WorldWideScience

Sample records for direct-injection diesel engine

  1. Turbulence-combustion interaction in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Bencherif Mohamed

    2014-01-01

    Full Text Available The experimental measures of chemical species and turbulence intensity during the closed part of the engine combustion cycle are today unattainable exactly. This paper deals with numerical investigations of an experimental direct injection Diesel engine and a commercial turbocharged heavy duty direct injection one. Simulations are carried out with the kiva3v2 code using the RNG (k-ε model. A reduced mechanism for n-heptane was adopted for predicting auto-ignition and combustion processes. From the calibrated code based on experimental in-cylinder pressures, the study focuses on the turbulence parameters and combustion species evolution in the attempt to improve understanding of turbulence-chemistry interaction during the engine cycle. The turbulent kinetic energy and its dissipation rate are taken as representative parameters of turbulence. The results indicate that chemistry reactions of fuel oxidation during the auto-ignition delay improve the turbulence levels. The peak position of turbulent kinetic energy coincides systematically with the auto-ignition timing. This position seems to be governed by the viscous effects generated by the high pressure level reached at the auto-ignition timing. The hot regime flame decreases rapidly the turbulence intensity successively by the viscous effects during the fast premixed combustion and heat transfer during other periods. It is showed that instable species such as CO are due to deficiency of local mixture preparation during the strong decrease of turbulence energy. Also, an attempt to build an innovative relationship between self-ignition and maximum turbulence level is proposed. This work justifies the suggestion to determine otherwise the self-ignition timing.

  2. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  3. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arifin Nur

    2012-07-01

    Full Text Available The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices were mounted on the exhaust pipe. The test of fuel variations started from 100% diesel fuel (D100 to 2.5% (DE2.5, 5% (DE5, 7.5% (DE7.5, and 10% (DE10 ethanol additions. Performance test was conducted at 1500 rpm with load variations from 0 to 60 Nm by increasing the load on each level by 10 Nm. The addition of 5% ethanol to diesel (DE5 increased the average pressure of combustion chamber indication to 48% as well as reduced the specific fuel consumption to 9.5%. There were better exhaust emission characteristics at this mixture ratio than diesel engine which used pure diesel fuel (D100, the reduction of CO to 37%, HC to 44% and opacity to 15.9%.

  4. Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

    Institute of Scientific and Technical Information of China (English)

    Yongcheng HUANG; Shangxue WANG; Longbao ZHOU

    2008-01-01

    Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experi-mental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than con-ventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shor-tened; the peak values of premixed burning rate, the com-bustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation, Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

  5. PERFORMANCE AND EXHAUST GAS EMISSIONS ANALYSIS OF DIRECT INJECTION CNG-DIESEL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    RANBIR SINGH

    2012-03-01

    Full Text Available Existing diesel engines are under stringent emission regulation particularly of smoke and particulate matter in their exhaust. Compressed Natural Gas and Diesel dual fuel operation is regarded as one of the best ways to control emissions from diesel engines and simultaneously saving petroleum based diesel fuel. Dual fuel engineis a conventional diesel engine which burn either gaseous fuel or diesel or both at the same time. In the present paper an experimental research was carried out on a laboratory single cylinder, four-stroke variable compression ratio, direct injection diesel engine converted to CNG-Diesel dual fuel mode to analyze the performance and emission characteristics of pure diesel first and then CNG-Diesel dual fuel mode. The measurements were recorded for the compression ratio of 15 and 17.5 at CNG substitution rates of 30% and 60% and varying theload from idle to rated load of 3.5kW in steps of 1 up to 3kW and then to 3.5kW. The results reveal that brake thermal efficiency of dual fuel engine is in the range of 30%-40% at the rated load of 3.5 kW which is 11%-13% higher than pure diesel engine for 30% and 60% CNG substitution rates. This trend is observed irrespective of the compression ratio of the engine. Brake specific fuel consumption of dual fuel engine is found better than pure diesel engine at all engine loads and for both CNG substitution rates. It is found that there is drastic reduction in CO, CO2, HC, NOx and smoke emissions in the exhaust of dual fuel engine at all loads and for 30% and 60% CNG substitution rates by employing some optimum operating conditions set forth for experimental investigations in this study.

  6. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    Science.gov (United States)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  7. Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel

    Institute of Scientific and Technical Information of China (English)

    HUANG Yongcheng; ZHOU Longbao; PAN Keyu

    2007-01-01

    Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder directinjection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation.

  8. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  9. Modelling of the wall jet in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Lapuerta, M.; Salavert, J.M. (Universidad Politecnica de Valencia (ES). Dept. Maquinas y Motores Termicos)

    1992-01-01

    As a part of a phenomenological model, a method for simulating the wall/jet interaction in a direct injection diesel engine is proposed. The method is based on the application of the momentum conservation equation in the different directions in which the wall jet is spread, and takes into account both the interaction with the combustion chamber geometry and with swirl. It takes as initial conditions the results of calculating the free jet, which is divided into packages. The predictions provide good agreement with those by other researchers. (author).

  10. Two-zone modeling of diesel / biodiesel blended fuel operated ceramic coated direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    B. Rajendra Prasath, P. Tamil Porai, Mohd. F. Shabir

    2010-11-01

    Full Text Available A comprehensive computer code using ”C” language was developed for compression ignition (C.I engine cycle and modified in to low heat rejection (LHR engine through wall heat transfer model. Combustion characteristics such as cylinder pressure, heat release, heat transfer and performance characteristics such as work done, specific fuel consumption (SFC and brake thermal efficiency (BTE were analysed. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. The effect of coating on engine heat transfer was analysed using a gas-wall heat transfer calculations and total heat transfer was based on ANNAND’s combined heat transfer model. The predicted results are validated through the experiments on the test engine under identical operating conditions on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha seed oil blended with diesel was used in both conventional and LHR engine. The simulated combustion and performance characteristics are found satisfactory with the experimental results.

  11. Spray and combustion visualization of bio-diesel in a direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Pan Jianfeng

    2013-01-01

    Full Text Available By using the self-developed dynamic visualization photographic setup, this article investigated some major factors affecting the spray and combustion process of diesel engine fueled by biodiesel. The experimental results show: With the increase of biodiesel percentage, fuel injection advances slightly, the ignition delay becomes shorter and the duration of combustion lengthens. Engine speed has little effect on the spray. However, the combustion rate is increased and the burning time becomes shorter with the increase of engine speed, although the duration of combustion in terms of crank angle increases. With the increase of needle opening pressure, both the spray cone angle and the spray penetration of biodiesel increases, the atomization of spray improves, the ignition delay and the duration of combustion becomes shorter, the peak pressure increases.

  12. Effect of diesel-biodiesel-ethanol blend on combustion, performance, and emissions characteristics on a direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Jamrozik Arkadiusz

    2017-01-01

    Full Text Available The paper presents results of co-combustion of diesel-biodiesel-ethanol fuel blend in direct injection Diesel engine. Test was performed at constant rotational speed at three commonly used loads of this engine: 100%, 85%, and 70% of load. During the test hydrated ethanol was used at a concentration of 89% of alcohol. In this study, the ethanol fuel was added to diesel-biodiesel fuel blend with concentrations up to 50% with the increment of 5%. The biodiesel was used as an additive to pre-vent the stratification of ethanol and diesel blends. Thermodynamic parameters of engine were analyzed, and combustion process and exhaust emission were characterized. It turned out that with the increase in engine load is possible to utilize larger ethanol fraction in blend. With the increase of ethanol fuel in blend the in-crease in ignition delay (38.5% for full load was observed, but burning duration decreased (49% for full load. The ethanol fuel share in blend generally causes the increase in NOx emission (42% for full load due to higher oxygen content and higher in-cylinder temperatures. It turned out that, at full load the unrepeatability of indicated mean effective pressure was near the same up to 50% of ethanol fuel in blend (about 2%. In case of partial load at higher ethanol fuel fraction the in-crease in indicated mean effective pressure un-repeatability was observed.

  13. Environmental Pollution Assessment of Different Diesel Injector Location Of Direct-Injection Diesel Engines: Theoretical Study

    Directory of Open Access Journals (Sweden)

    Eyad S.M. Abu-Nameh

    2008-01-01

    Full Text Available An Analytical investigation on the effect of injector location of a four-stroke DI diesel engine on its pollutants’ emissions was carried out under different injector locations ranging from central to peripheral at different engine speeds ranging from 1000 rpm to 3000 rpm. The simulation results clearly indicated the advantages and disadvantages of the central location over the peripheral one. It revealed that near central location gave less carbon dioxide, smoke level and particulate matter on one hand, and higher levels of NOx, cylinder temperature and pressure (hence increased the mechanical and thermal stresses on the other hand. Further, near central location resulted in more rapid rate of burning and less duration of combustion and rapid rate of NOx formation per crank angle.

  14. CHARACTERISTICS OF PERFORMANCE AND EMISSIONS IN A DIRECT-INJECTION DIESEL ENGINE FUELLED WITH KEROSENE/DIESEL BLENDS

    National Research Council Canada - National Science Library

    K R Patil; S S Thipse

    2014-01-01

      An experimental investigation has been carried out to evaluate the effect of kerosene as an additive to diesel fuel on the combustion, performance and emission characteristics of a direct-injection...

  15. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  16. Natural gas in a D. I. diesel engine. A comparison of two different ways. [Direct injection diesel enginer

    Energy Technology Data Exchange (ETDEWEB)

    Jun-ming, Qu; Sorenson, S.C.; Kofoed, E.

    1987-01-01

    A D.I. diesel engine was modified for natural gas operation with pilot injection and with spark ignition so that a comparative analysis of these two different ways of using natural gas could be made. The results of the experiments indicate that for a diesel engine, it is possible that the operating characteristics of a straight natural gas engine are comparable with those of a diesel/gas engine at the same compression ratio and speed. For a dual fuel engine with pilot injection the best diesel/gas ratio by energy content is approximately 20/80 at full load operation. For straight natural gas engine with spark ignition, quality governed natural gas operation has good efficiency but poor NOx emissions. This problem could be improved through throttle controlled operation. These two different ways of using natural gas are best suited to stationary engines.

  17. CFD Studies of Combustion in Direct Injection Single Cylinder Diesel Engine Using Non-Premixed Combustion Model

    Directory of Open Access Journals (Sweden)

    S Gavudhama Karunanidhi

    2014-07-01

    Full Text Available In this study the simulation process of non-premixed combustion in a direct injection single cylinder diesel engine has been described. Direct injection diesel engines are used both in heavy duty vehicles and light duty vehicles. The fuel is injected directly into the combustion chamber. The fuel mixes with the high pressure air in the combustion chamber and combustion occurs. Due to the non-premixed nature of the combustion occurring in such engines, non-premixed combustion model of ANSYS FLUENT 14.5 can be used to simulate the combustion process. A 4-stroke diesel engine corresponds to one fuel injector hole without considering valves was modeled and combustion simulation process was studied. Here two types of combustion chambers were compared. Combustion studies of both chambers:- shallow depth and hemispherical combustion chambers were carried out. Emission characteristics of both combustion chambers had also been carried out. The obtained results are compared. It has been found that hemispherical combustion chamber is more efficient as it produces higher pressure and temperature compared to that of shallow depth combustion chamber. As the temperature increases the formation of NOx emissions and soot formation also get increased.

  18. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  19. Efficiency evaluation of the DISC (direct-injection stratified charge), DHC (dilute homogeneous charge), and DI Diesel engines (direct-injection diesel)

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.

    1983-09-01

    The thermodynamic laws governing the Otto and diesel cycle engines and the possible approaches that might be taken to increase the delivered efficiency of the reciprocating piston engine are discussed. The generic aspects of current research are discussed and typical links between research and the technical barriers to the engines' development are shown. The advanced engines are discussed individually. After a brief description of each engine and its advantages, the major technical barriers to their development are discussed. Also included for each engine is a discussion of examples of the linkages between these barriers and current combustion and thermodynamic research. For each engine a list of questions is presented that have yet to be resolved and could not be resolved within the scope of this study. These questions partially indicate the limit to the state of knowledge regarding efficiency characteristics of the advanced engine concepts. The major technical barriers to each of the engines and their ranges of efficiency improvement are summarized.

  20. EGR and fuel sulphur influences on particle size distributions from a heavy duty direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, J.D.; Wedekind, B.; Widdicombe, K.A. [Ricardo Consulting Engineers Ltd., Shoreham-by-Sea (United Kingdom)

    1998-07-01

    Diesel exhaust particle emissions were determined from the EGR system of a heavy duty direct injection engine. Both mass and number weighted particle size distribution analyses were undertaken. Measurements were acquired from the inlet manifold at two levels of EGR with two levels of fuel sulphur. An increase in EGR level was found to increase particle numbers but had little influence on the mass weighted size distribution of the exhaust aerosol. Particle mass emissions were increased slightly. An increase in fuel sulphur influenced both the number and mass weighted size distributions measured. Particle mass emissions were minimally affected. (author)

  1. Modeling of Nitric Oxide Formation in Single Cylinder Direct Injection Diesel Engine Using Diesel-Water Emulsion

    Directory of Open Access Journals (Sweden)

    K. Kannan

    2009-01-01

    Full Text Available Problem statement: Water injection into the combustion chamber of diesel engine found to be one of best method for in-cylinder control of NOx formation. Approach: The combustion of water-diesel emulsion in diesel engine was simulated using a computer program to estimate the heat release rate, cylinder pressure, brake thermal efficiency, brake specific fuel consumption and NO formation. Results: The numerical simulation was performed at different equivalence ratios, engine speeds and water percentages. The numerical simulation was preferred to study the combustion behavior and emission of diesel engine because the experimental investigations were time consuming and costly affair. Conclusion/Recommendations: Experiments also conducted to validate the predicted results of computer simulation. Though the zero dimensional simulation models predicted NO formation during combustion process, the first appearance of NO could not be identified using this method which can be solved by CFD technique.

  2. Co-combustion of biodiesel with oxygenated fuels in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2017-01-01

    Full Text Available The paper presents results of experimental investigation of cocombustion process of biodiesel (B100 blended with oxygenated fuels with 20% in volume. As the alternative fuels ware used hydrated ethanol, methanol, 1-butanol and 2-propanol. It was investigated the influence of used blends on operating parameters of the test engine and exhaust emission (NOx, CO, THC, CO2. It is observed that used blends are characterized by different impact on engine output power and its efficiency. Using biodiesel/alcohol blend it is possible to improve engine efficiency with small drop in indicated mean effective pressure (IMEP. Due to combustion characteristic of biodiesel/alcohol obtained a slightly larger specific NOx emission. It was also observed some differences in combustion phases due to various values of latent heat of evaporation of used alcohols and various oxygen contents. Test results confirmed that the combustion process occurring in the diesel engine powered by blend takes place in a shorter time than in the typical diesel engine.

  3. Electrically assisted turbocompound systems for high speed direct injection diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Shahed, S.M.; Beatty, D.J. [Allied Signal Turbocharging Systems (United States)

    1999-07-01

    Turbocharged diesel engines are already the most efficiency prime movers. Further fuel economy gains are being realized by down-sizing engines but with compromised response. AlliedSignal's Electrical Turbocompounding system solves this challenge and further improves fuel economy and power density. It provides additional boost at low speeds and transfers excess turbocharger power to the crankshaft at high speeds. Analysis using a typical baseline engine shows that at low speeds, boost is increased by 100 to 407 mbars and torque by 12 to 50%, by supplying 0.5 to 2.0 kW power assist. At high speeds, up to 10kW of power can be recovered from the turbocharger, improving efficiency by 6-10%. Transient response analysis shows that with electrical assist turbochargers can reach full boost within 0.3-0.5 seconds. (author)

  4. Effect of palm methyl ester-diesel blends performance and emission of a single-cylinder direct-injection diesel engine

    Science.gov (United States)

    Said, Mazlan; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad

    2012-06-01

    The purpose of this study is to investigate engine performance and exhaust emission when using several blends of neat palm oil methyl ester (POME) with conventional diesel (D2) in a small direct injection diesel engine, and to compare the outcomes to that of the D2 fuel. Engine performances, exhaust emissions, and some other important parameters were observed as a function of engine load and speed. In addition, the effect of modifying compression ratio was also carried out in this study. From the engine experimental work, neat and blended fuels behaved comparably to diesel (D2) in terms of fuel consumption, thermal efficiency and rate of heat released. Smoke density showed better results than that emitted by D2, operating under similar conditions due to the presence of inherited oxygen and lower sulphur content in the biofuel and its blends. The emissions of CO, CO2, and HC were also lower using blended mixtures and in its neat form. However, NOx concentrations were found to be slight higher for POME and its blends and this was largely due to higher viscosity of POME and possibly the presence of nitrogen in the palm methyl ester. General observation indicates that biofuel blends can be use without many difficulties in this type of engine but for optimized operation minor modifications to the engine and its auxiliaries are required.

  5. Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines Progrès de la modélisation des sprays dans les moteurs Diesel et à essence

    OpenAIRE

    Kong S. C.; Senecal P. K.; Reitz R. D.

    2006-01-01

    In direct-injection engines, the fuel spray characteristics influence the combustion efficiency and exhaust emissions. The performance of available spray models for predicting liquid and vapor fuel distributions, and their influence on combustion is reviewed for both diesel and gasoline direct injection engines. A phenomenological nozzle flow model is described for simulating the effects of diesel injector nozzle internal geometry on the fuel injection and spray processes. The flow model prov...

  6. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Herfatmanesh

    2016-05-01

    Full Text Available The latest generation of high-pressure common rail equipment now provides diesel engines possibility to apply as many as eight separate injection pulses within the engine cycle for reducing emissions and for smoothing combustion. With these complicated injection arrangements, optimizations of operating parameters for various driving conditions are considerably difficult, particularly when integrating fuel injection parameters with other operating parameters such as exhaust gas recirculation rate and boost pressure together for evaluating calibration results. Understanding the detailed effects of fuel injection parameters upon combustion characteristics and emission formation is therefore particularly critical. In this article, the results and discussion of experimental investigations on a high-speed direct injection light-duty diesel engine test bed are presented for evaluating and analyzing the effects of main adjustable parameters of the fuel injection system on all regulated emission gases and torque performance. Main injection timing, rail pressure, pilot amount, and particularly pilot timing have been examined. The results show that optimization of each of those adjustable parameters is beneficial for emission reduction and torque improvement under different operating conditions. By exploring the variation in the interval between the pilot injection and the main injection, it is found that the pressure wave in the common rail has a significant influence on the subsequent injection. This suggests that special attentions must be paid for adjusting pilot timing or any injection interval when multi-injection is used. With analyzing the fuel amount oscillation of the subsequent injections to pilot separation, it demonstrates that the frequency of regular oscillations of the actual fuel amount or the injection pulse width with the variation in pilot separation is always the same for a specified fuel injection system, regardless of engine speed

  7. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  8. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, 23119 Elazig (Turkey); Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, 72060 Batman (Turkey)

    2009-10-15

    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NO{sub x}), sulphur dioxide (SO{sub 2}) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NO{sub x} emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification. (author)

  9. Effect of Fuel Cetane Number on Multi-Cylinders Direct Injection Diesel Engine Performance and Exhaust Emissions

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2012-01-01

    Full Text Available Due to the energy crisis and the stringent environmental regulations, diesel engines are offering good hope for automotive vehicles. However, a lot of work is needed to reduce the diesel exhaust emissions and give the way for full utilization of the diesel fuel’s excellent characteristics.A kind of cetane number improver has been proposed and tested to be used with diesel fuel as ameans of reducing exhaust emissions. The addition of (2-ethylhexyl nitrate was designed to raise fuel cetane number to three stages, 50, 52 and 55 compared to the used conventional diesel fuel whose CN was 48.5. The addition of CN improver results in the decrease brake specific fuel consumption by about 12.55%, and raise brake thermal efficiency to about 9%. Simultaneously, the emission characteristics of four fuels are determined in a diesel engine. At high loads, a little penalty on CO and HC emissions compared to baseline diesel fuel. NOx emissions of the higher CN fuels are decreased 6%, and CO of these fuels is reduced to about 30.7%. Engine noise reduced with increasing CN to about 10.95%. The results indicate the potential of diesel reformation for clean combustion in diesel engines.

  10. Comparative Performance of Direct Injection Diesel Engines Fueled Using Compressed Natural Gas and Diesel Fuel Based on GT-POWER Simulation

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2008-01-01

    The paper is investigated the application of compressed natural gas (CNG) as an alternative fuel and its performance effect in the diesel engines using GT-POWER computational simulation. The CNG as an alternative fuel for four stroke diesel engine modeling was developed from the real diesel engine using GT-POWER computational model with measure all of engine components size. The computational model will be running on mono CNG fuel and mono diesel fuel to simulate and investigate the engine pe...

  11. Comparative Performance of Direct Injection Diesel Engines Fueled Using Compressed Natural Gas and Diesel Fuel Based on GT-POWER Simulation

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The paper is investigated the application of compressed natural gas (CNG as an alternative fuel and its performance effect in the diesel engines using GT-POWER computational simulation. The CNG as an alternative fuel for four stroke diesel engine modeling was developed from the real diesel engine using GT-POWER computational model with measure all of engine components size. The computational model will be running on mono CNG fuel and mono diesel fuel to simulate and investigate the engine performance effect on the difference fuel. Output of the model simulation shown the effect of diesel engine fueled by CNG performance effect were simulated in any engine speeds parameters.

  12. Computational Simulation of Fuel Nozzle Multi Holes Geometries Effect on Direct Injection Diesel Engine Performance Using GT-POWER

    Directory of Open Access Journals (Sweden)

    Rosli A. Bakar

    2008-01-01

    Full Text Available The computational model simulation development is use the commercial computational fluid dynamics of GT-POWER 6.2 software were specially development for internal combustion engines performance simulation. The research concentrated on one dimensional model and focuses on fuel nozzles multi holes geometries variation developed from all of the engine components size measurement of the original selected diesel engine. All of the measurements data input to the window engines component menu for running input data in the model. Results of the diesel engine fuel nozzles multi holes geometries model simulation running is in GT-POST. The model performance shows in engine cylinder and engine crank-train on software window output. The performance analysis effect of the model investigated of fuel in-cylinder engine, indicated specific fuel consumption, indicated torque and indicated power of engine modeled. The simulation result was shows that the seven holes nozzle provided the best burning for fuel in-cylinder burned and the five holes nozzle provided the best for indicted power, indicated torque and indicated specific fuel consumption in any different engine speed in simulation.

  13. PERFORMANCE, EMISSION AND COMBUSTION CHARACTERISTICS OF A METHYL ESTER SUNFLOWER OILEUCALYPTUS OIL IN A SINGLE CYLINDER AIR COOLED AND DIRECT INJECTION DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    TAMILVENDHAN.D,

    2011-03-01

    Full Text Available Biomass derived fuels are preferred as alternative fuels for IC engine due to its abundant availability and renewable nature. In the present work the performance, emission and combustion characteristics of a single cylinder constant speed , direct injection diesel engine using methyl ester of sun flower oil – eucalyptus oil blend as an alternative fuel were studied and the results are compared with thestandard diesel fuel operation. Result indicated that 50% reduction in smoke, 34% reduction in HC emission and a 37.5% reduction in CO emission for the MeS50Eu50 blend with 2.8 % increase in NOx emission at full load. Brake thermal efficiency was increased 2.7 % for eS50Eu50 blend.

  14. Effect of L-ascorbic acid as additive for exhaust emission reduction in a direct injection diesel engine using mango seed methyl ester

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available In this present study the effect of L-ascorbic acid antioxidants additive for oxides of nitrogen emission reduction in a neat mango seed biodiesel fueled direct injection Diesel engine. The antioxidant additive L-ascorbic acid is tested on a Kirloskar-make four stroke water cooled single cylinder Diesel engine of 5.2 kW. There are four proportions of additive are used:1 ml, 2 ml, 3 ml, and 4 ml. Among the different additive proportion,4 ml concentration of L-ascorbic acid additive is optimal as oxides of nitrogen levels are substantially reduced up to 9% in the whole load range in comparison with neat biodiesel. However, hydrocarbon and carbonmonoxide emissions are found to have slightly increased by the addition of additive with biodiesel.

  15. Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components

    Science.gov (United States)

    Torregrosa, A. J.; Broatch, A.; Martín, J.; Monelletta, L.

    2007-07-01

    The low consumption achievable with Diesel engines and the subsequent reduction of CO2 emissions, together with the new technologies allowing to meet present and future legislation for pollutant emission reduction, make them attractive from an environmental viewpoint. However, current and future Diesel concepts are intrinsically noisy, and thus in the past few years, combustion noise was considered as an additional factor in engine development alongside performance, emissions and driveability. Otherwise, due to this negative issue intrinsic to Diesel combustion, end-users could be reluctant to drive Diesel-powered vehicles and their potential for environment preservation could thus be lost or underused. Evaluation procedures are then required, both for noise level and sound quality, that may be integrated into the global engine development process, avoiding the need to resort to long and expensive acoustic tests. In this paper, such a procedure, based on the noise source diagnostic through the definition of suitable components extracted from in-cylinder pressure, is proposed and validated. An innovative decomposition of the in-cylinder pressure signal is used to obtain such components, so that features associated with the excitation inside the cylinder may be properly identified. These combustion components, significant of the rate of heat release in the cylinder and the resonance in the combustion chamber, may be correlated with the overall noise level. A prediction of the radiated engine noise level more accurate than that obtained from the classical 'block attenuation' approach is achieved, while combustion process features related to the resulting noise level can be identified and thus corrective actions may be proposed.

  16. Effect of hydrogen on ethanol-biodiesel blend on performance and emission characteristics of a direct injection diesel engine.

    Science.gov (United States)

    Parthasarathy, M; Isaac JoshuaRamesh Lalvani, J; Dhinesh, B; Annamalai, K

    2016-12-01

    Environment issue is a principle driving force which has led to a considerable effort to develop and introduce alternative fuels for transportation. India has large potential for production of biofuels like biodiesel from vegetable seeds. Use of biodiesel namely, tamanu methyl ester (TME) in unmodified diesel engines leads to low thermal Efficiency and high smoke emission. To encounter this problem hydrogen was inducted by a port fueled injection system. Hydrogen is considered to be low polluting fuel and is the most promising among alternative fuel. Its clean burning characteristic and better performance attract more interest compared to other fuels. It was more active in reducing smoke emission in biodiesel. A main drawback with hydrogen fuel is the increased NOx emission. To reduce NOx emission, TME-ethanol blends were used in various proportions. After a keen study, it was observed that ethanol can be blended with biodiesel up to 30% in unmodified diesel engine. The present work deals with the experimental study of performance and emission characteristic of the DI diesel engine using hydrogen and TME-ethanol blends. Hydrogen and TME-ethanol blend was used to improve the brake thermal efficiency and reduction in CO, NOx and smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  18. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  19. Three-dimensional analysis of internal flow characteristics in the injection nozzle tip of direct-injection diesel engines; Sanjigen suchi kaiseki ni yoru DI diesel kikan no nenryo funsha nozzle nai ryudo tokusei no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H.; Matsui, Y.; Kimura, S. [Nissan Motor Co. Ltd. Tokyo (Japan)

    1997-10-01

    To reduce the exhaust emissions and fuel consumption of direct-injection diesel engines, it is essential to optimize the fuel injection equipment closely related to combustion and emission characteristics. In this study, three-dimensional computation has been applied to investigate the effects of the injection nozzle specifications (e.g., sac volume, round shape at the inlet of the nozzle hole) and needle tip deviation on internal flow characteristics. The computational results revealed that the effects of the nozzle specifications and needle tip deviation with a smaller needle lift on internal flow characteristics and a general approach to optimize the injection nozzle specifications were obtained. 3 refs., 10 figs., 1 tab.

  20. Analyse de la sensibilité aux paramètres gazoles d'un moteur diesel d'automobile à injection directe Small Direct Injection Diesel Engine Sensitivity to the Diesel Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Montagne X.

    2006-12-01

    particules totales sont plutôt dépendantes de la viscosité et des fractions légères des carburants. Les émissions sonores sont étroitement liées à l'indice de cétane. Par ailleurs, l'ensemble des résultats acquis semble indiquer que les paramètres pilotant le délai d'auto-inflammation sont importants sur ce type de convertisseur. Il serait cependant nécessaire de disposer de mesures directes des caractéristiques des jets d'injection (taille des gouttelettes, pénétration du spray en fonction des différents carburants pour pouvoir quantifier l'effet des paramètres tels que la viscosité et la densité sur la partie physique du délai d'auto-inflammation. Among the technical solutions that can lead to energy converters with low pollutant emissions and low fuel consumption, diesel engines rank, by nature, in a good position. On this base, direct injection diesel engine has been developed and are now spreading in private passanger cars because of their performances, especially in terms of fuel consumption. However, this equipment requires an efficient injection system, electronically driven, needs EGR and an oxidation catalyst to improve the pollutant emissions and the noise level. Thus, it is a major concern to be able to assess precisely the sensitivity to fuel characteristics of direct injection engines as to take the best advantage of this technology. With a set of fuels formulated to cover a large range of chemical nature, viscosity, cetane number and density, an Audi direct injection engine (1Z model was run at the test bench. The impact of the fuel characteristics on pollutant emissions, regulated or unregulated (PAH, aldehydes, and on noise levels was assessed either under standard tuning conditions, either by changing the EGR rate and the injection timing. The results obtained at the end of this program point out the main criteria that have an influence on emissions. They also allow a comparison between direct injection engines and their homologues

  1. The influence of fuel injection and heat release on bulk flow structures in a direct-injection, swirl-supported diesel engine

    Science.gov (United States)

    Sterl, Andreas; van Oldenborgh, Geert Jan; Hazeleger, Wilco; Burgers, Gerrit

    2007-08-01

    Particle image velocimetry is applied to measure the vertical (r z) plane flow structures in a light-duty direct-injection diesel engine with a realistic piston geometry. The measurements are corrected for optical distortions due to the curved piston bowl walls and the cylindrical liner. Mean flow fields are presented and contrasted for operation both with and without fuel injection and combustion. For operation with combustion, the two-dimensional divergence of the measured mean velocity fields is employed as a qualitative indicator of the locations of mean heat release. In agreement with numerical simulations, dual-vortex, vertical plane mean flow structures that may enhance mixing rates are formed approximately mid-way through the combustion event. Late in the cycle a toroidal vortex forms outside the bowl mouth. Imaging studies suggest that soot and partially oxidized fuel trapped within this vortex are slow to mix with surrounding fluid; moreover, the vortex impedes mixing of fluid exiting the bowl with air within the squish volume.

  2. An Experimental Investigation on Performance and Emissions Characteristics of Jatropha Oil Blends with Diesel in a Direct Injection Compression Ignition Engine

    Science.gov (United States)

    De, B.; Bose, P. K.; Panua, R. S.

    2012-07-01

    Continuous effort to reducing pollutant emissions, especially smoke and nitrogen oxides from internal combustion engines, have promoted research for alternative fuels. Vegetable oils, because of their agricultural origin and due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere. It also reduces import of petroleum products. In the present contribution, experiments were conducted using Jatropha oil blends with diesel to study the effect on performance and emissions characteristics of a existing diesel engine. In this study viscosity of Jatropha oil was reduced by blending with diesel. A single cylinder, four stroke, constant speed, water cooled, diesel engine was used. The results show that for lower blend concentrations various parameters such as thermal efficiency, brake specific fuel consumption, smoke opacity, CO2, and NO x emissions are acceptable compared to that of mineral diesel. But, it was observed that for higher blend concentrations, performance and emissions were much inferior compared to diesel.

  3. Improvement of emissions and performance by using of air jet, exhaust gas re-circulation and insulation methods in a direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Jafarmadara S.

    2013-01-01

    Full Text Available This article investigates the improvement of operation characteristics and emissions reduction by means of creating an air-cell inside the piston body, exhaust gases recirculating and insulating combustion chamber in a direct injection diesel engine simultaneously. The engine considered is a caterpillar 3401 which was modeled with an air-cell included as part of the piston geometry. This air-cell demonstrates that air injection in late combustion period can be effective in a significant reduction of Soot emission while cold EGR can be effective in reduction of NOx emission. Also for increasing of performance parameters, combustion chamber with air-cell is insulated. The analyses are carried out at part (75% of full load and full load conditions at the same engine speed 1600 rpm. The obtained results indicate that creating the air-cell has a slight effect on improvement of performance parameters and it has significantly effect on Soot reduction. The air-cell decreases the Soot pollutant as a factor of two at both part and full load conditions. Also, the adding 5% of cold EGR in inlet air decreases NOx by about half and insulating the engine increases the power and IMEP by about 7.7% and 8.5% and decreases the ISFC by about 7.5% at part load and increases power and IMEP by 8.5%, 8.5% and decreases ISFC by 8% at full load condition, respectively. Using this method, it was possible to control emissions formation and increase performance parameters simultaneously. The predicted results for mean in-cylinder pressure and emissions are compared to the corresponding experimental results and show good agreements.

  4. Improvement of combustion in a direct injection diesel engine by micro-hole nozzle; Micro hole nozzle wo mochiita chokusetsu funshashiki diesel kikan no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M. [Keio University, Tokyo (Japan); Kobori, S. [Tokyo Institute of Technology, Tokyo (Japan); Iida, N. [Keio University, Tokyo (Japan). Faculty of Science and Technology

    2000-07-25

    In an attempt to promote the atomization of fuel spray and the mixing of fuel and air in diesel engines, a micro-hole nozzle which has orifices with a diameter smaller than 0.10mm was developed. In this study, the combustion tests were carried out using a single cylinder diesel engine equipped with a micro-hole nozzle and a common rail type high-pressure fuel injection system. A comparison with the results of a conventional nozzle experiment showed that the peak of initial premixed combustion increased, but the peak of diffusion combustion decreased. As a result, when nozzle orifice diameter become small from {phi} 0.15 mm to {phi} 0.10 mm, the combustion was accompanied by smokeless with the same levels of NO{sub x} emission and fuel economy. And results of a comparison the toroidal type chamber with the shallow dish type chamber revealed that the optimization of combustion chamber is necessary for the increase of the injection stage with increasing of the number of nozzle orifice. If an orifice diameter becomes {phi} 0.06 mm, the diffusion combustion can not be observed and the combustion is formed of only premixed combustion. The combustion in the case of {phi} 0.06 mm was accompanied with the drastic deterioration of fuel economy, smoke and HC with all over load. But the micro-hole nozzle has a potential for the formation of the lean and homogeneous premixed mixture until the fuel-air mixture ignites. (author)

  5. THE EFFECT OF BIODIESEL AND BIOETHANOL BLENDED DIESEL FUEL ON THE PERFORMANCE AND EMISSION CHARACTERISTICS OF A DIRECT INJECTION DIESEL ENGINE

    OpenAIRE

    G. Venkata Subbaiah; Dr. K. Raja Gopal; Syed Altaf Hussain

    2010-01-01

    History has seen fuel innovations being driven majorly by transportation needs rather than the overall need to revolutionize the energy needs of the society. Biofuels such as biodiesel and bioethanol are now receiving the impetus required for becoming a fuel source for the future. One of the ways to reduce the dependence on fossil diesel is the blending of bioethanol with conventional diesel. However, an emulsifier or a co-solvent is required to stabilize the blend. The ricebran oil biodiesel...

  6. Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines Progrès de la modélisation des sprays dans les moteurs Diesel et à essence

    Directory of Open Access Journals (Sweden)

    Kong S. C.

    2006-12-01

    Full Text Available In direct-injection engines, the fuel spray characteristics influence the combustion efficiency and exhaust emissions. The performance of available spray models for predicting liquid and vapor fuel distributions, and their influence on combustion is reviewed for both diesel and gasoline direct injection engines. A phenomenological nozzle flow model is described for simulating the effects of diesel injector nozzle internal geometry on the fuel injection and spray processes. The flow model provides initial conditions for the liquid jet breakup model that considers wave instabilities due to Kelvin-Helmholtz (KH and Rayleigh-Taylor (RT mechanisms. A linearized instability analysis has also been extended to consider the breakup of liquid sheets for modeling pressure-swirl gasoline injectors. Diesel engine predictions have been compared with extensive data from in-cylinder laser diagnostics carried out in optically accessible heavy-duty, DI Diesel engines over a wide range of operating conditions. The results show that the nozzle flow model used in combination with the KH and RT models gives realistic spray predictions. In particular, the limited liquid fuel penetration length observed experimentally and the flame shape details are captured accurately. The liquid sheet breakup model has also been compared favorably with experimental spray penetration and drop size data for gasoline hollow-cone sprays. This model is currently being applied to study stratified charge combustion in GDI engines. Dans les moteurs à injection directe, les caractéristiques du spray de carburant influent directement sur le rendement et les émissions. Les performances des modèles de spray existants et leur influence sur la combustion pour les moteurs Diesel et essence à injection directe sont analysées. Un modèle phénoménologique d'écoulement dans les injecteurs indiquant les effets de la géométrie sur les processus d'injection est présenté. Ce modèle donne les

  7. 玉米秸秆生物油-柴油乳化油的燃烧特性%Combustion Characteristics of a Direct Injection Diesel Engine Operating on Emulsions from Corn Stalk Bio-Oil and Diesel Fuel

    Institute of Scientific and Technical Information of China (English)

    黄勇成; 韩旭东; 尚上; 王丽

    2011-01-01

    The experimental bio-oil produced from corn stalk through fast pyrolysis process is mainly composed of oxygenated organic and water, thereby restricting its direct use as fuel. However, the use of bio-oil in diesel engines can be realized by developing emulsions from bio-oil and diesel fuel. In this paper, two emulsions with 10% and 20% by mass fraction of bio-oil in diesel fuel, represented by B10 and B20 respectively, were prepared by using ultrasonic emulsification method. Then, the combustion characteristics of an unmodified direct injection diesel engine operating on the two emulsions were studied. The results show that the engine operating on the two emulsions displays a longer ignition delay, exhibits a higher peak value of premixed burning rate and pressure rise rate and a slightly lower peak value of diffusion burning rate, displays a lower peak combustion pressure and average combustion temperature, and has a shorter combustion duration when compared with No.0 diesel. In comparison with B10, B20 has a longer ignition delay, while exhibits a lower peak value of premixed burning rate, pressure rise rate, in-cylinder pressure and combustion temperature. In addition, the fuel economy for B10 operation is comparable to that for No.0 diesel operation, while the fuel economy of B20 is poorer than that of No.0 diesel.%试验用生物油是玉米秸秆快速热解液化的产物,主要成分为含氧有机混合物和水,不宜直接作为燃料使用,但与柴油乳化后可实现其在发动机中应用.在一台未作改动的直喷式柴油机上研究了玉米秸秆生物油质量分数分别为10%(B10)和20%(B20)的生物油-柴油乳化油的燃烧特性.结果表明:与0号柴油相比,乳化油的滞燃期延长,预混燃烧放热峰值和最大压力升高率升高,扩散燃烧放热峰值略低,最高燃烧压力和缸内气体平均温度降低,燃烧持续期缩短.与B10相比,B20的滞燃期延长,而预混燃烧放热峰值、最大压力升

  8. Separate direct injection of diesel and ethanol: A numerical analysis

    Directory of Open Access Journals (Sweden)

    Burnete Nicolae V.

    2017-01-01

    Full Text Available The purpose of this study is to investigate the theoretical possibility of using a pilot diesel injection for the auto-ignition of a main ethanol injection in a compression ignition engine. To this effect a predictive simulation model has been built based on experimental results for a diesel cycle (pilot and main injection at 1500 and 2500 min–1, respectively. For every engine speed, in addition to the diesel reference cycle, two more simulations were done: one with the same amount of fuel injected into the cylinder and one with the same amount of energy, which required an increase in the quantity of ethanol proportional to the ratio of its lower heating value and that of diesel. The simulations showed that in all cases the pilot diesel led to the auto-ignition of ethanol. The analysis of the in-cylinder traces at 1500 min–1 showed that combustion efficiency is improved, the peak temperature value decrease with approximately 240 K and, as a result, the NO emissions are 3.5-4 times lower. The CO and CO2 values depend on the amount of fuel injected into the cylinder. At 2500 min–1 there are similar trends but with the following observations: the ignition delay increases, while the pressure and temperature are lower.

  9. Computational fluid dynamics simulation of the combustion process, emission formation and the flow field in an in-direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Barzegar Ramin

    2013-01-01

    Full Text Available In the present paper, the combustion process and emission formation in the Lister 8.1 I.D.I Diesel engine have been investigated using a Computational Fluid Dynamics (CFD code. The utilized model includes detailed spray atomization, mixture formation and distribution model which enable modeling the combustion process in spray/wall and spray/swirl interactions along with flow configurations. The analysis considers both part load and full load states. The global properties are presented separately resolved for the swirl chamber (pre-chamber and the main chamber. The results of model verify the fact that the equal amount of the fuel is burned in the main and pre-chamber at full load state while at part load the majority of the fuel is burned in the main chamber. Also, it is shown that the adherence of fuel spray on the pre-chamber walls is due to formation of a stagnation zone which prevents quick spray evaporation and plays an important role in the increase of soot mass fractions at this zone at full load conditions. The simulation results, such as the mean in-cylinder pressure, heat release rate and exhaust emissions are compared with the experimental data and show good agreement. This work also demonstrates the usefulness of multidimensional modeling for complex chamber geometries, such as in I.D.I Diesel engines, to gain more insight into the flow field, combustion process and emission formation.

  10. Analysis of combustion performance and emission of extended expansion cycle and iEGR for low heat rejection turbocharged direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Shabir Mohd F.

