WorldWideScience

Sample records for direct tissue analyses

  1. Direct plasma interaction with living tissue

    Science.gov (United States)

    Fridman, Gregory

    For some time, plasma has been used in medicine to cauterize or cut tissue using heat and mechanical energy. In the recent decade, some researchers around the world have started to investigate how gas jets that pass through thermal plasma can be employed in medicine. This thesis presents the first investigation of biomedical uses of non-thermal plasma discharge which comes in direct contact with living tissue. It is demonstrated that the direct application of non-thermal plasma in air can cause rapid deactivation of bacteria on surfaces of tissues without causing any visible tissue damage. Medical need for such a device is discussed. Construction and operation of various types of non-thermal plasma power supplies and many types of treatment electrodes are presented as well. Application of this plasma to living organisms is shown to be safe from both the electrical perspective and from the biological perspective. Biological safety is revealed through a series of differential skin toxicity trials on human cadaver tissue, live hairless mouse skin tissue, live pig skin tissue, and finally in an open wound model on pigs. Direct non-thermal plasma in air is shown to deactivate bacteria about 100 times faster than indirect application using jets. A series of experiments reveal that this effectiveness is due to the ability of direct discharge to bring charges to tissue surfaces. It is demonstrated that neither ultraviolet (UV) radiation nor neutral active species such as hydroxyl radicals or ozone produced in plasma are responsible for the main effect on bacteria. Although much additional work remains on establishing detailed mechanism by which charges from plasma achieve this effect, the work carried out in this thesis clearly demonstrates that direct application of non-thermal plasma in air can be a very useful tool in medicine.

  2. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    Directory of Open Access Journals (Sweden)

    Susanne C. Hammer

    2016-09-01

    Full Text Available Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.

  3. Elemental composition of skin tissue by PIXE and INAA analyses

    International Nuclear Information System (INIS)

    Hollands, R.; Spyrou, N.M.

    1997-01-01

    Hypertrophic scars are a particular type of scar that can form after any type of dermal injury. They are unsightly, red, elevated above normal skin level, itchy and painful. At present no-one knows why these scars form. Due to the differences between scar tissue and normal skin it was decided to analyse skin tissue which at a later date would be compared to scar tissue. Spit skin graft (epidermis) samples as well as full thickness skin (epidermis to dermis) tissue were analysed using PIXE and RBS with a 2 MeV proton beam. The epidermis was compared to the dermis to see if there were any variations between the two. In all the samples P, S, Cl, K, Ca, Fe, and Cd were detected and in a majority of the samples Zn and Ba were found, using PIXE. It was found that, between the epidermis and dermis, there was an significant increase in P in the epidermis in both full thickness and split skin graft samples. Complementary elemental analysis was also performed using neutron activation, and Br, Na and Zn were detected. (author)

  4. DNA extraction from sea anemone (Cnidaria: Actiniaria tissues for molecular analyses

    Directory of Open Access Journals (Sweden)

    Pinto S.M.

    2000-01-01

    Full Text Available A specific DNA extraction method for sea anemones is described in which extraction of total DNA from eight species of sea anemones and one species of corallimorpharian was achieved by changing the standard extraction protocols. DNA extraction from sea anemone tissue is made more difficult both by the tissue consistency and the presence of symbiotic zooxanthellae. The technique described here is an efficient way to avoid problems of DNA contamination and obtain large amounts of purified and integral DNA which can be used in different kinds of molecular analyses.

  5. Comparison of plasma input and reference tissue models for analysing [(11)C]flumazenil studies

    NARCIS (Netherlands)

    Klumpers, Ursula M. H.; Veltman, Dick J.; Boellaard, Ronald; Comans, Emile F.; Zuketto, Cassandra; Yaqub, Maqsood; Mourik, Jurgen E. M.; Lubberink, Mark; Hoogendijk, Witte J. G.; Lammertsma, Adriaan A.

    2008-01-01

    A single-tissue compartment model with plasma input is the established method for analysing [(11)C]flumazenil ([(11)C]FMZ) studies. However, arterial cannulation and measurement of metabolites are time-consuming. Therefore, a reference tissue approach is appealing, but this approach has not been

  6. Direct tissue blot immunoassay for detection of Xylella fastidiosa in olive trees

    Directory of Open Access Journals (Sweden)

    Khaled DJELOUAH

    2015-01-01

    Full Text Available A direct tissue blot immunoassay (DTBIA technique has been compared with ELISA and PCR for detection of Xylella fastidiosa in olive trees from Apulia (southern Italy. Fresh cross-sections of young twigs and leaf petioles were printed onto nitrocellulose membranes and analyzed in the laboratory. Analyses of a first group of 61 samples gave similar efficiency for the three diagnostic techniques for detection the bacterium (24 positive and 36 negative samples, except for a single sample which was positive only with DTBIA and PCR. Similar results were obtained by separately analyzing suckers and twigs collected from different sectors of tree canopies of a second group of 20 olive trees (ten symptomatic and ten symptomless. In this second test the three diagnostic techniques confirmed the irregular distribution of the bacterium in the tree canopies and erratic detectability of the pathogen in the young suckers. It is therefore necessary to analyse composite samples per tree which should be prepared with twigs collected from different sides of the canopy. The efficiency comparable to ELISA and PCR, combined with the advantages of easier handling, speed and cost, make DTBIA a valid alternative to ELISA in large-scale surveys for occurrence of X. fastidiosa. Moreover, the printing of membranes directly in the field prevents infections spreading to Xylella-free areas, through movement of plant material with pathogen vectors for laboratory testing.

  7. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein.

    Science.gov (United States)

    Schweitzer, Mary Higby; Suo, Zhiyong; Avci, Recep; Asara, John M; Allen, Mark A; Arce, Fernando Teran; Horner, John R

    2007-04-13

    We performed multiple analyses of Tyrannosaurus rex (specimen MOR 1125) fibrous cortical and medullary tissues remaining after demineralization. The results indicate that collagen I, the main organic component of bone, has been preserved in low concentrations in these tissues. The findings were independently confirmed by mass spectrometry. We propose a possible chemical pathway that may contribute to this preservation. The presence of endogenous protein in dinosaur bone may validate hypotheses about evolutionary relationships, rates, and patterns of molecular change and degradation, as well as the chemical stability of molecules over time.

  8. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues.

    Science.gov (United States)

    Kant, Rajeev J; Coulombe, Kareen L K

    2018-03-15

    The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue

  9. Direct-to-PCR tissue preservation for DNA profiling.

    Science.gov (United States)

    Sorensen, Amy; Berry, Clare; Bruce, David; Gahan, Michelle Elizabeth; Hughes-Stamm, Sheree; McNevin, Dennis

    2016-05-01

    Disaster victim identification (DVI) often occurs in remote locations with extremes of temperatures and humidities. Access to mortuary facilities and refrigeration are not always available. An effective and robust DNA sampling and preservation procedure would increase the probability of successful DNA profiling and allow faster repatriation of bodies and body parts. If the act of tissue preservation also released DNA into solution, ready for polymerase chain reaction (PCR), the DVI process could be further streamlined. In this study, we explored the possibility of obtaining DNA profiles without DNA extraction, by adding aliquots of preservative solutions surrounding fresh human muscle and decomposing human muscle and skin tissue samples directly to PCR. The preservatives consisted of two custom preparations and two proprietary solutions. The custom preparations were a salt-saturated solution of dimethyl sulfoxide (DMSO) with ethylenediaminetetraacetic (EDTA) and TENT buffer (Tris, EDTA, NaCl, Tween 20). The proprietary preservatives were DNAgard (Biomatrica(®)) and Tissue Stabilising Kit (DNA Genotek). We obtained full PowerPlex(®) 21 (Promega) and GlobalFiler(®) (Life Technologies) DNA profiles from fresh and decomposed tissue preserved at 35 °C for up to 28 days for all four preservatives. The preservative aliquots removed from the fresh muscle tissue samples had been stored at -80 °C for 4 years, indicating that long-term archival does not diminish the probability of successful DNA typing. Rather, storage at -80 °C seems to reduce PCR inhibition.

  10. Prickle isoforms control the direction of tissue polarity by microtubule independent and dependent mechanisms

    Directory of Open Access Journals (Sweden)

    Katherine A. Sharp

    2016-03-01

    Full Text Available Planar cell polarity signaling directs the polarization of cells within the plane of many epithelia. While these tissues exhibit asymmetric localization of a set of core module proteins, in Drosophila, more than one mechanism links the direction of core module polarization to the tissue axes. One signaling system establishes a polarity bias in the parallel, apical microtubules upon which vesicles containing core proteins traffic. Swapping expression of the differentially expressed Prickle isoforms, Prickle and Spiny-legs, reverses the direction of core module polarization. Studies in the proximal wing and the anterior abdomen indicated that this results from their differential control of microtubule polarity. Prickle and Spiny-legs also control the direction of polarization in the distal wing (D-wing and the posterior abdomen (P-abd. We report here that this occurs without affecting microtubule polarity in these tissues. The direction of polarity in the D-wing is therefore likely determined by a novel mechanism independent of microtubule polarity. In the P-abd, Prickle and Spiny-legs interpret at least two directional cues through a microtubule-polarity-independent mechanism.

  11. Preservation of pathological tissue specimens by freeze-drying for immunohistochemical staining and various molecular biological analyses.

    Science.gov (United States)

    Matsuo, S; Sugiyama, T; Okuyama, T; Yoshikawa, K; Honda, K; Takahashi, R; Maeda, S

    1999-05-01

    Conditions of preserving DNA, RNA and protein in pathological specimens are of great importance as degradation of such macromolecules would critically affect results of molecular biological analysis. The feasibility of freeze-drying as a means of preserving pathological tissue samples for molecular analysis has previously been shown. In the present study, further tests on long-term storage conditions and analyses of freeze-dried samples by polymerase chain reaction (PCR), reverse transcriptase (RT)-PCR, western blotting and immunohistochemistry are reported. Rat chromosomal DNA of freeze-dried samples stored for 4 years showed slight degradation while RNA degradation was more prominently seen at an earlier stage of storage. However, these 4 year DNA and RNA samples were still able to serve as a template for some PCR and RT-PCR analyses, respectively. Overexpression of c-erbB-2 and p53 protein was demonstrated by western blotting and immunohistochemical staining using freeze-dried human breast cancer tissues. Although macromolecules in freeze-dried samples degrade to some extent during the preservation period, they should still be of value for certain molecular biological analyses and morphological examination; hence, providing more convenient and inexpensive ways of pathological tissue storage.

  12. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions.

    Science.gov (United States)

    Zhang, Dong-Mei; Jiao, Rui-Qing; Kong, Ling-Dong

    2017-03-29

    High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  13. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions

    Directory of Open Access Journals (Sweden)

    Dong-Mei Zhang

    2017-03-01

    Full Text Available High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2 and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG, free fatty acid (FFA, uric acid (UA and methylglyoxal (MG. Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.

  14. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Steffen Hahnel

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM and bright-field microscopy (BF. We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP as well as for post-transcriptional regulation (SmAQP. CONCLUSIONS/SIGNIFICANCE: The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved

  15. Immediate postoperative outcome of orthognathic surgical planning, and prediction of positional changes in hard and soft tissue, independently of the extent and direction of the surgical corrections required

    DEFF Research Database (Denmark)

    Donatsky, Ole; Bjørn-Jørgensen, Jens; Hermund, Niels Ulrich

    2011-01-01

    orthognathic correction using the computerised, cephalometric, orthognathic, surgical planning system (TIOPS). Preoperative cephalograms were analysed and treatment plans and prediction tracings produced by computerised interactive simulation. The planned changes were transferred to models and finally...... with the presently included soft tissue algorithms, the current study shows relatively high mean predictability of the immediately postoperative hard and soft tissue outcome, independent of the extent and direction of required orthognathic correction. Because of the relatively high individual variability, caution...

  16. Direct tissue oxygen monitoring by in vivo photoacoustic lifetime imaging (PALI)

    Science.gov (United States)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2014-03-01

    Tissue oxygen plays a critical role in maintaining tissue viability and in various diseases, including response to therapy. Images of oxygen distribution provide the history of tissue hypoxia and evidence of oxygen availability in the circulatory system. Currently available methods of direct measuring or imaging tissue oxygen all have significant limitations. Previously, we have reported a non-invasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor hypoxia in small animals, and the hypoxic region imaged by PALI is consistent with the site of the tumor imaged by ultrasound. Here, we present two studies of applying PALI to monitor changes of tissue oxygen by modulations. The first study involves an acute ischemia model using a thin thread tied around the hind limb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of muscle pO2 and recovery from hypoxia due to reperfusion were observed by PALI tracking the same region. The second study modulates tissue oxygen by controlling the percentage of oxygen the mouse inhales. We demonstrate that PALI is able to reflect the change of oxygen level with respect to both hyperbaric and hypobaric conditions. We expect this technique to be very attractive for a range of clinical applications in which tissue oxygen mapping would improve therapy decision making and treatment planning.

  17. Tissue Sampling Guides for Porcine Biomedical Models.

    Science.gov (United States)

    Albl, Barbara; Haesner, Serena; Braun-Reichhart, Christina; Streckel, Elisabeth; Renner, Simone; Seeliger, Frank; Wolf, Eckhard; Wanke, Rüdiger; Blutke, Andreas

    2016-04-01

    This article provides guidelines for organ and tissue sampling adapted to porcine animal models in translational medical research. Detailed protocols for the determination of sampling locations and numbers as well as recommendations on the orientation, size, and trimming direction of samples from ∼50 different porcine organs and tissues are provided in the Supplementary Material. The proposed sampling protocols include the generation of samples suitable for subsequent qualitative and quantitative analyses, including cryohistology, paraffin, and plastic histology; immunohistochemistry;in situhybridization; electron microscopy; and quantitative stereology as well as molecular analyses of DNA, RNA, proteins, metabolites, and electrolytes. With regard to the planned extent of sampling efforts, time, and personnel expenses, and dependent upon the scheduled analyses, different protocols are provided. These protocols are adjusted for (I) routine screenings, as used in general toxicity studies or in analyses of gene expression patterns or histopathological organ alterations, (II) advanced analyses of single organs/tissues, and (III) large-scale sampling procedures to be applied in biobank projects. Providing a robust reference for studies of porcine models, the described protocols will ensure the efficiency of sampling, the systematic recovery of high-quality samples representing the entire organ or tissue as well as the intra-/interstudy comparability and reproducibility of results. © The Author(s) 2016.

  18. Direct determination of fatty acids in fish tissues: quantifying top predator trophic connections.

    Science.gov (United States)

    Parrish, Christopher C; Nichols, Peter D; Pethybridge, Heidi; Young, Jock W

    2015-01-01

    Fatty acids are a valuable tool in ecological studies because of the large number of unique structures synthesized. They provide versatile signatures that are being increasingly employed to delineate the transfer of dietary material through marine and terrestrial food webs. The standard procedure for determining fatty acids generally involves lipid extraction followed by methanolysis to produce methyl esters for analysis by gas chromatography. By directly transmethylating ~50 mg wet samples and adding an internal standard it was possible to greatly simplify the analytical methodology to enable rapid throughput of 20-40 fish tissue fatty acid analyses a day including instrumental analysis. This method was verified against the more traditional lipid methods using albacore tuna and great white shark muscle and liver samples, and it was shown to provide an estimate of sample dry mass, total lipid content, and a condition index. When large fatty acid data sets are generated in this way, multidimensional scaling, analysis of similarities, and similarity of percentages analysis can be used to define trophic connections among samples and to quantify them. These routines were used on albacore and skipjack tuna fatty acid data obtained by direct methylation coupled with literature values for krill. There were clear differences in fatty acid profiles among the species as well as spatial differences among albacore tuna sampled from different locations.

  19. Microdissection of gonadal tissues for gene expression analyses

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Dalgaard, Marlene Danner; Sonne, Si Brask

    2011-01-01

    Laser microdissection permits isolation of specific cell types from tissue sections or cell cultures. This may be beneficial when investigating the role of specific cells in a complex tissue or organ. In tissues with easily distinguishable morphology, a simple hematoxylin staining is sufficient...... phosphatase enzyme, such as fetal germ cells, testicular carcinoma in situ cells, and putatively also other early stem cell populations. We have applied these protocols for microdissection of rat Leydig cells, fetal human and zebrafish germ cells, and human testicular germ cell tumors, but the staining...

  20. Tissue Cancellation in Dual Energy Mammography Using a Calibration Phantom Customized for Direct Mapping.

    Science.gov (United States)

    Han, Seokmin; Kang, Dong-Goo

    2014-01-01

    An easily implementable tissue cancellation method for dual energy mammography is proposed to reduce anatomical noise and enhance lesion visibility. For dual energy calibration, the images of an imaging object are directly mapped onto the images of a customized calibration phantom. Each pixel pair of the low and high energy images of the imaging object was compared to pixel pairs of the low and high energy images of the calibration phantom. The correspondence was measured by absolute difference between the pixel values of imaged object and those of the calibration phantom. Then the closest pixel pair of the calibration phantom images is marked and selected. After the calibration using direct mapping, the regions with lesion yielded different thickness from the background tissues. Taking advantage of the different thickness, the visibility of cancerous lesions was enhanced with increased contrast-to-noise ratio, depending on the size of lesion and breast thickness. However, some tissues near the edge of imaged object still remained after tissue cancellation. These remaining residuals seem to occur due to the heel effect, scattering, nonparallel X-ray beam geometry and Poisson distribution of photons. To improve its performance further, scattering and the heel effect should be compensated.

  1. Functionalized Ormosil Scaffolds Processed by Direct Laser Polymerization for Application in Tissue Engineering

    DEFF Research Database (Denmark)

    Matei, A.; Schou, Jørgen; Canulescu, Stela

    The N,N’-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate for applications in tissue engineering was synthesized and afterwards polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for further applications...... in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by using two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation. The functionalized structures were tested...

  2. Direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue.

    Science.gov (United States)

    Wood, Mark; Goldberg, Scott; Lau, Melissa; Goel, Aneesh; Alexander, Daniel; Han, Frederick; Feinstein, Shawn

    2011-06-01

    The lethal isotherm for radiofrequency catheter ablation of cardiac myocardium is widely accepted to be 50°C, but this has not been directly measured. The purpose of this study was to directly measure the tissue temperature at the edge of radiofrequency lesions in real time using infrared thermal imaging. Fifteen radiofrequency lesions of 6 to 240 seconds in duration were applied to the left ventricular surface of isolated perfused pig hearts. At the end of radiofrequency delivery, a thermal image of the tissue surface was acquired with an infrared camera. The lesion was then stained and an optical image of the lesion was obtained. The thermal and optical images were electronically merged to allow determination of the tissue temperature at the edge of the lesion at the end of radiofrequency delivery. By adjusting the temperature overlay display to conform with the edge of the radiofrequency lesion, the lethal isotherm was measured to be 60.6°C (interquartile ranges, 59.7° to 62.4°C; range, 58.1° to 64.2°C). The areas encompassed by the lesion border in the optical image and the lethal isotherm in the thermal image were statistically similar and highly correlated (Spearman ρ=0.99, Pradiofrequency delivery or to lesion size (both P>0.64). The areas circumscribed by 50°C isotherms were significantly larger than the areas of the lesions on optical imaging (P=0.002). By direct measurement, the lethal isotherm for cardiac myocardium is near 61°C for radiofrequency energy deliveries radiofrequency ablation is important to clinical practice as well as mathematical modeling of radiofrequency lesions.

  3. Tissue Engineered Skeletal Myofibers can Directly "Sense" Gravitational Force Changes

    Science.gov (United States)

    Vandenburgh, Herman H.; Shansky, J.; DelTatto, M.; Lee, Peter; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures. Embryonic avian muscle cells were isolated and BAMs tissue engineered as described previously. The myoblasts proliferate and fuse into aligned postmitotic myofibers after ten to fourteen days in vitro. A cylindrical muscle-like structure containing several thousand myofibers is formed which is approximately 30 mm in length, 2-3 mm in diameter, and attached at each end. For the Space Shuttle experiments, the BAMs were transferred to 55 mL bioreactor cartridges (6 BAMs/cartridge). At Kennedy Space Center, the cartridges were mounted in two Space Tissue Loss (STL) Modules (three to four cartridges per Module) and either maintained as ground controls or loaded in a Mid-Deck locker of the Space Shuttle. The BAM cartridges were continuously perfused during the experiment at 1.5 mL/ min with tissue culture medium. Eighteen BAMs were flown for nine days on Mission STS66 while eighteen BAMs served as ground controls. The complete experiment was repeated on Mission STS77 with twenty four BAMs in each group. BAMs could be maintained in a healthy state for at least 30 days in the perfusion bioreactor cartridges. The BAM muscle fibers directly detected both the

  4. Tissue Multiplatform-Based Metabolomics/Metabonomics for Enhanced Metabolome Coverage.

    Science.gov (United States)

    Vorkas, Panagiotis A; Abellona U, M R; Li, Jia V

    2018-01-01

    The use of tissue as a matrix to elucidate disease pathology or explore intervention comes with several advantages. It allows investigation of the target alteration directly at the focal location and facilitates the detection of molecules that could become elusive after secretion into biofluids. However, tissue metabolomics/metabonomics comes with challenges not encountered in biofluid analyses. Furthermore, tissue heterogeneity does not allow for tissue aliquoting. Here we describe a multiplatform, multi-method workflow which enables metabolic profiling analysis of tissue samples, while it can deliver enhanced metabolome coverage. After applying a dual consecutive extraction (organic followed by aqueous), tissue extracts are analyzed by reversed-phase (RP-) and hydrophilic interaction liquid chromatography (HILIC-) ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy. This pipeline incorporates the required quality control features, enhances versatility, allows provisional aliquoting of tissue extracts for future guided analyses, expands the range of metabolites robustly detected, and supports data integration. It has been successfully employed for the analysis of a wide range of tissue types.

  5. Functionalized ormosil scaffolds processed by direct laser polymerization for application in tissue engineering

    DEFF Research Database (Denmark)

    Matei, A.; Schou, Jørgen; Canulescu, Stela

    2013-01-01

    Synthesized N,N′-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate was polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for subsequent applications in tissue engineering. The as-obtained scaffolds were...

  6. Direct measurement of VOC diffusivities in tree tissues

    DEFF Research Database (Denmark)

    Baduru, K.K.; Trapp, Stefan; Burken, Joel G.

    2008-01-01

    Recent discoveries in the phytoremediation of volatile organic compounds (VOCs) show that vapor-phase transport into roots leads to VOC removal from the vadose zone and diffusion and volatilization out of plants is an important fate following uptake. Volatilization to the atmosphere constitutes one...... in numerous vegetation−VOC interactions, including the phytoremediation of soil vapors and dissolved aqueous-phase contaminants. The diffusion of VOCs through freshly excised tree tissue was directly measured for common groundwater contaminants, chlorinated compounds such as trichloroethylene, perchloroethene......, and tetrachloroethane and aromatic hydrocarbons such as benzene, toluene, and methyl tert-butyl ether. All compounds tested are currently being treated at full scale with tree-based phytoremediation. Diffusivities were determined by modeling the diffusive transport data with a one-dimensional diffusive flux model...

  7. In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy

    Data.gov (United States)

    U.S. Environmental Protection Agency — In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy showing spectral fitting and linear...

  8. Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype

    Directory of Open Access Journals (Sweden)

    Richard A Lasher

    2012-12-01

    Full Text Available Quantifying structural features of native myocardium in engineered tissue is essential for creating functional tissue that can serve as a surrogate for in vitro testing or the eventual replacement of diseased or injured myocardium. We applied three-dimensional confocal imaging and image analysis to quantitatively describe the features of native and engineered cardiac tissue. Quantitative analysis methods were developed and applied to test the hypothesis that environmental cues direct engineered tissue toward a phenotype resembling that of age-matched native myocardium. The analytical approach was applied to engineered cardiac tissue with and without the application of electrical stimulation as well as to age-matched and adult native tissue. Individual myocytes were segmented from confocal image stacks and assigned a coordinate system from which measures of cell geometry and connexin-43 spatial distribution were calculated. The data were collected from 9 nonstimulated and 12 electrically stimulated engineered tissue constructs and 5 postnatal day 12 and 7 adult hearts. The myocyte volume fraction was nearly double in stimulated engineered tissue compared to nonstimulated engineered tissue (0.34 ± 0.14 vs 0.18 ± 0.06 but less than half of the native postnatal day 12 (0.90 ± 0.06 and adult (0.91 ± 0.04 myocardium. The myocytes under electrical stimulation were more elongated compared to nonstimulated myocytes and exhibited similar lengths, widths, and heights as in age-matched myocardium. Furthermore, the percentage of connexin-43-positive membrane staining was similar in the electrically stimulated, postnatal day 12, and adult myocytes, whereas it was significantly lower in the nonstimulated myocytes. Connexin-43 was found to be primarily located at cell ends for adult myocytes and irregularly but densely clustered over the membranes of nonstimulated, stimulated, and postnatal day 12 myocytes. These findings support our hypothesis and reveal

  9. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    Science.gov (United States)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  10. Direct detection of Mycobacterium tuberculosis complex in bovine and bubaline tissues through nested-PCR.

    Science.gov (United States)

    Araújo, Cristina P; Osório, Ana Luiza A R; Jorge, Klaudia S G; Ramos, Carlos A N; Souza Filho, Antonio F; Vidal, Carlos E S; Vargas, Agueda P C; Roxo, Eliana; Rocha, Adalgiza S; Suffys, Philip N; Fonseca, Antônio A; Silva, Marcio R; Barbosa Neto, José D; Cerqueira, Valíria D; Araújo, Flábio R

    2014-01-01

    Post-mortem bacterial culture and specific biochemical tests are currently performed to characterize the etiologic agent of bovine tuberculosis. Cultures take up to 90 days to develop. A diagnosis by molecular tests such as PCR can provide fast and reliable results while significantly decreasing the time of confirmation. In the present study, a nested-PCR system, targeting rv2807, with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC) organisms directly from bovine and bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other Actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. Regarding the analytical sensitivity, DNA of the M. bovis AN5 strain was detected up to 1.5 pg by nested-PCR, whereas DNA of M. tuberculosis H37Rv strain was detected up to 6.1 pg. The nested-PCR system showed 100% analytical specificity for MTC when tested with DNA of reference strains of non-tuberculous mycobacteria and closely-related Actinomycetales. A clinical sensitivity level of 76.7% was detected with tissues samples positive for MTC by means of the culture and conventional PCR. A clinical specificity of 100% was detected with DNA from tissue samples of cattle with negative results in the comparative intradermal tuberculin test. These cattle exhibited no visible lesions and were negative in the culture for MTC. The use of the nested-PCR assay to detect M. tuberculosis complex in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis.

  11. Comparison of inoculant and indigenous rhizobial dinitrogen fixation in cowpeas by direct nitrogen-15 analyses

    International Nuclear Information System (INIS)

    ElHassan, G.A.; Focht, D.D.

    1986-01-01

    Soil that contained 15 N enriched organic matter (0.461 % 15 N) was used to determine competitiveness of six strains at different logarithmic inoculum densities against indigenous rhizobia and against a previous surviving inoculant (strain P132). Analyses of N content of plant tissues by direct 15 N technique showed that cowpeas (Vigna unguiculata L. Walp.) were capable of deriving 60 to 98% of shoot N from N 2 fixation. The two fast-growing strains (176A26 and 176A28) were poorer competitors and fixed less N 2 compared to the other slow-growing strains. Inoculum density had no effect upon yield response of cowpeas, but inoculation with strains P132, 401, and 22A1 effected greater seed yield, shoot dry matter, total N, and percentage of N derived from fixation (86-98%) than other strains and the uninoculated control (60-73%). By contrast, N 2 fixation and yield parameters in inoculated cowpeas were not significantly different from inoculated controls that contained residual P132 from a previous inoculum study. The higher hydrogen uptake (Hup) efficiency of nodules containing residual P132 (98 ± 2%) facilitated presumptive identification of P132 (100% ± 0 Hup efficiency axenically) as the surviving and infecting inoculant strain since nodules infected by indigenous rhizobia had lower Hup efficiencies (88 ± 2%)

  12. In Situ Blotting : A Novel Method for Direct Transfer of Native Proteins from Sectioned Tissue to Blotting Membrane

    NARCIS (Netherlands)

    Okabe, Masashi; Nyakas, Csaba; Buwalda, Bauke; Luiten, Paul G.M.

    1993-01-01

    We describe a novel technique for direct transfer of native proteins from unfixed frozen tissue sections to an immobilizing matrix, e.g., nitrocellulose, polyvinyliden difluoride, or positively charged nylon membranes. Proteins are directly blotted onto the membrane, providing optimal accessibility

  13. Direct spectrometry: a new alternative for measuring the fluorescence of composite resins and dental tissues.

    Science.gov (United States)

    da Silva, Tm; de Oliveira, Hpm; Severino, D; Balducci, I; Huhtala, Mfrl; Gonçalves, Sep

    2014-01-01

    The aim of this study was to evaluate the fluorescence intensity of different composite resins and compare those values with the fluorescence intensity of dental tissues. Different composite resins were used to make 10 discs (2 mm in depth and 4 mm in diameter) of each brand, divided into groups: 1) Z (Filtek Z350, 3M ESPE), 2) ES (Esthet-X, Dentsply), 3) A (Amelogen Plus, Ultradent), 4) DVS (Durafill-VS, Heraeus Kulzer) with 2 mm composite resin for enamel (A2), 5) OES ([Esthet-X] opaque-OA [1 mm] + enamel-A2 [1 mm]); 6) ODVSI ([Charisma-Opal/Durafill-VSI], opaque-OM (1 mm) + translucent [1mm]), and 7) DVSI ([Durafill- VSI] translucent [2 mm]). Dental tissue specimens were obtained from human anterior teeth cut in a mesiodistal direction to obtain enamel, dentin, and enamel/dentin samples (2 mm). The fluorescence intensity of specimens was directly measured using an optic fiber associated with a spectrometer (Ocean Optics USB 4000) and recorded in graphic form (Origin 8.0 program). Data were submitted to statistical analysis using Dunnet, Tukey, and Kruskall-Wallis tests. Light absorption of the composite resins was obtained in a spectral range from 250 to 450 nm, and that of dental tissues was between 250 and 300 nm. All composite resins were excited at 398 nm and exhibited maximum emissions of around 485 nm. Fluorescence intensity values for all of the resins showed statistically significant differences (measured in arbitrary units [AUs]), with the exception of groups Z and DVS. Group DVSI had the highest fluorescence intensity values (13539 AU), followed by ODVS (10440 AU), DVS (10146 AU), ES (3946 AU), OES (3841 AU), A (3540 AU), and Z (1146 AU). The fluorescence intensity values for the composite resins differed statistically from those of dental tissues (E=1380 AU; D=6262 AU; E/D=3251 AU). The opacity interfered with fluorescence intensity, and group Z demonstrated fluorescence intensity values closest to that of tooth enamel. It is concluded that the

  14. Crystal analyser-based X-ray phase contrast imaging in the dark field: implementation and evaluation using excised tissue specimens

    International Nuclear Information System (INIS)

    Ando, Masami; Sunaguchi, Naoki; Wu, Yanlin; Do, Synho; Sung, Yongjin; Gupta, Rajiv; Louissaint, Abner; Yuasa, Tetsuya; Ichihara, Shu

    2014-01-01

    We demonstrate the soft tissue discrimination capability of X-ray dark-field imaging (XDFI) using a variety of human tissue specimens. The experimental setup for XDFI comprises an X-ray source, an asymmetrically cut Bragg-type monochromator-collimator (MC), a Laue-case angle analyser (LAA) and a CCD camera. The specimen is placed between the MC and the LAA. For the light source, we used the beamline BL14C on a 2.5-GeV storage ring in the KEK Photon Factory, Tsukuba, Japan. In the eye specimen, phase contrast images from XDFI were able to discriminate soft-tissue structures, such as the iris, separated by aqueous humour on both sides, which have nearly equal absorption. Superiority of XDFI in imaging soft tissue was further demonstrated with a diseased iliac artery containing atherosclerotic plaque and breast samples with benign and malignant tumours. XDFI on breast tumours discriminated between the normal and diseased terminal duct lobular unit and between invasive and in-situ cancer. X-ray phase, as detected by XDFI, has superior contrast over absorption for soft tissue processes such as atherosclerotic plaque and breast cancer. (orig.)

  15. Crystal analyser-based X-ray phase contrast imaging in the dark field: implementation and evaluation using excised tissue specimens

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masami [RIST, Tokyo University of Science, Noda, Chiba (Japan); Sunaguchi, Naoki [Gunma University, Graduate School of Engineering, Kiryu, Gunma (Japan); Wu, Yanlin [The Graduate University for Advanced Studies, Department of Materials Structure Science, School of High Energy Accelerator Science, Tsukuba, Ibaraki (Japan); Do, Synho; Sung, Yongjin; Gupta, Rajiv [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Louissaint, Abner [Massachusetts General Hospital and Harvard Medical School, Department of Pathology, Boston, MA (United States); Yuasa, Tetsuya [Yamagata University, Faculty of Engineering, Yonezawa, Yamagata (Japan); Ichihara, Shu [Nagoya Medical Center, Department of Pathology, Nagoya, Aichi (Japan)

    2014-02-15

    We demonstrate the soft tissue discrimination capability of X-ray dark-field imaging (XDFI) using a variety of human tissue specimens. The experimental setup for XDFI comprises an X-ray source, an asymmetrically cut Bragg-type monochromator-collimator (MC), a Laue-case angle analyser (LAA) and a CCD camera. The specimen is placed between the MC and the LAA. For the light source, we used the beamline BL14C on a 2.5-GeV storage ring in the KEK Photon Factory, Tsukuba, Japan. In the eye specimen, phase contrast images from XDFI were able to discriminate soft-tissue structures, such as the iris, separated by aqueous humour on both sides, which have nearly equal absorption. Superiority of XDFI in imaging soft tissue was further demonstrated with a diseased iliac artery containing atherosclerotic plaque and breast samples with benign and malignant tumours. XDFI on breast tumours discriminated between the normal and diseased terminal duct lobular unit and between invasive and in-situ cancer. X-ray phase, as detected by XDFI, has superior contrast over absorption for soft tissue processes such as atherosclerotic plaque and breast cancer. (orig.)

  16. Real time analysis of brain tissue by direct combination of ultrasonic surgical aspiration and sonic spray mass spectrometry.

    Science.gov (United States)

    Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán

    2011-10-15

    Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society

  17. Direct Analyses of Secondary Metabolites by Mass Spectrometry Imaging (MSI) from Sunflower (Helianthus annuus L.) Trichomes.

    Science.gov (United States)

    Brentan Silva, Denise; Aschenbrenner, Anna-Katharina; Lopes, Norberto Peporine; Spring, Otmar

    2017-05-10

    Helianthus annuus (sunflower) displays non-glandular trichomes (NGT), capitate glandular trichomes (CGT), and linear glandular trichomes (LGT), which reveal different chemical compositions and locations in different plant tissues. With matrix-assisted laser desorption/ionization (MALDI) and laser desorption/ionization (LDI) mass spectrometry imaging (MSI) techniques, efficient methods were developed to analyze the tissue distribution of secondary metabolites (flavonoids and sesquiterpenes) and proteins inside of trichomes. Herein, we analyzed sesquiterpene lactones, present in CGT, from leaf transversal sections using the matrix 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA) (mixture 1:1) with sodium ions added to increase the ionization in positive ion mode. The results observed for sesquiterpenes and polymethoxylated flavones from LGT were similar. However, upon desiccation, LGT changed their shape in the ionization source, complicating analyses by MSI mainly after matrix application. An alternative method could be applied to LGT regions by employing LDI (without matrix) in negative ion mode. The polymethoxylated flavones were easily ionized by LDI, producing images with higher resolution, but the sesquiterpenes were not observed in spectra. Thus, the application and viability of MALDI imaging for the analyses of protein and secondary metabolites inside trichomes were confirmed, highlighting the importance of optimization parameters.

  18. Maternal celiac disease autoantibodies bind directly to syncytiotrophoblast and inhibit placental tissue transglutaminase activity

    Directory of Open Access Journals (Sweden)

    Robinson Nicola J

    2009-02-01

    Full Text Available Abstract Background Celiac disease (CD occurs in as many as 1 in 80 pregnant women and is associated with poor pregnancy outcome, but it is not known if this is an effect on maternal nutrient absorption or, alternatively, if the placenta is an autoimmune target. The major autoantigen, tissue transglutaminase (tTG, has previously been shown to be present in the maternal-facing syncytiotrophoblast plasma membrane of the placenta. Methods ELISA was used to demonstrate the presence of antibodies to tissue transglutaminase in a panel of CD sera. Immunohistochemistry was used to evaluate the binding of IgA autoantibodies from CD serum to term placenta. In addition, novel direct binding and activity assays were developed to mimic the in vivo exposure of the villous placenta to maternal autoantibody. Results and Discussion CD IgA autoantibodies located to the syncytial surface of the placenta significantly more than IgA antibodies in control sera (P Conclusion These data indicate that direct immune effects in untreated CD women may compromise placental function.

  19. Tissue Engineering: Current Strategies and Future Directions

    OpenAIRE

    Olson, Jennifer L.; Atala, Anthony; Yoo, James J.

    2011-01-01

    Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue eng...

  20. Engineering kidney cells: reprogramming and directed differentiation to renal tissues.

    Science.gov (United States)

    Kaminski, Michael M; Tosic, Jelena; Pichler, Roman; Arnold, Sebastian J; Lienkamp, Soeren S

    2017-07-01

    Growing knowledge of how cell identity is determined at the molecular level has enabled the generation of diverse tissue types, including renal cells from pluripotent or somatic cells. Recently, several in vitro protocols involving either directed differentiation or transcription-factor-based reprogramming to kidney cells have been established. Embryonic stem cells or induced pluripotent stem cells can be guided towards a kidney fate by exposing them to combinations of growth factors or small molecules. Here, renal development is recapitulated in vitro resulting in kidney cells or organoids that show striking similarities to mammalian embryonic nephrons. In addition, culture conditions are also defined that allow the expansion of renal progenitor cells in vitro. Another route towards the generation of kidney cells is direct reprogramming. Key transcription factors are used to directly impose renal cell identity on somatic cells, thus circumventing the pluripotent stage. This complementary approach to stem-cell-based differentiation has been demonstrated to generate renal tubule cells and nephron progenitors. In-vitro-generated renal cells offer new opportunities for modelling inherited and acquired renal diseases on a patient-specific genetic background. These cells represent a potential source for developing novel models for kidney diseases, drug screening and nephrotoxicity testing and might represent the first steps towards kidney cell replacement therapies. In this review, we summarize current approaches for the generation of renal cells in vitro and discuss the advantages of each approach and their potential applications.

  1. Analysis of Chloroquine and Metabolites Directly from Whole-body Animal Tissue Sections by Liquid Extraction Surface Analysis (LESA) and Tandem Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Parson, Whitney B [ORNL; Koeniger, Stormy L [Abbott Laboratories; Johnson, Robert W [Abbott Laboratories; Erickson, Jamie [Abbott Laboratories; Tian, Yu [Abbott Laboratories; Stedman, Christopher A. [Abbott Laboratories; Schwartz, Annette [Abbott Laboratories; Tarcsa, Edit [Abbott Laboratories; Cole, Roderic [ORNL; Van Berkel, Gary J [ORNL

    2012-01-01

    The rapid and direct analysis of the amount and spatial distribution of exogenous chloroquine and chloroquine metabolites from tissue sections by liquid extraction surface sampling analysis coupled with tandem mass spectrometry (LESA-MS) was demonstrated. LESA-MS results compared well with previously published chloroquine quantification data collected by organ excision, extraction and fluorescent detection. The ability to directly sample and analyze spatially-resolved exogenous molecules from tissue sections with minimal sample preparation and analytical method development has the potential to facilitate the assessment of target tissue penetration of pharmaceutical compounds, to establish pharmacokinetic/pharmacodynamic (PK/PD) relationships, and to complement established pharmacokinetic methods used in the drug discovery process during tissue distribution assessment.

  2. Elemental composition of 'normal' and Alzheimer brain tissue by INA and PIXE analyses

    International Nuclear Information System (INIS)

    Stedman, J.D.; Spyrou, N.M.

    1997-01-01

    Instrumental methods based on the nuclear and atomic properties of the elements have been used for many years to determine elemental concentrations in a variety of materials for biomedical, industrial and environmental applications. These methods offer high sensitivity for accurate trace element measurements, suffer few interfering or competing effects. Present no blank problems and are convenient for both research and routine analyses. The present article describes the use of two trace element techniques. Firstly the use of activation of stable nuclei irradiated by neutrons in the core of a low power research reactor as a means of detection of elements through the resulting gamma-rays emitted. Secondly, the observations of the interactions of energetic ion beams with the material in order to identify elemental species. Over recent years there has been some interest in determining the elemental composition of 'normal' and Alzheimer affected brain tissue, however literature findings are inconsistent. Possible reasons for discrepancies need to be identified for further progress to be made. Here, post-mortem tissue samples, provided by the Alzheimer's Disease Brain Bank, Institute of Psychiatry, London, were taken from the frontal, occipital, parietal and temporal lobes of both hemispheres of brains from 13 'normal' and 19 Alzheimer subjects. The elemental composition of the samples was determined using the analytical techniques of INAA (instrumental neutron activation analysis), RBS (Rutherford back-scattering) and PIXE (particle induced x-ray emission). The principal findings are summarised here. (author)

  3. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering.

    Science.gov (United States)

    Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2012-07-01

    Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction. Copyright © 2012 Wiley Periodicals, Inc.

  4. Influence of soft tissue in the assessment of the primary fixation of acetabular cup implants using impact analyses.

    Science.gov (United States)

    Bosc, Romain; Tijou, Antoine; Rosi, Giuseppe; Nguyen, Vu-Hieu; Meningaud, Jean-Paul; Hernigou, Philippe; Flouzat-Lachaniette, Charles-Henri; Haiat, Guillaume

    2018-06-01

    The acetabular cup (AC) implant primary stability is an important determinant for the success of cementless hip surgery but it remains difficult to assess the AC implant fixation in the clinic. A method based on the analysis of the impact produced by an instrumented hammer on the ancillary has been developed by our group (Michel et al., 2016a). However, the soft tissue thickness present around the acetabulum may affect the impact response, which may hamper the robustness of the method. The aim of this study is to evaluate the influence of the soft tissue thickness (STT) on the acetabular cup implant primary fixation evaluation using impact analyses. To do so, different AC implants were inserted in five bovine bone samples. For each sample, different stability conditions were obtained by changing the cavity diameter. For each configuration, the AC implant was impacted 25 times with 10 and 30 mm of soft tissues positioned underneath the sample. The averaged indicator I m was determined based on the amplitude of the signal for each configuration and each STT and the pull-out force was measured. The results show that the resonance frequency of the system increases when the value of the soft tissue thickness decreases. Moreover, an ANOVA analysis shows that there was no significant effect of the value of soft tissue thickness on the values of the indicator I m (F = 2.33; p-value = 0.13). This study shows that soft tissue thickness does not appear to alter the prediction of the acetabular cup implant primary fixation obtained using the impact analysis approach, opening the path towards future clinical trials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering.

    Science.gov (United States)

    Diniz, Ivana M A; Carreira, Ana C O; Sipert, Carla R; Uehara, Cindi M; Moreira, Maria S N; Freire, Laila; Pelissari, Cibele; Kossugue, Patrícia M; de Araújo, Daniele R; Sogayar, Mari C; Marques, Márcia M

    2018-06-01

    Photobiomodulation (PBM) therapy displays relevant properties for tissue healing and regeneration, which may be of interest for the tissue engineering field. Here, we show that PBM is able to improve cell survival and to interact with recombinant human Bone Morphogenetic Protein 4 (rhBMP4) to direct and accelerate odonto/osteogenic differentiation of dental derived mesenchymal stem cells (MSCs). MSCs were encapsulated in an injectable and thermo-responsive cell carrier (Pluronic ® F-127) loaded with rhBMP4 and then photoactivated. PBM improved MSCs self-renewal and survival upon encapsulation in the Pluronic ® F-127. In the presence of rhBMP4, cell odonto/osteogenic differentiation was premature and markedly improved in the photoactivated MSCs. An in vivo calvarial critical sized defect model demonstrated significant increase in bone formation after PBM treatment. Finally, a balance in the reactive oxygen species levels may be related to the favorable results of PBM and rhBMP4 association. PBM may act in synergism with rhBMP4 and is a promise candidate to direct and accelerate hard tissue bioengineering. © 2017 Wiley Periodicals, Inc.

  6. Direct detection of the AR-E211 G > A gene polymorphism from blood and tissue samples without DNA isolation.

    Science.gov (United States)

    Reptova, Silvie; Trtkova, Katerina Smesny; Kolar, Zdenek

    2014-04-01

    The pathogenesis of prostate cancer (CaP) involves alterations in a gene structure of the androgen receptor (AR). The single nucleotide polymorphism AR-E211 G > A localized in exon 1 of the AR gene (G1733A) was detected using direct polymerase chain reaction and restriction digestion (PCR-RFLP) method on blood and tissue samples without prior DNA isolation. We used blood samples of patients with a diagnosis of benign prostatic hyperplasia (BPH) or CaP. From monitored group of CaP patients were selected specimen in formalin-fixed paraffin-embedded tissue blocks with morphology of BPH and CaP. The main objective of our study was to develop a method based the direct PCR-RFLP analysis from blood and tissue without prior DNA isolation for faster genotyping analysis of a large number of samples. We found no statistically significant differences in allelic % of the AR-E211 G > A polymorphism between BPH and CaP patients (p ≤ 0.8462). Genotyping of the AR-E211 G > A variant in blood was not identical with tumor tissue genotyping analysis. Significant agreement between blood and tissue AR-E211 G > A polymorphism only in non-tumor tissue focus was confirmed. Although we analyzed a limited number of the tissue samples, we suppose that a presence of the minor allele A may be associated with cancer transformation-induced changes of the modified AR gene.

  7. Atomically resolved tissue integration.

    Science.gov (United States)

    Karlsson, Johan; Sundell, Gustav; Thuvander, Mattias; Andersson, Martin

    2014-08-13

    In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.

  8. Sampling Strategies and Processing of Biobank Tissue Samples from Porcine Biomedical Models.

    Science.gov (United States)

    Blutke, Andreas; Wanke, Rüdiger

    2018-03-06

    In translational medical research, porcine models have steadily become more popular. Considering the high value of individual animals, particularly of genetically modified pig models, and the often-limited number of available animals of these models, establishment of (biobank) collections of adequately processed tissue samples suited for a broad spectrum of subsequent analyses methods, including analyses not specified at the time point of sampling, represent meaningful approaches to take full advantage of the translational value of the model. With respect to the peculiarities of porcine anatomy, comprehensive guidelines have recently been established for standardized generation of representative, high-quality samples from different porcine organs and tissues. These guidelines are essential prerequisites for the reproducibility of results and their comparability between different studies and investigators. The recording of basic data, such as organ weights and volumes, the determination of the sampling locations and of the numbers of tissue samples to be generated, as well as their orientation, size, processing and trimming directions, are relevant factors determining the generalizability and usability of the specimen for molecular, qualitative, and quantitative morphological analyses. Here, an illustrative, practical, step-by-step demonstration of the most important techniques for generation of representative, multi-purpose biobank specimen from porcine tissues is presented. The methods described here include determination of organ/tissue volumes and densities, the application of a volume-weighted systematic random sampling procedure for parenchymal organs by point-counting, determination of the extent of tissue shrinkage related to histological embedding of samples, and generation of randomly oriented samples for quantitative stereological analyses, such as isotropic uniform random (IUR) sections generated by the "Orientator" and "Isector" methods, and vertical

  9. INSITU BLOTTING - A NOVEL METHOD FOR DIRECT TRANSFER OF NATIVE PROTEINS FROM SECTIONED TISSUE TO BLOTTING MEMBRANE - PROCEDURE AND SOME APPLICATIONS

    NARCIS (Netherlands)

    OKABE, M; NYAKAS, C; BUWALDA, B; LUITEN, PGM

    We describe a novel technique for direct transfer of native proteins from unfixed frozen tissue sections to an immobilizing matrix, e.g., nitrocellulose, polyvinyliden difluoride, or positively charged nylon membranes. Proteins are directly blotted onto the membrane, providing optimal accessibility

  10. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues

    Science.gov (United States)

    Lubner, Sean D.; Choi, Jeunghwan; Wehmeyer, Geoff; Waag, Bastian; Mishra, Vivek; Natesan, Harishankar; Bischof, John C.; Dames, Chris

    2015-01-01

    Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method—widely used for rigid, inorganic solids—as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies. The bi-directional 3ω measurement device is validated using control experiments to within ±2% (liquid water, standard deviation) and ±5% (ice). Measurements of mouse liver cover a temperature ranging from -69 °C to +33 °C. The liver results are independent of sample thicknesses from 3 mm down to 100 μm and agree with available literature for non-mouse liver to within the measurement scatter.

  11. Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

    Directory of Open Access Journals (Sweden)

    Namgyu Kim

    2016-10-01

    Full Text Available Tomato yellow leaf curl virus (TYLCV, a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins—two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein—were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.

  12. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    Science.gov (United States)

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  13. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    Science.gov (United States)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  14. Single-strand conformation polymorphism analysis of ribosomal DNA for detection of Phytophthora ramorum directly from plant tissues

    Science.gov (United States)

    Ping Kong; Patricia A. Richardson; Chuanxue Hong; Thomas L. Kubisiak

    2006-01-01

    At the first Sudden Oak Death Science Symposium, we reported on the use of a single strand conformation polymorphism (SSCP) analysis for rapid identification of Phytophthora ramorum in culture. We have since assessed and improved the fingerprinting technique for detecting this pathogen directly from plant tissues. The improved SSCP protocol uses a...

  15. How to assess the plasma delivery of RONS into tissue fluid and tissue

    Science.gov (United States)

    Oh, Jun-Seok; Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Furuta, Hiroshi; Kurita, Hirofumi; Mizuno, Akira; Hatta, Akimitsu; Short, Robert D.

