assignments for a course in discrete mathematics for undergraduate students majoring in business informatics. We consider several problems with computer-based solutions and discuss general strategies for using computers in teaching mathematics and its applications. In order to evaluate the effectiveness of our approach, we conducted an anonymous survey. The results of the survey provide evidence that our approach contributes to high outcomes and aligns with the course aims and objectives.

  4. "Minesweeper" and spectrum of discrete Laplacians

    German, Oleg; Lakshtanov, Evgeny

    2008-01-01

    The paper is devoted to a problem inspired by the "Minesweeper" computer game. It is shown that certain configurations of open cells guarantee the existence and the uniqueness of solution. Mathematically the problem is reduced to some spectral properties of discrete differential operators. It is shown how the uniqueness can be used to create a new game which preserves the spirit of "Minesweeper" but does not require a computer.

  5. A variational synthesis nodal discrete ordinates method

    Favorite, J.A.; Stacey, W.M.

    1999-01-01

    A self-consistent nodal approximation method for computing discrete ordinates neutron flux distributions has been developed from a variational functional for neutron transport theory. The advantage of the new nodal method formulation is that it is self-consistent in its definition of the homogenized nodal parameters, the construction of the global nodal equations, and the reconstruction of the detailed flux distribution. The efficacy of the method is demonstrated by two-dimensional test problems

  6. Flexible Visual Quality Inspection in Discrete Manufacturing

    Petković, Tomislav; Jurić, Darko; Lončarić, Sven

    2013-01-01

    Most visual quality inspections in discrete manufacturing are composed of length, surface, angle or intensity measurements. Those are implemented as end-user configurable inspection tools that should not require an image processing expert to set up. Currently available software solutions providing such capability use a flowchart based programming environment, but do not fully address an inspection flowchart robustness and can require a redefinition of the flowchart if a small variation is int...

  7. Hyponormal differential operators with discrete spectrum

    Zameddin I. Ismailov

    2010-01-01

    Full Text Available In this work, we first describe all the maximal hyponormal extensions of a minimal operator generated by a linear differential-operator expression of the first-order in the Hilbert space of vector-functions in a finite interval. Next, we investigate the discreteness of the spectrum and the asymptotical behavior of the modules of the eigenvalues for these maximal hyponormal extensions.

  8. Physical models on discrete space and time

    Lorente, M.

    1986-01-01

    The idea of space and time quantum operators with a discrete spectrum has been proposed frequently since the discovery that some physical quantities exhibit measured values that are multiples of fundamental units. This paper first reviews a number of these physical models. They are: the method of finite elements proposed by Bender et al; the quantum field theory model on discrete space-time proposed by Yamamoto; the finite dimensional quantum mechanics approach proposed by Santhanam et al; the idea of space-time as lattices of n-simplices proposed by Kaplunovsky et al; and the theory of elementary processes proposed by Weizsaecker and his colleagues. The paper then presents a model proposed by the authors and based on the (n+1)-dimensional space-time lattice where fundamental entities interact among themselves 1 to 2n in order to build up a n-dimensional cubic lattice as a ground field where the physical interactions take place. The space-time coordinates are nothing more than the labelling of the ground field and take only discrete values. 11 references

  9. Generalized Detectability for Discrete Event Systems

    Shu, Shaolong; Lin, Feng

    2011-01-01

    In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432

  10. Entropic Phase Maps in Discrete Quantum Gravity

    Benjamin F. Dribus

    2017-06-01

    Full Text Available Path summation offers a flexible general approach to quantum theory, including quantum gravity. In the latter setting, summation is performed over a space of evolutionary pathways in a history configuration space. Discrete causal histories called acyclic directed sets offer certain advantages over similar models appearing in the literature, such as causal sets. Path summation defined in terms of these histories enables derivation of discrete Schrödinger-type equations describing quantum spacetime dynamics for any suitable choice of algebraic quantities associated with each evolutionary pathway. These quantities, called phases, collectively define a phase map from the space of evolutionary pathways to a target object, such as the unit circle S 1 ⊂ C , or an analogue such as S 3 or S 7 . This paper explores the problem of identifying suitable phase maps for discrete quantum gravity, focusing on a class of S 1 -valued maps defined in terms of “structural increments” of histories, called terminal states. Invariants such as state automorphism groups determine multiplicities of states, and induce families of natural entropy functions. A phase map defined in terms of such a function is called an entropic phase map. The associated dynamical law may be viewed as an abstract combination of Schrödinger’s equation and the second law of thermodynamics.