    2014-01-01

    Full Text Available Increasing thermal efficiency in diesel engines through low heat rejection concept is a feasible technique. In LHR engines the high heat evolution is achieved by insulating the combustion chamber surfaces and coolant side of the cylinder with partially stabilized zirconia of 0.5 mm thickness and the effective utilization of this heat depend on the engine design and operating conditions. To make the LHR engines more suitable for automobile and stationary applications, the extended expansion was introduced by modifying the inlet cam for late closing of intake valve through Miller’s cycle for extended expansion. Through the extended expansion concept the actual work done increases, exhaust blow-down loss reduced and the thermal efficiency of the LHR engine is improved. In LHR engines, the formation of nitric oxide is more, to reduce the nitric oxide emission, the internal EGR is incorporated using modified exhaust cam with secondary lobe. Modifications of gas exchange with internal EGR resulted in decrease in nitric oxide emissions. In this work, the parametric studies were carried out both theoretically and experimentally. The combustion, performance and emission parameters were studied and were found to be satisfactory.

  11. Investigation for analysis and assessment of the noise of a direct-injection one-cylinder diesel engine; Untersuchung zur Analyse und Bewertung des Geraeusches eines direkteinspritzenden Einzylinder-Dieselmotors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlmann, M.

    1995-12-31

    Engine noise today is assessed mainly on the basis of the noise pressure level which, however, does not reflect human hearing accurately. A more differentiated method is described which quantifies structural characteristics of noise on the basis of the parameters of loudness, sharpness and variation, which are then summarized in a single characteristic parameter, i.e. `uninfluenced noise disturbance`. Direct-injection diesel engines are commonly considered to be particularly noisy; for this reason, diesel engine noise was analyzed and evaluated according to the method described, and the degree of noise disturbance was established for different operating conditions of the engine. Finally, the interdependence between engine noise emission and the cylinder pressure curve and variables derived from it were established and verified. (orig.) [Deutsch] Das Geraeusch von Motoren wird heute ueberwiegend nach dem Schalldruckpegel beurteilt. Dieser bildet das menschliche Hoerempfinden jedoch nur unvollstaendig nach. Eine sehr viel differenziertere Geraeuschbeurteilung ist mit einem Verfahren moeglich, das mit den Parametern Lautheit, Schaerfe und Schwankungsstaerke strukturelle Eigenarten des Geraeusches quantifiziert und in einer einzelnen Kenngroesse, der unbeeinflussten Laestigkeit, zusammenfasst. Besonders der direkteinspritzende Dieselmotor wird in Bezug auf das Geraeusch allgemein als besonders unangenehm eingestuft. In dieser Arbeit wird nun das genannte Verfahren zur Beurteilung der Laestigkeit an die Besonderheiten motorischer Untersuchungen adaptiert und die Laestigkeit bei verschiedenen Betriebsbedingungen des Motors bestimmt. Abschliessend wird ein Zusammenhang zwischen der Schallabstrahlung des Motors und dem Zylinderdruckverlauf bzw. daraus abgeleiteten Groessen hergestellt und verifiziert. (orig.)

  12. Multi-Dimensional Modeling of the Effects of Air Jet and Split Injection on Combustion and Emission of DirectInjection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Mehdi Mansury

    2016-01-01

    Full Text Available One of the most important problems in reducing the emissions of diesel engines is to exchange between the oxides of nitrogen and soot emissions. Fuel multiple injection and air injection into combustion chamber are among the most powerful tools to concurrent reduction of these two emissions. In this research, the effect of multiple injection and air injection on combustion and emission parameters has been studied by AVL fire computational fluid dynamic software. Six states of base and modified combustion chamber have been studied in two different injection patterns including 90 (25 10 and 75 (25 25 mods. Results show that concurrent applying of both multiple injection and air injection methods has resulted in simultaneous reduction of oxide nitrogen and soot pollutants and a negligible loss is seen in the operational parameters of engine. Compression between six studied cases show that the 90 (25 10 mode of injection with modified combustion chamber is the optimum mode by decreasing of soot and oxides of nitrogen emissions about 29% and 20% respectively and 6% indicated power loss in compression to the base combustion chamber and single injection mode. The obtained results from the computational fluid dynamic code have been compared with the existing results in the technical literature and show acceptable behavior.

  13. Study on a small diesel engine with direct injection impinging distribution spray combustion system. Optimum of injection system and combustion chamber; Shototsu kakusan hoshiki kogata diesel kikan ni kansuru kenkyu. Funshakei to nenshoshitsu no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K.; Kato, S.; Saito, T. [Kanazawa Institute of Technology, Ishikawa (Japan); Tanabe, H. [Gunma University, Gunma (Japan)

    1997-10-01

    This study is concerned with a small bore (93mm) diesel engine using impinged fuel spray, named OSKA system. The higher rate of injection show lower smoke emission with higher NOx Emission. The exhaust emission and performance were investigated under different compression ratio with higher rate of injection. The experimental results show that this OSKA system is capable for reducing the smoke emission without the deterioration of NOx emission and fuel consumption compared with the conventional DI diesel engine. 5 refs., 8 figs., 3 tabs.

  14. Etudes théoriques et expérimentales de la combustion dans les moteurs Diesel d'automobiles à injection directe et à préchambre Theoretical and Experimental Research on Combustion in Diesel Automotive Engines with Direct Injection and a Prechamber

    Directory of Open Access Journals (Sweden)

    Douaud A.

    2006-11-01

    Full Text Available Certaines techniques récemment développées pour la modélisation mathématique et les investigations expérimentales sur moteur Diesel sont présentées. On insiste sur l'importance de la validation croisée entre calcul et mesure. Taux d'injection, aérodynamique interne, développement du spray sont analysés en relation avec la géométrie des chambres de combustion. Des exemples, portant principalement sur des considérations de rendement énergétiques et d'émissions polluantes sont présentés à la fois sur le moteur Diesel à préchambre et le moteur Diesel à injection directe. Various techniques developed recently for the mathematical modeling and experimental investigating of diesel engines are described. Emphasis is placed on the importance of crosschecking between computing and measuring. The injection rate, internal aerodynamics and spray development are analyzed in relation to the geometry of combustion chambers. Examples mainly concerning matters of energy efficiency and pollutant emissions are given for diesel engines both with a prechamber and with direct injection.

  15. Numerical modeling of a Jet Ignition Direct Injection (JIDI) LPG engine

    OpenAIRE

    albert boretti

    2016-01-01

    The paper presents indirectly validated simulations of the operation of a LPG engine fitted with Direct Injection (DI) and Jet Ignition (JI). It is demonstrated that the engine may have diesel like efficiencies and load control by quantity of fuel injected.  As the liquid propane quickly evaporates after injection in the main chamber, the main chamber mixture may be much closer to stoichiometry than a diesel for a better specific power at low engine speeds. This design also works at the high ...

  16. Numerical modeling of a Jet Ignition Direct Injection (JIDI LPG engine

    Directory of Open Access Journals (Sweden)

    albert boretti

    2016-12-01

    Full Text Available The paper presents indirectly validated simulations of the operation of a LPG engine fitted with Direct Injection (DI and Jet Ignition (JI. It is demonstrated that the engine may have diesel like efficiencies and load control by quantity of fuel injected.  As the liquid propane quickly evaporates after injection in the main chamber, the main chamber mixture may be much closer to stoichiometry than a diesel for a better specific power at low engine speeds. This design also works at the high engine speeds impossible for the diesel, as combustion within the main chamber is controlled by the turbulent mixing rather than the vaporization and diffusion processes of the injected fuel of the diesel

  17. Effect of Corn Stalk Bio-Oil on Combustion and Emission Characteristics of Direct Injection Diesel Engine%玉米秸秆生物油对直喷式柴油机燃烧与排放的影响

    Institute of Scientific and Technical Information of China (English)

    韩旭东; 黄勇成; 易延洪; 黄松; 闻振江

    2012-01-01

    The experimental bio-oil was produced from corn stalk through fast pyrolysis process. In this paper, four emulsions with 5%, 10%, 15% and 20% by mass fraction of corn stalk bio-oil (CSB) in diesel fuel, represented by CSB5, CSB10, CSB15 and CSB20, respectively, were prepared by the ultrasonic emulsification method. Then, the combustion and emission characteristics of an unmodified direct injection diesel engine operating on the four emulsions were studied and compared with those of No. 0 diesel operation in order to provide the basis and theoretical guidance for the application of bio-oil in diesel engines. The results showed that, with the increase of CSB mass fraction in the emulsions, the ignition delay lengthens, both the heat released during the premixed combustion phase and the premixed combustion duration increase, while the total combustion duration shortens. With the increase of CSB mass fraction in the emulsions, the peak values of both premixed burning rate and pressure rise rate increase first and then decrease, while those of in-cylinder pressure and combustion temperature decrease. In addition, the fuel economy of CSB5 and CSB 10 is comparable to that of No. 0 diesel, while the fuel economy of CSB 15 and CSB20 is slightly poorer than that of No. 0 diesel. In comparison with No. 0 diesel, NOx emissions of all the emulsions are lower, while HC and CO emissions are higher. Furthermore, these trends are more remarkable with the increase of CSB fraction in the emulsions. Smoke emissions of the emulsions decrease first and then increase with the increase of CSB fraction in the emulsions. Meanwhile, smoke emissions of CSB5 and CSB 10 are lower while those of CSB 15 and CSB20 are slightly higher than those of No. 0 diesel.%采用超声波乳化法制备了玉米秸秆热解生物油质量分数分别为5%、10%、15%和20%的生物油/柴油乳化油,分别记为CSB5、CSB10、CSB15和CSB20,然后在一台未作改动的直喷式

  18. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  19. New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise

    Science.gov (United States)

    Payri, F.; Broatch, A.; Tormos, B.; Marant, V.

    2005-02-01

    The objective of this paper is to present a new methodology for the analysis of in-cylinder pressure in direct injection (DI) diesel engines. Indeed, for some applications, the traditional study of total pressure is shown to be insufficient and the proposed technique is intended to be an alternative and more efficient tool, since it may provide a better understanding of the physical mechanisms. The main idea is to decompose the in-cylinder pressure evolution according to three phenomena taking place during diesel engine operation: pseudo-motored, combustion and resonance excitation. In order to validate this new method, it is applied to combustion noise analysis. Actually, the combustion process in DI diesel engines may be considered as an important source of noise, and the traditional approach is mainly based on the interpretation of objective overall spectral levels of both in-cylinder pressure and radiated noise, obtained from Fourier analysis. However, this approach has been shown unable to describe all the relevant aspects of the problem, whereas the results obtained from the proposed decomposition technique exhibit a fair qualitative correlation between in-cylinder pressure and combustion noise issues. Further development of this approach could provide a useful tool for the development of optimal injection strategies fulfilling not only performance considerations but also sound quality requirements for combustion noise in DI diesel engines.

  20. The lean burn direct injection jet ignition gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Boretti, Alberto A.; Watson, Harry C. [School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353 (Australia)

    2009-09-15

    This paper presents a new in-cylinder mixture preparation and ignition system for various fuels including hydrogen, methane and propane. The system comprises a centrally located direct injection (DI) injector and a jet ignition (JI) device for combustion of the main chamber (MC) mixture. The fuel is injected in the MC with a new generation, fast actuating, high pressure, high flow rate DI injector capable of injection shaping and multiple events. This injector produces a bulk, lean stratified mixture. The JI system uses a second DI injector to inject a small amount of fuel in a small pre-chamber (PC). In the spark ignition (SI) version, a spark plug then ignites a slightly rich mixture. In the auto ignition version, a DI injector injects a small amount of higher pressure fuel in the small PC having a hot glow plug (GP) surface, and the fuel auto ignites in the hot air or when in contact with the hot surface. Either way the MC mixture is then bulk ignited through multiple jets of hot reacting gases. Bulk ignition of the lean, jet controlled, stratified MC mixture resulting from coupling DI with JI makes it possible to burn MC mixtures with fuel to air equivalence ratios reducing almost to zero for a throttle-less control of load diesel-like and high efficiencies over almost the full range of loads. (author)

  1. Investigation of Diesel Engine Performance Based on Simulation

    OpenAIRE

    Semin; Rosli A. Bakar; Abdul R. Ismail

    2008-01-01

    The single cylinder modeling and simulation for four-stroke direct-injection diesel engine requires the use of advanced analysis and development tools to carry out of performance the diesel engine model. The simulation and computational development of modeling for the research use the commercial of GT-SUITE 6.2 software. In this research, the one dimensional modeling of single cylinder for four-stroke direct-injection diesel engine developed. The analysis of the model is combustion performanc...

  2. EVALUATION OF THE PERFORMANCE AND EMISSION CHARACTERISTICS OF A 4-STROKE SINGLE CYLINDER DIRECT INJECTION DIESEL ENGINE FUELLED WITH SESAME METHYL ESTER AND DIESEL FUEL BLENDS--AN EXPERIMENTAL INVESTIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Rajashekhar S. Hosmath [K.L.E' s College of Engineering and Technology, Belgaum (India); P. Mohanan [National Institute of Technology Karnataka, Surathkal (India)

    2008-09-30

    India produces only about 33% of her annual crude oil requirement of 105 MT, relying on imports to the tune of Rs. 1,06,875 crores for meeting the remaining requirement in 2005. There is a need to search and find ways of using fuels that are preferably renewable, clean burning fuels. Today, India and China are the world's largest producers of sesame, followed by Burma, Sudan, Mexico, Nigeria, Venezuela, Turkey, Uganda and Ethiopia. 25% of the world production is from India. Sesame seeds contain about 50% oil compositions as compared to 20% oil in soybeans. In view of this Sesame oil could be regarded as an alternative fuel for CI engine applications

  3. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  4. Filter-based control of particulate matter from a lean gasoline direct injection engine

    Energy Technology Data Exchange (ETDEWEB)

    Parks, II, James E [ORNL; Lewis Sr, Samuel Arthur [ORNL; DeBusk, Melanie Moses [ORNL; Prikhodko, Vitaly Y [ORNL; Storey, John Morse [ORNL

    2016-01-01

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDI PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The

  5. Performance of CO2 enrich CNG in direct injection engine

    Science.gov (United States)

    Firmansyah, W. B.; Ayandotun, E. Z.; Zainal, A.; Aziz, A. R. A.; Heika, M. R.

    2015-12-01

    This paper investigates the potential of utilizing the undeveloped natural gas fields in Malaysia with high carbon dioxide (CO2) content ranging from 28% to 87%. For this experiment, various CO2 proportions by volume were added to pure natural gas as a way of simulating raw natural gas compositions in these fields. The experimental tests were carried out using a 4-stroke single cylinder spark ignition (SI) direct injection (DI) compressed natural gas (CNG) engine. The tests were carried out at 180° and 300° before top dead centre (BTDC) injection timing at 3000 rpm, to establish the effects on the engine performance. The results show that CO2 is suppressing the combustion of CNG while on the other hand CNG combustion is causing CO2 dissociation shown by decreasing CO2 emission with the increase in CO2 content. Results for 180° BTDC injection timing shows higher performance compared to 300° BTDC because of two possible reasons, higher volumetric efficiency and higher stratification level. The results also showed the possibility of increasing the CO2 content by injection strategy.

  6. CFD MODEL OF THE CNG DIRECT INJECTION ENGINE

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2014-09-01

    Full Text Available The paper presents CFD analysis of fuel flow in the CNG injector. The issues such a pressure drop along an injector channel, mass flow through the key sections of the injector geometry, flow rates, the impact of the needle shape on the deflection of the sprayed gas cone and the impact of the wall head are analyzed in the article. The simulation was made in the transient states conditions for full injection process, including the opening and closing of the injector. An injection time of 6 ms, velocity of 0.33 mm/ms and a lift of 0.5 mm were selected for opening and closing of injector based on experimental test. The simulation shows that the volume inside the injector is a kind of fuel accumulator, and the opening process of the needle influence the flow parameters in an inlet cross-section after a certain time, depending on a channel cross section. The calculations allowed to select the ratio of an injector duct cross sectional area to the aperture area of the injection capable of the reducing pressure loss. The unusual location of the injector in the socket of a glow plug in the Andoria ADCR engine makes a stream be impaired by a part of the head. This research result would be useful in developing an injector construction which will be used for an investigation of CNG addition into diesel engine.

  7. Effect of fuel injection rate and timing on the physical, chemical, and biological character of particulate emissions from a direct injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.; Scholl, J.; Hibbler, F.; Bagley, S.; Leddy, D.; Abata, D.; Johnson, J.

    1981-01-01

    Formation of pollutants from diesel combustion and methods for their control have been reviewed. Of these methods, fuel injection rate and timing were selected for a parametric study relative to total particulate, soluble organic fraction (SOF), sulfates, solids and NO and NO/sub 2/ emissions from a heavy-duty, turbocharged, after-cooled, direct-injection (DI) diesel. Chemical analyses of the SOF were performed at selected engine conditions to determine the effects of injection rate and timing on each of the eight chemical subfractions comprising the SOF. Biological character of the SOF was determined using the Ames Salmonella/microsome bioassay. 54 refs.

  8. Investigation of Diesel Engine Performance Based on Simulation

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The single cylinder modeling and simulation for four-stroke direct-injection diesel engine requires the use of advanced analysis and development tools to carry out of performance the diesel engine model. The simulation and computational development of modeling for the research use the commercial of GT-SUITE 6.2 software. In this research, the one dimensional modeling of single cylinder for four-stroke direct-injection diesel engine developed. The analysis of the model is combustion performance process in the engine cylinder. The model simulation covers the full engine cycle consisting of intake, compression, power and exhaust. In this model it can to know the diesel engine performance effect with simulation and modeling in any speeds (rpm parameters. The performance trend of the diesel engine model developed result of this model based on the theoretical and computational model shows in graphics in the paper.

  9. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Terrance [Ford Motor Co., Dearborn, MI (United States)

    2015-12-31

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.

  10. Ducted combustion chamber for direct injection engines and method

    Science.gov (United States)

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  11. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    OpenAIRE

    Ekkachai Sutheerasak

    2014-01-01

    Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree o...

  12. An Investigation on Injection Characteristics of Direct-Injected Heavy Duty Diesel Engine by Means of Multi-Zone Spray Modeling Étude sur les caractéristiques d’injection d’un moteur Diesel industriel à injection directe au moyen de la modélisation multi-zones de la pulvérisation

    Directory of Open Access Journals (Sweden)

    Javadi Rad G.

    2010-02-01

    Full Text Available The purpose of this study is to investigate the effect of injection parameters on a heavy duty diesel engine performance and emission characteristics. In order to analyze the injection and spray characteristics of diesel fuel with employing high-pressure common-rail injection system, the injection characteristics such as injection delay, injection duration, and injection rate and number of nozzle holes were investigated by using a quasi-dimensional model. In the present work, the variety of injection rate is performed at various injection parameters where as performance and emission of the engine will be simulated subsequently. Finally the best injection system for a high efficiency and low NOx emission heavy duty diesel engine was investigated. Le but de cette étude est d’étudier l’effet des paramètres d’injection sur les caractéristiques de performance et d’émissions d’un moteur Diesel industriel. Afin d’analyser les caractéristiques d’injection et de pulvérisation du gazole assurées par un système d’injection “common-rail” haute pression, les paramètres d’injection tels que le calage de l’injection, la durée de l’injection, le taux d’injection et le nombre de trous de l’injecteur ont été étudiés en utilisant un modèle quasi-dimensionnel. Dans l’étude présentée, les performances et les émissions du moteur sont simulées à différents taux d’injection en faisant varier des paramètres d’injection. Enfin, la meilleure définition du système d’injection a été recherchée pour obtenir un moteur Diesel industriel avec un haut rendement et de basses émissions de NOx.

  13. Method for operating a spark-ignition, direct-injection internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  14. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends.

    Science.gov (United States)

    Nabi, Md Nurun; Akhter, Md Shamim; Zaglul Shahadat, Mhia Md

    2006-02-01

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.

  15. Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2013-05-24

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (© pilot ¼ 0.2-0.6 and © overall ¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant © pilot (> 0.5), increasing © overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing © overall (at constant © pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  16. Diesel Engine Technician

    Science.gov (United States)

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  17. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    Directory of Open Access Journals (Sweden)

    Ekkachai Sutheerasak

    2014-06-01

    Full Text Available Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree of spray angle and decrease 13.90 % of fuel injection pressure to compare with non-preheated oil. As engine preformance testing results, preheated diesel oil increase 26.20% of thermal efficiency and decrease 4.30 % of BSFC, as preheated bio-diesel oil increase 30% of thermal efficiency and decrease 29.90 % of BSFC to compare with non-preheated oil.

  18. Performance evaluation of common rail direct injection (CRDI) engine fuelled with Uppage Oil Methyl Ester (UOME)

    OpenAIRE

    D.N. Basavarajappa; Banapurmath, N. R.; S.V. Khandal

    2015-01-01

    For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly ...

  19. The influence of thermal regime on gasoline direct injection engine performance and emissions

    Science.gov (United States)

    Leahu, C. I.; Tarulescu, S.

    2016-08-01

    This paper presents the experimental research regarding to the effects of a low thermal regime on fuel consumption and pollutant emissions from a gasoline direct injection (GDI) engine. During the experimental researches, the temperature of the coolant and oil used by the engine were modified 4 times (55, 65, 75 and 85 oC), monitoring the effects over the fuel consumption and emissions (CO2, CO and NOx). The variations in temperature of the coolant and oil have been achieved through AVL coolant and oil conditioning unit, integrated in the test bed. The obtained experimental results reveals the poor quality of exhaust gases and increases of fuel consumption for the gasoline direct injection engines that runs outside the optimal ranges for coolant and oil temperatures.

  20. Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger

    Directory of Open Access Journals (Sweden)

    Amiruddin Hilmi

    2017-01-01

    Full Text Available This paper presents the results from 1.6 litre, 4 cylinders stratified charge compressed natural gas (CNG direct injection engine with boosting device. A turbocharger with compressor trim of 40 was used to increase engine output. The engine was tested at wide open throttle (WOT and speed ranging from 1000 to 5000 rpm. Engine performance and emissions data were recorded under steady state condition. Results show turbocharged CNG engine produced an average of 26% increment in brake power and 24% additional maximum brake torque as compared with natural aspirated (NA CNG engine. Turbocharged CNG engine improved brake specific fuel consumption (BSFC and yielded higher fuel conversion efficiency (FCE. Relatively turbocharged CNG engine showed lower emission of hydrocarbon (HC and carbon monoxide (CO throughout tested engine speed. Conversely, the carbon dioxide (CO2 and nitrogen oxide (NOx emission produced were slightly higher compared with NA CNG engine.

  1. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    Science.gov (United States)

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  2. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions. Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  3. Improvement of thermal effciency in diesel engine. Diesel engine no koritsu kojo

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. (Isuzu Ceramics Research Inst. Co. Ltd., Kanagawa, (Japan))

    1993-04-05

    Diesel engines cause worsening air pollution due to much more discharge of nitrogen oxides than gasoline engines, however for reduction of carbon dioxide, Diesel engines consuming less fuel are better than gasoline engines for protection of the global environment. Theoretical thermal efficiency is larger as compression ratio and isochronic burnup are bigger, hence such an engine is needed that is made on the basis of a Diesel engine, whose compression ratio is twice or more larger than that of gasoline engine and which has good thermal efficiency, and reduces its nitrogen oxides by the development of the combustion technique by means of controlling combustion temperature as well as fuel equivalent ratio. With regard to the improvement of thermal efficiency of Diesel engines, it can be attained, utilizing the respective features of the antechamber-type and the direct injection-type Diesels, by burning the homogeneous mixture, whose fuel equivalent ratio is big, in the initial stage and by controlling the main combustion period in the main chamber short. inaddition, a radiation shield-type turbocompound engine has been test fabricated and rough explanations are given on its structure, its combustion and the recovery of its exhaust gas energy. 5 refs., 6 figs., 1 tab.

  4. Performance and combustion characteristics of a direct injection SI hydrogen engine

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Ali [Engine Technology, Powertrain, Toyota Motor Europe, Technical centre Hoge Wei 33 Zaventem 1930 (Belgium); Shioji, Masahiro; Nakai, Yasuyuki; Ishikura, Wataru [Graduate School of Energy Science, Kyoto University, Yoshida-honmachi Sakyo-ku Kyoto 605-8501 (Japan); Tabo, Eizo [Environmental and Technical Affairs Department, Mitsubishi Motors Co., 5-33-8 Shiba Minatoku Tokyo 108-8401 (Japan)

    2007-02-15

    Hydrogen with low spark-energy requirement, wide flammability range and high burning velocity is an important candidate for being used as fuel in spark-ignition engines. It also offers CO{sub 2} and HC free combustion and lean operation resulting in lower NO{sub x} emissions. However, well examined external mixing of hydrogen with intake air causes backfire and knock especially at higher engine loads. In addition, low heating value per unit of volume of hydrogen limits the maximum output power. In this study, attention was paid to full usage of hydrogen advantage employing internal mixing method. Hydrogen was directly injected into cylinder of a single-cylinder test engine using a high-pressure gas injector and effects of injection timing and spark timing on engine performance and NO{sub x} emission were investigated under wide engine loads. The results indicate that direct injection of hydrogen prevents backfire, and that high thermal efficiency and output power can be achieved by hydrogen injection during late compression stroke. Moreover, by further optimization of the injection timing for each engine load, NO{sub x} emission can be reduced under the high engine output conditions. (author)

  5. Diesel engine technology `98. Status and trends; Dieselmotorentechnik 98. Aktueller Stand und Entwicklungstendenzen

    Energy Technology Data Exchange (ETDEWEB)

    Essers, U. [ed.] [Stuttgart Univ. (Germany)

    1998-09-01

    This book reviews important aspects of modern diesel engines. Renowned university scientists and competent experts from the car and components industry present trends in diesel engineering. The current state of the art is outlined, and the potential and solutions for future requirements are outlined. Contents: Direct injection in diesel engines - radial piston injection pumps for modern diesel engines in passenger cars - common rail injection - electronic control of diesel engines - supercharging of diesel engines - direct-injection diesel engines with supercharger - aldehyde emissions of diesel engines - exhaust regulations for industrial vehicles - combustion diagnosis in diesel engines - soot formation - direct-injection diesel engines and spark ignition engines - trends in passenger car development. (orig.) [Deutsch] Der Band beleuchtet wichtige Aspekte der modernen Dieselmotoren. Namhafte Wissenschaftler von verschiedenen Hochschulen und kompetente Fachexperten aus der Fahrzeug- und Zubehoerindustrie berichten ueber Entwicklungstendenzen auf dem Gebiet der Dieselmotorentechnik. Der aktuelle Stand der Entwicklung wird aufgezeigt. Potential und Loesungsansaetze fuer kuenftige Anforderungen werden diskutiert. Inhalt: Direkteinspritzung bei Dieselmotoren - Radialkolben-Verteilereinspritzpumpen fuer moderne Pkw-DI-Dieselmotoren - Common Rail-Einspritzung - Elektronische Dieselregelung - Aufladung von Dieselmotoren - Pkw-DI-Dieselmotor mit VTG-Lader - Aldehydemission von Dieselmotoren - Abgasgesetzgebung fuer Nfz-Dieselmotoren - Verbrennungsdiagnostik im Dieselmotor - Russbildung - DI-Dieselmotor und DI-Ottomotor - Wohin geht die PkW-Motorentwicklung? (orig.)

  6. Power Balancing of Inline Multicylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available In this work, a simplified methodology is presented for power balancing by reducing the amplitude of engine speed variation, which result in excessive torsional vibrations of the crankshaft of inline six-cylinder diesel engine. In modern fuel injection systems for reciprocating engines, nonuniform cylinder-wise torque contribution is a common problem due to nonuniform fuel supply due to a defect in fuel injection system, causing increased torsional vibration levels of the crankshaft and stress of mechanical parts. In this paper, a mathematical model for the required fuel adjustment by using amplitude of engine speed variation applied on the flywheel based on engine dynamics is suggested. From the found empirical relations and FFT analysis, the amplitude of engine speed variation (i.e., torsional vibration levels of the crankshaft of inline six-cylinder diesel engine genset can be reduced up to 55%. This proposed methodology is simulated by developing MATALB code for uniform and nonuniform working of direct injection diesel engine of SL90 type manufactured by Kirloskar Oil Engine Ltd., Pune, India.

  7. Numerical investigation of natural gas direct injection properties and mixture formation in a spark ignition engine

    Directory of Open Access Journals (Sweden)

    Yadollahi Bijan

    2014-01-01

    Full Text Available In this study, a numerical model has been developed in AVL FIRE software to perform investigation of Direct Natural Gas Injection into the cylinder of Spark Ignition Internal Combustion Engines. In this regard two main parts have been taken into consideration, aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multi-dimensional numerical simulation of transient injection process, mixing and flow field have been performed via three different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability the validated model has been applied to methane Injection into the cylinder of a Direct Injection engine. Five different piston head shapes along with two injector types have been taken into consideration in investigations. A centrally mounted injector location has been adapted to all cases. The effects of injection parameters, combustion chamber geometry, injector type and engine RPM have been studied on mixing of air-fuel inside cylinder. Based on the results, suitable geometrical configuration for a NG DI Engine has been discussed.

  8. Diesel Engine Tribology

    DEFF Research Database (Denmark)

    Christiansen, Christian Kim

    Recent years have seen an increase in the wear rate of engine bearings, subsequently followed by bearing failure, for the large two-stroke diesel engines used for ship propulsion. Here, the engine bearings include main, big end and crosshead bearings, with the bearing type used being the journal...... bearing, belonging to the class of ‘hydrodynamic bearings’. This implies that the load carrying capacity is generated by a relative movement of the involved components, i.e. avelocity-driven operation. For the engine application, the velocity stems from the engine RPM. However, to comply with the latest...... emission requirements as well as attempting to minimise fuel expenses, the engine speed has been lowered together with an increase in the engine mean pressure which in terms lead to larger bearing loads. With worsened operating conditions from two sides, the encountered problems are understandable...

  9. Test and Analysis for Spraying Ammonia in Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    周华祥; 刘敬平; 贺力克; 陈方; 申奇志; 骆锐; 周正

    2011-01-01

    A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine' s combustion chamber when the combustion temperature decreases to 1 573 - 1 073 K, NOx generated could be reduced to 1.11 g/( kW· h). Based on PRF combustion mechanism, NO was tested by using the heavy-duty diesel engine test cycle of ESC thirteen conditions , the ammonia spray angle and amount were tested and optimized in different conditions. The test results show that the thermal efficiency of Diesel engine does not decrease while NO exhaust decreases.

  10. Performance evaluation of common rail direct injection (CRDI engine fuelled with Uppage Oil Methyl Ester (UOME

    Directory of Open Access Journals (Sweden)

    D.N. Basavarajappa

    2015-02-01

    Full Text Available For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar. CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.

  11. Analysis of Oxygenated Component (butyl Ether) and Egr Effect on a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx. Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.

  12. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  13. About methods to reduce emissions of turbo charged engine gasoline direct injection

    Science.gov (United States)

    Neacsu, D.; Ivan, F.; Niculae, M.

    2017-08-01

    The paper aims to analyse and explain new methods applied on gasoline direct injection to reduce gas emissions and greenhouse effect. There are analysed the composition of emission inside the engine and which are the most harmful emission for the environment. Will be analysed the methods and systems which have a contribution to decrease emissions produced by the mixture of air and fuel. The paper contains details about after treatment systems which are designed to decrease gas emissions without any other negative consequence on the environment.

  14. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  15. Mathematical study of methods to reduce emission of nitrogen oxides and particulate from a compression ignited, direct injection engine

    Science.gov (United States)

    Gao, Zhiming

    2001-11-01

    A phenomenological model based on the multizone concept and a three-dimensional CFD model were used to predict the effect of engine modification on particulated and NOx emission from a compression ignited direct injection (CIDI) engine. The phenomenological model consisted of a spray model, an evaporation model, a heat release model, NOx formation, soot formation, and oxidation model, and can be used to predict the combustion process and pollutant emission in a CIDI diesel engine. The advantage of the multizone model over the 3-D CFD model is the small CPU and memory it requires for a simulation. In this study, the phenomenological model was used to investigate (1) the effect of increasing the intake-air O2 content on soot and NO x emission as a function of power level and wall temperature; and (2) the effect of exhaust gas recirculation (EGR) and split fuel injection on pollutant emission, and compare their soot penalty at a given NOx emission. The results indicate that EGR with a relatively low temperature can reduce NOx emission with a minimum penalty of soot particle emission. The use of EGR is promising for significantly reducing NOx emission with small or no penalty of soot particle emission. The effect of auxiliary gas injection (AGI) on diesel engine combustion and emission was studied using KIVA 3V, a multidimensional computation fluid dynamics code. AGI enhances the diesel combustion via mixing to reduce the emission of pollutants. The simulation of a high-speed gas jet model with a relatively coarse computational grids was described. The choice of turbulent length scale for optimum simulation suitability is dependent of local mesh grid. The results demonstrate that AGI creates a second-way flow in the cylinder, which improves the mixing of charge in the cylinder. The effect of AGI on combustion and flow movement is significant. The use of exhaust gas on the AGI can reduce soot emission, while NOx emission also can be decreased to some degree. To reduce

  16. Performance Test of Engine Fuelled With Diesel and Ethanol Blends.

    Directory of Open Access Journals (Sweden)

    B.K.L.Murthy

    2015-04-01

    Full Text Available Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (ICengines. As an alternative, biodegradable and renewable fuel, ethanol is receiving increasing attention. An experimental investigation on the application of the blends of ethanol with diesel to a diesel engine was carried out. First the solubility of ethanol and diesel was conducted with and without the additive of normal butanol (n-butanol. The purpose of this project is to find the optimum percentage of ethanol that gives simultaneously better performance and lower emissions. The experiments were conducted on a water-cooled single-cylinder Direct Injection (DI diesel engine using 0% (neat diesel fuel, 10% (E10-D, 15%(E15–D, 20% (E20–D, and 25%(E25–D ethanol–diesel blended fuels. Experimental tests were carried out to study the performance of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with n-butanol to replace pure diesel as the fuel for diesel engine.

  17. Adiabatic turbocompound diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kamo, R.; Bryzik, W.

    1984-02-01

    The research and development of an adiabatic turbocompound engine have shown that the concept is feasible. The ability to meet the performance and sociability goals of the future power plants has been demonstrated. Low brake specific fuel consumption, low smoke and particulates, better NO /SUB x/ -BSFC trade-off, excellent multifuel capability, white smoke suppression, and potentially lower maintenance and greater reliability and durability are some of the attributes. The absence of the water cooling system adds to its attractiveness because of lower installed weight, cost, and reduction in parasitic losses. The operating environment of an adiabatic engine is shown as the basis for analysis and designing of adiabatic components. The types of material which can satisfy the needs of an adiabatic engine are presented. These materials include high temperature metals, high performance ceramics, and glass ceramics. The use of a turbocompound system to utilize the increased exhaust energy of an adiabatic engine is covered. A minimum fuel consumption of 0.285 lb/bhp-hr was achieved at 200 psi BMEP. Although the technical feasibility and viability of an adiabatic engine was demonstrated, the adiabatic diesel engine has problems which must be solved before it becomes a commercially viable product. These problem areas where more work is required are discussed.

  18. Etudes théoriques et expérimentales de la combustion dans les moteurs Diesel d'automobiles à injection directe et à préchambre Theoretical and Experimental Research on Combustion in Diesel Automotive Engines with Direct Injection and a Prechamber

    OpenAIRE

    Douaud A.; Pinchon P.

    2006-01-01

    Certaines techniques récemment développées pour la modélisation mathématique et les investigations expérimentales sur moteur Diesel sont présentées. On insiste sur l'importance de la validation croisée entre calcul et mesure. Taux d'injection, aérodynamique interne, développement du spray sont analysés en relation avec la géométrie des chambres de combustion. Des exemples, portant principalement sur des considérations de rendement énergétiques et d'émissions polluantes sont présentés à la foi...

  19. Assessing the Climate Trade-Offs of Gasoline Direct Injection Engines.

    Science.gov (United States)

    Zimmerman, Naomi; Wang, Jonathan M; Jeong, Cheol-Heon; Wallace, James S; Evans, Greg J

    2016-08-01

    Compared to port fuel injection (PFI) engine exhaust, gasoline direct injection (GDI) engine exhaust has higher emissions of black carbon (BC), a climate-warming pollutant. However, the relative increase in BC emissions and climate trade-offs of replacing PFI vehicles with more fuel efficient GDI vehicles remain uncertain. In this study, BC emissions from GDI and PFI vehicles were compiled and BC emissions scenarios were developed to evaluate the climate impact of GDI vehicles using global warming potential (GWP) and global temperature potential (GTP) metrics. From a 20 year time horizon GWP analysis, average fuel economy improvements ranging from 0.14 to 14% with GDI vehicles are required to offset BC-induced warming. For all but the lowest BC scenario, installing a gasoline particulate filter with an 80% BC removal efficiency and engine operation, and fuel composition. More work is needed to understand BC formation mechanisms in GDI engines to ensure that the climate impacts of this engine technology are minimal.

  20. Computer animation of the stratified mixture shape in gasoline direct injection engine

    Energy Technology Data Exchange (ETDEWEB)

    Sendyka, B.; Pisarczyk, W.; Pajak, M. [Cracow University of Technology (Poland); Lindberg, W. [University of Wyoming (United States)

    1999-07-01

    The present method of direct fuel injection in Gasoline Direct Injection Engines (GDIE) creates a conical fuel stream, which is inefficient for GDIE. In this paper we analyzed how to achieve stratified conical shape of the rich fuel mixture. The kernel of the rich mixture should be located between the electrodes of the spark plug. This is achieved when the conical stream is bounced back from the surface of the bowl of the piston. The computer animation of the trajectory of the convergent fuel stream was based on equations of the parameters for fuel stream, injection pressure and angle of fuel injector. The presented animation allows us to determine the movement of the stream, from the beginning of injection to the electrodes of the spark plug, where the combustion process of the rich mixture kernel starts. (author)

  1. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M.; Saito, A. [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S. [Toyota Motor Corp., Aichi (Japan); Shibata, H. [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y. [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  2. Performance and Emission Assessment of Multi Cylinder Diesel Engine using Surfactant Enhanced Water in Diesel Emulsion

    Directory of Open Access Journals (Sweden)

    Khan Mohammed Yahaya

    2014-07-01

    Full Text Available A four stroke, four cylinder, In-direct injection diesel engine was used to study the effect of emulsified diesel fuel with 5% water by volume on the engine performance and on the main pollutant emissions. The experiments were conducted in the speed range from 1000 to 4500 rpm at full load conditions. It was found that, in general, using emulsified fuel improves the engine performance with slight increase in emissions. While the BSFC has a minimum value for 5% water and at all rpm, the torque, the power and the BMEP are found to have maximum values under these conditions when compared conve ntional disel. CO2 was found to increase with engine speed whereas increase in CO and NOX were minimum. In this work water in diesel emulsion was prepared by a mechanical homogenizer and their physical and chemical properties were examined.

  3. Performance and efficiency evaluation and heat release study of a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.

    1987-01-01

    A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.

  4. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  5. UV-visible digital imaging of split injection in a Gasoline Direct Injection engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia

    2015-01-01

    Full Text Available Ever tighter limits on pollutant emissions and the need to improve energy conversion efficiency have made the application of gasoline direct injection (GDI feasible for a much wider scale of spark ignition engines. Changing the way fuel is delivered to the engine has thus provided increased flexibility but also challenges, such as higher particulate emissions. Therefore, alternative injection control strategies need to be investigated in order to obtain optimum performance and reduced environmental impact. In this study, experiments were carried out on a single-cylinder GDI optical engine fuelled with commercial gasoline in lean-burn conditions. The single-cylinder was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio and wall guided fuel injection. Optical accessibility was ensured through a conventional elongated hollow Bowditch piston and an optical crown, accommodating a fused-silica window. Experimental tests were performed at fixed engine speed and injection pressure, whereas the injection timing and the number of injections were adjusted to investigate their influence on combustion and emissions. UV-visible digital imaging was applied in order to follow the combustion process, from ignition to the late combustion phase. All the optical data were correlated with thermodynamic analysis and measurements of exhaust emissions. Split injection strategies (i.e. two injections per cycle with respect to single injection increased combustion efficiency and stability thanks to an improvement of fuel air mixing. As a consequence, significant reduction in soot formation and exhaust emission with acceptable penalty in terms of HC and NOx were measured.

  6. Prediction and Analysis of Engine Friction Power of a Diesel Engine Influenced by Engine Speed, Load, and Lubricant Viscosity

    OpenAIRE

    Devendra Singh; Fengshou Gu; Fieldhouse, John D.; Nishan Singh; Singal, S. K.

    2014-01-01

    Automotive industries made a paradigm shift in selection of viscometrics of engine lubricant, from higher to lower viscosity grade, for improving fuel economy of vehicles. Engine fuel consumption is influenced by friction between the various engine components. Engine friction power (FP) of a direct injection diesel engine is calculated from the measured value of in-cylinder pressure signals at various operating conditions. For predicting FP, as a function of speed, load, and lubricant viscosi...

  7. Experimental studies on a DI diesel engine fueled with bioethanol-diesel emulsions

    Directory of Open Access Journals (Sweden)

    Dulari Hansdah

    2013-09-01

    Full Text Available This paper explores the possibility of utilizing bioethanol obtained from Madhuca Indica flower as an alternative fuel in a direct injection (DI diesel engine. Three different percentages of bioethanol (5%, 10%, and 15% on volume basis were emulsified with diesel proportionality with the help of a surfactant. The emulsions were designated as BMDE5, BMDE10, and BMDE15 where the numeric value refers to the percentage of bioethanol. The emulsions were tested as fuels in a single cylinder, four stroke, and air cooled DI diesel engine developing a power of 4.4 kW at 1500 rpm. Results indicated that the bioethanol–diesel emulsions exhibited a longer ignition delay by about 2.2 °CA than that of diesel operation at full load. Overall, the nitric oxide (NO and smoke emissions were found to be lesser by about 4% and 20%, respectively, with the bioethanol–diesel emulsions compared to that of diesel operation at full load. The BMDE5 emulsion gave a better performance and lower emissions compared to that of BMDE10 and BMDE15. It is suggested that the bioethanol produced from Madhuca Indica flower can be used as a potential alternative fuel replacing 5% of petroleum diesel.