    2016-08-01

    The efficacy of helium (He) and argon (Ar) plasma jets are being investigated for different healthcare applications including wound and cancer therapy, sterilisation and surface disinfections. Current research points to a potential link between the generation of reactive oxygen and nitrogen species (RONS) and outcomes in a range of biological and medical applications. As new data accrue, further strengthening this link, it becomes important to understand the controlled delivery of RONS into solutions, tissue fluids and tissues. This paper investigates the use of He and Ar plasma jets to deliver three RONS (hydrogen peroxide—H2O2, nitrite—\\text{NO}2- and nitrate—\\text{NO}3- ) and molecular oxygen (O2) directly into deionised (DI) water, or indirectly into DI water through an agarose target. The DI water is used in place of tissue fluid and the agarose target serves as a surrogate of tissue. Direct plasma jet treatments deliver more RONS and O2 than the through-agarose treatments for equivalent treatments times. The former only deliver RONS whilst the plasma jets are ignited; the latter continues to deliver RONS into the DI water long after the plasmas are extinguished. The He plasma jet is more effective at delivering H2O2 and \\text{NO}2- directly into DI water, but the Ar plasma jet is more effective at nitrating the DI water in both direct and through-agarose treatments. DI water directly treated with the plasma jets is deoxygenated, with the He plasma jet purging more O2 than the Ar plasma jet. This effect is known as ‘sparging’. In contrast, for through-agarose treatments both jets oxygenated the DI water. These results indicate that in the context of direct and indirect plasma jet treatments of real tissue fluids and tissue, the choice of process gas (He or Ar) could have a profound effect on the concentrations of RONS and O2. Irrespective of operating gas, sparging of tissue fluid (in an open wound) for long prolonged periods during direct plasma

  16. Analysing breast tissue composition with MRI using currently available short, simple sequences

    International Nuclear Information System (INIS)

    Chau, A.C.M.; Hua, J.; Taylor, D.B.

    2016-01-01

    Aim: To determine the most robust commonly available magnetic resonance imaging (MRI) sequence to quantify breast tissue composition at 1.5 T. Materials and methods: Two-dimensional (2D) T1-weighted, Dixon fat, Dixon water and SPAIR images were obtained from five participants and a breast phantom using a 1.5 T Siemens Aera MRI system. Manual segmentation of the breasts was performed, and an in-house computer program was used to generate signal intensity histograms. Relative trough depth and relative peak separation were used to determine the robustness of the images for quantifying the two breast tissues. Total breast volumes and percentage breast densities calculated using the four sequences were compared. Results: Dixon fat histograms had consistently low relative trough depth and relative peak separation compared to those obtained using other sequences. There was no significant difference in total breast volumes and percentage breast densities of the participants or breast phantom using Dixon fat and 2D T1-weighted histograms. Dixon water and SPAIR histograms were not suitable for quantifying breast tissue composition. Conclusion: Dixon fat images are the most robust for the quantification of breast tissue composition using a signal intensity histogram. - Highlights: • Signal intensity histogram analysis can determine robustness of images for quantification of breast tissue composition. • Dixon fat images are the most robust. • The characteristics of the signal intensity histograms from Dixon water and SPAIR images make quantification unsuitable.

  17. Surgical resection of highly suspicious pulmonary nodules without a tissue diagnosis

    International Nuclear Information System (INIS)

    Heo, Eun-Young; Lee, Kyung-Won; Jheon, Sanghoon; Lee, Jae-Ho; Lee, Choon-Taek; Yoon, Ho-II

    2011-01-01

    The safety and efficacy of surgical resection of lung nodule without tissue diagnosis is controversial. We evaluated direct surgical resection of highly suspicious pulmonary nodules and the clinical and radiological predictors of malignancy. Retrospective analyses were performed on 113 patients who underwent surgical resection without prior tissue diagnosis for highly suspicious pulmonary nodules. Clinical and radiological characteristics were compared between histologically proven benign and malignant nodules after resection. Total costs, length of hospitalization and waiting time to surgery were compared with those of patients who had tissue diagnosis prior to surgery. Among 280 patients with pulmonary nodules suspicious for lung cancer, 113 (40.4%) underwent operation without prior tissue diagnosis. Lung nodules were diagnosed as malignant in 96 (85%) of the 113 patients. Except for forced expiratory volume in 1 s, clinical characteristics were not significantly different according to the pathologic results. Forty-five (90%) of 50 patients with ground-glass opacity nodules had a malignancy. Mixed ground-glass opacity, bubble lucency, irregular margin and larger size correlated with malignancy in ground-glass opacity nodules (P<0.05). Fifty-one (81%) of 67 patients with solid nodules had a malignancy. Spiculation, pre-contrast attenuation and contrast enhancement significantly correlated with malignancy in solid nodules (P<0.05). Surgical resection without tissue diagnosis significantly decreased total costs, hospital stay and waiting time (P<0.05). Direct surgical resection of highly suspicious pulmonary nodules can be a valid procedure. However, careful patient selection and further investigations are required to justify direct surgical resection. (author)

  18. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans

    DEFF Research Database (Denmark)

    Caterson, B; Christner, J E; Baker, J R

    1985-01-01

    distribution of 4- and 6-sulfated and unsulfated proteoglycans in tissue sections of cartilage and other noncartilaginous tissues. Digestion with chondroitinase ABC or ACII can be used to differentiate between chondroitin sulfate and dermatan sulfate proteoglycan in different connective tissues. In addition...

  19. The Japanese Society of Pathology Guidelines on the handling of pathological tissue samples for genomic research: Standard operating procedures based on empirical analyses.

    Science.gov (United States)

    Kanai, Yae; Nishihara, Hiroshi; Miyagi, Yohei; Tsuruyama, Tatsuhiro; Taguchi, Kenichi; Katoh, Hiroto; Takeuchi, Tomoyo; Gotoh, Masahiro; Kuramoto, Junko; Arai, Eri; Ojima, Hidenori; Shibuya, Ayako; Yoshida, Teruhiko; Akahane, Toshiaki; Kasajima, Rika; Morita, Kei-Ichi; Inazawa, Johji; Sasaki, Takeshi; Fukayama, Masashi; Oda, Yoshinao

    2018-02-01

    Genome research using appropriately collected pathological tissue samples is expected to yield breakthroughs in the development of biomarkers and identification of therapeutic targets for diseases such as cancers. In this connection, the Japanese Society of Pathology (JSP) has developed "The JSP Guidelines on the Handling of Pathological Tissue Samples for Genomic Research" based on an abundance of data from empirical analyses of tissue samples collected and stored under various conditions. Tissue samples should be collected from appropriate sites within surgically resected specimens, without disturbing the features on which pathological diagnosis is based, while avoiding bleeding or necrotic foci. They should be collected as soon as possible after resection: at the latest within about 3 h of storage at 4°C. Preferably, snap-frozen samples should be stored in liquid nitrogen (about -180°C) until use. When intending to use genomic DNA extracted from formalin-fixed paraffin-embedded tissue, 10% neutral buffered formalin should be used. Insufficient fixation and overfixation must both be avoided. We hope that pathologists, clinicians, clinical laboratory technicians and biobank operators will come to master the handling of pathological tissue samples based on the standard operating procedures in these Guidelines to yield results that will assist in the realization of genomic medicine. © 2018 The Authors. Pathology International published by Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  20. Direct measurement of catalase activity in living cells and tissue biopsies

    International Nuclear Information System (INIS)

    Scaglione, Christine N.; Xu, Qijin; Ramanujan, V. Krishnan

    2016-01-01

    Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies – can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Using catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1 μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharmacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. - Highlights: • A novel, direct measurement of Catalase enzyme activity via, oxygen sensing method. • Steady-stateprofiles of Catalase activity follow the Michaelis-Menten Kinetics. • Catalase-specific activity demonstrated using genetic and pharmacological tools. • Overcomes limitations of spectroscopic methods and indirect calorimetric approaches. • Clear

  1. Direct measurement of catalase activity in living cells and tissue biopsies

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, Christine N.; Xu, Qijin; Ramanujan, V. Krishnan, E-mail: Ramanujanv@csmc.edu

    2016-01-29

    Spatiotemporal regulation of enzyme-substrate interactions governs the decision-making steps in biological systems. Enzymes, being functional units of every living cell, contribute to the macromolecular stability of cell survival, proliferation and hence are vital windows to unraveling the biological complexity. Experimental measurements capturing this dynamics of enzyme-substrate interactions in real time add value to this understanding. Furthermore these measurements, upon validation in realistic biological specimens such as clinical biopsies – can further improve our capability in disease diagnostics and treatment monitoring. Towards this direction, we describe here a novel, high-sensitive measurement system for measuring diffusion-limited enzyme-substrate kinetics in real time. Using catalase (enzyme) and hydrogen peroxide (substrate) as the example pair, we demonstrate that this system is capable of direct measurement of catalase activity in vitro and the measured kinetics follows the classical Michaelis-Menten reaction kinetics. We further demonstrate the system performance by measuring catalase activity in living cells and in very small amounts of liver biopsies (down to 1 μg total protein). Catalase-specific enzyme activity is demonstrated by genetic and pharmacological tools. Finally we show the clinically-relevant diagnostic capability of our system by comparing the catalase activities in liver biopsies from young and old mouse (liver and serum) samples. We discuss the potential applicability of this system in clinical diagnostics as well as in intraoperative surgical settings. - Highlights: • A novel, direct measurement of Catalase enzyme activity via, oxygen sensing method. • Steady-stateprofiles of Catalase activity follow the Michaelis-Menten Kinetics. • Catalase-specific activity demonstrated using genetic and pharmacological tools. • Overcomes limitations of spectroscopic methods and indirect calorimetric approaches. • Clear

  2. Analysing of 228Th, 232Th, 228Ra in human bone tissues for the purpose of determining the post mortal interval

    International Nuclear Information System (INIS)

    Kandlbinder, R.; Geissler, V.; Schupfner, R.; Wolfbeis, O.; Zinka, B.

    2009-01-01

    Bone tissues of thirteen deceased persons were analyzed to determine the activity concentration of the radionuclides 228 Ra, 228 Th, 232 Th and 2 30 Th. The activity ratios enable to assess the post-mortem-interval PMI). The samples were prepared for analysis by incinerating and pulverizing. 228 Ra was directly detected by γ-spectrometry. 2 28 Th, 230 Th, 232 Th were detected by α-spectrometry after radiochemical purification and electrodeposition. It is shown that the method s principally suited to determine the PMI. A minimum of 300 g (wet weight) f human bone tissue is required for the analysis. Counting times are in the range of one to two weeks. (author)

  3. IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells.

    Science.gov (United States)

    Hashiguchi, Masaaki; Kashiwakura, Yuji; Kojima, Hidefumi; Kobayashi, Ayano; Kanno, Yumiko; Kobata, Tetsuji

    2015-03-01

    Eosinophils are multifunctional leukocytes involved in allergic reactions as well as adipose tissue regulation. IL-5 is required for eosinophil survival; however, the in vivo mechanisms of eosinophil regulation are not fully understood. A tg mouse model with il5 promoter-driven EGFP expression was established for detecting the IL-5-producing cells in vivo. Il5-egfp tg mice expressed high levels of EGFP in gonadal adipose tissue (GAT) cells. EGFP(+) cells in GAT were mainly group 2 innate lymphoid cells (ILCs). IL-33 preferentially expanded EGFP(+) cells and eosinophils in GAT in vivo. EGFP(+) ILCs were found to upregulate prg2 mRNA expression in GAT eosinophils. These results demonstrate that ILCs activate eosinophils in GAT. The blockage of IL-33Rα, on the other hand, did not impair EGFP(+) ILC numbers but did impair eosinophil numbers in vivo. GAT eosinophils expressed IL-33Rα and IL-33 expanded eosinophil numbers in CD90(+) cell-depleted mice. IL-33 was further observed to induce the expression of retnla and epx mRNA in eosinophils. These findings demonstrate that IL-33 directly activates eosinophils in GAT, and together with our other findings described above, our findings show that IL-33 has dual pathways via which it activates eosinophils in vivo: a direct activation pathway and a group 2 ILC-mediated pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules.

    Directory of Open Access Journals (Sweden)

    Erik Limpens

    Full Text Available Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur and proximal region (where symbiosomes are mainly differentiating, as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital "in situ". This digital "in situ" offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.

  5. Weight-dependent changes of immune system in adipose tissue: Importance of leptin

    International Nuclear Information System (INIS)

    Caspar-Bauguil, S.; Cousin, B.; Andre, M.; Nibbelink, M.; Galinier, A.; Periquet, B.; Casteilla, L.; Penicaud, L.

    2006-01-01

    Ancestral lymphoid cells reside in adipose tissues, and their numbers are highly altered in obesity. Leptin, production of which is correlated to fat mass, is strongly involved in the relationships between adipose tissues and immune system. We investigated in epididymal (EPI) and inguinal (ING) fat pads to determine whether 1) lymphocyte phenotypes were correlated to the tissue weight and 2) leptin was involved in such relationships. Immunohistological analyses revealed a tight relationship between the T and NK lymphocytes of the stromal vascular fraction and adipocytes. We identified a significant negative and positive correlation between EPI weight and the percentage of NK and total T cells respectively by cytofluorometric analyses. The NK and ancestral γδ T cell contents were directly dependent of leptin since they increased significantly in high-fat (HF) diet mice but not in leptin-deficient (ob/ob) mice as compared to control. By contrast, the αβ T cell content seemed independent of leptin because their percentages increased significantly with the EPI weight whatever the type of mice (control, HF, ob/ob). The present study suggests that adipose tissues present, according to their localization, different immunological mechanisms that might be involved in the regulation of adipose cells functions and proliferations

  6. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    Science.gov (United States)

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.

  7. Sensitivity of the direct stop pair production analyses in phenomenological MSSM simplified models with the ATLAS detectors

    CERN Document Server

    Snyder, Ian Michael; The ATLAS collaboration

    2018-01-01

    The sensitivity of the searches for the direct pair production of stops often has been evaluated in simple SUSY scenarios, where only a limited set of supersymmetric particles take part to the stop decay. In this talk, the interpretations of the analyses requiring zero, one or two leptons in the final states to simple but well motivated MSSM scenarios will be discussed.

  8. Non-Directional Radiation Spread Modeling and Non-Invasive Estimating the Radiation Scattering and Absorption Parameters in Biological Tissue

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2015-01-01

    Full Text Available The article dwells on a development of new non-invasive measurement methods of optical parameters of biological tissues, which are responsible for the scattering and absorption of monochromatic radiation. It is known from the theory of radiation transfer [1] that for strongly scattering media, to which many biological tissues pertain, such parameters are parameters of diffusion approximation, as well as a scattering coefficient and an anisotropy parameter.Based on statistical modeling the paper examines a spread of non-directional radiation from a Lambert light beam with the natural polarization that illuminates a surface of the biological tissue. Statistical modeling is based on the Monte Carlo method [2]. Thus, to have the correct energy coefficient values of Fresnel reflection and transmission in simulation of such radiation by Monte Carlo method the author uses his finding that is a function of the statistical representation for the incidence of model photons [3]. The paper describes in detail a principle of fixing the power transmitted by the non-directional radiation into biological tissue [3], and the equations of a power balance in this case.Further, the paper describes the diffusion approximation of a radiation transfer theory, often used in simulation of radiation propagation in strongly scattering media and shows its application in case of fixing the power transmitted into the tissue. Thus, to represent an uneven power distribution is used an approximating expression in conditions of fixing a total input power. The paper reveals behavior peculiarities of solution on the surface of the biological tissue inside and outside of the incident beam. It is shown that the solution in the region outside of the incident beam (especially far away from it, essentially, depends neither on the particular power distribution across the surface, being a part of the tissue, nor on the refractive index of the biological tissue. It is determined only by

  9. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  10. Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2010-05-01

    Full Text Available Abstract Background The neonatal bovine mammary fat pad (MFP surrounding the mammary parenchyma (PAR is thought to exert proliferative effects on the PAR through secretion of local modulators of growth induced by systemic hormones. We used bioinformatics to characterize transcriptomics differences between PAR and MFP from ~65 d old Holstein heifers. Data were mined to uncover potential crosstalk through the analyses of signaling molecules preferentially expressed in one tissue relative to the other. Results Over 9,000 differentially expressed genes (DEG; False discovery rate ≤ 0.05 were found of which 1,478 had a ≥1.5-fold difference between PAR and MFP. Within the DEG highly-expressed in PAR vs. MFP (n = 736 we noted significant enrichment of functions related to cell cycle, structural organization, signaling, and DNA/RNA metabolism. Only actin cytoskeletal signaling was significant among canonical pathways. DEG more highly-expressed in MFP vs. PAR (n = 742 belong to lipid metabolism, signaling, cell movement, and immune-related functions. Canonical pathways associated with metabolism and signaling, particularly immune- and metabolism-related were significantly-enriched. Network analysis uncovered a central role of MYC, TP53, and CTNNB1 in controlling expression of DEG highly-expressed in PAR vs. MFP. Similar analysis suggested a central role for PPARG, KLF2, EGR2, and EPAS1 in regulating expression of more highly-expressed DEG in MFP vs. PAR. Gene network analyses revealed putative inter-tissue crosstalk between cytokines and growth factors preferentially expressed in one tissue (e.g., ANGPTL1, SPP1, IL1B in PAR vs. MFP; ADIPOQ, IL13, FGF2, LEP in MFP vs. PAR with DEG preferentially expressed in the other tissue, particularly transcription factors or pathways (e.g., MYC, TP53, and actin cytoskeletal signaling in PAR vs. MFP; PPARG and LXR/RXR Signaling in MFP vs. PAR. Conclusions Functional analyses underscored a reciprocal influence in

  11. The Crosstalk between Tissue Engineering and Pharmaceutical Biotechnology: Recent Advances and Future Directions.

    Science.gov (United States)

    Pacheco, Daniela P; Reis, Rui L; Correlo, Vítor M; Marques, Alexandra P

    2015-01-01

    Tissue-engineered constructs made of biotechnology-derived materials have been preferred due to their chemical and physical composition, which offers both high versatility and a support to enclose/ incorporate relevant signaling molecules and/or genes known to therapeutically induce tissue repair. Herein, a critical overview of the impact of different biotechnology-derived materials, scaffolds, and recombinant signaling molecules over the behavior of cells, another element of tissue engineered constructs, as well its regulatory role in tissue regeneration and disease progression is given. Additionally, these tissue-engineered constructs evolved to three-dimensional (3D) tissue-like models that, as an advancement of two-dimensional standard culture methods, are expected to be a valuable tool in the field of drug discovery and pharmaceutical research. Despite the improved design and conception of current proposed 3D tissue-like models, advanced control systems to enable and accelerate streamlining and automation of the numerous labor-intensive steps intrinsic to the development of tissue-engineered constructs are still to be achieved. In this sense, this review intends to present the biotechnology- derived materials that are being explored in the field of tissue engineering to generate 3D tissue-analogues and briefly highlight their foremost breakthroughs in tissue regeneration and drug discovery. It also aims to reinforce that the crosstalk between tissue engineering and pharmaceutical biotechnology has been fostering the outcomes of tissue engineering approaches through the use of biotechnology-derived signaling molecules. Gene delivery/therapy is also discussed as a forefront area that represents another cross point between tissue engineering and pharmaceutical biotechnology, in which nucleic acids can be considered a "super pharmaceutical" to drive biological responses, including tissue regeneration.

  12. Halo-Independent Direct Detection Analyses Without Mass Assumptions

    CERN Document Server

    Anderson, Adam J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the $m_\\chi-\\sigma_n$ plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the $v_{min}-\\tilde{g}$ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from $v_{min}$ to nuclear recoil momentum ($p_R$), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call $\\tilde{h}(p_R)$. The entire family of conventional halo-independent $\\tilde{g}(v_{min})$ plots for all DM masses are directly found from the single $\\tilde{h}(p_R)$ plot through a simple re...

  13. Multiphase poroelastic finite element models for soft tissue structures

    International Nuclear Information System (INIS)

    Simon, B.R.

    1992-01-01

    During the last two decades, biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains; and may swell or shrink when tissue ionic concentrations are altered. Give the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law ans a total Lagrangian view for the formulation. The associated FEMs are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested. 62 refs., 11 figs., 3 tabs

  14. A single lysis solution for the analysis of tissue samples by different proteomic technologies

    DEFF Research Database (Denmark)

    Gromov, P.; Celis, J.E.; Gromova, I.

    2008-01-01

    -based proteomics (reverse-phase lysate arrays or direct antibody arrays), allowing the direct comparison of qualitative and quantitative data yielded by these technologies when applied to the same samples. The usefulness of the CLB1 solution for gel-based proteomics was further established by 2D PAGE analysis...... dissease, is driving scientists to increasingly use clinically relevant samples for biomarker and target discovery. Tissues are heterogeneous and as a result optimization of sample preparation is critical for generating accurate, representative, and highly reproducible quantitative data. Although a large...... number of protocols for preparation of tissue lysates has been published, so far no single recipe is able to provide a "one-size fits all" solubilization procedure that can be used to analyse the same lysate using different proteomics technologies. Here we present evidence showing that cell lysis buffer...

  15. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover.

    Science.gov (United States)

    Jugdaohsingh, Ravin; Watson, Abigail I E; Pedro, Liliana D; Powell, Jonathan J

    2015-06-01

    Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague-Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n=8-10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 μg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2-6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague-Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially lower than

  16. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover☆

    Science.gov (United States)

    Jugdaohsingh, Ravin; Watson, Abigail I.E.; Pedro, Liliana D.; Powell, Jonathan J.

    2015-01-01

    Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague–Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n = 8–10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 μg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2–6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague–Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially

  17. Antioxidant enzymes activity in embryogenic and non-embryogenic tissues in Sugarcane

    International Nuclear Information System (INIS)

    Marina Medeiros de Araujo Silva; Ulisses, Claudia; Lacerda E Medeiros, Maria Jaislanny; Cavalcante Granja, Manuela Maria; Willadino, Lilia; Camara, Terezinha

    2014-01-01

    The objective of this work was to induce direct somatic embryogenesis from segments of immature leaves of the RB872552 variety of sugarcane and to correlate this morphogenic event with oxidative stress. Two previously described protocols were utilized for the induction of somatic embryogenesis in sugarcane with different supplementations of the culture medium and different incubation conditions. For the conversion of embryos into plants was used ms medium without phytoregulators. Histological analyses and activity of antioxidant enzymes were also conducted for the embryogenic and non-embryogenic tissues. The formation of somatic embryos was obtained in 81 % of the explants with the combination of regulators 2,4-D (2,4-dichlorophenoxyacetic acid)and BAP (6-benzylaminopurine) when incubated under 16 h photoperiod. With regards to the antioxidant enzymes, there was increased activity of peroxidase and an increase in the soluble protein content in embryogenic tissues, whereas lower activities of polyphenol oxidase and catalase appeared in these tissues compared to nonembryogenic tissues. It could be inferred that oxidative stress plays an important role in the induction of somatic embryogenesis in sugarcane.

  18. Rosa26-GFP direct repeat (RaDR-GFP mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo.

    Directory of Open Access Journals (Sweden)

    Michelle R Sukup-Jackson

    2014-06-01

    Full Text Available Homologous recombination (HR is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals.

  19. Large 3D direct laser written scaffolds for tissue engineering applications

    Science.gov (United States)

    Trautmann, Anika; Rüth, Marieke; Lemke, Horst-Dieter; Walther, Thomas; Hellmann, Ralf

    2018-01-01

    We report on the fabrication of three-dimensional direct laser written scaffolds for tissue engineering and the seeding of primary fibroblasts on these structures. Scaffolds are realized by two-photon absorption induced polymerization in the inorganic-organic hybrid polymer OrmoComp using a 515 nm femtosecond laser. A nonstop single-line single-pass writing process is implemented in order to produce periodic reproducible large scaled structures with a dimension in the range of several millimeters and reduce process time to less than one hour. This method allows us to determine optimized process parameters for writing stable structures while achieving pore sizes ranging from 5 μm to 90 μm and a scanning speed of up to 5 mm/s. After a multi-stage post-treatment, normal human dermal fibroblasts are applied to the scaffolds to test if these macroscopic structures with large surface and numerous small gaps between the pores provide nontoxic conditions. Furthermore, we study the cell behavior in this environment and observe both cell growth on as well as ingrowth on the three-dimensional structures. In particular, fibroblasts adhere and grow also on the vertical walls of the scaffolds.

  20. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential.

    Science.gov (United States)

    Yao, Ying; Gao, Bin; Chen, Jianjun; Zhang, Ming; Inyang, Mandu; Li, Yuncong; Alva, Ashok; Yang, Liuyan

    2013-06-01

    An innovative method was developed to produce engineered biochar from magnesium (Mg) enriched tomato tissues through slow pyrolysis in a N2 environment. Tomato plants treated with 25mM Mg accumulated much higher level of Mg in tissue, indicating Mg can be substantially enriched in tomato plants, and pyrolysis process further concentrated Mg in the engineered biochar (8.8% Mg). The resulting Mg-biochar composites (MgEC) showed better sorption ability to phosphate (P) in aqueous solutions compared to the other four tomato leaves biochars. Statistical analysis showed a strong and significant correlation between P removal rate and biochar Mg content (R(2)=0.78, and p<0.001), indicating the enriched Mg in the engineered biochar is the main factor controlling its P removal ability. SEM-EDX, XRD and XPS analyses showed that nanoscale Mg(OH)2 and MgO particles were presented on the surface of MgEC, which serve as the main adsorption sites for aqueous P. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    Science.gov (United States)

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  2. Analyses of Tissue Culture Adaptation of Human Herpesvirus-6A by Whole Genome Deep Sequencing Redefines the Reference Sequence and Identifies Virus Entry Complex Changes.

    Science.gov (United States)

    Tweedy, Joshua G; Escriva, Eric; Topf, Maya; Gompels, Ursula A

    2017-12-31

    Tissue-culture adaptation of viruses can modulate infection. Laboratory passage and bacterial artificial chromosome (BAC)mid cloning of human cytomegalovirus, HCMV, resulted in genomic deletions and rearrangements altering genes encoding the virus entry complex, which affected cellular tropism, virulence, and vaccine development. Here, we analyse these effects on the reference genome for related betaherpesviruses, Roseolovirus, human herpesvirus 6A (HHV-6A) strain U1102. This virus is also naturally "cloned" by germline subtelomeric chromosomal-integration in approximately 1% of human populations, and accurate references are key to understanding pathological relationships between exogenous and endogenous virus. Using whole genome next-generation deep-sequencing Illumina-based methods, we compared the original isolate to tissue-culture passaged and the BACmid-cloned virus. This re-defined the reference genome showing 32 corrections and 5 polymorphisms. Furthermore, minor variant analyses of passaged and BACmid virus identified emerging populations of a further 32 single nucleotide polymorphisms (SNPs) in 10 loci, half non-synonymous indicating cell-culture selection. Analyses of the BAC-virus genome showed deletion of the BAC cassette via loxP recombination removing green fluorescent protein (GFP)-based selection. As shown for HCMV culture effects, select HHV-6A SNPs mapped to genes encoding mediators of virus cellular entry, including virus envelope glycoprotein genes gB and the gH/gL complex. Comparative models suggest stabilisation of the post-fusion conformation. These SNPs are essential to consider in vaccine-design, antimicrobial-resistance, and pathogenesis.

  3. Direct examination of cadmium bonding in rat tissues dosed with mine wastes and cadmium-containing solutions

    International Nuclear Information System (INIS)

    Diacomanolis, V.; Ng, J. C.; Sadler, R.; Harris, H. H.; Nomura, M.; Noller, B. N.

    2010-01-01

    Direct examination by XANES and EXAFS of metal bonding in tissue can be demonstrated by examining cadmium uptake and bonding in animal tissue maintained at cryogenic temperatures. XANES at the K-edge of cadmium were collected at the Photon Factory Advanced Ring (PF-AR), NW10A beam line at KEK-Tsukuba-Japan. Rats fed with 1g mine waste containing 8-400 mg/kg cadmium per 200g body weight (b.w.) or dosed by oral gavage with either cadmium chloride solution alone (at 6 mg/kg b.w.) or in combination with other salts (As, Cu or Zn), 5 days/week for 6 weeks, had 0.1-7.5 and 8-86 mg/kg cadmium in the liver or kidney, respectively. Rats given intraperitoneally (ip) or intravenously (iv) 1-4 times with 1 mg/kg b.w. cadmium solution had 30-120 mg/kg cadmium in the liver or kidney. Tissues from rats were kept and transferred at cryogenic temperature and XANES were recorded at 20 K. The spectra for rat liver samples suggested conjugation of cadmium with glutathione or association with the sulfide bond (Cd-S) of proteins and peptides. EXAFS of rat liver fed by Cd and Zn solutions showed that Cd was clearly bound to S ligands with an inter-atomic distance of 2.54 A ring for Cd-S that was similar to cadmium sulfide with an inter-atomic distance of 2.52 A ring for Cd-S. Liver or kidney of rats fed with mine wastes did not give an edge in the XANES spectra indicating little uptake of cadmium by the animals. Longer and higher dosing regimen may be required in order to observe the same Cd-S bond in the rat tissue from mine wastes, including confirmation by EXAFS.

  4. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    OpenAIRE

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated wi...

  5. Immunohistochemical evaluation of molecular radiotherapy target expression in neuroblastoma tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gains, Jennifer E.; Gaze, Mark N. [University College London Hospitals NHS Foundation Trust, Department of Oncology, London (United Kingdom); Sebire, Neil J. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Pathology, London (United Kingdom); Moroz, Veronica; Wheatley, Keith [University of Birmingham, Cancer Research UK Clinical Trials Unit, Birmingham (United Kingdom)

    2018-03-15

    Neuroblastoma may be treated with molecular radiotherapy, {sup 131}I meta-Iodobenzylguanidine and {sup 177}Lu Lutetium DOTATATE, directed at distinct molecular targets: Noradrenaline Transporter Molecule (NAT) and Somatostatin Receptor (SSTR2), respectively. This study used immunohistochemistry to evaluate target expression in archival neuroblastoma tissue, to determine whether it might facilitate clinical use of molecular radiotherapy. Tissue bank samples of formalin fixed paraffin embedded neuroblastoma tissue from patients for whom clinical outcome data were available were sectioned and stained with haematoxylin and eosin, and monoclonal antibodies directed against NAT and SSTR2. Sections were examined blinded to clinical information and scored for the percentage and intensity of tumour cells stained. These data were analysed in conjunction with clinical data. Tissue from 75 patients was examined. Target expression scores varied widely between patients: NAT median 45%, inter-quartile range 25% - 65%; and SSTR2 median 55%, interquartile range 30% - 80%; and in some cases heterogeneity of expression between different parts of a tumour was observed. A weak positive correlation was observed between the expression scores of the different targets: correlation coefficient = 0.23, p = 0.05. MYCN amplified tumours had lower SSTR2 scores: mean difference 23% confidence interval 8% - 39%, p < 0.01. Survival did not differ by scores. As expression of both targets is variable and heterogeneous, imaging assessment of both may yield more clinical information than either alone. The clinical value of immunohistochemical assessment of target expression requires prospective evaluation. Variable target expression within a patient may contribute to treatment failure. (orig.)

  6. Mechanistic simulation of normal-tissue damage in radiotherapy-implications for dose-volume analyses

    International Nuclear Information System (INIS)

    Rutkowska, Eva; Baker, Colin; Nahum, Alan

    2010-01-01

    A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V 20 correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.

  7. Fibre-Matrix Interaction in Soft Tissue

    International Nuclear Information System (INIS)

    Guo, Zaoyang

    2010-01-01

    Although the mechanical behaviour of soft tissue has been extensively studied, the interaction between the collagen fibres and the ground matrix has not been well understood and is therefore ignored by most constitutive models of soft tissue. In this paper, the human annulus fibrosus is used as an example and the potential fibre-matrix interaction is identified by careful investigation of the experimental results of biaxial and uniaxial testing of the human annulus fibrosus. First, the uniaxial testing result of the HAF along the axial direction is analysed and it is shown that the mechanical behaviour of the ground matrix can be well simulated by the incompressible neo-Hookean model when the collagen fibres are all under contraction. If the collagen fibres are stretched, the response of the ground matrix can still be described by the incompressible neo-Hookean model, but the effective stiffness of the matrix depends on the fibre stretch ratio. This stiffness can be more than 10 times larger than the one obtained with collagen fibres under contraction. This phenomenon can only be explained by the fibre-matrix interaction. Furthermore, we find that the physical interpretation of this interaction includes the inhomogeneity of the soft tissue and the fibre orientation dispersion. The dependence of the tangent stiffness of the matrix on the first invariant of the deformation tensor can also be explained by the fibre orientation dispersion. The significant effect of the fibre-matrix interaction strain energy on mechanical behaviour of the soft tissue is also illustrated by comparing some simulation results.

  8. DNA from keratinous tissue

    DEFF Research Database (Denmark)

    Bengtsson, Camilla F.; Olsen, Maja E.; Brandt, Luise Ørsted

    2011-01-01

    Keratinous tissues such as nail, hair, horn, scales and feather have been used as a source of DNA for over 20 years. Particular benefits of such tissues include the ease with which they can be sampled, the relative stability of DNA in such tissues once sampled, and, in the context of ancient...... genetic analyses, the fact that sampling generally causes minimal visual damage to valuable specimens. Even when freshly sampled, however, the DNA quantity and quality in the fully keratinized parts of such tissues is extremely poor in comparison to other tissues such as blood and muscle – although little...... systematic research has been undertaken to characterize how such degradation may relate to sample source. In this review paper we present the current understanding of the quality and limitations of DNA in two key keratinous tissues, nail and hair. The findings indicate that although some fragments of nuclear...

  9. Tissue

    Directory of Open Access Journals (Sweden)

    David Morrissey

    2012-01-01

    Full Text Available Purpose. In vivo gene therapy directed at tissues of mesenchymal origin could potentially augment healing. We aimed to assess the duration and magnitude of transene expression in vivo in mice and ex vivo in human tissues. Methods. Using bioluminescence imaging, plasmid and adenoviral vector-based transgene expression in murine quadriceps in vivo was examined. Temporal control was assessed using a doxycycline-inducible system. An ex vivo model was developed and optimised using murine tissue, and applied in ex vivo human tissue. Results. In vivo plasmid-based transgene expression did not silence in murine muscle, unlike in liver. Although maximum luciferase expression was higher in muscle with adenoviral delivery compared with plasmid, expression reduced over time. The inducible promoter cassette successfully regulated gene expression with maximum levels a factor of 11 greater than baseline. Expression was re-induced to a similar level on a temporal basis. Luciferase expression was readily detected ex vivo in human muscle and tendon. Conclusions. Plasmid constructs resulted in long-term in vivo gene expression in skeletal muscle, in a controllable fashion utilising an inducible promoter in combination with oral agents. Successful plasmid gene transfection in human ex vivo mesenchymal tissue was demonstrated for the first time.

  10. Halo-independent direct detection analyses without mass assumptions

    International Nuclear Information System (INIS)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-01-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m χ −σ n plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v min −g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v min to nuclear recoil momentum (p R ), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p R ). The entire family of conventional halo-independent g-tilde(v min ) plots for all DM masses are directly found from the single h-tilde(p R ) plot through a simple rescaling of axes. By considering results in h-tilde(p R ) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde(v min ) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity

  11. The use of total human bone marrow fraction in a direct three-dimensional expansion approach for bone tissue engineering applications: focus on angiogenesis and osteogenesis.

    Science.gov (United States)

    Guerrero, Julien; Oliveira, Hugo; Catros, Sylvain; Siadous, Robin; Derkaoui, Sidi-Mohammed; Bareille, Reine; Letourneur, Didier; Amédée, Joëlle

    2015-03-01

    Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application. The source of reparative cells is paramount for the success of bone tissue engineering applications. In this context, stem cells obtained from human bone marrow hold much promise. Here, we analyzed the potential of human whole bone marrow cells directly expanded in a three-dimensional (3D) polymer matrix and focused on the further characterization of this heterogeneous population and on their ability to promote angiogenesis and osteogenesis, both in vitro and in vivo, in a subcutaneous model. Cellular aggregates were formed within 24 h and over the 12-day culture period expressed endothelial and bone-specific markers and a specific junctional protein. Ectopic implantation of the tissue-engineered constructs revealed osteoid tissue and vessel formation both at the periphery and within the implant. This work sheds light on the potential clinical use of human whole bone marrow for bone regeneration strategies, focusing on a simplified approach to develop a direct 3D culture without two-dimensional isolation or expansion.

  12. Magneto-acousto-electrical Measurement Based Electrical Conductivity Reconstruction for Tissues.

    Science.gov (United States)

    Zhou, Yan; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong

    2018-05-01

    Based on the interaction of ultrasonic excitation and magnetoelectrical induction, magneto-acousto-electrical (MAE) technology was demonstrated to have the capability of differentiating conductivity variations along the acoustic transmission. By applying the characteristics of the MAE voltage, a simplified algorithm of MAE measurement based conductivity reconstruction was developed. With the analyses of acoustic vibration, ultrasound propagation, Hall effect, and magnetoelectrical induction, theoretical and experimental studies of MAE measurement and conductivity reconstruction were performed. The formula of MAE voltage was derived and simplified for the transducer with strong directivity. MAE voltage was simulated for a three-layer gel phantom and the conductivity distribution was reconstructed using the modified Wiener inverse filter and Hilbert transform, which was also verified by experimental measurements. The experimental results are basically consistent with the simulations, and demonstrate that the wave packets of MAE voltage are generated at tissue interfaces with the amplitudes and vibration polarities representing the values and directions of conductivity variations. With the proposed algorithm, the amplitude and polarity of conductivity gradient can be restored and the conductivity distribution can also be reconstructed accurately. The favorable results demonstrate the feasibility of accurate conductivity reconstruction with improved spatial resolution using MAE measurement for tissues with conductivity variations, especially suitable for nondispersive tissues with abrupt conductivity changes. This study demonstrates that the MAE measurement based conductivity reconstruction algorithm can be applied as a new strategy for nondestructive real-time monitoring of conductivity variations in biomedical engineering.

  13. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.

    Science.gov (United States)

    Powers, Thomas W; Neely, Benjamin A; Shao, Yuan; Tang, Huiyuan; Troyer, Dean A; Mehta, Anand S; Haab, Brian B; Drake, Richard R

    2014-01-01

    A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.

  14. Biomimetic heterogenous elastic tissue development.

    Science.gov (United States)

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  15. Assessment of tissue viability by polarization spectroscopy

    Science.gov (United States)

    Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.

    2008-09-01

    A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.

  16. Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry.

    Science.gov (United States)

    Reiser, Karen; Stoller, Patrick; Knoesen, André

    2017-06-01

    Collagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues. This approach offers advantages compared with other methods for determining out-of-plane orientation. First, the orientation angles are directly calculated from the polarimetry data obtained in a single scan, while other reported methods require data from multiple scans, use of iterative optimization methods, application of fitting algorithms, or extensive post-optical processing. Second, our method does not require highly specialized instrumentation, and thus can be adapted for use in almost any nonlinear optical microscopy setup. It is suitable for both basic and clinical applications. We present three-dimensional images of structurally complex collagenous tissues that illustrate the power of such 3-dimensional analyses to reveal the architecture of biological structures.

  17. Diagnosis of breast cancer by tissue analysis

    Institute of Scientific and Technical Information of China (English)

    Debnath Bhattacharyya; Samir Kumar Bandyopadhyay; Tai-hoon Kim

    2013-01-01

    In this paper,we propose a technique to locate abnormal growth of cells in breast tissue and suggest further pathological test,when require.We compare normal breast tissue with malignant invasive breast tissue by a series of image processing steps.Normal ductal epithelial cells and ductal/lobular invasive carcinogenic cells also consider for comparison here in this paper.In fact,features of cancerous breast tissue (invasive) are extracted and analyses with normal breast tissue.We also suggest the breast cancer recognition technique through image processing and prevention by controlling p53 gene mutation to some extent.

  18. Proteomic patterns analysis with multivariate calculations as a promising tool for prompt differentiation of early stage lung tissue with cancer and unchanged tissue material

    Directory of Open Access Journals (Sweden)

    Grodzki Tomasz

    2011-03-01

    Full Text Available Abstract Background Lung cancer diagnosis in tissue material with commonly used histological techniques is sometimes inconvenient and in a number of cases leads to ambiguous conclusions. Frequently advanced immunostaining techniques have to be employed, yet they are both time consuming and limited. In this study a proteomic approach is presented which may help provide unambiguous pathologic diagnosis of tissue material. Methods Lung tissue material found to be pathologically changed was prepared to isolate proteome with fast and non selective procedure. Isolated peptides and proteins in ranging from 3.5 to 20 kDa were analysed directly using high resolution mass spectrometer (MALDI-TOF/TOF with sinapic acid as a matrix. Recorded complex spectra of a single run were then analyzed with multivariate statistical analysis algorithms (principle component analysis, classification methods. In the applied protocol we focused on obtaining the spectra richest in protein signals constituting a pattern of change within the sample containing detailed information about its protein composition. Advanced statistical methods were to indicate differences between examined groups. Results Obtained results indicate changes in proteome profiles of changed tissues in comparison to physiologically unchanged material (control group which were reflected in the result of principle component analysis (PCA. Points representing spectra of control group were located in different areas of multidimensional space and were less diffused in comparison to cancer tissues. Three different classification algorithms showed recognition capability of 100% regarding classification of examined material into an appropriate group. Conclusion The application of the presented protocol and method enabled finding pathological changes in tissue material regardless of localization and size of abnormalities in the sample volume. Proteomic profile as a complex, rich in signals spectrum of proteins

  19. Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels

    Science.gov (United States)

    Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.

    2011-03-01

    For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.

  20. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.

    Science.gov (United States)

    Shi, Qi; Chen, Li-Na; Zhang, Bao-Yun; Xiao, Kang; Zhou, Wei; Chen, Cao; Zhang, Xiao-Mei; Tian, Chan; Gao, Chen; Wang, Jing; Han, Jun; Dong, Xiao-Ping

    2015-04-01

    Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Earliest directly-dated human skull-cups.

    Directory of Open Access Journals (Sweden)

    Silvia M Bello

    Full Text Available BACKGROUND: The use of human braincases as drinking cups and containers has extensive historic and ethnographic documentation, but archaeological examples are extremely rare. In the Upper Palaeolithic of western Europe, cut-marked and broken human bones are widespread in the Magdalenian (∼15 to 12,000 years BP and skull-cup preparation is an element of this tradition. PRINCIPAL FINDINGS: Here we describe the post-mortem processing of human heads at the Upper Palaeolithic site of Gough's Cave (Somerset, England and identify a range of modifications associated with the production of skull-cups. New analyses of human remains from Gough's Cave demonstrate the skilled post-mortem manipulation of human bodies. Results of the research suggest the processing of cadavers for the consumption of body tissues (bone marrow, accompanied by meticulous shaping of cranial vaults. The distribution of cut-marks and percussion features indicates that the skulls were scrupulously 'cleaned' of any soft tissues, and subsequently modified by controlled removal of the facial region and breakage of the cranial base along a sub-horizontal plane. The vaults were also 'retouched', possibly to make the broken edges more regular. This manipulation suggests the shaping of skulls to produce skull-cups. CONCLUSIONS: Three skull-cups have been identified amongst the human bones from Gough's Cave. New ultrafiltered radiocarbon determinations provide direct dates of about 14,700 cal BP, making these the oldest directly dated skull-cups and the only examples known from the British Isles.

  2. Re-evaluation of a novel approach for quantitative myocardial oedema detection by analysing tissue inhomogeneity in acute myocarditis using T2-mapping

    Energy Technology Data Exchange (ETDEWEB)

    Baessler, Bettina; Treutlein, Melanie; Maintz, David; Bunck, Alexander C. [University Hospital of Cologne, Department of Radiology, Cologne (Germany); Schaarschmidt, Frank [Leibniz Universitaet Hannover, Institute of Biostatistics, Faculty of Natural Sciences, Hannover (Germany); Stehning, Christian [Philips Research, Hamburg (Germany); Schnackenburg, Bernhard [Philips, Healthcare Germany, Hamburg (Germany); Michels, Guido [University Hospital of Cologne, Department III of Internal Medicine, Heart Centre, Cologne (Germany)

    2017-12-15

    To re-evaluate a recently suggested approach of quantifying myocardial oedema and increased tissue inhomogeneity in myocarditis by T2-mapping. Cardiac magnetic resonance data of 99 patients with myocarditis were retrospectively analysed. Thirthy healthy volunteers served as controls. T2-mapping data were acquired at 1.5 T using a gradient-spin-echo T2-mapping sequence. T2-maps were segmented according to the 16-segments AHA-model. Segmental T2-values, segmental pixel-standard deviation (SD) and the derived parameters maxT2, maxSD and madSD were analysed and compared to the established Lake Louise criteria (LLC). A re-estimation of logistic regression models revealed that all models containing an SD-parameter were superior to any model containing global myocardial T2. Using a combined cut-off of 1.8 ms for madSD + 68 ms for maxT2 resulted in a diagnostic sensitivity of 75% and specificity of 80% and showed a similar diagnostic performance compared to LLC in receiver-operating-curve analyses. Combining madSD, maxT2 and late gadolinium enhancement (LGE) in a model resulted in a superior diagnostic performance compared to LLC (sensitivity 93%, specificity 83%). The results show that the novel T2-mapping-derived parameters exhibit an additional diagnostic value over LGE with the inherent potential to overcome the current limitations of T2-mapping. (orig.)

  3. Re-evaluation of a novel approach for quantitative myocardial oedema detection by analysing tissue inhomogeneity in acute myocarditis using T2-mapping

    International Nuclear Information System (INIS)

    Baessler, Bettina; Treutlein, Melanie; Maintz, David; Bunck, Alexander C.; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Michels, Guido

    2017-01-01

    To re-evaluate a recently suggested approach of quantifying myocardial oedema and increased tissue inhomogeneity in myocarditis by T2-mapping. Cardiac magnetic resonance data of 99 patients with myocarditis were retrospectively analysed. Thirthy healthy volunteers served as controls. T2-mapping data were acquired at 1.5 T using a gradient-spin-echo T2-mapping sequence. T2-maps were segmented according to the 16-segments AHA-model. Segmental T2-values, segmental pixel-standard deviation (SD) and the derived parameters maxT2, maxSD and madSD were analysed and compared to the established Lake Louise criteria (LLC). A re-estimation of logistic regression models revealed that all models containing an SD-parameter were superior to any model containing global myocardial T2. Using a combined cut-off of 1.8 ms for madSD + 68 ms for maxT2 resulted in a diagnostic sensitivity of 75% and specificity of 80% and showed a similar diagnostic performance compared to LLC in receiver-operating-curve analyses. Combining madSD, maxT2 and late gadolinium enhancement (LGE) in a model resulted in a superior diagnostic performance compared to LLC (sensitivity 93%, specificity 83%). The results show that the novel T2-mapping-derived parameters exhibit an additional diagnostic value over LGE with the inherent potential to overcome the current limitations of T2-mapping. (orig.)

  4. Impact of hepatitis C virus polymorphisms on direct-acting antiviral treatment efficacy: Regulatory analyses and perspectives.

    Science.gov (United States)

    Harrington, Patrick R; Komatsu, Takashi E; Deming, Damon J; Donaldson, Eric F; O'Rear, Julian J; Naeger, Lisa K

    2018-06-01

    Several highly effective, interferon-free, direct-acting antiviral (DAA)-based regimens are available for the treatment of chronic hepatitis C virus (HCV) infection. Despite impressive efficacy overall, a small proportion of patients in registrational trials experienced treatment failure, which in some cases was associated with the detection of HCV resistance-associated substitutions (RASs) at baseline. In this article, we describe methods and key findings from independent regulatory analyses investigating the impact of baseline nonstructural (NS) 3 Q80K and NS5A RASs on the efficacy of current United States Food and Drug Administration (FDA)-approved regimens for patients with HCV genotype (GT) 1 or GT3 infection. These analyses focused on clinical trials that included patients who were previously naïve to the DAA class(es) in their investigational regimen and characterized the impact of baseline RASs that were enriched in the viral population as natural or transmitted polymorphisms (i.e., not drug-selected RASs). We used a consistent approach to optimize comparability of results across different DAA regimens and patient populations, including the use of a 15% sensitivity cutoff for next-generation sequencing results and standardized lists of NS5A RASs. These analyses confirmed that detection of NS3 Q80K or NS5A baseline RASs was associated with reduced treatment efficacy for multiple DAA regimens, but their impact was often minimized with the use of an intensified treatment regimen, such as a longer treatment duration and/or addition of ribavirin. We discuss the drug resistance-related considerations that contributed to pretreatment resistance testing and treatment recommendations in drug labeling for FDA-approved DAA regimens. Independent regulatory analyses confirmed that baseline HCV RASs can reduce the efficacy of certain DAA-based regimens in selected patient groups. However, highly effective treatment options are available for patients with or without

  5. Engineering Complex Tissues

    Science.gov (United States)

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  6. Micro- and nanotechnology in cardiovascular tissue engineering

    International Nuclear Information System (INIS)

    Zhang Boyang; Xiao Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-01-01

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  7. Surgical membranes as directional delivery devices to generate tissue: testing in an ovine critical sized defect model.

    Directory of Open Access Journals (Sweden)

    Melissa L Knothe Tate

    Full Text Available Pluripotent cells residing in the periosteum, a bi-layered membrane enveloping all bones, exhibit a remarkable regenerative capacity to fill in critical sized defects of the ovine femur within two weeks of treatment. Harnessing the regenerative power of the periosteum appears to be limited only by the amount of healthy periosteum available. Here we use a substitute periosteum, a delivery device cum implant, to test the hypothesis that directional delivery of endogenous periosteal factors enhances bone defect healing.Newly adapted surgical protocols were used to create critical sized, middiaphyseal femur defects in four groups of five skeletally mature Swiss alpine sheep. Each group was treated using a periosteum substitute for the controlled addition of periosteal factors including the presence of collagen in the periosteum (Group 1, periosteum derived cells (Group 2, and autogenic periosteal strips (Group 3. Control group animals were treated with an isotropic elastomer membrane alone. We hypothesized that periosteal substitute membranes incorporating the most periosteal factors would show superior defect infilling compared to substitute membranes integrating fewer factors (i.e. Group 3>Group 2>Group 1>Control.Based on micro-computed tomography data, bone defects enveloped by substitute periosteum enabling directional delivery of periosteal factors exhibit superior bony bridging compared to those sheathed with isotropic membrane controls (Group 3>Group 2>Group 1, Control. Quantitative histological analysis shows significantly increased de novo tissue generation with delivery of periosteal factors, compared to the substitute periosteum containing a collagen membrane alone (Group 1 as well as compared to the isotropic control membrane. Greatest tissue generation and maximal defect bridging was observed when autologous periosteal transplant strips were included in the periosteum substitute.Periosteum-derived cells as well as other factors

  8. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    International Nuclear Information System (INIS)

    Al-Salman, Fadheela; Plant, Nick

    2012-01-01

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.

  9. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  10. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII.