  11. New formulation of the discrete element method

    Rojek, Jerzy; Zubelewicz, Aleksander; Madan, Nikhil; Nosewicz, Szymon

    2018-01-01

    A new original formulation of the discrete element method based on the soft contact approach is presented in this work. The standard DEM has heen enhanced by the introduction of the additional (global) deformation mode caused by the stresses in the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A simple example of a uniaxial compression of a rectangular specimen, discreti.zed with equal sized particles is simulated to verify the DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities of the DDEM as compared to standard DEM.

  12. Inferring gene networks from discrete expression data

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  13. Meshes optimized for discrete exterior calculus (DEC).

    Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.

  14. Adaptive discrete-ordinates algorithms and strategies

    Stone, J.C.; Adams, M.L.

    2005-01-01

    We present our latest algorithms and strategies for adaptively refined discrete-ordinates quadrature sets. In our basic strategy, which we apply here in two-dimensional Cartesian geometry, the spatial domain is divided into regions. Each region has its own quadrature set, which is adapted to the region's angular flux. Our algorithms add a 'test' direction to the quadrature set if the angular flux calculated at that direction differs by more than a user-specified tolerance from the angular flux interpolated from other directions. Different algorithms have different prescriptions for the method of interpolation and/or choice of test directions and/or prescriptions for quadrature weights. We discuss three different algorithms of different interpolation orders. We demonstrate through numerical results that each algorithm is capable of generating solutions with negligible angular discretization error. This includes elimination of ray effects. We demonstrate that all of our algorithms achieve a given level of error with far fewer unknowns than does a standard quadrature set applied to an entire problem. To address a potential issue with other algorithms, we present one algorithm that retains exact integration of high-order spherical-harmonics functions, no matter how much local refinement takes place. To address another potential issue, we demonstrate that all of our methods conserve partial currents across interfaces where quadrature sets change. We conclude that our approach is extremely promising for solving the long-standing problem of angular discretization error in multidimensional transport problems. (authors)

  15. Single-crossover recombination in discrete time.

    von Wangenheim, Ute; Baake, Ellen; Baake, Michael

    2010-05-01

    Modelling the process of recombination leads to a large coupled nonlinear dynamical system. Here, we consider a particular case of recombination in discrete time, allowing only for single crossovers. While the analogous dynamics in continuous time admits a closed solution (Baake and Baake in Can J Math 55:3-41, 2003), this no longer works for discrete time. A more general model (i.e. without the restriction to single crossovers) has been studied before (Bennett in Ann Hum Genet 18:311-317, 1954; Dawson in Theor Popul Biol 58:1-20, 2000; Linear Algebra Appl 348:115-137, 2002) and was solved algorithmically by means of Haldane linearisation. Using the special formalism introduced by Baake and Baake (Can J Math 55:3-41, 2003), we obtain further insight into the single-crossover dynamics and the particular difficulties that arise in discrete time. We then transform the equations to a solvable system in a two-step procedure: linearisation followed by diagonalisation. Still, the coefficients of the second step must be determined in a recursive manner, but once this is done for a given system, they allow for an explicit solution valid for all times.

  16. Discrete dynamic modeling of cellular signaling networks.

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  17. An essay on discrete foundations for physics

    Noyes, H.P.; McGoveran, D.O.

    1988-07-01

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs

  18. An essay on discrete foundations for physics

    Noyes, H.P.; McGoveran, D.O.

    1988-07-01

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.

  19. An essay on discrete foundations for physics

    Noyes, H.P.; McGoveran, D.O.

    1988-10-05

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.

  20. Quantum cosmology based on discrete Feynman paths

    Chew, Geoffrey F.

    2002-01-01

    Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''