  8. Performance of Untreated Waste Cooking Oil Blends in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Md Isa Ali

    2011-01-01

    Full Text Available Untreated waste cooking oil (UWCO is not a feasible diesel fuel. The major problems in engine operation are reported mainly due to UWCO’s high viscosity. To use  UWCO's in diesel engine without modification, it is necessary to make sure that the oils properties must be similar to diesel fuel. In this study, UWCO that has been used several times for frying purposes is investigated for the utilization as an alternative fuel for diesel engines. In order to reduce the viscosity, the UWCO were blend with diesel. Two various blends of UWCO and diesel were prepared and its important properties such as viscosity, density, calorific value and flash point were  evaluated and compared with that of diesel. The blends were then tested in a direct injection diesel engine  in 10% and 30% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions. It was found that blending UWCO with diesel reduces the viscosity.  Blending of UWCO with diesel has been shown to be an effective method to reduce engine problems associated with the high viscosity of UWCO. The experimental results also show that the basic engine performance such as power output and  fuelconsumptions are comparable to diesel and the emissions of CO and NOx from the UWCO/diesel blends were also found slightly higher than that of diesel fuel.

  9. Reeds diesel engine troubleshooting handbook

    CERN Document Server

    Pickthall, Barry

    2013-01-01

    Most diesel engines will develop a problem at some point in their lives, but armed with the right knowledge a skipper needn't worry. The Reeds Diesel Engine Troubleshooting Handbook is a compact, pocket-sized guide to finding solutions to all of the most common engine problems, and many of the less common ones too. The perfect format for quick reference on board, this book will help skippers fix troublesome engines themselves, avoiding costly engineer fees if the problem is simple to sort out, or enabling an emergency patch-up for a more serious problem until they can get back to port. Each to

  10. Problems diagnosis in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Leugner, L.

    1986-10-01

    Diagnosis of engine problems in diesel engines used in Western Canadian coal mines is discussed. Areas to which attention must be paid include the air cleaners, turbocharger, engine compression and the fuel system. Exhaust smoke should be analysed to help diagnose combustion related problems.

  11. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  12. Numerical studies of spray breakup in a gasoline direct injection (GDI engine

    Directory of Open Access Journals (Sweden)

    Jafarmadar Samad

    2011-01-01

    Full Text Available The objective of this study is to investigate Spray Breakup process of sprays injected from single and two-hole nozzles for gasoline direct Injection (GDI engines by using three dimensional CFD code. Spray characteristics were examined for spray tip penetration and other characteristics including: the vapor phase concentration distribution and droplet spatial distribution, which were acquired using the computational fluid dynamics (CFD simulation. Results showed that as the hole-axis-angle (γ of the two-hole nozzle decreased, the droplet coalescence increased and vapor mass decreased. The spray with cone angle (θ0 5 deg for single hole nozzle has the longest spray tip penetration and the spray with the γ of 30 deg and spray cone angle θ0=30 deg for two hole nozzles had the shortest one. Also, when the spray cone angle (θ0 and hole-axis-angle (γ increased from 5 to 30 deg, the Sauter mean diameter (SMD decreased for both single-hole and two-hole nozzles used in this study. For a single-hole nozzle, when spray cone angle increased from 5 to 30 deg, the vaporization rate very much because of low level of coalescence. The result of model for tip penetration is good agreement with the corresponding experimental data in the literatures.

  13. Analysis of mixture formation of direct injection gasoline engine; Tonai funsha gasoline engine no kongoki keisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kano, M.; Saito, K.; Basaki, M. [Nippon Soken, Inc., Tokyo (Japan); Matsushita, S.; Gono, T. [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    On direct injection gasoline engine, in order to achieve good stratified combustion, the extremely advanced control of air-fuel mixture is required. For this purpose, the method of diagnosing the quality of the state of mixture formation in combustion chambers becomes necessary. In this research, the state of air-fuel mixture in the combustion chamber of a TOYOTA D-4 was analyzed in space and time by visualization, A/F multi-point measurement and A/F high response measurement, thus the effects that injection timing, swirl and fuel pressure exerted to mixture formation were elucidated. 3 refs., 17 figs., 1 tab.

  14. The use of tyre pyrolysis oil in diesel engines.

    Science.gov (United States)

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  15. Detailed Characterization of Particulate Matter Emitted by Lean-Burn Gasoline Direct Injection Engine

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyuk, Alla; Wilson, Jacqueline M.; Imre, Dan G.; Stewart, Mark L.; Muntean, George G.; Storey, John; Prikhodko, Vitaly; Lewis, Samuel T.; Eibl, Mary; Parks, James E.

    2017-08-01

    This study presents detailed characterization of the chemical and physical properties of PM emitted by a 2.0L BMW lean-burn turbocharged GDI engine operated under a number of combustion strategies that include lean homogeneous, lean stratified, stoichiometric, and fuel rich conditions. We characterized PM number concentrations, size distributions, and the size, mass, compositions, and effective density of fractal and compact individual exhaust particles. For the fractal particles, these measurements yielded fractal dimension, average diameter of primary spherules, and number of spherules, void fraction, and dynamic shape factors as function of particle size. Overall, the PM properties were shown to vary significantly with engine operation condition. Lean stratified operation yielded the most diesel-like size distribution and the largest PM number and mass concentrations, with nearly all particles being fractal agglomerates composed of elemental carbon with small amounts of ash and organics. In contrast, stoichiometric operation yielded a larger fraction of ash particles, especially at low speed and low load. Three distinct forms of ash particles were observed, with their fractions strongly dependent on engine operating conditions: sub-50 nm ash particles, abundant at low speed and low load, ash-containing fractal particles, and large compact ash particles that significantly contribute to PM mass loadings

  16. EXPERIMENTAL EVALUATION OF A DIESEL ENGINE WITH BLENDS OF DIESEL-PLASTIC PYROLYSIS OIL

    Directory of Open Access Journals (Sweden)

    Mr. Rajesh Guntur,

    2011-06-01

    Full Text Available Environmental degradation and depletion of oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on crude oil import of about 125 Mt per annum (7:1diesel/gasoline. Diesel being the main transportation fuel in India, finding a suitable fuel alternative to diesel is an urgent need. In this context, pyrolysis of waste plastic solid is currently receiving renewed interest. Waste plastic pyrolysis oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. In the present work the performance and emission characteristics of a single cylinder, constant speed, and direct injection diesel engine using waste plastic pyrolysis oil blends as an alternate fuel were evaluated and the results are compared with the standard diesel fuel operation. Results indicated that the brake thermal efficiency was highercompared to diesel at part load condition. Carbon monoxide, Carbon dioxide and hydrocarbon emissions were higher and oxygen emission was lower compared to diesel operation.

  17. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  18. An Overview of Effect of Automotive Diesel Engines in Future

    Directory of Open Access Journals (Sweden)

    K. M. Venkatesh

    2012-08-01

    Full Text Available The roll of the vehicle for the transportation of people and goods will become more important all over the world. The reciprocating engine, burning petroleum, will continue to be demanded in the future as the most practical power plant to power the vehicle. The diesel engine, which has the highest thermal efficiency among engines, will become more valuable, considering the increasing threat of the limited energy resources and global warming due to CO2 emission. Therefore, diesel engine technology must be one of the most important technological fields for the future. The current status of performance, fuel economy and exhaust emissions of vehicle diesel engines is summarized in this paper, and the possibility of further technological advancement is discussed. In this discussion, various technologies focusing on the simultaneous reduction of fuel consumption and exhaust emissions by combustion and cycle efficiency improvement are reviewed. Direct injection passenger car diesel engines incorporating those technologies are built and achieved very low fuel consumption and exhaust emissions. The result of these studies shows the diesel engines high potential of further improvement in fuel economy and exhaust emissions in the future, meeting social demand of the world.

  19. AN OVERVIEW OF EFFECT OF AUTOMOTIVE DIESEL ENGINES IN FUTURE

    Directory of Open Access Journals (Sweden)

    K.M.Venkatesh

    2012-06-01

    Full Text Available The roll of the vehicle for the transportation of people and goods will become more important all over the world. The reciprocating engine, burning petroleum, will continue to be demanded in the future as the most practical power plant to power the vehicle. The diesel engine, which has the highest thermal efficiency among engines, will become more valuable, considering the increasing threat of the limited energy resources and global warming due to CO2 emission. Therefore, diesel engine technology must be one of the most important technological fields for the future. The current status of performance, fuel economy and exhaust emissions of vehicle diesel engines is summarized in this paper, and the possibility of further technological advancement is discussed. In this discussion, various technologies focusing on the simultaneous reduction of fuel consumption and exhaust emissions by combustion and cycle efficiency improvement are reviewed. Direct injection passenger car diesel engines incorporating those technologies are built and achieved very low fuel consumption and exhaust emissions. The result of these studies shows the diesel engines high potential of further improvement in fuel economy and exhaust emissions in the future, meeting social demand of the world.

  20. Fuel preheater for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Crossett, J.J.; Crossett, M.C.

    1987-10-13

    A unit for preheating fuel for diesel engines is described having an engine coolant system and a lubrication system utilizing a flowable lubricant. The unit comprises a housing providing a fluid-tight enclosure, a heat exchange coil positioned in and spaced above the bottom of the enclosure and having loops providing a continuous path for the flow of the fuel to be heated. The heat exchange coil has at least one foot of length for each 25 cubic inches of volume of the enclosure and a diesel fuel outlet in the housing connected to one end of the heat exchange coil, a diesel fuel outlet in the housing and connected to the other end of the heat exchange coil, an inlet in the housing for connection of the interior of the enclosure surrounding the coil to a source of a hot heat exchange medium in a diesel engine so as to provide a source of heat for heating the heat exchange coil. An outlet near the top of the housing provides for return of the heat exchange medium to a diesel engine, and spray tube means extend horizontally from the inlet for the heat exchange medium and along the bottom of the housing beneath substantially the entire length of the heat exchange coil. The means have upwardly directed openings to provide for discharge of the heat exchange medium toward the coil and agitation of the heat exchange medium in the enclosure around and over the heat exchange coil.

  1. The Adlard Coles book of diesel engines

    CERN Document Server

    Bartlett, Tim

    2013-01-01

    In clear, jargon-free English The Adlard Coles Book of Diesel Engines explains how a diesel engine works,and how to look after it, and takes into account developments inengine technology. Includes helpful tables and troubleshooting checklists.

  2. Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N.; Lee, M.; White, R.A.

    1994-01-01

    Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

  3. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  4. Lube-oil dilution of gasoline direct-injection engines with ethanol fuels; Schmieroelverduennung von direkteinspritzenden Ottomotoren unter Kaltstartrandbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Kuepper, Carsten; Pischinger, Stefan [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen (VKA); Artmann, Chrsitina; Rabl, Hans-Peter [Hochschule Regensburg (Germany). Labor fuer Verbrennungsmotoren und Abgasnachbehandlung

    2013-09-15

    Ethanol fuel mixtures account for the majority of biofuels used worldwide. However, their properties make these fuels more difficult to use in cold conditions and especially when starting a cold engine. As part of the FVV research project 'Lubricant Dilution with Ethanol Fuels under Cold Start Conditions', the Institute for Combustion Engines (VKA) at RWTH Aachen University and the Combustion Engines and Emission Control Laboratory at Regensburg University of Applied Sciences have investigated the influence of the ethanol content in fuels on the dilution of the lubricating oil in modern direct-injection gasoline engines. (orig.)

  5. STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinjun; HAI Jingtao; SHI Jianzhong; LI Xuesong; YANG Qing; WANG Shangyong

    2006-01-01

    A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development focuses on the applied fuel injection and ignition strategies, especially concerning the combustion configurations of injectors, ignition source, and combustion chamber. The prototype engine, equipped with Bosch common rail system and high performance electronic control unit (ECU), is designed correspondingly. Studies show that the integration of a common rail injection system and the main and pilot duel injectors configurations, assisted with glow plug ignition device and flexible ECU, represents a promising approach to improve the potential of the low compression ratios diesel rotary engine. Currently the engine can run at 6 kr · min-1 steadily and the power is about 68 kW/(4 kr · min-1).

  6. Combustion characteristics of a 4-stroke CI engine operated on Honge oil, Neem and Rice Bran oils when directly injected and dual fuelled with producer gas induction

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Hubli 580031, Karnataka (India); Yaliwal, V.S. [Department of Mechanical Engineering, SDM College of Engineering and Technology, Dharwad Karnataka (India); Kambalimath, Satish [Wipro Technologies (India); Basavarajappa, Y.H. [K.L.E. Society' s Polytechnic, Hubli (India)

    2009-07-15

    Energy is an essential requirement for economic and social development of any country. Sky rocketing of petroleum fuel costs in present day has led to growing interest in alternative fuels like vegetable oils, alcoholic fuels, CNG, LPG, Producer gas, biogas in order to provide a suitable substitute to diesel for a compression ignition (CI) engine. The vegetable oils present a very promising alternative fuel to diesel oil since they are renewable, biodegradable and clean burning fuel having similar properties as that of diesel. They offer almost same power output with slightly lower thermal efficiency due to their lower energy content compared to diesel. Utilization of producer gas in CI engine on dual fuel mode provides an effective approach towards conservation of diesel fuel. Gasification involves conversion of solid biomass into combustible gases which completes combustion in a CI engines. Hence the producer gas can act as promising alternative fuel and it has high octane number (100-105) and calorific value (5-6 MJ/Nm{sup 3}). Because of its simpler structure with low carbon content results in substantial reduction of exhaust emission. Downdraft moving bed gasifier coupled with compression ignition engine are a good choice for moderate quantities of available mass up to 500 kW of electrical power. Hence bio-derived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Experiments have been conducted on a single cylinder, four-stroke, direct injection, water-cooled CI engine operated in single fuel mode using Honge, Neem and Rice Bran oils. In dual fuel mode combinations of Producer gas and three oils were used at different injection timings and injection pressures. Dual fuel mode of operation resulted in poor performance at all the loads when compared with single fuel mode at all injection timings tested. However, the brake thermal efficiency is improved marginally when the injection timing was advanced. Decreased

  7. Control of homogeneous charge compression ignition combustion in a two-cylinder gasoline direct injection engine with negative valve overlap

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi; WANG Jianxin; SHUAI Shijin; MA Qingjun; TIAN Guohong

    2007-01-01

    Homogeneous charge compression ignition(HCCI) has challenges in ignition timing control,combustion rate control,and operating range extension.In this paper,HCCI combustion was studied in a two-cylinder gasoline direct injection (GDI) engine with negative valve overlap (NVO).A two-stage gasoline direct injection strategy combined with negative valve overlap was used to control mixture formation and combustion.The gasoline engine could be operated in HCCI combustion mode at a speed range of 800-2 200 r/min and load,indicated mean effective pressure (IMEP) range of 0.1-0.53 MPa.The engine fuel consumption 4× 10-5 without soot emission.The effect of different injection strategies on HCCI combustion was studied.The experimental results indicated that the coefficient of variation of the engine cycle decreased by using NVO with two-stage direct injection;the ignition timing and combustion rate could be controlled;and the operational range of HCCI combustion could be extended.

  8. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  9. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Marcio Castellanelli

    2008-03-01

    Full Text Available Diante da previsão de escassez do petróleo, o éster etílico (biodiesel tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas de aquisição de dados auxiliares. Avaliaram-se os desempenhos de torque, de potência e de consumo específico de combustível para as seguintes misturas diesel/éster etílico de soja: B2, B5, B10, B20, B50, B75 e B100. O melhor desempenho registrado deu-se com a mistura B20.Given the prediction of the scarcity of oil, the ethyl ester (biodiesel has presented as an excellent alternative fuel option for cycle diesel engine. The characteristics of biodiesel are similar of diesel in terms of viscosity and the calorific power, being able to be used without adaptations in the engines. For the accomplishment of this work it was used a cycle diesel engine, of direct injection with four cylinders, without adaptations. The engine was connected to a dynamometer and acquisition systems of auxiliary data. The performances of torque, power and specific fuel consumption for the following mixtures diesel/soy ethyl ester had been evaluated: B2, B5, B10, B20, B50, B75 and B100. The best registered performance was given with the B20 mixture.

  10. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    Science.gov (United States)

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.

  11. Investigation of single and split injection strategies in an optical diesel engine

    OpenAIRE

    Herfatmanesh, Mohammad Reza

    2010-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 22/12/2010. This study investigates the effects of a split injection strategy on combustion performance and exhaust emissions in a high speed direct injection optical diesel engine. The investigation is focused on the effects of injection timing, quantity, and the dwell angle between the injections using commercially available diesel fuel. Three different split injection strategies including ...

  12. Diesel Engine Light Truck Application

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  13. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    Science.gov (United States)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  14. EFFECTS OF ETHANOL-DIESEL EMULSIONS ON THE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    R. Parthasarathi

    2014-01-01

    Full Text Available The main objective of this study is to analyze the different ratio of emulsified fuels on the performance, emission and combustion characteristics of four stroke single cylinder kirloskar TV-I direct injection compression ignition engine and compared with diesel fuel under different engine loads with constant engine speed of 1500 rpm. Four kinds of test fuels were prepared namely 80% diesel, 10% ethanol and 10% surfactant (Identified as D80E10; 70% diesel, 20% ethanol and 10% surfactant (denoted as D70 E20; 60% diesel 30% ethanol and 10% surfactant (denoted as D60 E30; 50% diesel, 40% ethanol and 10% surfactant (denoted as D50 E40 by volume respectively. In this test, Benzal konium chloride is added as an emulsifier to the diesel-ethanol blend to prevent layer formation and to make it a homogeneous blend. At maximum brake power, the comparison of best emulsified fuel ratio with diesel fuel results showed improvement in brake thermal efficiency with decrease in specific fuel consumption and smoke. The NOX, HC, CO2, cylinder pressure and heat release rate for D50 E40 emulsions are higher when compared to diesel fuel.

  15. Estimation of operational parameters for a direct injection turbocharged spark ignition engine by using regression analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Tosun Erdi

    2017-01-01

    Full Text Available This study was aimed at estimating the variation of several engine control parameters within the rotational speed-load map, using regression analysis and artificial neural network techniques. Duration of injection, specific fuel consumption, exhaust gas at turbine inlet, and within the catalytic converter brick were chosen as the output parameters for the models, while engine speed and brake mean effective pressure were selected as independent variables for prediction. Measurements were performed on a turbocharged direct injection spark ignition engine fueled with gasoline. A three-layer feed-forward structure and back-propagation algorithm was used for training the artificial neural network. It was concluded that this technique is capable of predicting engine parameters with better accuracy than linear and non-linear regression techniques.

  16. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions.

  17. Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Azoumah, Y. [Laboratoire Biomasse Energie Biocarburant (LBEB), Institut International d' Ingenierie de l' Eau et de l' Environnement (2iE), Rue de la Science, 01BP 594, Ouagadougou 01 (Burkina Faso); Blin, J. [Laboratoire Biomasse Energie Biocarburant (LBEB), Institut International d' Ingenierie de l' Eau et de l' Environnement (2iE), Rue de la Science, 01BP 594, Ouagadougou 01 (Burkina Faso)]|[Unite Propre de Recherche Biomasse Energie, CIRAD-PERSYST, TA B-42/16t, 73 Avenue J.-F. Breton, 34398 Montpellier Cedex 5 (France); Daho, T. [Laboratoire de Physique et de Chimie de l' Environnement (LPCE), Departement de Physique, UFR-SEA, Universite de Ouagadougou, 03 BP 7021, Ouagadougou 03 (Burkina Faso)

    2009-06-15

    The need to decrease the consumption of materials and energy and to promote the use of renewable resources, such as biofuels, stress the importance of evaluating the performance of engines based on the second law of thermodynamics. This paper suggests the use of exergy analysis (as an environmental assessment tool to account wastes and determine the exergy efficiency) combined with gas emissions analysis to optimize the performance of a compression ignition (CI) engine using biofuels such as cottonseed and palm oils, pure or blended with diesel for different engine loads. The results show that the combination of exergy and gas emissions analyses is a very effective tool for evaluating the optimal loads that can be supplied by CI engines. Taking into account technical constraints of engines, a tradeoff zone of engine loads (60% and 70% of the maximum load) was established between the gas emissions (NO and CO{sub 2}) and the exergy efficiency for optimal performance of the CI engine. (author)

  18. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  19. Use of hazelnut kernel oil methyl ester and its blends as alternative fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, M.; Atmaca, M. [Marmara Univ., Istanbul (Turkey). Mechanical Department

    2008-09-30

    Interest in vegetable oil as an alternative to diesel fuel in diesel engines has increased during the last few decades because reserves of petroleum fuel and its derivatives are diminishing rapidly, and because they have harmful effects on the environment. Numerous vegetable oil esters have been tried as alternatives to diesel fuel. Many researchers have reported that with the use of vegetable oil ester as a fuel in diesel engiens there is a decrease in harmful exhaust emissions and engine performance that is the equivalent of diesel fuel. Several studies have found that biodiesel emits far less of the most regulated pollutants than standard diesel fuel. Decreasing carbon dioxide (CO{sub 2}) emissions by using biodiesel contributes to reducing the greenhouse effect. Furthermore, diminishing carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO{sub x}), and smoke density improves air quality. Essential oils that have been tested in diesel engines are soybean, sunflower, corn, safflower, cottonseed, and rapeseed, which are categorized as edible oils; however, some edible oils, such as neat hazelnut kernel oil, have not been comprehensively tested as alternative fuel in diesel engines. In this study, hazelnut (Corylus avellana L.) kernel oil was evaluated as an alternative fuel in diesel engines. Firstly, the optimum transesteri.cation reaction conditions for hazelnut kernel oil, with respect to reaction temperature, volumetric ratio of reactants, and catalyst, were investigated. Secondly, an experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running on hazelnut kernel oil methyl ester and its blends with diesel fuel. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel are generally comparable to diesel fuel, according to engine performance and emissions.

  20. Performance and emission analysis of cottonseed oil methyl ester in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey); Bayindir, Hasan [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Dicle University, Diyarbakir, 21280 (Turkey)

    2010-03-15

    In this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NO{sub x}, SO{sub 2} and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines. (author)

  1. About the constructive and functional particularities of spark ignition engines with gasoline direct injection: experimental results

    Science.gov (United States)

    Niculae, M.; Ivan, F.; Neacsu, D.

    2017-08-01

    The paper aims to analyze and compare the environmental performances between a gasoline direct engine and a multi-point injection engine. There are analyzed the stages of emission formation during the New European Driving Cycle. The paper points out the dynamic, economic and environmental performances of spark ignition engines equipped with a GDI systems. Reason why, we believe the widespread implementation of this technology is today an immediate need.

  2. Coconut Oil Based Hybrid Fuels as Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Pranil Singh

    2010-01-01

    Full Text Available Problem statement: The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with diesel. Various techniques and methods are used to solve the problems resulting from high viscosity. Approach: One of the techniques is the preparation of a microemulsion fuel, called a hybrid fuel. In this study, hybrid fuels consisting of coconut oil, ethanol and octan-1-ol were prepared with an aim to test their suitability as a fuel for diesel engines. Density, viscosity and gross calorific values of these fuels were determined and the fuels were used to run a direct injection diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel and coconut oil. Results: The experimental results show that the engine efficiency of the hybrid fuels is comparable to that of diesel. As the percentage of ethanol and/or octan-1-ol increased, the viscosity of the hybrid fuels decreased and the engine efficiency increased. The exhaust emissions were lower than those for diesel, except carbon monoxide, which increased. Conclusion/Recommendations: Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly.

  3. Combustion strategies for a SI direct injection natural gas engine; Darstellung verschiedener Betriebsstrategien an einem Erdgasmotor mit innerer Gemischbildung

    Energy Technology Data Exchange (ETDEWEB)

    Bohatsch, S.; Hoffmann, B.; Ferrari, A.; Chiodi, M.; Berner, H.J.; Bargende, M.

    2006-07-01

    Natural gas as a fuel for internal combustion engines is a combustion technology showing great promise for the reduction of CO{sub 2} and particulate matter. To demonstrate the potential of natural gas direct injection some experimental investigations were carried out using a single-cylinder engine with lateral injector position. For this different injection valve nozzles, piston crown geometries as well as operating strategies were investigated. First experimental results accompanied by additional CFD-simulation show that it is possible to control the burn rate by injection induced turbulence. Furthermore the results show that a short mixture preparation distance between injection nozzle and spark plug is necessary because of the poor fuel penetration during the injection process which is typical for gaseous fuels. (orig.)

  4. The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwanam [Automobile Research Center, Chonnam National University, Gwangju 500-757 (Korea); Choi, Byungchul [School of Mechanical Systems Engineering, Chonnam National University, Gwangju 500-757 (Korea)

    2010-01-15

    Biofuel (biodiesel, bioethanol) is considered one of the most promising alternative fuels to petrol fuels. The objective of the work is to study the characteristics of the particle size distribution, the reaction characteristics of nanoparticles on the catalyst, and the exhaust emission characteristics when a common rail direct injection (CRDI) diesel engine is run on biofuel-blended diesel fuels. In this study, the engine performance, emission characteristics, and particle size distribution of a CRDI diesel engine that was equipped with a warm-up catalytic converters (WCC) or a catalyzed particulate filter (CPF) were examined in an ECE (Economic Commission Europe) R49 test and a European stationary cycle (ESC) test. The engine performance under a biofuel-blended diesel fuel was similar to that under D100 fuel, and the high fuel consumption was due to the lowered calorific value that ensued from mixing with biofuels. The use of a biodiesel-diesel blend fuel reduced the total hydrocarbon (THC) and carbon monoxide (CO) emissions but increased nitrogen oxide (NO{sub x}) emissions due to the increased oxygen content in the fuel. The smoke emission was reduced by 50% with the use of the bioethanol-diesel blend. Emission conversion efficiencies in the WCC and CPF under biofuel-blended diesel fuels were similar to those under D100 fuel. The use of biofuel-blended diesel fuel reduced the total number of particles emitted from the engine; however, the use of biodiesel-diesel blends resulted in more emissions of particles that were smaller than 50 nm, when compared with the use of D100. The use of a mixed fuel of biodiesel and bioethanol (BD15E5) was much more effective for the reduction of the particle number and particle mass, when compared to the use of BD20 fuel. (author)

  5. Noise and vibration reduction of diesel engine vehicle making use of the active control engine mount (ACM) system; Active control engine mount (ACM) wo mochiitaa diesel engine tosaisha no seishukusei kojo

    Energy Technology Data Exchange (ETDEWEB)

    MShikata, T.; Aihara, T.; Hyodo, Y.; Aoki, K.; Hirade, T.; Kawazoe, H.; Sato, S.; Kimuraa, T.; Yonekura, K. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1999-02-01

    The active control engine mount (ACM), adopted on `Presage` matched the newly developed direct-injection diesel engine called `NEO-Di YD25DDTi`, can reduce transmitted force to a body structure to almost zero in a wide variety of driving conditions by making use of an adaptive control method with synchronizes the filtered-X algorithm. The ACM system made great improvements in noise and vibration performance, so that fuel consumption, and quietness thanks to the ACM system. (author)

  6. Effect of ignition timing and hydrogen fraction on combustion and emission characteristics of natural gas direct-injection engine

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An experimental study on the combustion and emission characteristics of a direct-injection spark-ignited engine fueled with natural gas/hydrogen blends under various ignition timings was conducted.The results show that ignition timing has a significant influence on engine performance,combustion and emissions.The interval between the end of fuel injection and ignition timing is a very important parameter for direct-injection natural gas engines.The turbulent flow in the combustion chamber generated by the fuel jet remains high and relative strong mixture stratification is introduced when decreasing the angle interval between the end of fuel injection and ignition timing giving fast burning rates and high thermal efficiencies.The maximum cylinder gas pressure,maximum mean gas temperature,maximum rate of pressure rise and maximum heat release rate increase with the advancing of ignition timing.However,these parameters do not vary much with hydrogen addition under specific ignition timing indicating that a small hydrogen fraction addition of less than 20% in the present experiment has little influence on combustion parameters under specific ignition timing.The exhaust HC emission decreases while the exhaust CO2 concentration increases with the advancing of ignition timing.In the lean combustion condition,the exhaust CO does not vary much with ignition timing.At the same ignition timing,the exhaust HC decreases with hydrogen addition while the exhaust CO and CO2 do not vary much with hydrogen addition.The exhaust NOx increases with the advancing of' ignition timing and the behavior tends to be more obvious at large ignition advance angle.The brake mean effective pressure and the effective thermal efficiency of natural gas/hydrogen mixture combustion increase compared with those of natural gas combustion when the hydrogen fraction is over 10%.

  7. Murine precision-cut lung slices exhibit acute responses following exposure to gasoline direct injection engine emissions.

    Science.gov (United States)

    Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J

    2016-10-15

    Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (pengine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (pengine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress.

  8. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  9. The Effect of Injection Timings on Performance and Emissions of Compressed Natural-Gas Direct Injection Engine

    Directory of Open Access Journals (Sweden)

    Saad Aljamali

    2016-01-01

    Full Text Available This experimental part investigates the effect of injection timing on performance and emissions of homogenous mixture compressed natural-gas direct injection. The engine of 1.6 L capacity, 4 cylinders, spark ignition, and compression ratio of 14 was used. Performance and emission were recorded under wide-open throttle using an engine control system (Rotronics and the portable exhaust gas analyser (Kane. The engine was tested at speed ranging from 1500 revolutions per minute (RPM to 4000 RPM with 500 RPM increments. The engine control unit (ECU was modified using Motec 800. The injection timings investigated were at the end of injection (EOI 120 bTDC, 180 bTDC, 300 bTDC, and 360 bTDC. Results show high brake power, torque, and BMEP with 120 as compared with the other injection timings. At 4000 RPM the power, torque, and BMEP with 120 were 5% compared to that with 180. Furthermore, it shows low BSFC and high fuel conversion efficiency with 120. With 360, the engine produced less CO and CO2 at higher speeds.

  10. TA Research on Determining Some Performance Values by Using Proportional Mixture of Vegetable Oils and Diesel Fuel at a Diesel Engine

    Directory of Open Access Journals (Sweden)

    B. Kayisoglu

    2006-01-01

    Full Text Available The purpose of this particular study was to research the effects on characteristics of a diesel engine by using different diesel fuel and vegetable oil blends. As experimental material 6 LD 360 type diesel engine with single cylinder, direct injection, four cycles, 5.52 kW defined power was used. Nothing was changed on the diesel engine parts and refined vegetable oils were chosen to add into fuel oil. In this research, depending on the number of revaluation and time, the air intake inlet temperature, exhaust gas outlet temperature, fuel consumption, volume efficiency, engine oil pressure, cylinder indicated pressure, the quantity of soot were determined. The results in the of sunflower oil and diesel fuel blends were found better than the soybean oil and diesel fuel blends. In addition, lubrication oil of the engine by using the soybean and diesel fuel blends were get dirty excessively and viscosity of the engine lubrication oil was reduced more than the others. The results by using 75% diesel fuel+25% sunflower oil blend showed nearly the same results by using diesel fuel.

  11. Studies of the Combustion Process with Simultaneous Formaldehyde and OH PLIF in a Direct-Injected HCCI Engine

    Science.gov (United States)

    Richter, Mattias; Collin, Robert; Nygren, Jenny; Aldén, Marcus; Hildingsson, Leif; Johansson, Bengt

    This paper presents simultaneous laser based measurements of formaldehyde and OH-radical distributions in a 0.5 liter optical HCCI engine with direct injection. Formaldehyde is formed as an intermediate species when combusting hydrocarbons. The formation occurs through low temperature reactions in an early phase of the combustion process. Later in the process formaldehyde is being consumed. Formaldehyde is, therefore, used as indicator of the first stage of combustion and a marker of zones with low-temperature reactions. The OH radical is formed as an intermediate during the high temperature reactions, and is used as a marker of zones where the combustion is ongoing. The purpose of the investigation was to study how the combustion process is affected by the change in homogeneity that arises from early and late injection, respectively. The measurement technique used was planar laser-induced fluorescence where formaldehyde was excited at 355nm and OH at 283nm.

  12. Study on Carbonyl Emissions of Diesel Engine Fueled with Biodiesel

    National Research Council Canada - National Science Library

    Ruina Li; Zhong Wang; Guangju Xu

    2017-01-01

      Biodiesel is a kind of high-quality alternative fuel of diesel engine. In this study, biodiesel and biodiesel/diesel blend were used in a single cylinder diesel engine to study the carbonyl emissions...

  13. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  14. Performance evaluation of a direct injection engine using different blends of soybeans methyl biodiesel; Avaliacao do desempenho de um motor de injecao direta utlizando diferentes misturas de biodiesel metilico de soja

    Energy Technology Data Exchange (ETDEWEB)

    Nietiedt, G.H.; Schlosser, J.F.; Uhry, D.; Casali, A.L.; Ribas, R.L. [Universidade Federal de Santa Maria (UFSM), RS (Brazil)], email: gustavoheller@hotmail.com

    2011-07-01

    The diesel fuel is used widely in the country and the world. However, growing environmental awareness leads to a larger demand for renewable energy resources. The pioneering in the use of ethanol makes Brazil also consolidate itself in the use of the biodiesel in larger scales, in replacement or as a blend with mineral diesel. Thus, this work aimed to evaluate the use of soybeans methyl biodiesel blends and diesel in an ignition compression engine with fuel direct injection. The tests were performed on a dynamometer bench, using the blends B10, B20 and B100 in comparison to the commercial diesel (B5). The engine performance was analyzed by tractor power take off (PTO) for each fuel, and the best results obtained for the power and the specific fuel consumption, respectively, were: B5 (44,62 kW; 234,87 g/kW.h{sup -1}); B10 (44,73 kW; 233,78 g/kW.h{sup -1}); B20 (44,40 kW; 236,20 g/kW.h{sup -1}) e B100 (43,40 kW; 263,63 g/kW.h{sup -1}). The best performance happened on the use of B5 and B10 fuel, without significant differences between these blends. The B100 fuel showed significant differences compared to the other fuels. (author)

  15. Thermal barrier coatings application in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.

    1995-10-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his `Adiabatic Diesel Engine` in the late 70`s. Kamo`s concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo`s work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as `convection vive.` Woschni`s work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components.

  16. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  17. Theoretical modeling of combustion characteristics and performance parameters of biodiesel in DI diesel engine with variable compression ratio

    Directory of Open Access Journals (Sweden)

    Mohamed F. Al-Dawody, S. K. Bhatti

    2013-01-01

    Full Text Available Increasing of costly and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as a promising alternative to petro-diesel fuels. A comprehensive computer code using ”Quick basic” language was developed for the diesel engine cycle to study the combustion and performance characteristics of a single cylinder, four stroke, direct injection diesel engine with variable compression ratio. The engine operates on diesel fuel and 20% (mass basis of biodiesel (derived from soybean oil blended with diesel. Combustion characteristics such as cylinder pressure, heat release fraction, heat transfer and performance characteristics such as brake power; and brake specific fuel consumption (BSFC were analyzed. On the basis of the first law of thermodynamics the properties at each degree crank angle was calculated. Wiebe function is used to calculate the instantaneous heat release rate. The computed results are validated through the results obtained in the simulation Diesel-rk software.

  18. Theoretical modeling of combustion characteristics and performance parameters of biodiesel in DI diesel engine with variable compression ratio

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dawody, Mohamed F.; Bhatti, S.K. [Department of Mechanical Engineering, Andhra University (India)

    2013-07-01

    Increasing of costly and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as a promising alternative to petro-diesel fuels. A comprehensive computer code using ''Quick basic'' language was developed for the diesel engine cycle to study the combustion and performance characteristics of a single cylinder, four stroke, direct injection diesel engine with variable compression ratio. The engine operates on diesel fuel and 20% (mass basis) of biodiesel (derived from soybean oil) blended with diesel. Combustion characteristics such as cylinder pressure, heat release fraction, heat transfer and performance characteristics such as brake power; and brake specific fuel consumption (BSFC) were analyzed. On the basis of the first law of thermodynamics the properties at each degree crank angle was calculated. Wiebe function is used to calculate the instantaneous heat release rate. The computed results are validated through the results obtained in the simulation Diesel-rk software.

  19. Multimodel Control of Diesel Engines

    Science.gov (United States)

    Cirstoiu, Silviu; Popescu, Dumitru; Dimon, Catalin; Olteanu, Severus

    2017-01-01

    In this article it is proposed and designed a modern control configuration of the type multicontroler-multimodel (MM) that pilots the nonlinear combustion process of the Diesel engine, needed to adjust the pressure in the intake manifold and the airflow circulating through the compressor. The MM simulator developed by the authors allows the implementation of control systems represented by pairs (Mi, Ci) with the Mi candidate closest to the current operating point of the process and the paired controller Ri, for controlling the key parameters of the combustion process. The proposed configuration is built with robust controllers and thus it is able to ensure superior performance, tolerance to nonlinearities and parametric and structural perturbations in the system.

  20. Series 190 Diesel Engines Used in China's Oil Drilling

    Institute of Scientific and Technical Information of China (English)

    Liu Qimin

    1996-01-01

    @@ Jinan Diesel Engine Works, located in Jinan,Shandong Province, was established more than 70 years ago. Now it produces series 190 diesel engines and diesel generating sets. Over 95 percent of land drilling power engines used in China are from Jinan Diesel Engine Works.

  1. Diesel engine emission deterioration - a preliminary study

    CSIR Research Space (South Africa)

    Pretorius, Cecilia J

    2016-04-01

    Full Text Available The objective of this study was to find a parameter in diesel and oil analysis of underground mining vehicles that can be correlated with personal diesel particulate matter (DPM) exposure and used as part of an engine maintenance programme. A number...

  2. A Stochastic Mixing Model for Predicting Emissions in a Direct Injection Diesel Engine.

    Science.gov (United States)

    1986-09-01

    REYP*( 1.O+SIXTH*REYP**TWOTHD) ,REYP.GT. 1000.) -282- DRAGDT=.375*RO(114)*VRELT*CD*DT/(RHO*RADP(N)) ATD =DRAGDT/DT*TSCALE EXPATD -EXP (ATh) EXPMATD...l ./ EXPATD EXP2ATD- EXPATD **2 TERM1-(1 .- EXPMATD)**4a TERM2-EXP2ATDI (EXP2ATD-1.) D TOTD -D TITSC ALE EXPATD -EXP(DRAGDT) TERM3-DTOTD-(1 .- I ./EXPADT

  3. Investigations of soot formation in an optically accessible gasoline direct injection engine by means of laser-induced incandescence (LII)

    Science.gov (United States)

    Hertler, D.; Stirn, R.; Arndt, S.; Grzeszik, R.; Dreizler, A.

    2011-08-01

    This study presents the results of laser-induced incandescence (LII) measurements in an optically accessible gasoline direct injection engine. The focus was to evaluate LII as a particle measurement technique which is able to provide a deeper understanding of the underlying reaction and formation processes of soot in order to optimize the injection system to reduce exhaust gas emissions. A comparison of time-resolved LII, based on the model described by Michelsen, with an Engine Exhaust Particle Sizer (EEPS) was performed. In this context, the air-fuel ratio, the injection pressure and the injection timing have been varied while applying the measurement techniques in the exhaust system. In case of a variation of the air-fuel ratio, two-dimensional LII has been performed in the combustion chamber additionally. For each measurement, the Filter Smoke Number (FSN) was taken into account as well. Finally, a good agreement of the different techniques was achieved. Moreover, we found that by combining time-resolved LII and EEPS a differentiation of primary particles and agglomerates is possible. Consequently, a determination of the processes in the combustion chamber and agglomeration in the exhaust gas is feasible.

  4. The effect of clove oil and diesel fuel blends on the engine performance and exhaust emissions of a compression-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2010-11-15

    Diesel engines provide the major power source for transportation in the world and contribute to the prosperity of the worldwide economy. However, recent concerns over the environment, increasing fuel prices and the scarcity of fuel supplies have promoted considerable interest in searching for alternatives to petroleum based fuels. Based on this background, the main purpose of this investigation is to evaluate clove stem oil (CSO) as an alternative fuel for diesel engines. To this end, an experimental investigation was performed on a four-stroke, four-cylinder water-cooled direct injection diesel engine to study the performance and emissions of an engine operated using the CSO-diesel blended fuels. The effects of the CSO-diesel blended fuels on the engine brake thermal efficiency, brake specific fuel consumption (BSFC), specific energy consumption (SEC), exhaust gas temperatures and exhaust emissions were investigated. The experimental results reveal that the engine brake thermal efficiency and BSFC of the CSO-diesel blended fuels were higher than the pure diesel fuel while at the same time they exhibited a lower SEC than the latter over the entire engine load range. The variations in exhaust gas temperatures between the tested fuels were significant only at medium speed operating conditions. Furthermore, the HC emissions were lower for the CSO-diesel blended fuels than the pure diesel fuel whereas the NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel. (author)

  5. Computational Visualization and Simulation of Diesel Engines Valve Lift Performance Using CFD

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The paper visualized and simulated the intake and exhaust valve lift in the single-cylinder four-stroke direct injection diesel engine. The visualization and simulation computational development were using the commercial Computational Fluid Dynamics of STAR-CD 3.15A software and GT-SUITE 6.2 software. The one dimensional of valve lift modeling was developed using GT-POWER software and the visualization the model using STAR-CD. The model simulation covers the full engine cycle consisting of intake, compression, power and exhaust. The visualization and simulation shown the diesel engine intake and exhaust valve lifting and moving based on the crank angle degree parameters. The result of this visualization and simulation shows the intake and exhaust valve lift moving and air fluid flow of the diesel engine model.