    Science.gov (United States)

    Nadir, Yona; Brenner, Benjamin; Fux, Liat; Shafat, Itay; Attias, Judith; Vlodavsky, Israel

    2010-11-01

    Heparanase is an endo-β-D-glucuronidase dominantly involved in tumor metastasis and angiogenesis. Recently, we demonstrated that heparanase is involved in the regulation of the hemostatic system. Our hypothesis was that heparanase is directly involved in activation of the coagulation cascade. Activated factor X and thrombin were studied using chromogenic assays, immunoblotting and thromboelastography. Heparanase levels were measured by enzyme-linked immunosorbent assay. A potential direct interaction between tissue factor and heparanase was studied by co-immunoprecipitation and far-western assays. Interestingly, addition of heparanase to tissue factor and activated factor VII resulted in a 3- to 4-fold increase in activation of the coagulation cascade as shown by increased activated factor X and thrombin production. Culture medium of human embryonic kidney 293 cells over-expressing heparanase and its derivatives increased activated factor X levels in a non-enzymatic manner. When heparanase was added to pooled normal plasma, a 7- to 8-fold increase in activated factor X level was observed. Subsequently, we searched for clinical data supporting this newly identified role of heparanase. Plasma samples from 35 patients with acute leukemia at presentation and 20 healthy donors were studied for heparanase and activated factor X levels. A strong positive correlation was found between plasma heparanase and activated factor X levels (r=0.735, P=0.001). Unfractionated heparin and an inhibitor of activated factor X abolished the effect of heparanase, while tissue factor pathway inhibitor and tissue factor pathway inhibitor-2 only attenuated the procoagulant effect. Using co-immunoprecipitation and far-western analyses it was shown that heparanase interacts directly with tissue factor. Overall, our results support the notion that heparanase is a potential modulator of blood hemostasis, and suggest a novel mechanism by which heparanase increases the generation of activated

  11. Acute resistance exercise modulates microRNA expression profiles: Combined tissue and circulatory targeted analyses.

    Directory of Open Access Journals (Sweden)

    Randall F D'Souza

    Full Text Available A subset of short non-coding RNAs, microRNAs (miRs, have been identified in the regulation of skeletal muscle hypertrophy and atrophy. Expressed within cells, miRs are also present in circulation (c-miR and have a putative role in cross-tissue signalling. The aim of this study was to examine the impact of a single bout of high intensity resistance exercise (RE on skeletal muscle and circulatory miRs harvested simultaneously. Resistance trained males (n = 9, 24.6 ± 4.9 years undertook a single bout of high volume RE with venous blood and muscle biopsies collected before, 2 and 4hr post-exercise. Real time polymerase chain reaction (Rt-PCR analyses was performed on 30 miRs that have previously been shown to be required for skeletal muscle function. Of these, 6 miRs were significantly altered within muscle following exercise; miR-23a, -133a, -146a, -206, -378b and 486. Analysis of these same miRs in circulation demonstrated minimal alterations with exercise, although c-miR-133a (~4 fold, p = 0.049 and c-miR-149 (~2.4 fold; p = 0.006 were increased 4hr post-exercise. Thus a single bout of RE results in the increased abundance of a subset of miRs within the skeletal muscle, which was not evident in plasma. The lack a qualitative agreement in the response pattern of intramuscular and circulating miR expression suggests the analysis of circulatory miRs is not reflective of the miR responses within skeletal muscle after exercise.

  12. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation.

    Science.gov (United States)

    Miller, Sean J; Rothstein, Jeffrey D

    2017-01-01

    Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.

  13. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue.

    Science.gov (United States)

    Caine, Sally; Heraud, Philip; Tobin, Mark J; McNaughton, Donald; Bernard, Claude C A

    2012-02-15

    In the last two decades the field of infrared spectroscopy has seen enormous advances in both instrumentation and the development of bioinformatic methods for spectral analysis, allowing the examination of a large variety of healthy and diseased samples, including biological fluids, isolated cells, whole tissues, and tissue sections. The non-destructive nature of the technique, together with the ability to directly probe biochemical changes without the addition of stains or contrast agents, enables a range of complementary analyses. This review focuses on the application of Fourier transform infrared (FTIR) microspectroscopy to analyse central nervous system tissues, with the aim of understanding the biochemical and structural changes associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, multiple sclerosis, as well as brain tumours. Modern biospectroscopic methods that combine FTIR microspectroscopy with bioinformatic analysis constitute a powerful new methodology that can discriminate pathology from normal healthy tissue in a rapid, unbiased fashion, with high sensitivity and specificity. Notably, the ability to detect protein secondary structural changes associated with Alzheimer's plaques, neurons in Parkinson's disease, and in some spectra from meningioma, as well as in the animal models of Alzheimer's disease, transmissible spongiform encephalopathies, and multiple sclerosis, illustrates the power of this technology. The capacity to offer insight into the biochemical and structural changes underpinning aetio-pathogenesis of diseases in tissues provides both a platform to investigate early pathologies occurring in a variety of experimentally induced and naturally occurring central nervous system diseases, and the potential to evaluate new therapeutic approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Exposure-survival analyses of pazopanib in renal cell carcinoma and soft tissue sarcoma patients: opportunities for dose optimization.

    Science.gov (United States)

    Verheijen, R B; Swart, L E; Beijnen, J H; Schellens, J H M; Huitema, A D R; Steeghs, N

    2017-12-01

    Pazopanib is an angiogenesis inhibitor approved for the treatment of renal cell carcinoma and soft tissue sarcoma. Post hoc analysis of a clinical trial demonstrated a relationship between pazopanib trough concentrations (C min ) and treatment efficacy. The aim of this study was to explore the pharmacokinetics and exposure-survival relationships of pazopanib in a real-world patient cohort. Renal cell cancer and soft tissue sarcoma patients who had at least one pazopanib plasma concentration available were included. Using calculated C min values and a threshold of > 20 mg/L, univariate and multivariate exposure-survival analyses were performed. Sixty-one patients were included, of which 16.4% were underexposed (mean C min   20 mg/L was related to longer progression free survival in renal cell cancer patients (34.1 vs. 12.5 weeks, n = 35, p = 0.027) and the overall population (25.0 vs. 8.8 weeks, n = 61, p = 0.012), but not in the sarcoma subgroup (18.7 vs. 8.8 weeks, n = 26, p = 0.142). In multivariate analysis C min  > 20 mg/L was associated with hazard ratios of 0.25 (p = 0.021) in renal cancer, 0.12 (p = 0.011) in sarcoma and 0.38 (p = 0.017) in a pooled analysis. This study confirms that pazopanib C min  > 20 mg/L relates to better progression free survival in renal cancer and points towards a similar trend in sarcoma patients. C min monitoring of pazopanib can help identify patients with low C min for whom individualized treatment at a higher dose may be appropriate.

  15. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  16. Hypoxyradiotherapy: lack of experimental evidence for a preferential radioprotective effect on normal versus tumor tissue as shown by direct oxygenation measurements in experimental sarcomas

    International Nuclear Information System (INIS)

    Kelleher, Debra K.; Thews, Oliver; Vaupel, Peter

    1997-01-01

    Aim: In order to investigate possible pathophysiological mechanisms underlying the postulated preferential protective effect of hypoxia on normal tissue during radiotherapy, the impact of acute respiratory hypoxia (8.2% O 2 + 91.8% N 2 ) on tissue oxygenation was assessed. Methods: Tumor and normal tissue oxygenation was directly determined using O 2 -sensitive electrodes in two experimental rat tumors (DS and Yoshida sarcomas) and in the normal subcutis of the hind foot dorsum. Results: During respiratory hypoxia, arterial blood O 2 tension (pO 2 ), oxyhemoglobin saturation and mean arterial blood pressure decreased. Changes in the arterial blood gas status were accompanied by a reflex hyperventilation leading to hypocapnia and respiratory alkalosis. In the subcutis, tissue oxygenation worsened during acute hypoxia, with decreases in the mean and median pO 2 . Significant increases in the hypoxic fractions were, however, not seen. In tumor tissues, oxygenation also worsened upon hypoxic hypoxia with significant decreases in the mean and median pO 2 and increases in the size of the hypoxic fractions for both sarcomas. Conclusion: These results suggest that during respiratory hypoxia, radiobiologically relevant reductions in the oxygenation (and a subsequent selective radioprotection) of normal tissue may not be achieved. In addition, in the tumor models studied, a worsening of tumor oxygenation was seen which could result in an increased radioresistance

  17. Hardwiring stem cell communication through tissue structure

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  18. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  19. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    International Nuclear Information System (INIS)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-01-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors

  20. Bioceramic/Poly (glycolic-poly (lactic acid composite induces mineralized barrier after direct capping of rat tooth pulp tissue

    Directory of Open Access Journals (Sweden)

    Alfonso Gala-Garcia

    2010-03-01

    Full Text Available The aim of this study was to observe the histopathological pulp response following direct pulp capping of mechanically exposed teeth in rats with a composite of beta-tricalcium phosphate-hydroxyapatite bioceramic (BC and poly (glycolic-poly (lactic acid (PLGA material or a calcium hydroxide [Ca(OH2] material, compared to BC alone and a negative control of water. Pulp of the maxillary molars was exposed, followed by capping with the experimental material. The pulpal tissue response was assessed post-operatively at 1, 7, 14 and 30 d, followed by histological analysis. The Ca(OH2 group exhibited severe acute inflammatory cell infiltration at day 14. However after 30 d, a new hard tissue with macro porous obliteration of the pulp chamber and a characteristic necrotic area had appeared. BC and Ca(OH2 capping were associated with moderate inflammation and dentinal bridge similar. Meanwhile, in the BC/PLGA composite group, there was moderate inflammatory infiltrate and formation of a dense and complete dentinal bridge. In conclusion, the BC/PLGA composite material showed a large zone of tertiary dentin, and effectively reorganized the dentin-pulp complex.

  1. Direct assessment of lipoprotein outflow from in vivo-labeled arterial tissue as determined in an in vitro perfusion system.

    Science.gov (United States)

    Björnheden, T; Bondjers, G; Wiklund, O

    1998-12-01

    The rate of cholesterol deposition during the atherosclerotic process is determined by the balance between the inflow and outflow of plasma lipoproteins in the arterial wall. Whereas the rate of inflow may be measured directly, the rate of outflow has most often been calculated indirectly from lipoprotein uptake by using the 2-compartment model. One objection against such calculations is that lipoprotein binding is not being considered. In the present study 2 different protocols were used to obtain a direct measure of the outflow of lipoproteins from atherosclerotic rabbit aortas. Thus, 3 rabbits with experimental atherosclerosis were given 125I-LDL intravenously and 3 were given [14C]cholesterol perorally. Twenty-four hours later the aortas were removed and the outflow of label was monitored during in vitro perfusion. Despite the different protocols, our results were consistent and indicated that fractional loss relative to whole tissue was approximately 0.01 pool/h, which is 1 order of magnitude lower than current estimates based on the 2-compartment model (0.04 to 0.4 pool/h). Furthermore, whereas as much as 2/3 to 3/4 of the tracer that had entered the arterial wall was effectively trapped, the remainder equilibrated at a faster rate (0.06 pool/h). In conclusion, it seems that tissue binding constitutes a prominent and possibly underrated mechanism of lipoprotein deposition, at least in the atherosclerotic rabbit aorta. Furthermore, this means that current estimates of lipoprotein exchange parameters based on the 2-compartment model (eg, fractional loss) may rest on invalid assumptions and should be regarded with caution.

  2. πN → πN and KN → KN low energy data and partial wave analyses recent results and new directions

    International Nuclear Information System (INIS)

    Kelly, R.L.

    1975-07-01

    This review deals with πN → πN and KN → KN physics below about 3 GeV/c. An attempt is made to convey the state of the art, and to point out what appear to be promising directions for future research. The situation as of about one year ago is summarized in the 1974 Review of Particle Properties and in London conference talks so more recent developments are considered. A comprehensive survey of πN → πN data between the Δ region and 3 GeV/c is given. Problems associated with spin-rotation experiments are discussed, and the current πN → πN partial wave analyses. I = 1 and I = 0 KN → KN analyses, respectively, are considered

  3. Scalable robotic biofabrication of tissue spheroids

    International Nuclear Information System (INIS)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V; Brown, J; Beaver, W; Da Silva, J V L

    2011-01-01

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  4. Scalable robotic biofabrication of tissue spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Mehesz, A Nagy; Hajdu, Z; Visconti, R P; Markwald, R R; Mironov, V [Advanced Tissue Biofabrication Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC (United States); Brown, J [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Beaver, W [York Technical College, Rock Hill, SC (United States); Da Silva, J V L, E-mail: mironovv@musc.edu [Renato Archer Information Technology Center-CTI, Campinas (Brazil)

    2011-06-15

    Development of methods for scalable biofabrication of uniformly sized tissue spheroids is essential for tissue spheroid-based bioprinting of large size tissue and organ constructs. The most recent scalable technique for tissue spheroid fabrication employs a micromolded recessed template prepared in a non-adhesive hydrogel, wherein the cells loaded into the template self-assemble into tissue spheroids due to gravitational force. In this study, we present an improved version of this technique. A new mold was designed to enable generation of 61 microrecessions in each well of a 96-well plate. The microrecessions were seeded with cells using an EpMotion 5070 automated pipetting machine. After 48 h of incubation, tissue spheroids formed at the bottom of each microrecession. To assess the quality of constructs generated using this technology, 600 tissue spheroids made by this method were compared with 600 spheroids generated by the conventional hanging drop method. These analyses showed that tissue spheroids fabricated by the micromolded method are more uniform in diameter. Thus, use of micromolded recessions in a non-adhesive hydrogel, combined with automated cell seeding, is a reliable method for scalable robotic fabrication of uniform-sized tissue spheroids.

  5. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    Science.gov (United States)

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  6. Hardwiring Stem Cell Communication through Tissue Structure.

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Nanomechanical mapping of bone tissue regenerated by magnetic scaffolds.

    Science.gov (United States)

    Bianchi, Michele; Boi, Marco; Sartori, Maria; Giavaresi, Gianluca; Lopomo, Nicola; Fini, Milena; Dediu, Alek; Tampieri, Anna; Marcacci, Maurilio; Russo, Alessandro

    2015-01-01

    Nanoindentation can provide new insights on the maturity stage of regenerating bone. The aim of the present study was the evaluation of the nanomechanical properties of newly-formed bone tissue at 4 weeks from the implantation of permanent magnets and magnetic scaffolds in the trabecular bone of rabbit femoral condyles. Three different groups have been investigated: MAG-A (NdFeB magnet + apatite/collagen scaffold with magnetic nanoparticles directly nucleated on the collagen fibers during scaffold synthesis); MAG-B (NdFeB magnet + apatite/collagen scaffold later infiltrated with magnetic nanoparticles) and MAG (NdFeB magnet). The mechanical properties of different-maturity bone tissues, i.e. newly-formed immature, newly-formed mature and native trabecular bone have been evaluated for the three groups. Contingent correlations between elastic modulus and hardness of immature, mature and native bone have been examined and discussed, as well as the efficacy of the adopted regeneration method in terms of "mechanical gap" between newly-formed and native bone tissue. The results showed that MAG-B group provided regenerated bone tissue with mechanical properties closer to that of native bone compared to MAG-A or MAG groups after 4 weeks from implantation. Further, whereas the mechanical properties of newly-formed immature and mature bone were found to be fairly good correlated, no correlation was detected between immature or mature bone and native bone. The reported results evidence the efficacy of nanoindentation tests for the investigation of the maturity of newly-formed bone not accessible through conventional analyses.

  8. Support vector machine classification and validation of cancer tissue samples using microarray expression data.

    Science.gov (United States)

    Furey, T S; Cristianini, N; Duffy, N; Bednarski, D W; Schummer, M; Haussler, D

    2000-10-01

    DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data using support vector machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of the data for mis-labeled or questionable tissue results. We demonstrate the method in detail on samples consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists of expression experiment results for 97,802 cDNAs for each tissue. As a result of computational analysis, a tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify and analyse a subset of genes from the ovarian dataset whose expression is highly differentiated between the types of tissues. To show robustness of the SVM method, two previously published datasets from other types of tissues or cells are analysed. The results are comparable to those previously obtained. We show that other machine learning methods also perform comparably to the SVM on many of those datasets. The SVM software is available at http://www.cs. columbia.edu/ approximately bgrundy/svm.

  9. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    Science.gov (United States)

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  10. Nonmuscle Tissues Contribution to Cancer Cachexia

    Directory of Open Access Journals (Sweden)

    Josep M. Argilés

    2015-01-01

    Full Text Available Cachexia is a syndrome associated with cancer, characterized by body weight loss, muscle and adipose tissue wasting, and inflammation, being often associated with anorexia. In spite of the fact that muscle tissue represents more than 40% of body weight and seems to be the main tissue involved in the wasting that occurs during cachexia, recent developments suggest that tissues/organs such as adipose (both brown and white, brain, liver, gut, and heart are directly involved in the cachectic process and may be responsible for muscle wasting. This suggests that cachexia is indeed a multiorgan syndrome. Bearing all this in mind, the aim of the present review is to examine the impact of nonmuscle tissues in cancer cachexia.

  11. Simultaneous spatio-temporal focusing for tissue manipulation

    Directory of Open Access Journals (Sweden)

    Squier J.

    2013-11-01

    Full Text Available Simultaneous spatiotemporal focusing (SSTF is applied to lens tissue and compared directly with standard femtosecond micromachining of the tissue at the same numerical aperture. Third harmonic generation imaging is used for spatio-temporal characterization of the processing conditions obtained with both a standard and SSTF focus.

  12. Micro- and nanotechnology in cardiovascular tissue engineering.

    Science.gov (United States)

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  13. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.

    Science.gov (United States)

    Sinha, Mithun; Sen, Chandan K; Singh, Kanhaiya; Das, Amitava; Ghatak, Subhadip; Rhea, Brian; Blackstone, Britani; Powell, Heather M; Khanna, Savita; Roy, Sashwati

    2018-03-05

    Inflammation, following injury, induces cellular plasticity as an inherent component of physiological tissue repair. The dominant fate of wound macrophages is unclear and debated. Here we show that two-thirds of all granulation tissue fibroblasts, otherwise known to be of mesenchymal origin, are derived from myeloid cells which are likely to be wound macrophages. Conversion of myeloid to fibroblast-like cells is impaired in diabetic wounds. In cross-talk between keratinocytes and myeloid cells, miR-21 packaged in extracellular vesicles (EV) is required for cell conversion. EV from wound fluid of healing chronic wound patients is rich in miR-21 and causes cell conversion more effectively compared to that by fluid from non-healing patients. Impaired conversion in diabetic wound tissue is rescued by targeted nanoparticle-based delivery of miR-21 to macrophages. This work introduces a paradigm wherein myeloid cells are recognized as a major source of fibroblast-like cells in the granulation tissue.

  14. Advantages and Limitations of Direct PCR Amplification of Bacterial 16S-rDNA from Resected Heart Tissue or Swabs Followed by Direct Sequencing for Diagnosing Infective Endocarditis: A Retrospective Analysis in the Routine Clinical Setting.

    Science.gov (United States)

    Maneg, Daniela; Sponsel, Janina; Müller, Iris; Lohr, Benedikt; Penders, John; Madlener, Katharina; Hunfeld, Klaus-Peter

    2016-01-01

    Infective endocarditis (IE) is a life-threatening disease that is associated with high morbidity and mortality. Its long-term prognosis strongly depends on a timely and optimized antibiotic treatment. Therefore, identification of the causative pathogen is crucial and currently based on blood cultures followed by characterization and susceptibility testing of the isolate. However, antibiotic treatment starting prior to blood sampling or IE caused by fastidious or intracellular microorganisms may cause negative culture results. Here we investigate the additional diagnostic value of broad-range PCR in combination with direct sequencing on resected heart tissue or swabs in patients with tissue or swab culture-negative IE in a routine clinical setting. Sensitivity, specificity, and positive and negative predictive values of broad-range PCR from diagnostic material in our patients were 33.3%, 76.9%, 90.9%, and 14.3%, respectively. We identified a total of 20 patients (21.5%) with tissue or culture-negative IE who profited by the additional application of broad-range PCR. We conclude that broad-range PCR on resected heart tissue or swabs is an important complementary diagnostic approach. It should be seen as an indispensable new tool for both the therapeutic and diagnostic management of culture-negative IE and we thus propose its possible inclusion in Duke's diagnostic classification scheme.

  15. DIRECTIONS OF USING DIRECT PAYMENTS BY THE INDIVIDUAL FARMS LOCATED IN CHOSEN REGIONS

    Directory of Open Access Journals (Sweden)

    Arkadiusz Sadowski

    2012-01-01

    Full Text Available This paper assesses the diversity of directions for use of direct payments in different types of individual farms. The questionnaire surveys were performed on 295 farms located in dif-ferent parts of the country. Analysed farms were divided into groups according to the amount direct support received. Based on the survey concluded that in all analysed groups the largest share of direct payments is spent on the purchase of means of production. The smallest farms also spend to a high extent, the money on household purposes (20.5% and the largest ones to finance the investment (17.7%.

  16. Identification of molecular mechanisms of radiation-induced vascular damage in normal tissues using microarray analyses

    International Nuclear Information System (INIS)

    Kruse, J.J.C.M.; Te Poele, J.A.M.; Russell, N.S.; Boersma, L.J.; Stewart, F.A.

    2003-01-01

    Radiation-induced telangiectasia, characterized by thin-walled dilated blood vessels, can be a serious late complication in patients that have been previously treated for cancer. It might cause cosmetic problems when occurring in the skin, and excessive bleeding requiring surgery when occurring in rectal mucosa. The mechanisms underlying the development of radiation-induced telangiectasia are unclear. The aim of the present study is to determine whether microarrays are useful for studying mechanisms of radiation-induced telangiectasia. The second aim is to test the hypotheses that telangiectasia is characterized by a final common pathway in different tissues. Microarray experiments were performed using amplified RNA from (sham)irradiated mouse tissues (kidney, rectum) at different intervals (1-30 weeks) after irradiation. After normalization procedures, the differentially expressed genes were identified. Control/repeat experiments were done to confirm that the observations were not artifacts of the array procedure. The mouse kidney experiments showed significant upregulation of 31 and 42 genes and downregulation of 9 and 4 genes at 10 and 20 weeks after irradiation, respectively. Irradiated mouse rectum has 278 upregulated and 537 downregulated genes at 10 weeks and 86 upregulated and 29 downregulated genes at 20 weeks. During the development of telangiectasia, 19 upregulated genes and 5 downregulated genes were common to both tissues. Upregulation of Jagged-1, known to play a role in angiogenesis, is particularly interesting in the context of radiation-induced telangiectasia. Microarrays are affective discovery tools to identify novel genes of interest, which may be involved in radiation-induced normal tissue injury. Using information from control arrays (particularly straight color, color reverse and self-self experiments) allowed for a more accurate and reproducible identification of differentially expressed genes than the selection of an arbitrary 2-fold change

  17. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle

    Science.gov (United States)

    Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e., hypothal...

  18. 46,XY,DUP(10Q) IN DIRECT CVS PREPARATION AND MOSAIC 48,XXXY,DUP(10Q) IN CVS LONG-TERM CULTURE AND FETAL TISSUE

    NARCIS (Netherlands)

    SIJMONS, RH; SIKKEMARADDATZ, B; KLOOSTERMAN, MD; BRIET, JW; DEJONG, B; LESCHOT, NJ

    Chorionic villus sampling (CVS) was performed on a 40-year-old woman at 9 1/2 menstrual weeks because of advanced maternal age. The direct preparation showed 46,XY,dup(10)(q11.2q23.2). CVS long-term culture and fetal tissue revealed a rare additional abnormality: 48,XXXY,dup(10)(q11.2q23.2). This

  19. Candidate Genes for Testicular Cancer Evaluated by In Situ Protein Expression Analyses on Tissue Microarrays

    Directory of Open Access Journals (Sweden)

    Rolf I. Skotheim

    2003-09-01

    Full Text Available By the use of high-throughput molecular technologies, the number of genes and proteins potentially relevant to testicular germ cell tumor (TGCT and other diseases will increase rapidly. In a recent transcriptional profiling, we demonstrated the overexpression of GRB7 and JUP in TGCTs, confirmed the reported overexpression of CCND2. We also have recent evidences for frequent genetic alterations of FHIT and epigenetic alterations of MGMT. To evaluate whether the expression of these genes is related to any clinicopathological variables, we constructed a tissue microarray with 510 testicular tissue cores from 279 patients diagnosed with TGCT, covering various histological subgroups and clinical stages. By immunohistochemistry, we found that JUP, GRB7, CCND2 proteins were rarely present in normal testis, but frequently expressed at high levels in TGCT. Additionally, all premalignant intratubular germ cell neoplasias were JUP-immunopositive. MGMT and FHIT were expressed by normal testicular tissues, but at significantly lower frequencies in TGCT. Except for CCND2, the expressions of all markers were significantly associated with various TGCT subtypes. In summary, we have developed a high-throughput tool for the evaluation of TGCT markers, utilized this to validate five candidate genes whose protein expressions were indeed deregulated in TGCT.

  20. Directional orientation of reproductive tissue of Eulychnia breviflora (Cactaceae) in the hyperarid Atacama Desert

    Science.gov (United States)

    Steven D. Warren; Lorgio E. Aguilera; Scott Baggett

    2016-01-01

    Our explanation of the phenomenon differs from other researchers. Inasmuch as reproductive tissue contains little or no chlorophyll, we suggest that the flowers emerge from areas of the stems that receive abundant PAR, not because the reproductive tissue itself requires exposure to PAR. Because the translocation of photosynthates in cacti is difficult and...

  1. Tissue oxygenation as a target for goal-directed therapy in high-risk surgery : a pilot study

    NARCIS (Netherlands)

    van Beest, Paul A.; Vos, Jaap Jan; Poterman, Marieke; Kalmar, Alain F.; Scheeren, Thomas W. L.

    2014-01-01

    Background:  Tissue hypoperfusion occurs frequently during surgery and may contribute to postoperative organ dysfunction. There is a need for perioperative treatment protocols aiming at improving tissue oxygenation (StO(2)). We hypothesised that intra-operative optimisation of StO(2) improves tissue

  2. Tissue-specific functional networks for prioritizing phenotype and disease genes.

    Directory of Open Access Journals (Sweden)

    Yuanfang Guan

    Full Text Available Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as "functionality" and "functional relationships" are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs.

  3. Characterization of human breast cancer tissues by infrared imaging.

    Science.gov (United States)

    Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E

    2016-01-21

    Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins.

  4. Trace element analysis of wild rodent tissues using the PIXE method

    International Nuclear Information System (INIS)

    Hill, M.W.; Mangelson, N.F.; Ryder, J.F.; Atwood, N.D.; Wood, B.W.

    1980-01-01

    Five species of rodents have been collected in an area near Lake Powell Utah. Common names of the five species are: Long-tailed Mouse, Small Pocket Mouse, Deer Mouse, Antelope Ground Squirrel and Kangaroo Rat. Liver, lung, kidney and hair tissues from each animal were analyzed for trace element content by proton particle-induced x-ray emission (proton PIXE) analysis. Mean concentrations for the following elements were established for the tissues of each animal type: K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb and Pb. Analyses of variance were performed on the set of elements common to all tissues. Some significant differences in element concentrations were found between animal species and between tissue types. These differences lead to the following orders based on element concentration: Long-tailed Mouse greater than or equal to Antelope Ground Squirrel greater than or equal to Kangaroo Rat greater than or equal to Small Pocket Mouse and liver greater than or equal to kidney greater than or equal to lung greater than or equal to hair. Linear regression analyses were also performed on mean elemental concentrations in tissues. These analyses lead to several conclusions. First, the pattern of trace element concentrations in each of the four tissues is the same in all five species. Second, the pattern of trace element concentrations is the same in all four tissues of one species with the exception of Ti and Fe in hair. Third, the variation of an element in the hair cannot predict the variation of that same element in the other three tissues. Only K, Ca, Ti, Mn, Fe, Cu, and Zn were included in the third study

  5. On the use of uncertainty analyses to test hypotheses regarding deterministic model predictions of environmental processes

    International Nuclear Information System (INIS)

    Gilbert, R.O.; Bittner, E.A.; Essington, E.H.

    1995-01-01

    This paper illustrates the use of Monte Carlo parameter uncertainty and sensitivity analyses to test hypotheses regarding predictions of deterministic models of environmental transport, dose, risk and other phenomena. The methodology is illustrated by testing whether 238 Pu is transferred more readily than 239+240 Pu from the gastrointestinal (GI) tract of cattle to their tissues (muscle, liver and blood). This illustration is based on a study wherein beef-cattle grazed for up to 1064 days on a fenced plutonium (Pu)-contaminated arid site in Area 13 near the Nevada Test Site in the United States. Periodically, cattle were sacrificed and their tissues analyzed for Pu and other radionuclides. Conditional sensitivity analyses of the model predictions were also conducted. These analyses indicated that Pu cattle tissue concentrations had the largest impact of any model parameter on the pdf of predicted Pu fractional transfers. Issues that arise in conducting uncertainty and sensitivity analyses of deterministic models are discussed. (author)

  6. Realistic tissue visualization using photoacoustic image

    Science.gov (United States)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  7. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  8. Tissue engineered devices for ligament repair, replacement and ...

    African Journals Online (AJOL)

    potential, severe damage warrants surgical intervention including complete replacement. Ligaments are longitudinally arranged, complex tissues; the mechanical properties of ligaments are a direct result of their components and the arrangement of these components in the tissue. It is these mechanics that have made ...

  9. Direct transplantation of native pericytes from adipose tissue: A new perspective to stimulate healing in critical size bone defects.

    Science.gov (United States)

    König, Matthias A; Canepa, Daisy D; Cadosch, Dieter; Casanova, Elisa; Heinzelmann, Michael; Rittirsch, Daniel; Plecko, Michael; Hemmi, Sonja; Simmen, Hans-Peter; Cinelli, Paolo; Wanner, Guido A

    2016-01-01

    Fractures with a critical size bone defect (e.g., open fracture with segmental bone loss) are associated with high rates of delayed union and non-union. The prevention and treatment of these complications remain a serious issue in trauma and orthopaedic surgery. Autologous cancellous bone grafting is a well-established and widely used technique. However, it has drawbacks related to availability, increased morbidity and insufficient efficacy. Mesenchymal stromal cells can potentially be used to improve fracture healing. In particular, human fat tissue has been identified as a good source of multilineage adipose-derived stem cells, which can be differentiated into osteoblasts. The main issue is that mesenchymal stromal cells are a heterogeneous population of progenitors and lineage-committed cells harboring a broad range of regenerative properties. This heterogeneity is also mirrored in the differentiation potential of these cells. In the present study, we sought to test the possibility to enrich defined subpopulations of stem/progenitor cells for direct therapeutic application without requiring an in vitro expansion. We enriched a CD146+NG2+CD45- population of pericytes from freshly isolated stromal vascular fraction from mouse fat tissue and tested their osteogenic differentiation capacity in vitro and in vivo in a mouse model for critical size bone injury. Our results confirm the ability of enriched CD146+NG2+CD45- cells to efficiently generate osteoblasts in vitro, to colonize cancellous bone scaffolds and to successfully contribute to regeneration of large bone defects in vivo. This study represents proof of principle for the direct use of enriched populations of cells with stem/progenitor identity for therapeutic applications. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Limitations of tissue micro array in Duke's B colon cancer

    DEFF Research Database (Denmark)

    Kjær-Frifeldt, Sanne; Lindebjerg, Jan; Brunner, Nils

    2012-01-01

    Tissue micro array (TMA) is widely used in cancer research in search of new predictive and prognostic markers. Colon cancer is known to be heterogeneous and the present study addresses some methodological aspects using cores of different size and analysing markers with different cellular distribu......Tissue micro array (TMA) is widely used in cancer research in search of new predictive and prognostic markers. Colon cancer is known to be heterogeneous and the present study addresses some methodological aspects using cores of different size and analysing markers with different cellular...

  11. Multi-tissue analyses reveal limited inter-annual and seasonal variation in mercury exposure in an Antarctic penguin community.

    Science.gov (United States)

    Brasso, Rebecka L; Polito, Michael J; Emslie, Steven D

    2014-10-01

    Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007-2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ(15)N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins' pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica.

  12. Advantages and Limitations of Direct PCR Amplification of Bacterial 16S-rDNA from Resected Heart Tissue or Swabs Followed by Direct Sequencing for Diagnosing Infective Endocarditis: A Retrospective Analysis in the Routine Clinical Setting

    Directory of Open Access Journals (Sweden)

    Daniela Maneg

    2016-01-01

    Full Text Available Infective endocarditis (IE is a life-threatening disease that is associated with high morbidity and mortality. Its long-term prognosis strongly depends on a timely and optimized antibiotic treatment. Therefore, identification of the causative pathogen is crucial and currently based on blood cultures followed by characterization and susceptibility testing of the isolate. However, antibiotic treatment starting prior to blood sampling or IE caused by fastidious or intracellular microorganisms may cause negative culture results. Here we investigate the additional diagnostic value of broad-range PCR in combination with direct sequencing on resected heart tissue or swabs in patients with tissue or swab culture-negative IE in a routine clinical setting. Sensitivity, specificity, and positive and negative predictive values of broad-range PCR from diagnostic material in our patients were 33.3%, 76.9%, 90.9%, and 14.3%, respectively. We identified a total of 20 patients (21.5% with tissue or culture-negative IE who profited by the additional application of broad-range PCR. We conclude that broad-range PCR on resected heart tissue or swabs is an important complementary diagnostic approach. It should be seen as an indispensable new tool for both the therapeutic and diagnostic management of culture-negative IE and we thus propose its possible inclusion in Duke’s diagnostic classification scheme.

  13. Direct observations and analyses of dislocation substructures in the α phase of an α/β Ti-alloy formed by nanoindentation

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Lee, Eunha; Maher, Dennis M.; Banerjee, S.; Fraser, Hamish L.

    2005-01-01

    The hardness of α-titanium grains as a function of both indentation depth and orientation has been assessed using nanoindentation. Direct observations and analyses of the dislocation substructures have been achieved by cutting thin-foil membranes exactly through given indents with a dual-beam focused-ion-beam instrument and from diffraction-contrast experiments in a transmission electron microscope. It was found, as expected, that the hardness varied with the depth of indentation. Regarding the orientation dependence of hardness, the nature of the statistically stored dislocations as well as that of the geometrically necessary dislocations has been identified. Thus, the occurrence of the majority of the former dislocations can be predicted on the basis of Schmid's law, while noting the presence of minor densities of other dislocations required presumably because of the arbitrary shape change imposed by the nanoindenter. The geometrically necessary dislocations have been identified as the appropriate combinations of slip dislocations such that an overall displacement parallel to the direction of the indentation results

  14. CONTAIN code analyses of direct containment heating experiments

    International Nuclear Information System (INIS)

    Williams, D.C.; Griffith, R.O.; Tadios, E.L.; Washington, K.E.

    1995-01-01

    In some nuclear reactor core-melt accidents, a potential exists for molten core-debris to be dispersed into the containment under high pressure. Resulting energy transfer to the containment atmosphere can pressurize the containment. This process, known as direct containment heating (DCH), has been the subject of extensive experimental and analytical programs sponsored by the U.S. Nuclear Regulatory Commission (NRC). The DCH modeling has been an important focus for the development of the CONTAIN code. Results of a detailed independent peer review of the CONTAIN code were published recently. This paper summarizes work performed in support of the peer review in which the CONTAIN code was applied to analyze DCH experiments. Goals of this work were comparison of calculated and experimental results, CONTAIN DCH model assessment, and development of guidance for code users, including development of a standardized input prescription for DCH analysis

  15. Development of proton-induced x-ray emission techniques with application to multielement analyses of human autopsy tissues and obsidian artifacts

    International Nuclear Information System (INIS)

    Nielson, K.K.

    1975-01-01

    A method of trace element analysis using proton-induced x-ray emission (PIXE) techniques with energy dispersive x-ray detection methods is described. Data were processed using the computer program ANALEX. PIXE analysis methods were applied to the analysis of liver, spleen, aorta, kidney medulla, kidney cortex, abdominal fat, pancreas, and hair from autopsies of Pima Indians. Tissues were freeze dried and low temperature ashed before analysis. Concentrations were tabulated for K, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, Pb, Se, Br, Rb, Sr, Cd, and Cs and examined for significant differences related to diabetes. Concentrations of Ca and Sr in aorta, Fe and Rb in spleen and Mn in liver had different patterns in diabetics than in nondiabetics. High Cs concentrations were also observed in the kidneys of two subjects who died of renal disorders. Analyses by atomic absorption and PIXE methods were compared. PIXE methods were also applied to elemental analysis of obsidian artifacts from Campeche, Mexico. Based on K, Ba, Mn, Fe, Rb, Sr and Zr concentrations, the artifacts were related to several Guatemalan sources. (Diss. Abstr. Int., B)

  16. Analyses of direct and indirect impacts of a positive list system on pharmaceutical R&D investments.

    Science.gov (United States)

    Han, Euna; Kim, Tae Hyun; Jeung, Myung Jin; Lee, Eui-Kyung

    2013-07-01

    The South Korean government recently enacted a Positive List System (PLS) as a major change of the national formulary listing system and reimbursed prices for pharmaceutical products. Regardless of the primary goal of the PLS, its implementation might have spillover effects by influencing the pharmaceutical industry's research and development (R&D), potentially leading to a variety of responses by firms in relation to their R&D activities. We investigated the spillover effect of the PLS on R&D investments of the pharmaceutical industry in Korea through both direct and indirect channels, examining the influence of the PLS on sales profit and cash flow. Data from 9 years (5 before and 4 after PLS implementation) were drawn from the financial statements of firms whose stocks were exchanged in 2 official stock markets in Korea (526 firms) and additional pharmaceutical firms whose financial performance was officially audited by external reviewers (263 firms). Longitudinal analyses were conducted, using the panel nature of the data to control for permanent unobserved firm heterogeneity. Our results showed that the PLS was directly associated with R&D investments. In contrast, its indirect impacts stemming from the influence on sales profit and cash flow were minimal and statistically nonsignificant. The gross impact of the PLS on R&D investments increased moving further from the enactment year; R&D investments were reduced by 18.3% to 25.8% in 2009-2010 (compared with before PLS implementation) in the firm fixed-effects model. We also found that such negative direct and gross impacts of the PLS on R&D investments were significant only in firms without newly developed chemical entities. Considering the gross negative impact of the PLS on R&D investments of pharmaceutical firms and the heterogeneous response of these firms by the R&D activities, governmental efforts of cost-containment may need to consider the spillover impact of the PLS on pharmaceutical innovation

  17. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    OpenAIRE

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-s...

  18. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  19. Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application

    Science.gov (United States)

    Dancik, Yuri; Anissimov, Yuri G; Jepps, Owen G; Roberts, Michael S

    2012-01-01

    AIMS To relate the varying dermal, subcutaneous and muscle microdialysate concentrations found in man after topical application to the nature of the drug applied and to the underlying physiology. METHODS We developed a physiologically based pharmacokinetic model in which transport to deeper tissues was determined by tissue diffusion, blood, lymphatic and intersitial flow transport and drug properties. The model was applied to interpret published human microdialysis data, estimated in vitro dermal diffusion and protein binding affinity of drugs that have been previously applied topically in vivo and measured in deep cutaneous tissues over time. RESULTS Deeper tissue microdialysis concentrations for various drugs in vivo vary widely. Here, we show that carriage by the blood to the deeper tissues below topical application sites facilitates the transport of highly plasma protein bound drugs that penetrate the skin, leading to rapid and significant concentrations in those tissues. Hence, the fractional concentration for the highly plasma protein bound diclofenac in deeper tissues is 0.79 times that in a probe 4.5 mm below a superficial probe whereas the corresponding fractional concentration for the poorly protein bound nicotine is 0.02. Their corresponding estimated in vivo lag times for appearance of the drugs in the deeper probes were 1.1 min for diclofenac and 30 min for nicotine. CONCLUSIONS Poorly plasma protein bound drugs are mainly transported to deeper tissues after topical application by tissue diffusion whereas the transport of highly plasma protein bound drugs is additionally facilitated by convective blood, lymphatic and interstitial transport to deep tissues. PMID:21999217

  20. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Pavlov, Konstantin M.; Hooper, Stuart B.; Vine, David J.; Siu, Karen K.W.; Wallace, Megan J.; Siew, Melissa L.L.; Yagi, Naoto; Uesugi, Kentaro; Lewis, Rob A.

    2008-01-01

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 μm thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution

  1. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: Marcus.Kitchen@sci.monash.edu.au; Pavlov, Konstantin M. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia); Physics and Electronics, School of Science and Technology, University of New England, NSW 2351 (Australia)], E-mail: Konstantin.Pavlov@sci.monash.edu.au; Hooper, Stuart B. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Stuart.Hooper@med.monash.edu.au; Vine, David J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: David.Vine@sci.monash.edu.au; Siu, Karen K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sci.monash.edu.au; Wallace, Megan J. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Megan.Wallace@med.monash.edu.au; Siew, Melissa L.L. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Melissa.Siew@med.monash.edu.au; Yagi, Naoto [SPring-8/JASRI, Sayo (Japan)], E-mail: yagi@spring8.or.jp; Uesugi, Kentaro [SPring-8/JASRI, Sayo (Japan)], E-mail: ueken@spring8.or.jp; Lewis, Rob A. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Rob.Lewis@sync.monash.edu.au

    2008-12-15

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 {mu}m thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution.

  2. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating......The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  3. Acoustic radiation force due to arbitrary incident fields on spherical particles in soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    Treweek, Benjamin C., E-mail: btreweek@utexas.edu; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P.O. Box 8029, Austin, TX 78713-8029 (United States)

    2015-10-28

    Acoustic radiation force is of interest in a wide variety of biomedical applications ranging from tissue characterization (e.g. elastography) to tissue treatment (e.g. high intensity focused ultrasound, kidney stone fragment removal). As tissue mechanical properties are reliable indicators of tissue health, the former is the focus of the present contribution. This is accomplished through an investigation of the acoustic radiation force on a spherical scatterer embedded in tissue. Properties of both the scatterer and the surrounding tissue are important in determining the magnitude and the direction of the force. As these properties vary, the force computation shows changes in magnitude and direction, which may enable more accurate noninvasive determination of tissue properties.

  4. Advances in tissue engineering through stem cell-based co-culture.

    Science.gov (United States)

    Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-05-01

    Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Reliability of various skeletal indicators in assessing vertical facial soft tissue pattern

    International Nuclear Information System (INIS)

    Ahmed, M.; Shaikh, A.; Fida, M.

    2016-01-01

    Background: Angle paradigm has ruled the orthodontic diagnosis and treatment planning for past several decades, but the recent introduction of the soft tissue paradigm has significantly changed the dynamics of orthodontic practice. This study was designed to identify skeletal analyses that best correlates with the parameters use to assess facial soft tissue profile that may lead to an accurate diagnosis and efficient treatment plan. Methods: A total of 192 subjects (96 males and 96 females; mean age 22.95±4.75 years) were included in the study. The total sample was distributed into three equal groups (i.e., long, normal and short face) on the basis of soft tissue vertical pattern. Pre-treatment lateral cephalograms were used to assess various vertical linear and angular parameters. Various skeletal analyses and soft tissue parameters were correlated using the Pearson correlation in different vertical groups, separately for males and females. Results: In males, a weak positive correlation (r=0.485) was found between skeletal anterior facial height ratio (Sk. LAFH/TAFH) and soft tissue anterior facial height ratio (LAFH/TAFH), whereas in females maxillary-mandibular plane angle (MMA) showed a weak positive correlation (r=0.300). In the long face group, a positive but a weak correlation (r=0.349) was present between cranial base angle (SN-GoGn) and LAFH/TAFH. Conclusions: Skeletal analyses (MMA, Sk. LAFH/TAFH) significantly correlated to soft tissue parameters. Males and long faced individuals showed a higher correlation between skeletal and soft tissue parameters as compared to that of the females. (author)

  6. Progress in planta transformation without tissue culture

    International Nuclear Information System (INIS)

    Gu Yunhong; Chinese Academy of Sciences, Hefei; Qin Guangyong; Huo Yuping; Yu Zengliang

    2004-01-01

    With the development of planta genetic engineering, more emphases have been laid on convenient and high efficient genetic transformation methods. And transformation without tissue culture is a prospective direction of it. In this paper, traditional transformation methods and the methods of non-tissue culture were summarized. With the exploration and application of Arabidopsis transformation mechanism, with the use of ion beam-mediated transformation invented by Chinese scientists and the development of other transformation methods, transformation methods without tissue culture and planta genetic engineering could be improved rapidly. (authors)

  7. In vivo studies of peritendinous tissue in exercise

    DEFF Research Database (Denmark)

    Kjaer, M; Langberg, Henning; Skovgaard, D

    2000-01-01

    Soft tissue injury of tendons represents a major problem within sports medicine. Although several animal and cell culture studies have addressed this, human experiments have been limited in their ability to follow changes in specific tissue directly in response to interventions. Recently, methods...... have allowed for in vivo determination of tissue concentrations and release rates of substances involved in metabolism, inflammation and collagen synthesis, together with the measurement of tissue blood flow and oxygenation in the peritendinous region around the Achilles tendon in humans during...... exercise. This coincides with a surprisingly marked drop in tissue pressure during contraction. With regards to both circulation, metabolism and collagen formation, peritendinous tissue represents a dynamic, responsive region that adapts markedly to acute muscular activity....

  8. Short Communication An efficient method for simultaneous extraction of high-quality RNA and DNA from various plant tissues.

    Science.gov (United States)

    Oliveira, R R; Viana, A J C; Reátegui, A C E; Vincentz, M G A

    2015-12-29

    Determination of gene expression is an important tool to study biological processes and relies on the quality of the extracted RNA. Changes in gene expression profiles may be directly related to mutations in regulatory DNA sequences or alterations in DNA cytosine methylation, which is an epigenetic mark. Correlation of gene expression with DNA sequence or epigenetic mark polymorphism is often desirable; for this, a robust protocol to isolate high-quality RNA and DNA simultaneously from the same sample is required. Although commercial kits and protocols are available, they are mainly optimized for animal tissues and, in general, restricted to RNA or DNA extraction, not both. In the present study, we describe an efficient and accessible method to extract both RNA and DNA simultaneously from the same sample of various plant tissues, using small amounts of starting material. The protocol was efficient in the extraction of high-quality nucleic acids from several Arabidopsis thaliana tissues (e.g., leaf, inflorescence stem, flower, fruit, cotyledon, seedlings, root, and embryo) and from other tissues of non-model plants, such as Avicennia schaueriana (Acanthaceae), Theobroma cacao (Malvaceae), Paspalum notatum (Poaceae), and Sorghum bicolor (Poaceae). The obtained nucleic acids were used as templates for downstream analyses, such as mRNA sequencing, quantitative real time-polymerase chain reaction, bisulfite treatment, and others; the results were comparable to those obtained with commercial kits. We believe that this protocol could be applied to a broad range of plant species, help avoid technical and sampling biases, and facilitate several RNA- and DNA-dependent analyses.

  9. Is epicardial adipose tissue, assessed by echocardiography, a reliable method for visceral adipose tissue prediction?

    Science.gov (United States)

    Silaghi, Alina Cristina; Poantă, Laura; Valea, Ana; Pais, Raluca; Silaghi, Horatiu

    2011-03-01

    Epicardial adipose tissue is an ectopic fat storage at the heart surface in direct contact with the coronary arteries. It is considered a metabolically active tissue, being a local source of pro-inflammatory factors that contribute to the pathogenesis of coronary artery disease. The AIM of our study was to establish correlations between echocardiographic assessment of epicardial adipose tissue and anthropometric and ultrasound measurements of the central and peripheral fat depots. The study was conducted on 22 patients with or without coronaropathy. Epicardial adipose tissue was measured using Aloka Prosound α 10 machine with a 3.5-7.5 MHz variable-frequency transducer and subcutaneous and visceral fat with Esaote Megas GPX machine and 3.5-7.5 MHz variable frequency transducer. Epicardial adipose tissue measured by echocardiography is correlated with waist circumference (p < 0.05), visceral adipose tissue thickness measured by ultrasonography (US) and is not correlated with body mass index (p = 0.315), hip and thigh circumference or subcutaneous fat thickness measured by US. Our study confirms that US assessment of epicardial fat correlates with anthropometric and US measurements of the central fat, representing an indirect but reliable marker of the visceral fat.

  10. Dmp1 Promoter-Driven Diphtheria Toxin Receptor Transgene Expression Directs Unforeseen Effects in Multiple Tissues

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Jazzar

    2016-12-01

    Full Text Available Mice harbouring a dentin matrix protein 1 (Dmp1 promoter-driven human diphtheria toxin (DT receptor (HDTR transgene (Tg have recently been used to attain targeted ablation of osteocytes by diphtheria toxin (DT treatment in order to define osteocyte function. Use of these Tg mice has asserted mechano- and novel paracrine regulatory osteocyte functions. To explore osteocyte roles fully, we sought to confirm the selectivity of DT effects in these transgenic mice. However, our findings revealed incomplete DT-induced osteocyte ablation, prevalent HDTR misexpression, as well as more prominent histopathological DT-induced changes in multiple organs in Tg than in wild-type (WT littermate mice. Mechanistic evidence for DT action, via prominent regulation of phosphorylation status of elongation factor-2 (EF-2, was also found in many non-skeletal tissues in Tg mice; indicative of direct “off-target” DT action. Finally, very rapid deterioration in health and welfare status in response to DT treatment was observed in these Tg when compared to WT control mice. Together, these data lead us to conclude that alternative models for osteocyte ablation should be sought and caution be exercised when drawing conclusions from experiments using these Tg mice alone.

  11. Evaluation of normal tissue responses to high-LET radiations

    International Nuclear Information System (INIS)

    Halnan, K.E.

    1979-01-01

    Clinical results presented have been analysed to evaluate normal tissue responses to high-LET radiations. Damage to brain, spinal cord, gut, skin, connective tissue and bone has occurred. A high RBE is probable for brain and possible for spinal cord and gut but other reasons for damage are also discussed. A net gain seems likely. Random controlled trials are advocated. (author)

  12. Digital image analyser for autoradiography

    International Nuclear Information System (INIS)

    Muth, R.A.; Plotnick, J.