  6. Performance of HCCI Diesel Engine under the Influence of Various Working and Geometrical Parameters

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2012-06-01

    Full Text Available Homogenous-charge-compression-ignition (HCCI engines have the benefit of high efficiency with low emissions of NO and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. Homogenous Compression ignition (HCCI is a combustion concept, which is a hybrid between Otto engine and Diesel engine. The other emissions like HC and CO are high but can be after treated by a catalyst. This paper reviews the Characteristics of HCCI combustion in direct injection diesel engines under various governing factors in HCCI operations such as injection timing, injection pressure, piston bowl geometry, compression ratio, intake charge temperature, exhaust gas recirculation (EGR and supercharging or turbo charging are discussed in this review. The effects of design and operating parameters on HCCI diesel combustion, emissions particularly NOx and soot are reviewed.

  7. Use of calophyllum inophyllum biofuel blended with diesel in DI diesel engine modified with nozzle holes and its size

    Science.gov (United States)

    Vairamuthu, G.; Sundarapandian, S.; Thangagiri, B.

    2016-05-01

    Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, fast and perfect air-biodiesel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by better design of the injection system. The diesel engine tests were conducted on a 4-stroke tangentially vertical single cylinder (TV1) kirloskar 1500 rpm water cooled direct injection diesel engine with eddy current dynamometer. In this work, by varying different nozzles having spray holes of 3 (base, Ø = 0.280 mm), 4 (modified, Ø = 0.220 mm) and 5 (modified, Ø = 0.240 mm) holes, with standard static injection timing of 23° bTDC and nozzle opening pressure (NOP) of 250 bar maintained as constant throughout the experiment under steady state at full load condition of the engine. The effect of varying different nozzle configuration (number of holes), on the combustion, performance and exhaust emissions, using a blend of calophyllum inophyllum methyl ester by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for 4 holes and 5 holes nozzle operated at NOP 250 bar. Substantial improvements in the reduction of emissions levels were also observed for 5 holes nozzle operated at NOP 250 bar.

  8. Cummins advanced turbocompound diesel engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  9. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine.

    Science.gov (United States)

    Smith, James D; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

  10. Ignition delay of dual fuel engine operating with methanol ignited by pilot diesel

    Institute of Scientific and Technical Information of China (English)

    Hongbo ZOU; Lijun WANG; Shenghua LIU; Yu LI

    2008-01-01

    An investigation on the ignition delay of a dual fuel engine operating with methanol ignited by pilot diesel was conducted on a TY1100 direct-injection diesel engine equipped with an electronic controlled methanol low-pressure injection system. The experimental results show that the polytropic index of compression process of the dual fuel engine decreases linearly while the ignition delay increases with the increase in methanol mass fraction. Compared with the conventional diesel engine, the igni-tion delay increment of the dual fuel engine is about 1.5° at a methanol mass fraction of 62%, an engine speed of 1600 r/min, and full engine load. With the elevation of the intake charge temperature from 20℃ to 40℃ and then to 60℃, the ignition delay of the dual fuel engine decreases and is more obvious at high temperature. Moreover, with the increase in engine speed, the ignition delay of the dual fuel engine by time scale (ms) decreases clearly under all engine operating conditions. However, the ignition delay of the dual fuel engine increases remark-ably by advancing the delivery timing of pilot diesel, espe-cially at light engine loads.

  11. Experimental study of DI diesel engine performance using biodiesel blends with kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A.K.; Ameer Uddin, S.M.; Alam, M.M. [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2013-07-01

    The experimental investigation offers a comprehensive study of DI diesel engine performance using bio-diesel from mustard oil blends with kerosene. The vegetable oil without trans-esterification reaction have been blended with kerosene oil by volume in some percentage like 20%, 30%, 40% and 50% which have been named as M20 (20% mustard, 80% kerosene), M30 (30% mustard, 70% kerosene), M40 (40% mustard, 60% kerosene) and M50 (50% mustard, 50% kerosene). The properties of the bio-fuel blended with kerosene have been tested in the laboratories with maintaining different ASTM standards. Then a four stroke, single cylinder, direct injection diesel engine has been mounted on the dynamometer bed for testing the performance of the engine using the bio-diesel blends. Several engine parameters like bsfc, bhp, break mean effective pressure, exhaust gas temperature, lube oil temperature, sound level etc. have been determined. A comparison has been made for engine performance of different bio-diesel blends with kerosene with the engine performance of diesel fuel.

  12. Performance and emission study on DICI and HCCI engine using raw pongamia oil and diesel

    Directory of Open Access Journals (Sweden)

    Mani Venkatraman

    2016-01-01

    Full Text Available The present work investigates the performance and emission characteristics of pongamia oil and diesel fuelled direct injection compression ignition (DICI and homogeneous charge compression ignition (HCCI engine. The primary objective of the work is to investigate the feasibility of application of unmodified pongamia oil in Diesel engine and to estimate the maximum fraction of diesel fuel replaced by the neat pongamia oil. This investigation also deals with the HCCI operation using unmodified pongamia oil. In DICI mode the neat pongamia oil is admitted into the engine in the form of pongamia oil and diesel blends. The blend that offers highest diesel replacement is considered as the test blend and it is tested further to find its maximum possible brake thermal efficiency by changing the engine operating parameters. The selected maximum blend is then tested in the new setting of the engine to determine the maximum possible performance and emission characteristics. The conventional emissions of DICI engine such as NO and smoke are disappeared in the homogeneous charge compression ignition mode of operation. The HCCI engine tested in the present work is fuelled by 40% neat pongamia oil and 60% diesel fuel through direct injection and vapour induction, respectively. The ignition or combustion phasing of the HCCI operation is carried out by the exhaust gas recirculation method. The amount of exhaust gas re-circulation governs the timing of combustion. The results of the experiments show that the neat pongamia oil performed well in HCCI mode and offered approximately ten times lower NO and smoke emission. Finally, the results of the DICI mode and HCCI mode are compared with each other to reveal the truths of neat pongamia oil in heterogeneous and homogeneous combustion.

  13. Assessing Rates of Global Warming Emissions from Port- Fuel Injection and Gasoline Direct Injection Engines in Light-Duty Passenger Vehicles

    Science.gov (United States)

    Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.

    2013-12-01

    Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology

  14. Evaluation of Performance and Emission characteristics of Turbocharged Diesel Engine with Mullite as Thermal Barrier Coating

    OpenAIRE

    P. N. Shrirao; A. N. Pawar

    2011-01-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3 .2SiO2 (mullite) (Al2O3= 60%, SiO2= 40%) over a 150 μm thickness of NiCrAlY bond coat. Tests were carried out on standard engine (uncoated) and low heatrejection (LHR) engine with and without turbocharger. This paper is intended to emphasis on energy balance and emission characteristic for standard engine (uncoated) ...

  15. An Experimental Study of Emission and Combustion Characteristics of Marine Diesel Engine with Fuel Injector Malfunctions

    OpenAIRE

    Kowalski Jerzy

    2016-01-01

    The presented paper shows the results of the laboratory study on the relation between chosen malfunctions of a fuel injector and composition of exhaust gas from the marine engine. The object of research is a marine 3-cylinder, four-stroke, direct injection diesel engine with an intercooler system. The engine was loaded with a generator and supercharged. The generator was electrically connected to the water resistance. The engine operated with a load between 50 kW and 250 kW at a constant spee...

  16. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  17. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, M. [Automotive Division, Department of Mechanical Education, Marmara University, Ziverbey, 34722 Istanbul (Turkey)

    2008-11-15

    In the present study, hazelnut kernel oil of Turkish origin was evaluated as alternative fuel in a diesel engine. Potential hazelnut production throughout the world and the status of Turkey were examined. Hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain hazelnut kernel oil methyl ester (HOME) and a comprehensive experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running with HOME and its blends with diesel fuel. Experimental parameters included the percentage of HOME in the blend, engine load, injection timing, compression ratio, and injector. The cost analysis of HOME production comparing to the price of conventional diesel fuel was performed for last decade was performed. Results showed that HOME and its blends with diesel fuel are generally comparable to diesel fuel and small modifications such as increasing injection timing, compression ratio and injector opening pressure provide significant improvement in performance and emissions. It is also expected that the price of HOME will be lower than the price of conventional diesel fuel in the near future. (author)

  18. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  19. Experimental Studies of Diestrol-Micro Emulsion Fuel in a Direct Injection Compression Ignition Engine under Varying Injection Pressures and Timings

    Science.gov (United States)

    Kannan, Gopal Radhakrishnan

    2017-03-01

    The research work on biodiesel becomes more attractive in the context of limited availability of petroleum fuels and rapid increase of harmful emissions from diesel engine using conventional fossil fuels. The present investigation has dealt with the influence of biodiesel-diesel-ethanol (diestrol) water micro emulsion fuel (B60D20E20M) on the performance, emission and combustion characteristics of a diesel engine under different injection pressure and timing. The results revealed that the maximum brake thermal efficiency of 32.4% was observed at an injection pressure of 260 bar and injection timing of 25.5°bTDC. In comparison with diesel, micro emulsion fuel showed reduction in carbon monoxide (CO) and total hydrocarbon (THC) by 40 and 24%, respectively. Further, micro emulsion fuel decreased nitric oxide (NO) emission and smoke emission by 7 and 20.7%, while the carbon dioxide (CO2) emission is similar to that of diesel.

  20. Combustion Property Analysis and Control System for the Dynamics of a Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2013-12-01

    Full Text Available Corresponding to global environment problems in recent year, the technology for reducing fuel consumption and exhaust gas emission of engine was needed. Simulation of transient engine response is needed to predict engine performance that frequently experience rapid changes of speed. The aim of this research is to develop a non-linear dynamic control model for direct injection single cylinder diesel engine which can simulate engine performance under transient conditions. In this paper, the combustion model with multistage injection and conducted experiments in the transient conditions to clarify the combustion characteristics was proposed. In order to perform the analysis of acceleration operation characteristics, it was built a Model Predictive Control (MPC to reproduce the characteristic values of the exhaust gas and fuel consumption from the control parameters in particular. Finally, MPC is an effective method to perform the analysis of characteristic in diesel engine under transient conditions.

  1. Dual fuel diesel engine operation using LPG

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  2. Particulate matters from diesel engine exhaust emission

    Directory of Open Access Journals (Sweden)

    Petrović Velimir S.

    2008-01-01

    Full Text Available Air pollution caused by diesel engine emissions, especially particulate matters and nitric oxides emissions, is one of the biggest problems of current transportation. In the near future the emission of diesel particulate matters will become one of the most important factors that will affect the trend of engine development. Ambient airborne particles have adverse environmental and health effects and therefore their concentration in the air is regulated. Recent medical studies showed that different particle properties are important (for example: number/concentration, active surface, chemical composition/morphology and may take role in the responsibility for their human health impact. Thus, diesel engines are one of the most important sources of particles in the atmosphere, especially in urban areas. Studying health effects and diesel engine particulate properties, it has been concluded that they are a complex mixture of solids and liquids. Biological activity of particulate matter may be related to particle sizes and their number. The paper presents the activities of UN-ECE working group PMP on defining the best procedure and methodology for the measurement of passenger cars diesel engines particle mass and number concentrations. The results of inter-laboratory emissions testing are presented for different engine technologies with special attention on repeatability and reproducibility of measured data. .

  3. Thermal barrier coatings application in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.

    1995-03-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  4. Multi-dimensional modelling of spray, in-cylinder air motion and fuel–air mixing in a direct-injection engine

    Indian Academy of Sciences (India)

    N Abani; S Bakshi; R V Ravikrishna

    2007-10-01

    In this work, three-dimensional fuel–air mixing inside a conventional spark ignition engine cylinder is simulated under direct injection conditions. The motivation is to explore retrofitting of conventional engines for direct injection to take advantage of low emissions and high thermal efficiency of the direct injection concept. Fuel–air mixing is studied at different loads by developing and applying a model based on the Lagrangian-drop and Eulerian-fluid (LDEF) procedure for modelling the two-phase flow. The Taylor Analogy Breakup (TAB) model for modelling the hollow cone spray and appropriate models for droplet impingement, drag and evaporation are used. Moving boundary algorithm and two-way interaction between both phases are implemented. Fuel injection timing and quantity is varied with load. Results show that near-stoichiometric fuel–air ratio region is observed at different locations depending on the load. The model developed serves to predict the fuel–air mixing spatially and temporally, and hence is a useful tool in design and optimization of direct injection engines with regards to injector and spark plug locations. Simulations over a range of speed and load indicate the need for a novel ignition strategy involving dual spark plugs and also provide guidelines in deciding spark plug locations.

  5. Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine

    Science.gov (United States)

    Gangwar, Jitendra N.; Gupta, Tarun; Agarwal, Avinash K.

    2012-01-01

    There is a global concern about adverse health effects of particulate matter (PM) originating from diesel engine exhaust. In the current study, parametric investigations were carried out using a CRDI (Common Rail Direct Injection) diesel engine operated at different loads at two different engine speeds (1800 and 2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. A partial flow dilution tunnel was employed to collect and measure the mass of the primary particulates from diesel and biodiesel blend collected on a 47 mm quartz substrate. The collected PM (particulate matter) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). For both diesel and biodiesel, BSOF results showed decreasing levels with increasing engine load. B20 showed higher BSOF as compared to those measured with diesel. The concentration of different trace metals analyzed also showed decreasing trends with increasing engine loads. In addition, real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) were carried out on the primary engine exhaust coming out of the partial flow dilution tunnel. Analysis of OC/EC data suggested that the ratio of OC to EC decreases with corresponding increase in engine load for both fuels. A peak in PAH concentration was observed at 60% engine load at 1800 rpm and 20% engine load at 2400 rpm engine speeds almost identical for both kinds of fuels. Comparison of chemical components of PM emitted from this CRDI engine provides new insight in terms of PM toxicity for B20 vis-a-vis diesel.

  6. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  7. Cummins advanced turbocompound diesel-engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    The turbocompound diesel engine has been under development since 1972. Development reached a mature stage following the evolution of three power turbine and gear train designs. In 1978, the Department of Energy sponsored a program for comprehensive vehicle testing of the turbocompound engine. Upon successful completion of the vehicle test program, an advanced turbocompound diesel engine program was initiated in 1980 to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. This paper presents the individual and cumulative performance gains achieved with the advanced turbocompound engine improvements.

  8. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  9. Effects of fuel and air mixing on WOT output in direct injection gasoline engine; Chokufun gasoline kikan ni okeru nenryo to kuki no kongo to shutsuryoku seino

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T.; Iriya, Y.; Naito, K.; Mitsumoto, H.; Iiyama, A. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    The effects of in-cylinder charge motion and the characteristics of the fuel spray and piston crown shape on WOT output in a direct injection gasoline engine are investigated. The fuel and air mixing process in a cylinder is analyzed by computer simulation and LIF method visualization. As a result, the technical factors to achieve enough mixing in a DI gasoline engine equipped with bowl in piston optimized for stratified combustion are clarified. 7 refs., 9 figs., 1 tab.

  10. EFFECT OF SOYBEAN OIL BIOFUEL BLENDING ON THE PERFORMANCE AND EMISSIONS OF DIESEL ENGINE USING DIESEL-RK SOFTWARE

    Directory of Open Access Journals (Sweden)

    Mohamed F. Al-Dawody,

    2011-06-01

    Full Text Available The scope of the technology is to provide utility and comfort with no damage to the user or to the surroundings. For many years now, petroleum products and other fossil fuels have given us utility andcomfort in a variety of areas, but causes environmental problems which threaten wild and human life. In this study, the performance and emissions of single cylinder, four stroke, direct injection diesel engine operating on diesel oil and different Soybean Methyl Ester (SME blends have been investigated theoretically using thesimulation software Diesel-RK. Based on the computed modeling results it’s found that 41.3 %, 53.2 % & 62.6 % reduction in the Bosch smoke number obtained with B20% SME, B40 % SME and B100% SME respectively, compared to pure diesel operation. In addition a reduction in PM emissions is observed 47.2%, 60 % & 68% for the B20 % SME, B40 % SME, and B 100% SME respectively. On the average basis there is a reduction in the thermal efficiency, power, and SFC, for all SME blends by 2%, 3%, and 12% respectively compared to pure diesel fuel. All blending of SME produce higher NOx emissions more than 28% compared with pure diesel fuel. A parametric study of retarding injection timing, varying engine speed and compression ratio effects has been performed. Its observed that retarding the injection timing can reduce the increase in the NOx emissions to great extent. Among all tested fuels its noticed that B20% SME was the best tested fuel which gave the same performance results with good reduction in emissions as compared to pure diesel operation. A very good agreement was obtained between the results and the available theoretical and experimental results of other researchers.

  11. Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    2010-01-01

    Experiments are conducted on a 4-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the base fuel and diglyme as the oxygenate component to investigate the particulate emissions of the engine under five engine loads at two engine speeds of 1800 rev min -1 and 2400 rev min -1. Blended fuels containing 5%, 10.1%, 15.2%, 20.4%, 25.7% and 53% by volume of diglyme, corresponding to 2%, 4%, 6%, 8%, 10% and 20% by mass of oxygen, are studied. The study shows that with the increase of oxygen in the fuel blends, smoke opacity, particulate mass concentration, NO x concentration and brake specific particulate emission are reduced at the two engine speeds. However, the proportion of soluble organic fraction is increased. For each blended fuel, the total particle number concentration is higher while the geometric mean diameter is smaller, compared with that of ultralow-sulfur diesel, though the particle number decreases with the oxygen content of the blended fuel. Furthermore, the blended fuels also increase the number concentrations of particles smaller than 100 nm.

  12. Evaluation of a diesel engine running with stationary mixtures of soybean oil and reused oil diesel; Avaliacao de um motor diesel estacionario funcionando com misturas de oleo de soja reutilizado e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Maronhas, Maite E.S.; Fernandes, Haroldo C.; Siqueira, Wagner C.; Figueiredo, Augusto C. [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: maronhas@gmail.com, haroldo@ufv.br, augusto.figueiredo@ufv.br

    2009-07-01

    The tests were conducted at the Laboratory of Agricultural Mechanization Department of Agricultural Engineering, Federal University of Vicosa using a stationary diesel engine Yanmar brand NS{sub B} 75, with nominal power of 5.8 kw at 2400 rpm, direct injection, and water cooled. This work aimed to examine the reuse of soybean oil to drive the engine stationary. Were used as fuel five mixtures of diesel oil (DO) and soybean oil (OS) re-used in the kitchen of the restaurant of the university in the proportions of 0-100%, 25-75%, 50-50%, 75-25 % and 100-0% respectively. The power and torque of the engine is higher for the mixture showed a 75% OD and 25% OS and 25% lower for DO and 75% OS. The lowest hourly consumption was with a mixture of 25% and 75% OD and OS was 15% lower than for the pure diesel. The values found justifying the use of mixtures of diesel and soybean oil reused, but the technical aspects, especially regarding the wear of the engine, must be evaluated to indicate the use after a long period of engine operation. (author)

  13. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    Science.gov (United States)

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  14. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  15. Insulated Piston Heads for Diesel Engines

    Science.gov (United States)

    Tricoire, A.; Kjellman, B.; Wigren, J.; Vanvolsem, M.; Aixala, L.

    2009-06-01

    Widely studied in the 1980s, the insulation of pistons in engines aimed at reducing the heat losses and thus increasing the indicated efficiency. However, those studies stopped in the beginning of the 1990s because of NO x emission legislation and also because of lower oil prices. Currently, with the improvement of exhaust after treatment systems (diesel particulate filter, selective catalytic reduction, and diesel oxidation catalyst) and engine technologies (exhaust gas recirculation), there are more trade-offs for NO x reduction. In addition, the fast rise of the oil prices tends to lead back to insulation technologies in order to save fuel. A 1 mm thick plasma sprayed thermal barrier coating with a graded transition between the topcoat and the bondcoat was deposited on top of a serial piston for heavy-duty truck engines. The effects of the insulated pistons on the engine performance are also discussed, and the coating microstructure is analyzed after engine test.

  16. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  17. Light-duty diesel engine development status and engine needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  18. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review

    Energy Technology Data Exchange (ETDEWEB)

    No, Soo-Young [Chungbuk National University, Department of Biosystems Engineering, Cheongju 361-763 (Korea, Republic of)

    2011-01-15

    The use of inedible vegetable oils as an alternative fuel for diesel engine is accelerated by the energy crisis due to depletion of resources and increased environmental problems including the great need for edible oil as food and the reduction of biodiesel production cost, etc. Of a lot of inedible vegetable oils which can be exploited for substitute fuel as diesel fuel, seven vegetable oils, i.e., jatropha, karanja, mahua, linseed, rubber seed, cottonseed and neem oils were selected for discussion in this review paper. The application of jatropha oil as a liquid fuel for CI engine can be classified with neat jatropha oil, engine modifications such as preheating, and dual fuelling, and fuel modifications such as jatropha oil blends with other fuels, mostly with diesel fuel, biodiesel, biodiesel blends and degumming. Therefore, jatropha oil is a leading candidate for the commercialization of non-edible vegetable oils. There exists a big difference in the fuel properties of seven inedible vegetable oils and its biodiesels considered in this review. It is clear from this review that biodiesel generally causes an increase in NOx emission and a decrease in HC, CO and PM emissions compared to diesel. It was reported that a diesel engine without any modification would run successfully on a blend of 20% vegetable oil and 80% diesel fuel without damage to engine parts. This trend can be applied to the biodiesel blends even though particular biodiesel shows 40% blend. In addition, the blends of biodiesel and diesel can replace the diesel fuel up to 10% by volume for running common rail direct injection system without any durability problems. (author)

  19. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  20. Real Otto and Diesel Engine Cycles.

    Science.gov (United States)

    Giedd, Ronald

    1983-01-01

    A thermodynamic analysis of the properties of otto/diesel engines during the time they operate with open chambers illustrates applicability of thermodynamics to real systems, demonstrates how delivered power is controlled, and explains the source of air pollution in terms of thermodynamic laws. (Author/JN)

  1. Exploring Low Emission Lubricants for Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  2. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    OpenAIRE

    Nattapong Namliwan; Tanakorn Wongwuttanasatian

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consum...

  3. Performance analysis of a biodiesel fuelled diesel engine with the effect of alumina coated piston

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Srinivasan

    2017-01-01

    Full Text Available Biodiesel is one of the best alternative fuels to Diesel engine among other sources due to having potential to reduce emissions. Biodiesel is a renewable, biodegradable and environment friendly fuel in nature. The advantages of biodiesel are lower exhaust gas emissions and its biodegradability and renewability compared with petroleum-based diesel fuel. The energy of the biodiesel can be released more efficiently with the concept of semi adiabatic (thermal barrier coated piston engine. The objective of this study is to investigate the performance and emission characteristics of a single cylinder direct injection Diesel engine using 25% biodiesel blend (rubber seed oil methyl ester as fuel with thermal barrier coated piston. Initially the piston crown was coated with alumina (Al2O3 of thickness of 300 micron (0.3 mm by plasma coating method. The results revealed that the brake thermal efficiency was increased by 4% and brake specific fuel consumption was decreased by 9% for B25 with coated piston compared to un-coated piston with diesel. The smoke, CO, and HC emissions were also decreased for B25 blend with coated piston compared with the uncoated piton engine. The combustion characteristics such as peak pressure, maximum rate of pressure rise, and heat release rate were increased and the ignition delay was decreased for B25 blend for the coated piston compared with diesel fuel.

  4. Advanced automotive diesel engine system study

    Science.gov (United States)

    1983-01-01

    A conceptual study of an advanced automotive diesel engine is discussed. The engine concept selected for vehicle installation was a supercharged 1.4 liter, 4 cylinder spark assisted diesel of 14:1 compression ratio. A compounding unit consisting of a Lysholm compressor and expander is connected to the engine crankshaft by a belt drive. The inlet air charge is heated by the expander exhaust gas via a heat exchanger. Four levels of technology achievement on the selected engine concept were evaluated, from state-of-the-art to the ideal case. This resulted in the fuel economy increasing from 53.2 mpg to 81.7 mpg, and the 0-60 mph time decreasing from 17.6 seconds to 10.9 seconds.

  5. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel...

  6. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  7. Experimental Investigation of Performance and emission characteristics of Various Nano Particles with Bio-Diesel blend on Di Diesel Engine

    Science.gov (United States)

    Karthik, N.; Goldwin Xavier, X.; Rajasekar, R.; Ganesh Bairavan, P.; Dhanseelan, S.

    2017-05-01

    Present study provides the effect of Zinc Oxide (ZnO) and Cerium Oxide (CeO2) nanoparticles additives on the Performance and emission uniqueness of Jatropha. Jatropha blended fuel is prepared by the emulsification technique with assist of mechanical agitator. Nano particles (Zinc Oxide (ZnO)) and Cerium Oxide (CeO2)) mixed with Jatropha blended fuel in mass fraction (100 ppm) with assist of an ultrasonicator. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Performance results revealed that Brake Thermal Efficiency (BTE) of Jatropha blended Cerium Oxide (B20CE) is 3% and 11% higher than Jatropha blended zinc oxide (B20ZO) and Jatropha blended fuel (B20) and 4% lower than diesel fuel (D100) at full load conditions. Emission result shows that HC and CO emissions of Jatropha blended Cerium Oxide (B20CE) are (6%, 22%, 11% and 6%, 15%, 12%) less compared with Jatropha blended Zinc Oxide (B20ZO), diesel (D100) and Jatropha blended fuel (B20) at full load conditions. NOx emissions of Jatropha blended Cerium Oxide is 1 % higher than diesel fuel (D100) and 2% and 5% lower than Jatropha blended Zinc Oxide, and jatropha blended fuel.

  8. Experimental study on the effect of gaseous and particulate emission from an ethanol fumigated diesel engine

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with 10% and 20% of the engine load taken up by fumigation ethanol injected into the air intake of each cylinder, to investigate the gaseous, particulate mass (PM) emissions, and number concentration and size distribution of the engine under five engine loads at the maximum torque engine speed of 1800 r/min. The experimental results show that at low engine loads, the brake thermal efficiency (BTE) decreases with increase in fumigation ethanol; but at high engine loads, the BTE is not significantly changed by fumigation ethanol. Fumigation ethanol can effectively decrease in brake specific nitrogen oxides (BSNOx), particulate mass and number emissions but significantly increase in brake specific hydrocarbon (BSHC), brake specific carbon monoxide (BSCO) and proportion of BSNO/BSNO2. Also, the geometrical mean diameter of the particles (GMD) increases with increase in engine load but the diameter is not changed by fumigation ethanol in all cases.

  9. The effect of supercharging on performance and emission characteristics of C.I. Engine with diesel-ethanol-ester blends

    Directory of Open Access Journals (Sweden)

    Donepudi Jagadish

    2011-01-01

    Full Text Available Biofuels like ethanol, biodiesel, have attracted attention of people worldwide and proved to be the successful fuel alternates to petroleum products. In the present investigation, the effect of supercharging is studied on the performance of a direct injection diesel engine using ethanol diesel blends with palm stearin methyl ester as additive. The performance of the engine is evaluated in terms of brake specific fuel consumption, thermal efficiency, exhaust gas temperature, un-burnt hydrocarbons, carbon monoxide, nitrogen oxide emissions, and smoke opacity. The investigation results showed that the output and torque performance of the engine with supercharging was improved in comparison with naturally aspirated engine. It is observed that the brake thermal efficiency of ethanol diesel blends was higher than that of diesel. With supercharging brake thermal efficiency is further improved. Brake specific fuel consumption of ethanol, ester and diesel blends are lower compared with diesel at full load. Further reduction in brake specific fuel consumption is observed with supercharging. Nitrous oxide formation seems to decrease with ethanol, ester and diesel blends. Hydrocarbons and carbon monoxide emissions are more with ethanol, ester and diesel blends with supercharging slight reduction in those values are observed.

  10. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  11. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    Science.gov (United States)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-07-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  12. Restoring diesel engine camshafts by laser treatement

    Science.gov (United States)

    Astashkevich, B. M.; Zinov'ev, G. S.; Voronin, I. N.

    1996-12-01

    The reliability of parts of the gas-distributing mechanism and drives of fuel pumps determines to a great degree the operating conditions of cylinder-piston parts and the economic characteristics of diesel engines. Intense wear of the camshaft pair disturbs the distribution phases and the lead angle of fuel supply to the diesel cylinders and increases the rigidity of the operation of the connecting rod-piston group. This causes incomplete combustion of fuel and fuming, a rise in the temperature of exhaust gases, sticking of the rings in the piston grooves and their premature failure, wear cracks, and chips and failure of the parts of the cylinder-piston unit, decreasing the efficiency of the diesel. Laser surface treatment is used to restore cams. It makes it possible to increase substantially the wear resistance of cams and restore their worn surfaces. This paper concerns the characteristics of the cams after such a treatment.

  13. Emission Characteristics of Direct Injection Natural Gas Engine Using Rapid Compression Machine%用快速压缩装置研究直喷式天然气发动机排放特性

    Institute of Scientific and Technical Information of China (English)

    黄佐华; 曾科; 杨中乐

    2002-01-01

    使用快速压缩装置进行了直喷式天然气发动机排放特性的研究.测量了三种不同方式下的排放,并与均相混合气燃烧情况进行了对比.实验结果表明,在宽广的当量比范围内,天然气直喷方式的燃烧效率高于0.95.由于混合气的分层燃烧,天然气喷射方式在宽广的当量比范围内保持较低的HC排放量,同等功率下的低CO2排放量,低NOx排放量,其NOx排放在理论当量比处的降低更为明显.直喷天然气发动机既具备柴油机发动机效率高的特点,又具备预混燃烧发动机排放低的特点.%Investigation of emission characteristics of a direct injection natural gas engine is carried out using a rapid compression machine.The emissions of three injection modes are measured and compared with that of the homogeneous combustion mode.The experimental results show that the combustion efficiency of the direct injection natural gas combustion is above 0.95 for all fuel supplying modes in the wide range of overall equivalence ratio.Fuel injection can operate within a wide range of equivalence ratio and has low unburned hydrocarbon emission (HC),low CO2 emission for the same power output,low NOx emission due to the mixture stratification compared with homogeneous combustion engine,especially in the range near the stoichiometric equivalence ratio where engine power output is needed.Consequently,the direct injection natural gas engine has the advantages of high thermal efficiency like diesel engine and low emission of premixed mixture combustion.

  14. The determination of optimum injection pressure in an engine fuelled with soybean biodiesel/diesel blend

    Directory of Open Access Journals (Sweden)

    Çelik Bahattin M.

    2014-01-01

    Full Text Available In this study, the optimum blend rate and injection pressure in a four-stroke, single cylinder, direct injection diesel engine using soybean methyl ester were investigated experimentally. The tests were conducted at two stages. Firstly, the engine was tested with diesel fuel, B25 (25% biodiesel+75% diesel fuel, B50, B75 and B100 fuels at full load and at a constant speed. According to the test results, it was determined that the most suitable fuel was B25 in terms of performance and emission. Secondly, the engine was tested at different loads with diesel fuel at original injection pressure and with B25 at different injection pressures (160, 180, 200, 220, 240 bar for comparison. It was determined from tests performed with B25 that the most suitable injection pressure in terms of performance and emissions was 220 bar. The specific fuel consumption and power values of the B25 were found to be nearly the same as those of diesel fuel at 220 bar injection pressure. In addition, HC, CO, and smoke emissions were reduced by about 33%, 9% and 20%, respectively. On the other hand, NOx emission increased by about 12%.

  15. Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol.

    Science.gov (United States)

    Zhu, Lei; Cheung, C S; Zhang, W G; Huang, Zhen

    2010-01-15

    Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NO(x) and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NO(x) and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NO(x) and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced.

  16. EXPERIMENTAL DETERMINATION OF DOUBLE VIBE FUNCTION PARAMETERS IN DIESEL ENGINES WITH BIODIESEL

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available A zero-dimensional, one zone model of engine cycle for steady-state regimes of engines and a simplified procedure for indicator diagrams analysis have been developed at the Laboratory for internal combustion engines, fuels and lubricants of the Faculty of Mechanical Engineering in Kragujevac. In addition to experimental research, thermodynamic modeling of working process of diesel engine with direct injection has been presented in this paper. The simplified procedure for indicator diagrams analysis has been applied, also. The basic problem, a selection of shape parameters of double Vibe function used for modeling the engine operation process, has been solved. The influence of biodiesel fuel and engine working regimes on the start of combustion, combustion duration and shape parameter of double Vibe was determined by a least square fit of experimental heat release curve.

  17. ESEMISSION ANALYSIS OF SINGLE CYLINDER DIESEL ENGINE FUELED WITH PYROLYSIS OIL DIESEL AND IT’S BLEND WITH ETHANOL

    Directory of Open Access Journals (Sweden)

    Mr. Hirenkumar M. Patel

    2012-06-01

    Full Text Available Around the world, initiatives are being taken to replace gasoline and diesel fuel due to the impact of the fossil fuel crisis, increase in oil price, and the adoption of stringent emission norms. Increase in energy demand, stringent emission norms and depletion of oil resources led the researchers to find alternative fuels for internalcombustion engines. Many alternate fuels like Alcohols, Biodiesel, methanol, ethanol, LPG, CNG etc have been already commercialized in the transport sector. In this context, pyrolysis of solid waste is currently receiving renewed interest. Tests have been carried out to evaluate the emission analysis of a single cylinder direct injection diesel engine fueled with 10%, 15%, and 20% of tyre pyrolysis oil (TPO blended with diesel fuel (DF. The TPO was derived from waste automobile tires through vacuum pyrolysis. HC and CO emissions werefound to be higher at all loads due to the high aromatic content. Ethanol was added in concentration of 5%, 10% and 15% to reduce emission characteristics. Results show that CO and HC both reduced due to the addition of ethanol because ethanol is an oxygenated additives.

  18. Cleaning the Diesel Engine Emissions

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    necessitates a rethinking of public governance that involve multilevel governance and integrating technology push and pull strategies. The agenda requires a re-conceptualisation of the innovation concept with special emphasis on value chain dynamics. The paper includes an analysis of the Danish innovation......This paper examines how technologies for cleaning of diesel emission from road vehicles can be supported by facilitating a technology push in the Danish automotive emission control industry. The European commission is at present preparing legislation for the euro 5 emission standard (to be enforced...... policy based on Michael Porters cluster theory. The paper however suggest that the narrow focus on productivity and economic growth in Porters theory should be qualified and integrated with a broader scope of societal policy aims including social and environmental issues. This suggestion also...

  19. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  20. High pressure air spray assistant power supply control strategies and their effects on diesel engine under transient operations

    Institute of Scientific and Technical Information of China (English)

    HAN Yongqiang; LIU Zhongchang; WANG Zhongshu; ZHU Ruoqun

    2007-01-01

    In order to reduce smoke from direct-injection (DI) turbo-charged and after-cooled (TCA) diesel engines under transient operations,the real-time controlling and measuring system of a high pressure air spray assistant power supply (HPAS) was developed.Effects of HPAS on a DI TCA diesel engine under constant engine speed and increased torque (CSIT) transient operations were studied by using different control strategies.Pre-spray (PS) strategy,which means supplying highly pressurized air into the exhaust manifold two seconds before the accelerating-graph begins to rise and stopping spraying air when the acceleratinggraph stops rising.Two other strategies-full-time-spray(FTS) and middle-time-spray (MTS)-were used to fully exploit HPAS potential.With the FTS and MTS strategies,the HPAS system can remarkably decrease smoke from DI TCA diesel engines under transient operations.

  1. Cycle-by-cycle Variations in a Direct Injection Hydrogen Enriched Compressed Natural Gas Engine Employing EGR at Relative Air-Fuel Ratios.

    Directory of Open Access Journals (Sweden)

    Olalekan Wasiu Saheed

    2014-07-01

    Full Text Available Since the pressure development in a combustion chamber is uniquely related to the combustion process, substantial variations in the combustion process on a cycle-by-cycle basis are occurring. To this end, an experimental study of cycle-by-cycle variation in a direct injection spark ignition engine fueled with natural gas-hydrogen blends combined with exhaust gas recirculation at relative air-fuel ratios was conducted. The impacts of relative air-fuel ratios (i.e. λ = 1.0, 1.2, 1.3 and 1.4 which represent stoichiometric, moderately lean, lean and very lean mixtures respectively, hydrogen fractions and EGR rates were studied. The results showed that increasing the relative air-fuel ratio increases the COVIMEP. The behavior is more pronounced at the larger relative air-fuel ratios. More so, for a specified EGR rate; increasing the hydrogen fractions decreases the maximum COVIMEP value just as increasing in EGR rates increases the maximum COVIMEP value. (i.e. When percentage EGR rates is increased from 0% to 17% and 20% respectively. The maximum COVIMEP value increases from 6.25% to 6.56% and 8.30% respectively. Since the introduction of hydrogen gas reduces the cycle-by-cycle combustion variation in engine cylinder; thus it can be concluded that addition of hydrogen into direct injection compressed natural gas engine employing EGR at various relative air-fuel ratios is a viable approach to obtain an improved combustion quality which correspond to lower coefficient of variation in imep, (COVIMEP in a direct injection compressed natural gas engine employing EGR at relative air-fuel ratios.

  2. Jet propagation, atomization and evaporation in diesel-engine injection. Strahlausbreitung, Zerstaeubung und Verdampfung bei der dieselmotorischen Einspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, D.; Dibelius, G.; Funcke, J.; Holzenthal, K.; Fitzky, G.

    1992-01-01

    In the direct-injection diesel engine, the course of combustion is largely a function of the distribution of the fuel in the combustion space and of the subsequent mixture formation process due to the short time span between the onset of fuel injection and ignition. To improve combustion for high efficiency and low pollutant and noise emissions, exact knowledge is needed about the course of atomization, evaporation and mixing processes and their respective action mechanisms. (orig.).

  3. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  4. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Directory of Open Access Journals (Sweden)

    Nattapong Namliwan

    2014-01-01

    Full Text Available The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO, carbon dioxide (CO2, sulfur dioxide (SO2, and oxygen (O2 than those of diesel B3. On the other hand, nitric oxide (NO and nitrogen oxides (NOX emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine.

  5. Environmental Assessment of a Diesel Engine Under Variable Stroke Length and Constant Compression Ratio

    Directory of Open Access Journals (Sweden)

    Jehad A.A. Yamin

    2007-01-01

    Full Text Available In the light of the energy crisis and the stringent environmental regulations, diesel engines are offering good hope for automotive vehicles. However, lot of work is needed to reduce the diesel exhaust emissions and give the way for full utilization of the diesel fuel’s excellent characteristics. This paper presents a theoretical study on the effect of variable stroke length technique on the emissions of a four-stroke, water-cooled direct injections diesel engine with the help of experimentally verified computer software designed mainly for diesel engines. The emission levels were studied over the speed range (1000 rpm to 3000 rpm and stroke lengths (120 mm to 200 rpm and were compared with those of the original engine design. The simulation results clearly indicate the advantages and utility of variable stroke technique in the reduction of the exhaust emission levels. A reduction of about 10% to 75% was achieved for specific particulate matter over the entire speed range and bore-to-stroke ratio studied. Further, a reduction of about 10% to 59% was achieved for the same range. As for carbon dioxide, a reduction of 0% to 37% was achieved. On the other hand, a less percent change was achieved for the case of nitrogen dioxide and nitrogen oxides as indicated by the results. This study clearly shows the advantage of VSE over fixed stroke engines. This study showed that the variable stroke technique proved a good way to curb the diesel exhaust emissions and hence helped making these engines more environmentally friendly.

  6. Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2016-03-01

    Full Text Available Oxygen enriched combustion is one of the attractive combustion technologies to control pollution and improve combustion in diesel engines. An experimental test was conducted on a single cylinder direct injection diesel engine to study the impact of oxygen enrichment on pollution and performance parameters by increasing the oxygen concentration of intake air from 21 to 27% by volume. The tests results show that the combustion process was improved as there is an increase in thermal efficiency of 4 to 8 percent and decrease in brake specific fuel consumption of 5 to 12 percent. There is also a substantial decrease in unburned hydro carbon, carbon mono-oxide and smoke density levels to the maximum of 40, 55 and 60 percent respectively. However, there is a considerable increase in nitrogen oxide emissions due to increased combustion temperature and extra oxygen available which needs to be addressed.

  7. Hygroscopic properties of Diesel engine soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burtscher, H. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    The hygroscopic properties of combustion particles, freshly emitted from a Diesel engine were investigated. It was found that these particles start to grow by water condensation at a relative humidity (RH)>80%. The hygroscopicity of these particles was enhanced when the sulfur content of the fuel was increased or when the particles were artificially aged (i.e. particles were subjected to an ozone or UV pre-treatment). (author) 2 figs., 5 refs.

  8. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  9. BMW V8 gasoline engine with turbocharging, direct injection and fully variable valve gear; V8-Ottomotor von BMW mit zwei Turboladern, Direkteinspritzung und vollvariablem Ventiltrieb

    Energy Technology Data Exchange (ETDEWEB)

    Schopp, Johann; Duengen, Rainer; Fach, Heiko [BMW Group, Muenchen (Germany); Schuenemann, Erik

    2013-01-15

    In July 2012, BMW has launched its new V8 gasoline engine with so-called TwinPower Turbo technology, including turbocharging, direct injection and fully variable valve gear Valvetronic. The main objectives were to achieve a significant reduction in fuel consumption and a moderate increase in power output, to derive a 4.0-l engine-capacity version, as well as to ensure high process commonality with the new BMW M5 engine simultaneously developed by BMW M GmbH which uses a virtually identical basic engine. It was first deployed simultaneously in the new 6 Series Gran Coupe, the 5 Series Gran Turismo, the 6 Series and the revised 7 Series. (orig.)

  10. Nanoparticle Filtration Characteristics of Advanced Metal Foam Media for a Spark Ignition Direct Injection Engine in Steady Engine Operating Conditions and Vehicle Test Modes

    Directory of Open Access Journals (Sweden)

    Cha-Lee Myung

    2015-03-01

    Full Text Available In this study, the particle formation and reduction characteristics at the engine-out position, after a three-way catalyst (TWC and a metal foam gasoline particulate filter (GPF, were evaluated for a gasoline direct-injection (GDI engine under part-load operating conditions. The vehicle tests were performed under the Federal Test Procedure-75 (FTP-75 and the Highway Fuel Economy Test (HWFET modes. Particle number (PN concentrations, size distributions, and the filtering efficiency with the GPF were evaluated with a condensation particle counter (CPC and a differential mobility spectrometer (DMS500. Under steady engine operating conditions, the PN concentrations at the engine-out position were 9.7 × 105–2.5 × 106 N/cc. While, the PN concentrations after the GPF were 9.2 × 104–3.5 × 105 N/cc, and the PN was reduced by 77%–96%. The PN filtering efficiency with the GPF-GDI vehicle reached approximately 58% in the FTP-75 and 62% in the HWFET mode. The PN concentration of the GPF-GDI vehicle was significantly reduced to 3.95 × 1011 N/km for the FTP-75 and 8.86 × 1010 N/km for the HWFET mode. The amount of nucleation mode particles below 23 nm was substantially reduced with the GPF-GDI vehicle. The fuel economy, CO2, and regulated emissions of the GPF-GDI vehicle were equivalent to those of the base GDI vehicle under the vehicle certification modes.

  11. Experimental investigation on CRDI engine using butanol-biodiesel-diesel blends as fuel

    Science.gov (United States)

    Divakar Shetty, A. S.; Dineshkumar, L.; Koundinya, Sandeep; Mane, Swetha K.

    2017-07-01

    In this research work an experimental investigation of butanol-biodisel-diesel blends on combustion, performance and emission characteristics of a direct injection (DI) diesel engine is carried out. The blends are prepared at different proportions and fuel properties such as calorific value, viscosity, flash point and fire point, cloud point, pour point of butanol (B), biodiesel (B), diesel (D), biodiesel-diesel (BD) blends and butanol-biodiesel-diesel (BBD) blends are determined. The engine test is conducted at different speed and load. From the results obtained for fuel properties we can observe that the flash, fire and pour point, viscosity and density are decreasing by increasing the percentage of butanol in BBD blends. It is also observed that the performance parameters such as brake thermal efficiency (BTE) and exhaust gas temperature increases with increase in the proportion of butanol in BBD blend. However, the brake specific fuel consumption (BFSC) decreases with increase in the proportion of butanol in BBD blend. The increase of butanol in BBD blends also influence to increase on emission characteristic such as carbon monoxide (CO), hydrocarbon (HC) and oxides of nitrogen (NOx).

  12. Experimental Investigation of Performanec of Single Cylinder 4s Diesel Engine Using Dual Vegetable Oil Blended

    Directory of Open Access Journals (Sweden)

    Prof. C. S. Koli

    2014-03-01

    Full Text Available Over the last two decades there has been a tremendous increase in the number of automobiles and a corresponding increase in the fuel price. In this regard, alternative fuels like vegetable oils play a major role. Use of pure vegetable oil in diesel engines causes some problems due to their high viscosity compared with diesel fuel. To solve the problems due to high viscosity various techniques are used. One such technique is fuel blending. This paper investigated the performance parameters of dual vegetable oil blends (mixture of Mustard oil and Palm oil with diesel on a stationary single cylinder, four stroke direct injection compression ignition engine. The blends of BB 10 (combination of Diesel 90% by volume, Mustard oil 5% by volume and Palm oil 5% by volume and blends of BB 20 (combination of Diesel 80% by volume, Mustard oil 10% by volume and Palm oil 10% by volume gave better brake thermal efficiency, lower total fuel consumption and lower brake specific fuel consumption than other blends (BB 30, BB 40 and BB 50.

  13. Clean and Efficient Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-12-31

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  14. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  15. EXPERIMENTAL INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE UNDER HCCI MODE WITH POROUS MEDIUM COMBUSTION

    Directory of Open Access Journals (Sweden)

    C KANNAN

    2010-08-01

    Full Text Available In recent times, homogeneous combustion has been a proven technology to attain high efficient and low emission engines. Homogenous Charge Compression Ignition (HCCI engines are able to have efficiencies as high as Compression Ignition, Direct Injection (CIDI engines, while producing ultra-low emissions of nitrogen oxides (NOx and particulate matter (PM.HCCI combustion is achieved by controlling the temperature, pressure and composition of the fuel-air mixture so that it spontaneously gets ignited in the combustion chamber. Numeroustechniques such as Variable Exhaust Gas Recirculation (VEGR, ariable Compression Ratio (VCR and Variable Valve Timing (VVT have been proposed to control the homogeneous combustion inside the engine cylinder. Even though these techniques are attractive and having good time response, they are too expensive to afford. This paper investigates the performance, combustion and emission characteristics of a Direct Injection (DI diesel engine under HCCI mode which is established through an effective and affordable technique called Porous Medium Combustion (PMC.

  16. Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Pamminger, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Boyer, Brad [Ford Motor Co., Detroit, MI (United States); Wooldridge, Steven [Ford Motor Co., Detroit, MI (United States); Hall, Carrie [Illinois Inst. of Technology, Chicago, IL (United States); Miers, Scott [Michigan Technological Univ., Houghton, MI (United States)

    2016-04-05

    Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions. Steady-state tests were performed on a single-cylinder research engine representative of current gasoline direct-injection engines. Tests were performed with direct-injection in the central and side location. The start of injection was varied under stoichiometric conditions in order to study the effects on the mixture formation process. In addition, exhaust gas recirculation was introduced at select conditions in order to investigate the dilution tolerance. Relevant combustion metrics were then analyzed for each scenario. Experimental results suggest that regardless of the injector location, varying the start of injection has a strong impact on the mixture formation process. Delaying the start of injection from 300 to 120°CA BTDC can reduce the early flame development process by nearly 15°CA. While injecting into the cylinder after the intake valves have closed has shown to produce the fastest combustion process, this does not necessarily lead to the highest efficiency, due to increases in pumping and wall heat losses. When comparing the two injection configurations, the side location shows the best

  17. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  18. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol

    Science.gov (United States)

    Cheung, C. S.; Di, Yage; Huang, Zuohua

    Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

  19. Vehicle testing of Cummins turbocompound diesel engine

    Science.gov (United States)

    Brands, M. C.; Werner, J. R.; Hoehne, J. L.

    1980-01-01

    Two turbocompound diesel engines were installed in Class VIII heavy-duty vehicles to determine the fuel consumption potential and performance characteristics. One turbocompound powered vehicle was evaluated at the Cummins Pilot Center where driveability, fuel consumption, torsional vibration, and noise were evaluated. Fuel consumption testing showed a 14.8% benefit for the turbocompound engine in comparison to a production NTC-400 used as a baseline. The turbocompound engine also achieved lower noise levels, improved driveability, improved gradeability, and marginally superior engine retardation. The second turbocompound engine was placed in commercial service and accumulated 50,000 miles on a cross-country route without malfunction. Tank mileage revealed a 15.92% improvement over a production NTCC-400 which was operating on the same route.

  20. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  1. Parametric Study of Jatropha Blended Gasoline Fuel In Compression Ignition Engine Of A Small Capacity Diesel Engine

    Directory of Open Access Journals (Sweden)

    Benjamin Ternenge Abur

    2014-11-01

    Full Text Available In this study, Jatropha Biodiesel was tested in a single cylinder direct-injection diesel engine to investigate the operational parameters of a small capacity diesel engine under six engine loads. Here the jatropha oil is used as a non edible oil to produce the biodiesel. The investigated blends were 40/60%, 30/70%, 20/80% and 100% jatropha biodiesel at various loads. The jatropha biodiesel was obtained from National Research Institute for Chemical Technology Zaria-Nigeria and was within EN, BIS and Brazil specifications for biodiesel. Each blend was tested on a short term basis of three hours. The result shows that the brake thermal efficiency increased for all tested blends at lower engine loads and decreases at higher engine loads. The specific fuel consumption (S.F.C increased for lower blends compared to neat jatropha oil while higher engine powers were obtained for lower blends compared to neat jatropha oil. In all the investigated operational parameters, the diesel reference fuel had better performance to jatropha biodiesel blends except in the percentage heat loss to the exhaust where jatropha biodiesel blends had better performance.

  2. Experimental Thermal Analysis of Diesel Engine Piston and Cylinder Wall

    Directory of Open Access Journals (Sweden)

    Subodh Kumar Sharma

    2015-01-01

    Full Text Available Knowledge of piston and cylinder wall temperature is necessary to estimate the thermal stresses at different points; this gives an idea to the designer to take care of weaker cross section area. Along with that, this temperature also allows the calculation of heat losses through piston and cylinder wall. The proposed methodology has been successfully applied to a water-cooled four-stroke direct-injection diesel engine and it allows the estimation of the piston and cylinder wall temperature. The methodology described here combines numerical simulations based on FEM models and experimental procedures based on the use of thermocouples. Purposes of this investigation are to measure the distortion in the piston, temperature, and radial thermal stresses after thermal loading. To check the validity of the heat transfer model, measure the temperature through direct measurement using thermocouple wire at several points on the piston and cylinder wall. In order to prevent thermocouple wire entanglement, a suitable pathway was designed. Appropriate averaged thermal boundary conditions such as heat transfer coefficients were set on different surfaces for FE model. The study includes the effects of the thermal conductivity of the material of piston, piston rings, and combustion chamber wall. Results show variation of temperature, stresses, and deformation at various points on the piston.

  3. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  4. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  5. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-07-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  6. An experimental study of energy balance in low heat rejection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, I. [University of Sakarya, Adapazari (Turkey). Faculty of Engineering

    2006-03-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition, another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. In this study, the effect of insulated heat transfer surfaces on diesel engine energy balance system was investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and inter-cooled diesel engine. This engine was tested at different speeds and load conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces were coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic-coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic-coated engine. (author)

  7. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.

    Science.gov (United States)

    Di, Yage; Cheung, C S; Huang, Zuohua

    2009-01-01

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil. The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NO(x) and NO(2) emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase. The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.

  8. Dimensionless Parameter Scaling of Diesel Engine Combustion

    Science.gov (United States)

    Dowling, David R.; Filipi, Zoran

    1996-11-01

    Combustion in a modern heavy-duty Diesel engine with direct radial fuel injection typically takes place in a short nearly-cylindrical volume at a rate determined by turbulent mixing. Simple dimensionless-parameter scaling laws for turbulent gas-phase mixing and heat transfer have been shown to be effective for a variety of (oxidizer) flow and (fuel) injection conditions within a cylindrical geometry (Edwards et al., AIChE J., Vol. 31, 516 [1985].) (Breidenthal et al., JFM, Vol. 219, 531 [1990].) (Dowling et al., AIAA J. Thermophys. & HT, Vol. 4, 504 [1990].). These studies were driven by chemical laser applications emphasizing long cylinders and sidewall injection. The current investigation seeks to determine the applicability of dimensionless parameter scaling to the instantaneous in-cylinder fuel burning rate in a multi-cylinder Diesel engine typical of Class VIII trucks. Comparisons are made between scaled and unscaled fuel burning rate, as inferred from time-resolved in-cylinder pressure measurements, across the test engine's normal operating range. This research is supported by the US Army Tank-Automotive Research, Development, and Engineering Center.

  9. Factorial analysis of diesel engine performance using different types of biofuels.

    Science.gov (United States)

    Tashtoush, Ghassan M; Al-Widyan, Mohamad I; Albatayneh, Aiman M

    2007-09-01

    In this study, several bio-source-fuels like fresh and waste vegetable oil and waste animal fat were tested at different injector pressures (120, 140, 190, 210 bar) in a direct-injection, naturally aspirated, single-cylinder diesel engine with a design injection pressure of 190 bar. Using 2k factorial analysis, the effect of injection pressure (Pi) and fuel type on three engine parameters, namely, combustion efficiency (etac), mass fuel consumption (mf), and engine speed (N) was examined. It was found that Pi and fuel type significantly affected both etac and mf while they had a slight effect on engine speed. Moreover, with diesel and biodiesels, the etac increased to a maximum at 190 bar but declined at the higher Pi value. In contrast, higher Pi had a favorable effect on etac over the whole Pi range with all the other more viscous fuels tested. In addition, the mass fuel consumption consistently decreased with an increase in Pi for all the fuels including the baseline diesel fuel, with which the engine consistently attained higher etac and higher rpm compared to all the other fuels tested.

  10. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE.

  11. Influence of low-temperature combustion and dimethyl ether-diesel blends on performance, combustion, and emission characteristics of common rail diesel engine: a CFD study.

    Science.gov (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Narayanappa, Kumar Gottekere

    2017-06-01

    Due to presence of more oxygen, absence of carbon-carbon (C-C) bond in chemical structure, and high cetane number of dimethyl ether (DME), pollution from DME operated engine is less compared to diesel engine. Hence, the DME can be a promising alternative fuel for diesel engine. The present study emphasizes the effect of various exhaust gas recirculation (EGR) rates (0-20%) and DME/Diesel blends (0-20%) on combustion characteristics and exhaust emissions of common rail direct injection (CRDI) engine using three-dimensional computational fluid dynamics (CFD) simulation. Extended coherent flame model-3 zone (ECFM-3Z) is implemented to carry out combustion analysis, and k-ξ-f model is employed for turbulence modeling. Results show that in-cylinder pressure marginally decreases with employing EGR compared to without EGR case. As EGR rate increases, nitrogen oxide (NO) formation decreases, whereas soot increases marginally. Due to better combustion characteristics of DME, indicated thermal efficiency (ITE) increases with the increases in DME/diesel blend ratio. Adverse effect of EGR on efficiency for blends is less compared to neat diesel, because the anoxygenated region created due to EGR is compensated by extra oxygen present in DME. The trade-off among NO, soot, carbon monoxide (CO) formation, and efficiency is studied by normalizing the parameters. Optimum operating condition is found at 10% EGR rate and 20% DME/diesel blend. The maximum indicated thermal efficiency was observed for DME/diesel ratio of 20% in the present range of study. Obtained results are validated with published experimental data and found good agreement.

  12. Speed control of automotive diesel engines

    Science.gov (United States)

    Outbib, Rachid; Graton, Guillaume; Dovifaaz, Xavier; Younes, Rafic

    2014-04-01

    This paper deals with Diesel engine control. More precisely, a model-based approach is considered to stabilise engine speed around a defined value. The model taken into account is nonlinear and contains explicitly the expression of fuel conversion efficiency. In general in the literature, this experimentally obtained quantity is modelled with either a polynomial or an exponential form (see for instance Younes, R. (1993). Elaboration d'un modèle de connaissance du moteur diesel avec turbocompresseur à géométrie variable en vue de l'optimisation de ses émissions. Ecole Centrale de Lyon; Omran, R., Younes, R., Champoussin, J., & Outbib, R. (2011). New indicated mean effective pressure (IMEP) model for predicting crankshaft movement. Energy Conversion and Management, 52, 3376-3382). This paper focuses on engine speed feedback stabilisation when fuel conversion efficiency is modelled with an exponential form, which is more suitable for automative applications. Simulation results are proposed to highlight the closed-loop control performances.

  13. Emission Characteristics and Egr Application of Blended Fuels with Bdf and Oxygenate (dmm) in a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    In this study, the possibility of biodiesel fuel and oxygenated fuel (dimethoxy methane ; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel (biodiesel fuel 90vol-% + DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load in comparison with the diesel fuel. But, engine power and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counter plan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF (95 vol-%) and DMM (5 vol-%) blended fuel and cooled EGR method (15%).

  14. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N. B. [Hi-Z Technology, Inc., San Diego, CA (United States); Bass, J. C. [Hi-Z Technology, Inc., San Diego, CA (United States); Ghamaty, S. [Hi-Z Technology, Inc., San Diego, CA (United States); Krommenhoek, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Kushch, A. [Hi-Z Technology, Inc., San Diego, CA (United States); Snowden, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Marchetti, S. [Hi-Z Technology, Inc., San Diego, CA (United States)

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  15. Improvement performance and emissions in a diesel engine dual-fueled with natural gas; Tennen gas dual fuel diesel kikan no seino haishutsu gas tokusei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, S.; Okamoto, T.; Kusaka, J.; Daisho, Y.; Kihara, R.; Saito, T. [Waseda University, Tokyo (Japan)

    1997-10-01

    This paper deals with a study on combustion and emission characteristics of a direct injection diesel engine dual-fueled with natural gas. Dual fueling systems tend to emit high unburned fuel especially at low load, resulting in a decreased thermal efficiency. This is because natural gas-air mixtures are too lean for flame to propagate under low load conditions. Intake charge heating and uncooled EGR are very useful to improve emissions and thermal efficiency at low load. Such favorable effects are supported by NO kinetic simulations. 2 refs., 13 figs.

  16. Numerical simulation of fuel sprays and combustion in a premixed lean diesel engine; Kihaku yokongo diesel kikan ni okeru nenryo funmu to nensho no suchi simulation

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, T.; Harada, A.; Sasaki, S.; Shimazaki, N.; Hashizume, T.; Akagawa, H.; Tsujimura, K.

    1997-10-01

    Fuel sprays and combustion in a direct injection Premixed lean Diesel Combustion (PREDIC) engine, which can make smokeless combustion with little NOx emission, is studied numerically. Numerical simulation was carried out by means of KIVA II based computer code with a combustion submodel. The combustion submodel describes the formation of combustible fuel vapor by turbulent mixing and four-step chemical reaction which includes low temperature oxidation. Comparison between computation and experiment shows qualitatively good agreement in terms of heat release rate and NO emission. Computational results indicate that the combustion is significantly influenced by fuel spray characteristics and injection timing to vary NO emission. 10 refs., 8 figs., 1 tab.

  17. Combustion and emissions of the diesel engine using bio-diesel fuel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The combustion and heat release of engines using diesel fuel and bio-diesel fuel have been investigated.The results illustrate that the combustion happens in advance and the ignition delay period is shortened.The initial heat release peak declines a little,the corresponding crankshaft angle changes in advance,and the combustion duration is prolonged.The economic performance and emission features of diesel engines using diesel fuel and bio-diesel fuel are compared.The results also show that the specific fuel consumption of bio-diesel increases by about 12% .The emissions,such as CO,HC,and particulate matter decrease remarkably whereas NOx increases a little.

  18. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2016-08-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  19. Laser-based diagnostics on NO in a diesel engine

    NARCIS (Netherlands)

    Brugman, Theodorus Maria

    1999-01-01

    Of all internal combustion engines diesel engines tend to be the most efficient. However, this high efficiency is coupled with specific emissions of nitric oxides (NOx = NO and NO2) and soot. Such emissions are best fought against at their very source: the diesel combustion process itself. The objec

  20. Conversion of diesel engines for natural gas engines; Conversao de motores diesel para gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Mauro Junior, Leonardo; Almeida, Silvio Carlos Anibal de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], e-mail: leonardomauro@terra.com.br, e-mail: silvio@gmail.com

    2006-07-01

    The present project approach the conversion of a Scania engine DSI 11, originally Diesel cycle, used for stationary generation, to operate at a Otto cycle natural gas. The conversion dedicated to Otto cycle allows a better performance at a lower cost generation to the consumer providing an energy economy when operating at a peak hours compared with the fees charged by the distributors. In the power range of this engine (231 kw), there is no other engine available at the brazilian market. An economic study of the conversion shows that the cost is significantly less than the importation of a similar engine. (author)

  1. Investigation of Performance and Emissions Effects of Waste Vegetable Oil Methyl Ester in A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Yahya ULUSOY

    2016-12-01

    Full Text Available In this study engine and emission performance of a 4-stroke, 4 cylinder, direct injection 62,5 kW engine, with three different biodiesel blends (B25, B50, B75,  was compared with those obtained with use of normal diesel (B0 through a 8-mode experimental test procedure, in convention with ISO 8178-C1. The results of the study showed that, performance and emission values of biodiesel fuels produced from vegetable oil and those obtained with diesel fuel (B0 are very close to each other.  In this context, the waste cooking oil, which is a serious risk to the environment and should be collected according to related legistlative measures,  could be processed to and used as biodiesel without creating any significant loss in terms of engine performance, while providing significant advantages in terms of engine emissions. These results revealed that, waste frying oils can be used as diesel fuel and to create an adding value for the economy instead of being potential environmental risk. 

  2. Design and Research of the EQ6105DTAA Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA...

  3. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    Science.gov (United States)

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic).

  4. Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Hazar, Hanbey [Department of Automotive, Faculty of Technical Education, Firat University, Elazig 23119 (Turkey); Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey)

    2010-03-15

    Many studies are still being carried out to find out surplus information about how vegetable based oils can efficiently be used in compression ignition engines. Raw rapeseed oil (RRO) was used as blended with diesel fuel (DF) by 50% oil-50% diesel fuel in volume (O50) also as blended with diesel fuel by 20% oil-80% diesel fuel in volume (O20). The test fuels were used in a single cylinder, four stroke, naturally aspirated, direct injection compression ignition engine. The effects of fuel preheating to 100 C on the engine performance and emission characteristics of a CI engine fueled with rapeseed oil diesel blends were clarified. Results showed that preheating of RRO was lowered RRO's viscosity and provided smooth fuel flow Heating is necessary for smooth flow and to avoid fuel filter clogging. It can be achieved by heating RRO to 100 C. It can also be concluded that preheating of the fuel have some positive effects on engine performance and emissions when operating with vegetable oil. (author)

  5. Evaluation of Performance and Emission characteristics of Turbocharged Diesel Engine with Mullite as Thermal Barrier Coating

    Directory of Open Access Journals (Sweden)

    P. N. Shrirao

    2011-06-01

    Full Text Available Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3 .2SiO2 (mullite (Al2O3= 60%, SiO2= 40% over a 150 μm thickness of NiCrAlY bond coat. Tests were carried out on standard engine (uncoated and low heatrejection (LHR engine with and without turbocharger. This paper is intended to emphasis on energy balance and emission characteristic for standard engine (uncoated and low heat rejection (LHR engine with and without turbocharger. Tests were carried out at different engine load and engine speed conditions for standard and low heatrejection engine with and without turbocharger. The results showed that there was 2.18% decreasing on specific fuel consumption value of low heat rejection (LHR engine with turbocharger compared to standard engine at full load. There was as much as 12% increasing on exhaust gas temperature of LHR engine with turbocharger compared tostandard engine at full load. There was as much as 20.64% increasing on NOx emission of exhaust gas, 22.05% decreasing on CO emission of exhaust gas and 28.20% decreasing on HC emission of exhaust gas of LHR engine with turbocharger compared to standard engine at full load.

  6. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    Science.gov (United States)

    Patond, S. B.; Chaple, S. A.; Shrirao, P. N.; Shaikh, P. I.

    2013-06-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3·2SiO2 (mullite) (Al2O3 = 60%, SiO2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  7. IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, Andre L.

    2000-08-20

    As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by

  8. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  9. Effect of hydrogen–diesel dual-fuel usage on performance, emissions and diesel combustion in diesel engines

    Directory of Open Access Journals (Sweden)

    Yasin Karagöz

    2016-08-01

    Full Text Available Diesel engines are inevitable parts of our daily life and will be in the future. Expensive after-treatment technologies to fulfil normative legislations about the harmful tail-pipe emissions and fuel price increase in recent years created expectations from researchers for alternative fuel applications on diesel engines. This study investigates hydrogen as additive fuel in diesel engines. Hydrogen was introduced into intake manifold using gas injectors as additive fuel in gaseous form and also diesel fuel was injected into cylinder by diesel injector and used as igniter. Energy content of introduced hydrogen was set to 0%, 25% and 50% of total fuel energy, where the 0% references neat diesel operation without hydrogen injection. Test conditions were set to full load at 750, 900, 1100, 1400, 1750 and finally 2100 r/min engine speed. Variation in engine performance, emissions and combustion characteristics with hydrogen addition was investigated. Hydrogen introduction into the engine by 25% and 50% of total charge energy reveals significant decrease in smoke emissions while dramatic increase in nitrogen oxides. With increasing hydrogen content, a slight rise is observed in total unburned hydrocarbons although CO2 and CO gaseous emissions reduced considerably. Maximum in-cylinder gas pressure and rate of heat release peak values raised with hydrogen fraction.

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  11. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines

    Science.gov (United States)

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing

    2014-11-01

    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  12. The Effect of Bio-Fuel Blends and Fuel Injection Pressure on Diesel Engine Emission for Sustainable Environment

    Directory of Open Access Journals (Sweden)

    Kandasamy Muralidharan

    2011-01-01

    Full Text Available Problem statement: Diesel engine emits more pollutants to atmosphere causing air pollution. This necessitates the search of a renewable alternate fuel which is environment friendly. The objective of this research was to investigate the environmental aspects of pongamia bio-fuel in a single cylinder diesel engine with the influence of fuel injection pressure. Approach: Bio-fuel was prepared from non-edible Pongamia pinnata oil by transesterification and used as a fuel in C.I engine. The effect of fuel injection pressure on the engine emission characteristics of a single cylinder direct injection diesel engine has been experimentally investigated using pongamia pinnata methyl ester and its blends with diesel fuel from 0-30% with an increment of 5% at full load. The tests were conducted at five different injection pressures (190, 200, 210, 220 and 230 KN m-2 by means of adjusting injector spring tension. Results: Compared to diesel, blend B5 exhibits lower engine emissions of unburnt hydrocarbon, carbon monoxide, oxides of nitrogen and carbon di oxide at full load. The High injection pressure of 220 KN m-2 shows lesser emissions of unburnt hydrocarbon and carbon monoxide while oxides of nitrogen and carbon dioxide are found to be slightly higher than diesel and blends at full load. Conclusion: From the test results, it was found that a high injection pressure of 220 KN m-2 causes better atomization with improved engine emission characteristics for diesel and blends at full load. Moreover blend B5 showed best results at 220 KN m-2 injection pressure.

  13. Advanced optical diagnostics applied to a multi-cylinder engine with gasoline direct injection; Weiterentwicklung der Visualisierungsmethodik am Beispiel eines Mehrzylindermotors mit Benzindirekteinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Alt, M.; Eberle, F.; Schaffner, P.; Quarg, J. [Opel Powertrain GmbH, Ruesselsheim (Germany)

    2004-07-01

    The development of modern combustion processes requires a more intensive use of simulation and optical measuring methods. When the combustion method of an engine concept has been determined and subsequently applied to one or more engines, the following development steps usually do not include the optical access. But in this phase of multicylinder engine development, too, an optical evaluation of the combustion processes provides important information. Especially regarding problems of time, the optical data can help to adopt the right solution and check it for its effect more easily. In this way the videoscopy offers a significant tool to optimize today's engines. The techniques of visualizing the Otto engine related combustion are continuously advanced. The resolution of quickacting CCD cameras has been improved considerably while at the same time reducing the exposure time. Both the injection and the mixture preparation can be investigated in detail under realistic conditions. Variations in the mixture preparation from cycle to cycle can also be represented. Today's state-of-the-art cameras with amplifier can visualize the optimum sootfree combustion without the necessity of an additional light. High-speed photomultiplier cameras can record single combustion cycles with a high resolution and thus enable the analysis. The endoscopic consideration of the combustion processes is no longer restricted to the visible range of the wavelength, but constitutes a visualization of the combustion in the ultraviolet range. The example of a four-cylinder engine with gasoline direct injection demonstrates the good applicability of the videoscopy. This technique can be employed quite easily to improve the understanding of the engine processes during the development phase. (orig.)

  14. Modal extraction on a diesel engine in operation

    DEFF Research Database (Denmark)

    Møller, Nis; Herlufsen, Henrik; Brincker, Rune

    2000-01-01

    In this paper an output only modal testing and identification of a diesel engine is presented. The only loading on the engine is the unknown loading from the engine itself. Two test cases were considered: engine run-up, and engine Run-Down. The response data were analyzed using two different...

  15. Modal Extraction on a Diesel Engine in Operation

    DEFF Research Database (Denmark)

    Møller, N.; Brincker, Rune; Andersen, P.

    2000-01-01

    In this paper an output only modal testing and identification of a diesel engine is presented The only loading on the engine is the unknown loading from the engine itself. Two test cases were considered: engine run-up, and engine Run-down. The response data were analysed using two different...

  16. Visualizing ignition and combustion of methanol mixtures in a diesel engine; Methanol funmu no glow chakka to nensho no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Inomoto, Y.; Harada, T.; Kusaka, J.; Daisho, Y.; Kihara, R.; Saito, T. [Waseda University, Tokyo (Japan)

    1997-10-01

    A glow-assisted ignition system tends to suffer from poor ignitability and slow flame propagation at low load in a direct-injection diesel engine fueled with methanol. To investigate the ignition process and improve such disadvantages, methanol sprays, their ignition and flames were visualized at high pressures and temperatures using a modified two-stroke engine. The results show that parameters influencing ignition, the location of a glow-plug, swirl level, pressure and temperature are important. In addition, a full kinetics calculation was conducted to predict the delay of methanol mixture ignition by taking into account 39 chemical species and 157 elementary reactions. 3 refs., 9 figs.

  17. Experimental investigation of the impact of using alcohol- biodiesel-diesel blending fuel on combustion of single cylinder CI engine

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, Ftwi Y.; Mamat, Rizalman; Abdullah, Abdul A.; Awad, Omar. I.

    2016-11-01

    The effect of alcohol addition has been experimentally in vestgated in the current study by blending it with diesel and palm based biodiesel on the combustion of a compression ignition engine. The experiment was run by single-cylinder, naturally aspirated, direct injection, four-stroke diesel engine. Based on the pressure-crank angle data collected from the pressure transducer and crank angle encoder, the combustion analysis such as incylinder pressure, incylinder temperature, energy release rate, cumulative energy release and ignition delay are analysed. In this comparative study, the effects of alcohols namely butanol BU20 (20% butanol addition on the commercially available diesel biodiesel emulsion) is compared and evaluated with pure diesel (D100). The results revealed that the the ignition delay for BU20 is longer as compared to that of D100 in all engine speeds and loads compared. Besides, the incylinder temperatures were rudecued with the butanol addition. The energy release rate for BU20 was higher than that for diesel, whereas the peak positions concerning the energy release rate for BU20 was discovered at 2400 rpm. Therefore addition of butanol will have positive role on the NOx emissions and stability of the engine due to its higher latent heat of vaporization.

  18. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  19. Digital Image Analysis Algorithm For Determination of Particle Size Distributions In Diesel Engines

    Science.gov (United States)

    Armas, O.; Ballesteros, R.; Gomez, A.

    One of the most serious problems associated to Diesel engines is pollutant emissions, standing out nitrogen oxides and particulate matter. However, although current emis- sions standards in Europe and America with regard to light vehicles and heavy duty engines refer the particulate limit in mass units, concern for knowing size and number of particles emitted by engines is being increased recently. This interest is promoted by last studies about particle harmful effects on health and is enhanced by recent changes in internal combustion engines technology. This study is focused on the implementation of a method to determine the particle size distribution made up in current methodology for vehicles certification in Europe. It will use an automated Digital Image Analysis Algorithm (DIAA) to determine particle size trends from Scanning Electron Microscope (SEM) images of filters charged in a dilution system used for measuring specific particulate emissions. The experimental work was performed on a steady state direct injection Diesel en- gine with 0.5 MW rated power, being considered as a typical engine in middle power industries. Particulate size distributions obtained using DIAA and a Scanning Mobil- ity Particle Sizer (SMPS), nowadays considered as the most reliable technique, were compared. Although number concentration detected by this method does not repre- sent real flowing particle concentration, this algorithm fairly reproduces the trends observed with SMPS when the engine load is varied.

  20. Diesel and gasoline engines VI. Quality injection, fuel mixture, simulation, application, metrology; Diesel- und Benzindirekteinspritzung VI. Einspritzqualitaet, Gemischbildung, Simulation, Applikation, Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Tschoeke, Helmut (ed.) [Otto-von-Guericke-Univ., Magdeburg (DE). Inst. fuer Mobile Systeme (IMS)

    2011-07-01

    Within the meeting 'Diesel and gasoline direct injection' of the Haus der Technik e.V. (Essen, Federal Republic of Germany) at 1st to 2nd December, 2010 in Berlin (Federal Republic of Germany) the following lectures were held: (1) Efficient common rail injection systems and intelligent regulation strategies for the fulfilment of future on-/off-highway emission limits (Christian Schugger); (2) Challenges for injection systems and combustion processes of large diesel engines for keeping the emission limits IMO TIER3 in 2016 (Horst Harndorf); (3) HFO operation with CR injection (Christian Poensgen); (4) Efficiency, potential and limits of shortened spraying distances at the diesel engine: Results from thermodynamic, optical and numerical investigations (Oliver Heinold); (5) Advantages of the formation of the injection process for the fuel consumption and pollutant emission of diesel engines (Maximilian Brauer); (6) Control of combustion rates: A decisive step towards a further optimization of CO{sub 2}, emissions and NVH (Florian Kremer); (7) Ultra high pressure fuel injection for minimized engine-out emissions of HD diesel engines (Olad Erik Herrmann); (8) Analysis of injection sprays by means of large high-speed engines under cold and evaporating conditions (Christian Fink); (9) Development of optimal cam contours (Hendrik Grosse-Loescher); (10) Design criteria for the CO{sub 2} optimization of the new Continental 2-piston-diesel pump platform (Peter Voigt); (11) Innovative measurement for injection systems (Bjoern Janetzky); (12) Process for the measurement of the rate of injection on engine-related conditions (Wolfgang Fimml); (13) Experimental and numerical investigations of hydro erosive grinding for injection components (Uwe Iben); (14) Application programs for the calculation of spray propagation in a moving engine's combustion chamber (Kai Uwe Muench); (15) An integrated approach for the fulfilment of future emission legislations at stationary

  1. Hydrocarbon raw emission characterization of a direct-injection spark ignition engine operated with alcohol and furan-based bio fuels

    Energy Technology Data Exchange (ETDEWEB)

    Thewes, Matthias [FEV GmbH, Aachen (Germany); Mauermann, Peter; Pischinger, Stefan [RWTH Aachen Univ. (Germany). Inst. for Combustion Engines; Bluhm, Kerstin; Hollert, Henner [RWTH Aachen Univ. (Germany). Inst. for Environmental Research, Dept. of Ecosystem Analysis

    2013-06-01

    Within the Cluster of Excellence ''Tailor-Made Fuels from Biomass'' the impact of various potential bio fuels on engine combustion is studied. Besides alcohols, furan-based bio fuels have come into the focus with novel production routes to transform biomass into 2-Methylfuran or 2,5-Dimethylfuran. In the present study, the influence of these and other bio fuels on the hydrocarbon raw emission spectrum of a direct-injection spark-ignition single cylinder engine is studied experimentally by means of gas chromatographic and mass spectroscopic analysis of exhaust gas samples. The results obtained are compared to operation with conventional EN 228 gasoline fuel. This fuel showed slip of partially carcinogenic aromatic fuel molecule(s) in warm and in cold engine conditions. For the bio fuels, slip was found to be significant for the alcohol fuels. The carcinogenic molecule 1,3-Butadiene was present in the exhaust gas of all fuels. Furan as another possibly carcinogenic molecule was found at significantly higher concentrations in the exhaust gas of the furan-based bio fuels compared to conventional gasoline fuel but not in the exhaust gas of the alcohol fuels. (orig.)

  2. Diesel engines in practice. 8. rev. ed. Dieselmotoren-Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Baentsch, E.

    1987-01-01

    The well-known manual has been completely revised and re-edited. A brief historical and economic review is followed by a discussion of the following subjects: Torque and power; fuel consumption; lube oil and cooling water; mass balance in multicylinder engines; oversquare and undersquare engines; suction engines and supercharged engines; two-stroke and four-stroke engines; engine selection; combustion processes; exhaust emissions; diesel engines in operation; cooling; piping; lubrication; starting; practical tests; variable-fuel engines. (HWJ).

  3. Effect ofHydrogen Use on Diesel Engine Performance

    Science.gov (United States)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  4. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  5. Supercritical fluid mixing in Diesel Engine Applications

    Science.gov (United States)

    Bravo, Luis; Ma, Peter; Kurman, Matthew; Tess, Michael; Ihme, Matthias; Kweon, Chol-Bum

    2014-11-01

    A numerical framework for simulating supercritical fluids mixing with large density ratios is presented in the context of diesel sprays. Accurate modeling of real fluid effects on the fuel air mixture formation process is critical in characterizing engine combustion. Recent work (Dahms, 2013) has suggested that liquid fuel enters the chamber in a transcritical state and rapidly evolves to supercritical regime where the interface transitions from a distinct liquid/gas interface into a continuous turbulent mixing layer. In this work, the Peng Robinson EoS is invoked as the real fluid model due to an acceptable compromise between accuracy and computational tractability. Measurements at supercritical conditions are reported from the Constant Pressure Flow (CPF) chamber facility at the Army Research Laboratory. Mie and Schlieren optical spray diagnostics are utilized to provide time resolved liquid and vapor penetration length measurement. The quantitative comparison presented is discussed. Oak Ridge Associated Universities (ORAU).

  6. Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel

    Directory of Open Access Journals (Sweden)

    C. Syed Aalam

    2015-09-01

    Full Text Available Experiments were conducted to determine engine performance, exhaust emissions and combustion characteristics of a single cylinder, common rail direct injection (CRDI system assisted diesel engine using diesel with 25 percentage of zizipus jujube methyl ester blended fuel (ZJME25. Along with this ZJME25 aluminium oxide nanoparticles were added as additive in mass fractions of 25 ppm (AONP 25 and 50 ppm (AONP 50 with the help of a mechanical Homogenizer and an ultrasonicator. It was observed that aluminium oxide nanoparticles blended fuel exhibits a significant reduction in specific fuel consumption and exhaust emissions at all operating loads. At the full load, the magnitude of HC and smoke emission for the ZJME25 before the addition of aluminium oxide nanoparticles was 13.459 g/kW h and 79 HSU, whereas it was 8.599 g/kW h and 49 HSU for the AONP 50 blended ZJME25 fuel respectively. The results also showed a considerable enhancement in brake thermal efficiency and heat release rate due to the influence of aluminium oxide nanoparticles addition in biodiesel–diesel blend.

  7. Experimental investigation on a diesel engine using neem oil and its methyl ester

    Directory of Open Access Journals (Sweden)

    Sivalakshmi S.

    2011-01-01

    Full Text Available Fuel crisis and environmental concerns have led to look for alternative fuels of bio-origin sources such as vegetable oils, which can be produced from forests, vegetable oil crops and oil bearing biomass materials. Vegetable oils have energy content comparable to diesel fuel. The effect of neem oil (NeO and its methyl ester (NOME on a direct injected four stroke, single cylinder diesel engine combustion, performance and emission is investigated in this paper. The results show that at full load, peak cylinder pressure is higher for NOME; peak heat release rate during the premixed combustion phase is lower for neat NeO and NOME. Ignition delay is lower for neat NeO and NOME when compared with diesel at full load. The brake thermal efficiency is slightly lower for NeO at all engine loads, but in the case of NOME slightly higher at full load. It has been observed that there is a reduction in NOx emission for neem oil and its methyl ester along with an increase in CO, HC and smoke emissions.

  8. Performance Combustion Characteristics and Exhaust Emission of a Direct Injection Diesel Engine Using Water/Oil Emulsions as Fuel.

    Science.gov (United States)

    1985-09-30

    PD pressure dorp across the meriam laminar flow element PSI pounds per square inch RAIR ideal gas constant for air RFG rotational function generator...with a 1/2 inch layer of Smooth Kote insulation. Intake Air Flow Meter The intake air flow is measured using a Meriam Laminar Flow Element. The air...Precision Instrumentation (+ or -) Fuel Flow i-i000 gr 0.01 gr Fisher/Ainswarth ’. LC-IO000 Air Flow 0-200 CFm 0.5 CFM Meriam LFE Speed 0-7000 RPM 2.0

  9. Application of thermal barrier coating for improving the suitability of Annona biodiesel in a diesel engine

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available The Annona biodiesel was produced from Annona oil through transesterification process. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using a annona methyl ester as a fuel. They are blended together with the Neat diesel fuel such as 20%, 40%, 60%, 80%, and Neat biodiesel. The performance, emission and combustion characteristics are evaluated by operating the engine at different loads. The performance parameters such as brake thermal efficiency, brake specific fuel consumption. The emission constituents such as carbon monoxide, unburned hydrocarbons, oxides of nitrogen, and smoke were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with 100 µm of NiCrAl as lining layer. Later the same parts were coated with 400 µm material of coating that was the mixture of 88% of ZrO2, 4% of MgO, and 8% of Al2O3. After the engine coating process, the same fuels is tested in the engine at the same engine operation. The same performance and emission parameters were evaluated. Finally, these parameters are compared with uncoated engine in order to find out the changes in the performance and emission parameters of the coated engine. It is concluded that the coating engine resulting in better performance, especially in considerably lower brake specific fuel consumption values. The engine emissions are lowered both through coating and annona methyl ester biodiesel expect the nitrogen oxides emission.