    1985-01-01

    The most critical parameter in quantitative autoradiography for assay of tissue concentrations of tracers is the ability to obtain precise and accurate measurements of optical density of the images. Existing high precision systems for image analysis, rotating drum densitometers, are expensive, suffer from mechanical problems and are slow. More moderately priced and reliable video camera based systems are available, but their outputs generally do not have the uniformity and stability necessary for high resolution quantitative autoradiography. The authors have designed and constructed an image analyser optimized for quantitative single and multiple tracer autoradiography which the authors refer to as a memory-mapped charged-coupled device scanner (MM-CCD). The input is from a linear array of CCD's which is used to optically scan the autoradiograph. Images are digitized into 512 x 512 picture elements with 256 gray levels and the data is stored in buffer video memory in less than two seconds. Images can then be transferred to RAM memory by direct memory-mapping for further processing. Arterial blood curve data and optical density-calibrated standards data can be entered and the optical density images can be converted automatically to tracer concentration or functional images. In double tracer studies, images produced from both exposures can be stored and processed in RAM to yield ''pure'' individual tracer concentration or functional images. Any processed image can be transmitted back to the buffer memory to be viewed on a monitor and processed for region of interest analysis

  13. A vector matching method for analysing logic Petri nets

    Science.gov (United States)

    Du, YuYue; Qi, Liang; Zhou, MengChu

    2011-11-01

    Batch processing function and passing value indeterminacy in cooperative systems can be described and analysed by logic Petri nets (LPNs). To directly analyse the properties of LPNs, the concept of transition enabling vector sets is presented and a vector matching method used to judge the enabling transitions is proposed in this article. The incidence matrix of LPNs is defined; an equation about marking change due to a transition's firing is given; and a reachable tree is constructed. The state space explosion is mitigated to a certain extent from directly analysing LPNs. Finally, the validity and reliability of the proposed method are illustrated by an example in electronic commerce.

  14. Certification of the methylmercury content in SRM 2977 mussel tissue (organic contaminants and trace elements) and SRM 1566b oyster tissue.

    Science.gov (United States)

    Tutschku, S; Schantz, M M; Horvat, M; Logar, M; Akagi, H; Emons, H; Levenson, M; Wise, S A

    2001-02-01

    The methylmercury content in two new marine bivalve mollusk tissue Standard Reference Materials (SRMs) has been certified using results of analyses from the National Institute of Standards and Technology (NIST) and two other laboratories. The certified concentrations of methylmercury were established based on the results from four and six different (independent) analytical methods, respectively, for SRM 1566b Oyster Tissue (13.2 +/- 0.7 microg/kg) and SRM 2977 Mussel Tissue (organic contaminants and trace elements) (36.2 +/- 1.7 microg/kg). The certified concentration of methylmercury in SRM 1566b is among the lowest in any certified reference material (CRM).

  15. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  16. Expression analyses of human cleft palate tissue suggest a role for osteopontin and immune related factors in palatal development

    DEFF Research Database (Denmark)

    Jakobsen, L.P.; Borup, R.; Vestergaard, J.

    2009-01-01

    . Moreover, selected differentially expressed genes were analyzed by quantitative RT-PCR, and by immunohistochemical staining of craniofacial tissue from human embryos. Osteopontin (SPP1) and other immune related genes were significantly higher expressed in palate tissue from patients with CLP compared to CP...... and palate (CLP). In order to understand the biological basis in these cleft lip and palate subgroups better we studied the expression profiles in human tissue from patients with CL/P. In each of the CL/P subgroups, samples were obtained from three patients and gene expression analysis was performed...... and immunostaining in palatal shelves against SPP1, chemokine receptor 4 (CXCR4) and serglycin (PRG1) in human embryonic craniofacial tissue were positive, supporting a role for these genes in palatal development. However, gene expression profiles are subject to variations during growth and therefore we recommend...

  17. Is tissue CA125 expression in epithelial ovarian adenocarcinoma heterogenic?

    DEFF Research Database (Denmark)

    Sparholt, Morten H; Høgdall, Claus K; Nedergaard, Lotte

    2013-01-01

    To evaluate if heterogeneity of tissue cancer antigen 125 (CA125) expression is present in epithelial serous adenocarcinomas. Furthermore, to investigate whether there is a correlation between levels of CA125 tissue expression, serum level of CA125, stage, and grade. A total of 10 patients...... diagnosed with serous ovarian adenocarcinomas were included. Preoperative blood samples were collected to determine serum CA125 levels. Tumor tissue from primary surgery was collected and processed for immunohistochemical analyses. CA125 was expressed in varying degrees in tumor tissues from all patients....... Mean tissue CA125 expression for each patient ranged from 36% to 98%. Intrapatient variations in tissue expression ranged from 10% to 90% point. No significant correlations between levels of CA125 tissue expression, serum level of CA125, stage, and grade were found. We found that the tissue expression...

  18. Antigen retrieval prior to on-tissue digestion of formalin-fixed paraffin-embedded tumour tissue sections yields oxidation of proline residues.

    Science.gov (United States)

    Djidja, Marie-Claude; Claude, Emmanuelle; Scriven, Peter; Allen, David W; Carolan, Vikki A; Clench, Malcolm R

    2017-07-01

    MALDI-mass spectrometry imaging (MALDI-MSI) has been shown to allow the study of protein distribution and identification directly within formalin-fixed paraffin-embedded (FFPE) tissue sections. However, direct protein identification from tissue sections remains challenging due to signal interferences and/or existing post-translational or other chemical modifications. The use of antigen retrieval (AR) has been demonstrated for unlocking proteins prior to in situ enzymatic digestion and MALDI-MSI analysis of FFPE tissue sections. In the work reported here, the identification of proline oxidation, which may occur when performing the AR protocol, is described. This facilitated and considerably increased the number of identified peptides when adding proline oxidation as a variable modification to the MASCOT search criteria. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Injectable biomaterials for adipose tissue engineering

    International Nuclear Information System (INIS)

    Young, D A; Christman, K L

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers but also promote in vivo adipogenesis is beginning to be realized. This paper will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. (paper)

  20. Co-expression networks reveal the tissue-specific regulation of transcription and splicing.

    Science.gov (United States)

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H; Jo, Brian; Gao, Chuan; McDowell, Ian C; Engelhardt, Barbara E; Battle, Alexis

    2017-11-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. © 2017 Saha et al.; Published by Cold Spring Harbor Laboratory Press.

  1. PATMA: parser of archival tissue microarray

    Directory of Open Access Journals (Sweden)

    Lukasz Roszkowiak

    2016-12-01

    Full Text Available Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

  2. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  3. 6. Label-free selective plane illumination microscopy of tissue samples

    Directory of Open Access Journals (Sweden)

    Muteb Alharbi

    2017-10-01

    Conclusion: Overall this method meets the demands of the current needs for 3D imaging tissue samples in a label-free manner. Label-free Selective Plane Microscopy directly provides excellent information about the structure of the tissue samples. This work has highlighted the superiority of Label-free Selective Plane Microscopy to current approaches to label-free 3D imaging of tissue.

  4. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Bryan C. Au

    2016-02-01

    Full Text Available Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag-specific responses through direct injections of recombinant lentivectors (LVs that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months—the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an “off-the-shelf” anti-cancer vaccine that could be made at large scale and injected into patients—even on an out-patient basis.

  5. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques.

    Science.gov (United States)

    Au, Bryan C; Lee, Chyan-Jang; Lopez-Perez, Orlay; Foltz, Warren; Felizardo, Tania C; Wang, James C M; Huang, Ju; Fan, Xin; Madden, Melissa; Goldstein, Alyssa; Jaffray, David A; Moloo, Badru; McCart, J Andrea; Medin, Jeffrey A

    2016-02-19

    Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag)-specific responses through direct injections of recombinant lentivectors (LVs) that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA)-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months-the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an "off-the-shelf" anti-cancer vaccine that could be made at large scale and injected into patients-even on an out-patient basis.

  6. Oscillating intensity display of soft tissue lesions in MR imaging

    International Nuclear Information System (INIS)

    Herrmann, A.; Levin, D.N.; Beck, R.N.

    1986-01-01

    A computer-aided tissue characterization scheme is used to separate abnormal from normal tissues on the basis of their intensities on T1- and T2-weighted images. The intensity of an abnormal tissue on a T1-weighted image is then made to oscillate so that the amplitude (or frequency) of oscillation is directly proportional to the difference between the lesion's intensity and the intensities of normal tissues. The result is a ''movie'' in which the abnormal tissue churns or oscillates on the screen, drawing the attention because of the eye's sensitivity to motion

  7. Quality controlled water, sediment, tissue, and tar/oil chemistry analyses from the Deepwater Horizon (DWH) oil spill event in the Gulf of Mexico from 2010-04 to 2011-06, sourced from NOAA's Query Manager data management system (NODC Accession 0108924)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection includes 4 data files (one each for water, sediment, tissue, and tar/oil analyses) containing data from the Deepwater Horizon (DWH) Oil Spill Event...

  8. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.

    Science.gov (United States)

    Nagarajan, Vivek Krishna; Yu, Bing

    2016-09-01

    Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, and , for native porcine tissues (n = 66) at room temperature, were 5.4

  9. Proteomic Analyses of the Acute Tissue Response for Explant Rabbit Corneas and Engineered Corneal Tissue Models Following In Vitro Exposure to 1540 nm Laser Light

    National Research Council Canada - National Science Library

    Eurell, T. E; Johnson, T. E; Roach, W. P

    2005-01-01

    Two-dimensional electrophoresis and histomorphometry were used to determine if equivalent protein changes occurred within native rabbit corneas and engineered corneal tissue models following in vitro...

  10. Obstacles to European research projects with data and tissue: solutions and further challenges.

    Science.gov (United States)

    van Veen, Evert-Ben

    2008-07-01

    Most European biomedical research projects are about data. Research with tissue is about data as well; data will accompany the tissue, and data will be derived from analysing the tissue. Data can be merged with data from various sources, copied and re-analysed in the context of European projects. Privacy enhancing technologies (PET) should be used for transferring data from participating centres to the level where data are being merged. PET provide coding techniques which allow donors to be anonymous and still uniquely discernable. It is defended that under certain conditions two-way coded data can be considered as anonymous data in the sense of the European Data Protection Directive. Divergent interpretations of this Directive and most of all about the concept of coded-anonymous data is one of the main obstacles to observational research in Europe. The Data Protection Authorities will have to relax the extremely high threshold before data cannot be considered personal data anymore. Arguments are given for such relaxation. Besides the logic and logistics of data transfer in European projects, it is also about trust and a realistic risk assessment. In spite of the massive dataflow in European research projects no breach of confidentiality has ever been reported. The ethical rationale of such projects can be based on the principles of citizenship and solidarity provided that certain safeguards are met by which that research will remain observational. However, if the project does not preclude individual feed-back on the outcomes of research, as in theory would be possible with two-way coded tissue, that tissue cannot be considered anonymous. It is argued that in most tissuebanking projects individual feed-back should be excluded. Tissuebanking for research should not turn into medical screening without applying the established criteria for screening to it. If individual feed-back is not foreseen, two-way tissue should be considered anonymous, under the same conditions

  11. Tissue-dependent paired expression of miRNAs

    OpenAIRE

    Ro, Seungil; Park, Chanjae; Young, David; Sanders, Kenton M.; Yan, Wei

    2007-01-01

    It is believed that depending on the thermodynamic stability of the 5′-strand and the 3′-strand in the stem-loop structure of a precursor microRNA (pre-miRNA), cells preferentially select the less stable one (called the miRNA or guide strand) and destroy the other one (called the miRNA* or passenger strand). However, our expression profiling analyses revealed that both strands could be co-accumulated as miRNA pairs in some tissues while being subjected to strand selection in other tissues. Ou...

  12. The Spatial Distribution of Alkaloids in Psychotria prunifolia (Kunth) Steyerm and Palicourea coriacea (Cham.) K. Schum Leaves Analysed by Desorption Electrospray Ionisation Mass Spectrometry Imaging

    DEFF Research Database (Denmark)

    Kato, Lucilia; Moraes, Aline Pereira; de Oliveira, Cecília Maria Alves

    2018-01-01

    INTRODUCTION: Species of the genera Psychotria and Palicourea are sources of indole alkaloids, however, the distribution of alkaloids within the plants is not known. Analysing the spatial distribution using desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) has become...... analyses. METHODOLOGY: Based upon previous structure elucidation studies, four alkaloids targeted in this study were identified using high resolution mass spectrometry by direct infusion of plant extracts, and their distributions were imaged by DESI-MSI via tissue imprints on a porous Teflon surface....... Relative quantitation of the four alkaloids was obtained by HPLC-MS/MS analysis performed using multiple-reaction monitoring (MRM) mode on a triple quadrupole mass spectrometer. RESULTS: Alkaloids showed distinct distributions on the leaf surfaces. Prunifoleine was mainly present in the midrib, while 10...

  13. Heat-shock proteins in stromal joint tissues: innocent bystanders or disease-initiating proteins?

    Science.gov (United States)

    Lambrecht, Stijn; Juchtmans, Nele; Elewaut, Dirk

    2014-02-01

    Heat-shock proteins (HSPs) are molecular chaperones that are highly conserved between species. In recent decades it has become clear that these proteins play an important role in the pathogenesis of inflammatory and degenerative joint diseases by (dys)regulating the immune system and by direct effects on the stromal tissues of the joint. In this review we discuss current insights into the expression pattern of HSPs in connective tissues, the direct biological role of HSPs in stromal tissues and the potential clinical applications.

  14. Engineering a concept: the creation of tissue engineering.

    Science.gov (United States)

    Williams, D

    1997-12-01

    Tissue engineering is a fashionable phrase and a new concept. This article analyses what is meant by this term and discusses some of the products that may emerge from the translation of this concept into clinical reality.

  15. Tylosin depletion in edible tissues of turkeys.

    Science.gov (United States)

    Montesissa, C; De Liguoro, M; Santi, A; Capolongo, F; Biancotto, G

    1999-10-01

    The depletion of tylosin residues in edible turkey tissues was followed after 3 days of administration of tylosin tartrate at 500 mg l-1 in drinking water, to 30 turkeys. Immediately after the end of the treatment (day 0) and at day 1, 3, 5 and 10 of withdrawal, six turkeys (three males and three females) per time were sacrificed and samples of edible tissues were collected. Tissue homogenates were extracted, purified and analysed by HPLC according to a method previously published for the analysis of tylosin residues in pig tissues. In all tissues, tylosin residues were already below the detection limits of 50 micrograms kg-1 at time zero. However, in several samples of tissues (skin + fat, liver, kidney, muscle), from the six turkeys sacrificed at that time, one peak corresponding to an unknown tylosin equivalent was detected at measurable concentrations. The identification of this unknown compound was performed by LC-MS/MS analysis of the extracts from incurred samples. The mass fragmentation of the compound was consistent with the structure of tylosin D (the alcoholic derivative of tylosin A), the major metabolite of tylosin previously recovered and identified in tissues and/or excreta from treated chickens, cattle and pigs.

  16. Current Concepts in Tissue Engineering: Skin and Wound.

    Science.gov (United States)

    Tenenhaus, Mayer; Rennekampff, Hans-Oliver

    2016-09-01

    Pure regenerative healing with little to no donor morbidity remains an elusive goal for both surgeon and patient. The ability to engineer and promote the development of like tissue holds so much promise, and efforts in this direction are slowly but steadily advancing. Products selected and reviewed reflect historical precedence and importance and focus on current clinically available products in use. Emerging technologies we anticipate will further expand our therapeutic options are introduced. The topic of tissue engineering is incredibly broad in scope, and as such the authors have focused their review on that of constructs specifically designed for skin and wound healing. A review of pertinent and current clinically related literature is included. Products such as biosynthetics, biologics, cellular promoting factors, and commercially available matrices can be routinely found in most modern health care centers. Although to date no complete regenerative or direct identical soft-tissue replacement exists, currently available commercial components have proven beneficial in augmenting and improving some types of wound healing scenarios. Cost, directed specificity, biocompatibility, and bioburden tolerance are just some of the impending challenges to adoption. Quality of life and in fact the ability to sustain life is dependent on our most complex and remarkable organ, skin. Although pure regenerative healing and engineered soft-tissue constructs elude us, surgeons and health care providers are slowly gaining comfort and experience with concepts and strategies to improve the healing of wounds.

  17. Needle-tissue interactive mechanism and steering control in image-guided robot-assisted minimally invasive surgery: a review.

    Science.gov (United States)

    Li, Pan; Yang, Zhiyong; Jiang, Shan

    2018-06-01

    Image-guided robot-assisted minimally invasive surgery is an important medicine procedure used for biopsy or local target therapy. In order to reach the target region not accessible using traditional techniques, long and thin flexible needles are inserted into the soft tissue which has large deformation and nonlinear characteristics. However, the detection results and therapeutic effect are directly influenced by the targeting accuracy of needle steering. For this reason, the needle-tissue interactive mechanism, path planning, and steering control are investigated in this review by searching literatures in the last 10 years, which results in a comprehensive overview of the existing techniques with the main accomplishments, limitations, and recommendations. Through comprehensive analyses, surgical simulation for insertion into multi-layer inhomogeneous tissue is verified as a primary and propositional aspect to be explored, which accurately predicts the nonlinear needle deflection and tissue deformation. Investigation of the path planning of flexible needles is recommended to an anatomical or a deformable environment which has characteristics of the tissue deformation. Nonholonomic modeling combined with duty-cycled spinning for needle steering, which tracks the tip position in real time and compensates for the deviation error, is recommended as a future research focus in the steering control in anatomical and deformable environments. Graphical abstract a Insertion force when the needle is inserted into soft tissue. b Needle deflection model when the needle is inserted into soft tissue [68]. c Path planning in anatomical environments [92]. d Duty-cycled spinning incorporated in nonholonomic needle steering [64].

  18. [Epidemiological characteristics and mortality risk factors in patients admitted in hospitals with soft tissue infections. A multicentric STIMG (Soft Tissue Infections Malacitan Group) study results].

    Science.gov (United States)

    Salgado Ordóñez, F; Villar Jiménez, J; Hidalgo Conde, A; Villalobos Sánchez, A; de la Torre Lima, J; Aguilar García, J; da Rocha Costa, I; García Ordóñez, M A; Nuño Alvarez, E; Ramos Cantes, C; Martín Pérez, M

    2006-07-01

    To describe the characteristics of patients admitted in hospitals with soft tissue infections, and analyse the variables whose died, in order to define risk groups. retrospective analysis of medical reports of all patient admitted during 2002 year for soft tissue infections in public malacitans hospitals. We excluded the patient with soft tissue infections associated with burns, surgery, pressure ulcers, and orbit cellulitis. We analysed clinical, biochemical variables and indications for yields and imaging tests, so the empiric antibiotic treatment established and its correlations with practice guidelines. We analysed 391 admissions of 374 patients. Cellulitis was the most frequent diagnosis (69.3%). We did imaging tests in 51.6%. In 94.3% of cases were treated with empirics antibiotics. The most prescribed drug was amoxiciline plus clavulanate (39%). 27 patients died, 40.7% of them for septic cause. All deceased patients had chronic diseases. The only biochemical parameters associated with mortality were serum proteins and albumina (55 +/- 9 g/L vs. 63 +/- 8 g/L; p = 0.0231) and (22 +/- 7 g/L vs. 29 +/- 7 g/L; p = 0.0125) respectively. Cellullitis are the most frequent soft tissue infections that requires admissions in hospitals. We overuse imaging test and don t follow the practice guidelines recommendations in antibiotic therapy. Primary soft issue infection s mortality is low and it s restricted to people with chronic illness, deep infections and bad nutritional status.

  19. Mass Spectrometric Analyses of Phosphatidylcholines in Alkali-Exposed Corneal Tissue

    Science.gov (United States)

    Crane, Ashley M.; Hua, Hong-Uyen; Coggin, Andrew D.; Gugiu, Bogdan G.; Lam, Byron L.; Bhattacharya, Sanjoy K.

    2012-01-01

    Purpose. The aims were to determine whether exposure to sodium hydroxide results in predictable changes in phosphatidylcholine (PC) in corneal tissue and if PC profile changes correlate to exposure duration. PCs are major components of the cell membrane lipid bilayer and are often involved in biological processes such as signaling. Methods. Enucleated porcine (n = 140) and cadaver human eyes (n = 20) were exposed to water (control) and 11 M NaOH. The corneas were excised and lipids were extracted using the Bligh and Dyer method with suitable modifications. Class-specific lipid identification was carried out using a ratiometric lipid standard on a TSQ Quantum Access Max mass spectrometer. Protein amounts were determined using Bradford assays. Results. Control and alkali-treated corneas showed reproducible PC spectra for both porcine and human corneas. Over 200 PCs were identified for human and porcine control and each experimental time point. Several PC species (m/z values) consequent upon alkali exposure could not be ascribed to a recorded PC species. Control and treated groups showed 41 and 29 common species among them for porcine and human corneas, respectively. The unique PC species peaked at 12 minutes and at 30 minutes for human and porcine corneas followed by a decline consistent with an interplay of alkali penetration and hydrolyses at various time points. Conclusions. Alkali exposure dramatically changes the PC profile of cornea. Our data are consistent with penetration and hydrolysis as stochastic contributors to changes in PCs due to exposure to alkali for a finite duration and amount. PMID:22956606

  20. Modelling and analysing oriented fibrous structures

    International Nuclear Information System (INIS)

    Rantala, M; Lassas, M; Siltanen, S; Sampo, J; Takalo, J; Timonen, J

    2014-01-01

    A mathematical model for fibrous structures using a direction dependent scaling law is presented. The orientation of fibrous nets (e.g. paper) is analysed with a method based on the curvelet transform. The curvelet-based orientation analysis has been tested successfully on real data from paper samples: the major directions of fibrefibre orientation can apparently be recovered. Similar results are achieved in tests on data simulated by the new model, allowing a comparison with ground truth

  1. Tylosin depletion from edible pig tissues.

    Science.gov (United States)

    Prats, C; El Korchi, G; Francesch, R; Arboix, M; Pérez, B

    2002-12-01

    The depletion of tylosin from edible pig tissues was studied following 5 days of intramuscular (i.m.) administration of 10 mg/kg of tylosin to 16 crossbreed pigs. Animals were slaughtered at intervals after treatment and samples of muscle, kidney, liver, skin+fat, and injection site were collected and analysed by high-performance liquid chromatography (HPLC). Seven days after the completion of treatment, the concentration of tylosin in kidney, skin+fat, and at the injection site was higher than the European Union maximal residue limit (MRL) of 100 microg/kg. Tylosin residues in all tissues were below the quantification limit (50 microg/kg) at 10 and 14 days post-treatment.

  2. Ex vivo culture of patient tissue & examination of gene delivery.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2012-01-31

    This video describes the use of patient tissue as an ex vivo model for the study of gene delivery. Fresh patient tissue obtained at the time of surgery is sliced and maintained in culture. The ex vivo model system allows for the physical delivery of genes into intact patient tissue and gene expression is analysed by bioluminescence imaging using the IVIS detection system. The bioluminescent detection system demonstrates rapid and accurate quantification of gene expression within individual slices without the need for tissue sacrifice. This slice tissue culture system may be used in a variety of tissue types including normal and malignant tissue and allows us to study the effects of the heterogeneous nature of intact tissue and the high degree of variability between individual patients. This model system could be used in certain situations as an alternative to animal models and as a complementary preclinical mode prior to entering clinical trial.

  3. Brown Adipose Tissue Bioenergetics: A New Methodological Approach

    Science.gov (United States)

    Calderon‐Dominguez, María; Alcalá, Martín; Sebastián, David; Zorzano, Antonio; Viana, Marta; Serra, Dolors

    2017-01-01

    The rediscovery of brown adipose tissue (BAT) in humans and its capacity to oxidize fat and dissipate energy as heat has put the spotlight on its potential as a therapeutic target in the treatment of several metabolic conditions including obesity and diabetes. To date the measurement of bioenergetics parameters has required the use of cultured cells or extracted mitochondria with the corresponding loss of information in the tissue context. Herein, we present a method to quantify mitochondrial bioenergetics directly in BAT. Based on XF Seahorse Technology, we assessed the appropriate weight of the explants, the exact concentration of each inhibitor in the reaction, and the specific incubation time to optimize bioenergetics measurements. Our results show that BAT basal oxygen consumption is mostly due to proton leak. In addition, BAT presents higher basal oxygen consumption than white adipose tissue and a positive response to b‐adrenergic stimulation. Considering the whole tissue and not just subcellular populations is a direct approach that provides a realistic view of physiological respiration. In addition, it can be adapted to analyze the effect of potential activators of thermogenesis, or to assess the use of fatty acids or glucose as a source of energy. PMID:28435771

  4. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis

    Science.gov (United States)

    Li, Meirong; Luan, Fuxin; Zhao, Yali; Hao, Haojie; Zhou, Yong; Han, Weidong

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibroses. Fibroblasts/myofibroblasts derived from epithelial cells contribute to the excessive accumulation of fibrous connective tissue in damaged tissue, which can lead to permanent scarring or organ malfunction. Therefore, EMT-related fibrosis cannot be neglected. This review highlights the findings that demonstrate the EMT to be a direct contributor to the fibroblast/myofibroblast population in the development of tissue fibrosis and helps to elucidate EMT-related anti-fibrotic strategies, which may enable the development of therapeutic interventions to suppress EMT and potentially reverse organ fibrosis. PMID:26361988

  5. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  6. Translational Research in Pediatrics IV: Solid Tissue Collection and Processing.

    Science.gov (United States)

    Gillio-Meina, Carolina; Zielke, H Ronald; Fraser, Douglas D

    2016-01-01

    Solid tissues are critical for child-health research. Specimens are commonly obtained at the time of biopsy/surgery or postmortem. Research tissues can also be obtained at the time of organ retrieval for donation or from tissue that would otherwise have been discarded. Navigating the ethics of solid tissue collection from children is challenging, and optimal handling practices are imperative to maximize tissue quality. Fresh biopsy/surgical specimens can be affected by a variety of factors, including age, gender, BMI, relative humidity, freeze/thaw steps, and tissue fixation solutions. Postmortem tissues are also vulnerable to agonal factors, body storage temperature, and postmortem intervals. Nonoptimal tissue handling practices result in nucleotide degradation, decreased protein stability, artificial posttranslational protein modifications, and altered lipid concentrations. Tissue pH and tryptophan levels are 2 methods to judge the quality of solid tissue collected for research purposes; however, the RNA integrity number, together with analyses of housekeeping genes, is the new standard. A comprehensive clinical data set accompanying all tissue samples is imperative. In this review, we examined: the ethical standards relating to solid tissue procurement from children; potential sources of solid tissues; optimal practices for solid tissue processing, handling, and storage; and reliable markers of solid tissue quality. Copyright © 2016 by the American Academy of Pediatrics.

  7. Pulsed Tm:YAG laser ablation of knee joint tissues

    Science.gov (United States)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  8. Inorganic arsenic levels in tissues and ingesta of poisoned cattle: an eight-year survey

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, R C; Funnell, H S

    1969-05-01

    During the period 1959 to 1967, arsenic analyses were performed on food, liver and kidney tissue of 21 cattle which died of inorganic arsenic poisoning. The average levels of arsenic measured were: food 35.7 ppm; liver 14.0 ppm; and kidneys 13.3 ppm. Levels as low as 1.5 to 5.0 ppm and as high as 30.0 to 38.0 ppm were found in liver and kidney tissue of some of these cattle. There was a direct relationship between arsenic levels in food and levels in liver and kidney. The relationship between kidney arsenic levels and liver levels of the metal in the same animals was not significantly different from 1:1. Individual animal data varied considerably from the group averages. Diagnosis of arsenic poisoning requires details of the past history of the animal and an account of characteristic clinical signs and lesions observed at post-mortem examination, as well as a detectable level of the metal which may be as low as 1.5 to 5.0 ppm in the liver or kidneys.

  9. Adenovirus 36 DNA in human adipose tissue.

    Science.gov (United States)

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  10. Digital tissue and what it may reveal about the brain.

    Science.gov (United States)

    Morgan, Josh L; Lichtman, Jeff W

    2017-10-30

    Imaging as a means of scientific data storage has evolved rapidly over the past century from hand drawings, to photography, to digital images. Only recently can sufficiently large datasets be acquired, stored, and processed such that tissue digitization can actually reveal more than direct observation of tissue. One field where this transformation is occurring is connectomics: the mapping of neural connections in large volumes of digitized brain tissue.

  11. Re-evaluation of a novel approach for quantitative myocardial oedema detection by analysing tissue inhomogeneity in acute myocarditis using T2-mapping.

    Science.gov (United States)

    Baeßler, Bettina; Schaarschmidt, Frank; Treutlein, Melanie; Stehning, Christian; Schnackenburg, Bernhard; Michels, Guido; Maintz, David; Bunck, Alexander C

    2017-12-01

    To re-evaluate a recently suggested approach of quantifying myocardial oedema and increased tissue inhomogeneity in myocarditis by T2-mapping. Cardiac magnetic resonance data of 99 patients with myocarditis were retrospectively analysed. Thirthy healthy volunteers served as controls. T2-mapping data were acquired at 1.5 T using a gradient-spin-echo T2-mapping sequence. T2-maps were segmented according to the 16-segments AHA-model. Segmental T2-values, segmental pixel-standard deviation (SD) and the derived parameters maxT2, maxSD and madSD were analysed and compared to the established Lake Louise criteria (LLC). A re-estimation of logistic regression models revealed that all models containing an SD-parameter were superior to any model containing global myocardial T2. Using a combined cut-off of 1.8 ms for madSD + 68 ms for maxT2 resulted in a diagnostic sensitivity of 75% and specificity of 80% and showed a similar diagnostic performance compared to LLC in receiver-operating-curve analyses. Combining madSD, maxT2 and late gadolinium enhancement (LGE) in a model resulted in a superior diagnostic performance compared to LLC (sensitivity 93%, specificity 83%). The results show that the novel T2-mapping-derived parameters exhibit an additional diagnostic value over LGE with the inherent potential to overcome the current limitations of T2-mapping. • A novel quantitative approach to myocardial oedema imaging in myocarditis was re-evaluated. • The T2-mapping-derived parameters maxT2 and madSD were compared to traditional Lake-Louise criteria. • Using maxT2 and madSD with dedicated cut-offs performs similarly to Lake-Louise criteria. • Adding maxT2 and madSD to LGE results in further increased diagnostic performance. • This novel approach has the potential to overcome the limitations of T2-mapping.

  12. Design and implementation of an automatic acquisition card with direct memory incrementing intended for a multichannel analyser

    International Nuclear Information System (INIS)

    Al-Ani, Tarik Hesen

    1984-01-01

    This study presents a contribution to the implementation of a multichannel analyser, based on recent technology in order to give elaborated results to the user. This instrument will be designed using modular cards compatible with an Intel, Multi-bus System. The main purpose of this thesis consists in the study and design of the logical card establishing automatically an histogram in the memory of a micro-computer (Direct Memory Increment or DMI). This card allows the connection of up to four analog to digital converters and does the incrementing of the data in memory at the address delivered by an analog to digital Wilkinson type converter (400 MHz) designed at CEA. It allows: - 4 independent inputs working simultaneously with an average input rate of 87500 events/second for 16000 channels of 2 32 bits and with a time resolution of 1 μs; - 3 acquisition modes: histogram, multi-scaling and list; - calculation of the real and live times independently for the 4 inputs. In addition, this card provides the interfacing capability for a line printer, a sample driver and a 'mouse'. (author) [fr

  13. 226Ra concentrations in crayfish tissues, water, and sediments from the Serpent River Basin in Northeastern Ontario, Canada

    International Nuclear Information System (INIS)

    Alikhan, M.A.

    1996-01-01

    Lower Serpent River, as well as Elliot, McCarthy and McCabe lakes had highest 226 Ra contamination, Chrisman, Quirke and Whiskey lakes a moderate one, Flack and Semiwhite lakes and the 'distant' control, Lake Wanapitei, the lowest. 226 Ra activity in Cambarus robustus tissues was directly related to their background levels. Thus, concentration coefficient (tissue/sediment concentrations) for 226 Ra ranged from 0.53 to 0.74 in highly contaminated Elliot and McCarthy lakes, 0.28 to 0.59 in moderately contaminated Quirke and Whiskey lakes, and from 0.27 to 3.44 in least contaminated Semiwhite and Flack lakes. Among various organs analysed, exoskeleton showed the highest (43.04 - 90.69%) and the tail muscles the lowest (2.95 -17.14%) 226 Ra activity. 226 Ra concentrations in the alimentary canal were considered a part of the ambient environment as they had not been absorbed

  14. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production.

    Science.gov (United States)

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi; Wong, Limsoon; Chua, Nam-Hai; Jang, In-Cheol

    2015-12-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Tissue reaction surrounding miniscrews for orthodontic anchorage: An animal experiment

    Directory of Open Access Journals (Sweden)

    Stephanie Shih-Hsuan Chen

    2012-03-01

    Results and conclusions: (1 Tissue surrounding roots damaged by a miniscrew showed a significant inflammatory response. (2 Root resorption was occasionally observed after 3 weeks following insertion of a miniscrew even if the miniscrew was not in direct contact with the root. (3 Root repair was noted with a cementoblast lining along the resorption surface at as early as 3 weeks after miniscrew insertion. Alveolar bone filled in the lesion when the root damage was large so that the contour of the alveolar bone followed that of the damaged root, with the width of the periodontal ligament space being maintained. (4 Stable miniscrews were mainly those which did not contact adjacent roots, and for which the surrounding tissue showed only a small inflammatory response with some extent of direct bone contact around the miniscrew. On the contrary, most of the failed miniscrews were those which had direct contact with adjacent roots, and which exhibited severe tissue inflammation and were covered by thick layers of soft tissue. Failure was detected 3 weeks after insertion. Surprisingly, the epithelial lining surrounding the miniscrews might not have spontaneously resolved 6 weeks after screw removal. Persistent infection in the sinus tract was noted, and this would require attention.

  16. Antigenic analyses of tissues and excretory and secretory products from Strongylus vulgaris.

    Science.gov (United States)

    Wynne, E; Slocombe, J O; Wilkie, B N

    1981-07-01

    Rabbit antisera were prepared against veronal buffered saline extracts of L4 and L5 Strongylus vulgaris, adult S. vulgaris and adult Strongylus equinus retrieved from naturally infected horses. In agar gel diffusion with these antisera, adult S vulgaris and S. equinus each appeared to have at least one unique antigen; larval S. vulgaris appeared to have two species-specific and two stage-specific antigens. There were several common antigens. Excretory and secretory products were collected also from L4 and L5 an maintained over several days in tissue culture fluid. In agar gel diffusion against the above rabbit antisera, a stage-specific antigen was found also in excretory and secretory products. In addition, excretory and secretory products had three antigens in common with adult and larval S. vulgaris, but only one of these was common to adult S. equinus. The excretory and secretory products appear, therefore, to have two species-specific and one stage-specific antigens.

  17. Bladder tissue engineering through nanotechnology.

    Science.gov (United States)

    Harrington, Daniel A; Sharma, Arun K; Erickson, Bradley A; Cheng, Earl Y

    2008-08-01

    The field of tissue engineering has developed in phases: initially researchers searched for "inert" biomaterials to act solely as replacement structures in the body. Then, they explored biodegradable scaffolds--both naturally derived and synthetic--for the temporary support of growing tissues. Now, a third phase of tissue engineering has developed, through the subcategory of "regenerative medicine." This renewed focus toward control over tissue morphology and cell phenotype requires proportional advances in scaffold design. Discoveries in nanotechnology have driven both our understanding of cell-substrate interactions, and our ability to influence them. By operating at the size regime of proteins themselves, nanotechnology gives us the opportunity to directly speak the language of cells, through reliable, repeatable creation of nanoscale features. Understanding the synthesis of nanoscale materials, via "top-down" and "bottom-up" strategies, allows researchers to assess the capabilities and limits inherent in both techniques. Urology research as a whole, and bladder regeneration in particular, are well-positioned to benefit from such advances, since our present technology has yet to reach the end goal of functional bladder restoration. In this article, we discuss the current applications of nanoscale materials to bladder tissue engineering, and encourage researchers to explore these interdisciplinary technologies now, or risk playing catch-up in the future.

  18. Does climate directly influence NPP globally?

    Science.gov (United States)

    Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren

    2016-01-01

    The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale. © 2015 John Wiley & Sons Ltd.

  19. Assessing the Functional Limitations of Lipids and Fatty Acids for Diet Determination: The Importance of Tissue Type, Quantity, and Quality

    Directory of Open Access Journals (Sweden)

    Lauren Meyer

    2017-11-01

    Full Text Available Lipid and fatty acid (FA analysis is commonly used to describe the trophic ecology of an increasing number of taxa. However, the applicability of these analyses is contingent upon the collection and storage of sufficient high quality tissue, the limitations of which are previously unexplored in elasmobranchs. Using samples from 110 white sharks, Carcharodon carcharias, collected throughout Australia, we investigated the importance of tissue type, sample quantity, and quality for reliable lipid class and FA analysis. We determined that muscle and sub-dermal tissue contain distinct lipid class and FA profiles, and were not directly comparable. Muscle samples as small as 12 mg dry weight (49 mg wet weight, provided reliable and consistent FA profiles, while sub-dermal tissue samples of 40 mg dry weight (186 mg wet weight or greater were required to yield consistent profiles. This validates the suitability of minimally invasive sampling methods such as punch biopsies. The integrity of FA profiles in muscle was compromised after 24 h at ambient temperature (~20°C, making these degraded samples unreliable for accurate determination of dietary sources, yet sub-dermal tissue retained stable FA profiles under the same conditions, suggesting it may be a more robust tissue for trophic ecology work with potentially degraded samples. However, muscle samples archived for up to 16 years in −20°C retain their FA profiles, highlighting that tissue from museum or private collections can yield valid insights into the trophic ecology of marine elasmobranchs.

  20. Analyses of the eustachian tube and its surrounding tissues with cross sectional images by high-resolution computed tomography (HR-CT)

    International Nuclear Information System (INIS)

    Yoshida, Haruo; Kobayashi, Toshimitsu; Takasaki, Kenji; Kanda, Yukihiko; Nakao, Yoshiaki; Morikawa, Minoru; Ishimaru, Hideki; Hayashi, Kuniaki

    2000-01-01

    We attempted to image the eustachian tube (ET) and its surrounding tissues by high-resolution computed tomography (HR-CT). Twenty-two normal subjects (44 ears) without middle ear problems were studied, and a patient with severe patulous ET was also studied as an abnormal case. In our device of multiplanar reconstruction technique, we were able to obtain the clear reconstructed images of the ET lumen as well as of its surrounding tissues (bone, ET cartilage, tensor veli palatini muscle, levator veli palatini muscle, Ostmann's fat tissue, tensor tympani muscle, internal carotid artery) at any desired portion, either parallel or perpendicular to the long axis of the ET. However, the exact borders between the ET cartilage and the muscles, Ostmann's fat tissue and the tubal gland were not clearly identified. In the severe case of patulous ET, the ET lumen was widely opened at each cross-sectional image from the pharyngeal orifice to the tympanic orifice, in contrast with its being closed at the cartilaginous portion in the normal cases. In addition, the fat tissue and glands around the ET lumen were not clearly identified in this case. We suggest that this method will lead to better understanding of the ET-related diseases such as patulous ET. (author)

  1. Analyses of the eustachian tube and its surrounding tissues with cross sectional images by high-resolution computed tomography (HR-CT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Haruo; Kobayashi, Toshimitsu; Takasaki, Kenji; Kanda, Yukihiko; Nakao, Yoshiaki; Morikawa, Minoru; Ishimaru, Hideki; Hayashi, Kuniaki [Nagasaki Univ. (Japan). School of Medicine

    2000-07-01

    We attempted to image the eustachian tube (ET) and its surrounding tissues by high-resolution computed tomography (HR-CT). Twenty-two normal subjects (44 ears) without middle ear problems were studied, and a patient with severe patulous ET was also studied as an abnormal case. In our device of multiplanar reconstruction technique, we were able to obtain the clear reconstructed images of the ET lumen as well as of its surrounding tissues (bone, ET cartilage, tensor veli palatini muscle, levator veli palatini muscle, Ostmann's fat tissue, tensor tympani muscle, internal carotid artery) at any desired portion, either parallel or perpendicular to the long axis of the ET. However, the exact borders between the ET cartilage and the muscles, Ostmann's fat tissue and the tubal gland were not clearly identified. In the severe case of patulous ET, the ET lumen was widely opened at each cross-sectional image from the pharyngeal orifice to the tympanic orifice, in contrast with its being closed at the cartilaginous portion in the normal cases. In addition, the fat tissue and glands around the ET lumen were not clearly identified in this case. We suggest that this method will lead to better understanding of the ET-related diseases such as patulous ET. (author)

  2. Detection and quantitation analysis of cocaine and metabolites in fixed liver tissue and formalin solutions.

    Science.gov (United States)

    Cingolani, Mariano; Cippitelli, Marcello; Froldi, Rino; Gambaro, Veniero; Tassoni, Giovanna

    2004-01-01

    This study reports the results of the detection and quantitation of cocaine and its metabolites in liver tissues fixed in formalin and in the formalin solutions in which the same tissues were fixed. Toxicological analyses were performed on formalin-fixed liver samples from four cases of death of cocaine abusers and on formalin solutions (10% buffered, pH 7) in which the samples were preserved. Analyses carried out at the time of autopsy on body fluids and tissues allowed identification of cocaine and the metabolite benzoylecgonine. Liver tissue samples were preserved in formalin solutions for four weeks before analysis. Results only showed the presence of benzoylecgonine in the studied materials. The mean levels of recovery of benzoylecgonine in fixed tissues were 12.31% in liver and 84.47% in formalin from liver. Results indicated that benzoylecgonine has good stability, even in biological specimens subjected to chemical fixation.

  3. The complementarity of the technical tools of tissue engineering and the concepts of artificial organs for the design of functional bioartificial tissues.

    Science.gov (United States)

    Lenas, Petros; Moreno, Angel; Ikonomou, Laertis; Mayer, Joerg; Honda, Hiroyuki; Novellino, Antonio; Pizarro, Camilo; Nicodemou-Lena, Eleni; Rodergas, Silvia; Pintor, Jesus

    2008-09-01

    Although tissue engineering uses powerful biological tools, it still has a weak conceptual foundation, which is restricted at the cell level. The design criteria at the cell level are not directly related with the tissue functions, and consequently, such functions cannot be implemented in bioartificial tissues with the currently used methods. On the contrary, the field of artificial organs focuses on the function of the artificial organs that are treated in the design as integral entities, instead of the optimization of the artificial organ components. The field of artificial organs has already developed and tested methodologies that are based on system concepts and mathematical-computational methods that connect the component properties with the desired global organ function. Such methodologies are needed in tissue engineering for the design of bioartificial tissues with tissue functions. Under the framework of biomedical engineering, artificial organs and tissue engineering do not present competitive approaches, but are rather complementary and should therefore design a common future for the benefit of patients.

  4. Assessment of the influence of different sample processing and cold storage duration on plant free proline content analyses.

    Science.gov (United States)

    Teklić, Tihana; Spoljarević, Marija; Stanisavljević, Aleksandar; Lisjak, Miroslav; Vinković, Tomislav; Parađiković, Nada; Andrić, Luka; Hancock, John T

    2010-01-01

    A method which is widely accepted for the analysis of free proline content in plant tissues is based on the use of 3% sulfosalicylic acid as an extractant, followed by spectrophotometric quantification of a proline-ninhydrin complex in toluene. However, sample preparation and storage may influence the proline actually measured. This may give misleading or difficult to compare data. To evaluate free proline levels fresh and frozen strawberry (Fragaria × ananassa Duch.) leaves and soybean [Glycine max (L.) Merr.] hypocotyl tissues were used. These were ground with or without liquid nitrogen and proline extracted with sulfosalicylic acid. A particular focus was the influence of plant sample cold storage duration (1, 4 and 12 weeks at -20°C) on tissue proline levels measured. The free proline content analyses, carried out in leaves of Fragaria × ananassa Duch. as well as in hypocotyls of Glycine max (L.) Merr., showed a significant influence of the sample preparation method and cold storage period. Long-term storage of up to 12 weeks at -20°C led to a significant increase in the measured proline in all samples analysed. The observed changes in proline content in plant tissue samples stored at -20°C indicate the likelihood of the over-estimation of the proline content if the proline analyses are delayed. Plant sample processing and cold storage duration seem to have an important influence on results of proline analyses. Therefore it is recommended that samples should be ground fresh and analysed immediately. Copyright © 2010 John Wiley & Sons, Ltd.

  5. The necessity of a theory of biology for tissue engineering: metabolism-repair systems.

    Science.gov (United States)

    Ganguli, Suman; Hunt, C Anthony

    2004-01-01

    Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.

  6. Methadone Recycling Sustains Drug Reservoir in Tissue.

    Science.gov (United States)

    Linares, Oscar A; Fudin, Jeffrey; Daly, Annemarie; Schiesser, William E; Boston, Raymond C

    2015-09-01

    We hypothesize that there is a tissue store of methadone content in humans that is not directly accessible, but is quantifiable. Further, we hypothesize the mechanism by which methadone content is sustained in tissue stores involves methadone uptake, storage, and release from tissue depots in the body (recycling). Accordingly, we hypothesize that such tissue stores, in part, determine plasma methadone levels. We studied a random sample of six opioid-naïve healthy subjects. We performed a clinical trial simulation in silico using pharmacokinetic modeling. We found a large tissue store of methadone content whose size was much larger than methadone's size in plasma in response to a single oral dose of methadone 10 mg. The tissue store measured 13-17 mg. This finding could only be explained by the contemporaneous storage of methadone in tissue with dose recycling. We found that methadone recycles 2-5 times through an inaccessible extravascular compartment (IAC), from an accessible plasma-containing compartment (AC), before exiting irreversibly. We estimate the rate of accumulation (or storage) of methadone in tissue was 0.029-7.29 mg/h. We predict 39 ± 13% to 83 ± 6% of methadone's tissue stores "spillover" into the circulation. Our results indicate that there exists a large quantifiable tissue store of methadone in humans. Our results support the notion that methadone in humans undergoes tissue uptake, storage, release into the circulation, reuptake from the circulation, and re-release into the circulation, and that spillover of methadone from tissue stores, in part, maintain plasma methadone levels in humans.

  7. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  8. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  9. Comparison with Russian analyses of meteor impact

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1997-06-01

    The inversion model for meteor impacts is used to discuss Russian analyses and compare principal results. For common input parameters, the models produce consistent estimates of impactor parameters. Directions for future research are discussed and prioritized.

  10. Damage Models for Soft Tissues: A Survey.

    Science.gov (United States)

    Li, Wenguang

    Damage to soft tissues in the human body has been investigated for applications in healthcare, sports, and biomedical engineering. This paper reviews and classifies damage models for soft tissues to summarize achievements, identify new directions, and facilitate finite element analysis. The main ideas of damage modeling methods are illustrated and interpreted. A few key issues related to damage models, such as experimental data curve-fitting, computational effort, connection between damage and fractures/cracks, damage model applications, and fracture/crack extension simulation, are discussed. Several new challenges in the field are identified and outlined. This review can be useful for developing more advanced damage models and extending damage modeling methods to a variety of soft tissues.

  11. Resonance sensor measurements of stiffness variations in prostate tissue in vitro--a weighted tissue proportion model.

    Science.gov (United States)

    Jalkanen, Ville; Andersson, Britt M; Bergh, Anders; Ljungberg, Börje; Lindahl, Olof A

    2006-12-01

    Prostate cancer is the most common type of cancer in men in Europe and the US. The methods to detect prostate cancer are still precarious and new techniques are needed. A piezoelectric transducer element in a feedback system is set to vibrate with its resonance frequency. When the sensor element contacts an object a change in the resonance frequency is observed, and this feature has been utilized in sensor systems to describe physical properties of different objects. For medical applications it has been used to measure stiffness variations due to various patho-physiological conditions. In this study the sensor's ability to measure the stiffness of prostate tissue, from two excised prostatectomy specimens in vitro, was analysed. The specimens were also subjected to morphometric measurements, and the sensor parameter was compared with the morphology of the tissue with linear regression. In the probe impression interval 0.5-1.7 mm, the maximum R(2) > or = 0.60 (p sensor was pressed, the greater, i.e., deeper, volume it sensed. Tissue sections deeper in the tissue were assigned a lower mathematical weighting than sections closer to the sensor probe. It is concluded that cancer increases the measured stiffness as compared with healthy glandular tissue, but areas with predominantly stroma or many stones could be more difficult to differ from cancer.

  12. Immunological methods for the detection and determination of connective tissue proteoglycans

    DEFF Research Database (Denmark)

    Caterson, B; Baker, J R; Christner, J E

    1982-01-01

    In this paper we report the use of immunological methods for specifically detecting and determining proteoglycan in cartilage and other connective tissues. Antibodies (polyclonal and monoclonal) have been raised against specific components of cartilage proteoglycan aggregates (i.e., proteoglycan...... surrounding invaginating hair follicles. These immunological procedures are currently being used to complement conventional biochemical analyses of proteoglycans found in different connective tissue matrices....

  13. Application of the linear-quadratic model with incomplete repair to radionuclide directed therapy

    International Nuclear Information System (INIS)

    Millar, W.T.; Glasgow Univ.

    1991-01-01

    The LQ model has now been extended to include a general time varying dose rate profile, and the equations can be readily evaluated if an exponential radiation damage repair process is assumed. These equations are applicable to radionuclide directed therapy, including brachytherapy. Kinetic uptake data obtained during radionuclide directed therapy may therefore be used to determine the radiobiological dosimetry of the target and non-target tissues. Also, preliminary tracer studies may be used to pre-plan the radionuclide directed therapy, provided that tracer and therapeutic amounts of the radionuclide carrier are identically processed by the tissues. It is also shown that continuous radionuclide therapy will induce less damage in late-responding tissues than 2 Gy/fraction external beam therapy if the ratio of the maximum dose rate and the sublethal damage repair half-life in the tissue is less than 1.0 Gy. Similar inequalities may be derived for β-particle radionuclide directed therapy. (author)

  14. CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong; Brace, Christopher L., E-mail: clbrace@wisc.edu [Departments of Radiology and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53705 (United States)

    2014-11-01

    Purpose: To analyze the spatial distribution and temporal development of liver tissue contraction during high-temperature ablation by using intraprocedural computed tomography (CT) imaging. Methods: A total of 46 aluminum fiducial markers were positioned in a 60 × 45 mm grid, in a single plane, around a microwave ablation antenna in each of six ex vivo bovine liver samples. Ablations were performed for 10 min at 100 W. CT data of the liver sample were acquired every 30 s during ablation. Fiducial motion between acquisitions was tracked in postprocessing and used to calculate measures of tissue contraction and contraction rates. The spatial distribution and temporal evolution of contraction were analyzed. Results: Fiducial displacement indicated that the zone measured postablation was 8.2 ± 1.8 mm (∼20%) smaller in the radial direction and 7.1 ± 1.0 mm (∼10%) shorter in the longitudinal direction than the preablation tissue dimension. Therefore, the total ablation volume was reduced from its preablation value by approximately 45%. Very little longitudinal contraction was noted in the distal portion of the ablation zone. Central tissues contracted more than 60%, which was near an estimated limit of ∼70% based on initial water content. More peripheral tissues contracted only 15% in any direction. Contraction rates peaked during the first 60 s of heating with a roughly exponential decay over time. Conclusions: Ablation zones measured posttreatment are significantly smaller than the pretreatment tissue dimensions. Tissue contraction is spatially dependent, with the greatest effect occurring in the central ablation zone. Contraction rate peaks early and decays over time.

  15. In vitro determination of inorganic constituents in bone tissues using neutron activation analysis

    International Nuclear Information System (INIS)

    Takata, Marcelo Kazuo

    2003-01-01

    In the past years, there has been an increasing interest in bone analyses since they are deposits of essential and toxic elements. Besides they have supporting function of human body and protect vital organs. Besides, analyses of inorganic constituents in bones have been carried out to study bone diseases such as osteoporosis and tumors in bones. In this work, an adequate experimental procedure was established for bone tissue treatment, and instrumental neutron activation analysis was applied to trace element determinations in freeze-dried cortical and trabecular tissues and whole bone ash from animal (porcine and bovine) and human ribs. Using short and long-period irradiations at the IEA-R1 nuclear research reactor, the elements Ba, Br, Ca, Cl, Fe, K, Mg, Mn, Na, P, Rb, Sb, Sr and Zn were determined in bone tissues. To validate the analytical methodology, biological certified reference materials were analyzed and their results showed good precision and accuracy. Besides analyses of a bovine rib bone presented precise data for most elements with relative standard deviations lower than 14 %. This result demonstrated that the procedure defined for bone tissue treatment was appropriate to obtain homogeneous samples. However, the calcination was not suitable for whole bone treatment due to loss of Br and Cl. Statistical t test was applied to compare the results obtained for different tissues of bone and also the results found for ribs of two animal species. Comparisons between the results obtained for correspondent tissues of porcine and bovine ribs present different element concentration. Moreover, cortical and trabecular tissues of humans presented different concentrations for all the elements analyzed in this work. These findings indicate that trace elements in bone samples have to be separately studied. (author)

  16. Piezoelectric materials for tissue regeneration: A review.

    Science.gov (United States)

    Rajabi, Amir Hossein; Jaffe, Michael; Arinzeh, Treena Livingston

    2015-09-01

    The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues raised the question whether or not electric fields play an important role in cell function. It has kindled research and the development of technologies in emulating biological electricity for tissue regeneration. Promising effects of electrical stimulation on cell growth and differentiation and tissue growth has led to interest in using piezoelectric scaffolds for tissue repair. Piezoelectric materials can generate electrical activity when deformed. Hence, an external source to apply electrical stimulation or implantation of electrodes is not needed. Various piezoelectric materials have been employed for different tissue repair applications, particularly in bone repair, where charges induced by mechanical stress can enhance bone formation; and in neural tissue engineering, in which electric pulses can stimulate neurite directional outgrowth to fill gaps in nervous tissue injuries. In this review, a summary of piezoelectricity in different biological tissues, mechanisms through which electrical stimulation may affect cellular response, and recent advances in the fabrication and application of piezoelectric scaffolds will be discussed. The discovery of piezoelectricity, endogenous electric fields and transmembrane potentials in biological tissues has kindled research and the development of technologies using electrical stimulation for tissue regeneration. Piezoelectric materials generate electrical activity in response to deformations and allow for the delivery of an electrical stimulus without the need for an external power source. As a scaffold for tissue engineering, growing interest exists due to its potential of providing electrical stimulation to cells to promote tissue formation. In this review, we cover the discovery of piezoelectricity in biological tissues, its connection to streaming potentials, biological response to electrical stimulation and

  17. Direct analysis and stability of methylated trivalent arsenic metabolites in cells and tissues

    Czech Academy of Sciences Publication Activity Database

    Currier, J. M.; Svoboda, Milan; Matoušek, Tomáš; Dědina, Jiří; Stýblo, M.

    2011-01-01

    Roč. 3, č. 12 (2011), s. 1347-1354 ISSN 1756-5901 R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501 Keywords : arsenic speciation * tissue * hydride generation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.902, year: 2011

  18. Adipose tissue extracts plasma ammonia after sprint exercise in women and men

    DEFF Research Database (Denmark)

    Esbjörnsson, Mona; Bülow, Jens; Norman, Barbara

    2006-01-01

    This study evaluates a possible contribution of adipose tissue to the elimination of plasma ammonia (NH(3)) after high-intensity sprint exercise. In 14 healthy men and women, repeated blood samples for plasma NH(3) analyses were obtained from brachial artery and from a subcutaneous abdominal vein......) with glutamate resulting in its conversion to glutamine. Adipose tissue may thus play an important physiological role in eliminating plasma NH(3) and thereby reducing the risk of NH(3) intoxication after high-intensity exercise.......This study evaluates a possible contribution of adipose tissue to the elimination of plasma ammonia (NH(3)) after high-intensity sprint exercise. In 14 healthy men and women, repeated blood samples for plasma NH(3) analyses were obtained from brachial artery and from a subcutaneous abdominal vein...... before and after three repeated 30-s cycle sprints separated by 20 min of recovery. Biopsies from subcutaneous abdominal adipose tissue were obtained and analyzed for glutamine and glutamate content. After exercise, both arterial and abdominal venous plasma NH(3) concentrations were lower in women than...

  19. Discarded human fetal tissue and cell cultures for transplantation research

    International Nuclear Information System (INIS)

    Hay, R.J.; Phillips, T.; Thompson, A.; Vilner, L.; Cleland, M.; Tchaw-ren Chen; Zabrenetzky, V.

    1999-01-01

    A feasibility study has been performed to explore the utility of various tissues from discarded human abortuses for transplantation and related research. Specifically, aborted fetuses plus parental blood samples and all relevant clinical data were obtained through a local hospital complex. Whenever possible, pancreas, skin and skeletal muscle, heart, liver, kidney, cartilage and lung tissues were removed, dissociated and subfractionated for cryopreservation, characterization and cultivation trials in vitro. Existing protocols for these manipulations were compared and improved upon as required. Clonal culture, cell aggregate maintenance techniques and use of feeder cell populations have been utilized where appropriate to develop quantitative comparative data. Histological and biochemical assays were applied both to evaluate separation/cultivation methods and to identify optimal culture conditions for maintaining functional cells. Immunochemical and molecular biological procedures were applied to study expression of Major Histocompatibility Vomplex (MHC) class 1 and 11 molecules on cell lines derived. Tissue and cell culture populations were examined for infections with bacteria, ftingi, mycoplasma, HIV, CMV, hepatitis B and other viruses. Only 1% of the abortuses tested were virally infected. Cytogenetic analyses confin-ned the normal diploid status in the vast majority (>98%) of lines tested. A total of over 250 abortuses have been obtained and processed. Only 25 were found to be contaminated with bacteria or fungi and unsuitable for further cultivation trials. A total of over 200 cell populations were isolated, characterized and cryopreserved for further study. Included were kidney, lung, liver and epidermal epithelia: cartilage-derived cells from the spine and epiphyses plus myogenic myoblasts. Selected lines have been immortalized using HPV I 6E6/E7 sequences. Epithelia from the liver and pancreas and cardiac myocytes were the most problematic in that initial

  20. A thermal monitoring sheet with low influence from adjacent waterbolus for tissue surface thermometry during clinical hyperthermia.

    Science.gov (United States)

    Arunachalam, Kavitha; Maccarini, Paolo F; Stauffer, Paul R

    2008-10-01

    This paper presents a complete thermal analysis of a novel conformal surface thermometer design with directional sensitivity for real-time temperature monitoring during hyperthermia treatments of large superficial cancer. The thermal monitoring sheet (TMS) discussed in this paper consists of a 2-D array of fiberoptic sensors embedded between two layers of flexible, low-loss, and thermally conductive printed circuit board (PCB) film. Heat transfer across all interfaces from the tissue surface through multiple layers of insulating dielectrics surrounding the small buried temperature sensor and into an adjacent temperature-regulated water coupling bolus was studied using 3-D thermal simulation software. Theoretical analyses were carried out to identify the most effective differential TMS probe configuration possible with commercially available flexible PCB materials and to compare their thermal responses with omnidirectional probes commonly used in clinical hyperthermia. A TMS sensor design that employs 0.0508-mm Kapton MTB and 0.2032-mm Kapton HN flexible polyimide films is proposed for tissue surface thermometry with low influence from the adjacent waterbolus. Comparison of the thermal simulations with clinical probes indicates the new differential TMS probe design to outperform in terms of both transient response and steady-state accuracy in selectively reading the tissue surface temperature, while decreasing the overall thermal barrier of the probe between the coupling waterbolus and tissue surface.

  1. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    Science.gov (United States)

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production1

    Science.gov (United States)

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi

    2015-01-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. PMID:26438788

  3. REE compositions in fossil vertebrate dental tissues indicate biomineral preservation

    Science.gov (United States)

    Žigaite, Ž.; Kear, B.; Pérez-Huerta, A.; Jeffries, T.; Blom, H.

    2012-04-01

    Rare earth element (REE) abundances have been measured in a number of Palaeozoic and Mesozoic dental tissues using Laser Ablation Inductively Coupled Plasma Mass-spectrometry (LA-ICP-MS). Fossil vertebrates analysed comprise scales and tesserae of Silurian and Devonian acanthodians, chondrichthyans, galeaspids, mongolepids, thelodonts, as well as teeth of Cretaceous lungfish and marine reptiles. The evaluation of fossil preservation level has been made by semi-quantitative spot geochemistry analyses on fine polished teeth and scale thin sections, using Energy Dispersive X-ray Spectroscopy (EDS). Fossil teeth and scales with significant structure and colour alteration have shown elevated heavy element concentrations, and the silicification of bioapatite has been common in their tissues. Stable oxygen isotope measurements (δ18O) of bulk biomineral have been conducted in parallel, and showed comparatively lower heavy oxygen values in the same fossil tissues with stronger visible alteration. Significant difference in REE concentrations has been observed between the dentine and enamel of Cretaceous plesiosaurs, suggesting the enamel to be more geochemically resistant to diagenetic overprint.

  4. A family of hyperelastic models for human brain tissue

    Science.gov (United States)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  5. Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit.

    Science.gov (United States)

    Liao, Hui-Ling; Burns, Jacqueline K

    2012-05-01

    Distribution of viable Candidatus Liberibacter asiaticus (CaLas) in sweet orange fruit and leaves ('Hamlin' and 'Valencia') and transcriptomic changes associated with huanglongbing (HLB) infection in fruit tissues are reported. Viable CaLas was present in most fruit tissues tested in HLB trees, with the highest titre detected in vascular tissue near the calyx abscission zone. Transcriptomic changes associated with HLB infection were analysed in flavedo (FF), vascular tissue (VT), and juice vesicles (JV) from symptomatic (SY), asymptomatic (AS), and healthy (H) fruit. In SY 'Hamlin', HLB altered the expression of more genes in FF and VT than in JV, whereas in SY 'Valencia', the number of genes whose expression was changed by HLB was similar in these tissues. The expression of more genes was altered in SY 'Valencia' JV than in SY 'Hamlin' JV. More genes were also affected in AS 'Valencia' FF and VT than in AS 'Valencia' JV. Most genes whose expression was changed by HLB were classified as transporters or involved in carbohydrate metabolism. Physiological characteristics of HLB-infected and girdled fruit were compared to differentiate between HLB-specific and carbohydrate metabolism-related symptoms. SY and girdled fruit were smaller than H and ungirdled fruit, respectively, with poor juice quality. However, girdling did not cause misshapen fruit or differential peel coloration. Quantitative PCR analysis indicated that many selected genes changed their expression significantly in SY flavedo but not in girdled flavedo. Mechanisms regulating development of HLB symptoms may lie in the host disease response rather than being a direct consequence of carbohydrate starvation.

  6. Extracellular matrix hydrogels from decellularized tissues: Structure and function.

    Science.gov (United States)

    Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F

    2017-02-01

    Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. European quality system for tissue banking.

    Science.gov (United States)

    Manyalich, M; Navarro, A; Koller, J; Loty, B; de Guerra, A; Cornu, O; Vabels, G; Fornasari, P M; Costa, A N; Siska, I; Hirn, M; Franz, N; Miranda, B; Kaminski, A; Uhrynowska, I; Van Baare, J; Trias, E; Fernández, C; de By, T; Poniatowski, S; Carbonell, R

    2009-01-01

    The aims of this project were to analyze the factors that influence quality and safety of tissues for transplantation and to develop the method to ensure standards of quality and safety in relation to tissue banking as demanded by European Directive 2004/23/EC and its technical annexes. It is organized in 4 Working Groups, the objectives of each one being focused in a specific area. The Guide of Recommendations for Tissue Banking is structured into 4 parts: (1) quality systems that apply to tissue banking and general quality system requirements, (2) regulatory framework in Europe, (3) standards available, and (4) recommendations of the fundamental quality and safety keypoints. This Working Group handled design of a multinational musculoskeletal tissue registry prototype. This Working Group handled design and validation of a specialized training model structured into online and face-to-face courses. The model was improved with suggestions from students, and 100% certification was obtained. The Guide for Auditing Tissue Establishments provides guidance for auditors, a self-assessment questionnaire, and an audit report form. The effectiveness and sustainability of the outputs were assessed. Both guides are useful for experienced tissue establishments and auditors and also for professionals that are starting in the field. The registry prototype proves it is possible to exchange tissues between establishments throughout Europe. The training model has been effective in educating staff and means having professionals with excellent expertise. Member states could adapt/adopt it. The guides should be updated periodically and perhaps a European organization should take responsibility for this and even create a body of auditors.

  8. 3D printing facilitated scaffold-free tissue unit fabrication

    International Nuclear Information System (INIS)

    Tan, Yu; Richards, Dylan J; Mei, Ying; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Kindy, Mark S

    2014-01-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell–cell adhesion, tissue formation and maturation. (paper)

  9. Trace element load in cancer and normal lung tissue

    International Nuclear Information System (INIS)

    Kubala-Kukus, A.; Braziewicz, J.; Banas, D.; Majewska, U.; Gozdz, S.; Urbaniak, A.

    1999-01-01

    Samples of malignant and benign human lung tissues were analysed by two complementary methods, i.e., particle induced X-ray emission (PIXE) and total reflection X-ray fluorescence (TRXRF). The concentration of trace elements of P, S, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Se, Sr, Hg and Pb was determined in squamous cancer of lung tissue from 65 people and in the benign lung tumour tissue from 5 people. Several elements shows enhancement in cancerous lung tissue of women in comparison to men, i.e., titanium show maximum enhancement by 48% followed by Cr (20%) and Mn (36%). At the same time trace element concentration of Sr and Pb are declaimed by 30% and 20% in women population. Physical basis of used analytical methods, experimental set-up and the procedure of sample preparation are described

  10. Heavy metal residues in tissues of marine turtles

    International Nuclear Information System (INIS)

    Storelli, M.M.; Marcotrigiano, G.O.

    2003-01-01

    Heavy metal concentrations in the tissues of marine turtles are presented. The most frequently monitored elements are mercury, cadmium and lead; and the tissues mainly analysed in nearly all the stranded individuals are muscle, liver and kidney. The highest mercury and cadmium levels were found in liver and kidney respectively; the majority of the lead burden existed in bones and carapace, while arsenic was present mainly in muscle tissue. Mercury occurred quite completely as methylmercury in muscle, whereas in liver the main form was the inorganic one. Arsenic was exclusively present in the metallorganic form either in muscle tissue or in liver. Metals in the eggs were mainly present in the yolk. Significantly higher concentration of mercury, copper, zinc and iron were found in yolk than albumen, while shell contained highest levels of manganese and copper. The load of trace metals in these animals strictly correlated with the species seems to depend on their different food behaviour

  11. Heavy metal residues in tissues of marine turtles

    Energy Technology Data Exchange (ETDEWEB)

    Storelli, M.M.; Marcotrigiano, G.O

    2003-04-01

    Heavy metal concentrations in the tissues of marine turtles are presented. The most frequently monitored elements are mercury, cadmium and lead; and the tissues mainly analysed in nearly all the stranded individuals are muscle, liver and kidney. The highest mercury and cadmium levels were found in liver and kidney respectively; the majority of the lead burden existed in bones and carapace, while arsenic was present mainly in muscle tissue. Mercury occurred quite completely as methylmercury in muscle, whereas in liver the main form was the inorganic one. Arsenic was exclusively present in the metallorganic form either in muscle tissue or in liver. Metals in the eggs were mainly present in the yolk. Significantly higher concentration of mercury, copper, zinc and iron were found in yolk than albumen, while shell contained highest levels of manganese and copper. The load of trace metals in these animals strictly correlated with the species seems to depend on their different food behaviour.

  12. Transcriptional Analyses of Barrett's Metaplasia and Normal Upper GI Mucosae

    Directory of Open Access Journals (Sweden)

    Michael T. Barrett

    2002-01-01

    Full Text Available Over the last two decades, the incidence of esophageal adenocarcinoma (EA has increased dramatically in the US and Western Europe. It has been shown that EAs evolve from premalignant Barrett's esophagus (BE tissue by a process of clonal expansion and evolution. However, the molecular phenotype of the premalignant metaplasia, and its relationship to those of the normal upper gastrointestinal (GI mucosae, including gastric, duodenal, and squamous epithelium of the esophagus, has not been systematically characterized. Therefore, we used oligonucleotide-based microarrays to characterize gene expression profiles in each of these tissues. The similarity of BE to each of the normal tissues was compared using a series of computational approaches. Our analyses included esophageal squamous epithelium, which is present at the same anatomic site and exposed to similar conditions as Barrett's epithelium, duodenum that shares morphologic similarity to Barrett's epithelium, and adjacent gastric epithelium. There was a clear distinction among the expression profiles of gastric, duodenal, and squamous epithelium whereas the BE profiles showed considerable overlap with normal tissues. Furthermore, we identified clusters of genes that are specific to each of the tissues, to the Barrett's metaplastic epithelia, and a cluster of genes that was distinct between squamous and nonsquamous epithelia.

  13. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  14. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review

    Directory of Open Access Journals (Sweden)

    Devon E. Anderson

    2017-12-01

    Full Text Available Articular cartilage functions to transmit and translate loads. In a classical structure–function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ, dynamic mechanical loading has been hypothesized to induce the structure–function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells

  15. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    Science.gov (United States)

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different

  16. Advancing biomaterials of human origin for tissue engineering

    Science.gov (United States)

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  17. The role of visual and direct force feedback in robotics-assisted mitral valve annuloplasty.

    Science.gov (United States)

    Currie, Maria E; Talasaz, Ali; Rayman, Reiza; Chu, Michael W A; Kiaii, Bob; Peters, Terry; Trejos, Ana Luisa; Patel, Rajni

    2017-09-01

    The objective of this work was to determine the effect of both direct force feedback and visual force feedback on the amount of force applied to mitral valve tissue during ex vivo robotics-assisted mitral valve annuloplasty. A force feedback-enabled master-slave surgical system was developed to provide both visual and direct force feedback during robotics-assisted cardiac surgery. This system measured the amount of force applied by novice and expert surgeons to cardiac tissue during ex vivo mitral valve annuloplasty repair. The addition of visual (2.16 ± 1.67), direct (1.62 ± 0.86), or both visual and direct force feedback (2.15 ± 1.08) resulted in lower mean maximum force applied to mitral valve tissue while suturing compared with no force feedback (3.34 ± 1.93 N; P forces on cardiac tissue during robotics-assisted mitral valve annuloplasty suturing, force feedback may be required. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Tear and decohesion of bovine pericardial tissue.

    Science.gov (United States)

    Tobaruela, Almudena; Elices, Manuel; Bourges, Jean Yves; Rojo, Francisco Javier; Atienza, José Miguel; Guinea, Gustavo

    2016-10-01

    The aim of this study was to evaluate quantitatively the fracture-by tear and delamination-of bovine pericardium tissues which are usually employed for the manufacture of bioprosthetic valves. A large number of samples (77) were tested in root-to-apex and circumferential directions, according to a standardised tear test (ASTM D 1938). Before performing the tear test, some samples were subjected to 1000 cycles of fatigue to a maximum stress of 3MPa. Fracture toughness of tearing and delamination were computed by following a simple fracture model. The study showed significantly lower values of delamination toughness compared with tear delamination. Moreover, tear forces were different in each test direction, revealing a clear orthotropic behaviour. All these results, as well as the testing procedure, could be of value for future research in the physiological function of pericardium tissues and clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fluorescence lifetime measurement with confocal endomicroscopy for direct analysis of tissue biochemistry in vivo

    Directory of Open Access Journals (Sweden)

    Youngjae Won

    2016-08-01

    Full Text Available Confocal endomicroscopy is a powerful tool for in vivo real-time imaging at cellular resolution inside a living body without tissue resection. Microscopic fluorescence lifetime measurement can provide information about localized biochemical conditions such as pH and the concentrations of oxygen and calcium. We hypothesized that combining these techniques could assist accurate cancer discrimination by providing both biochemical and morphological information. We designed a dual-mode experimental setup for confocal endomicroscopic imaging and fluorescence lifetime measurement and applied it to a mouse xenograft model of activated human pancreatic cancer generated by subcutaneous injection of AsPC-1 tumor cells. Using this method with pH-sensitive sodium fluorescein injection, we demonstrated discrimination between normal and cancerous tissues in a living mouse. With further development, this method may be useful for clinical cancer detection.

  20. Pectus excavatum and heritable disorders of the connective tissue

    Directory of Open Access Journals (Sweden)

    Francesca Tocchioni

    2013-09-01

    Full Text Available Pectus excavatum, the most frequent congenital chest wall deformity, may be rarely observed as a sole deformity or as a sign of an underlying connective tissue disorder. To date, only few studies have described correlations between this deformity and heritable connective tissue disorders such as Marfan, Ehlers-Danlos, Poland, MASS (Mitral valve prolapse, not progressive Aortic enlargement, Skeletal and Skin alterations phenotype among others. When concurring with connective tissue disorder, cardiopulmonary and vascular involvement may be associated to the thoracic defect. Ruling out the concomitance of pectus excavatum and connective tissue disorders, therefore, may have a direct implication both on surgical outcome and long term prognosis. In this review we focused on biological bases of connective tissue disorders which may be relevant to the pathogenesis of pectus excavatum, portraying surgical and clinical implication of their concurrence.

  1. Rapid in vivo vertical tissue sectioning by multiphoton tomography

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; König, Karsten

    2018-02-01

    A conventional tool in the pathological field is histology which involves the analysis of thin sections of tissue in which specific cellular structures are stained with different dyes. The process to obtain these stained tissue sections is time consuming and invasive as it requires tissue removal, fixation, sectioning, and staining. Moreover, imaging of live tissue is not possible. We demonstrate that multiphoton tomography can provide within seconds, non-invasive, label-free, vertical images of live tissue which are in quality similar to conventional light micrographs of histologic stained specimen. In contrast to conventional setups based on laser scanning which image horizontally sections, the vertical in vivo images are directly recorded by combined line scanning and timed adjustments of the height of the focusing optics. In addition, multiphoton tomography provides autofluorescence lifetimes which can be used to determine the metabolic states of cells.

  2. Plerocercoid growth factor (PGF), a human growth hormone (hGH) analogue produced by the tapeworm Spirometra mansonoides, has direct insulin-like action in adipose tissue of normal rats in vitro

    International Nuclear Information System (INIS)

    Salem, M.A.M.; Phares, C.K.

    1986-01-01

    The metabolic actions of GH can be divided into acute (insulin-like) and chronic (lipolytic/anti-insulin). The insulin-like actions of GH are most readily elicited in GH-deficient animals as GH induces resistance to its own insulin-like action. Like GH, PGF stimulates growth and cross-reacts with anti-hGH antibodies. Independent experiments were conducted comparing the direct actions of PGF to insulin or hGH in vitro. Insulin-like effects were determined by the ability of PGF, insulin or hGH to stimulate [U- 14 C]glucose metabolism in epidydimal fat pads from normal rats and by inhibition of epinephrine-stimulated lipolysis. Direct stimulation of lipolysis was used as anti-insulin activity. To determine if PGF competes for insulin or GH receptors, adipocytes (3 x 10 5 cells/ml) were incubated with either [ 125 I]insulin or [ 125 I]hGH +/- PGF, +/- insulin or +/- hGH. PGF stimulated glucose oxidation and 14 C-incorporation into lipids. Insulin, hGH and PGF inhibited lipolysis (33%, 29% and 34%, respectively). Adipose tissue was very sensitive to the lipolytic effect of hGH but PGF was neither lipolytic nor did it confer refractoriness to its insulin-like action. PGF bound to GH but not to insulin receptors. Therefore, PGF had direct insulin-like effects but did not stimulate lipolysis in tissue from normal rats in vitro

  3. Performance Assessment of Bi-Directional Knotless Tissue-Closure Devices in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2009 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, Christa M.; Wagner, Katie A.; Bryson, Amanda J.

    2012-11-09

    The purpose of this report is to assess the performance of bi-directional knotless tissue-closure devices for use in tagging juvenile salmon. This study is part of an ongoing effort at Pacific Northwest National Laboratory (PNNL) to reduce unwanted effects of tags and tagging procedures on the survival and behavior of juvenile salmonids, by assessing and refining suturing techniques, suture materials, and tag burdens. The objective of this study was to compare the performance of the knotless (barbed) suture, using three different suture patterns (treatments: 6-point, Wide “N”, Wide “N” Knot), to the current method of suturing (MonocrylTM monofilament, discontinuous sutures with a 2×2×2×2 knot) used in monitoring and research programs with a novel antiseptic barrier on the wound (“Second Skin”).

  4. Graphic-based musculoskeletal model for biomechanical analyses and animation.

    Science.gov (United States)

    Chao, Edmund Y S

    2003-04-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.

  5. Bone Tissue Donation: Tendency and Hurdles.

    Science.gov (United States)

    El Hage, S; Dos Santos, M J; de Moraes, E L; de Barros E Silva, L B

    2018-03-01

    The aim of this study was to identify the percentage of bone tissue donation in a brain death situation and the tendency of donation rate of this tissue in an organ procurement organization in the county of Sao Paulo from 2001 to 2016. It is a retrospective and quantitative study, based on the Organ and Tissue Donation Term of donors who died of brain death between 2001 and 2016. A logistic regression model was applied, and the odds of donation were identified throughout the years, regarding the odds ratio different from zero. Finally, it was measured the accuracy of the odds ratio through the confidence interval. The analysis has shown a significant change on the trend of bone donation (P 1, indicating that the donation rate has increased. However, the percentage of growth is still considered low. The study evidences a growth trend regarding the donation of bone tissue, but the percentage is still too low to adequately meet the demand of patients who need this modality of therapeutic intervention. It is believed that educational campaigns of donation are not emphasizing the donation of tissues for transplantation, which may be directly impacting their consent rates. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Breast tissue classification using x-ray scattering measurements and multivariate data analysis

    Science.gov (United States)

    Ryan, Elaine A.; Farquharson, Michael J.

    2007-11-01

    This study utilized two radiation scatter interactions in order to differentiate malignant from non-malignant breast tissue. These two interactions were Compton scatter, used to measure the electron density of the tissues, and coherent scatter to obtain a measure of structure. Measurements of these parameters were made using a laboratory experimental set-up comprising an x-ray tube and HPGe detector. The breast tissue samples investigated comprise five different tissue classifications: adipose, malignancy, fibroadenoma, normal fibrous tissue and tissue that had undergone fibrocystic change. The coherent scatter spectra were analysed using a peak fitting routine, and a technique involving multivariate analysis was used to combine the peak fitted scatter profile spectra and the electron density values into a tissue classification model. The number of variables used in the model was refined by finding the sensitivity and specificity of each model and concentrating on differentiating between two tissues at a time. The best model that was formulated had a sensitivity of 54% and a specificity of 100%.

  7. Breast tissue classification using x-ray scattering measurements and multivariate data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Elaine A; Farquharson, Michael J [School of Allied Health Sciences, City University, Charterhouse Square, London EC1M 6PA (United Kingdom)

    2007-11-21

    This study utilized two radiation scatter interactions in order to differentiate malignant from non-malignant breast tissue. These two interactions were Compton scatter, used to measure the electron density of the tissues, and coherent scatter to obtain a measure of structure. Measurements of these parameters were made using a laboratory experimental set-up comprising an x-ray tube and HPGe detector. The breast tissue samples investigated comprise five different tissue classifications: adipose, malignancy, fibroadenoma, normal fibrous tissue and tissue that had undergone fibrocystic change. The coherent scatter spectra were analysed using a peak fitting routine, and a technique involving multivariate analysis was used to combine the peak fitted scatter profile spectra and the electron density values into a tissue classification model. The number of variables used in the model was refined by finding the sensitivity and specificity of each model and concentrating on differentiating between two tissues at a time. The best model that was formulated had a sensitivity of 54% and a specificity of 100%.

  8. {sup 226}Ra concentrations in crayfish tissues, water, and sediments from the Serpent River Basin in Northeastern Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Alikhan, M.A. [Laurentian Univ., Sudbury, ON (Canada). Dept of Biology

    1996-12-31

    Lower Serpent River, as well as Elliot, McCarthy and McCabe lakes had highest {sup 226}Ra contamination, Chrisman, Quirke and Whiskey lakes a moderate one, Flack and Semiwhite lakes and the `distant` control, Lake Wanapitei, the lowest. {sup 226}Ra activity in Cambarus robustus tissues was directly related to their background levels. Thus, concentration coefficient (tissue/sediment concentrations) for {sup 226}Ra ranged from 0.53 to 0.74 in highly contaminated Elliot and McCarthy lakes, 0.28 to 0.59 in moderately contaminated Quirke and Whiskey lakes, and from 0.27 to 3.44 in least contaminated Semiwhite and Flack lakes. Among various organs analysed, exoskeleton showed the highest (43.04 - 90.69%) and the tail muscles the lowest (2.95 -17.14%) {sup 226}Ra activity. {sup 226}Ra concentrations in the alimentary canal were considered a part of the ambient environment as they had not been absorbed. 12 refs, 1 fig, 1 tab.

  9. Ergot alkaloid transport across ruminant gastric tissues.

    Science.gov (United States)

    Hill, N S; Thompson, F N; Stuedemann, J A; Rottinghaus, G W; Ju, H J; Dawe, D L; Hiatt, E E

    2001-02-01

    Ergot alkaloids cause fescue toxicosis when livestock graze endophyte-infected tall fescue. It is generally accepted that ergovaline is the toxic component of endophyte-infected tall fescue, but there is no direct evidence to support this hypothesis. The objective of this study was to examine relative and potential transport of ergoline and ergopeptine alkaloids across isolated gastric tissues in vitro. Sheep ruminal and omasal tissues were surgically removed and placed in parabiotic chambers. Equimolar concentrations of lysergic acid, lysergol, ergonovine, ergotamine, and ergocryptine were added to a Kreb's Ringer phosphate (KRP) solution on the mucosal side of the tissue. Tissue was incubated in near-physiological conditions for 240 min. Samples were taken from KRP on the serosal side of the chambers at times 0, 30, 60, 120, 180, and 240 min and analyzed for ergot alkaloids by competitive ELISA. The serosal KRP remaining after incubation was freeze-dried and the alkaloid species quantified by HPLC. The area of ruminal and omasal tissues was measured and the potential transportable alkaloids calculated by multiplying the moles of transported alkaloids per square centimeter of each tissue type by the surface area of the tissue. Studies were conducted to compare alkaloid transport in reticular, ruminal, and omasal tissues and to determine whether transport was active or passive. Ruminal tissue had greater ergot alkaloid transport potential than omasal tissue (85 vs 60 mmol) because of a larger surface area. The ruminal posterior dorsal sac had the greatest potential for alkaloid transport, but the other ruminal tissues were not different from one another. Alkaloid transport was less among reticular tissues than among ruminal tissues. Transport of alkaloids seemed to be an active process. The alkaloids with greatest transport potential were lysergic acid and lysergol. Ergopeptine alkaloids tended to pass across omasal tissues in greater quantities than across ruminal

  10. Bioprinting scale-up tissue and organ constructs for transplantation.

    Science.gov (United States)

    Ozbolat, Ibrahim T

    2015-07-01

    Bioprinting is an emerging field that is having a revolutionary impact on the medical sciences. It offers great precision for the spatial placement of cells, proteins, genes, drugs, and biologically active particles to better guide tissue generation and formation. This emerging biotechnology appears to be promising for advancing tissue engineering toward functional tissue and organ fabrication for transplantation, drug testing, research investigations, and cancer or disease modeling, and has recently attracted growing interest worldwide among researchers and the general public. In this Opinion, I highlight possibilities for the bioprinting scale-up of functional tissue and organ constructs for transplantation and provide the reader with alternative approaches, their limitations, and promising directions for new research prospects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Does the application site of spinal manipulative therapy alter spinal tissues loading?

    Science.gov (United States)

    Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Gregory N

    2018-01-31

    Previous studies found that the intervertebral disc (IVD) experiences the greatest loads during spinal manipulation therapy (SMT). Based on that, this study aimed to determine if loads experienced by spinal tissues are significantly altered when the application site of SMT is changed. A biomechanical robotic serial dissection study. Thirteen porcine cadaveric motion segments. Forces experienced by lumbar spinal tissues. A servo-controlled linear actuator provided standardized 300 N SMT simulations to six different cutaneous locations of the porcine lumbar spine: L2-L3 and L3-L4 facet joints (FJ), L3 and L4 transverse processes (TVP), and the space between the FJs and the TVPs (BTW). Vertebral kinematics were tracked optically using indwelling bone pins; the motion segment was removed and mounted in a parallel robot equipped with a six-axis load cell. Movements of each SMT application at each site were replayed by the robot with the intact specimen and following the sequential removal of spinal ligaments, FJs and IVD. Forces induced by SMT were recorded, and specific axes were analyzed using linear mixed models. Analyses yielded a significant difference (p<.05) in spinal structures loads as a function of the application site. Spinal manipulative therapy application at the L3 vertebra caused vertebral movements and forces between L3 and L4 spinal segment in the opposite direction to when SMT was applied at L4 vertebra. Additionally, SMT applications over the soft tissue between adjacent vertebrae significantly decreased spinal structure loads. Applying SMT with a constant force at different spinal levels creates different relative kinetics of the spinal segments and load spinal tissues in significantly different magnitudes. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Reyzer, Michelle L.; Goh, Anne; Dartois, Veronique; Via, Laura E.; Barry, Clifton E.; Caprioli, Richard M.

    2011-08-01

    Isoniazid (INH) is an important component of front-line anti-tuberculosis therapy with good serum pharmacokinetics but unknown ability to penetrate tuberculous lesions. However, endogenous background interferences hinder our ability to directly analyze INH in tissues. Chemical derivatization has been successfully used to measure isoniazid directly from tissue samples using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). MALDI targets were pretreated with trans-cinnamaldehyde (CA) prior to mounting tissue slices. Isoniazid present in the tissues was efficiently derivatized and the INH-CA product measured by MS/MS. Precoating of MALDI targets allows the tissues to be directly thaw-mounted and derivatized, thus simplifying the preparation. A time-course series of tissues from tuberculosis infected/INH dosed animals were assayed and the MALDI MS/MS response correlates well with the amount of INH determined to be in the tissues by high-performance liquid chromatography (HPLC)-MS/MS.

  13. Characterization of EIAV LTR variability and compartmentalization in various reservoir tissues of long-term inapparent carrier ponies

    International Nuclear Information System (INIS)

    Reis, Jenner K.P.; Craigo, Jodi K.; Cook, Sheila J.; Issel, Charles J.; Montelaro, Ronald C.

    2003-01-01

    Dynamic genomic variation resulting in changes in envelope antigenicity has been established as a fundamental mechanism of persistence by equine infectious anemia virus (EIAV), as observed with other lentiviruses, including HIV-1. In addition to the reported changes in envelope sequences, however, certain studies indicate the viral LTR as a second variable EIAV gene, with the enhancer region being designated as hypervariable. These observations have lead to the suggestion that LTR variation may alter viral replication properties to optimize to the microenvironment of particular tissue reservoirs. To test this hypothesis directly, we examined the population of LTR quasispecies contained in various tissues of two inapparent carrier ponies experimentally infected with a reference EIAV biological clone for 18 months. The results of these studies demonstrated that the EIAV LTR is in fact highly conserved with respect to the infecting LTR species after 1.5 years of persistent infection and regardless of the tissue reservoir. Thus, these comprehensive analyses demonstrate for the first time that the EIAV LTR is highly conserved during long-term persistent infection and that the observed variations in viral LTR are associated more with in vitro adaptation to replication in cultured cells rather than in vivo replication in natural target cells

  14. Impact of tissue surface properties on the desorption electrospray ionization imaging of organic acids in grapevine stem.

    Science.gov (United States)

    Dong, Yonghui; Guella, Graziano; Franceschi, Pietro

    2016-03-30

    Desorption electrospray ionization (DESI) imaging is a fast analytical technique used to assess spatially resolved biological processes over unmodified sample surfaces. Although DESI profiling experiments have demonstrated that the properties of the sample surface significantly affect the outcomes of DESI analyses, the potential implications of these phenomena in imaging applications have not yet been explored extensively. The distribution of endogenous and exogenous organic acids in pith and out pith region of grapevine stems was investigated by using DESI imaging, ion chromatography and direct infusion methods. Several common normalization strategies to account for the surface effect, including TIC normalization, addition of the internal standard in the spray solvent and deposition of the standard over the sample surface, were critically evaluated. DESI imaging results show that, in our case, the measured distributions of these small organic acids are not consistent with their 'true' localizations within the tissues. Furthermore, our results indicate that the common normalization strategies are not able to completely compensate for the observed surface effect. Variations in the tissue surface properties across the tissue sample can greatly affect the semi-quantitative detection of organic acids. Attention should be paid when interpreting DESI imaging results and an independent analytical validation step is important in untargeted DESI imaging investigations. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Monitoring soft tissue coagulation by optical spectroscopy

    Science.gov (United States)

    Lihachev, A.; Lihacova, I.; Heinrichs, H.; Spigulis, J.; Trebst, T.; Wehner, M.

    2017-12-01

    Laser tissue welding (LTW) or laser tissue soldering (LTS) is investigated since many years for treatment of incisions, wound closure and anastomosis of vessels [1, 2]. Depending on the process, a certain temperature in the range between 65 °C to 85 °C must be reached and held for a few seconds. Care has to be taken not to overheat the tissue, otherwise necrosis or tissue carbonization may occur and will impair wound healing. Usually the temperature is monitored during the process to control the laser power [3]. This requires either bulky equipment or expensive and fragile infrared fibers to feed the temperature signal to an infrared detector. Alternatively, changes in tissue morphology can be directly observed by analysis of spectral reflectance. We investigate spectral changes in the range between 400 nm to 900 nm wavelength. Characteristic spectral changes occur when the temperature of tissue samples increase above 70 °C which is a typical setpoint value for temperature control of coagulation. We conclude that simple spectroscopy in the visible range can provide valuable information during LTS and LTW and probably replace the delicate measurement of temperature. A major advantage is that optical measurements can be performed using standard optical fibers and can be easily integrated into a surgical tool.

  16. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing.

    Science.gov (United States)

    Rübe, Claudia E; Grudzenski, Saskia; Kühne, Martin; Dong, Xiaorong; Rief, Nicole; Löbrich, Markus; Rübe, Christian

    2008-10-15

    Radiotherapy is an effective cancer treatment, but a few patients suffer severe radiation toxicities in neighboring normal tissues. There is increasing evidence that the variable susceptibility to radiation toxicities is caused by the individual genetic predisposition, by subtle mutations, or polymorphisms in genes involved in cellular responses to ionizing radiation. Double-strand breaks (DSB) are the most deleterious form of radiation-induced DNA damage, and DSB repair deficiencies lead to pronounced radiosensitivity. Using a preclinical mouse model, the highly sensitive gammaH2AX-foci approach was tested to verify even subtle, genetically determined DSB repair deficiencies known to be associated with increased normal tissue radiosensitivity. By enumerating gammaH2AX-foci in blood lymphocytes and normal tissues (brain, lung, heart, and intestine), the induction and repair of DSBs after irradiation with therapeutic doses (0.1-2 Gy) was investigated in repair-proficient and repair-deficient mouse strains in vivo and blood samples irradiated ex vivo. gammaH2AX-foci analysis allowed to verify the different DSB repair deficiencies; even slight impairments caused by single polymorphisms were detected similarly in both blood lymphocytes and solid tissues, indicating that DSB repair measured in lymphocytes is valid for different and complex organs. Moreover, gammaH2AX-foci analysis of blood samples irradiated ex vivo was found to reflect repair kinetics measured in vivo and, thus, give reliable information about the individual DSB repair capacity. gammaH2AX analysis of blood and tissue samples allows to detect even minor genetically defined DSB repair deficiencies, affecting normal tissue radiosensitivity. Future studies will have to evaluate the clinical potential to identify patients more susceptible to radiation toxicities before radiotherapy.

  17. The preponderance and dye-tissue receptive variability analyses of malignant and benign lesions of the female genitalia

    Directory of Open Access Journals (Sweden)

    F.M. Onyije

    2017-04-01

    Conclusion: Our study reported the preponderance of benign lesions than malignant lesions in the sample population. Comparatively, MT exhibited the best dye-tissue receptivity in both benign and malignant lesions than the baseline dye (H&E and remains a valuable tool for the diagnosis of gynecological lesions.

  18. Analysing harmonic motions with an iPhone’s magnetometer

    Science.gov (United States)

    Yavuz, Ahmet; Kağan Temiz, Burak

    2016-05-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone’s (or iPad’s) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone’s magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone’s screen using the Sensor Kinetics application. Data from this application was analysed with Eureqa software to establish the equation of the harmonic motion. Analyses show that the use of an iPhone’s magnetometer to analyse harmonic motion is a practical and effective method for small oscillations and frequencies less than 15-20 Hz.

  19. Histological Evaluation of Decellularized Skeletal Muscle Tissue Using Two Different Decellularization Agents

    Directory of Open Access Journals (Sweden)

    Hana Hrebíková

    2017-02-01

    Full Text Available The aim of the present study was to determine effect of two decellularized agents, sodium dodecyl sulphate (SDS and Triton X-100, to the skeletal muscle tissue. Final scaffold was evaluated by several histological techniques to analyse preservation of essential structures including collagen and elastic fibres, basement membranes, glycosaminoglycans and also to confirm elimination of nuclear and cytoplasmic components which are redundant in effectively prepared decellularized scaffolds. Comparison of tissue scaffolds processed with different detergents proved that SDS is superior to Triton X-100 as it can effectively decellularize muscle tissue.

  20. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues

    International Nuclear Information System (INIS)

    Resano, M.; Briceno, J.; Aramendia, M.; Belarra, M.A.

    2007-01-01

    In this work, the potential of graphite furnace atomic absorption spectrometry for the direct determination of B in plant tissues has been investigated. Three certified reference materials (NIST SRM 1570a spinach leaves, NIST SRM 1573a tomato leaves and BCR CRM 679 white cabbage) were selected for this study, the goal always being to develop a fast procedure that could be robust enough to provide a satisfactory performance for all of them, without any modifications in the conditions applied. The use of a suitable chemical modifier was found to be essential for obtaining a reproducible and sufficiently sensitive signal for boron solutions. In this regard, the performance of the combination of citric acid plus W (added as a permanent modifier) was noteworthy, resulting in well-defined signal profiles, a remarkable analyte stabilization during the pyrolysis step (up to 2100 deg. C) and minimal memory effects. This mixture of modifiers provided a good performance for the direct analysis of solid samples as well, but only if a suitable temperature program, favoring the interaction between the analyte and the modifiers, was used. Thus, such a temperature program, with two pyrolysis steps and the addition of NH 4 NO 3 in order to carry out the in situ sample microdigestion, was optimized. Under these conditions, the peak areas obtained for both solid samples and aqueous standards were comparable. Finally, the analysis of the samples was carried out. In all cases, a good agreement with the certified values was obtained, while R.S.D. values ranged between 6 and 10%. It can be concluded that the method proposed shows significant advantages for the determination of this complicated element in solid samples such as the use of aqueous standards for calibration, a high sample throughput (20 min per sample), a suitable limit of detection (0.3 μg g -1 ) and reduced risk of analyte losses and contamination

  1. Tissue Engineering Stem Cells - An e-Governance Strategy.

    Science.gov (United States)

    Grange, Simon

    2011-01-01

    The rules of governance are changing. They are necessarily becoming more stringent as interventions offered to treat conditions carry unpredictable side effects, often associated with novel therapeutic vectors. The clinical relevance of this relates to the obligations of those involved in research, to ensure the best protection for subjects whilst encouraging the development of the field. Existing evidence supports the concept of e-Governance both in operational health research and more broadly in the strategic domain of policy formation. Building on the impact of the UK Comprehensive Research Network and recent EU Directives, it is now possible to focus on the issues of regulation for cell therapies in musculoskeletal science through the development of the Advanced Therapeutic Medicinal Products (ATMP) category of research products. This article reviews the framework that has borne this and the need for more detailed Virtual Research Integration and Collaboration (VRIC) systems to ensure regulatory compliance. Technology research and development plans must develop in close association between tissue engineering and treating clinicians. The scope of this strategy relates to the handling of human tissues the transport and storage of specimens in accordance with current EU directives and the Human Tissue Authority (HTA) regulations.

  2. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.

    Science.gov (United States)

    Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei

    2013-03-01

    Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Preliminary Examination of X-ray Scattering from Human Tissues

    International Nuclear Information System (INIS)

    Desouky, O.S.; Wilkinson, S.; Hall, C.; Rogers, K.; Round, A.

    2008-01-01

    Small Angle x-ray scattering (SAXS) and wide angle x-ray scattering (WAXS) patterns have been recorded from different human soft tissues using x-ray synchrotron radiation.Pathological breast, normal kidney and lung tissues show SAXS peaks at q-values equal to 0.291 nm -1 and 0.481 nm -1 (d 21.6 nm and d =13. nm) which are the 3 r d and 5 t h order of the well known axial D-spacing of collagen fibrils. The diffraction is particularly intense in the meridional direction indicating some febrile alignment. In contrast, the normal tissue of brain, liver and heart shows diffuse scatter.The wide-angle coherent scattering from normal human tissues of brain, liver, heart, lung, and kidney is typical of that for amorphous materials. The scatter of the healthy adipose breast tissue shows a sharp peak at momentum transfer 1.24 nm -1 (d= 0.417 nm). The data of the other tissues appears to consist of a broad scattering peak. The two scattering regimes succeed in differentiating between the two major components of breast tissue, collagen and adipose tissue. The results of this study suggest that the soft tissues may have scattering patterns that are characteristics for the particular tissue types and tissue disease state. These results indicate that it may be possible use the coherent scattering as a diagnostic tool

  4. Direct-write Bioprinting of Cell-laden Methacrylated Gelatin Hydrogels

    Science.gov (United States)

    Bertassoni, Luiz E.; Cardoso, Juliana C.; Manoharan, Vijayan; Cristino, Ana L.; Bhise, Nupura S.; Araujo, Wesleyan A.; Zorlutuna, Pinar; Vrana, Nihal E.; Ghaemmaghami, Amir M.

    2014-01-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least 8 days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms. PMID:24695367

  5. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels

    International Nuclear Information System (INIS)

    Bertassoni, Luiz E; Cardoso, Juliana C; Manoharan, Vijayan; Cristino, Ana L; Bhise, Nupura S; Araujo, Wesleyan A; Zorlutuna, Pinar; Vrana, Nihal E; Dokmeci, Mehmet R; Khademhosseini, Ali; Ghaemmaghami, Amir M

    2014-01-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms. (paper)

  6. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.

    Science.gov (United States)

    Bertassoni, Luiz E; Cardoso, Juliana C; Manoharan, Vijayan; Cristino, Ana L; Bhise, Nupura S; Araujo, Wesleyan A; Zorlutuna, Pinar; Vrana, Nihal E; Ghaemmaghami, Amir M; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-06-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms.

  7. Biomimetic strategies for fracture repair: engineering the cell microenvironment for directed tissue formation

    OpenAIRE

    Vas, Wollis J.; Shah, Mittal; Al Hosni, Rawiya; Owen, Helen C.; Roberts, Scott J.

    2017-01-01

    Complications resulting from impaired fracture healing have major clinical implications on fracture management strategies. Novel concepts taken from developmental biology have driven research strategies towards the elaboration of regenerative approaches that can truly harness the complex cellular events involved in tissue formation and repair. Advances in polymer technology and a better understanding of naturally derived scaffolds have given rise to novel biomaterials with an increasing abili...

  8. Measurement of facial soft tissues thickness using 3D computed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo [Yonsei Univ. Hospital, Seoul (Korea, Republic of); Han, Seung Ho [Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2006-03-15

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology.

  9. Measurement of facial soft tissues thickness using 3D computed tomographic images

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo; Han, Seung Ho

    2006-01-01

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology

  10. Analyses and distribution of various types of cancers recorded in Ife ...

    African Journals Online (AJOL)

    This work presents analyses of data on cancers diagnosed and recorded at the Ife-Ijesa Cancer Registry located at the Obafemi Awolowo University Teaching ... Liver and Gall Bladder (4.4%), Skin (2.7%), Metastatic (2.3%), Cytology (2.1%), Ear, Nose and Throat E.N.T., (2.1%), Lungs (1.9%), Connective tissue (1.9%), ...

  11. Electron Microscopy Observation of Biomineralization within Wood Tissues of Kurogaki

    Directory of Open Access Journals (Sweden)

    Kazue Tazaki

    2017-07-01

    Full Text Available Interactions between minerals and microorganisms play a crucial role in living wood tissues. However, living wood tissues have never been studied in the field. Fortunately, we found several kurogaki (black persimmon; Diospyros kaki trees at Tawara in Kanazawa, Ishikawa, Japan. Here, we report the characterization of kurogaki based on scanning electron microscopy equipped with energy-dispersive spectroscopy (SEM-EDS and transmission electron microscopy (TEM, associated with inductively coupled plasma-mass spectrometry (ICP-MS analyses, X-ray fluorescence analyses (XRF and X-ray powder diffraction (XRD analyses. This study aims to illustrate the ability of various microorganisms associated with biominerals within wood tissues of kurogaki, as shown by SEM-EDS elemental content maps and TEM images. Kurogaki grows very slowly and has extremely hard wood, known for its striking black and beige coloration, referred to as a “peacock pattern”. However, the scientific data for kurogaki are very limited. The black “peacock pattern” of the wood mainly comprises cellulose and high levels of crystal cristobalite. As per the XRD results, the black taproot contains mineralized 7 Å clays (kaolinite, cellulose, apatite and cristobalite associated with many microorganisms. The chemical compositions of the black and beige portions of the black persimmon tree were obtained by ICP-MS analyses. Particular elements such as abundant Ca, Mg, K, P, Mn, Ba, S, Cl, Fe, Na, and Al were concentrated in the black region, associated with Pb and Sr elements. SEM-EDS semi-qualitative analyses of kurogaki indicated an abundance of P and Ca in microorganisms in the black region, associated with Pb, Sr, S, Mn, and Mg elements. On the other hand, XRF and XRD mineralogical data showed that fresh andesite, weathered andesite, and the soils around the roots of kurogaki correlate with biomineralization of the black region in kurogaki roots, showing clay minerals (kaolinite and

  12. Direct and Recurrent Inguinal Hernias are Associated with Ventral Hernia Repair

    DEFF Research Database (Denmark)

    Henriksen, Nadia A; Sorensen, Lars T; Bay-Nielsen, Morten

    2013-01-01

    A systemically altered connective tissue metabolism has been demonstrated in patients with abdominal wall hernias. The most pronounced connective tissue changes are found in patients with direct or recurrent inguinal hernias as opposed to patients with indirect inguinal hernias. The aim...