  10. Performance and Emission Characteristics of Low Heat Rejection Diesel Engine Fueled with Biodiesel and High Speed Diesel

    Directory of Open Access Journals (Sweden)

    T. Gopinathan

    2014-10-01

    Full Text Available Depleting petroleum reserves on the earth and increasing concerns about the environment leads to the question for fuels which are eco-friendly safer for human beings. The objective of present study was to investigate the effect of coating on cylinder head of a Diesel engine on the performance and emission characteristics of exhaust gases using Bio Diesel and High Speed Diesel (HSD as a fuel. In this study the effect of Tin and Hard Chrome coating on the performance and emission characteristics of diesel engine was investigated using Bio Diesel and High Speed Diesel as a fuel. For this purpose the cylinder head of the test engine were coated with a Tin and Hard Chrome of 100 µ thick by the Electroplating method. For comparing the performance of the engine with coated components with the base engine, readings were taken before and after coating. To make the diesel engine to work with Bio Diesel and High Speed Diesel a modification was done. The engine’s performance was studied for both Bio Diesel and High Speed Diesel with and without Tin, Hard Chrome coating. Also the emissions values are recorded to study the engine’s behavior on emissions. Satisfactory performance was obtained with Tin and Hard Chrome coating compared with a standard diesel engine. The brake thermal efficiency was increased up to 2.08% for High Speed Diesel with Tin coating and there was a significant reduction in the specific fuel consumption. The CO emission in the engine exhaust decreases with coating. Using Bio Diesel and High Speed Diesel fuel for a LHR diesel engine causes an improvement in the performance characteristics and significant reduction in exhaust emissions.

  11. Nano Catalysts for Diesel Engine Emission Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  12. Monitoring diesel engine parameters based on FBG probe

    Science.gov (United States)

    Zhang, Hao; Jiang, Qi; Wang, Bao-yan; Wang, Jun-jie

    2016-09-01

    This paper proposes an unprecedented systematic approach for real-time monitoring the temperature and flow of diesel engine by using embedded fiber Bragg grating (FBG). By virtue of FBG's temperature effect, we design a novel sensitive FBG temperature sensing probe to measure the temperature of cylinder head and inlet flow of diesel engine. We also establish the corresponding software platform for intuitive data analysis. The experimental and complementary simulation results simultaneously demonstrate that the FBG-based optical fiber technique possesses extraordinary reproducibility and sensitivity, which makes it feasible to monitor the temperature and inlet flow of diesel engine. Our work can provide an effective way to evaluate the thermal load of cylinder head in diesel engine.

  13. DIESEL ENGINES' VIBROACOUSTIC SIGNATURE EXTRACTION BY WAVELET PACKET TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    邹剑; 陈进; 邹军; 耿遵敏

    2002-01-01

    Multisource unstable impulsive excitations, time-varying transmission path, concentrated mode, dispersion and reverberation that are important characteristics of reciprocating machines such as diesel engines result in wide-band non-stationary vibroacoustic responses which influence the effective extraction of vibroacoustic signatures and become a key factor to limit diesel engines' vibration diagnosis. In this paper, a serial theoretical deduction on the unstable dynamic properties of diesel engines was made; the mechanism of non-stationary vibroacoustic responses was elucidated. Based upon that, the wavelet packet technique was introduced. The reason for the existence of frequency aliasing in the Paley series from wavelet packets' decomposition was analyzed, and the wavelet packet frequency-shifting algorithm was given. Experiments on 190 serial diesel engines verify the given method's significant validity in vibroacoustic signature extraction and reciprocating machines' vibration diagnosis.

  14. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    National Research Council Canada - National Science Library

    R. B. Sharma; Dr. Amit Pal

    2014-01-01

    In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried...

  15. Wood pyrolysis oil for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Paro, D.; Gros, S.; Hellen, G.; Jay, D.; Maekelae, T.; Rantanen, O.; Tanska, T. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)

    1996-12-01

    Wood Pyrolysis oil (WPO) has been identified by the Technical Research Centre of Finland (VTT) as the most competitive biofuel product which can be produced from biomass. The fuel is produced by a fast pyrolysis technique, using wood chipping`s or sawdust. The process can be applied to other recycling products such as straw etc. The use of WPO as a Diesel power plant fuel has been studied, and a fuel specification has been developed. The fuel characteristics have been analysed. There are several fuel properties addressed in the paper which have had to be overcome. New materials have been used in the fuel injection system. The fuel injection system development has progressed from a pump-line-pipe system to a common rail system. The fuel requires a pilot fuel oil injection to initiate combustion. The targets for the fuel injection system have been 1500 bar and 30 deg C injection period with a fuel of 15 MJ/kg lower heating value and 1220 Kg/m{sup 3} density. The combustion characteristics from both a small 80 mm bore engine initially, and then later with a single cylinder test of a 320 mm bore Waertsilae engine, have been evaluated. (author)

  16. Desempenho de motor de injeção direta sob misturas de biodiesel metílico de soja Performance of a direct injection engine using soybeans methyl biodiesel blends

    Directory of Open Access Journals (Sweden)

    Gustavo Heller Nietiedt

    2011-07-01

    Full Text Available O objetivo do trabalho foi avaliar o uso de misturas de biodiesel metílico de soja e diesel em motor de ignição por compressão e injeção direta de combustível. Os ensaios foram realizados em bancada dinamométrica, utilizando as misturas B10, B20 e B100 em comparação ao diesel comercial (B5. O desempenho do motor foi analisado por meio da tomada de potência (TDP do trator para cada combustível. Os melhores resultados obtidos para potência e consumo específico de combustível, respectivamente, foram: B5 (44,62kW; 234,87g kW-1 h-1; B10 (44,73kW; 233,78g kW-1 h-1; B20 (44,40kW; 236,20g kW-1 h-1 e B100 (43,40kW; 263,63g kW-1 h-1. Concluiu-se que os melhores resultados ocorreram sob o uso do combustível B10 (potência superior em apenas 0,2% em relação ao combustível B5 e consumo específico inferior em apenas 0,5% em relação ao B5. O combustível B100 apresentou diferenças significativas em relação aos demais combustíveis (potência 2,8% inferior em relação ao B5 e consumo específico 10,9% maior em relação ao B5.The aim of this study was to evaluate the use of soybeans methyl biodiesel blends and diesel in an ignition compression engine with fuel direct injection. The tests were performed in a dynamometer bench, using the blends B10, B20 and B100 compared to the commercial diesel (B5. The engine performance was analyzed by tractor power take off (PTO for each fuel. The best results obtained for the power and the specific fuel consumption, respectively, were: B5 (44.62kW; 234.87g kW-1 h-1; B10 (44.73kW; 233.78g kW-1 h-1; B20 (44.40kW; 236.20g kW-1 h-1 and B100 (43.40kW; 263.63g kW-1 h-1. It was concluded that the best results happened on the use of B10 fuel (more power in only 0.2% than fuel B5 and lower specific consumption in only 0.5% than B5. The B100 fuel showed significant differences compared to the other fuels (power lower 2.8% than B5 and more specific consumption in 10.9% than B5.

  17. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  18. Activated carbon use in treating diesel engine exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G.; Babyak, R.A. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1996-10-01

    Several active carbon materials were observed to be particularly effective in processes for the removal of nitrogen oxides from exhaust gases. This paper describes the application of active carbon materials to two diesel engine exhaust gases at McClellan AFB in California. More specifically, one application involved a large diesel engine that supplies emergency power at the Base, and the second involved a mobile diesel-fueled generator that provides auxiliary power to aircraft. The designs of systems to control emissions for each application are discussed, and the results of tests on laboratory-scale, pilot-scale, and full-scale systems are presented.

  19. An Experimental Study of Emission and Combustion Characteristics of Marine Diesel Engine with Fuel Injector Malfunctions

    Directory of Open Access Journals (Sweden)

    Kowalski Jerzy

    2016-01-01

    Full Text Available The presented paper shows the results of the laboratory study on the relation between chosen malfunctions of a fuel injector and composition of exhaust gas from the marine engine. The object of research is a marine 3-cylinder, four-stroke, direct injection diesel engine with an intercooler system. The engine was loaded with a generator and supercharged. The generator was electrically connected to the water resistance. The engine operated with a load between 50 kW and 250 kW at a constant speed. The engine load and speed, parameters of the turbocharger, systems of cooling, fuelling, lubricating and air exchange, were measured. Fuel injection and combustion pressures in all cylinders of the engine were also recorded. Exhaust gas composition was recorded by using a electrochemical gas analyzer. Air pressure, temperature and humidity were also recorded. Emission characteristics of the engine were calculated according to ISO 8178 standard regulations. During the study the engine operated at the technical condition recognized as „working properly” and with simulated fuel injector malfunctions. Simulation of malfunctions consisted in the increasing and decreasing of fuel injector static opening pressure, decalibration of fuel injector holes and clogging 2 neighboring of 9 fuel injector holes on one of 3 engine cylinders.

  20. Performance, emission and economic assessment of clove stem oil-diesel blended fuels as alternative fuels for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2008-05-15

    In this study the performance, emission and economic evaluation of using the clove stem oil (CSO)-diesel blended fuels as alternative fuels for diesel engine have been carried out. Experiments were performed to evaluate the impact of the CSO-diesel blended fuels on the engine performance and emissions. The societal life cycle cost (LCC) was chosen as an important indicator for comparing alternative fuel operating modes. The LCC using the pure diesel fuel, 25% CSO and 50% CSO-diesel blended fuels in diesel engine are analysed. These costs include the vehicle first cost, fuel cost and exhaust emissions cost. A complete macroeconomic assessment of the effect of introducing the CSO-diesel blended fuels to the diesel engine is not included in the study. Engine tests show that performance parameters of the CSO-diesel blended fuels do not differ greatly from those of the pure diesel fuel. Slight power losses, combined with an increase in fuel consumption, were experienced with the CSO-diesel blended fuels. This is due to the low heating value of the CSO-diesel blended fuels. Emissions of CO and HC are low for the CSO-diesel blended fuels. NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel operation mode. A remarkable reduction in the exhaust smoke emissions can be achieved when operating on the CSO-diesel blended fuels. Based on the LCC analysis, the CSO-diesel blended fuels would not be competitive with the pure diesel fuel, even though the environmental impact of emission is valued monetarily. This is due to the high price of the CSO. (author)

  1. A computer simulation of the turbocharged turbo compounded diesel engine system: A description of the thermodynamic and heat transfer models

    Science.gov (United States)

    Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.

    1985-01-01

    A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.

  2. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  3. Effect of Bio Ethanol and Diesel Blend on Small Diesel Engine Vibration

    Directory of Open Access Journals (Sweden)

    S.H Hashemi Fard

    2014-09-01

    Full Text Available The use of Bio-ethanol as an alternative diesel engine fuel is rapidly increasing. Bio-ethanol is mixed with diesel fuel at different ratios and used in CI and SI engines. Since vibrations have direct effects on users and engine components, for this reason analysis of vibration resulting from combustion in CI engines is very important. In this study, evaluation of vibration was performed for both diesel and ethanol blends. Commercial diesel fuel (D100, E2 (2% ethanol and 98% diesel fuel, E5, E10, E15 and E20 were used in a two-wheel MITSUBISHI tractor. The engine was tested in 1200, 1600, 2000 and 2400 rpm for all fuel blends, and also the effect of load was investigated for D100 and E10. Results showed that vibration is significantly affected by fuel blend. It was observed that E10 had the lowest vibration while E20 had the highest value. It was also observed that vibration increased as engine speed increased for all fuel blends. It was found that both axial and lateral vibrations affected significantly by load. The lateral vibrations decreased continuously with load rise , but the axial vibrations increased initially but started to follow a reverse trend.

  4. Performance investigations of a diesel engine using ethyl levulinate-diesel blends

    Directory of Open Access Journals (Sweden)

    Zhi-wei Wang

    2012-11-01

    Full Text Available Ethyl levulinate (EL can be produced from bio-based levulinic acid (LA and ethanol. Experimental investigations were conducted to evaluate and compare the performances and exhaust emission levels of ethyl levulinate as an additive to conventional diesel fuel, with EL percentages of 5%, 10%, 15% (with 2% n-butanol, and 20% (with 5% n-butanol, in a horizontal single-cylinder four stroke diesel engine. Brake-specific fuel consumptions of the EL-diesel blends were about 10% higher than for pure diesel because of the lower heating value of EL. NOx and CO2 emissions increased with engine power with greater fuel injections, but varied with changing EL content of the blends. CO emissions were similar for all of the fuel formulations. Smoke emissions decreased with increasing EL content.

  5. Dimethyl Ether as a Fuel for Diesel Engines

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.

    1999-01-01

    DME has recently been shown to be an attractive high cetane fuel for diesel engines, offering the advantages of soot free operation, with low engine noise, the potential for low NOx emissions, and low reactivity emissions of hydrocarbons and unburned fuel. DME has physical characteristics similar...... of engine fuels systems in regard to lubricity and suitable sealing materials....

  6. Development of catalyst for diesel engine; Diesel engine yo shokubai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, H.; Furutani, T.; Nagami, T. [Toyota Motor Corp., Aichi (Japan); Aono, N.; Goshima, H.; Kasahara, K. [Cataler Industrial Co. Ltd., Shizuoka (Japan)

    1997-10-01

    The new concept catalyst for diesel engine has been developed. When the exhaust temperature is low, SOF and HC are temporarily adsorbed by the adsorbent within the catalyst and are oxidized as the temperature rise. The process of this development have manifested as follows. (1) The coating material is important factor to govern the oxidation activity. (2) SOF is reduced by the coating material in low temperature less than 200degC. (3) The coating material, which has low SO2 adsorbing rate suppress the sulfate formation at high temperature. 2 refs., 11 figs., 1 tab.

  7. Tomorrows diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    This paper analyzes the different ways of reducing the pollutants emissions from diesel engines in order to follow the future French environmental regulations. The combustion in diesel engines is analyzed first: principle and consequences, calculated combustion, pollution units, influences of ambient air conditions on NO{sub x} production, maximum legal pollutant concentration limits (French regulation for fixed installations, NO{sub x}, CO, HC and dust limit values), influence of fuel composition. Then the existing methods for the reduction of pollutants emissions are analyzed and compared with respect to their cost: mechanical adjustment of engines, water injection, exhaust gases recirculation, treatment of fumes. (J.S.) 4 refs.

  8. Documentation of the Benson Diesel Engine Simulation Program

    Science.gov (United States)

    Vangerpen, Jon

    1988-01-01

    This report documents the Benson Diesel Engine Simulation Program and explains how it can be used to predict the performance of diesel engines. The program was obtained from the Garrett Turbine Engine Company but has been extensively modified since. The program is a thermodynamic simulation of the diesel engine cycle which uses a single zone combustion model. It can be used to predict the effect of changes in engine design and operating parameters such as valve timing, speed and boost pressure. The most significan change made to this program is the addition of a more detailed heat transfer model to predict metal part temperatures. This report contains a description of the sub-models used in the Benson program, a description of the input parameters and sample program runs.

  9. Experimental investigations of LPG use at the automotive diesel engine

    Directory of Open Access Journals (Sweden)

    Nutu Cristian

    2017-01-01

    Full Text Available The liquefied petroleum gas has a great potential to improve energetically and pollution performance of compression ignition engines due to its good combustion properties. This paper presents results of the researches carried on a car compression ignition engine with a 1.5 dm3 displacement, fuelled with diesel fuel and liquefied petroleum gas by diesel-gas method at the operating regimens of 70% and 55% engine load, engine speed of 2000 rpm and for substitute ratios between (6–19%. A specific objective of this paper is to establish a correlation between the optimum adjustments and the substitute ratio of the diesel fuel with liquefied petroleum gas for the investigated regimens to limit the maximum pressure and smoke level, knock and rough engine functioning and having regard to decrease the fuel consumption and the level of the pollutant emissions.

  10. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, T.K. [Mechanical Engineering Department, Tezpur University, Napaam, Tezpur, Assam 784028 (India); Baruah, D.C. [Energy Department, Tezpur University, Napaam, Tezpur, Assam 784028 (India)

    2010-03-15

    Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency. (author)

  11. Performance of diesel engine fuelled with sunflower biodiesel blends; Desempenho de motor diesel com misturas de biodiesel de oleo de girassol

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Ila Maria; Maziero, Jose Valdemar Gonzalez; Bernardi, Jose Augusto; Storino, Moises [Instituto Agronomico de Campinas (CEA/IAC), SP (Brazil). Centro de Engenharia e Automacao; Ungaro, Maria Regina [Instituto Agronomico de Campinas (IAC), SP (Brazil). Centro de Graos e Fibras

    2006-07-01

    The aim of this paper was to evaluate the use of sunflower bio diesel blends in a CI engine, direct injection. The test procedure was done in a dynamometer bench had been determined the performance of engine through power take-off (PTO) with use of diesel and sunflower bio diesel blends (B5, B10, B20 and B100). The lubricating oil was analyzed before and after period of 96 hours. The results were: D (40,7 kw; 271 g/kw.h); B5 (40,3 kw; 271 g/kw.h); B10 (39,8 kw; 277 g/kw.h); B20 (40,0 kw; 277 g/kw.h) e B100 (39,8 kw; 291 g/kw.h). It was conclude that the use of blends B5, B10, B20 and B100 decreased the power of PTO max. 2,2% and increased the fuel consumption max. 7, 3%. The analyze of lubricating oil showed that the viscosity, water content and level of iron were the parameters more affected, although it had been acceptable. (author)

  12. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Ajin C. Sajeevan

    2013-01-01

    Full Text Available Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.

  13. Investigations of effects of pilot injection with change in level of compression ratio in a common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Gajarlawar Nilesh

    2013-01-01

    Full Text Available These day diesel engines are gaining lots of attention as prime movers for various source of transportation. It offers better drive ability, very good low end torque and importantly the lower CO2 emission. Diesel engines are bridging the gap between gasoline and diesel engines. Better noise vibration and harshness levels of gasoline engine are realized to great extent in diesel engine, thanks to common rail direct injection system. Common rail injection system is now well known entity. Its unique advantage is flexible in operation. In common rail injection system, number of injection prior and after main injection at different injection pressure is possible. Due to multiple injections, gain in emission reduction as well as noise has been already experienced and demonstrated by researcher in the past. However, stringent emission norms for diesel engine equipped vehicle demands for further lower emission of oxides of nitrogen (NOx and particulate matter (PM. In the present paper, authors attempted to study the effect of multiple injections in combination with two level of compression ratio. The aim was to study the combustion behavior with the reduced compression ratio which is going to be tried out as low temperature combustion concept in near future. The results were compared with the current level of compression ratio. Experiments were carried out in 2.2L cubic capacity engine with two levels of compression ratios. Pilot injection separation and quantities were varied keeping the main injection, rail pressure, boost pressure and EGR rate constant. Cylinder pressure traces and gross heat release rates were measured and analyzed to understand the combustion behavior.

  14. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    Science.gov (United States)

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  15. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  16. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lyes Tarabet

    2012-01-01

    Full Text Available Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v% at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  17. Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A.; Burton, Jonathan; Sindler, Petr; Christensen, Earl; Fouts, Lisa; Chupka, Gina M.; McCormick, Robert L.

    2016-04-01

    Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions. The results show a range of knock resistances that correlate well with RON. Molecules with relatively low boiling point and high vapor pressure had little effect on PM emissions. In contrast, the aromatic oxygenates caused significant increases in PM emissions (factors of 2 to 5) relative to the base gasoline. Thus, any effect of their oxygen atom on increasing local air-fuel ratio was outweighed by their low vapor pressure and high double-bond equivalent values. For most fuels and oxygenate blend components, PMI was a good predictor of PM emissions. However, the high boiling point, low vapor pressure oxygenates 2-phenylethanol and 2,4-xylenol produced lower PM emissions than predicted by PMI. This was likely because they did not fully evaporate and combust, and instead were swept into the lube oil.

  18. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    Science.gov (United States)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  19. Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Florian Zurbriggen

    2016-01-01

    Full Text Available This paper investigates the combustion phasing control of natural gas-diesel engines. In this study, the combustion phasing is influenced by manipulating the start and the duration of the diesel injection. Instead of using both degrees of freedom to control the center of combustion only, we propose a method that simultaneously controls the combustion phasing and minimizes the amount of diesel used. Minimizing the amount of diesel while keeping the center of combustion at a constant value is formulated as an optimization problem with an equality constraint. A combination of feedback control and extremum seeking is used to solve this optimization problem online. The necessity to separate the different time scales is discussed and a structure is proposed that facilitates this separation for this specific example. The proposed method is validated by experiments on a test bench.

  20. Experimental investigation and modeling of diesel engine fuel spray

    OpenAIRE

    Kolodnytska, R. V.; Karimi, K; Crua, C.; Heikal, M. R.; Sazhina, E. M.

    2008-01-01

    A model for spray penetration in diesel engines is suggested. It is based on momentum conservation for a realistic mass flow rate transient profile. The modelling approach is based on tracking of centre-of-fuel-mass (COFM) of injected diesel fuel. The model was validated for Bosch and Delphi injectors using the data obtained at Sir Harry Ricardo automotive centre, University of Brighton, UK. The model is shown to produce a good agreement with the experimental data until ...

  1. JET BREAKUP AND SPRAY FORMATION IN A DIESEL ENGINE.

    Energy Technology Data Exchange (ETDEWEB)

    GLIMM,J.; LI,X.; KIM,M.N.; OH,W.; MARCHESE,A.; SAMULYAK,R.; TZANOS,C.

    2003-06-17

    The breakup of injected fuel into spray is of key interest to the design of a fuel efficient, nonpolluting diesel engine. We report preliminary progress on the numerical simulation of diesel fuel injection spray with the front tracking code FronTier. Our simulation design is set to match experiments at ANL, and our present agreement is semi-quantitative. Future efforts will include mesh refinement studies, which will better model the turbulent flow.

  2. Investigations about the application of a NO{sub X} storage catalyst in a diesel engine; Untersuchungen zum Einsatz eines NO{sub X}-Speicherkatalysators am Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Kattwinkel, P.

    2007-07-01

    Modern diesel engines with direct injection and exhaust turbochargers have found a wide acceptance as propulsion of motor vehicles due to their high efficiency rate and good driving dynamics. The legislation for exhaust gas which is getting stricter worldwide does not only require reducing the particle emission but also the nitrogen oxide emission of motor vehicles with diesel engines in the future. In contrast to the stoichiometrically operated Otto engine the exhaust gas processing of a diesel engine provides the task of reducing nitrogen oxides with an air excess. NO{sub X} storage catalysts, which are already used in series in lean-operated Otto engines, can also be used in diesel engines for reducing nitrogen oxide emission. The present work shows experimental investigations of the application of the NO{sub X} storage catalyst in a diesel engine with a particular focus on realising the storage regeneration and on the problem of the sulphide poisoning of the NO{sub X} storage catalysts. (orig.)

  3. Product audit for heavy duty diesel engines in production environment

    Science.gov (United States)

    Suh, Sanghoon; Beresford, Jim

    2005-09-01

    A product audit at manufacturing plants has become more important due to the customer's requirements on product quality. Noise and vibration performance have been a primary concern for gas engines and small size diesel engines. Lately, more interest has been shown by truck manufacturers about engine noise for heavy duty diesel application. It has been regarded that acoustic measurements requires dedicated measurement environment for detailed study. This case study shows that acoustic measurements can be performed at performance cell without any dedicated acoustic treatment at the manufacturing plant to identify some of the noise characteristics with proper preparation. Order tracking and loudness were used to identify two different characteristics related to front gear train in heavy duty diesel engines. In addition, the coordination between technical organization and manufacturing plant for the data acquisition and analysis is discussed.

  4. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  5. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    OpenAIRE

    Teerawat Apichato; Gumpon Prateepchaikul1

    2003-01-01

    Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term perfor...

  6. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  7. A comprehensive study on the emission characteristics of E-diesel dual-fuel engine

    Directory of Open Access Journals (Sweden)

    A. Avinash

    2016-03-01

    Full Text Available Each year, the ultimate goal of emission legislation is to force technology to the point where a practically viable zero emission vehicle becomes a reality. Albeit the direction to reach this target is a formidable challenge, homogeneous charge compression ignition (HCCI is a new combustion concept to produce ultra low nitrogen oxides (NOx and smoke emissions. By the way, an endeavor has been made in this work to achieve a simultaneous reduction in both NOx and smoke levels in a direct injection compression ignition engine converted to operate on premixed charge compression ignition mode. Indeed, these promises were made possible in this work by preparing premixed fuel–air mixture outside the engine cylinder. For this purpose, ethanol was injected in the intake port at various premixed ratios (5%, 10%, 15%, 20%, 25% and 30% and conventional diesel was injected as usual. It was extrapolated from the experimental results that e-diesel operation can significantly reduce NOx and smoke levels. In addition, NOx and smoke levels reduced in this experimental study with increase in premixed fraction. Nevertheless, unburned hydrocarbons (UBHC and carbon monoxide (CO emissions exhibited reverse trend with increase in premixed fraction and the maximum value of HC and CO emission levels was noted with 30% premixed fraction.

  8. Diesel engine torsional vibration control coupling with speed control system

    Science.gov (United States)

    Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen

    2017-09-01

    The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.

  9. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of stea

  10. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  11. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, John W.

    2000-08-20

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  12. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  13. OH radical imaging in a DI diesel engine and the structure of the early diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Dec, J.E.; Coy, E.B.

    1996-03-01

    Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

  14. Emission characteristics of a turbocharged diesel engine fueled with gas-to-liquids

    Institute of Scientific and Technical Information of China (English)

    WU Tao; ZHANG Wugao; FANG Junhua; HUANG Zhen

    2007-01-01

    Emission characteristics of a turbocharged,intercooled,heavy-duty diesel engine operating on neat gas-toliquids (GTL) and blends of GTL with conventional diesel were investigated and a comparison was made with those of diesel fuel.The results show that nitrogen oxides (NOx),smoke,and particulate matter (PM) emissions can be decreased when operating on GTL and diesel-GTL blends.Engine emissions decrease with an increase of GTL fraction in the blends.Compared with diesel fuel,an engine operatingon GTL can reduce NOx,PM,carbon monoxide (CO),and hydrocarbon (HC) by 23.7%,27.6%,16.6% and 12.9% in ECE R49 13-mode procedure,respectively.Engine speed and load have great influences on emissions when operating on diesel-GTL blends and diesel fuel in the turbocharged diesel engine.The study indicates that GTL is a promisingalternative fuel for diesel engines to reduce emissions.

  15. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Directory of Open Access Journals (Sweden)

    P. Venkateswara Rao, B. V. Appa Rao

    2012-01-01

    Full Text Available The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME is used with additive Triacetin (T at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load. The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  16. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  17. EXPERIMENTAL INVESTIGATIONS ON THE EFFECT OF HYDROGEN INDUCTION ON PERFORMANCE AND EMISSION BEHAVIOUR OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH PALM OIL METHYL ESTER AND ITS BLEND WITH DIESEL

    Directory of Open Access Journals (Sweden)

    BOOPATHI D.

    2017-07-01

    Full Text Available Internal combustion engines are an integral part of our daily lives, especially in the agricultural and transportation sector. With depleting fossil fuel and increasing environmental pollution, the researchers are foraying into alternate sources for fuelling the internal combustion engine. Vegetable oils derived from plant seeds is one such solution, but using them in unmodified diesel engine leads to reduced thermal efficiency and increased smoke emissions. Hydrogen if induced in small quantities in the air intake manifold can enhance the engine performance running on biodiesel. In this work, experiments were performed to evaluate the engine performance when hydrogen was inducted in small quantities and blends of esterified palm oil and diesel was injected as pilot fuel in the conventional manner. Tests were performed on a single cylinder, 4 - stroke, water cooled, direct injection diesel engine running at constant speed of 1500 rpm under variable load conditions and varying hydrogen flow. At full load for 75D25POME (a blend of 75% diesel and 25% palm oil methyl ester by volume, the results indicated an increase in brake thermal efficiency from 29.75% with zero hydrogen flow to a maximum of 30.17% at 5lpm hydrogen flow rate. HC emission reduced from 34 to 31.5 ppm, by volume at maximum load. Whereas, CO emission reduced from 0.09 to 0.045 % by volume at maximum load. Due to higher combustion rates with hydrogen induction, NOx emission increased from 756 to 926 ppm, at maximum load.

  18. Capture of Heat Energy from Diesel Engine Exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  19. Heat Transfer in Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent

    Heat transfer between the cylinder gas and the piston surface during combustion in large two-stroke uniflow scavenged marine diesel engines has been investigated in the present work. The piston surface experiences a severe thermal load during combustion due to the close proximity of the combustion...... marine diesel engines. The contribution from thermal radiation to the piston surface heat flux was not investigated in the present work, but a coarse estimation of the magnitude was performed. The obtained estimations indicate a peak piston surface heat flux level in the interval from about 1 MW/m2...... and up to 9.5 MW/m2 with the actual value probably being in the lower part of this interval. This is about the same magnitude as that previously reported for automotive size diesel engines. The obtained interval is relatively large, but a more accurate prediction is difficult to achieve with the applied...

  20. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  1. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  2. Experimental combustion analysis of a hsdi diesel engine fuelled with palm oil biodiesel-diesel fuel blends

    OpenAIRE

    JOHN AGUDELO; ELKIN GUTIÉRREZ; PEDRO BENJUMEA

    2010-01-01

    Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB), No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively). To isolate the fuel effect, tests were executed at constant po...

  3. A Simulation Study on A Diesel Engine Assembly Line

    Institute of Scientific and Technical Information of China (English)

    刘庆华; 吴桂花

    2002-01-01

    Nowadays in China, as the economic reform goes further and the central government increasingly demands for raising productivity, more and more state-owned factories begin to turn their heads back to problems arising from their production systems. With the co-operation of Tianjin Diesel Engine Factory, we conducted a simulation study on its diesel engine assembly line, using GPSS as our major simulation language tool. This paper describes the model we constructed, simulation experiments we made on the model, and some conclusions we drew from the simulation study.

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  5. Monitoring of large diesel engines through asphaltene content

    Energy Technology Data Exchange (ETDEWEB)

    Declerck, R. [Texaco Technology Ghent (Belgium)

    1997-12-31

    Lubricants in large diesel engines, for marine and power plant application, are open contaminated with heavy fuel. This type of contamination results in blackening of the engines and deposit formation because of the coagulation of asphaltene particles. Monitoring of the asphaltene content presents the operator with important information on the condition of the engine and the lubricant. This technique was an important asset in developing a new range of lubricants highly capable of tackling the presence of asphaltenes. (orig.)

  6. Effect of Ferrofluid on the Performance and Emission Patterns of a Four-Stroke Diesel Engine

    Directory of Open Access Journals (Sweden)

    M. B. Shafii

    2011-01-01

    Full Text Available Experimental tests were carried out to investigate the effects of adding water-based ferrofluid to diesel fuel in a diesel engine. These effects included the combustion performance and exhaust emission characteristics of the diesel engine. To this end, emulsified diesel fuels of 0, 0.4, and 0.8 ferrofluid/diesel ratios by volume were used in a four-stroke diesel engine, operating at 2200 rpm. The results indicate that adding ferrofluid to diesel fuel has a perceptible effect on engine performance, increasing the brake thermal efficiency relatively up to 12% and decreasing the brake-specific fuel consumption relatively up to 11% as compared to diesel fuel. Furthermore, from the analysis of gaseous species of engine exhaust, it was found that NOx emissions were lower than that of diesel fuel while the CO emissions increased. In addition, it was found that nanoparticles can be collected at the exhaust flow using a magnetic bar.

  7. Performance characteristics of a diesel engine with deccan hemp oil

    Energy Technology Data Exchange (ETDEWEB)

    O.D. Hebbal; K. Vijayakumar Reddy; K. Rajagopal [Poojya Doddappa Appa College of Engineering, Gulbarga (India)

    2006-10-15

    In this present investigation deccan hemp oil, a non-edible vegetable oil is selected for the test on a diesel engine and its suitability as an alternate fuel is examined. The viscosity of deccan hemp oil is reduced first by blending with diesel in 25/75%, 50/50%, 75/25%, 100/0% on volume basis, then analyzed and compared with diesel. Further blends are heated and effect of viscosity on temperature was studied. The performance and emission characteristics of blends are evaluated at variable loads of 0.37, 0.92, 1.48, 2.03, 2.58, 3.13 and 3.68 kW at a constant rated speed of 1500 rpm and results are compared with diesel. The thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC) are well comparable with diesel, and emissions are a little higher for 25% and 50% blends. At rated load, smoke, carbon monoxide (CO), and unburnt hydrocarbon (HC) emissions of 50% blend are higher compared with diesel by 51.74%, 71.42% and 33.3%, respectively. For ascertaining the validity of results obtained, pure deccan hemp oil results are compared with results of jatropha and pongamia oil for similar works available in the literature and were well comparable. From investigation it has been established that, up to 25% of blend of deccan hemp oil without heating and up to 50% blend with preheating can be substituted for diesel engine without any engine modification. 27 refs., 13 figs., 2 tabs.

  8. 40 CFR 86.341-79 - Diesel engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine dynamometer test run. 86.341-79 Section 86.341-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....341-79 Diesel engine dynamometer test run. (a) This section applies to Diesel engines only....

  9. Conversion of a diesel engine to a spark ignition natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  10. Fault detection and diagnosis of diesel engine valve trains

    Science.gov (United States)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  11. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lino Guzzella

    2013-07-01

    Full Text Available In this paper we demonstrate the potential of combining electric hybridization with a dual-fuel natural gas-Diesel engine. We show that carbon dioxide emissions can be reduced to 43 gram per kilometer with a subcompact car on the New European Driving Cycle (NEDC. The vehicle is operated in charge-sustaining mode, which means that all energy is provided by the fuel. The result is obtained by hardware-in-the-loop experiments where the engine is operated on a test bench while the rest of the powertrain as well as the vehicle are simulated. By static engine measurements we demonstrate that the natural gas-Diesel engine reaches efficiencies of up to 39.5%. The engine is operated lean at low loads with low engine out nitrogen oxide emissions such that no nitrogen oxide aftertreatment is necessary. At medium to high loads the engine is operated stoichiometrically, which enables the use of a cost-efficient three-way catalytic converter. By vehicle emulation of a non-hybrid vehicle on the Worldwide harmonized Light vehicles Test Procedure (WLTP, we demonstrate that transient operation of the natural gas-Diesel engine is also possible, thus enabling a non-hybridized powertrain as well.

  12. Experimental investigation on Performance and Emission Characteristics of J20, P20, N20 Biodiesel blends and Sound Characteristics of P20 Biodiesel blend Used in Single Cylinder Diesel Engine

    Science.gov (United States)

    rajasekar, R.; karthik, N.; Xavier, Goldwin

    2017-05-01

    Present work provides the effect of biodiesel blends and Sound Characteristics of P20 Biodiesel blend compared with Performance and emission Characteristics of diesel. Methods and analysis biodiesel blends was prepared by the Transesterification Process. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Research is mainly focused on pongamia oil. It was observed that a 20% Pongamia oil blends and its properties were similar to diesel. The results showed that 20% Pongamia oil blends gave better performance, less in noise and emission compared with ester of Jatropha and neem oil blends. Hence Pongamia blends can be used in existing diesel engine without compromising the engine performance.

  13. Study on Carbonyl Emissions of Diesel Engine Fueled with Biodiesel

    Directory of Open Access Journals (Sweden)

    Ruina Li

    2017-01-01

    Full Text Available Biodiesel is a kind of high-quality alternative fuel of diesel engine. In this study, biodiesel and biodiesel/diesel blend were used in a single cylinder diesel engine to study the carbonyl emissions. The result shows that carbonyl pollutants of biodiesel and biodiesel/diesel blend are mainly aldehyde and ketone compounds with 1–3 carbon atoms, and formaldehyde concentration is higher than 80% of the total carbonyl pollutants for biodiesel. The formaldehyde concentration peak is reduced with the increase of intake temperature (T, intake pressure (P, and exhaust gas recirculation (EGR ratio and increased with the increase of compression ratio (ε. When excess air coefficient (λ is lower than 1.7, the formaldehyde concentration is increased with the increase of excess air ratio. When λ is higher than 1.7, the formaldehyde concentration is reduced with the increase of excess air ratio. The dilution of air can reduce formaldehyde concentration in the premixed flame of diesel effectively; however, it has less effect on biodiesel. Among the fuel pretreatment measures of adding hydrogen, CO, and methane, the addition of hydrogen shows the best effect on reducing formaldehyde of biodiesel.

  14. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  15. Swirling flow in a two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Hemmingsen, Casper Schytte; Ingvorsen, Kristian Mark; Walther, Jens Honore

    2013-01-01

    Computational fluid dynamic simulations are performed for the turbulent swirling flow in a scale model of a low-speed two-stroke diesel engine with a moving piston. The purpose of the work is to investigate the accuracy of different turbulence models including two-equation Reynolds- Averaged Navier...

  16. TRIBOLOGICAL PERFORMANCE OF PISTON RING IN MARINE DIESEL ENGINE

    DEFF Research Database (Denmark)

    Imran, Tajammal; Klit, Peder; Felter, Christian

    From a tribology point of view, it is the two dead centers that are the main area of interest for experimental study of piston rings in large marine diesel engines. Therefore, in this work the performance of piston rings is studied to mark the importance of the two dead centers. A test rig based...

  17. Automated Model Fit Method for Diesel Engine Control Development

    NARCIS (Netherlands)

    Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is consider

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IX, ENGINE COMPONENTS.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, FUNCTION, AND MAINTENANCE OF DIESEL ENGINE CRANKSHAFTS, CAMSHAFTS, AND ASSOCIATED BEARINGS. TOPICS ARE SHAFTS AND BEARINGS, CAMSHAFTS, BEARINGS AND THEIR MAINTENANCE, AND DETECTING FAILURE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED…

  19. Dynamic programming for Integrated Emission Management in diesel engines

    NARCIS (Netherlands)

    Schijndel, J. van; Donkers, M.C.F.; Willems, F.P.T.; Heemels, W.P.M.H.

    2014-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that aims at minimizing the operational costs of diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In previous work on IEM, a suboptimal real-time implementable solution w

  20. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue consumpti

  1. The Feasibility of Oil Analysis for Air Force Diesel Engines

    Science.gov (United States)

    1979-06-01

    analyses conducted by Mobil include automated Brookfield viscosity, membrane filtration in pentane for insolubles, and differential infrared analysis for...considered, such as microfiltration for particle size distribution and infrared (for oxida- tion and possibly nitration). Because of the limited...military (AOAP) sectors , it may be inferred that a large segment of those organizations concerned with diesel engine maintenance and utilization is

  2. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  3. Automated Model Fit Method for Diesel Engine Control Development

    NARCIS (Netherlands)

    Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is

  4. Evaluation of properties for lubricant filter in diesel engines

    Institute of Scientific and Technical Information of China (English)

    赵新泽; 程天; 张彩香

    2004-01-01

    The properties of lubricant filters in diesel engines directly affect operation of the lubricant system,and lubricant filters are apt to be impacted by many factors. Therefore, scientific and sensible methods evaluating the properties for lubricant filter diesel engines are necessary to monitor filter properties on line and dynamically. This paper applies ferrographic techniques and adopts sampling methods that oil specimens are synchronously obtained in front of and behind filter elements to monitor the filters of ISUZU DA - 220 diesel engine in two FDS0 forklifts. Results show that the combination of ferrographic techniques and above sampling methods is effective in analyzing the whole operating process of filters used in diesel engines. The service life and ruined type of filter can be estimated through the relationship between ferrographic readings in front and behind of filter and operation time. Furthermore, through a great deal of tests, a series of experimental curves of readings and time and characteristic parameters for filters used in different machines can be gained, which has guiding significance to the selection and maintenance of the filters. But because of the limitation of the ferrographic technique, the debris on the substrate prevents determination of sizes. It is difficult to judge accurately the size of debris that a filter can filter.

  5. PERFORMANCE AND EMISSION STUDIES ON DI-DIESEL ENGINE FUELED WITH PONGAMIA METHYL ESTER INJECTION AND METHANOL CARBURETION

    Directory of Open Access Journals (Sweden)

    HARIBABU, N.

    2010-03-01

    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  6. Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Sam Ki Yoon

    2014-12-01

    Full Text Available In this study, we investigated the effects of canola oil biodiesel (BD to improve combustion and exhaust emissions in a common rail direct injection (DI diesel engine using BD fuel blended with diesel. Experiments were conducted with BD blend amounts of 10%, 20%, and 30% on a volume basis under various engine speeds. As the BD blend ratio increased, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at the low engine speed of 1500 rpm, while they increased at the middle engine speed of 2500 rpm. The brake specific fuel consumption (BSFC increased at all engine speeds while the carbon monoxide (CO and particulate matter (PM emissions were considerably reduced. On the other hand, the nitrogen oxide (NOx emissions only increased slightly. When increasing the BD blend ratio at an engine speed of 2000 rpm with exhaust gas recirculation (EGR rates of 0%, 10%, 20%, and 30%, the combustion pressure and IMEP tended to decrease. The CO and PM emissions decreased in proportion to the BD blend ratio. Also, the NOx emissions decreased considerably as the EGR rate increased whereas the BD blend ratio only slightly influenced the NOx emissions.

  7. 直喷天然气发动机燃烧效率分析%Analysis of Combustion Efficiency in Direct Injection Natural Gas Engine

    Institute of Scientific and Technical Information of China (English)

    黄佐华; 曾科; 杨中乐; 王子延

    2002-01-01

    利用快速压缩装置对直喷天然气发动机的燃烧效率进行了分析.在宽广的当量比范围内,分析了三种燃料喷射方式下和均匀混合气燃烧时的燃烧效率.结果表明,燃油喷射方式下的燃烧效率在0.2~0.9当量比范围内均具有较高的数值并与喷射方式无关;在当量比小于0.2和大于0.9时,由于CO的原因,使燃烧效率降低.均匀混合气燃烧时,燃烧效率在当量比大于0.7时较高,而当量比小于0.7时,由于很高的未燃甲烷的生成使燃烧效率损失较大.燃料喷射燃烧与均匀混合气燃烧相比,维持高燃烧效率的当量比范围宽.因未燃甲烷的生成而造成的燃烧效率的损失与喷油时刻无关,因CO造成的燃烧效率的损失随喷油滞后而增加.%Investigation of combustion efficiency of direct injection natural gas engine is carried out using a rapid compression machine. Combustion efficiency of three types of injection modes and homogeneous mixture combustion are analyzed over the wide range of equivalence ratio. The results show that in the case of fuel injection modes,high combustion efficiency is observed when the equivalence ratio is in the range from 0.2 to 0.9 regardless of fuel injection modes.Obvious loss of combustion efficiency occurs when φ<0.2 and φ>0.9.For homogeneous mixture combustion,high combustion efficiency is found when φ>0.7 and large reduction of combustion efficiency occurs when φ<0.7 due to the higher unburned methane caused by bulk quenching. Fuel injection maintains high combustion efficiency over the wide range of equivalence ratio compared with that of homogeneous mixture combustion.The study also shows that little influence of unburned methane on the loss of combustion efficiency is observed with fuel injection timing but the reduction of combustion efficiency is found in the case of late injection timing.