  13. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment

    Directory of Open Access Journals (Sweden)

    Vega-Alvarez S

    2014-04-01

    Full Text Available Sasha Vega-Alvarez,1 Adriana Herrera,2 Carlos Rinaldi,2–4 Franklin A Carrero-Martínez1,5 1Department of Biology, 2Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico; 3J Crayton Pruitt Family Department of Biomedical Engineering, 4Department of Chemical Engineering, University of Florida, Gainesville, FL, USA; 5Department of Anatomy and Neuroscience, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico Abstract: Nanomaterials are the subject of intense research, focused on their synthesis, modification, and biomedical applications. Increased nanomaterial production and their wide range of applications imply a higher risk of human and environmental exposure. Unfortunately, neither environmental effects nor toxicity of nanomaterials to organisms are fully understood. Cost-effective, rapid toxicity assays requiring minimal amounts of materials are needed to establish both their biomedical potential and environmental safety standards. Drosophila exemplifies an efficient and cost-effective model organism with a vast repertoire of in vivo tools and techniques, all with high-throughput scalability and screening feasibility throughout its life cycle. Here we report tissue specific nanomaterial assessment through direct microtransfer into target tissues. We tested several nanomaterials with potential biomedical applications such as single-wall carbon nanotubes, multiwall carbon nanotubes, silver, gold, titanium dioxide, and iron oxide nanoparticles. Assessment of nanomaterial toxicity was conducted by evaluating progression through developmental morphological milestones in Drosophila. This cost-effective assessment method is amenable to high-throughput screening. Keywords: nanotoxicity, Drosophila, microtransfer, nanoparticle, iron oxide, silver, gold, titanium dioxide, carbon nanotube

  14. Direct analysis of quantal radiation response data

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.; Rozell, M.E.; Tucker, S.L.; Ang, K.K.; Travis, E.L.; Fisher, D.R.

    1986-01-01

    A direct analysis is proposed for quantal (all-or-nothing) responses to fractionated radiation and endpoint-dilution assays of cell survival. As opposed to two-step methods such as the reciprocal-dose technique, in which ED 50 values are first estimated for different fractionation schemes and then fit (as reciprocals) against dose per fraction, all raw data are included in a single maximum-likelihood treatment. The method accommodates variations such as short-interval fractionation regimens designed to determine tissue repair kinetics, tissue response to continuous exposures, and data obtained using endpoint-dilution assays of cell survival after fractionated doses. Monte-Carlo techniques were used to compare the direct and reciprocal-dose methods for analysis of small-scale and large-scale studies of response to fractionated doses. Both methods tended toward biased estimates in the analysis of small-scale (3 fraction numbers) studies. The α/β ratios showed less scatter when estimated by the direct method. The 95% confidence intervals determined by the direct method were more appropriate than those determined by reciprocal-dose analysis, for which 18% (small-scale study) or 8% (large-scale study) of the confidence intervals did not include the 'true' value of α/β. (author)

  15. Soft-tissue segmentation and three-dimensional display with MR imaging

    International Nuclear Information System (INIS)

    Koenig, H.A.; Laub, G.

    1987-01-01

    The purpose of this study is to design a method capable of segmenting different soft-tissue types. The investigated cases were measured using fast three-dimensional (3D) sequences (FISP of fast low-angle shot) with isotropic voxel resolution of nearly 1 mm. The segmentation is based on the assumption that different tissue types are discernible by their morphologic and/or physical features. Surface reconstructions are then used to display specific tissue types from different viewing directions. This automatic procedure is applied to different head cases to represent specific tissues in 3D format. With 3D techniques, rotation of classified objects in cine format is performed for better topologic correlation and therapeutic planning

  16. Targeted genomic enrichment and sequencing of CyHV-3 from carp tissues confirms low nucleotide diversity and mixed genotype infections

    Directory of Open Access Journals (Sweden)

    Saliha Hammoumi

    2016-09-01

    Full Text Available Koi herpesvirus disease (KHVD is an emerging disease that causes mass mortality in koi and common carp, Cyprinus carpio L. Its causative agent is Cyprinid herpesvirus 3 (CyHV-3, also known as koi herpesvirus (KHV. Although data on the pathogenesis of this deadly virus is relatively abundant in the literature, still little is known about its genomic diversity and about the molecular mechanisms that lead to such a high virulence. In this context, we developed a new strategy for sequencing full-length CyHV-3 genomes directly from infected fish tissues. Total genomic DNA extracted from carp gill tissue was specifically enriched with CyHV-3 sequences through hybridization to a set of nearly 2 million overlapping probes designed to cover the entire genome length, using KHV-J sequence (GenBank accession number AP008984 as reference. Applied to 7 CyHV-3 specimens from Poland and Indonesia, this targeted genomic enrichment enabled recovery of the full genomes with >99.9% reference coverage. The enrichment rate was directly correlated to the estimated number of viral copies contained in the DNA extracts used for library preparation, which varied between ∼5000 and ∼2×107. The average sequencing depth was >200 for all samples, thus allowing the search for variants with high confidence. Sequence analyses highlighted a significant proportion of intra-specimen sequence heterogeneity, suggesting the presence of mixed infections in all investigated fish. They also showed that inter-specimen genetic diversity at the genome scale was very low (>99.95% of sequence identity. By enabling full genome comparisons directly from infected fish tissues, this new method will be valuable to trace outbreaks rapidly and at a reasonable cost, and in turn to understand the transmission routes of CyHV-3.

  17. Mouse Nkrp1-Clr gene cluster sequence and expression analyses reveal conservation of tissue-specific MHC-independent immunosurveillance.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    Full Text Available The Nkrp1 (Klrb1-Clr (Clec2 genes encode a receptor-ligand system utilized by NK cells as an MHC-independent immunosurveillance strategy for innate immune responses. The related Ly49 family of MHC-I receptors displays extreme allelic polymorphism and haplotype plasticity. In contrast, previous BAC-mapping and aCGH studies in the mouse suggest the neighboring and related Nkrp1-Clr cluster is evolutionarily stable. To definitively compare the relative evolutionary rate of Nkrp1-Clr vs. Ly49 gene clusters, the Nkrp1-Clr gene clusters from two Ly49 haplotype-disparate inbred mouse strains, BALB/c and 129S6, were sequenced. Both Nkrp1-Clr gene cluster sequences are highly similar to the C57BL/6 reference sequence, displaying the same gene numbers and order, complete pseudogenes, and gene fragments. The Nkrp1-Clr clusters contain a strikingly dissimilar proportion of repetitive elements compared to the Ly49 clusters, suggesting that certain elements may be partly responsible for the highly disparate Ly49 vs. Nkrp1 evolutionary rate. Focused allelic polymorphisms were found within the Nkrp1b/d (Klrb1b, Nkrp1c (Klrb1c, and Clr-c (Clec2f genes, suggestive of possible immune selection. Cell-type specific transcription of Nkrp1-Clr genes in a large panel of tissues/organs was determined. Clr-b (Clec2d and Clr-g (Clec2i showed wide expression, while other Clr genes showed more tissue-specific expression patterns. In situ hybridization revealed specific expression of various members of the Clr family in leukocytes/hematopoietic cells of immune organs, various tissue-restricted epithelial cells (including intestinal, kidney tubular, lung, and corneal progenitor epithelial cells, as well as myocytes. In summary, the Nkrp1-Clr gene cluster appears to evolve more slowly relative to the related Ly49 cluster, and likely regulates innate immunosurveillance in a tissue-specific manner.

  18. MIB-1 expression and iododeoxyuridine labelling in soft tissue sarcomas

    DEFF Research Database (Denmark)

    Jensen, V; Høyer, M; Sørensen, Flemming Brandt

    1996-01-01

    We investigated the relationship between immunohistochemical estimates of proliferative activity and expression of bcl-2 protein and mutant p53 protein in 23 cases of soft tissue sarcoma. Furthermore, the reproducibility of estimates of proliferative activity was analysed and correlations between...

  19. Laser-based direct-write techniques for cell printing

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, Nathan R; Corr, David T [Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States); Huang Yong [Department of Mechanical Engineering, Clemson University, Clemson, SC (United States); Raof, Nurazhani Abdul; Xie Yubing [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, NY (United States); Chrisey, Douglas B, E-mail: schien@rpi.ed, E-mail: chrisd@rpi.ed [Material Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2010-09-15

    Fabrication of cellular constructs with spatial control of cell location ({+-}5 {mu}m) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. (topical review)

  20. Laser-based direct-write techniques for cell printing

    International Nuclear Information System (INIS)

    Schiele, Nathan R; Corr, David T; Huang Yong; Raof, Nurazhani Abdul; Xie Yubing; Chrisey, Douglas B

    2010-01-01

    Fabrication of cellular constructs with spatial control of cell location (±5 μm) is essential to the advancement of a wide range of applications including tissue engineering, stem cell and cancer research. Precise cell placement, especially of multiple cell types in co- or multi-cultures and in three dimensions, can enable research possibilities otherwise impossible, such as the cell-by-cell assembly of complex cellular constructs. Laser-based direct writing, a printing technique first utilized in electronics applications, has been adapted to transfer living cells and other biological materials (e.g., enzymes, proteins and bioceramics). Many different cell types have been printed using laser-based direct writing, and this technique offers significant improvements when compared to conventional cell patterning techniques. The predominance of work to date has not been in application of the technique, but rather focused on demonstrating the ability of direct writing to pattern living cells, in a spatially precise manner, while maintaining cellular viability. This paper reviews laser-based additive direct-write techniques for cell printing, and the various cell types successfully laser direct-written that have applications in tissue engineering, stem cell and cancer research are highlighted. A particular focus is paid to process dynamics modeling and process-induced cell injury during laser-based cell direct writing. (topical review)

  1. Tissue Engineering Strategies in Ligament Regeneration

    Directory of Open Access Journals (Sweden)

    Caglar Yilgor

    2012-01-01

    Full Text Available Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue engineering is a novel promising technique that aims to solve these problems, by producing viable artificial ligament substitutes in the laboratory conditions with the potential of transplantation to the patients with a high success rate. Direct cell and/or growth factor injection to the defect site is another current approach aiming to enhance the repair process of the native tissue. This review summarizes the current approaches in ligament tissue engineering strategies including the use of scaffolds, their modification techniques, as well as the use of bioreactors to achieve enhanced regeneration rates, while also discussing the advances in growth factor and cell therapy applications towards obtaining enhanced ligament regeneration.

  2. Tissue characterization using magnetic resonance elastography: preliminary results

    International Nuclear Information System (INIS)

    Kruse, S.A.; Smith, J.A.; Lawrence, A.J.; Dresner, M.A.; Manduca, A.; Greenleaf, J.F.; Ehman, R.L.

    2000-01-01

    The well-documented effectiveness of palpation as a diagnostic technique for detecting cancer and other diseases has provided motivation for developing imaging techniques for non-invasively evaluating the mechanical properties of tissue. A recently described approach for elasticity imaging, using propagating acoustic shear waves and phase-contrast MRI, has been called magnetic resonance elastography (MRE). The purpose of this work was to conduct preliminary studies to define methods for using MRE as a tool for addressing the paucity of quantitative tissue mechanical property data in the literature. Fresh animal liver and kidney tissue specimens were evaluated with MRE at multiple shear wave frequencies. The influence of specimen temperature and orientation on measurements of stiffness was studied in skeletal muscle. The results demonstrated that all of the materials tested (liver, kidney, muscle and tissue-simulating gel) exhibit systematic dependence of shear stiffness on shear rate. These data are consistent with a viscoelastic model of tissue mechanical properties, allowing calculation of two independent tissue properties from multiple-frequency MRE data: shear modulus and shear viscosity. The shear stiffness of tissue can be substantially affected by specimen temperature. The results also demonstrated evidence of shear anisotropy in skeletal muscle but not liver tissue. The measured shear stiffness in skeletal muscle was found to depend on both the direction of propagation and polarization of the shear waves. (author)

  3. Endogenous Ion Dynamics in Cell Motility and Tissue Regeneration

    International Nuclear Information System (INIS)

    Özkucur, N; Perike, S; Epperlein, H H; Funk, R H W

    2011-01-01

    Directional cell migration is an essential process, including regeneration of tissues, wound healing, and embryonic development. Cells achieve persistent directional migration by polarizing the spatiotemporal components involved in the morphological polarity. Ion transporter proteins situated at the cell membrane generates small electric fields that can induce directional cell motility. Besides them, externally applied direct current electric fields induce similar kind of responses as cell orientation and directional migration. However, the bioelectric mechanisms that lead to cellular directedness are poorly understood. Therefore, understanding the bioelectric signaling cues can serve as a powerful modality in controlling the cell behaviour, which can contribute additional insights for development and regeneration.

  4. Teaching the physics of medical imaging: an active learning approach involving imaging of biological tissue

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pihl, Michael Johannes; Lonsdale, Markus Nowak

    2008-01-01

    Introduction to medical imaging is an experimentally oriented course in the physics of medical imaging, where the students record, process and analyse 3D data of an unknown piece of formalin fixed animal tissue embedded in agar in order to estimate the tissue types present. Planar X-ray, CT, MRI......, ultrasound and SPECT/PET images are recorded, showing the tissue in very different ways. In order for the students to estimate the tissue type, they need to study the physical principles of the imaging modalities. The “true” answer is subsequently revealed by slicing the tissue....

  5. Exchange effects in direct reactions

    International Nuclear Information System (INIS)

    LeMere, M.; Kanellopoulos, E.J.; Suenkel, W.; Tang, Y.C.

    1979-01-01

    The effect of antisymmetrization in direct reactions is examined by studying the properties of the coupling-normalization kernel function occurring in a resonating-group formulation. From this study, one obtains useful information concerning the general behavior of direct-reactiion processes and some justification for the use of three-body models in phenomenological analyses

  6. Abdominal adipose tissue compartments vary with ethnicity in Asian neonates: Growing Up in Singapore Toward Healthy Outcomes birth cohort study.

    Science.gov (United States)

    Tint, Mya Thway; Fortier, Marielle V; Godfrey, Keith M; Shuter, Borys; Kapur, Jeevesh; Rajadurai, Victor S; Agarwal, Pratibha; Chinnadurai, Amutha; Niduvaje, Krishnamoorthy; Chan, Yiong-Huak; Aris, Izzuddin Bin Mohd; Soh, Shu-E; Yap, Fabian; Saw, Seang-Mei; Kramer, Michael S; Gluckman, Peter D; Chong, Yap-Seng; Lee, Yung-Seng

    2016-05-01

    A susceptibility to metabolic diseases is associated with abdominal adipose tissue distribution and varies between ethnic groups. The distribution of abdominal adipose tissue at birth may give insights into whether ethnicity-associated variations in metabolic risk originate partly in utero. We assessed the influence of ethnicity on abdominal adipose tissue compartments in Asian neonates in the Growing Up in Singapore Toward Healthy Outcomes mother-offspring cohort. MRI was performed at ≤2 wk after birth in 333 neonates born at ≥34 wk of gestation and with birth weights ≥2000 g. Abdominal superficial subcutaneous tissue (sSAT), deep subcutaneous tissue (dSAT), and internal adipose tissue (IAT) compartment volumes (absolute and as a percentage of the total abdominal volume) were quantified. In multivariate analyses that were controlled for sex, age, and parity, the absolute and percentage of dSAT and the percentage of sSAT (but not absolute sSAT) were greater, whereas absolute IAT (but not the percentage of IAT) was lower, in Indian neonates than in Chinese neonates. Compared with Chinese neonates, Malay neonates had greater percentages of sSAT and dSAT but similar percentages of IAT. Marginal structural model analyses largely confirmed the results on the basis of volume percentages with controlled direct effects of ethnicity on abdominal adipose tissue; dSAT was significantly greater (1.45 mL; 95% CI: 0.49, 2.41 mL, P = 0.003) in non-Chinese (Indian or Malay) neonates than in Chinese neonates. However, ethnic differences in sSAT and IAT were NS [3.06 mL (95% CI:-0.27, 6.39 mL; P = 0.0712) for sSAT and -1.30 mL (95% CI: -2.64, 0.04 mL; P = 0.057) for IAT in non-Chinese compared with Chinese neonates, respectively]. Indian and Malay neonates have a greater dSAT volume than do Chinese neonates. This finding supports the notion that in utero influences may contribute to higher cardiometabolic risk observed in Indian and Malay persons in our population. If such

  7. Glucose consumption by various tissues in pregnant rats : effects of a 6-day euglycaemic hyperinsulinaemic clamp

    NARCIS (Netherlands)

    Nieuwenhuizen, AG; Schuiling, GA; Bonen, A; Paans, AMJ; Vaalburg, W; Koiter, TR

    In the course of pregnancy maternal tissues become increasingly more insensitive to insulin. As 6 days of euglycaemic hyperinsulinaemic clamping, from day 8 until 14 of gestation, ameliorates total glucose consumption, we analysed the contribution of individual tissues in this phenomenon. We

  8. Three-dimensional assessment of brain tissue morphology

    Science.gov (United States)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  9. Mechanotransduction mechanisms in growing spherically structured tissues

    Science.gov (United States)

    Littlejohns, Euan; Dunlop, Carina M.

    2018-04-01

    There is increasing experimental interest in mechanotransduction in multi-cellular tissues as opposed to single cells. This is driven by a growing awareness of the importance of physiologically relevant three-dimensional culture and of cell–cell and cell–gel interactions in directing growth and development. The paradigm biophysical technique for investigating tissue level mechanobiology in this context is to grow model tissues in artificial gels with well-defined mechanical properties. These studies often indicate that the stiffness of the encapsulating gel can significantly alter cellular behaviours. We demonstrate here potential mechanisms linking tissue growth with stiffness-mediated mechanotransduction. We show how tissue growth in gel systems generates points at which there is a significant qualitative change in the cellular stress and strain experienced. We show analytically how these potential switching points depend on the mechanical properties of the constraining gel and predict when they will occur. Significantly, we identify distinct mechanisms that act separately in each of the stress and strain fields at different times. These observations suggest growth as a potential physical mechanism coupling gel stiffness with cellular mechanotransduction in three-dimensional tissues. We additionally show that non-proliferating areas, in the case that the constraining gel is soft compared with the tissue, will expand and contract passively as a result of growth. Central compartment size is thus seen to not be a reliable indicator on its own for growth initiation or active behaviour.

  10. Histological and MS spectrometric analyses of the modified tissue of bulgy form tadpoles induced by salamander predation

    Directory of Open Access Journals (Sweden)

    Tsukasa Mori

    2012-02-01

    The rapid induction of a defensive morphology by a prey species in face of a predation risk is an intriguing in ecological context; however, the physiological mechanisms that underlie this phenotypic plasticity remain uncertain. Here we investigated the phenotypic changes shown by Rana pirica tadpoles in response to a predation threat by larvae of the salamander Hynobius retardatus. One such response is the bulgy morph phenotype, a relatively rapid swelling in size by the tadpoles that begins within 4 days and reaches a maximum at 8 to 10 days. We found that although the total volume of bodily fluid increased significantly (P<0.01 in bulgy morph tadpoles, osmotic pressure was maintained at the same level as control tadpoles by a significant increase (P<0.01 in Na and Cl ion concentrations. In our previous report, we identified a novel frog gene named pirica that affects the waterproofing of the skin membrane in tadpoles. Our results support the hypothesis that predator-induced expression of pirica on the skin membrane causes retention of absorbed water. Midline sections of bulgy morph tadpoles showed the presence of swollen connective tissue beneath the skin that was sparsely composed of cells containing hyaluronic acid. Mass spectrographic (LC-MS/MS analysis identified histone H3 and 14-3-3 zeta as the most abundant constituents in the liquid aspirated from the connective tissue of bulgy tadpoles. Immunohistochemistry using antibodies against these proteins showed the presence of non-chromatin associated histone H3 in the swollen connective tissue. Histones and 14-3-3 proteins are also involved in antimicrobial activity and secretion of antibacterial proteins, respectively. Bulgy tadpoles have a larger surface area than controls, and their skin often has bite wounds inflicted by the larval salamanders. Thus, formation of the bulgy morph may also require and be supported by activation of innate immune systems.

  11. Optical design and performance of a dual-grating, direct-reading spectrograph for spectrochemical analyses

    International Nuclear Information System (INIS)

    Steinhaus, D.W.; Kline, J.V.; Bieniewski, T.M.; Dow, G.S.; Apel, C.T.

    1979-01-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph

  12. Optical Design And Performance Of A Dual-Grating, Direct-Reading Spectrograph For Spectrochemical Analyses

    Science.gov (United States)

    Steinhaus, David W.; Kline, John V.; Bieniewski, Thomas M.; Dow, Grove S.; Apel, Charles T.

    1980-11-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph.

  13. The magnetization transfer characteristics of human breast tissues: an in vitro NMR study

    Science.gov (United States)

    Callicott, C.; Thomas, J. M.; Goode, A. W.

    1999-05-01

    A series of freshly excised human breast tissues was analysed using a nuclear magnetic resonance spectrometer and then subjected to routine histopathology examination. Tissues comprised normal parenchymal, adipose, fibrocystic, fibroadenoma and malignant types. An inversion-recovery sequence performed both with and without magnetization transfer allowed T1, T1, and values to be obtained. From this information, the magnetization transfer rate constant, K, was calculated for each tissue sample. These data show that T1 provided greater discrimination between neoplasic and normal tissues than did T1. However, neither T1 nor K values provided a means of discriminating between benign and malignant disease.

  14. The effects of optical sensor-tissue separation in endocavitary photoplethysmography.

    Science.gov (United States)

    Patel, Zaibaa; Thaha, Mohamed A; Kyriacou, Panayiotis A

    2018-06-12

    Objective: Intestinal anastomotic failure that occurs mainly due to ischaemia is a serious risk in colorectal cancer patients undergoing surgery. Surgeons continue to rely on subjective methods such as visual inspection to assess intestinal viability during surgery and there are no clinical tools to directly monitor viability postoperatively. A dual wavelength, reflectance optical sensor has been developed for continuous and dynamic monitoring of intestinal viability via the intestinal lumen. Maintaining direct contact between the sensor and the inner intestinal wall can be difficult in an intraluminal design, therefore impacting on signal acquisition and quality. This paper investigates the effect of direct contact versus variable distances between the sensor and the tissue surface of the buccal mucosa as a surrogate. Approach: The in-vivo study involved 20 healthy volunteers to measure the effect of optical sensor-tissue distances on the ability to acquire photoplethysmography signals and their quality. Signals were acquired from the buccal mucosa at five optical sensor-tissue distances. Main results: Distances between 0 mm (contact) to 5 mm were the most optimal, producing signals of high quality and signal-to-noise ratio, resulting in reliable estimations of the blood oxygen saturation. Distances exceeding 5 mm compromised the acquired signals, and were of poor quality, thereby unreliably estimating the blood oxygen saturation. Significance: The developed optical sensor proved to be reliable for acquiring photoplethysmography signals for cases where distances between the optical sensor-tissue may arise during the assessment of intraluminal intestinal viability. © 2018 Institute of Physics and Engineering in Medicine.

  15. 12 Trace Metals Distribution in Fish Tissues, Bottom Sediments and ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    Abstract. Water samples, bottom sediments, Tilapia, and Cat Fish from Okumeshi River in Delta state of Nigeria were analysed ... Keywords: Trace metals, Fish Tissues, Water, Bottom sediments, Okumeshi River. Introduction ..... Grey Mangroove Avicemmia marina (Forsk). ... sewage treatment plant oulet pipe extension on.

  16. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication.

    Science.gov (United States)

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R

    2008-06-01

    The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.

  17. Human tissues in a dish : The research and ethical implications of organoid technology

    NARCIS (Netherlands)

    Bredenoord, Annelien L.; Clevers, Hans; Knoblich, Juergen A.

    2017-01-01

    The ability to generate human tissues in vitro from stem cells has raised enormous expectations among the biomedical research community, patients, and the general public. These organoids enable studies of normal development and disease and allow the testing of compounds directly on human tissue.

  18. EPA Current Research on Cyanotoxins in Fish Tissue

    Science.gov (United States)

    This is a presentation regarding research into the recovery of microcystins from fish tissue. The potential bioaccumulation of toxins is of potential health both because of the direct risk of consumption and the potential for bioaccumulation of toxins. This is a short presentatio...

  19. The brain modulates insulin sensitivity in multiple tissues

    NARCIS (Netherlands)

    Parlevliet, Edwin T.; Coomans, Claudia P.; Rensen, Patrick C. N.; Romijn, Johannes A.

    2014-01-01

    Insulin sensitivity is determined by direct effects of circulating insulin on metabolically active tissues in combination with indirect effects of circulating insulin, i.e. via the central nervous system. The dose-response effects of insulin differ between the various physiological effects of

  20. Plutonium in autopsy tissues in Great Britain

    International Nuclear Information System (INIS)

    Popplewell, D.S.; Ham, G.J.; Johnson, T.E.; Barry, S.F.

    1985-01-01

    From time to time the authors have measured the Pu content of tissues taken at autopsy from people who had worked in the Pu-processing industries including some from Sellafield Works in Cumbria. During the work it became apparent that the results would be more enlightening if they could be compared with the levels of Pu in people who had not worked in the nuclear energy industries. With the objective of making this comparison, the authors commenced a series of Pu analyses on tissues removed at autopsy from members of the general public, who might be expected to have received their body deposits of Pu from fallout from atmospheric nuclear weapons explosions. This note augments some results reported previously in summary form

  1. Advances in biomaterials for preventing tissue adhesion.

    Science.gov (United States)

    Wu, Wei; Cheng, Ruoyu; das Neves, José; Tang, Jincheng; Xiao, Junyuan; Ni, Qing; Liu, Xinnong; Pan, Guoqing; Li, Dechun; Cui, Wenguo; Sarmento, Bruno

    2017-09-10

    Adhesion is one of the most common postsurgical complications, occurring simultaneously as the damaged tissue heals. Accompanied by symptoms such as inflammation, pain and even dyskinesia in particular circumstances, tissue adhesion has substantially compromised the quality of life of patients. Instead of passive treatment, which involves high cost and prolonged hospital stay, active intervention to prevent the adhesion from happening has been accepted as the optimized strategy against this complication. Herein, this paper will cover not only the mechanism of adhesion forming, but also the biomaterials and medicines used in its prevention. Apart from acting as a direct barrier, biomaterials also show promising anti-adhesive bioactivity though their intrinsic physical and chemical are still not completely unveiled. Considering the diversity of human tissue organization, it is imperative that various biomaterials in combination with specific medicine could be tuned to fit the microenvironment of targeted tissues. With the illustration of different adhesion mechanism and solutions, we hope this review can become a beacon and further inspires the development of anti-adhesion biomedicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Structural requirements of research tissue banks derived from standardized project surveillance.

    Science.gov (United States)

    Herpel, E; Koleganova, N; Schreiber, B; Walter, B; Kalle, C V; Schirmacher, P

    2012-07-01

    Tissue banks constitute decisive and rate-limiting resource and technology platforms for basic and translational biomedical research, notably in the area of cancer. Thus, it is essential to plan and structure tissue banking and allocate resources according to research needs, but essential requirements are still incompletely defined. The tissue bank of the National Center of Tumor Diseases Heidelberg (NCT) was founded with the intention to provide tissues of optimal quality and to prioritize the realization of research projects. We analysed its structure and prospective project management registration as well as tracking records for all projects of the NCT tissue bank as of its start in 2005 in order to obtain information that may be relevant for tissue bank planning. All project proposals submitted to the NCT tissue bank (n = 681) were included in the study. For a detailed evaluation of provided services, only projects that were completed until July 2011 (n = 605) were analysed. For these 605 projects, NCT tissue bank provided 769 specific services. In all projects/services, we recorded project leader, type and amount of material provided, type of research (basic/translational), work load of project and project completion. Furthermore, all completed projects were tracked after 90 days according to a standard protocol to determine principal investigators' (PI) satisfaction and quality of the provided material. Until July 2011, 605 projects had been successfully completed as documented by material transfer agreement. Of the projects, 72.7 % addressed basic research, 22.3 % were translational research projects and 3 % concerned epidemiological research; 91 % (n = 546) concerned a single PI and the NTC tissue bank. For these projects, 769 specific services were provided. Of these services, 288 concerned providing formalin-fixed and paraffin-embedded (FFPE) tissue (extracts, full size sections), 126 providing fresh frozen materials (including fresh frozen

  3. The use of microtechnology and nanotechnology in fabricating vascularized tissues.

    Science.gov (United States)

    Obregón, Raquel; Ramón-Azcón, Javier; Ahadian, Samad; Shiku, Hitoshi; Bae, Hojae; Ramalingam, Murugan; Matsue, Tomokazu

    2014-01-01

    Tissue engineering (TE) is a multidisciplinary research area that combines medicine, biology, and material science. In recent decades, microtechnology and nanotechnology have also been gradually integrated into this field and have become essential components of TE research. Tissues and complex organs in the body depend on a branched blood vessel system. One of the main objectives for TE researchers is to replicate this vessel system and obtain functional vascularized structures within engineered tissues or organs. With the help of new nanotechnology and microtechnology, significant progress has been made. Achievements include the design of nanoscale-level scaffolds with new functionalities, development of integrated and rapid nanotechnology methods for biofabrication of vascular tissues, discovery of new composite materials to direct differentiation of stem and inducible pluripotent stem cells into the vascular phenotype. Although numerous challenges to replicating vascularized tissue for clinical uses remain, the combination of these new advances has yielded new tools for producing functional vascular tissues in the near future.

  4. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  5. Restoring nervous system structure and function using tissue engineered living scaffolds

    Institute of Scientific and Technical Information of China (English)

    Laura A Struzyna; James P Harris; Kritika S Katiyar; H Isaac Chen; D KacyCullen

    2015-01-01

    Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following ner-vous system injury or neurodegenerative disease. Disconnection of axon pathways – the long-distance ifbers connecting specialized regions of the central nervous system or relaying peripheral signals – is a common feature of many neurological disorders and injury. However, functional axonal regenera-tion rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engi-neered “living scaffolds”, which are preformed three-dimensional constructs consisting of living neural cells in a deifned, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration – mimicking key developmental mechanisms– or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  6. Restoring nervous system structure and function using tissue engineered living scaffolds

    Directory of Open Access Journals (Sweden)

    Laura A Struzyna

    2015-01-01

    Full Text Available Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways - the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals - is a common feature of many neurological disorders and injury. However, functional axonal regeneration rarely occurs due to extreme distances to targets, absence of directed guidance, and the presence of inhibitory factors in the central nervous system, resulting in devastating effects on cognitive and sensorimotor function. To address this need, we are pursuing multiple strategies using tissue engineered "living scaffolds", which are preformed three-dimensional constructs consisting of living neural cells in a defined, often anisotropic architecture. Living scaffolds are designed to restore function by serving as a living labeled pathway for targeted axonal regeneration - mimicking key developmental mechanisms- or by restoring lost neural circuitry via direct replacement of neurons and axonal tracts. We are currently utilizing preformed living scaffolds consisting of neuronal clusters spanned by long axonal tracts as regenerative bridges to facilitate long-distance axonal regeneration and for targeted neurosurgical reconstruction of local circuits in the brain. Although there are formidable challenges in preclinical and clinical advancement, these living tissue engineered constructs represent a promising strategy to facilitate nervous system repair and functional recovery.

  7. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.

    Science.gov (United States)

    Colosi, Cristina; Costantini, Marco; Barbetta, Andrea; Dentini, Mariella

    2017-01-01

    3D bioprinting is an emerging field that can be described as a robotic additive biofabrication technology that has the potential to build tissues or organs. In general, bioprinting uses a computer-controlled printing device to accurately deposit cells and biomaterials into precise architectures with the goal of creating on demand organized multicellular tissue structures and eventually intra-organ vascular networks. The latter, in turn, will promote the host integration of the engineered tissue/organ in situ once implanted. Existing biofabrication techniques still lay behind this goal. Here, we describe a novel microfluidic printing head-integrated within a custom 3D bioprinter-that allows for the deposition of multimaterial and/or multicellular within a single scaffold by extruding simultaneously different bioinks or by rapidly switching between one bioink and another. The designed bioprinting method effectively moves toward the direction of creating viable tissues and organs for implantation in clinic and research in lab environments.

  8. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  9. The clinical microscope and direct composite veneer

    DEFF Research Database (Denmark)

    Pascotto, Renata C; Benetti, Ana Raquel

    2010-01-01

    This paper presents the advantages and limitations related to the use of a clinical microscope in restorative dentistry, and it demonstrates the aid of magnification during preparation and restoration of a direct composite veneer. Good illumination and visibility is important to adequately viewin...... the adjacent dental tissues so that the resin composite buildup can mimic natural teeth. The reproduction of details results in a naturally esthetic direct veneer....

  10. Design and 3D Printing of Scaffolds and Tissues

    Directory of Open Access Journals (Sweden)

    Jia An

    2015-06-01

    Full Text Available A growing number of three-dimensional (3D-printing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS and fused deposition modeling (FDM processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.

  11. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues.

    Science.gov (United States)

    Astruc, Laure; De Meulaere, Maurice; Witz, Jean-François; Nováček, Vit; Turquier, Frédéric; Hoc, Thierry; Brieu, Mathias

    2018-06-01

    Abdominal wall sheathing tissues are commonly involved in hernia formation. However, there is very limited work studying mechanics of all tissues from the same donor which prevents a complete understanding of the abdominal wall behavior and the differences in these tissues. The aim of this study was to investigate the differences between the mechanical properties of the linea alba and the anterior and posterior rectus sheaths from a macroscopic point of view. Eight full-thickness human anterior abdominal walls of both genders were collected and longitudinal and transverse samples were harvested from the three sheathing connective tissues. The total of 398 uniaxial tensile tests was conducted and the mechanical characteristics of the behavior (tangent rigidities for small and large deformations) were determined. Statistical comparisons highlighted heterogeneity and non-linearity in behavior of the three tissues under both small and large deformations. High anisotropy was observed under small and large deformations with higher stress in the transverse direction. Variabilities in the mechanical properties of the linea alba according to the gender and location were also identified. Finally, data dispersion correlated with microstructure revealed that macroscopic characterization is not sufficient to fully describe behavior. Microstructure consideration is needed. These results provide a better understanding of the mechanical behavior of the abdominal wall sheathing tissues as well as the directions for microstructure-based constitutive model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples.

    Science.gov (United States)

    Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A

    2011-06-30

    Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.

  13. Connective tissue graft as a biological barrier for guided tissue regeneration in intrabony defects: a histological study in dogs.

    Science.gov (United States)

    Ribeiro, Fernando Salimon; Pontes, Ana Emília Farias; Zuza, Elizangela Partata; da Silva, Vanessa Camila; Lia, Raphael Carlos Comelli; Marcantonio Junior, Elcio

    2015-06-01

    The use of the autogenous periosteal graft as biological barrier has been proposed for periodontal regeneration. The aim of this study was to evaluate the histometric findings of the subepithelial connective tissue graft as barrier in intrabony defects compared to a bioabsorbable membrane. Three-walled intrabony defects were created surgically in the mesial aspect of the right and left maxillary canines in five healthy mongrel dogs. The defects were chronified, and two types of barriers were randomly carried out for guided tissue regeneration in a split-mouth design: the test group with a subepithelial connective tissue graft and the control group with a bioabsorbable membrane. The specimens were processed for histometric analyses of the epithelium (E), connective tissue (CT), newly formed cementum (NC), new bone (NB), and total newly formed tissues (NFT). The test side showed smaller mean of NC (3.6 ± 1.2), NB (2.1 ± 0.7), and NFT (7.7 ± 0.8) than the control group (NC 7.3 ± 0.5; NB 5.3 ± 1.3; NFT 10.1 ± 2.2; P  0.05) and CT (test 2.5 ± 1.1; control 2.0 ± 0.5; P > 0.05) between groups. The bioabsorbable membrane was more effective in maintaining the space for periodontal regeneration than periosteal connective graft when used as barrier. The bioabsorbable membrane showed more favorable regenerative results in intrabony defects in dogs than the subepithelial connective tissue graft as biological barrier.

  14. Discriminating between Interstitial and Circulating Leukocytes in Tissues of the Murine Oral Mucosa Avoiding Nasal-Associated Lymphoid Tissue Contamination.

    Science.gov (United States)

    Bittner-Eddy, Peter D; Fischer, Lori A; Tu, Andy A; Allman, Daniel A; Costalonga, Massimo

    2017-01-01

    Periodontitis is a chronic inflammatory response to a microbial biofilm that destroys bone and soft tissues supporting the teeth. Murine models of periodontitis based on Porphyromonas gingivalis ( Pg ) colonization have shown that extravasation of leukocytes into oral tissue is critical to driving alveolar bone destruction. Identifying interstitial leukocytes is key to understanding the immunopathogenesis of periodontitis. Here, we describe a robust flow cytometry assay based on intravenous FITC-conjugated anti-mouse CD45 mAb that distinguishes interstitial leukocytes in the oral mucosa of mice from those circulating within the vasculature or in post-dissection contaminating blood. Unaccounted circulating leukocytes skewed the relative frequency of B cells and granulocytes and inflated the numbers of all leukocyte cell types. We also describe a dissection technique that avoids contamination of oral mucosal tissues with nasal-associated lymphoid tissues (NALT), a B cell rich organ that can inflate leukocyte numbers at least 10-fold and skew the assessment of interstitial CD4 T cell phenotypes. Unlike circulating CD4 T cells, interstitial CD4 T cells were almost exclusively antigen-experienced cells (CD44 hi ). We report for the first time the presence of antigen-experienced Pg -specific CD4 T cells in NALT following oral feeding of mice with Pg . This new combined flow cytometry and dissection approach allows identification of leukocytes infiltrating the connective tissues of the murine oral mucosa and avoids confounding analyses of leukocytes not recruited to inflamed oral mucosal tissues in disease conditions like periodontitis, candidiasis, or sialadenitis.

  15. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China.

    Science.gov (United States)

    Zou, Qingsong; Fu, Qiang

    2018-04-01

    Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.

  16. Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery.

    Science.gov (United States)

    Miga, Michael I

    2016-01-01

    With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.

  17. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian [University of Bern, From the Institute of Forensic Medicine, Bern (Switzerland); Persson, Anders; Warntjes, Marcel J. [University of Linkoeping, The Center for Medical Image Science and Visualization (CMIV), Linkoeping (Sweden)

    2015-08-15

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  18. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    International Nuclear Information System (INIS)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J.

    2015-01-01

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  19. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  20. Effect of the “protein diet” and bone tissue.

    Science.gov (United States)

    Nascimento da Silva, Zoraide; Azevedo de Jesuz, Vanessa; De Salvo Castro, Eduardo; Soares da Costa, Carlos Alberto; Teles Boaventura, Gilson; Blondet de Azeredo, Vilma

    2014-01-01

    The aim of this study is to evaluate the effect of the hyperproteic diet consumption on bone tissue. The study was conducted during sixty days. Twenty eight Wistar albinus rats, adults, originated from Laboratory of Experimental Nutrition were divided in four groups: (n = 7); Control 1 (C1), Control 2 (C2), Hyperproteic 1 (HP1) e Hyperproteic 2 (HP2). The C2 and HP2 groups were submitted to 30% of food restriction. The hyperproteic diet was based on the Atkins diet and prepared to simulate the protein diet. At the end of the study the animals were anesthetized to performer bone densitometry analyses by DEXA and blood and tissue collection. Serum and bone minerals analyses were conducted by colorimetric methods in automated equipment. The total bone mineral density (BMD) of the pelvis and the spine of the food restriction groups (HP2 e C2) were lower (p hyperproteic groups (HP1 e HP2). It was observed similar effect on the osteocalcin level, that presented lower (p hyperproteic groups. The insulin level was lower only in HP2 and serum calcium of the HP1 and HP2 groups was lower than C1. The protein diet promotes significant bone change on femur and in the hormones levels related to bone synthesis and maintenance of this tissue.

  1. Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering.

    Science.gov (United States)

    Denecke, Bernd; Horsch, Liska D; Radtke, Stefan; Fischer, Johannes C; Horn, Peter A; Giebel, Bernd

    2015-11-01

    One of the major challenges in tissue engineering is to supply larger three-dimensional (3D) bioengineered tissue transplants with sufficient amounts of nutrients and oxygen and to allow metabolite removal. Consequently, artificial vascularization strategies of such transplants are desired. One strategy focuses on endothelial cells capable of initiating new vessel formation, which are settled on scaffolds commonly used in tissue engineering. A bottleneck in this strategy is to obtain sufficient amounts of endothelial cells, as they can be harvested only in small quantities directly from human tissues. Thus, protocols are required to expand appropriate cells in sufficient amounts without interfering with their capability to settle on scaffold materials and to initiate vessel formation. Here, we analysed whether umbilical cord blood (CB)-derived endothelial colony-forming cells (ECFCs) fulfil these requirements. In a first set of experiments, we showed that marginally expanded ECFCs settle and survive on different scaffold biomaterials. Next, we improved ECFC culture conditions and developed a protocol for ECFC expansion compatible with 'Good Manufacturing Practice' (GMP) standards. We replaced animal sera with human platelet lysates and used a novel type of tissue-culture ware. ECFCs cultured under the new conditions revealed significantly lower apoptosis and increased proliferation rates. Simultaneously, their viability was increased. Since extensively expanded ECFCs could still settle on scaffold biomaterials and were able to form tubular structures in Matrigel assays, we conclude that these ex vivo-expanded ECFCs are a novel, very potent cell source for scaffold-based tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    Science.gov (United States)

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  3. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    Directory of Open Access Journals (Sweden)

    Julien Barthes

    2014-01-01

    Full Text Available In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells’ behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  4. Analysing persistent organic pollutants in eggs, blood and tissue of the green sea turtle (Chelonia mydas) using gas chromatography with tandem mass spectrometry (GC-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    Merwe, Jason Paul van de; Lee, Shing Yip [Griffith University, Griffith School of Environment and Australian Rivers Institute, Gold Coast, QLD (Australia); Hodge, Mary [Queensland Health Scientific Services, Queensland Government, Coopers Plains, QLD (Australia); Whittier, Joan Margaret [Univ. of Queensland, St. Lucia (Australia). School of Biomedical Sciences

    2009-03-15

    Investigation into persistent organic pollutants (POPs) in sea turtles is an important area of conservation research due to the harmful effects of these chemicals. However, the analysis of POPs in the green sea turtle (Chelonia mydas) has been limited by methods with relatively high limits of detection and high costs associated with multiple sample injections into complex arrangements of analytical equipment. The present study aimed to develop a method that could detect a large number of POPs in the blood, eggs and tissue of C. mydas at trace concentrations. A gas chromatography with tandem mass spectrometry (GC-MS/MS) method was developed that could report 125 POP compounds to a limit of detection of <35 pg g{sup -1} using a single sample injection. The recoveries of internal standards ranged from 30% to 96%, and the standard reference materials were reported to within 70% of the certified values. The coefficient of variation of ten replicates of pooled egg sample was <20% for all compounds, indicating low within-run variation. This GC-MS/MS method is an improvement of previous methods for analysing POPs in C. mydas in that more compounds can be reported at lower concentrations and the accuracy and precision of the method are sound. This is particularly important for C. mydas as they occupy a low trophic level and have lower concentrations of POPs. This method is also simple to set up, and there are minimal differences in sample preparation for the different tissue types. (orig.)

  5. Effective atomic numbers of some tissue substitutes by different methods: A comparative study

    Directory of Open Access Journals (Sweden)

    Vishwanath P Singh

    2014-01-01

    Full Text Available Effective atomic numbers of some human organ tissue substitutes such as polyethylene terephthalate, red articulation wax, paraffin 1, paraffin 2, bolus, pitch, polyphenylene sulfide, polysulfone, polyvinylchloride, and modeling clay have been calculated by four different methods like Auto-Z eff, direct, interpolation, and power law. It was found that the effective atomic numbers computed by Auto-Z eff , direct and interpolation methods were in good agreement for intermediate energy region (0.1 MeV < E < 5 MeV where the Compton interaction dominates. A large difference in effective atomic numbers by direct method and Auto-Z eff was observed in photo-electric and pair-production regions. Effective atomic numbers computed by power law were found to be close to direct method in photo-electric absorption region. The Auto-Z eff , direct and interpolation methods were found to be in good agreement for computation of effective atomic numbers in intermediate energy region (100 keV < E < 10 MeV. The direct method was found to be appropriate method for computation of effective atomic numbers in photo-electric region (10 keV < E < 100 keV. The tissue equivalence of the tissue substitutes is possible to represent by any method for computation of effective atomic number mentioned in the present study. An accurate estimation of Rayleigh scattering is required to eliminate effect of molecular, chemical, or crystalline environment of the atom for estimation of gamma interaction parameters.

  6. Optical clearing of tissues and blood using the immersion method

    International Nuclear Information System (INIS)

    Tuchin, Valery V

    2005-01-01

    This paper aims to review recent results on the optical clearing of the naturally turbid biological tissues and blood using the optical immersion technique, which is well known in physical science and is applied for the reduction of light scattering and undesirable reflections in the optical system. Basic principles of the technique, its advantages, limitations and future are discussed. The refractive index matching concept for enhancement of in-depth light penetration into tissues and blood is presented on the basis of in vitro and in vivo studies using optical spectroscopy, polarization and coherence-domain techniques. The index matching of scatterers and ground matter by means of administration of clearing agents is under discussion. The optical properties of tissues with basic multiple scattering, which are transformed to a low scattering mode, are analysed. It is shown that light reflection, transmission, scattering and polarization can be effectively controlled. The possibilities of using the optical immersion method for diagnostic purposes based on contrasting of abnormalities, on in-depth profiling of tissue and blood and on monitoring of endogenous and exogenous matter diffusion within tissue are demonstrated

  7. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    Science.gov (United States)

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  8. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Lyons

    Full Text Available Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  9. Evaluation of small intestine grafts decellularization methods for corneal tissue engineering.

    Directory of Open Access Journals (Sweden)

    Ana Celeste Oliveira

    Full Text Available Advances in the development of cornea substitutes by tissue engineering techniques have focused on the use of decellularized tissue scaffolds. In this work, we evaluated different chemical and physical decellularization methods on small intestine tissues to determine the most appropriate decellularization protocols for corneal applications. Our results revealed that the most efficient decellularization agents were the SDS and triton X-100 detergents, which were able to efficiently remove most cell nuclei and residual DNA. Histological and histochemical analyses revealed that collagen fibers were preserved upon decellularization with triton X-100, NaCl and sonication, whereas reticular fibers were properly preserved by decellularization with UV exposure. Extracellular matrix glycoproteins were preserved after decellularization with SDS, triton X-100 and sonication, whereas proteoglycans were not affected by any of the decellularization protocols. Tissue transparency was significantly higher than control non-decellularized tissues for all protocols, although the best light transmittance results were found in tissues decellularized with SDS and triton X-100. In conclusion, our results suggest that decellularized intestinal grafts could be used as biological scaffolds for cornea tissue engineering. Decellularization with triton X-100 was able to efficiently remove all cells from the tissues while preserving tissue structure and most fibrillar and non-fibrillar extracellular matrix components, suggesting that this specific decellularization agent could be safely used for efficient decellularization of SI tissues for cornea TE applications.

  10. Tissue Engineering Stem Cells – An e-Governance Strategy

    Science.gov (United States)

    Grange, Simon

    2011-01-01

    The rules of governance are changing. They are necessarily becoming more stringent as interventions offered to treat conditions carry unpredictable side effects, often associated with novel therapeutic vectors. The clinical relevance of this relates to the obligations of those involved in research, to ensure the best protection for subjects whilst encouraging the development of the field. Existing evidence supports the concept of e-Governance both in operational health research and more broadly in the strategic domain of policy formation. Building on the impact of the UK Comprehensive Research Network and recent EU Directives, it is now possible to focus on the issues of regulation for cell therapies in musculoskeletal science through the development of the Advanced Therapeutic Medicinal Products (ATMP) category of research products. This article reviews the framework that has borne this and the need for more detailed Virtual Research Integration and Collaboration (VRIC) systems to ensure regulatory compliance. Technology research and development plans must develop in close association between tissue engineering and treating clinicians. The scope of this strategy relates to the handling of human tissues the transport and storage of specimens in accordance with current EU directives and the Human Tissue Authority (HTA) regulations. PMID:21886693

  11. Improved resolution by mounting of tissue sections for laser microdissection.

    Science.gov (United States)

    van Dijk, M C R F; Rombout, P D M; Dijkman, H B P M; Ruiter, D J; Bernsen, M R

    2003-08-01

    Laser microbeam microdissection has greatly facilitated the procurement of specific cell populations from tissue sections. However, the fact that a coverslip is not used means that the morphology of the tissue sections is often poor. To develop a mounting method that greatly improves the morphological quality of tissue sections for laser microbeam microdissection purposes so that the identification of target cells can be facilitated. Fresh frozen tissue and formalin fixed, paraffin wax embedded tissue specimens were used to test the morphological quality of mounted and unmounted tissue. The mounting solution consisted of an adhesive gum and blue ink diluted in water. Interference of the mounting solution with DNA quality was analysed by the polymerase chain reaction using 10-2000 cells isolated by microdissection from mounted and unmounted tissue. The mounting solution greatly improved the morphology of tissue sections for laser microdissection purposes and had no detrimental effects on the isolation and efficiency of amplification of DNA. One disadvantage was that the mounting solution reduced the cutting efficiency of the ultraviolet laser. To minimise this effect, the mounting solution should be diluted as much as possible. Furthermore, the addition of blue ink to the mounting medium restores the cutting efficiency of the laser. The mounting solution is easy to prepare and apply and can be combined with various staining methods without compromising the quality of the DNA extracted.

  12. Reproducibility of neuroimaging analyses across operating systems.

    Science.gov (United States)

    Glatard, Tristan; Lewis, Lindsay B; Ferreira da Silva, Rafael; Adalat, Reza; Beck, Natacha; Lepage, Claude; Rioux, Pierre; Rousseau, Marc-Etienne; Sherif, Tarek; Deelman, Ewa; Khalili-Mahani, Najmeh; Evans, Alan C

    2015-01-01

    Neuroimaging pipelines are known to generate different results depending on the computing platform where they are compiled and executed. We quantify these differences for brain tissue classification, fMRI analysis, and cortical thickness (CT) extraction, using three of the main neuroimaging packages (FSL, Freesurfer and CIVET) and different versions of GNU/Linux. We also identify some causes of these differences using library and system call interception. We find that these packages use mathematical functions based on single-precision floating-point arithmetic whose implementations in operating systems continue to evolve. While these differences have little or no impact on simple analysis pipelines such as brain extraction and cortical tissue classification, their accumulation creates important differences in longer pipelines such as subcortical tissue classification, fMRI analysis, and cortical thickness extraction. With FSL, most Dice coefficients between subcortical classifications obtained on different operating systems remain above 0.9, but values as low as 0.59 are observed. Independent component analyses (ICA) of fMRI data differ between operating systems in one third of the tested subjects, due to differences in motion correction. With Freesurfer and CIVET, in some brain regions we find an effect of build or operating system on cortical thickness. A first step to correct these reproducibility issues would be to use more precise representations of floating-point numbers in the critical sections of the pipelines. The numerical stability of pipelines should also be reviewed.

  13. A Review of the Responses of Two- and Three-Dimensional Engineered Tissues to Electric Fields

    Science.gov (United States)

    Hronik-Tupaj, Marie

    2012-01-01

    The application of external biophysical signals is one approach to tissue engineering that is explored less often than more traditional additions of exogenous biochemical and chemical factors to direct cell and tissue outcomes. The study of bioelectromagnetism and the field of electrotherapeutics have evolved over the years, and we review biocompatible electric stimulation devices and their successful application to tissue growth. Specifically, information on capacitively coupled alternating current, inductively coupled alternating current, and direct current devices is described. Cell and tissue responses from the application of these devices, including two- and three-dimensional in vitro studies and in vivo studies, are reviewed with regard to cell proliferation, adhesion, differentiation, morphology, and migration and tissue function. The current understanding of cellular mechanisms related to electric stimulation is detailed. The advantages of electric stimulation are compared with those pf other techniques, and areas in which electric fields are used as an adjuvant therapy for healing and regeneration are discussed. PMID:22046979

  14. Two-dimensional patterning of thin coatings for the control of tissue outgrowth

    DEFF Research Database (Denmark)

    Thissen, H.; Johnson, G.; Hartley, P.G.

    2006-01-01

    were used to provide evidence of successful surface modifications. Adsorption of the extracellular matrix protein collagen I followed by tissue outgrowth experiments with bovine corneal epithelial tissue for up to 21 days showed that two-dimensional control over tissue outgrowth is achievable with our......Control of the precise location and extent of cellular attachment and proliferation, and of tissue outgrowth is important in a number of biomedical applications, including biomaterials and tissue engineered medical devices. Here we describe a method to control and direct the location and define...... boundaries of tissue growth on surfaces in two dimensions. The method relies on the generation of a spatially defined surface chemistry comprising protein adsorbing and non-adsorbing areas that allow control over the adsorption of cell-adhesive glycoproteins. Surface modification was carried out...

  15. Photoluminescent carbogenic nanoparticles directly derived from crude biomass

    KAUST Repository

    Krysmann, Marta J.; Kelarakis, Antonios; Giannelis, Emmanuel P.

    2012-01-01

    We present an environmentally benign, energy efficient and readily scalable approach to synthesize photoluminescent carbogenic nanoparticles directly from soft tissue biomass. Our approach relies on the pyrolytic decomposition of grass that gives

  16. A tissue-specific approach to the analysis of metabolic changes in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jürgen Hench

    Full Text Available The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens.

  17. Bimodal electric tissue ablation (BETA) - in-vivo evaluation of the effect of applying direct current before and during radiofrequency ablation of porcine liver

    International Nuclear Information System (INIS)

    Cockburn, J.F.; Maddern, G.J.; Wemyss-Holden, S.A.

    2007-01-01

    Aim: To examine the effect of applying increasing amounts of direct current (DC) before and during alternating current radiofrequency ablation of porcine liver. Materials and methods: Using a Radiotherapeutics RF3000 generator, a 9 V AC/DC transformer and a 16 G plain aluminium tube as an electrode, a control group of 24 porcine hepatic radiofrequency ablation zones was compared with 24 zones created using a bimodal electric tissue ablation (BETA) technique in three pigs. All ablations were terminated when tissue impedance rose to greater than 999 Ω or radiofrequency energy input fell below 5 W on three successive measurements taken at 1 min intervals. BETA ablations were performed in two phases: an initial phase of variable duration DC followed by a second phase during which standard radiofrequency ablation was applied simultaneously with DC. During this second phase, radiofrequency power input was regulated by the feedback circuitry of the RF3000 generator according to changes in tissue impedance. The diameters (mm) of each ablation zone were measured by two observers in two planes perpendicular to the plane of needle insertion. The mean short axis diameter of each ablation zone was subjected to statistical analysis. Results: With increased duration of prior application of DC, there was a progressive increase in the diameter of the ablation zone (p < 0.001). This effect increased sharply up to 300 s of pre-treatment after which a further increase in diameter occurred, but at a much lesser rate. A maximum ablation zone diameter of 32 mm was produced (control diameters 10-13 mm). Conclusion: Applying a 9 V DC to porcine liver in vivo, and continuing this DC application during subsequent radiofrequency ablation, results in larger ablation zone diameters compared with radiofrequency ablation alone

  18. Differential tissue expression of enhanced green fluorescent protein in 'green mice'.

    Science.gov (United States)

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-06-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.

  19. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain.

    Directory of Open Access Journals (Sweden)

    Uta Faust

    Full Text Available Recognition of external mechanical signals is vital for mammalian cells. Cyclic stretch, e.g. around blood vessels, is one such signal that induces cell reorientation from parallel to almost perpendicular to the direction of stretch. Here, we present quantitative analyses of both, cell and cytoskeletal reorientation of umbilical cord fibroblasts. Cyclic strain of preset amplitudes was applied at mHz frequencies. Elastomeric chambers were specifically designed and characterized to distinguish between zero strain and minimal stress directions and to allow accurate theoretical modeling. Reorientation was only induced when the applied stretch exceeded a specific amplitude, suggesting a non-linear response. However, on very soft substrates no mechanoresponse occurs even for high strain. For all stretch amplitudes, the angular distributions of reoriented cells are in very good agreement with a theory modeling stretched cells as active force dipoles. Cyclic stretch increases the number of stress fibers and the coupling to adhesions. We show that changes in cell shape follow cytoskeletal reorientation with a significant temporal delay. Our data identify the importance of environmental stiffness for cell reorientation, here in direction of zero strain. These in vitro experiments on cultured cells argue for the necessity of rather stiff environmental conditions to induce cellular reorientation in mammalian tissues.

  20. The magnetization transfer characteristics of human breast tissues: an in vitro NMR study

    International Nuclear Information System (INIS)

    Callicott, C.; Thomas, J.M.; Goode, A.W.

    1999-01-01

    A series of freshly excised human breast tissues was analysed using a nuclear magnetic resonance spectrometer and then subjected to routine histopathology examination. Tissues comprised normal parenchymal, adipose, fibrocystic, fibroadenoma and malignant types. An inversion-recovery sequence performed both with and without magnetization transfer allowed T1, T1 5 , M o and M 5 values to be obtained. From this information, the magnetization transfer rate constant, K, was calculated for each tissue sample. These data show that T1 5 provided greater discrimination between neoplasic and normal tissues than did T1. However, neither T1 5 nor K values provided a means of discriminating between benign and malignant disease. (author)

  1. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  2. Contact with existing adipose tissue is inductive for adipogenesis in matrigel.

    LENUS (Irish Health Repository)

    Kelly, John L

    2006-07-01

    The effect of adipose tissue on inductive adipogenesis within Matrigel (BD Biosciences) was assessed by using a murine chamber model containing a vascular pedicle. Three-chamber configurations that varied in the access to an adipose tissue source were used, including sealed- and open-chamber groups that had no access and limited access, respectively, to the surrounding adipose tissue, and a sealed-chamber group in which adipose tissue was placed as an autograft. All groups showed neovascularization, but varied in the amount of adipogenesis seen in direct relation to their access to preexisting adipose tissue: open chambers showed strong adipogenesis, whereas the sealed chambers had little or no adipose tissue; adipogenesis was restored in the autograft chamber group that contained 2- to 5-mg fat autografts. These showed significantly more adipogenesis than the sealed chambers with no autograft ( p < 0.01). Autografts with 1mg of fat were capable of producing adipogenesis but did so less consistently than the larger autografts. These findings have important implications for adipose tissue engineering strategies and for understanding de novo production of adipose tissue.

  3. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering.

    Science.gov (United States)

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A

    2016-02-06

    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  4. Circadian clocks are resounding in peripheral tissues.

    Directory of Open Access Journals (Sweden)

    Andrey A Ptitsyn

    2006-03-01

    Full Text Available Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%-10% of transcribed genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of circadian gene expression on a large dataset representing three different peripheral tissues. The data have been produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of circadian mechanisms on any biological pathway related to metabolism and obesity.

  5. Lipid Directed Intrinsic Membrane Protein Segregation

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Thompson, James R.; Helix Nielsen, Claus

    2013-01-01

    We demonstrate a new approach for direct reconstitution of membrane proteins during giant vesicle formation. We show that it is straightforward to create a tissue-like giant vesicle film swelled with membrane protein using aquaporin SoPIP2;1 as an illustration. These vesicles can also be easily h...

  6. Directed network modules

    International Nuclear Information System (INIS)

    Palla, Gergely; Farkas, Illes J; Pollner, Peter; Derenyi, Imre; Vicsek, Tamas

    2007-01-01

    A search technique locating network modules, i.e. internally densely connected groups of nodes in directed networks is introduced by extending the clique percolation method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos-Renyi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own web-pages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and Google's web-pages, overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory network tend to overlap via out-hubs

  7. Sleep deprivation affects inflammatory marker expression in adipose tissue

    Directory of Open Access Journals (Sweden)

    Santos Ronaldo VT

    2010-10-01

    Full Text Available Abstract Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C group and a paradoxical sleep deprivation by 96 h (PSD group. Ten rats were randomly assigned to either the control group (C or the PSD. Mesenteric (MEAT and retroperitoneal (RPAT adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL-6, interleukin (IL-10 and tumour necrosis factor (TNF-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG, VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum.

  8. Identification and characterization of angiogenesis targets through proteomic profiling of endothelial cells in human cancer tissues.

    Directory of Open Access Journals (Sweden)

    Mehdi Mesri

    Full Text Available Genomic and proteomic analysis of normal and cancer tissues has yielded abundant molecular information for potential biomarker and therapeutic targets. Considering potential advantages in accessibility to pharmacological intervention, identification of targets resident on the vascular endothelium within tumors is particularly attractive. By employing mass spectrometry (MS as a tool to identify proteins that are over-expressed in tumor-associated endothelium relative to normal cells, we aimed to discover targets that could be utilized in tumor angiogenesis cancer therapy. We developed proteomic methods that allowed us to focus our studies on the discovery of cell surface/secreted proteins, as they represent key antibody therapeutic and biomarker opportunities. First, we isolated endothelial cells (ECs from human normal and kidney cancer tissues by FACS using CD146 as a marker. Additionally, dispersed human colon and lung cancer tissues and their corresponding normal tissues were cultured ex-vivo and their endothelial content were preferentially expanded, isolated and passaged. Cell surface proteins were then preferentially captured, digested with trypsin and subjected to MS-based proteomic analysis. Peptides were first quantified, and then the sequences of differentially expressed peptides were resolved by MS analysis. A total of 127 unique non-overlapped (157 total tumor endothelial cell over-expressed proteins identified from directly isolated kidney-associated ECs and those identified from ex-vivo cultured lung and colon tissues including known EC markers such as CD146, CD31, and VWF. The expression analyses of a panel of the identified targets were confirmed by immunohistochemistry (IHC including CD146, B7H3, Thy-1 and ATP1B3. To determine if the proteins identified mediate any functional role, we performed siRNA studies which led to previously unidentified functional dependency for B7H3 and ATP1B3.

  9. Establishment of the optimum two-dimensional electrophoresis system of ovine ovarian tissue.

    Science.gov (United States)

    Jia, J L; Zhang, L P; Wu, J P; Wang, J; Ding, Q

    2014-08-26

    Lambing performance of sheep is the most important economic trait and is regarded as a critic factoring affecting the productivity in sheep industry. Ovary plays the most roles in lambing trait. To establish the optimum two-dimensional electrophoresis system (2-DE) of ovine ovarian tissue, the common protein extraction methods of animal tissue (trichloroacetic acid/acetone precipitation and direct schizolysis methods) were used to extract ovine ovarian protein, and 17-cm nonlinear immobilized PH 3-10 gradient strips were used for 2-DE. The sample handling, loading quantity of the protein sample, and isoelectric focusing (IEF) steps were manipulated and optimized in this study. The results indicate that the direct schizolysis III method, a 200-μg loading quantity of the protein sample, and IEF steps II (20°C active hydration, 14 h→500 V, 1 h→1000 V 1 h→1000-9000 V, 6 h→80,000 VH→500 V 24 h) are optimal for 2-DE analysis of ovine ovarian tissue. Therefore, ovine ovarian tissue proteomics 2-DE was preliminarily established by the optimized conditions in this study; meanwhile, the conditions identified herein could provide a reference for ovarian sample preparation and 2-DE using tissues from other animals.

  10. The spatial patterns of directional phenotypic selection

    KAUST Repository

    Siepielski, Adam M.; Gotanda, Kiyoko M.; Morrissey, Michael B.; Diamond, Sarah E.; DiBattista, Joseph; Carlson, Stephanie Marie

    2013-01-01

    the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data

  11. Devising tissue ingrowth metrics: a contribution to the computational characterization of engineered soft tissue healing.

    Science.gov (United States)

    Alves, Antoine; Attik, Nina; Bayon, Yves; Royet, Elodie; Wirth, Carine; Bourges, Xavier; Piat, Alexis; Dolmazon, Gaëlle; Clermont, Gaëlle; Boutrand, Jean-Pierre; Grosgogeat, Brigitte; Gritsch, Kerstin

    2018-03-14

    The paradigm shift brought about by the expansion of tissue engineering and regenerative medicine away from the use of biomaterials, currently questions the value of histopathologic methods in the evaluation of biological changes. To date, the available tools of evaluation are not fully consistent and satisfactory for these advanced therapies. We have developed a new, simple and inexpensive quantitative digital approach that provides key metrics for structural and compositional characterization of the regenerated tissues. For example, metrics provide the tissue ingrowth rate (TIR) which integrates two separate indicators; the cell ingrowth rate (CIR) and the total collagen content (TCC) as featured in the equation, TIR% = CIR% + TCC%. Moreover a subset of quantitative indicators describing the directional organization of the collagen (relating structure and mechanical function of tissues), the ratio of collagen I to collagen III (remodeling quality) and the optical anisotropy property of the collagen (maturity indicator) was automatically assessed as well. Using an image analyzer, all metrics were extracted from only two serial sections stained with either Feulgen & Rossenbeck (cell specific) or Picrosirius Red F3BA (collagen specific). To validate this new procedure, three-dimensional (3D) scaffolds were intraperitoneally implanted in healthy and in diabetic rats. It was hypothesized that quantitatively, the healing tissue would be significantly delayed and of poor quality in diabetic rats in comparison to healthy rats. In addition, a chemically modified 3D scaffold was similarly implanted in a third group of healthy rats with the assumption that modulation of the ingrown tissue would be quantitatively present in comparison to the 3D scaffold-healthy group. After 21 days of implantation, both hypotheses were verified by use of this novel computerized approach. When the two methods were run in parallel, the quantitative results revealed fine details and

  12. Evaluation of a Method for Quantifying Eugenol Concentrations in the Fillet Tissue from Freshwater Fish Species.

    Science.gov (United States)

    Meinertz, Jeffery R; Schreier, Theresa M; Porcher, Scott T; Smerud, Justin R

    2016-01-01

    AQUI-S 20E(®) (active ingredient, eugenol; AQUI-S New Zealand Ltd, Lower Hutt, New Zealand) is being pursued for approval as an immediate-release sedative in the United States. A validated method to quantify the primary residue (the marker residue) in fillet tissue from AQUI-S 20E-exposed fish was needed. A method was evaluated for determining concentrations of the AQUI-S 20E marker residue, eugenol, in freshwater fish fillet tissue. Method accuracies from fillet tissue fortified at nominal concentrations of 0.15, 1, and 60 μg/g from six fish species ranged from 88-102%. Within-day and between-day method precisions (% CV) from the fortified tissue were ≤8.4% CV. There were no coextracted compounds from the control fillet tissue of seven fish species that interfered with eugenol analyses. Six compounds used as aquaculture drugs did not interfere with eugenol analyses. The lower limit of quantitation (LLOQ) was 0.012 μg/g. The method was robust, i.e., in most cases, minor changes to the method did not impact method performance. Eugenol was stable in acetonitrile-water (3 + 7, v/v) for at least 14 days, in fillet tissue extracts for 4 days, and in fillet tissue stored at ~ -80°C for at least 84 days.

  13. Fisher statistics for analysis of diffusion tensor directional information.

    Science.gov (United States)

    Hutchinson, Elizabeth B; Rutecki, Paul A; Alexander, Andrew L; Sutula, Thomas P

    2012-04-30

    A statistical approach is presented for the quantitative analysis of diffusion tensor imaging (DTI) directional information using Fisher statistics, which were originally developed for the analysis of vectors in the field of paleomagnetism. In this framework, descriptive and inferential statistics have been formulated based on the Fisher probability density function, a spherical analogue of the normal distribution. The Fisher approach was evaluated for investigation of rat brain DTI maps to characterize tissue orientation in the corpus callosum, fornix, and hilus of the dorsal hippocampal dentate gyrus, and to compare directional properties in these regions following status epilepticus (SE) or traumatic brain injury (TBI) with values in healthy brains. Direction vectors were determined for each region of interest (ROI) for each brain sample and Fisher statistics were applied to calculate the mean direction vector and variance parameters in the corpus callosum, fornix, and dentate gyrus of normal rats and rats that experienced TBI or SE. Hypothesis testing was performed by calculation of Watson's F-statistic and associated p-value giving the likelihood that grouped observations were from the same directional distribution. In the fornix and midline corpus callosum, no directional differences were detected between groups, however in the hilus, significant (pstatistical comparison of tissue structural orientation. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Hormone Receptor Expression Analyses in Neoplastic and Non-Neoplastic Canine Mammary Tissue by a Bead Based Multiplex Branched DNA Assay: A Gene Expression Study in Fresh Frozen and Formalin-Fixed, Paraffin-Embedded Samples.

    Directory of Open Access Journals (Sweden)

    Annika Mohr

    Full Text Available Immunohistochemistry (IHC is currently considered the method of choice for steroid hormone receptor status evaluation in human breast cancer and, therefore, it is commonly utilized for assessing canine mammary tumors. In case of low hormone receptor expression, IHC is limited and thus is complemented by molecular analyses. In the present study, a multiplex bDNA assay was evaluated as a method for hormone receptor gene expression detection in canine mammary tissues. Estrogen receptor (ESR1, progesterone receptor (PGR, prolactin receptor (PRLR and growth hormone receptor (GHR gene expressions were evaluated in neoplastic and non-neoplastic canine mammary tissues. A set of 119 fresh frozen and 180 formalin-fixed, paraffin-embedded (FFPE was comparatively analyzed and used for assay evaluation. Furthermore, a possible association between the hormone receptor expression in different histological subtypes of canine malignant mammary tumors and the castration status, breed and invasive growth of the tumor were analyzed. The multiplex bDNA assay proved to be more sensitive for fresh frozen specimens. Hormone receptor expression found was significantly decreased in malignant mammary tumors in comparison to non-neoplastic tissue and benign mammary tumors. Among the histological subtypes the lowest gene expression levels of ESR1, PGR and PRLR were found in solid, anaplastic and ductal carcinomas. In summary, the evaluation showed that the measurement of hormone receptors with the multiplex bDNA assay represents a practicable method for obtaining detailed quantitative information about gene expression in canine mammary tissue for future studies. Still, comparison with IHC or quantitative real-time PCR is needed for further validation of the present method.

  15. Bone marrow dosimetry in rats using direct tissue counting after injection of radio-iodinated intact monoclonal antibodies or F(ab')2 fragments

    International Nuclear Information System (INIS)

    Buchegger, F.; Chalandon, Y.; Pelegrin, A.; Hardman, N.; Mach, J.P.

    1991-01-01

    Normal rats were injected intravenously with 131I- and 125I-labeled intact murine and chimeric mouse-human monoclonal antibodies directed against carcinoembryonic antigen or with the corresponding F(ab')2 fragments. At different times after injection, individual animals were killed and radioactivity of blood and major organs, including bones and bone marrow, was determined. Ratios comparing radioactivity concentration in different tissues with that of bone marrow were calculated and found to remain stable during several effective half-lives of the antibodies. Mean bone marrow radioactivity was 35% (range, 29%-40%) of that of blood and 126% (range, 108%-147%) of that of liver after injection of intact Mabs or F(ab')2 fragments. In nude rats bearing human colon carcinoma xenografts producing carcinoembryonic antigen, relative bone marrow radioactivity was slightly lower than that in normal rats

  16. Translational neuropharmacology: the use of human isolated gastrointestinal tissues.

    Science.gov (United States)

    Sanger, G J; Broad, J; Kung, V; Knowles, C H

    2013-01-01

    Translational sciences increasingly emphasize the measurement of functions in native human tissues. However, such studies must confront variations in patient age, gender, genetic background and disease. Here, these are discussed with reference to neuromuscular and neurosecretory functions of the human gastrointestinal (GI) tract. Tissues are obtained after informed consent, in collaboration with surgeons (surgical techniques help minimize variables) and pathologists. Given the difficulties of directly recording from human myenteric neurones (embedded between muscle layers), enteric motor nerve functions are studied by measuring muscle contractions/relaxations evoked by electrical stimulation of intrinsic nerves; responses are regionally dependent, often involving cholinergic and nitrergic phenotypes. Enteric sensory functions can be studied by evoking the peristaltic reflex, involving enteric sensory and motor nerves, but this has rarely been achieved. As submucosal neurones are more accessible (after removing the mucosa), direct neuronal recordings are possible. Neurosecretory functions are studied by measuring changes in short-circuit current across the mucosa. For all experiments, basic questions must be addressed. Because tissues are from patients, what are the controls and the influence of disease? How long does it take before function fully recovers? What is the impact of age- and gender-related differences? What is the optimal sample size? Addressing these and other questions minimizes variability and raises the scientific credibility of human tissue research. Such studies also reduce animal use. Further, the many differences between animal and human GI functions also means that human tissue research must question the ethical validity of using strains of animals with unproved translational significance. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  17. Mechanical characterization of the mouse diaphragm with optical coherence elastography reveals fibrosis-related change of direction-dependent muscle tissue stiffness

    Science.gov (United States)

    Wang, Shang; Loehr, James A.; Larina, Irina V.; Rodney, George G.; Larin, Kirill V.

    2016-03-01

    The diaphragm, composed of skeletal muscle, plays an important role in respiration through its dynamic contraction. Genetic and molecular studies of the biomechanics of mouse diaphragm can provide great insights into an improved understanding and potential treatment of the disorders that lead to diaphragm dysfunction (i.e. muscular dystrophy). However, due to the small tissue size, mechanical assessment of mouse diaphragm tissue under its proper physiological conditions has been challenging. Here, we present the application of noncontact optical coherence elastography (OCE) for quantitative elastic characterization of ex vivo mouse diaphragm. Phase-sensitive optical coherence tomography was combined with a focused air-puff system to capture and measure the elastic wave propagation from tissue surface. Experiments were performed on wildtype and dystrophic mouse diaphragm tissues containing different levels of fibrosis. The OCE measurements of elastic wave propagation were conducted along both the longitudinal and transverse axis of the muscle fibers. Cross-correlation of the temporal displacement profiles from different spatial locations was utilized to obtain the propagation time delay, which was used to calculate the wave group velocity and to further quantify the tissue Young's modulus. Prior to and after OCE assessment, peak tetanic force was measured to monitor viability of the tissue during the elasticity measurements. Our experimental results indicate a positive correlation between fibrosis level and tissue stiffness, suggesting this elastic-wave-based OCE method could be a useful tool to monitor mechanical properties of skeletal muscle under physiological and pathological conditions.

  18. Risk-adjusted survival after tissue versus mechanical aortic valve replacement: a 23-year assessment.

    Science.gov (United States)

    Gaca, Jeffrey G; Clare, Robert M; Rankin, J Scott; Daneshmand, Mani A; Milano, Carmelo A; Hughes, G Chad; Wolfe, Walter G; Glower, Donald D; Smith, Peter K

    2013-11-01

    Detailed analyses of risk-adjusted outcomes after mitral valve surgery have documented significant survival decrements with tissue valves at any age. Several recent studies of prosthetic aortic valve replacement (AVR) also have suggested a poorer performance of tissue valves, although analyses have been limited to small matched series. The study aim was to test the hypothesis that AVR with tissue valves is associated with a lower risk-adjusted survival, as compared to mechanical valves. Between 1986 and 2009, primary isolated AVR, with or without coronary artery bypass grafting (CABG), was performed with currently available valve types in 2148 patients (1108 tissue valves, 1040 mechanical). Patients were selected for tissue valves to be used primarily in the elderly. Baseline and operative characteristics were documented prospectively with a consistent variable set over the entire 23-year period. Follow up was obtained with mailed questionnaires, supplemented by National Death Index searches. The average time to death or follow up was seven years, and follow up for survival was 96.2% complete. Risk-adjusted survival characteristics for the two groups were evaluated using a Cox proportional hazards model with stepwise selection of candidate variables. Differences in baseline characteristics between groups were (tissue versus mechanical): median age 73 versus 61 years; non-elective surgery 32% versus 28%; CABG 45% versus 35%; median ejection fraction 55% versus 55%; renal failure 6% versus 1%; diabetes 18% versus 7% (pvalves; however, after risk adjustment for the adverse profiles of tissue valve patients, no significant difference was observed in survival after tissue or mechanical AVR. Thus, the hypothesis did not hold, and risk-adjusted survival was equivalent, of course qualified by the fact that selection bias was evident. With selection criteria that employed tissue AVR more frequently in elderly patients, tissue and mechanical valves achieved similar survival

  19. De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation.

    Science.gov (United States)

    Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L; Chang, Bill Chia-Han; Matzke, Antonius J M; Matzke, Marjori

    2014-09-04

    Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop. Copyright © 2014 Huang et al.

  20. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics.

    Science.gov (United States)

    Haney, Robert A; Ayoub, Nadia A; Clarke, Thomas H; Hayashi, Cheryl Y; Garb, Jessica E

    2014-06-11

    Animal venoms attract enormous interest given their potential for pharmacological discovery and understanding the evolution of natural chemistries. Next-generation transcriptomics and proteomics provide unparalleled, but underexploited, capabilities for venom characterization. We combined multi-tissue RNA-Seq with mass spectrometry and bioinformatic analyses to determine venom gland specific transcripts and venom proteins from the Western black widow spider (Latrodectus hesperus) and investigated their evolution. We estimated expression of 97,217 L. hesperus transcripts in venom glands relative to silk and cephalothorax tissues. We identified 695 venom gland specific transcripts (VSTs), many of which BLAST and GO term analyses indicate may function as toxins or their delivery agents. ~38% of VSTs had BLAST hits, including latrotoxins, inhibitor cystine knot toxins, CRISPs, hyaluronidases, chitinase, and proteases, and 59% of VSTs had predicted protein domains. Latrotoxins are venom toxins that cause massive neurotransmitter release from vertebrate or invertebrate neurons. We discovered ≥ 20 divergent latrotoxin paralogs expressed in L. hesperus venom glands, significantly increasing this biomedically important family. Mass spectrometry of L. hesperus venom identified 49 proteins from VSTs, 24 of which BLAST to toxins. Phylogenetic analyses showed venom gland specific gene family expansions and shifts in tissue expression. Quantitative expression analyses comparing multiple tissues are necessary to identify venom gland specific transcripts. We present a black widow venom specific exome that uncovers a trove of diverse toxins and associated proteins, suggesting a dynamic evolutionary history. This justifies a reevaluation of the functional activities of black widow venom in light of its emerging complexity.

  1. Direct quantification of cell-free, circulating DNA from unpurified plasma.

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Helmig, Susanne; Zahn, Daniela; Kubiak, Thomas; Michal, Matthias; Gori, Tommaso; Ehlert, Tobias; Beiter, Thomas; Simon, Perikles

    2014-01-01

    Cell-free DNA (cfDNA) in body tissues or fluids is extensively investigated in clinical medicine and other research fields. In this article we provide a direct quantitative real-time PCR (qPCR) as a sensitive tool for the measurement of cfDNA from plasma without previous DNA extraction, which is known to be accompanied by a reduction of DNA yield. The primer sets were designed to amplify a 90 and 222 bp multi-locus L1PA2 sequence. In the first module, cfDNA concentrations in unpurified plasma were compared to cfDNA concentrations in the eluate and the flow-through of the QIAamp DNA Blood Mini Kit and in the eluate of a phenol-chloroform isoamyl (PCI) based DNA extraction, to elucidate the DNA losses during extraction. The analyses revealed 2.79-fold higher cfDNA concentrations in unpurified plasma compared to the eluate of the QIAamp DNA Blood Mini Kit, while 36.7% of the total cfDNA were found in the flow-through. The PCI procedure only performed well on samples with high cfDNA concentrations, showing 87.4% of the concentrations measured in plasma. The DNA integrity strongly depended on the sample treatment. Further qualitative analyses indicated differing fractions of cfDNA fragment lengths in the eluate of both extraction methods. In the second module, cfDNA concentrations in the plasma of 74 coronary heart disease patients were compared to cfDNA concentrations of 74 healthy controls, using the direct L1PA2 qPCR for cfDNA quantification. The patient collective showed significantly higher cfDNA levels (mean (SD) 20.1 (23.8) ng/ml; range 5.1-183.0 ng/ml) compared to the healthy controls (9.7 (4.2) ng/ml; range 1.6-23.7 ng/ml). With our direct qPCR, we recommend a simple, economic and sensitive procedure for the quantification of cfDNA concentrations from plasma that might find broad applicability, if cfDNA became an established marker in the assessment of pathophysiological conditions.

  2. Growth factor and proteinase profile of Vivostat® platelet-rich fibrin linked to tissue repair

    DEFF Research Database (Denmark)

    Ågren, Sven Per Magnus; Rasmussen, Karina; Pakkenberg, Bente

    2014-01-01

    . Leucocyte, erythrocyte and platelet counts in whole blood and fibrin-I were determined by automated haematology analyser. Platelet concentration in PRF was quantified manually by stereologic analysis of Giemsa-stained tissue sections, and the total content of five growth factors and MMP-9 by enzyme......·001]. MMP-9 was reduced 139-fold (P tissue regenerative applications....

  3. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    Science.gov (United States)

    Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel

    2017-11-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  4. Engineering flesh : towards professional responsibility for 'lived bodies' in tissue engineering

    NARCIS (Netherlands)

    Derksen, M.H.G.

    2008-01-01

    Engineering Flesh. Towards professional responsibility for ‘lived bodies’ in Tissue Engineering This study analyses the work of biomedical engineers as normative work that affects people’s daily lives as bodies. In biomedical engineering, engineers study bodies as machine-like objects and develop

  5. Pancreatic tissue fluid pressure and pain in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N

    1992-01-01

    A casual relation between pancreatic pressure and pain has been searched for decades but lack of appropriate methods for pressure measurements has hindered progress. During the 1980's the needle method has been used for direct intraoperative pancreatic tissue fluid pressure measurements and later...... for percutaneous sonographically-guided pressure measurements. Clinical and experimental evaluation of the method showed comparable results at intraoperative and percutaneous measurements and little week-to-week variation. Furthermore, comparable pressures in duct and adjacent pancreatic tissue were found, i.......e. the needle pressure mirrors the intraductal pressure. Comparisons of pain registrations, morphological and functional parameters with pancreatic tissue fluid pressure measurements have revealed a relation between pressure and pain which probably is causal. In patients with pain the high pressures previously...

  6. Intracellular pH in Gastric and Rectal Tissue Post Cardiac Arrest

    Science.gov (United States)

    Fisher, Elaine M.; Steiner, Richard P.; LaManna, Joseph C.

    We directly measured pHi using the pH sensitive dye, neutral red. We defined pHi for rectal and gastric tissue in whole tissue and by layer under control and arrest conditions. Fifteen minutes of arrest was not sufficient time to alter the pHi at the rectal or gastric site. On initial inspection, the stomach may be more sensitive to ischemic changes than the rectum. Understanding the mechanism by which PCO2 generation is used to track clinical changes is vital to the early detection of tissue dysoxia in order to effectively treat and manage critically ill patients.

  7. Microwave Tissue Ablation: Biophysics, Technology and Applications

    Science.gov (United States)

    2010-01-01

    Microwave ablation is an emerging treatment option for many cancers, cardiac arrhythmias and other medical conditions. During treatment, microwaves are applied directly to tissues to produce rapid temperature elevations sufficient to produce immediate coagulative necrosis. The engineering design criteria for each application differ, with individual consideration for factors such as desired ablation zone size, treatment duration, and procedural invasiveness. Recent technological developments in applicator cooling, power control and system optimization for specific applications promise to increase the utilization of microwave ablation in the future. This article will review the basic biophysics of microwave tissue heating, provide an overview of the design and operation of current equipment, and outline areas for future research for microwave ablation. PMID:21175404

  8. Characterisation of tissue shrinkage during microwave thermal ablation.

    Science.gov (United States)

    Farina, Laura; Weiss, Noam; Nissenbaum, Yitzhak; Cavagnaro, Marta; Lopresto, Vanni; Pinto, Rosanna; Tosoratti, Nevio; Amabile, Claudio; Cassarino, Simone; Goldberg, S Nahum

    2014-11-01

    The aim of this study was to characterise changes in tissue volume during image-guided microwave ablation in order to arrive at a more precise determination of the true ablation zone. The effect of power (20-80 W) and time (1-10 min) on microwave-induced tissue contraction was experimentally evaluated in various-sized cubes of ex vivo liver (10-40 mm ± 2 mm) and muscle (20 and 40 mm ± 2 mm) embedded in agar phantoms (N = 119). Post-ablation linear and volumetric dimensions of the tissue cubes were measured and compared with pre-ablation dimensions. Subsequently, the process of tissue contraction was investigated dynamically during the ablation procedure through real-time X-ray CT scanning. Overall, substantial shrinkage of 52-74% of initial tissue volume was noted. The shrinkage was non-uniform over time and space, with observed asymmetry favouring the radial (23-43 % range) over the longitudinal (21-29%) direction. Algorithmic relationships for the shrinkage as a function of time were demonstrated. Furthermore, the smallest cubes showed more substantial and faster contraction (28-40% after 1 min), with more considerable volumetric shrinkage (>10%) in muscle than in liver tissue. Additionally, CT imaging demonstrated initial expansion of the tissue volume, lasting in some cases up to 3 min during the microwave ablation procedure, prior to the contraction phenomenon. In addition to an asymmetric substantial shrinkage of the ablated tissue volume, an initial expansion phenomenon occurs during MW ablation. Thus, complex modifications of the tissue close to a radiating antenna will likely need to be taken into account for future methods of real-time ablation monitoring.

  9. Clinical observations with AN-1792 using TAPIR analyses.

    Science.gov (United States)

    Hock, Christoph; Nitsch, Roger M

    2005-01-01

    Clinical observations with AN-1792 using tissue amyloid plaque immunoreactivity (TAPIR) analyses established for the first time evidence in humans that antibodies against beta-amyloid-related epitopes are capable of slowing progression in Alzheimer's disease. Antibodies derived upon TAPIR assay selection may specifically target the pathologic neoepitopes of aggregated A beta species present in amyloid plaques and some of their aggregated, protofibrillar and low molecular weight oligomeric precursors. We briefly summarize here how the proof of concept was established and why it provides the basis for a potential cure for Alzheimer's disease. Copyright 2005 S. Karger AG, Basel.

  10. Soft-tissue reactions following irradiation of primary brain and pituitary tumors

    International Nuclear Information System (INIS)

    Baglan, R.J.; Marks, J.E.

    1981-01-01

    One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface. Patients treated with small portals ( 2 ) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams

  11. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    Science.gov (United States)

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  12. Anisotropic Margin Expansions in 6 Anatomic Directions for Oropharyngeal Image Guided Radiation Therapy

    International Nuclear Information System (INIS)

    Yock, Adam D.; Garden, Adam S.; Court, Laurence E.; Beadle, Beth M.; Zhang, Lifei; Dong, Lei

    2013-01-01

    Purpose: The purpose of this work was to determine the expansions in 6 anatomic directions that produced optimal margins considering nonrigid setup errors and tissue deformation for patients receiving image-guided radiation therapy (IGRT) of the oropharynx. Methods and Materials: For 20 patients who had received IGRT to the head and neck, we deformably registered each patient's daily images acquired with a computed tomography (CT)-on-rails system to his or her planning CT. By use of the resulting vector fields, the positions of volume elements within the clinical target volume (CTV) (target voxels) or within a 1-cm shell surrounding the CTV (normal tissue voxels) on the planning CT were identified on each daily CT. We generated a total of 15,625 margins by dilating the CTV by 1, 2, 3, 4, or 5 mm in the posterior, anterior, lateral, medial, inferior, and superior directions. The optimal margins were those that minimized the relative volume of normal tissue voxels positioned within the margin while satisfying 1 of 4 geometric target coverage criteria and 1 of 3 population criteria. Results: Each pair of geometric target coverage and population criteria resulted in a unique, anisotropic, optimal margin. The optimal margin expansions ranged in magnitude from 1 to 5 mm depending on the anatomic direction of the expansion and on the geometric target coverage and population criteria. Typically, the expansions were largest in the medial direction, were smallest in the lateral direction, and increased with the demand of the criteria. The anisotropic margin resulting from the optimal set of expansions always included less normal tissue than did any isotropic margin that satisfied the same pair of criteria. Conclusions: We demonstrated the potential of anisotropic margins to reduce normal tissue exposure without compromising target coverage in IGRT to the head and neck

  13. Ineffectiveness of rat liver tissues in the screening of connective tissue disease

    International Nuclear Information System (INIS)

    Aziz, Khalil A.

    2004-01-01

    To assess the effectiveness of using rat liver tissue (RLT) for the screening of connective tissue disease (CTD). Results of patient samples submitted to the Clinical Immunology Laboratory, Brimingham Heartlands Hospital, Bordsley Green East, Brimingham, United Kingdom for the investigation of CTD between 2001 and 2002 were analyzed. Positive results for anti-double stranded DNA (dsDNA) antibodies and anti-extractable nuclear antigen (ENA) antibodies were correlated with the results of the corresponding antinuclear antibodies (ANA), obtained by indirect immunofluorescence (IIF) using RLT. In the second part of study samples that were previously tested positive for anti-ENA or anti-dsDNA antibodies were investigated prospectively for ANA using both RLTand human epithelial (Hep-2) cell line. The IIF method employing RLT for screening of CTD, failed to detect ANA patterns from 45% and 25%of patients sample know to contain antibodies to dsDNA and ENA.The anti -dsDNA antibodies that failed to be detected by the RLTwere of low avidity and their clinical significance is unknown. In contrast the antibodies to ENAwere mostly directed against the Ro antigen.In cotrast and like RLT, Hep-2 cell line failed to detect the low avidity anti-dsDNA antibdies.The present study has clearly shown that RLT are ineffective for screening of CTD. It is recommended that laboratories which ars still using these tissues should consider replacing them with the Hep-2 cell line. (author)

  14. Tissue banking in a regional hospital: a promising future concept? First report on fresh frozen tissue banking in a hospital without an integrated institute of pathology.

    Science.gov (United States)

    von Strauss und Torney, Marco; Güller, Ulrich; Rezaeian, Farid; Brosi, Philippe; Terracciano, Luigi; Zuber, Markus

    2012-10-01

    Vital tissue provided by fresh frozen tissue banking is often required for genetic tumor profiling and tailored therapies. However, the potential patient benefits of fresh frozen tissue banking are currently limited to university hospitals. The objective of the present pilot study--the first one in the literature--was to evaluate whether fresh frozen tissue banking is feasible in a regional hospital without an integrated institute of pathology. Patients with resectable breast and colon cancer were included in this prospective study. Both malignant and healthy tissue were sampled using isopentan-based snap-freezing 1 h after tumor resection and stored at -80 °C before transfer to the main tissue bank of a University institute of pathology. The initial costs to set up tissue banking were 35,662 US$. Furthermore, the running costs are 1,250 US$ yearly. During the first 13 months, 43 samples (nine samples of breast cancer and 34 samples of colon cancer) were collected from 41 patients. Based on the pathology reports, there was no interference with standard histopathologic analyses due to the sample collection. This is the first report in the literature providing evidence that tissue banking in a regional hospital without an integrated institute of pathology is feasible. The interesting findings of the present pilot study must be confirmed by larger investigations.

  15. Key Advances in the Systemic Therapy for Soft tissue Sarcomas: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Neelesh Soman

    2013-10-01

    Full Text Available Soft tissue sarcomas (STS represent a heterogeneous group of diverse neoplasms of mesenchymal origin. Once relapsed from standard therapy, STS patients have limited treatment options especially those that present with advanced or metastatic disease. In this review article, we highlight recent clinical data that led to the US Food and Drug Administration (FDA approval of pazopanib (Votrient® for STS and regorafenib (Stivarga®, BAY 73-4506 in gastrointestinal stromal tumours. We also review ongoing safety/efficacy data for trabectedin (Yondelis®, ET-743, and data from clinical studies of ridaforolimus (AP23573; MK-8669 and palifosfamide (ZIO-201. We provide a list of some promising ongoing trials in soft tissue sarcomas including first line studies of TH-302 and trabectedin. Finally, our article delves into recent advances in our understanding of the molecular pathogenesis of STS and novel therapies that might be explored as treatment options for specific STS histologies.

  16. Assessment of cancer and virus antigens for cross-reactivity in human tissues.

    Science.gov (United States)

    Jaravine, Victor; Raffegerst, Silke; Schendel, Dolores J; Frishman, Dmitrij

    2017-01-01

    Cross-reactivity (CR) or invocation of autoimmune side effects in various tissues has important safety implications in adoptive immunotherapy directed against selected antigens. The ability to predict CR (on-target and off-target toxicities) may help in the early selection of safer therapeutically relevant target antigens. We developed a methodology for the calculation of quantitative CR for any defined peptide epitope. Using this approach, we performed assessment of 4 groups of 283 currently known human MHC-class-I epitopes including differentiation antigens, overexpressed proteins, cancer-testis antigens and mutations displayed by tumor cells. In addition, 89 epitopes originating from viral sources were investigated. The natural occurrence of these epitopes in human tissues was assessed based on proteomics abundance data, while the probability of their presentation by MHC-class-I molecules was modelled by the method of Keşmir et al. which combines proteasomal cleavage, TAP affinity and MHC-binding predictions. The results of these analyses for many previously defined peptides are presented as CR indices and tissue profiles. The methodology thus allows for quantitative comparisons of epitopes and is suggested to be suited for the assessment of epitopes of candidate antigens in an early stage of development of adoptive immunotherapy. Our method is implemented as a Java program, with curated datasets stored in a MySQL database. It predicts all naturally possible self-antigens for a given sequence of a therapeutic antigen (or epitope) and after filtering for predicted immunogenicity outputs results as an index and profile of CR to the self-antigens in 22 human tissues. The program is implemented as part of the iCrossR webserver, which is publicly available at http://webclu.bio.wzw.tum.de/icrossr/ CONTACT: d.frishman@wzw.tum.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press

  17. Quantitative ultrasound tissue characterization in shoulder and thigh muscles – a new approach

    Directory of Open Access Journals (Sweden)

    Jørgensen Kurt

    2006-01-01

    Full Text Available Abstract Background The echogenicity patterns of ultrasound scans contain information of tissue composition in muscles. The aim was: (1 to develop a quantitative ultrasound image analysis to characterize tissue composition in terms of intensity and structure of the ultrasound images, and (2 to use the method for characterization of ultrasound images of the supraspinatus muscle, and the vastus lateralis muscle. Methods Computerized texture analyses employing first-order and higher-order grey-scale statistics were developed to objectively characterize ultrasound images of m. supraspinatus and m. vastus lateralis from 9 healthy participants. Results The mean grey-scale intensity was higher in the vastus lateralis muscle (p -2 and for m. supraspinatus: 0.016 mm-2. Conclusion The higher intensity and the higher number of blobs in the vastus lateralis muscle indicates that the thigh muscle contained more non-contractile components than the supraspinatus muscle, and that the muscle was coarser. The image analyses supplemented each other and gave a more complete description of the tissue composition in the muscle than the mean grey-scale value alone.

  18. Tissue microarray immunohistochemical detection of brachyury is not a prognostic indicator in chordoma.

    Science.gov (United States)

    Zhang, Linlin; Guo, Shang; Schwab, Joseph H; Nielsen, G Petur; Choy, Edwin; Ye, Shunan; Zhang, Zhan; Mankin, Henry; Hornicek, Francis J; Duan, Zhenfeng

    2013-01-01

    Brachyury is a marker for notochord-derived tissues and neoplasms, such as chordoma. However, the prognostic relevance of brachyury expression in chordoma is still unknown. The improvement of tissue microarray technology has provided the opportunity to perform analyses of tumor tissues on a large scale in a uniform and consistent manner. This study was designed with the use of tissue microarray to determine the expression of brachyury. Brachyury expression in chordoma tissues from 78 chordoma patients was analyzed by immunohistochemical staining of tissue microarray. The clinicopathologic parameters, including gender, age, location of tumor and metastatic status were evaluated. Fifty-nine of 78 (75.64%) tumors showed nuclear staining for brachyury, and among them, 29 tumors (49.15%) showed 1+ (mobile spine. However, there was no significant relationship between brachyury expression and other clinical variables. By Kaplan-Meier analysis, brachyury expression failed to produce any significant relationship with the overall survival rate. In conclusion, brachyury expression is not a prognostic indicator in chordoma.

  19. RAPID PROCESSING OF ARCHIVAL TISSUE SAMPLES FOR PROTEOMIC ANALYSIS USING PRESSURE-CYCLING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Vinuth N. Puttamallesh1,2

    2017-06-01

    Full Text Available Advent of mass spectrometry based proteomics has revolutionized our ability to study proteins from biological specimen in a high-throughput manner. Unlike cell line based studies, biomedical research involving tissue specimen is often challenging due to limited sample availability. In addition, investigation of clinically relevant research questions often requires enormous amount of time for sample collection prospectively. Formalin fixed paraffin embedded (FFPE archived tissue samples are a rich source of tissue specimen for biomedical research. However, there are several challenges associated with analysing FFPE samples. Protein cross-linking and degradation of proteins particularly affects proteomic analysis. We demonstrate that barocycler that uses pressure-cycling technology enables efficient protein extraction and processing of small amounts of FFPE tissue samples for proteomic analysis. We identified 3,525 proteins from six 10µm esophageal squamous cell carcinoma (ESCC tissue sections. Barocycler allows efficient protein extraction and proteolytic digestion of proteins from FFPE tissue sections at par with conventional methods.

  20. The primary role of zebrafish nanog is in extra-embryonic tissue.

    Science.gov (United States)

    Gagnon, James A; Obbad, Kamal; Schier, Alexander F

    2018-01-09

    The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZ nanog ) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZ nanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation. © 2018. Published by The Company of Biologists Ltd.

  1. Tissue types (image)

    Science.gov (United States)

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  2. PWR plant transient analyses using TRAC-PF1

    International Nuclear Information System (INIS)

    Ireland, J.R.; Boyack, B.E.

    1984-01-01

    This paper describes some of the pressurized water reactor (PWR) transient analyses performed at Los Alamos for the US Nuclear Regulatory Commission using the Transient Reactor Analysis Code (TRAC-PF1). Many of the transient analyses performed directly address current PWR safety issues. Included in this paper are examples of two safety issues addressed by TRAC-PF1. These examples are pressurized thermal shock (PTS) and feed-and-bleed cooling for Oconee-1. The calculations performed were plant specific in that details of both the primary and secondary sides were modeled in addition to models of the plant integrated control systems. The results of these analyses show that for these two transients, the reactor cores remained covered and cooled at all times posing no real threat to the reactor system nor to the public

  3. Digital design of scaffold for mandibular defect repair based on tissue engineering.

    Science.gov (United States)

    Liu, Yun-feng; Zhu, Fu-dong; Dong, Xing-tao; Peng, Wei

    2011-09-01

    Mandibular defect occurs more frequently in recent years, and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws. Tissue engineering, which is a hot research field of biomedical engineering, provides a new direction for mandibular defect repair. As the basis and key part of tissue engineering, scaffolds have been widely and deeply studied in regards to the basic theory, as well as the principle of biomaterial, structure, design, and fabrication method. However, little research is targeted at tissue regeneration for clinic repair operations. Since mandibular bone has a special structure, rather than uniform and regular structure in existing studies, a methodology based on tissue engineering is proposed for mandibular defect repair in this paper. Key steps regarding scaffold digital design, such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail. By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping, the feasibility and effectiveness of the proposed methodology are properly verified. More works about mechanical and biological improvements need to be done to promote its clinical application in future.

  4. Digital design of scaffold for mandibular defect repair based on tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Yun-feng LIU; Fu-dong ZHU; Xing-tao DONG; Wei PENG

    2011-01-01

    Mandibular defect occurs more frequently in recent years,and clinical repair operations via bone transplantation are difficult to be further improved due to some intrinsic flaws.Tissue engineering,which is a hot research field of biomedical engineering,provides a new direction for mandibular defect repair.As the basis and key part of tissue engineering,scaffolds have been widely and deeply studied in regards to the basic theory,as well as the principle of biomaterial,structure,design,and fabrication method.However,little research is targeted at tissue regeneration for clinic repair operations.Since mandibular bone has a special structure,rather than uniform and regular structure in existing studies,a methodology based on tissue engineering is proposed for mandibular defect repair in this paper.Key steps regarding scaffold digital design,such as external shape design and internal microstructure design directly based on triangular meshes are discussed in detail.By analyzing the theoretical model and the measured data from the test parts fabricated by rapid prototyping,the feasibility and effectiveness of the proposed methodology are properly verified.More works about mechanical and biological improvements need to be done to promote its clinical application in future.

  5. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone

    NARCIS (Netherlands)

    Kabel, J.; Rietbergen, van B.; Dalstra, M.; Odgaard, A.; Huiskes, H.W.J.