  8. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2017-03-01

    Full Text Available Diesel engines occupy a crucial position in automobile industry due to their high thermal efficiency and high power to weight ratio. However, they lag behind in controlling air polluting components coming out of the engine exhaust. Therefore, diesel consumption should be analyzed for future energy consumption and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines, which include biodiesel, alcohol-diesel emulsions and diesel water emulsions. Among them the diesel water emulsion is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency. But the major problem associated with emulsions is the ignition delay, since this is responsible for the power and torque loss. A reduction in NOx emission was observed due to reduction in combustion chamber temperature as the water concentration increases. However the side effect of emulsified diesel is a reduction in power which can be compensated by oxygen enrichment. The present study investigates the effects of oxygen concentration on the performance characteristics of a diesel engine when the intake air is enriched to 27% of oxygen and fueled by 10% of water diesel emulsion. It was found that the brake thermal efficiency was enhanced, combustion characteristics improved and there is also a reduction in HC emissions.

  9. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  10. Filtres à activité catalytique pour moteur Diesel Catalytic Activity Filters for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Goldenberg E.

    2006-11-01

    Full Text Available A partir de l'examen des normes actuelles et envisagées dans le futur pour limiter les émissions de particules Diesel, et en considérant les propriétés physico-chimiques de ces particules, cet article expose les problèmes posés par la filtration des suies Diesel et leur élimination par combustion sur les différents types de filtres actuellement retenus. La régénération des filtres par combustion catalytique du dépôt est plus particulièrement discutée. From an examination of present regulations and ones being considered for the future to limit particle emissions by diesel engines, and considering the physicochemical properties of such particles, this article describes the problems raised by filtering soot from diesel engines and eliminating it by various types of filters now used. Filter regeneration by catalytic combustion of the deposit is considered in particular.

  11. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  12. Toxicity of effluents emitted by the diesel engines vehicles; Toxicite des effluents emis par les vehicules a moteur diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alcon, St.

    1998-04-29

    The exhaust gases of diesel engine vehicles are atmospheric pollutants. They are characterised by a gaseous phase and a particulate phase. The diesel particulates are composed of a nucleus formed with elementary carbon, forming aggregates that absorb the organic by-products at their surface. A first part treats the effluents of diesel engine vehicles: their characteristics, the factors influencing the diesel emissions, the noxiousness of the gaseous phase, the kinetics and the metabolism of the particulate phase and analysis methods. A second part tackles the experimental toxicity of diesel effluents on insisting on the nature of exposures, the mutagenicity, the carcinogenicity, the effects on the reproduction function and immuno-toxicity. A third part is devoted to the toxicity for man with epidemiology data and some studies under controlled exposures. Then, a fourth part, explains the toxicity mechanisms and the action modes of diesel effluents on the carcinogen effects and on respiratory diseases. (N.C.)

  13. Application of thermal barrier coating in a Diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Buyukkaya, E. [Dept. of Mechanical Engineering, Sakarya Univ., Sakarya (Turkey); Demirkiran, A.S. [Dept. of Metallurgical and Materials Science Engineering, Sakarya Univ., Sakarya (Turkey); Cerit, M.

    2004-07-01

    In this study, an investigation of the effects of ceramic coatings on Diesel engine performance and exhaust emissions was presented. Tests were carried out a range of engine speeds at low, middle and high load conditions for a standard engine and a ceramic-coated engine. Cylinder head and valves of an engine were coated with a 0.35 mm thickness of CaZrO{sub 3} over a 0.15 mm thickness of NiCrAl bond coat. Pistons were also coated with MgZrO{sub 3}. The coatings were produced using atmospheric plasma spray technique. Specific fuel consumption values of insulated engine were lower than standard engine (about 1-6%). Due to the better combustion efficiency in the coated engine, particulate emissions were lower than the standard engine (about 48%). (orig.)

  14. Improvement of fuel injection system of locomotive diesel engine.

    Science.gov (United States)

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  15. Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N.; Hayden, H.L.

    1994-01-01

    Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

  16. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    Science.gov (United States)

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  17. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  18. Study of combustion and emission characteristics of turbocharged diesel engine fuelled with dimethylether

    Institute of Scientific and Technical Information of China (English)

    Junhua WU; Zhen HUANG; Xinqi QIAO; Jun LU; Junjun ZHANG; Liang ZHANG

    2008-01-01

    An experimental study of a turbocharged diesel engine operating on dimethyl ether (DME) was conducted. The combustion and emission characteristics of the DME engine were investigated. The results show that the maximum torque and power of DME are greater than those of diesel, particularly at low speeds; the brake specific fuel consum-ption of DME is lower than that of diesel at low and middle engine speeds, and the injection delay of DME is longer than that of diesel. However, the maximum cylinder pressure, maximum pressure rise rate and combustion noises of the DME engine are lower than those of diesel. The combustion velocity of DME is faster than that of diesel, resulting in a shorter combustion duration of DME. Compared with the diesel engine, NOx emission of the DME engine is reduced by 41.6% on ESC data. In addition, the DME engine is smoke free at any operating condition.

  19. 78 FR 50317 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Science.gov (United States)

    2013-08-19

    ... approved under Type Certificate No. 3A13, is an aluminum, four place, single engine airplane with a... considered universally applicable to all types of possible diesel engines and diesel engine installations. However, after reviewing the Cessna installation, the SMA engine type, the SMA engine requirements,...

  20. Diesel Engine with Different Kind of Injection Systems Exhaust Gas Analysis

    Directory of Open Access Journals (Sweden)

    Mantas Smolnikovas

    2016-02-01

    Full Text Available The article presents an overview of structural evolution of diesel engines’ injection systems, air pollution caused by diesel engines and permissible emission rates. An analytical research on air pollution was also performed. Experimental studies evaluated air pollution during the emission of particulate matter according to diesel engine exploitation time and different constructions emissions.

  1. Experimental investigation on a DI diesel engine fuelled with Madhuca Indica ester and diesel blend

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Hall 11A, Tata Motors, Pimpri, Pune 411019, Maharashtra (India); Nagarajan, G. [Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai (India); Puhan, Sukumar [Department of Mechanical Engineering, Veltech Engineering College, Avadi, Chennai (India)

    2010-06-15

    Biodiesel is a fatty acid alkyl ester, which is renewable, biodegradable and non-toxic fuel which can be derived from any vegetable oil by transesterification. One of the popularly used biodiesel in India is Mahua oil (Madhuca Indica). In the present investigation Mahua oil was transesterified using methanol in the presence of alkali catalyst and was used to study the performance and emission characteristics. The biodiesel was tested on a single cylinder, four stroke compression ignition engine. Engine performance tests showed that power loss was around 13% combined with 20% increase in fuel consumption with Mahua oil methyl ester at full load. Emissions such as carbon monoxide, hydrocarbon were lesser for Mahua ester compared to diesel by 26% and 20% respectively. Oxides of nitrogen were lesser by 4% for the ester compared to diesel. (author)

  2. Combustion Analysis and Knock Detection in Single Cylinder DI-Diesel Engine Using Vibration Signature Analysis

    OpenAIRE

    Y.V.V.SatyanarayanaMurthy

    2011-01-01

    The purpose of this paper is to detect the “knock” in Diesel engines which deteriorate the engine performance adversely. The methodology introduced in the present work suggests a newly developed approach towards analyzing the vibration analysis of diesel engines. The method is based on fundamental relationship between the engine vibration pattern and the relative characteristics of the combustion process in each or different cylinders. Knock in diesel engine is detected by measuring the vibra...

  3. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel.

    Science.gov (United States)

    Imdadul, H K; Zulkifli, N W M; Masjuki, H H; Kalam, M A; Kamruzzaman, M; Rashed, M M; Rashedul, H K; Alwi, Azham

    2017-01-01

    Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.

  4. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  5. Steam bottoming cycle for an adiabatic diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.

    1984-03-01

    A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.

  6. Recycling of waste engine oil for diesel production.

    Science.gov (United States)

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines.

  7. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  8. Effects of Aftermarket Control Technologies on Gas and Particle Phase Oxidative Potential from Diesel Engine Emissions

    Science.gov (United States)

    Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) with var...

  9. Tomorrow`s diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    After a review of the main principles governing combustion in diesel engines and the influence of ambient air conditions on pollutant emissions (and more especially NOx), emission level limits concerning NOx, CO, HC and ashes are presented and discussed according to their applications in the various types of diesel engines. The influence of fuel type is also examined and several ways to reduce NOx emissions in liquid fuel diesel engines are reported: mechanical modifications (compression ratio), water injection, exhaust gas recirculation, exhaust gas processing, fume and ash filtration. Cost issues are also discussed, through comparisons with gas turbines

  10. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  11. Experimental Investigation of Bio-Diesel Obtained From Waste Cooking Oil and Its Blends with Diesel on Single Cylinder Engine

    Directory of Open Access Journals (Sweden)

    R. B. Sharma,

    2014-01-01

    Full Text Available In this experiment a comprehensive experimental investigation of bio-diesel oil on single cylinder engine running with biodiesel obtained from Waste cooking oil and its blends with diesel was carried out for its performance and emission analysis. The results which obtained are significantly comparable to pure diesel. It shows that biodiesel obtained from cooking oil can be used as alternative fuel with better performance and lower emissions compared with diesel and play a very vital role for the overall economic development of the country.

  12. Desempenho comparativo de um motor de ciclo diesel utilizando diesel e misturas de biodiesel Comparative performance of a cycle diesel engine using diesel and biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Ronald Leite Barbosa

    2008-10-01

    fixation of man country life, the excellent and varied climatic conditions and several types of terrain become the country, with extensive workable areas, stand out in the world scenery if considering its great potentiality on generation of alternative fuels. The environmental preservation, important subject nowadays, makes that the human being work in searches for the development of alternative energies, mainly those originating from renewable and biodegradable sources of sustantable character. Taking in consideration those searches, the purpose of this work was to evaluate the performance of a diesel engine working in different moments with mineral diesel and mixtures of mineral diesel and biodiesel in the equivalent proportions B2 (98% mineral diesel and 2%biodiesel, B5 (95% mineral diesel and 5%biodiesel, B20 (80% mineral diesel and 20%biodiesel, and, finally, B100 (100% biodiesel. The rehearsal was accomplished in the dependences of the Engineering Department at UFLA - Federal University of Lavras, in Lavras, Minas Gerais, in July, 2005. For the accomplishment of the rehearsals it, was used an engine cycle diesel of a tractor VALMET 85 id, of 58,2kW (78 cv, following it methodology established by the norm NBR 5484 of ABNT (1985, that refers to the rehearsal dynamometric of engines cycle Otto and Diesel being proceeded. One noticed ended that the potency of the motor when using biodiesel was lower than one when using mineral diesel. One observed that, in some rotations, the mixtures B5 and B20 presented the same potency or even higher, in some situations, than the one when if using mineral diesel. The best thermal efficiency of the motor was verified in the rotation of 540 rpm of equivalent TDP to 1720 rpm of the motor.

  13. Diesel particle filter and fuel effects on heavy-duty diesel engine emissions.

    Science.gov (United States)

    Ratcliff, Matthew A; Dane, A John; Williams, Aaron; Ireland, John; Luecke, Jon; McCormick, Robert L; Voorhees, Kent J

    2010-11-01

    The impacts of biodiesel and a continuously regenerated (catalyzed) diesel particle filter (DPF) on the emissions of volatile unburned hydrocarbons, carbonyls, and particle associated polycyclic aromatic hydrocarbons (PAH) and nitro-PAH, were investigated. Experiments were conducted on a 5.9 L Cummins ISB, heavy-duty diesel engine using certification ultra-low-sulfur diesel (ULSD, S ≤ 15 ppm), soy biodiesel (B100), and a 20% blend thereof (B20). Against the ULSD baseline, B20 and B100 reduced engine-out emissions of measured unburned volatile hydrocarbons and PM associated PAH and nitro-PAH by significant percentages (40% or more for B20 and higher percentage for B100). However, emissions of benzene were unaffected by the presence of biodiesel and emissions of naphthalene actually increased for B100. This suggests that the unsaturated FAME in soy-biodiesel can react to form aromatic rings in the diesel combustion environment. Methyl acrylate and methyl 3-butanoate were observed as significant species in the exhaust for B20 and B100 and may serve as markers of the presence of biodiesel in the fuel. The DPF was highly effective at converting gaseous hydrocarbons and PM associated PAH and total nitro-PAH. However, conversion of 1-nitropyrene by the DPF was less than 50% for all fuels. Blending of biodiesel caused a slight reduction in engine-out emissions of acrolein, but otherwise had little effect on carbonyl emissions. The DPF was highly effective for conversion of carbonyls, with the exception of formaldehyde. Formaldehyde emissions were increased by the DPF for ULSD and B20.

  14. Evaluation of engine performance, emissions, of a twin cylinder diesel engine fuelled with waste plastic oil and diesel blends with a fraction of methanol

    Directory of Open Access Journals (Sweden)

    Y. Tarun

    2014-03-01

    Full Text Available A comprehensive study on the methanol and waste plastic oil as an alternative fuel has been carried out. This report deals with the exhaust emission of waste plastic fuel on twin cylinder diesel engine. The objectives of this report are to analyse the fuel consumption and the emission characteristic of a twin cylinder diesel engine that are using waste plastic oil compared to usage of ordinary diesel that are available in the market. This report describes the setups and the procedures for the experiment which is to analyse the emission characteristics and fuel consumption of diesel engine due to usage of the both fuels. Detail studies about the experimental setup and components have been done before the experiment started. Data that are required for the analysis is observed from the experiments. Calculations and analysis have been done after all the required data needed for the thesis is obtained. The experiment used diesel engine with no load which means no load exerted on it. A four stroke Twin cylinder diesel engine was adopted to study the brake thermal efficiency, brake specific energy consumption, mechanical efficiency, brake power, volumetric efficiency, indicated thermal efficiency and emissions at full load with the fuel of fraction methanol in bio-diesel. In this study, the diesel engine was tested using methanol blended with bio-diesel at certain mixing ratios of (WPO: Diesel 20:80, 40:60 and 60:40 methanol to bio-diesel respectively. By the end of the report, the successful of the project have been started which is Kirloskar engine is able to run with waste plastic oil (WPO but the engine needs to run by using diesel fuel first, then followed by waste plastic oil and finished with diesel fuel as the last fuel usage before the engine turned off. The performance of the engine using blended fuel compared to the performance of engine with diesel fuel. Experimental results of blended fuel and diesel fuel are also compared.   Keywords

  15. Performance, emission and combustion characteristics of a semi-adiabatic diesel engine using cotton seed and neem kernel oil methyl esters

    Directory of Open Access Journals (Sweden)

    Basavaraj M. Shrigiri

    2016-03-01

    Full Text Available The performance, emission and combustion characteristics of a diesel engine are investigated using two methyl esters: One obtained from cotton seed oil and other from neem kernel oil. These two oils are transesterified using methanol and alkaline catalyst to produce the cotton seed oil methyl ester (CSOME and neem kernel oil methyl ester (NKOME respectively. These biodiesels are used as alternative fuels in low heat rejection engine (LHR, in which the combustion chamber temperature is increased by thermal barrier coating on piston face. Experimental investigations are conducted with CSOME and NKOME in a single cylinder, four stroke, direct injection LHR engine. It is found that, at peak load the brake thermal efficiency is lower by 5.91% and 7.07% and BSFC is higher by 28.57% and 10.71% for CSOME and NKOME in LHR engine, respectively when compared with conventional diesel fuel used in normal engine. It is also seen that there is an increase in NOx emission in LHR engine along with slight increase in CO, smoke and HC emissions. From the combustion characteristics, it is found that the values of cylinder pressure for CSOME and NKOME in LHR engine are near to the diesel fuel in normal engine.

  16. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Ozsezen, Ahmet Necati [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey); Canakci, Mustafa, E-mail: canakci@kocaeli.edu.t [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2011-01-15

    In this study, the performance, combustion and injection characteristics of a direct injection diesel engine have been investigated experimentally when it was fueled with canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). In order to determine the performance and combustion characteristics, the experiments were conducted at constant engine speeds under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME instead of petroleum based diesel fuel (PBDF), the brake power reduced by 4-5%, while the brake specific fuel consumption increased by 9-10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59-67%, in unburned hydrocarbon (HC) by 17-26%, in carbon dioxide (CO{sub 2}) by 5-8%, and smoke opacity by 56-63%. However, both methyl esters produced more nitrogen oxides (NO{sub x}) emissions by 11-22% compared with those of the PBDF over the speed range.

  17. An Experimental Investigation on Performance and Emissions of a Single Cylinder D.I Diesel Engine with Manifold Hydrogen Induction

    Directory of Open Access Journals (Sweden)

    Haroun A.K. Shahad

    2017-05-01

    Full Text Available Hydrogen is a clean fuel for internal combustion engines as it produces only water vapor and nitrogen oxides when it burns. In this research, hydrogen is used as a blending fuel with diesel to reduce pollutants emission and to improve performance. It is inducted in the inlet manifold, (continuous manifold induction, which is of a single cylinder, four stroke, direct injection, variable compression ratio water cold diesel engine, type (Kirloskar. This technique of hydrogen blending is selected because of its simplicity and low cost. Hydrogen blending is built on the basis of energy replacement. A special electronic unit is designed and fabricated to control hydrogen blending ratio. The maximum achieved ratio is 30% of input energy and beyond that the engine operation becomes unsatisfactory. Tests are done with 17.5 compression ratio and 1500 rpm. The brake specific fuel consumption is reduced by 29% and the engine thermal efficiency increased by 16% at these operating conditions. The pollutant emissions of carbon oxides, UHC, and smoke opacity are dramatically decreased by 19.5%, 13%,and 45% respectively while NOx emission increased by 10%.

  18. The new Audi 2.0T FSI Engine - the first direct injection turbo-gasoline-engine from Audi; Der neue Audi 2,0T FSI Motor - Der erste direkteinspritzende Turbo-Ottomotor bei Audi

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, R.; Boehme, J.; Dornhoefer, R.; Wurms, R.; Friedmann, K.; Helbig, J.; Hatz, W. [Audi AG, Ingolstadt (Germany)

    2004-07-01

    With the 2.0T FSI Engine, Audi is for the first time combining direct injection for gasoline engines together with turbocharging. This step shows the progressive and logical development of the FSI Technology. The 2.0T FSI Engine uses the advantages of the FSI combustion system and combines this with the dynamic characteristics of turbocharging. The result is an extremely agile engine that, with power of 147 kW, exceptional torque characteristics (280 Nm between 1800 and 4700 rpm) and excellent responsiveness, provides a very exciting engine to drive whilst still achieving reasonable fuel consumption. The engine will be used for both longitudinal and transverse applications throughout the VW Group. During the development process, the number of common parts between applications was maximised. The EU 4 and ULEV 2 emissions limits will of course be fulfilled, as will the new OBD requirements. [German] Mit dem 2,0T FSI Motor kombiniert Audi nun erstmals die Direkteinspritzung bei Otto- Motoren mit der Turboaufladung und zeigt damit die konsequente Weiterentwicklung der FSI-Technologie. Der 2,0T FSI Motor nutzt die Vorteile des FSI-Brennverfahrens und verbindet sie mit der Dynamik der Turboaufladung. Das Ergebnis ist ein aeusserst agiles Aggregat, das mit 147 kW Leistung, seinem ueberragenden Drehmomentenverlauf (280 Nm von 1800 bis 4700 1/min) und seinem exzellenten Ansprechverhalten viel Fahrspass bei moderatem Verbrauch vermittelt. Das Aggregat soll sowohl in der Laengs- als auch in der Querplattform des VW-Konzerns eingesetzt werden. Bei der Entwicklung wurde deshalb auf eine maximale Anzahl an Gleichteilen Wert gelegt. Die Einhaltung der EU 4- und der ULEV 2-Abgasgrenzwerte werden von dem Aggregat genauso selbstverstaendlich erfuellt, wie auch zukuenftige OBDAnforderungen.

  19. An Experimental Investigation of Performance and Emissions of LPG as Dual Fuel in Diesel Engine Generator

    Directory of Open Access Journals (Sweden)

    K. Mohan Kumar

    2014-11-01

    Full Text Available The usage of diesel engine generating set (Gen set increasing day by day where the places without connection to power grid or emergency power supply when the grid fails. Worldwide dual fuel engines are becoming popular because of high performance and low emissions. LPG with diesel is a proven technology in case of vehicles, but in diesel engine power plants it is far so. The proposed work is concentrated on higher load of Diesel Engine Generator with LPG as dual fuel by keeping environmental concern. A test is conducted on performance of engine along with emissions at different proportions of Diesel and LPG including 100% diesel. An experimental set up is made with simple modifications on existing genset to supply LPG as secondary fuel into Diesel.

  20. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Science.gov (United States)

    2011-04-11

    ... under Type Certificate No. A47CE, is a fully composite, four place, single-engine airplane with a... applicable to all ] types of possible diesel engines and diesel engine installations. However, after reviewing the DAI installation, the Austro engine type, the Austro Control GmbH (ACG) requirements,...

  1. Comparative investigation of diesel and mixed liquefied petroleum gas/diesel injection engines

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J.; Bian, Y.; Qi, D.; Cheng, Q.; Wu, T. [Changan University, Xian (China). Automobile Faculty

    2004-05-01

    Experiments are conducted on engine performance and sprays and a characteristics analysis is made between diesel and mixed liquefied petroleum gas (LPG)/diesel injection engines. The performance test results show that with LPG the mixed ratio increases, engine power reduces slightly, fuel consumption and engine noise have almost no change, pollutant emissions of smoke, CO and NO{sub x} at full load are improved significantly, but the amount of unburned HC increases. The experimental results of the sprays indicate that because of flash boiling injection of mixed fuel, mean diameters in a spray decrease, the number distribution curve of fuel droplet size moves towards smaller diameters, small-size droplet numbers increase, spray quality is good and engine smoke reduces accordingly. Because large-size droplet diameters show almost no change and small-size droplet diameters decrease, the relative span factor and dispersion boundary factor of the droplet diameter increase. High-resolution digital camera photography is invaluable when carrying out a comparative investigation of spray. (author)

  2. High-speed four-color infrared digital imaging for studying in-cylinder processes in a DI diesel engine

    Science.gov (United States)

    Rhee, K. T.

    1995-07-01

    The study was to investigate in-cylinder events of a direct injection-type diesel engine by using a new high-speed infrared (IR) digital imaging systems for obtaining information that was difficult to achieve by the conventional devices. For this, a new high-speed dual-spectra infrared digital imaging system was developed to simultaneously capture two geometrically identical (in respective spectral) sets of IR images having discrete digital information in a (64x64) matrix at rates as high as over 1,800 frames/sec each with exposure period as short as 20 micron sec. At the same time, a new advanced four-color W imaging system was constructed. The first two sets of spectral data were the radiation from water vapor emission bands to compute the distributions of temperature and specie in the gaseous mixture and the remaining two sets of data were to find the instantaneous temperature distribution over the cylinder surface. More than eight reviewed publications have been produced to report many new findings including: Distributions of Water Vapor and Temperature in a Flame; End Gas Images Prior to Onset of Knock; Effect of MTBE on Diesel Combustion; Impact of Oxygen Enrichment on In-cylinder Reactions; Spectral IR Images of Spray Plume; Residual Gas Distribution; Preflame Reactions in Diesel Combustion; Preflame Reactions in the End Gas of an SI Engine; Postflame Oxidation; and Liquid Fuel Layers during Combustion in an SI Engine. In addition, some computational analysis of diesel combustion was performed using KIVA-II program in order to compare results from the prediction and the measurements made using the new IR imaging diagnostic tool.

  3. The effects of ethanol addition with waste pork lard methyl ester on performance, emission and combustion characteristics of a diesel engine

    Directory of Open Access Journals (Sweden)

    John Panneer Selvam Dharmaraj

    2014-01-01

    Full Text Available In the recent research, as a result of depletion of world petroleum reserves, considerable attention has been focused on the use of different alternative fuels in diesel engines. The present work aims to ensure the possibility of adding ethanol as an additive with animal fat biodiesel that is tested as an alternative fuel for diesel in a CI engine. In this study, biodiesel is obtained from waste pork lard by base-catalyzed transesterification with methanol when potassium hydroxide as catalyst. 2.5%, 5% and 7.5% by volume of ethanol is blended with neat biodiesel in order to improve performance and combustion characteristics of a diesel engine. The experimental work is carried out in a 3.7 kW, single cylinder, naturally aspirated, water cooled, direct injection diesel engine for different loads and at a constant speed of 1500 rpm. The performance, emission and combustion characteristics of biodiesel-ethanol blends are investigated by comparing them with neat biodiesel and standard diesel. The experimental test results showed that the combustion and performance characteristics improved with the increase in percentage of ethanol addition with biodiesel. When compared to neat biodiesel and standard diesel, an increase in brake thermal efficiency of 5.8% and 4.1% is obtained for BEB7.5 blend at full load of the engine. With the increase in percentage of ethanol fraction in the blends, peak cylinder pressure and the corresponding heat release rate are increased. Biodiesel-ethanol blends exhibit longer ignition delay and shorter combustion duration when compared to neat biodiesel. Optimum reduction in carbon monoxide, unburned hydrocarbon and smoke emission are attained while using BEB5 blend at full load of the engine. However, there is an adverse effect in case of nitrogen oxide emission.

  4. Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Mech. Eng. Dept., UAE University, Al-Ain, Abu Dhabi 17555 (United Arab Emirates)

    2009-07-15

    An experimental investigation has been carried out to test two approaches to reduce the viscosity of the Jojoba Methyl Ester (JME) diesel fuel. The first approach is the heating of the fuel to two temperatures of 50 and 70 C as compared to the base ambient temperature and to diesel fuel too. The second approach is adding one chemical which is considered by its own as alternative and renewable fuel which is Diethyl Ether (DEE). The viscosity has been reduced by both methods to close to diesel values. The performance of a diesel engine using those fuels has been tested in a variable compression research engine Ricardo E6 with the engine speed constant at 1200 rpm. The measured parameters included the exhaust gas temperature, the ignition delay period, the maximum pressure rise rate, maximum pressure, and indicated mean effective pressure and maximum heat release rate. The engine performance is presented and the effects of both approaches are scrutinized. (author)

  5. Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in U.S. Army Engines

    Science.gov (United States)

    2011-06-01

    12.7 L direct injected turbocharged intercooled diesel engine. Its valve train consists of an overhead camshaft actuating roller rocker arms that... camshaft by roller rocker arms. The engine is rated at 375 hp @ 2100 rpm, and 1350 lb*ft of torque @ 1200 rpm using diesel fuel. The engine was from...21 Camshaft Bearing Weight Loss, grams

  6. Unsupervised Condition Change Detection In Large Diesel Engines

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2003-01-01

    This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can be investig...... be investigated further. The method is successfully applied to unsupervised condition change detection in large diesel engines from acoustical emission sensor signal and compared to more classical techniques based on principal component analysis and Gaussian mixture models....

  7. AC maintenance and repair manual for diesel engines

    CERN Document Server

    Pallas, Jean-Luc

    2013-01-01

    The aim of this book with its detailed step-by-step colour photographs and diagrams, is to enable every owner to fix their diesel engine with ease. Troubleshooting tables help diagnose potential problems, and there is advice on regular maintenance and winterising and repair. Jean-Luc Pallas's enthusiasm for passing on his knowledge, as well as his clear explanations, precise advice and step-by-step instructions make this a unique book.

  8. Understanding Combustion and Soot Formation in Diesel Engines

    Science.gov (United States)

    2016-09-09

    report, only a brief summary of major findings are summarized. Temporal evolution of a sooting flame Figure 1-1 portrays the temporal...diesel engine during this soot sampling experiment. The images on the top and mid rows suggest that sooting flame develops on the fuel jet...cylinder liner window (i.e. side-view images) indicate that the sooting flame breaks into two soot pockets upon the impingement on the bowl wall and

  9. Experimental investigation into effects of addition of zinc oxide on performance, combustion and emission characteristics of diesel-biodiesel-ethanol blends in CI engine

    Directory of Open Access Journals (Sweden)

    B. Prabakaran

    2016-12-01

    Full Text Available This study is to investigate the effect of zinc oxide nano particle addition to diesel-biodiesel-ethanol blends. Solubility tests were done for the fuels at three different temperatures. Out of eighteen blends, six blends were stable at 5 °C, 15 °C and above 25 °C. Out of the six blends, two blends were checked for properties as per ASTM standards. One of them was chosen for testing the performance, combustion and emission characteristics in a diesel engine. In the same blend, zinc oxide was added in the amount of 250 ppm. Property testing of the blended fuel indicated that there was an increase in calorific value due to addition of nano particle. The performance tests were conducted on a single cylinder four stroke direct injection diesel engine at a constant speed of 1500 rpm. For the blend containing zinc oxide, there was an increase in BSFC, HRR and cylinder pressure. Also, there was a decrease in BTE, NOx and smoke, as compared to diesel. The addition of zinc oxide nano particles increased the BTE and decreased the BSFC as compared with the biodiesel diesel ethanol blend at full load. This study gives a direction to utilize the renewable fuel to reduce the consumption of fossil fuel.

  10. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    Science.gov (United States)

    Loeper, C. Paul

    fuel consumption (gross indicated fuel consumption HCCI - Controlling Pressure- Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline," SAE Int. J. Engines, 4(1), pp. 1169-1189. [2] Kalghatgi, G., Hildingsson, L., and Johansson, B., 2010, "Low NO(x) and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 132(9), p. 9. [3] Manente, V., Zander, C.-G., Johansson, B., Tunestal, P., and Cannella, W., 2010, "An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion," SAE International, 2010-01-2198. [4] Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrett, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, "Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime," SAE Int. J. Engines, 4(1), pp. 1412-1430. [5] Ra, Y., Loeper, P., Andrie, M., Krieger, R., Foster, D., Reitz, R., and Durrett, R., 2012, "Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection," SAE Int. J. Engines, 5(3), pp. 1109-1132.

  11. Soot Formation in Diesel Engines By Using Cfd

    Directory of Open Access Journals (Sweden)

    R. Siva Kumar

    2016-06-01

    Full Text Available In order to meet the stringent emission standards significant efforts have been imparted to the research and development of cleaner IC engines. Diesel combustion and the formation of pollutants are directly influenced by spatial and temporal distribution of the fuel injected. The development and validation of computational fluid dynamics (CFD models for diesel engine combustion and emissions is described. The complexity of diesel combustion requires simulations with many complex interacting sub models in order to have a success in improving the performance and to reduce the emissions. In the present work an attempt has been made to develop a multidimensional axe-symmetric model for CI engine combustion and emissions. Later simulations have been carried out. Commercial validation tool FLUENT was used for simulation. The tool solves basic governing equations of fluid flow that is continuity, momentum, species transport and energy equation. Using finite volume method turbulence was modeled by using RNG K-ɛ model. Injection was modeled using La Grangian approach and reaction was modeled using non premixed combustion which considers the effects of turbulence and detailed chemical mechanism into account to model the reaction rates. The specific heats were approximated using piecewise polynomials. Subsequently the simulated results have been validated with the existing experimental values

  12. State of art and potentials of Diesel-/gas engines; Technischer Stand und Potentiale von Diesel-/Gasmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, H. [Motorenanlagenbau der Blohm und Voss Industrie GmbH, Hamburg (Germany)

    1997-03-01

    Sparked off by the demand on the gas engine sector, Diesel-/gas engines are increasingly developed and offered by many engine manufacturers. This engine type offers in contrast to the gas-Otto-engine many advantages with regard to the use of the most different burnable gases. (orig.) [Deutsch] Ausgeloest durch die Nachfrage auf dem Gasmotorensektor werden von vielen Motorenherstellern vermehrt Diesel-Gasmotoren entwickelt und angeboten. Dieser Motortyp bietet bei der Nutzung unterschiedlichster Brenngase gegenueber dem Gas-Otto-Motor viele Vorteile. (orig.)

  13. A Fuel Economy Study in Heavy Duty Diesel Engine Lubricants

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Watanabe; Wim van Dam; Gary Parsons; Peter Kleijwegt

    2011-01-01

    Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,fuel economy has in some cases been sacrificed for exhaust gas emission optimizations.Now,Heavy Duty Automotive and the related industries have strong interest in fuel economy and the lubricants.It is driven by competitive market forces as well as government mandates and new emission regulations.Japan was the first country in the world to establish and implement heavy duty trucks and buses fuel economy standards.Other countries also have followed either by establishing direct fuel economy standards or greenhouse gas(GHG) emissions standards which are directly tied to fuel economy.This paper is discussing that heavy duty diesel engine lubricants can contribute on fuel economy.The contribution of various aspects of engine oil formulations on fuel economy will be discussed such as lubricant viscosity grade,lubricant additives and friction modifiers.In this paper,the evaluation discussions are based on fuel economy measurements in some bench tests,standardized laboratory engine tests and field tests.

  14. [Effects of fuel properties on the performance of a typical Euro IV diesel engine].

    Science.gov (United States)

    Chen, Wen-miao; Wang, Jian-xin; Shuai, Shi-jin

    2008-09-01

    With the purpose of establishing diesel fuel standard for China National 4th Emission Standard, as one part of Beijing "Auto-Oil" programme, engine performance test has been done on a typical Euro IV diesel engine using eight diesel fuels with different fuel properties. Test results show that, fuel properties has little effect on power, fuel consumption, and in-cylinder combustion process of tested Euro IV diesel engine; sulfate in PM and gaseous SO2 emissions increase linearly with diesel sulfur content increase; cetane number increase cause BSFC and PM reduce and NOx increase; T90 decrease cause NOx reduce while PM shows trend of reduce. Prediction equations of tested Euro IV diesel engine's ESC cycle NOx and PM emissions before SCR response to diesel fuel sulfur content, cetane number, T90 and aromatics have been obtained using linear regression method on the base of test results.

  15. Neural Modeling and Control of Diesel Engine with Pollution Constraints

    CERN Document Server

    Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

    2009-01-01

    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

  16. A concise wall temperature model for DI Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Torregrosa, A.; Olmeda, P.; Degraeuwe, B. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Reyes, M. [Centro de Mecanica de Fluidos y Aplicaciones, Universidad Simon Bolivar (Venezuela)

    2006-08-15

    A concise resistor model for wall temperature prediction in diesel engines with piston cooling is presented here. The model uses the instantaneous in-cylinder pressure and some usually measured operational parameters to predict the temperature of the structural elements of the engine. The resistor model was adjusted by means of temperature measurements in the cylinder head, the liner and the piston. For each model parameter, an expression as a function of the engine geometry, operational parameters and material properties was derived to make the model applicable to other similar engines. The model predicts well the cylinder head, liner and piston temperature and is sensitive to variations of operational parameters such as the start of injection, coolant and oil temperature and engine speed and load. (author)

  17. HC-PM COUPLING MODEL FOR PARTICULATE MATTER EMISSION OF DIESEL ENGINES

    Institute of Scientific and Technical Information of China (English)

    Tan Piqiang; Lu Jiaxiang; Deng Kangyao

    2005-01-01

    A rapid, phenomenological model that predicts particulate matter (PM) emission of diesel engines is developed and formulated. The model is a chemical equilibrium composition model, and is based on the formation mechanisms of PM and unburned hydrocarbon (HC) emissions of diesel engines. It can evaluate the emission concentration of PM via the emission concentration of HC. To validate the model, experiments are carried out in two research diesel engines. Comparisons of the model results with the experimental data show good agreement. The model can be used to evaluate the concentration of PM emission of diesel engines under lack of PM measuring instruments. In addition, the model is useful for computer simulations of diesel engines, as well as electronic control unit (ECU) designs for electronically controlled diesel engines.

  18. Mechanical and thermal stresses analysis in diesel engine exhaust valve with and without thermal coating layer on valve face

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi,Sahib Shihab Ahmed, Nabeel Abdulhadi Ghayadh

    2016-01-01

    Full Text Available This paper investigates mechanical and thermal stresses that arise in the exhaust valve due to its operating with and without thermal coating layer (ceramic on face exhaust valve. Three dimensional models of an exhaust valve four cylinders, four stroke, and direct injection diesel engine have been presented. The governing equations were discretized using a finite-volume method (FVM and solved using multi-physics COMSOL package Version 5. The engine’s exhaust valve crown is coated with various materials in different thermal conductivity such as (Gd2Zr2O7, over a 150μm thickness of bond coat. The maximum thickness of coating is about 300 μm. Results indicate that after creating a coating layer exhaust valve the temperature distribution, temperature gradients distribution, von-Mises stress distribution and displacement distribution are decreased.

  19. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    Science.gov (United States)

    2014-10-01

    The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b

  20. Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications

    Science.gov (United States)

    2015-09-01

    ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine ...ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications by...COVERED (From - To) 1 January 2014–30 September 2014 4. TITLE AND SUBTITLE Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine

  1. Selection оf Parameters for System of Diesel Engine Exhaust Gas Recirculation

    Directory of Open Access Journals (Sweden)

    G. M. Kukharionok

    2014-01-01

    Full Text Available The paper presents research results of various methods for recirculation of diesel engine exhaust gases. An influence of recirculation parameters on economic and ecological diesel engine characteristics has been evaluated in the paper. The paper considers an influence of turbocharger configuration on the intensity of gas recirculation. Specific features of the recirculation system operation in dynamic modes have been shown in the paper. The paper provides recommendations for selection of a diesel engine exhaust gas recirculation system.

  2. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Directory of Open Access Journals (Sweden)

    Jilin Lei

    2011-01-01

    Full Text Available In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype and ethanol-diesel blends (E10, E15, E20 and E30 under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa. The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  3. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  4. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  5. Research on Spray, Combustion and Emission Characteristics for DI Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To improve the combustion chamber shape that can decrease the directed injection (DI) diesel emission, the theories of DI diesel spray, combustion and pollutant formation model are analysed and implemented based on the CFD code FIRE. Results show that the chamber with contracting orifice can get stronger squish swirl intensity. The results of the verification studies show a good accordance with the measurements and reveal that the individual processes of spray evolution, combustion and pollutant formation are well captured in FIRE. Finally, based on the analyzing and comparing of the calculation results of different chambers, a combustion chamber of contracting orifice geometry with lower emission is proposed.

  6. Diesel engine performance and exhaust emission analysis using diesel-organic germanium fuel blend

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available Alternative fuels such as biodiesel, bio-alcohol and other biomass sources have been extensively research to find its potential as an alternative sources to fossil fuels. This experiment compared the performance of diesel (D, biodiesel (BD and diesel-organic germanium blend (BG5 at five different speeds ranging from 1200-2400 rpm. BG5 shows significant combustion performance compared to BD. No significant changes of power observed between BG5 and BD at a low speed (1200 rpm. On the contrary, at higher speeds (1800 rpm and 2400 rpm, BG5 blend fuel shows increased engine power of 12.2 % and 9.2 %, respectively. Similarly, torque shows similar findings as engine power, whereby the improvement could be seen at higher speeds (1800 rpm and 2400 rpm when torque increased by 7.3 % and 2.3 %, respectively. In addition, the emission results indicated that for all speeds, CO2, and NO had reduced at an average of 2.1 % and 177 %, respectively. Meanwhile, CO emission had slightly increased compared to BD at low speeds by 0.04 %. However, the amount of CO released had decreased at an average of 0.03 % as the engine speed increased. Finally, measurement of O2 shows an increment at 16.4 % at all speed range.

  7. EXPERIMENTAL DETERMINATION OF BRAKE THERMAL EFFICIENCY AND BRAKE SPECIFIC FUEL CONSUMPTION OF DIESEL ENGINE FUELLED WITH BIO-DIESEL

    Directory of Open Access Journals (Sweden)

    M. SHIVA SHANKAR

    2010-10-01

    Full Text Available The rapid depletion in world petroleum reserves and uncertainty in petroleum supply due to political and economical reasons, as well as, the sharp escalations in the petroleum prices have stimulated the search for alternatives to petroleum fuels. The situation is very grave in developing countries like India which imports 70% of the required fuel, spending 30% of her total foreign exchange earnings on oil imports. Petroleum fuels are being consumed by agriculture and transport sector for which diesel engine happens to be the prime mover. Diesel fuelled vehicles discharge significant amount of pollutants like CO, HC, NOx, soot, lead compounds which are harmful to the universe. Though there are wide varieties of alternative fuels available, the research has not yet provided the right renewable fuel to replace diesel. Vegetable oils due to their properties being close to diesel fuel may be a promising alternative for its use in diesel engines. The high viscosity and low volatility are the major drawbacks of the use of vegetable oils in diesel engines. India is the second largest cotton producing country in the world today. The cotton seeds are available in India at cheaper price. Experiments were conducted on 5.2 BHP single cylinder four stroke water-cooled variable compression diesel engine. Methyl ester of cottonseed oil is blended with the commercially available Xtramile diesel. Cottonseed oil methyl ester (CSOME is blended in four different compositions varying from 10% to 40% in steps of 10 vol%. Using these four blends and Xtramile diesel brake thermal efficiency (BTE and brake specific fuel consumption (BSFC are determined at 17.5 compression ratio.

  8. Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-05-01

    Full Text Available To achieve energy saving and emission reduction for vehicle diesel engines, the organic Rankine cycle (ORC was employed to recover waste heat from vehicle diesel engines, R245fa was used as ORC working fluid, and the resulting vehicle diesel engine-ORC combined system was presented. The variation law of engine exhaust energy rate under various operating conditions was obtained, and the running performances of the screw expander were introduced. Based on thermodynamic models and theoretical calculations, the running performance of the vehicle diesel engine-ORC combined system was analyzed under various engine operating condition scenarios. Four evaluation indexes were defined: engine thermal efficiency increasing ratio (ETEIR, waste heat recovery efficiency (WHRE, brake specific fuel consumption (BSFC of the combined system, and improvement ratio of BSFC (IRBSFC. Results showed that when the diesel engine speed is 2200 r/min and diesel engine torque is 1200 N·m, the power output of the combined system reaches its maximum of approximately 308.6 kW, which is 28.6 kW higher than that of the diesel engine. ETEIR, WHRE, and IRBSFC all reach their maxima at 10.25%, 9.90%, and 9.30%, respectively. Compared with that of the diesel engine, the BSFC of the combined system is obviously improved under various engine operating conditions.

  9. Complete modeling for systems of a marine diesel engine

    Science.gov (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  10. International Standards to Reduce Emissions from Marine Diesel Engines and Their Fuels

    Science.gov (United States)

    Overview of EPA coordination with International Maritime Organization including a list of all international regulations and materials related to emissions from marine compression-ignition (diesel) engines.

  11. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    Science.gov (United States)

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  12. Diesel vehicles shortage mobilizes the automotive industry; La penurie de diesel mobilise la filiere

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P.Y.; Deheunynck, P.Y.; Demoulin, L.

    2000-12-01

    The infatuation for diesel vehicles in Europe has led to an unexpected growth of this market. The reason is linked with the improvements made in diesel engine technology and with the rise of automotive fuel prices. Car and vehicle equipment manufacturers and sub-contractors have to increase their production and manpower and to adopt new work schedules for a better exploitation of factories capacity. However, the development of the direct injection (common-rail) technology for diesel engines requires complex and precise machining procedures that are hardly compatible with an enhanced mass production. (J.S.)

  13. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    Science.gov (United States)

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-07-13

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO2) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  14. Experimental evaluation of oxygen-enriched air and emulsified fuels in a single-cylinder diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J.

    1991-11-01

    The performance of a single-cylinder, direct-injection diesel engine was measured with intake oxygen levels of up to 35% and fuel water contents of up to 20%. Because a previous study indicated that the use of a less-expensive fuel would be more economical, two series of tests with No. 4 diesel fuel and No. 2 diesel fuel were conducted. To control the emissions of nitrogen oxides (NO{sub x}), water was introduced into the combustion process in the form of water-emulsified fuel, or the fuel injection timing was retarded. In the first series of tests, compressed oxygen was used; in the second series of tests, a hollow-tube membrane was used. Steady-state engine performance and emissions data were obtained. Test results indicated a large increase in engine power density, a slight improvement in thermal efficiency, and significant reductions in smoke and particulate-matter emissions. Although NO{sub x} emissions increased, they could be controlled by introducing water and retarding the injection timing. The results further indicated that thermal efficiency is slightly increased when moderately water-emulsified fuels are used, because a greater portion of the fuel energy is released earlier in the combustion process. Oxygen-enriched air reduced the ignition delay and caused the heat-release rate and cumulative heat-release rates to change measurably. Even at higher oxygen levels, NO{sub x} emissions decreased rapidly when the timing was retarded, and the amount of smoke and the level of particulate-matter emissions did not significantly increase. The single-cylinder engine tests confirmed the results of an earlier technical assessment and further indicated a need for a low-pressure-drop membrane specifically designed for oxygen enrichment. Extension data set indexed separately. 14 refs.

  15. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  16. Performance & Emissions Characteristics of a Four Stroke Diesel Engine Fuelled With Different Blends of Palmyra Oil with Diesel

    Directory of Open Access Journals (Sweden)

    T.Venkata Srinivasa Rao

    2015-04-01

    Full Text Available Diesel engines are used for automotive application because they have lower specific fuel consumption and superior efficiency compared to S.I engines. However in spite of these advantages NOx and smoke emissions from the diesel engines cause serious environmental problems. In the present work, biodiesel was produced from Palmyra oil. In this present work, investigations were carried out to study the performance, emission and combustion characteristics of Palmyra oil. The results were compared with diesel fuel, and the selected Palmyra oil fuel blends. For this experiment a single cylinder, four stroke, water cooled diesel engine was used. Tests were carried out over entire range of engine operation at varying conditions of load. To increase the engine performance parameters and to decrease the exhaust gas emissions with increase biodiesel concentration. The experimental results provide that the use of biodiesel in compression ignition engine is a viable alternative to diesel. Additive to add the Ethanol. The blending percentage in the steps of 10%, 20% & 30%.

  17. Increase of diesel car raises health risk in spite of recent development in engine technology.

    Science.gov (United States)

    Leem, Jong Han; Jang, Young-Kee

    2014-01-01

    Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to 0.25 μm. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.

  18. Study of Effect of Diesel Fuel Energy Rate in Duel Fuel on Performance of Compression Ignition Engine

    OpenAIRE

    Maan Janan Basheer

    2012-01-01

    The aim of this work is to study the effect of diesel fuel percentage on the combustion processes in compression ignition engine using dual fuel (diesel and LPG). The brake thermal efficiency increased with the increase of diesel fuel rate at low loads, and decreased when load increased. To get sufficient operation in engine fueled with dual fuel, it required sufficient flow rate of diesel fuel, if the engine fueled with insufficient diesel fuel erratic operation with miss fire cycles presen...

  19. Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2017-07-01

    Full Text Available The aim of this work was to study the combustion, performance, and emission characteristics of a 5.5 kW four-stroke single-cylinder water-cooled direct-injection diesel engine operated with blends of biodiesel-like fuel (BLF15, BLF20 & BLF25 obtained from a 50:50 mixture of transesterified waste transformer oil (TWTO and waste canola oil methyl esters (WCOME with petroleum diesel. The mixture of the waste oils was named as biodiesel-like fuel (BLF.The engine fuelled with BLF blends was evaluated in terms of combustion, performance, and emission characteristics. FTIR analysis was carried out to know the functional groups in the BLF fuel. The experimental results revealed the shorter ignition delay and marginally higher brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and exhaust gas temperature (EGT values for BLF blends as compared to diesel. The hydrocarbon (HC and carbon monoxide (CO emissions were decreased by 10.92–31.17% and 3.80–6.32%, respectively, as compared to those of diesel fuel. Smoke opacity was significantly reduced. FTIR analysis has confirmed the presence of saturated alkanes and halide groups in BLF fuel. In comparison to BLF20 and BLF25, the blend BLF15 has shown higher brake thermal efficiency and lower fuel consumption values. The HC, CO, and smoke emissions of BLF15 were found lower than those of petroleum diesel. The fuel blend BLF15 is suggested to be used as an alternative fuel for diesel engines without any engine modification.

  20. Complete Modeling for Systems of a Marine Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    Hassan Moussa Nahim; Rafic Younes; Chadi Nohra; Mustapha Ouladsine

    2015-01-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine’s output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  1. [Application of PCA to diesel engine oil spectrometric analysis].

    Science.gov (United States)

    Liu, Tao; Tian, Hong-Xiang; Guo, Wen-Yong

    2010-03-01

    In order to study wear characteristics of a 6-cylinder diesel engine, six different working statuses were arranged by altering the clearance between cylinder and piston. Sixty-nine oil samples were taken from engine at different loads under 6 working statuses and analyzed by Spectroil M Instrument made in US. Principal component analysis (PCA) was applied to analyzing spectrometric data of sixty-nine oil samples and clustering those data according to elements and oil samples separately based on the weighted coefficient and principal component scores. All 21 elements were used in element clustering and only 6 wear-related elements, namely iron, chromium, aluminum, copper, plumbum and silicon, were used in sample clustering. It is shown that PCA effectively clustered oil spectrometric data into three different principal components according to elements. The projection of two different principal components exhibited five types of elements combinations, namely wear elements (Fe, Cr, Cu, Al and Pb), high concentration additives elements (Na, Zn, P, Ca and Mg), low concentration additives elements (Ba and B), base constituent of lubricating oils (C and H) and interferential elements (Ni, Ti, Mo, V, Ag and Sn). Furthermore, PCA clearly clustered oil samples according to different clearance between cylinder and piston in the diesel engine. The study suggests that analyzing oil spectrographic data by PCA could find the sources of different elements, monitor engine conditions and diagnose wear faults.

  2. Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend.

    Science.gov (United States)

    Rashedul, Hasan Khondakar; Kalam, Md Abdul; Masjuki, Haji Hassan; Teoh, Yew Heng; How, Heoy Geok; Monirul, Islam Mohammad; Imdadul, Hassan Kazi

    2017-02-23

    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.

  3. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.

    Science.gov (United States)

    Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf

    2017-04-01

    Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.

  4. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  5. Characterization of diesel particles: effects of fuel reformulation, exhaust aftertreatment, and engine operation on particle carbon composition and volatility.

    Science.gov (United States)

    Alander, Timo J A; Leskinen, Ari P; Raunemaa, Taisto M; Rantanen, Leena

    2004-05-01

    Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.

  6. Modelling of diesel engine fuelled with biodiesel using engine simulation software

    Science.gov (United States)

    Said, Mohd Farid Muhamad; Said, Mazlan; Aziz, Azhar Abdul

    2012-06-01

    This paper is about modelling of a diesel engine that operates using biodiesel fuels. The model is used to simulate or predict the performance and combustion of the engine by simplified the geometry of engine component in the software. The model is produced using one-dimensional (1D) engine simulation software called GT-Power. The fuel properties library in the software is expanded to include palm oil based biodiesel fuels. Experimental works are performed to investigate the effect of biodiesel fuels on the heat release profiles and the engine performance curves. The model is validated with experimental data and good agreement is observed. The simulation results show that combustion characteristics and engine performances differ when biodiesel fuels are used instead of no. 2 diesel fuel.

  7. Experimental investigation of thermal barrier (8YSZ-TiO2-Al2O3 coated piston used in direct injection compression ignition engine

    Directory of Open Access Journals (Sweden)

    Muthusamy Jayaram

    2016-01-01

    Full Text Available Thermal barrier coatings are becoming increasingly important in providing protection from high temperature degradation for heat engine components and allow further increase in engine temperatures for higher efficiency. The main objective of this research work is to experimentally investigate the air plasma sprayed yttria stabilized zirconia with addition of titanium oxide and aluminum oxide thermal barrier coating on Al-13% Si piston material. The mechanical properties of the coated and uncoated samples were comparatively analyzed. The test revealed that hardness values of coated samples are ten times higher than the hardness values of uncoated samples. The microstructure and surface morphology of the coating were evaluated by scanning electron microscopy. The delamination behaviour of thermal barrier coating was evaluated by thermal cycle test. Finally, the performance test of the coated and uncoated engine was evaluated with the same engine operating conditions. The brake thermal efficiency is increased by 5.99%. The brake specific fuel consumption was decreased by 0.06 kg/kWh, in TBC engine with 8YSZ + Al2O3 + TiO2. The CO and HC was greatly decreased in thermal barrier coating engine. There was the greater reduction of NOx is observed due to coating because of nitrogen has absorbed by zirconia.

  8. Butanol/diesel blends as a CI engine fuel. Physico-chemical and engine performance characteristics evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, M.K.; Thakre, G.D.; Saxena, R.C.; Sharma, Y.K.; Jain, A.K.; Singal, S.K. [CSIR - Indian Institute of Petroleum, Dehradun, Uttrakhand (India)

    2013-06-01

    Recently, butanol produced by fermentation, known as bio-butanol has emerged as a new alternative fuel for CI engines. However, very little work has been carried out on its use in C.I. engine. In this context current paper deals with the characteristic properties and performance evaluation of butanol as a blending additive in diesel fuels. The butanol-diesel blends are prepared in varying concentrations of 5-l 0% and have been studied for their Corrosion, Tribology, distillation and Physico-chemical characteristics. These characteristics properties are then compared with those of diesel. The study reveals that the butanol-diesel blends offer better cetane number, improved corrosion behaviour and comparable distillation and tribological properties. The engine performance evaluation revealed comparable performance in terms of fuel economy as compared with diesel fuel. Hence, Butanol-diesel blends can be successfully used as an alternative fuel for CI engines. (orig.)

  9. Diesel and gas engines: evolution facing new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Daverat, Ph. [Bergetat Monnoyeur (France)

    1997-12-31

    This paper analyzes the influence of new pollution regulations on the new design of diesel and gas engines with the example of Caterpillar`s experience, one of the leaders of diesel and gas engines manufacturers worldwide. The technical problems to solve are introduced first (reduction of NO{sub x}, SO{sub 2}, CO, unburned compounds and dusts), and then the evolution of engines and of exhaust gas treatment systems are described (fuel injection systems, combustion and ignition control, sensors, catalytic conversion and filtering systems). (J.S.)

  10. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  11. Power turbines for an energy bonus from diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, M. (ABB Turbo Systems Ltd., Baden (Switzerland)); Nissen, M. (ABB Industrietechnik AG, Hamburg (Germany))

    1994-01-01

    ABB exhaust-gas turbochargers - more than 150,000 in all - are in service worldwide with diesel engines on board ships and locomotives as well as in stationary power plants. Thanks to the turbochargers, the original outputs of the engines are raised by about 300%. Modern high-power turbochargers are so efficient that some exhaust-gas energy can be drawn off for use in a power turbine. The extra power won in this way can be either transmitted via gearing to the engine crankshaft or converted into electrical energy by a generator. ABB has developed a compact, controlled power turbine-generator installation especially for marine applications. The first unit has been certified by Lloyds Register of Shipping and is providing electricity for the onboard electrical power supply of a large container ship operated by Maersk Line. (orig.)

  12. Performance Analysis of Producer Gas Based Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. P. Yadav

    2013-02-01

    Full Text Available Producer gas is one out of the alternative fuels used in internal combustion engines. Conventionally, it is made by flowing air and steam through a thick coal or coke bed which ranges in temperature from red hot to low temperature. The oxygen in air burns the carbon to CO2. This CO2 gets reduced to CO by contacting with carbon above the combustion zone. The freed oxygen combines with carbon and steam gets dissociated which introduces hydrogen. Producer gas has a high percentage of nitrogen since air is used [1]. Thus, in the present work a gasifier is designed and developed which could gasify any form of biomass. In the present work waste wood chips, bagasse, rice husk, and eucalyptus, etc are used for gasification in a fabricated updraft gasifier to produce producer gas. The producer gas obtained from the developed gasifier is sent along with air into a diesel engine with diesel as the primary fuel and the performance characteristics ie brake thermal efficiency, exhaust gas temperature and brake specific energy consumption of the engine are studied along with economic analysis with and without aid of producer gas.

  13. Integrated modeling of nitrogen oxides formation in diesel engines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To account for the effects of both chemistry and flow turbulence,the present study proposes an integrated NO sub-model that combines the extended Zel'dovich mechanism and engine CFD computations to simulate the NO histories in a diesel engine.NOx sub-model parameters and pollutant formation mechanisms can be more easily investigated by solving the NOx sub-model.The new NO formation model incorporating the effects of hoth chemical kinetics and turbulent mixing was applied to simulate a diesel engine with a quiescent combustion chamber,and one with a re-entrant combustion chamber;the premise of the model being the reaction rate is mainlv determined by a kinetic timescale and a turbulent timescale.The results indicate that the predicted NO formulation from the new model agrees well with the measured data.As the utilization of fossil fuels continues to increase,the control of NOx emissions is a worldwide concern;and it is imperative to understand fully the NOx reaction processes in combustion systems.This technology has the Dotential to enhance the application of various combustion techniques used to reduce NOx emissions from practical combustion systems.

  14. FTIR analysis of surface functionalities on particulate matter produced by off-road diesel engines operating on diesel and biofuel.

    Science.gov (United States)

    Popovicheva, Olga B; Kireeva, Elena D; Shonija, Natalia K; Vojtisek-Lom, Michal; Schwarz, Jaroslav

    2015-03-01

    Fourier transform infrared spectroscopy is applied as a powerful analytic technique for the evaluation of the chemical composition of combustion aerosols emitted by off-road engines fuelled by diesel and biofuels. Particles produced by burning diesel, heated rapeseed oil (RO), RO with ethylhexylnitrate, and heated palm oil were sampled from exhausts of representative in-use diesel engines. Multicomponent composition of diesel and biofuel particles reveal the chemistry related to a variety of functional groups containing carbon, hydrogen, oxygen, sulfur, and nitrogen. The most intensive functionalities of diesel particles are saturated C-C-H and unsaturated C=C-H aliphatic groups in alkanes and alkenes, aromatic C=C and C=C-H groups in polyaromatics, as well as sulfates and nitrated ions. The distinguished features of biofuel particles were carbonyl C=O groups in carboxylic acids, ketones, aldehydes, esters, and lactones. NO2, C-N and -NH groups in nitrocompounds and amines are found to dominate biofuel particles. Group identification is confirmed by complementary measurements of organic carbon (OC), elemental carbon, and water-soluble ion species. The relationship between infrared bands of polar oxygenated and non-polar aliphatic functionalities indicates the higher extent of the surface oxidation of biofuel particles. Findings provide functional markers of organic surface structure of off-road diesel emission, allowing for a better evaluation of relation between engine, fuel, operation condition, and particle composition, thus improving the quantification of environmental impacts of alternative energy source emissions.

  15. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    Science.gov (United States)

    Vojtisek-Lom, Michal; Czerwinski, Jan; Leníček, Jan; Sekyra, Milan; Topinka, Jan

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) of exhaust emissions were studied in four direct-injection turbocharged four-cylinder diesel engines, with power ratings of 90-136 kW. The engines were operated on biodiesel (B-100), a blend of 30% biodiesel in diesel fuel (B-30), and heated rapeseed oil (RO) in two independent laboratories. Diesel particle filters (DPF) and selective catalytic reduction (SCR) systems were used with B-30 and B-100. Concentrations of individual PAHs sampled in different substrates (quartz, borosilicate fiber and fluorocarbon membrane filters, polyurethane foam) were analyzed using different methods. Benzo[a]pyrene toxic equivalents (BaP TEQ) were calculated using different sets of toxic equivalency factors (TEF). Operation on B-100 without aftertreatment devices, compared to diesel fuel, yielded a mean reduction in PAHs of 73%, consistent across engines and among TEF used. A lower PAH reduction was obtained using B-30. The BaP TEQ reductions on DPF were 91-99% using B-100, for one non-catalyzed DPF, and over 99% in all other cases. The BaP TEQ for heated RO were higher than those for B-100 and one half lower to over twice as high as that of diesel fuel. B-100 and RO samples featured, compared to diesel fuel, a relatively high share of higher molecular weight PAH and a relatively low share of lighter PAHs. Using different sets of TEF or different detection methods did not consistently affect the observed effect of fuels on BaP TEQ. The compilation of multiple tests was helpful for discerning emerging patterns. The collection of milligrams of particulate matter per sample was generally needed for quantification of all individual PAHs.

  16. Taguchi Method for Investigating the Performance Parameters and Exergy of a Diesel Engine Using Four Types of Diesel Fuels

    OpenAIRE

    Dara K. Khidir; Soorkeu A. Atrooshi

    2016-01-01

    The effects of changes in engine operating parameters, i.e., engine speed, throttle and water temperature, for four types of diesel fuel (A, B, C and D) of different specific gravities, as supplied from local market and refineries, were studied and simultaneously optimized. The experiment design was based on Taguchi’s “L' 16” orthogonal table, and the engine was put to test at different engine speeds, throttling opening percentages and water temperatures, using different fuels. The data were ...

  17. THE EFFECT OF SKULDUGGERY IN FUEL OF DIESEL ENGINES ON THE PERFORMANCE OF I. C. ENGINE

    Directory of Open Access Journals (Sweden)

    Raed R. Jasem

    2013-05-01

    Full Text Available The current research aimed to study the effect of fraud in the diesel fuel on environmental pollution,  the study included two samples of diesel fuel., first sample is used currently in all diesel engines vehicles, and it produced in colander of oil  of Baiji, the second sample is producer manually from mixing of the Lubricating oils and kerosene with ratio(1/40, were prepared and tested in research laboratories and quality control of the North Refineries Company /BAIJI by using standard engine (CFR. comparison between two models of fuel in terms of the properties of the mixing fuel and the properties of diesel fuel standard. The results proved that the process of mixing these ,  leading to the minimization of Cetane number and flash point. While the viscosity increase in  mixing fuel, comparison with fuel producer in the refinery, and which identical to the minimum standard specifications of diesel fuel.The tests had been carried out using the engine of (TQ four stroke type (TD115 with a single-cylinder and compression ratio (21:1 a complement to the hydraulic type Dynamo meter (TD115.

  18. Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine.

    Science.gov (United States)

    Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F

    2017-02-21

    Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO2, standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.

  19. Compressed Biogas-Diesel Dual-Fuel Engine Optimization Study for Ultralow Emission

    Directory of Open Access Journals (Sweden)

    Hasan Koten

    2014-06-01

    Full Text Available The aim of this study is to find out the optimum operating conditions in a diesel engine fueled with compressed biogas (CBG and pilot diesel dual-fuel. One-dimensional (1D and three-dimensional (3D computational fluid dynamics (CFD code and multiobjective optimization code were employed to investigate the influence of CBG-diesel dual-fuel combustion performance and exhaust emissions on a diesel engine. In this paper, 1D engine code and multiobjective optimization code were coupled and evaluated about 15000 cases to define the proper boundary conditions. In addition, selected single diesel fuel (dodecane and dual-fuel (CBG-diesel combustion modes were modeled to compare the engine performances and exhaust emission characteristics by using CFD code under various operating conditions. In optimization study, start of pilot diesel fuel injection, CBG-diesel flow rate, and engine speed were optimized and selected cases were compared using CFD code. CBG and diesel fuels were defined as leading reactants using user defined code. The results showed that significantly lower NOx emissions were emitted under dual-fuel operation for all cases compared to single-fuel mode at all engine load conditions.

  20. 柴油机掺烧醇类燃料燃烧排放特性的试验研究%Experimental study on combustion and emissions of diesel engines fueled with alcohol/diesel blends

    Institute of Scientific and Technical Information of China (English)

    莫春兰; 钟文; 陆永卷; 赵刚东; 郑荣亮

    2014-01-01

    This study investigates the utility of different alcohol species on diesel engine.Load ex-periments were carried out on a small direct injection diesel engine fueled with pure diesel , ethanol/diesel blends and n-butanol/diesel blends.The results show that the ignition delay period of alco-hol/diesel blends is longer than pure diesel about 0.1°~2°crank angle, the maximum peak heat release rate increases by up to 36%and maximum explosion pressure delays about 0.4°~4°crank angle.The power performance of diesel/alcohol blends is superior to pure diesel at 1 500 r/min,but is equivalent at 2 000 r/min.Compared with that of ethanol/diesel blends and pure diesel, the e-quivalent specific energy consumption rate of n-butanol/diesel blends is declined by 2.5%and 4%respectively.NOx emission of n-butanol/diesel blends is lower than pure diesel about 17%~39%at most engine operation conditions and fall more obviously than ethanol/diesel blends.NOx emis-sion of ethanol/diesel blends is higher than pure diesel at 2 000 r/min and higher load conditions. Compared with pure diesel, the smoke emissions are reduced for alcohol/diesel blends.The soot e-missions are lower for n-butanol/diesel blends than ethanol/diesel blends.Compared to that of pure diesel, soot emissions of n-butanol/diesel blends can be reduced 62% under rated power condi-tions.Therefore, it can be seen, comparing with ethanol/diesel blends, n-butanol/diesel blends are more suitable for diesel engine at most operating conditions.The study provides an experimental ba-sis for the promotion of the engine fueled with n-butanol.%针对不同醇类组分对柴油机的实用性影响进行研究。在单缸柴油机上分别燃用纯柴油、乙醇柴油和正丁醇柴油三种燃料,并进行负荷特性的燃烧排放对比试验。结果表明,与纯柴油相比,正丁醇柴油和乙醇柴油的滞燃期延长0.1°~2°曲轴转角,最大放热率峰值升高最大可达36%,最大爆发压力推迟约0

  1. Lightweight diesel engine designs for commuter type aircraft

    Science.gov (United States)

    Brouwers, A. P.

    1981-01-01

    Conceptual designs and performance of advanced technology lightweight diesel engines, suitable for commuter type aircraft power plants are defined. Two engines are discussed, a 1491 kW (2000 SHP) eight-cylinder engine and a 895 kW (1200 SHP) six-cylinder engine. High performance and related advanced technologies are proposed such as insulated cylinders, very high injection pressures and high compressor and turbine efficiencies. The description of each engine includes concept drawings, a performance analysis, and weight data. Fuel flow data are given for full and partial power up to 7620m altitude. The performance data are also extrapolated over a power range from 671 kW(900SHP) to 1864 kW (2500 SHP). The specific fuel consumption of the 1491 kW (2000 SHP) engine is 182 g/hWh (.299 lb/HPh) at cruise altitude, its weight 620 kg (1365 lb.) and specific weight .415 kg/kW (.683 lb/HP). The specific fuel consumption of the 895 kW (1200 SHP) engine is 187 g/hWh (.308 lb/HPh) at cruise altitude, its weight 465 kg (1025 lb.) and specific weight .520 kg/kW (.854 lb/HP).

  2. DESIGN OF A HIGH COMPRESSION, DIRECT INJECTION, SPARK-IGNITION, METHANOL FUELED RESEARCH ENGINE WITH AN INTEGRAL INJECTOR-IGNITION SOURCE INSERT, SAE PAPER 2001-01-3651

    Science.gov (United States)

    A stratified charge research engine and test stand were designed and built for this work. The primary goal of this project was to evaluate the feasibility of using a removal integral injector ignition source insert which allows a convenient method of charging the relative locat...

  3. Experimental Study on Stratified and Homogeneous Combustion of a Methanol Direct-Injection Spark-Ignition Engine%甲醇缸内直喷发动机分层燃烧和均质燃烧的试验研究

    Institute of Scientific and Technical Information of China (English)

    李本正; 刘圣华; 农金吉; 宫艳峰

    2009-01-01

    In a methanol direct-injection spark-ignition (DISI) engine retrofitted from a 4-cylinder diesel engine, the fuel needs to be injected into the cylinder near the end of compression stroke to realize the stratified combustion at partial loads for improving fuel economy. However, at high loads, the fuel needs to be injected into cylinder during intake stroke to realize the homogeneous combustion for achieving high power output. The results show that the methanol DISI engine can operate within the excessive air ratio of 2. 23 and its maximum brake thermal efficiency reaches 35. 3%. The methanol DISI engine exhibits higher power output than that of the original diesel engine. The cyclic variations of imep maintains low under a wide range of operating conditions, which shows a stable combustion. NO_x and soot emissions can be de-creased simultaneously.%在一台4缸柴油机改造的火花点火甲醇缸内直喷发动机上,中低负荷时采用分层燃烧来实现好的燃油经济性,高负荷时采用均质燃烧来获得好的动力性能.试验结果表明,甲醇缸内直喷发动机可以实现过量空气系数为2.23的分层稀薄燃烧;发动机的有效热效率最高可达35.3%,远高于普通汽油机;低速转矩大,动力性超过原机水平;在宽广的转速和负荷范围下平均指示压力的循环变动较小,燃烧稳定性好;该甲醇发动机可以实现NO_x和碳烟的同时降低.

  4. Flexible design of fuel injection and ignition systems for gasoline direct injection engines; Flexibles Design der Einspritzduese und Effektivitaet von Zuendanlagen fuer Benzin-Direkt-Einspritzung-Motoren

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, H.; Yoshinaga, T.; Nakashima, T.; Sugiura, S. [DENSO Corp. (Japan); Saitoh, K.; Okabe, S. [NIPPON SOKEN, Inc. (Japan)

    2006-07-01

    First generation ''wall-guided'' DISI engines had stratified lean combustion with a wide spacing between the injector and spark plug. In these engines, however, the combustion timing tended to be too early, leading to the inability to achieve ideal efficiency from the thermodynamic process. One proposal to overcome the disadvantages of ''wall-guided'' DISI engines is second-generation ''spray-guided'' DISI engines. It has stratified lean combustion with a close spacing between the injector and spark plug. In ''spray-guided'' DISI engines, the air-fuel mixture formation is independent of gas flow and piston movement. This enables the most significant possibilities for decreasing fuel consumption. Nevertheless, stratified lean combustion has been criticized for the costs and complexity of the aftertreatment required to achieve particulate and NOx emissions compliance. As one response to this problem, there has been a shift toward DISI development specific to stoichiometric homogeneous combustion. In this report, we will describe DENSO's current status and the future of two critical technologies for DISI fuel spray and ignition. Specifically, we will describe a nozzle concept and a high-performance ignition concept. The first concerns a ''multi-hole nozzle with highly flexible spray formation,'' and the second concerns a ''multi-spark ignition system with a high degree of energy flexibility.'' In addition, we will describe advanced ignition methods involving a plasma and a laser ignition. (orig.)

  5. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    Science.gov (United States)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  6. Nitric oxide in a diesel engine : laser-based detection and interpretation

    NARCIS (Netherlands)

    Stoffels, G.G.M.

    1999-01-01

    Nitric oxide (NO) is one of the most polluting components in the exhaust gases of a diesel engines. Therefore, knowledge of the time and place where it is produced during the combustion process is of interest to find a way to reduce diesel engine emissions. Non-intrusive optical diagnostics, based

  7. Experimental and artificial neural network based prediction of performance and emission characteristics of DI diesel engine using Calophyllum inophyllum methyl ester at different nozzle opening pressure

    Science.gov (United States)

    Vairamuthu, G.; Thangagiri, B.; Sundarapandian, S.

    2017-07-01

    The present work investigates the effect of varying Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on performance, emissions and combustion characteristics of Calophyllum inophyllum Methyl Ester (CIME) in a constant speed, Direct Injection (DI) diesel engine using Artificial Neural Network (ANN) approach. An ANN model has been developed to predict a correlation between specific fuel consumption (SFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2, NOx and smoke density using load, blend (B0 and B100) and NOP as input data. A standard Back-Propagation Algorithm (BPA) for the engine is used in this model. A Multi Layer Perceptron network (MLP) is used for nonlinear mapping between the input and the output parameters. An ANN model can predict the performance of diesel engine and the exhaust emissions with correlation coefficient (R2) in the range of 0.98-1. Mean Relative Errors (MRE) values are in the range of 0.46-5.8%, while the Mean Square Errors (MSE) are found to be very low. It is evident that the ANN models are reliable tools for the prediction of DI diesel engine performance and emissions. The test results show that the optimum NOP is 250 bar with B100.

  8. New concepts for exhaust gas turbo charging of a four-cylinder direct injection Otto engine; Neue Konzepte zur Abgasturboaufladung eines direkteinspritzenden Vierzylinder-Ottomotors

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Tilo

    2008-07-01

    This work is supposed to be understood as a contribution to developing a new generation of Otto engines, which meet the increasing ecological and economical demands. The charge concept has a key position in this development. Its design in particular at the four cylinder engine that dominates the market and whose charge changes are very specific, proves to be a special challenge. Based upon known techniques new concepts are developed in this work by means of numeric simulation and experiments and then compared with each other under stationary and transient conditions. On the one hand several exhaust gas turbo chargers in form a register and a two-phase charging are combined with a variable control of the outlet valves, on the other hand the shock-back-up changing is evaluated combined with a biturbo system as well as a twin-current turbine. (orig.)

  9. Combustion and emission analysis of heavy-duty vehicle diesel engine

    Science.gov (United States)

    Sun, Zhixin; Wang, Xue; Wang, Xiancheng; Zhou, Jingkai

    2017-03-01

    Aiming at the research on combustion and emission characteristics of heavy-duty vehicle diesel engine, a bench test was carried out for PM and NOx emission for a certain type diesel engine under different speed and loads. Results shows that for this type of heavy-duty vehicle diesel engine, ignition delay is longer and the proportion of diffusion combustion increases under high speed of external characteristics conditions. Under the speed of 1400 r/min, ignition delay decreases with load increases, combustion duration shortened at first, then increases, the proportion of diffusion combustion increases. The ignition delay is longer and cylinder temperature is higher under lower speed external characteristics of diesel engine, the emissions of soot and NOx are heavier; with large load of external characteristics of diesel engine, the emissions of soot and NOx are heavy as well.

  10. Engineering property test of kaolin clay contaminated by diesel oil

    Institute of Scientific and Technical Information of China (English)

    刘志彬; 刘松玉; 蔡奕

    2015-01-01

    Engineering property of kaolin clay contaminated by diesel oil was studied through a series of laboratory experiments. Oil contents (mass fraction) of 4%, 8%, 12%, 16% and 20% were selected to represent different contamination degrees, and the soil specimens were manually prepared through mixing and static compaction method. Initial water content and dry density of the test kaolin clay were controlled at 10% and 1.58 g/cm3, respectively. Test results indicate that since part of the diesel oil will be released from soil by evaporation, the real water content should be derived through calibration of the quasi water content obtained by traditional test method. As contamination degree of the kaolin clay increases, both liquid limit and plastic limit decrease, but there’s only a slight increase for plasticity index. Swelling pressure of contaminated kaolin clay under confined condition will be lowered when oil-content gets higher. Unconfined compressive strength (UCS) of the oil-contaminated kaolin clay is influenced by not only oil content but also curing period. Increase of contamination degree will continually lower UCS of the kaolin clay specimen. In addition, electrical resistivity of the contaminated kaolin clay with given water content decreases with the increase of oil content. However, soil resistivity is in good relationship with oil content and UCS. Finally, oil content of 8% is found to be a critical value for engineering property of kaolin clay to transit from water-dominated towards oil-dominated characteristics.

  11. 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

    2003-08-24

    The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

  12. The Influence of Light Weight Materials on Fuel Economy and Emissions in Heavy Duty Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Paul C.

    2000-08-20

    Technologies being developed that will allow for the substitution of aluminum for cast iron in engine heads and blocks, while maintaining performance and durability. Development of lightweight diesel engine technology: funded by NAVY, DOE and TACOM

  13. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  14. 77 FR 65840 - Section 610 Reviews of Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur...

    Science.gov (United States)

    2012-10-31

    ...-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements (Heavy-Duty 610... EPA's 610 Review related to Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur... Review of Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements...

  15. Potentials and limitations of alternative fuels for diesel engine

    Directory of Open Access Journals (Sweden)

    Gligorijević Radinko

    2009-01-01

    Full Text Available The primary energy consumption in the world has increased continuously. The most important primary energy source is oil. The supply of automotive fuels today is based almost entirely on oil, and the demand for liquid transportation fuels worldwide will rise significantly in the next fifty years. Growing energy consumption and decreasing fossil resources are reasons for increasing prices of fossil fuel. Besides limited availability, contribution to greenhouse effect and pollutant emission represent another problem of fossil fuel. Both of these problems can be overcome by increased application of renewable biofuels. Therefore, great effort is made to supplement the primary energy sources by including renewable energies. There are alternative fuels 1st and 2nd generation. Some of them show high potential for reduction of engine out emission. But there are economical and technical barriers when such fuels are applied. This paper shows both advantage and disadvantage of alternative fuels, especially when used for diesel engines.

  16. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    Science.gov (United States)

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.

  17. Influence of injection pressures till to 1,000 bar on the carburetion in a spark ignition engine with direct injection; Einfluss von Einspritzdruecken bis 1000 bar auf die Gemischbildung in einem Ottomotor mit Direkteinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Buri, Stefan; Schumann, Florian; Kubach, Heiko; Spicher, Ulrich [Karlsruher Institut fuer Technologie (KIT) (DE). Inst. fuer Kolbenmaschinen (IFKM); Kneifel, Alexander [MTU Friedrichshafen GmbH (Germany)

    2011-07-01

    This paper presents the results of optical investigations of the impact of injection pressures of up to 1000 bar on mixture formation in a spray-guided direct injection engine. The maximum load in stratified operation of an engine with such a spray-guided combustion system is limited by the achievable quality of the mixture. In particular, when using multi hole injectors, the limit of stratified operation is reached rather early, due to comparatively low flow rates and thus insufficient stratification. One measure to increase the flow rate is to increase the injection pressure. The goal of this measure is to generate a more compact stratification, leading to combustion at richer air fuel ratios. This enables reductions of burning duration, hydrocarbon- and particulate emissions. The fundamental impact of increasing the injection pressure from 200 up to 1000 bar on mixture formation was investigated by using LIF- and Mie-scattering in a pressure chamber. Following that, the mixture formation was investigated under real conditions in a single cylinder engine by visualizing the injection process using Mie-scattering. Finally the results of engine operation are compared with those from the pressure chamber. (orig.)

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVII, I--MAINTAINING THE LUBRICATION SYSTEM--CUMMINS DIESEL ENGINE, II--UNIT INSTALLATION AND REMOVAL--DRIVE LINES.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…

  19. STUDY OF PERFORMANCE CHARACTERISTICS OF VARIABLE COMPRESSION RATIO DIESEL ENGINE USING ETHANOL BLENDS WITH DIESEL

    Directory of Open Access Journals (Sweden)

    NILESH MOHITE

    2012-06-01

    Full Text Available As the population of the world increases consumption of the energy also increases tremendously. With the current consumption rate if it has been quoted that there will be great shortage of petroleum products in upcoming decades, it will not be wrong. For this reason people are looking for alternative fuels. As ethanol is the main bio-product in the many industries now-a-days, it is better to develop the engine which can work on pure ethanol or one can add ethanol in the petrol or diesel and use the blends of that. For this purpose, it is necessary to check the performance characteristics and emissions of the blends of ethanol and also necessary to compare with the pure form of fuels. Again it is necessary to check the effect of compression ratio on the blends of ethanol. So in this paper the same has been conducted at basic level.

  20. Diesel and gas engines: evolution following new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Deverat, Ph. [Bergerat Monnoyeur (France). Direction Industrie

    1997-12-31

    Engine emissions of CO, NMHC and ashes are easily lowered through a low-cost exhaust gas processing, while NOx processing in fumes is rather complex and environmentally hazardous; thus, engine manufacturers have emphasized their researches for NOx decrease on the engine design: lower combustion temperature in diesel engines through water cooling or air/air exchanger, lean mixture with excess air (open chamber or pre-chamber) in spark ignition gas engines. Examples of modifications in Caterpillar engines are given. Exhaust gas processing for CO, NMHC, NOx (3 way catalytic purifier, selective catalytic reduction) and ashes is also discussed

  1. Performance and Emission Characteristics of an IDI Diesel Engine Fuelled Biodiesel (Rubber Seed Oil and Palm Oil Mix Diesel Blends

    Directory of Open Access Journals (Sweden)

    Adam Ibrahim K.

    2014-07-01

    Full Text Available In this study crude rubber seed oil and palm oil were mixed at 50: 50 vol.feedstock’s blending methods is motivated by cost reduction and properties enhancement. Biodiesel was produced and thermo physical properties are studied. Blends of B5, B10 and B20 of biodiesel to diesel were prepared. Engine performance (torque, brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and emission (CO, NOx and exhaust gas temperature were evaluated in a 4 cylinder, natural aspirated, indirect injection (IDI diesel engine. The results indicated that at rated engine speed of 2500 rpm torque obtained were 87, 86, 85.3 and 85 Nm for neat diesel, B5, B10 and B20 respectively. Torque in all blends case yield between 0 to 5% lower than neat diesel. BTE were 27.58, 28.52, and 26.45% for B5, B10 and B20 compared to neat diesel 26.99%. At lower blends ratio BSFC was found to be lower and increased proportional to the blends ratio. The CO emission reduced but the exhaust gas temperature and NOx increased as blends ratio increases.

  2. Energy and Exergy Analyses of a Diesel Engine Fuelled with Biodiesel-Diesel Blends Containing 5% Bioethanol

    Directory of Open Access Journals (Sweden)

    Bahar Sayin Kul

    2016-10-01

    Full Text Available In this study, energy and exergy analysis were performed for a single cylinder, water-cooled diesel engine using biodiesel, diesel and bioethanol blends. Each experiment was performed at twelve different engine speeds between 1000 and 3000 rev/min at intervals of 200 rev/min for four different fuel blends. The fuel blends, prepared by mixing biodiesel and diesel in different proportions fuel with 5% bioethanol, are identified as D92B3E5 (92% diesel, 3% biodiesel and 5% bioethanol, D85B10E5 (85% diesel, 10% biodiesel and 5% bioethanol, D80B15E5(80% diesel, 15% biodiesel and 5% bioethanol and D75B20E5 (75% diesel, 20% biodiesel and 5% bioethanol. The effect of blends on energy and exergy analysis was investigated for the different engine speeds and all the results were compared with effect of D100 reference fuel. The maximum thermal efficiencies obtained were 31.42% at 1500 rev/min for D100 and 31.42%, 28.68%, 28.1%, 28% and 27.18% at 1400 rev/min, respectively, for D92B3E5, D85B10E5, D80B15E5, D75B20E5. Maximum exergetic efficiencies were also obtained as 29.38%, 26.8%, 26.33%, 26.15% and 25.38%, respectively, for the abovementioned fuels. As a result of our analyses, it was determined that D100 fuel has a slightly higher thermal and exergetic efficiency than other fuel blends and all the results are quite close to each other.

  3. Study of the combined plant for the generator diesel engine; Hatsudenki diesel engine no combined plant no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y. [Kumamoto Institute of Technology, Kumamoto (Japan); Hanada, S.; Watase, M.; Nakajima, T.

    1997-10-01

    It is intended to recover more effectively thermal energy currently discharged from marine vessels into air. This paper describes