    1999-01-01

    Conceptually, the elastic characteristics of cancellous bone could be predicted directly from the trabecular morphology-or architecture-and by the elastic properties of the tissue itself. Although hardly any experimental evidence exists, it is often implicitly assumed that tissue anisotropy has a

  6. Nuclear morphology, polyploidy, and chromatin elimination in tissue culture of Allium fistulosum L.

    Directory of Open Access Journals (Sweden)

    Andrzej Joachimiak

    2011-01-01

    Full Text Available The morphology of cell nuclei in callus obtained from root-tip meristems of Allium fistulosum L. (Monocotyledoneae, Alliaceae was analysed. The most interesting phenomena observed in long-term callus culture were the different mechanisms of cell polyploidization, enlargement of telomeric segments of heterochromatin, and extensive chromatin elimination, associated with instability of nuclei size and DNA content. Protruding heterochromatin "spikes" were observed on the surface of some di- and polyploid nuclei. The presence of these spikes was connected with the formation of small heterochromatic micronuclei frequently found in the cytoplasm. It is suggested that these micronuclei are produced by direct elimination of heterochromatin from the interphase nuclei. Polyploid cells accumulated with each successive cell collection. The ploidy level attained by highly polyploid cells was 15C-220C. The shape of the nuclei and heterochromatin distribution suggest that polyploid nuclei in A. fistulosum tissue culture are produced by endoreduplication and by restitution cycles.

  7. Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Domingos

    2009-01-01

    Full Text Available The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. This paper presents a novel extrusion-based system to produce 3D scaffolds with controlled internal/external geometry for TE applications.The BioExtruder is a low-cost system that uses a proper fabrication code based on the ISO programming language enabling the fabrication of multimaterial scaffolds. Poly(ε-caprolactone was the material chosen to produce porous scaffolds, made by layers of directionally aligned microfilaments. Chemical, morphological, and in vitro biological evaluation performed on the polymeric constructs revealed a high potential of the BioExtruder to produce 3D scaffolds with regular and reproducible macropore architecture, without inducing relevant chemical and biocompatibility alterations of the material.

  8. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    Science.gov (United States)

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  9. Differential diagnosis between benign and malignant soft tissue tumors utilizing ultrasound parameters.

    Science.gov (United States)

    Morii, Takeshi; Kishino, Tomonori; Shimamori, Naoko; Motohashi, Mitsue; Ohnishi, Hiroaki; Honya, Keita; Aoyagi, Takayuki; Tajima, Takashi; Ichimura, Shoichi

    2018-01-01

    Preoperative discrimination between benign and malignant soft tissue tumors is critical for the prevention of excess application of magnetic resonance imaging and biopsy as well as unplanned resection. Although ultrasound, including power Doppler imaging, is an easy, noninvasive, and cost-effective modality for screening soft tissue tumors, few studies have investigated reliable discrimination between benign and malignant soft tissue tumors. To establish a modality for discrimination between benign and malignant soft tissue tumors using ultrasound, we extracted the significant risk factors for malignancy based on ultrasound information from 40 malignant and 56 benign pathologically diagnosed soft tissue tumors and established a scoring system based on these risk factors. The maximum size, tumor margin, and vascularity evaluated using ultrasound were extracted as significant risk factors. Using the odds ratio from a multivariate regression model, a scoring system was established. Receiver operating characteristic analyses revealed a high area under the curve value (0.85), confirming the accuracy of the scoring system. Ultrasound is a useful modality for establishing the differential diagnosis between benign and malignant soft tissue tumors.

  10. The relationship between maternal body composition in early pregnancy and foetal mid-thigh soft-tissue thickness in the third trimester in a high-risk obstetric population.

    Science.gov (United States)

    Anglim, Breffini; Farah, Nadine; O'Connor, Clare; Daly, Niamh; Kennelly, Mairead M; Turner, Michael J

    2017-07-01

    Maternal obesity is an emerging challenge in contemporary obstetrics. To date there has been no study analysing the relationship between specific maternal body composition measurements and foetal soft-tissue measurements. The aim of this study was to determine whether measurement of maternal body composition at booking predicts foetal soft-tissue trajectories in the third trimester. We analysed the relationship between foetal thigh in the third trimester and both maternal BMI and body composition using the Tanita digital scales in the first trimester. Foetal subcutaneous thigh tissue measurements were obtained at intervals of 28, 32 and 36 weeks of gestation. A total of 160 women were identified. There was a direct correlation between MTST at 36 weeks and BMI (p = .002). There was a positive correlation between MTST at 36 weeks and leg fat mass (p = .13) and leg fat free mass (p = .013). There was a positive correlation between arm fat free mass and MTST at 36 weeks. We showed there is an association between maternal fat distribution and foetal subcutaneous thigh tissue measurements. MTST may be more useful in determining if a child is at risk of macrosomia. Impact statement Previous studies have suggested that maternal obesity programmes intrauterine foetal adiposity and growth. The aim of this study was to examine the relationship in a high-risk obstetric population between measurements of maternal body composition in early pregnancy and the assessment of foetal adiposity in the third trimester using serial ultrasound measurements of mid-thigh soft-tissue thickness. BMI is only a surrogate measurement of fat and does not measure fat distribution. Our study shows the distribution of both maternal fat and fat-free mass in early pregnancy may be positively associated with foetal soft-tissue measurements in the third trimester. Maternal arthropometric measurements other than BMI may help predict babies at risk of macrosomia and neonatal adiposity.

  11. Spatial transcriptomics: paving the way for tissue-level systems biology.

    Science.gov (United States)

    Moor, Andreas E; Itzkovitz, Shalev

    2017-08-01

    The tissues in our bodies are complex systems composed of diverse cell types that often interact in highly structured repeating anatomical units. External gradients of morphogens, directional blood flow, as well as the secretion and absorption of materials by cells generate distinct microenvironments at different tissue coordinates. Such spatial heterogeneity enables optimized function through division of labor among cells. Unraveling the design principles that govern this spatial division of labor requires techniques to quantify the entire transcriptomes of cells while accounting for their spatial coordinates. In this review we describe how recent advances in spatial transcriptomics open the way for tissue-level systems biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements

    International Nuclear Information System (INIS)

    Png, G M; Ng, B W-H; Mickan, S P; Abbott, D; Choi, J W; Zhang, X-C

    2008-01-01

    We present a study of how residual hydration in fresh rat tissue samples can vastly alter their extracted terahertz (THz) optical properties and influence their health assessment. Fresh (as opposed to preserved) tissue most closely mimics in vivo conditions, but high water content creates many challenges for tissue handling and THz measurement. Our THz measurements of fresh tissue over time highlight the effect of tissue hydration on tissue texture and dimension, the latter directly influencing the accuracy of calculated optical properties. We then introduce lyophilization (freeze drying) as a viable solution for overcoming hydration and freshness problems. Lyophilization removes large amounts of water while retaining sample freshness. In addition, lyophilized tissue samples are easy to handle and their textures and dimensions do not vary over time, allowing for consistent and stable THz measurements. A comparison of lyophilized and fresh tissue shows for the first time that freeze drying may be one way of overcoming tissue hydration issues while preserving tissue cellular structure. Finally, we compare THz measurements from fresh tissue against necrotic tissue to verify freshness over time. Indeed, THz measurements from fresh and necrotic tissues show marked differences

  13. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    Science.gov (United States)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact

  14. Comparative study for salt stress among seed, root stock and direct ...

    African Journals Online (AJOL)

    The experiments were carried out to evaluate the comparative study for salt stress among seed, root stock and direct regenerated violet (Viola odorata L.) seedlings. Violet seedlings propagated through tissue culture (direct regeneration) had significantly higher salicylic acid (SA) concentrations from seed and rootstock ...

  15. Indentation and Observation of Anisotropic Soft Tissues Using an Indenter Device

    Directory of Open Access Journals (Sweden)

    Parinaz ASHRAFI

    2015-01-01

    Full Text Available Soft tissues of human body have complex structures and different mechanical behaviors than those of traditional engineering materials. There is a great urge to understand tissue behavior of human body. Experimental data is needed for improvement of soft tissue modeling and advancement in implants and prosthesis, as well as diagnosis of diseases. Mechanical behavior and responses change when tissue loses its liveliness and viability. One of the techniques for soft tissue testing is indentation, which is applied on live tissue in its physiological environment. Indentation affords several advantages over other types of tests such as uniaxial tension, biaxial tension, and simple shear and suction, thus it is of interest to develop new indentation techniques from which more valid data can be extracted. In this study a new indenter device was designed and constructed. Displacement and force rate cyclic loading, and relaxation experiments were conducted on human arm. The in-vivo force rate controlled cyclic loading test method which is novel is compared with the traditional displacement controlled cyclic loading tests. Anisotropic behavior of tissue cannot be determined by axisymmetric tips, therefore ellipsoid tips were used for examining anisotropy and inplane material direction of bulk soft tissues

  16. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  17. Levels of arsenic, cadmium, lead and mercury in the branchial plate and muscle tissue of mobulid rays

    International Nuclear Information System (INIS)

    Ooi, Michelle S.M.; Townsend, Kathy A.; Bennett, Michael B.; Richardson, Anthony J.; Fernando, Daniel; Villa, Cesar A.; Gaus, Caroline

    2015-01-01

    Highlights: • Branchial plate and muscle tissue from mobulid rays were analysed for certain metals. • Mean concentrations of cadmium in Mobula japanica were above the EC ML. • Mean inorganic arsenic concentration in Mobula japanica muscle equalled the FSANZ ML. • Mean concentration of lead in Manta alfredi muscle tissue exceeded EC and Codex MLs. • There were significant correlations between the types of tissues for some metals. - Abstract: Mobulid rays are targeted in fisheries for their branchial plates, for use in Chinese medicine. Branchial plate and muscle tissue from Mobula japanica were collected from fish markets in Sri Lanka, and muscle tissue biopsies from Manta alfredi in Australia. These were analysed for arsenic, cadmium, lead and mercury and compared to maximum levels (MLs) set by Food Standards Australia and New Zealand (FSANZ), European Commission (EC) and Codex Alimentarius Commission. The estimated intake for a vulnerable human age group was compared to minimal risk levels set by the Agency for Toxic Substances and Disease Registry. The mean inorganic arsenic concentration in M. japanica muscle was equivalent to the FSANZ ML while cadmium exceeded the EC ML. The mean concentration of lead in M. alfredi muscle tissue exceeded EC and Codex MLs. There were significant positive linear correlations between branchial plate and muscle tissue concentrations for arsenic, cadmium and lead

  18. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  19. Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.

    Science.gov (United States)

    Almeida, Henrique V; Sathy, Binulal N; Dudurych, Ivan; Buckley, Conor T; O'Brien, Fergal J; Kelly, Daniel J

    2017-01-01

    Regenerating articular cartilage and fibrocartilaginous tissue such as the meniscus is still a challenge in orthopedic medicine. While a range of different scaffolds have been developed for joint repair, none have facilitated the development of a tissue that mimics the complexity of soft tissues such as articular cartilage. Furthermore, many of these scaffolds are not designed to function in mechanically challenging joint environments. The overall goal of this study was to develop a porous, biomimetic, shape-memory alginate scaffold for directing cartilage regeneration. To this end, a scaffold was designed with architectural cues to guide cellular and neo-tissue alignment, which was additionally functionalized with a range of extracellular matrix cues to direct stem cell differentiation toward the chondrogenic lineage. Shape-memory properties were introduced by covalent cross-linking alginate using carbodiimide chemistry, while the architecture of the scaffold was modified using a directional freezing technique. Introducing such an aligned pore structure was found to improve the mechanical properties of the scaffold, and promoted higher levels of sulfated glycosaminoglycans (sGAG) and collagen deposition compared to an isotropic (nonaligned) pore geometry when seeded with adult human stem cells. Functionalization with collagen improved stem cell recruitment into the scaffold and facilitated more homogenous cartilage tissue deposition throughout the construct. Incorporating type II collagen into the scaffolds led to greater cell proliferation, higher sGAG and collagen accumulation, and the development of a stiffer tissue compared to scaffolds functionalized with type I collagen. The results of this study demonstrate how both scaffold architecture and composition can be tailored in a shape-memory alginate scaffold to direct stem cell differentiation and support the development of complex cartilaginous tissues.

  20. Raman spectroscopic biochemical mapping of tissues

    Science.gov (United States)

    Stone, Nicholas; Hart Prieto, Maria C.; Kendall, Catherine A.; Shetty, Geeta; Barr, Hugh

    2006-02-01

    Advances in technologies have brought us closer to routine spectroscopic diagnosis of early malignant disease. However, there is still a poor understanding of the carcinogenesis process. For example it is not known whether many cancers follow a logical sequence from dysplasia, to carcinoma in situ, to invasion. Biochemical tissue changes, triggered by genetic mutations, precede morphological and structural changes. These can be probed using Raman or FTIR microspectroscopy and the spectra analysed for biochemical constituents. Local microscopic distribution of various constituents can then be visualised. Raman mapping has been performed on a number of tissues including oesophagus, breast, bladder and prostate. The biochemical constituents have been calculated at each point using basis spectra and least squares analysis. The residual of the least squares fit indicates any unfit spectral components. The biochemical distribution will be compared with the defined histopathological boundaries. The distribution of nucleic acids, glycogen, actin, collagen I, III, IV, lipids and others appear to follow expected patterns.

  1. Qualitative tissue differentiation by analysing the intensity ratios of atomic emission lines using laser induced breakdown spectroscopy (LIBS): prospects for a feedback mechanism for surgical laser systems.

    Science.gov (United States)

    Kanawade, Rajesh; Mahari, Fanuel; Klämpfl, Florian; Rohde, Maximilian; Knipfer, Christian; Tangermann-Gerk, Katja; Adler, Werner; Schmidt, Michael; Stelzle, Florian

    2015-01-01

    The research work presented in this paper focuses on qualitative tissue differentiation by monitoring the intensity ratios of atomic emissions using 'Laser Induced Breakdown Spectroscopy' (LIBS) on the plasma plume created during laser tissue ablation. The background of this study is to establish a real time feedback control mechanism for clinical laser surgery systems during the laser ablation process. Ex-vivo domestic pig tissue samples (muscle, fat, nerve and skin) were used in this experiment. Atomic emission intensity ratios were analyzed to find a characteristic spectral line for each tissue. The results showed characteristic elemental emission intensity ratios for the respective tissues. The spectral lines and intensity ratios of these specific elements varied among the different tissue types. The main goal of this study is to qualitatively and precisely identify different tissue types for tissue specific laser surgery. © 2015 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag.

  2. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field.

    Science.gov (United States)

    Yang, Gang; Long, Haiyan; Ren, Xiaomei; Ma, Kunlong; Xiao, Zhenghua; Wang, Ying; Guo, Yingqiang

    2017-02-01

    Cell alignment and motility play a critical role in a variety of cell behaviors, including cytoskeleton reorganization, membrane-protein relocation, nuclear gene expression, and extracellular matrix remodeling. Direct current electric field (EF) in vitro can direct many types of cells to align vertically to EF vector. In this work, we investigated the effects of EF stimulation on rat adipose-tissue-derived stromal cells (ADSCs) in 2D-culture on plastic culture dishes and in 3D-culture on various scaffold materials, including collagen hydrogels, chitosan hydrogels and poly(L-lactic acid)/gelatin electrospinning fibers. Rat ADSCs were exposed to various physiological-strength EFs in a homemade EF-bioreactor. Changes of morphology and movements of cells affected by applied EFs were evaluated by time-lapse microphotography, and cell survival rates and intracellular calcium oscillations were also detected. Results showed that EF facilitated ADSC morphological changes, under 6 V/cm EF strength, and that ADSCs in 2D-culture aligned vertically to EF vector and kept a good cell survival rate. In 3D-culture, cell galvanotaxis responses were subject to the synergistic effect of applied EF and scaffold materials. Fast cell movement and intracellular calcium activities were observed in the cells of 3D-culture. We believe our research will provide some experimental references for the future study in cell galvanotaxis behaviors. © 2017 Japanese Society of Developmental Biologists.

  3. Weak light emission of soft tissues induced by heating

    Science.gov (United States)

    Spinelli, Antonello E.; Durando, Giovanni; Boschi, Federico

    2018-04-01

    The main goal of this work is to show that soft tissue interaction with high-intensity focused ultrasound (HIFU) or direct heating leads to a weak light emission detectable using a small animal optical imaging system. Our results show that the luminescence signal is detectable after 30 min of heating, resembling the time scale of delayed luminescence. The imaging of a soft tissue after heating it using an HIFU field shows that the luminescence pattern closely matches the shape of the cone typical of the HIFU beam. We conclude that heating a soft tissue using two different sources leads to the emission of a weak luminescence signal from the heated region with a decay half-life of a few minutes (4 to 6 min). The origin of such light emission needs to be further investigated.

  4. Fatty acid and lipidomic data in normal and tumor colon tissues of rats fed diets with and without fish oil

    Directory of Open Access Journals (Sweden)

    Zora Djuric

    2017-08-01

    Full Text Available Data is provided to show the detailed fatty acid and lipidomic composition of normal and tumor rat colon tissues. Rats were fed either a Western fat diet or a fish oil diet, and half the rats from each diet group were treated with chemical carcinogens that induce colon cancer (azoxymethane and dextran sodium sulfate. The data show total fatty acid profiles of sera and of all the colon tissues, namely normal tissue from control rats and both normal and tumor tissues from carcinogen-treated rats, as obtained by gas chromatography with mass spectral detection. Data from lipidomic analyses of a representative subset of the colon tissue samples is also shown in heat maps generated from hierarchical cluster analysis. These data display the utility lipidomic analyses to enhance the interpretation of dietary feeding studies aimed at cancer prevention and support the findings published in the companion paper (Effects of fish oil supplementation on prostaglandins in normal and tumor colon tissue: modulation by the lipogenic phenotype of colon tumors, Djuric et al., 2017 [1].

  5. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies.

    Science.gov (United States)

    Chuah, Yon Jin; Peck, Yvonne; Lau, Jia En Josias; Hee, Hwan Tak; Wang, Dong-An

    2017-03-28

    Hydrogels have been extensively employed as an attractive biomaterial to address numerous existing challenges in the fields of regenerative medicine and research because of their unique properties such as the capability to encapsulate cells, high water content, ease of modification, low toxicity, injectability, in situ spatial fit and biocompatibility. These inherent properties have created many opportunities for hydrogels as a scaffold or a cell/drug carrier in tissue regeneration, especially in the field of cartilaginous tissue such as articular cartilage and intervertebral discs. A concise overview of the anatomy/physiology of these cartilaginous tissues and their pathophysiology, epidemiology and existing clinical treatments will be briefly described. This review article will discuss the current state-of-the-art of various polymers and developing strategies that are explored in establishing different technologies for cartilaginous tissue regeneration. In particular, an innovative approach to generate scaffold-free cartilaginous tissue via a transient hydrogel scaffolding system for disease modeling to pre-clinical trials will be examined. Following that, the article reviews numerous hydrogel-based medical implants used in clinical treatment of osteoarthritis and degenerated discs. Last but not least, the challenges and future directions of hydrogel based medical implants in the regeneration of cartilaginous tissue are also discussed.

  6. High-resolution analysis of the mechanical behavior of tissue

    Science.gov (United States)

    Hudnut, Alexa W.; Armani, Andrea M.

    2017-06-01

    The mechanical behavior and properties of biomaterials, such as tissue, have been directly and indirectly connected to numerous malignant physiological states. For example, an increase in the Young's Modulus of tissue can be indicative of cancer. Due to the heterogeneity of biomaterials, it is extremely important to perform these measurements using whole or unprocessed tissue because the tissue matrix contains important information about the intercellular interactions and the structure. Thus, developing high-resolution approaches that can accurately measure the elasticity of unprocessed tissue samples is of great interest. Unfortunately, conventional elastography methods such as atomic force microscopy, compression testing, and ultrasound elastography either require sample processing or have poor resolution. In the present work, we demonstrate the characterization of unprocessed salmon muscle using an optical polarimetric elastography system. We compare the results of compression testing within different samples of salmon skeletal muscle with different numbers of collagen membranes to characterize differences in heterogeneity. Using the intrinsic collagen membranes as markers, we determine the resolution of the system when testing biomaterials. The device reproducibly measures the stiffness of the tissues at variable strains. By analyzing the amount of energy lost by the sample during compression, collagen membranes that are 500 μm in size are detected.

  7. Biophotonics in diagnosis and modeling of tissue pathologies

    Science.gov (United States)

    Serafetinides, A. A.; Makropoulou, M.; Drakaki, E.

    2008-12-01

    Biophotonics techniques are applied to several fields in medicine and biology. The laser based techniques, such as the laser induced fluorescence (LIF) spectroscopy and the optical coherence tomography (OCT), are of particular importance in dermatology, where the laser radiation could be directly applied to the tissue target (e.g. skin). In addition, OCT resolves architectural tissue properties that might be useful as tumour discrimination parameters for skin as well as for ocular non-invasive visualization. Skin and ocular tissues are complex multilayered and inhomogeneous organs with spatially varying optical properties. This fact complicates the quantitative analysis of the fluorescence and/or light scattering spectra, even from the same tissue sample. To overcome this problem, mathematical simulation is applied for the investigation of the human tissue optical properties, in the visible/infrared range of the spectrum, resulting in a better discrimination of several tissue pathologies. In this work, we present i) a general view on biophotonics applications in diagnosis of human diseases, ii) some specific results on laser spectroscopy techniques, as LIF measurements, applied in arterial and skin pathologies and iii) some experimental and theoretical results on ocular OCT measurements. Regarding the LIF spectroscopy, we examined the autofluorescence properties of several human skin samples, excised from humans undergoing biopsy examination. A nitrogen laser was used as an excitation source, emitting at 337 nm (ultraviolet excitation). Histopathology examination of the samples was also performed, after the laser spectroscopy measurements and the results from the spectroscopic and medical analysis were compared, to differentiate malignancies, e.g. basal cell carcinoma tissue (BCC), from normal skin tissue. Regarding the OCT technique, we correlated human data, obtained from patients undergoing OCT examination, with Monte Carlo simulated cornea and retina tissues

  8. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  9. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  10. Mechanical properties of human atherosclerotic intima tissue.

    Science.gov (United States)

    Akyildiz, Ali C; Speelman, Lambert; Gijsen, Frank J H

    2014-03-03

    Progression and rupture of atherosclerotic plaques in coronary and carotid arteries are the key processes underlying myocardial infarctions and strokes. Biomechanical stress analyses to compute mechanical stresses in a plaque can potentially be used to assess plaque vulnerability. The stress analyses strongly rely on accurate representation of the mechanical properties of the plaque components. In this review, the composition of intima tissue and how this changes during plaque development is discussed from a mechanical perspective. The plaque classification scheme of the American Heart Association is reviewed and plaques originating from different vascular territories are compared. Thereafter, an overview of the experimental studies on tensile and compressive plaque intima properties are presented and the results are linked to the pathology of atherosclerotic plaques. This overview revealed a considerable variation within studies, and an enormous dispersion between studies. Finally, the implications of the dispersion in experimental data on the clinical applications of biomechanical plaque modeling are presented. Suggestions are made on mechanical testing protocol for plaque tissue and on using a standardized plaque classification scheme. This review identifies the current status of knowledge on plaque mechanical properties and the future steps required for a better understanding of the plaque type specific material properties. With this understanding, biomechanical plaque modeling may eventually provide essential support for clinical plaque risk stratification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Bronchus-associated lymphoid tissue in pulmonary hypertension produces pathologic autoantibodies.

    Science.gov (United States)

    Colvin, Kelley L; Cripe, Patrick J; Ivy, D Dunbar; Stenmark, Kurt R; Yeager, Michael E

    2013-11-01

    Autoimmunity has long been associated with pulmonary hypertension. Bronchus-associated lymphoid tissue plays important roles in antigen sampling and self-tolerance during infection and inflammation. We reasoned that activated bronchus-associated lymphoid tissue would be evident in rats with pulmonary hypertension, and that loss of self-tolerance would result in production of pathologic autoantibodies that drive vascular remodeling. We used animal models, histology, and gene expression assays to evaluate the role of bronchus-associated lymphoid tissue in pulmonary hypertension. Bronchus-associated lymphoid tissue was more numerous, larger, and more active in pulmonary hypertension compared with control animals. We found dendritic cells in and around lymphoid tissue, which were composed of CD3(+) T cells over a core of CD45RA(+) B cells. Antirat IgG and plasma from rats with pulmonary hypertension decorated B cells in lymphoid tissue, resistance vessels, and adventitia of large vessels. Lymphoid tissue in diseased rats was vascularized by aquaporin-1(+) high endothelial venules and vascular cell adhesion molecule-positive vessels. Autoantibodies are produced in bronchus-associated lymphoid tissue and, when bound to pulmonary adventitial fibroblasts, change their phenotype to one that may promote inflammation. Passive transfer of autoantibodies into rats caused pulmonary vascular remodeling and pulmonary hypertension. Diminution of lymphoid tissue reversed pulmonary hypertension, whereas immunologic blockade of CCR7 worsened pulmonary hypertension and hastened its onset. Bronchus-associated lymphoid tissue expands in pulmonary hypertension and is autoimmunologically active. Loss of self-tolerance contributes to pulmonary vascular remodeling and pulmonary hypertension. Lymphoid tissue-directed therapies may be beneficial in treating pulmonary hypertension.

  12. Direct radiocarbon dating and genetic analyses on the purported Neanderthal mandible from the Monti Lessini (Italy).

    Science.gov (United States)

    Talamo, Sahra; Hajdinjak, Mateja; Mannino, Marcello A; Fasani, Leone; Welker, Frido; Martini, Fabio; Romagnoli, Francesca; Zorzin, Roberto; Meyer, Matthias; Hublin, Jean-Jacques

    2016-07-08

    Anatomically modern humans replaced Neanderthals in Europe around 40,000 years ago. The demise of the Neanderthals and the nature of the possible relationship with anatomically modern humans has captured our imagination and stimulated research for more than a century now. Recent chronological studies suggest a possible overlap between Neanderthals and anatomically modern humans of more than 5,000 years. Analyses of ancient genome sequences from both groups have shown that they interbred multiple times, including in Europe. A potential place of interbreeding is the notable Palaeolithic site of Riparo Mezzena in Northern Italy. In order to improve our understanding of prehistoric occupation at Mezzena, we analysed the human mandible and several cranial fragments from the site using radiocarbon dating, ancient DNA, ZooMS and isotope analyses. We also performed a more detailed investigation of the lithic assemblage of layer I. Surprisingly we found that the Riparo Mezzena mandible is not from a Neanderthal but belonged to an anatomically modern human. Furthermore, we found no evidence for the presence of Neanderthal remains among 11 of the 13 cranial and post-cranial fragments re-investigated in this study.

  13. Radiation physics and shielding codes and analyses applied to design-assist and safety analyses of CANDUR and ACRTM reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.; Boss, C. R.

    2006-01-01

    This paper discusses the radiation physics and shielding codes and analyses applied in the design of CANDU and ACR reactors. The focus is on the types of analyses undertaken rather than the inputs supplied to the engineering disciplines. Nevertheless, the discussion does show how these analyses contribute to the engineering design. Analyses in radiation physics and shielding can be categorized as either design-assist or safety and licensing (accident) analyses. Many of the analyses undertaken are designated 'design-assist' where the analyses are used to generate recommendations that directly influence plant design. These recommendations are directed at mitigating or reducing the radiation hazard of the nuclear power plant with engineered systems and components. Thus the analyses serve a primary safety function by ensuring the plant can be operated with acceptable radiation hazards to the workers and public. In addition to this role of design assist, radiation physics and shielding codes are also deployed in safety and licensing assessments of the consequences of radioactive releases of gaseous and liquid effluents during normal operation and gaseous effluents following accidents. In the latter category, the final consequences of accident sequences, expressed in terms of radiation dose to members of the public, and inputs to accident analysis, e.g., decay heat in fuel following a loss-of-coolant accident, are also calculated. Another role of the analyses is to demonstrate that the design of the plant satisfies the principle of ALARA (as low as reasonably achievable) radiation doses. This principle is applied throughout the design process to minimize worker and public doses. The principle of ALARA is an inherent part of all design-assist recommendations and safety and licensing assessments. The main focus of an ALARA exercise at the design stage is to minimize the radiation hazards at the source. This exploits material selection and impurity specifications and relies

  14. [Cancer cachexia and white adipose tissue browning].

    Science.gov (United States)

    Zhang, S T; Yang, H M

    2016-08-01

    Cancer cachexia occurs in a majority of advanced cancer patients. These patients with impaired physical function are unable to tolerance cancer treatment well and have a significantly reduced survival rate. Currently, there is no effective clinical treatment available for cancer cachexia, therefore, it is necessary to clarify the molecular mechanisms of cancer cachexia, moreover, new therapeutic targets for cancer cachexia treatment are urgently needed. Very recent studies suggest that, during cancer cachexia, white adipose tissue undergo a 'browning' process, resulting in increased lipid mobilization and energy expenditure, which may be necessary for the occurrence of cancer cachexia. In this article, we summarize the definition and characteristics of cancer cachexia and adipose tissue 'browning', then, we discuss the new study directions presented in latest research.

  15. Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses.

    Science.gov (United States)

    Prunier, J G; Colyn, M; Legendre, X; Nimon, K F; Flamand, M C

    2015-01-01

    Direct gradient analyses in spatial genetics provide unique opportunities to describe the inherent complexity of genetic variation in wildlife species and are the object of many methodological developments. However, multicollinearity among explanatory variables is a systemic issue in multivariate regression analyses and is likely to cause serious difficulties in properly interpreting results of direct gradient analyses, with the risk of erroneous conclusions, misdirected research and inefficient or counterproductive conservation measures. Using simulated data sets along with linear and logistic regressions on distance matrices, we illustrate how commonality analysis (CA), a detailed variance-partitioning procedure that was recently introduced in the field of ecology, can be used to deal with nonindependence among spatial predictors. By decomposing model fit indices into unique and common (or shared) variance components, CA allows identifying the location and magnitude of multicollinearity, revealing spurious correlations and thus thoroughly improving the interpretation of multivariate regressions. Despite a few inherent limitations, especially in the case of resistance model optimization, this review highlights the great potential of CA to account for complex multicollinearity patterns in spatial genetics and identifies future applications and lines of research. We strongly urge spatial geneticists to systematically investigate commonalities when performing direct gradient analyses. © 2014 John Wiley & Sons Ltd.

  16. Human papillomavirus detection in paraffin-embedded colorectal cancer tissues.

    Science.gov (United States)

    Tanzi, Elisabetta; Bianchi, Silvia; Frati, Elena R; Amicizia, Daniela; Martinelli, Marianna; Bragazzi, Nicola L; Brisigotti, Maria Pia; Colzani, Daniela; Fasoli, Ester; Zehender, Gianguglielmo; Panatto, Donatella; Gasparini, Roberto

    2015-01-01

    Human papillomavirus (HPV) has a well-recognized aetiological role in the development of cervical cancer and other anogenital tumours. Recently, an association between colorectal cancer and HPV infection has been suggested, although this is still controversial. This study aimed at detecting and characterizing HPV infection in 57 paired biopsies from colorectal cancers and adjacent intact tissues using a degenerate PCR approach. All amplified fragments were genotyped by means of sequencing. Overall, HPV prevalence was 12.3 %. In particular, 15.8 % of tumour tissues and 8.8 % of non-cancerous tissue samples were HPV DNA-positive. Of these samples, 85.7 % were genotyped successfully, with 41.7 % of sequences identifying four genotypes of the HR (high oncogenic risk) clade Group 1; the remaining 58.3 % of HPV-genotyped specimens had an unclassified β-HPV. Examining additional cases and analysing whole genomes will help to outline the significance of these findings.

  17. Analysing Harmonic Motions with an iPhone's Magnetometer

    Science.gov (United States)

    Yavuz, Ahmet; Temiz, Burak Kagan

    2016-01-01

    In this paper, we propose an experiment for analysing harmonic motion using an iPhone's (or iPad's) magnetometer. This experiment consists of the detection of magnetic field variations obtained from an iPhone's magnetometer sensor. A graph of harmonic motion is directly displayed on the iPhone's screen using the "Sensor Kinetics"…

  18. Combinatorial Approaches to Controlling Cell Behaviour and Tissue Formation in 3D via Rapid-Prototyping and Smart Scaffold Design

    NARCIS (Netherlands)

    Woodfield, T.B.F.; Moroni, Lorenzo; Malda, Jos

    2009-01-01

    The understanding of fundamental phenomena involved in tissue engineering and regenerative medicine is continuously growing and leads to the demand for three-dimensional (3D) models that better represent tissue architecture and direct cells into the proper lineage for specific tissue repair. Porous

  19. Methods to Quantify Nickel in Soils and Plant Tissues

    Directory of Open Access Journals (Sweden)

    Bruna Wurr Rodak

    2015-06-01

    Full Text Available In comparison with other micronutrients, the levels of nickel (Ni available in soils and plant tissues are very low, making quantification very difficult. The objective of this paper is to present optimized determination methods of Ni availability in soils by extractants and total content in plant tissues for routine commercial laboratory analyses. Samples of natural and agricultural soils were processed and analyzed by Mehlich-1 extraction and by DTPA. To quantify Ni in the plant tissues, samples were digested with nitric acid in a closed system in a microwave oven. The measurement was performed by inductively coupled plasma/optical emission spectrometry (ICP-OES. There was a positive and significant correlation between the levels of available Ni in the soils subjected to Mehlich-1 and DTPA extraction, while for plant tissue samples the Ni levels recovered were high and similar to the reference materials. The availability of Ni in some of the natural soil and plant tissue samples were lower than the limits of quantification. Concentrations of this micronutrient were higher in the soil samples in which Ni had been applied. Nickel concentration differed in the plant parts analyzed, with highest levels in the grains of soybean. The grain, in comparison with the shoot and leaf concentrations, were better correlated with the soil available levels for both extractants. The methods described in this article were efficient in quantifying Ni and can be used for routine laboratory analysis of soils and plant tissues.

  20. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin

    DEFF Research Database (Denmark)

    Hoadley, Katherine A; Yau, Christina; Wolf, Denise M

    2014-01-01

    Recent genomic analyses of pathologically defined tumor types identify "within-a-tissue" disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform...... on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head and neck, and a subset...

  1. An image-based skeletal tissue model for the ICRP reference newborn

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Watchman, Christopher; Bourke, Vincent [Department of Radiation Oncology, University of Arizona, Tucson, AZ (United States); Aris, John [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shagina, Natalia [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Harrison, John; Fell, Tim [Radiation Protection Division, Health Protection Agency, Chilton (United Kingdom)], E-mail: wbolch@ufl.edu

    2009-07-21

    Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set-both male and female-that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These changes in

  2. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Study of trace elements distribution in various tissues structures

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Marczewska, E.

    1994-01-01

    Many papers have been written during the past ten years about TE study in cancer and normal tissues describing the use of different methods for detection of trace elements. Concentration of TE depends strongly on the sample measured. However, according to our knowledge, the role of TE in cancerous tissue is still known. Therefore, we propose to perform an experiment which will hopefully given us more information about the relationship between the concentration of elements in different tissues. The developing industry localised near Cracow becomes a serious danger for health of it's inhabitants. The negative influence of the air pollution to the living organisms is seen not only in the nature but also in humans. Therefore we want to analyse the trace element contents in the air. Such investigation will give the information about the pollution level in the City. The pollution has its obvious negative influence to health and toxic element concentration level in blood. It is interesting to check if placenta plays an effective role in foetus protection against toxic metals. In order to study this problem, the trace element analysis of placenta tissues will be done by means of synchrotron microbeam. (author). 1 ref

  4. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    Science.gov (United States)

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of

  5. Prevalence of bone and soft tissue tumors.

    Science.gov (United States)

    Yücetürk, Güven; Sabah, Dündar; Keçeci, Burçin; Kara, Ahmet Duran; Yalçinkaya, Selçuk

    2011-01-01

    Multidisciplinary approach is a necessity for the appropriate diagnosis and treatment of bone and soft tissue tumors. The Ege University Musculoskeletal Tumor Council offers consultation services to other hospitals in the Aegean region. Since 1988 the Council has met weekly and spent approximately 1,500 hours evaluating almost 6,000 patients with suspected skeletal system tumors. Our objective was to present the data obtained from this patient group. A total of 5,658 patients, suspected to have a musculoskeletal tumor, were evaluated retrospectively. Multiple records of the patients due to multiple attendance to the Council were excluded. The prevalance of the bone and soft tissue tumors in these patients were analysed. Malignant mesenchymal tumors accounted for 39.7% of the total patients, benign tumors for 17%, tumor-like lesions for 17.8% and metastatic carsinomas for 8.6%. Malignant bone tumors were 50.2% and malignant soft tissue tumors were 49.8% of all the sarcomas. Among the malignant bone tumors the most common was osteosarcomas at a rate of 33.6%, followed by Ewing-PNET at 25.5%, chondrosarcomas at 19.4% and haematopoietic tumors at 17.6%. Pleomorphic sarcomas (24.5%), liposarcoma (16.4%), synovial sarcoma (13%) and undifferential sarcomas (8.8%) were the most common types of malignant sof tissue tumors. Benign soft tissue tumors (48%), benign cartilage tumors (28%), giant cell tumor (15%) and osteogenic tumors (9%) were found among the benign tumors. Hemangioma, lipoma, agressive fibromatosis, enchondroma, solitary chondroma and osteoid osteoma were the most common tumors in their groups. Lung (27%), breast (24%), gastrointestinal system (10.5%) and kidney (8.2%) carcinomas were the most common primary sites of the bone metastasis. Turkey still lacks a comprehensive series indicating the incidence and diagnostic distribution of bone and soft tissue tumors. The presented data would add to our knowledge on the specific rates of the bone and soft tissue

  6. A deep learning approach to estimate chemically-treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images.

    Science.gov (United States)

    Liang, Liang; Liu, Minliang; Sun, Wei

    2017-11-01

    Biological collagenous tissues comprised of networks of collagen fibers are suitable for a broad spectrum of medical applications owing to their attractive mechanical properties. In this study, we developed a noninvasive approach to estimate collagenous tissue elastic properties directly from microscopy images using Machine Learning (ML) techniques. Glutaraldehyde-treated bovine pericardium (GLBP) tissue, widely used in the fabrication of bioprosthetic heart valves and vascular patches, was chosen to develop a representative application. A Deep Learning model was designed and trained to process second harmonic generation (SHG) images of collagen networks in GLBP tissue samples, and directly predict the tissue elastic mechanical properties. The trained model is capable of identifying the overall tissue stiffness with a classification accuracy of 84%, and predicting the nonlinear anisotropic stress-strain curves with average regression errors of 0.021 and 0.031. Thus, this study demonstrates the feasibility and great potential of using the Deep Learning approach for fast and noninvasive assessment of collagenous tissue elastic properties from microstructural images. In this study, we developed, to our best knowledge, the first Deep Learning-based approach to estimate the elastic properties of collagenous tissues directly from noninvasive second harmonic generation images. The success of this study holds promise for the use of Machine Learning techniques to noninvasively and efficiently estimate the mechanical properties of many structure-based biological materials, and it also enables many potential applications such as serving as a quality control tool to select tissue for the manufacturing of medical devices (e.g. bioprosthetic heart valves). Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.

    Science.gov (United States)

    Sommer, Gerhard; Schriefl, Andreas; Zeindlinger, Georg; Katzensteiner, Andreas; Ainödhofer, Herwig; Saxena, Amulya; Holzapfel, Gerhard A

    2013-12-01

    Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. A logic programming and statistical systems approach for tissue characterization in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Levy, G.C.; Dudewicz, E.J.; Harner, T.J.

    1989-01-01

    The main research goal has been to evalute significant factors affecting the in vivo magnetic resonance imaging (MRI) parameters R 1 , T 2 , and 1 H density. This approach differs significantly from other such projects in that the experimental data analysis is being performed while concurrently developing automated, computer-aided analysis software for such MRI tissue parameters. In the experimental portion of the project, statistical analyses, and a heuristic minimum/maximum discriminant analysis algorithm have been explored. Both methods have been used to classify tissue types from 1.5 Tesla transaxial MR images of the human brain. The developing program, written in the logic programming language Prolog, similar in a number of ways to many existing expert systems now in use for other medical applications; inclusion of the underlying statistical data base and advanced statistical analyses is the main differentiating feature of the current approach. First results indicate promising classification accuracy of various brain tissues such as gray and white matter, as well as differentiation of different types of gray matter and white matter (e.g.: caudate-nucleus vs. thalamus, both representatives of gray matter; and, cortical white matter vs. internal capsule as representative of white matter). Taking all four tissue types together, the percentage of correct classifications ranges from 73 to 87%. (author)

  9. A Novel bioreactor with mechanical stimulation for skeletal tissue engineering

    Directory of Open Access Journals (Sweden)

    M. Petrović

    2009-01-01

    Full Text Available The provision of mechanical stimulation is believed to be necessary for the functional assembly of skeletal tissues, which are normally exposed to a variety of biomechanical signals in vivo. In this paper, we present a development and validation of a novel bioreactor aimed for skeletal tissue engineering that provides dynamic compression and perfusion of cultivated tissues. Dynamic compression can be applied at frequencies up to 67.5 Hz and displacements down to 5 m thus suitable for the simulation of physiological conditions in a native cartilage tissue (0.1-1 Hz, 5-10 % strain. The bioreactor also includes a load sensor that was calibrated so to measure average loads imposed on tissue samples. Regimes of the mechanical stimulation and acquisition of load sensor outputs are directed by an automatic control system using applications developed within the LabView platform. In addition, perfusion of tissue samples at physiological velocities (10–100 m/s provides efficient mass transfer, as well as the possibilities to expose the cells to hydrodynamic shear and simulate the conditions in a native bone tissue. Thus, the novel bioreactor is suited for studies of the effects of different biomechanical signals on in vitro regeneration of skeletal tissues, as well as for the studies of newly formulated biomaterials and cell biomaterial interactions under in vivo-like settings.

  10. Toxicology Analysis of Tissue-Mimicking Phantom Made From Gelatin

    Science.gov (United States)

    Dolbashid, A. S.; Hamzah, N.; Zaman, W. S. W. K.; Mokhtar, M. S.

    2017-06-01

    Skin phantom mimics the biological skin tissues as it have the ability to respond to changes in its environment. The development of tissue-mimicking phantom could contributes towards the reduce usage of animal in cosmetics and pharmacokinetics. In this study, the skin phantoms made from gelatin were tested with four different commonly available cosmetic products to determine the toxicity of each substance. The four substances used were; mercury-based whitening face cream, carcinogenic liquid make-up foundation, paraben-based acne cleanser, and organic lip balm. Toxicity test were performed on all of the phantoms. For toxicity testing, topographical and electrophysiological changes of the phantoms were evaluated. The ability of each respective phantom to react with mild toxic substances and its electrical resistance were analysed in to determine the toxicity of all the phantom models. Four-electrode method along with custom made electrical impedance analyser was used to differentiate electrical resistance between intoxicated phantom and non-intoxicated phantom in this study. Electrical resistance values obtained from the phantom models were significantly higher than the control group. The result obtained suggests the phantom as a promising candidate to be used as alternative for toxicology testing in the future.

  11. Determination of trimethoprim in tissues using liquid chromatography-thermospray mass spectrometry.

    Science.gov (United States)

    Cannavan, A; Hewitt, S A; Floyd, S D; Kennedy, D G

    1997-11-01

    A method is described for the determination of the antibacterial drug trimethoprim in tissues. Minced tissue is homogenised with chloroform-acetone (1 + 1 v/v), filtered, and the filtrate evaporated to an oily residue using a rotary evaporator. The residue is redissolved in methanol-water-acetic acid (50 + 48.7 + 1.3 v/v) and any fats present are partitioned into hexane. The aqueous phase is analysed by liquid chromatography-thermospray mass spectrometry in positive mode with the protonated molecular ion at m/z 291 being monitored. Recoveries ranged between 60% in liver and 79% in muscle. The limit of determination was 25 micrograms kg-1 and the limit of detection was approximately 4 micrograms kg-1. The method is suitable for monitoring tissues taken under national surveillance schemes for veterinary drug residues.

  12. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2013-12-01

    Full Text Available Real-time quantitative PCR (qRT-PCR is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2 in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  13. 3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.

    Science.gov (United States)

    Kim, Min Sung; Lee, Byungjun; Kim, Hong Nam; Bang, Seokyoung; Yang, Hee Seok; Kang, Seong Min; Suh, Kahp-Yang; Park, Suk-Hee; Jeon, Noo Li

    2017-03-23

    We present a novel approach for assembling 3D tissue by layer-by-layer stacking of cell sheets formed on aligned nanofiber mesh. A rigid frame was used to repeatedly collect aligned electrospun PCL (polycaprolactone) nanofiber to form a mesh structure with average distance between fibers 6.4 µm. When human umbilical vein endothelial cells (HUVECs), human foreskin dermal fibroblasts, and skeletal muscle cells (C2C12) were cultured on the nanofiber mesh, they formed confluent monolayers and could be handled as continuous cell sheets with areas 3 × 3 cm 2 or larger. Thicker 3D tissues have been formed by stacking multiple cell sheets collected on frames that can be nested (i.e. Matryoshka dolls) without any special tools. When cultured on the nanofiber mesh, skeletal muscle, C2C12 cells oriented along the direction of the nanofibers and differentiated into uniaxially aligned multinucleated myotube. Myotube cell sheets were stacked (upto 3 layers) in alternating or aligned directions to form thicker tissue with ∼50 µm thickness. Sandwiching HUVEC cell sheets with two dermal fibroblast cell sheets resulted in vascularized 3D tissue. HUVECs formed extensive networks and expressed CD31, a marker of endothelial cells. Cell sheets formed on nanofiber mesh have a number of advantages, including manipulation and stacking of multiple cell sheets for constructing 3D tissue and may find applications in a variety of tissue engineering applications.

  14. [A new approach to clinical and laboratory diagnosis of systemic and local soft tissue infections].

    Science.gov (United States)

    Barkhatova, N A

    2009-01-01

    Dynamic measurements of blood TNF-a, IL-IRA, CRP, oligopeptide, and lactoferrin levels in patients with systemic and local soft tissue infections revealed direct correlation between them which allowed to use these indicators for the diagnosis of systemic infections. Results of clinical and laboratory analyses provided a basis for distinguishing short-term systemic inflammatory response syndrome and sepsis and developing relevant diagnostic criteria. Sepsis combined with systemic inflammatory response syndrome persisting for more than 72 hours after the onset of adequate therapy was characterized by CRP levels > 30 mg/l, oligopeptides > 0.34 U, lactoferrin > 1900 ng/ml, TNF-a > 6 pg/ml, ILL-IRA systemic inflammatory response syndrome for less than 72 hours had lower TNF-a, CRP, oligopeptide, and lactoferrin levels with IL-IRA > 1500 pg/ml. This new approach to early diagnosis of systemic infections makes it possible to optimize their treatment and thereby enhance its efficiency.

  15. Measurement of the tissue to A-150 tissue equivalent plastic kerma ratio at two p(66)Be neutron therapy facilities

    International Nuclear Information System (INIS)

    Langen, K M; Binns, P J; Schreuder, A N; Lennox, A J; Deluca, P M Jr.

    2003-01-01

    The ICRU tissue to A-150 tissue equivalent plastic kerma ratio is needed for neutron therapy dosimetry. The current ICRU protocol for neutron dosimetry recommends using a common conversion factor of 0.95 at all high-energy neutron therapy facilities. In an effort to determine facility specific ICRU tissue to A-150 plastic kerma ratios, an experimental approach was pursued. Four low pressure proportional counters that differed in wall materials (i.e. A-150, carbon, zirconium and zirconium-oxide) were used as dosimeters and integral kerma ratios were determined directly in the clinical beam. Measurements were performed at two p(66)Be facilities: iThemba LABS near Cape Town and Fermilab near Chicago. At the iThemba facility the clinical neutron beam is routinely filtered by a flattening and hardening filter combination. The influence of beam filtration on the kerma ratio was evaluated. Using two recent gas-to-wall dose conversion factor (r m,g value) evaluations a mean ICRU tissue to A-150 plastic kerma ratio of 0.93 ± 0.05 was determined for the clinical beam at iThemba LABS. The respective value for the Fermilab beam is 0.95 ± 0.05. The experimentally determined ICRU tissue to A-150 plastic kerma ratios for the two clinical beams are in agreement with theoretical evaluations. Beam filtration reduces the kerma ratio by 3 ± 2%

  16. Development of an in vitro cytotoxicity model for aerosol exposure using 3D reconstructed human airway tissue; application for assessment of e-cigarette aerosol.

    Science.gov (United States)

    Neilson, Louise; Mankus, Courtney; Thorne, David; Jackson, George; DeBay, Jason; Meredith, Clive

    2015-10-01

    Development of physiologically relevant test methods to analyse potential irritant effects to the respiratory tract caused by e-cigarette aerosols is required. This paper reports the method development and optimisation of an acute in vitro MTT cytotoxicity assay using human 3D reconstructed airway tissues and an aerosol exposure system. The EpiAirway™ tissue is a highly differentiated in vitro human airway culture derived from primary human tracheal/bronchial epithelial cells grown at the air-liquid interface, which can be exposed to aerosols generated by the VITROCELL® smoking robot. Method development was supported by understanding the compatibility of these tissues within the VITROCELL® system, in terms of airflow (L/min), vacuum rate (mL/min) and exposure time. Dosimetry tools (QCM) were used to measure deposited mass, to confirm the provision of e-cigarette aerosol to the tissues. EpiAirway™ tissues were exposed to cigarette smoke and aerosol generated from two commercial e-cigarettes for up to 6 h. Cigarette smoke reduced cell viability in a time dependent manner to 12% at 6 h. E-cigarette aerosol showed no such decrease in cell viability and displayed similar results to that of the untreated air controls. Applicability of the EpiAirway™ model and exposure system was demonstrated, showing little cytotoxicity from e-cigarette aerosol and different aerosol formulations when compared directly with reference cigarette smoke, over the same exposure time. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    Directory of Open Access Journals (Sweden)

    Feifei Yan

    2014-03-01

    Full Text Available The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  18. Zika Virus RNA Replication and Persistence in Brain and Placental Tissue

    Science.gov (United States)

    Rabeneck, Demi B.; Martines, Roosecelis B.; Reagan-Steiner, Sarah; Ermias, Yokabed; Estetter, Lindsey B.C.; Suzuki, Tadaki; Ritter, Jana; Keating, M. Kelly; Hale, Gillian; Gary, Joy; Muehlenbachs, Atis; Lambert, Amy; Lanciotti, Robert; Oduyebo, Titilope; Meaney-Delman, Dana; Bolaños, Fernando; Saad, Edgar Alberto Parra; Shieh, Wun-Ju; Zaki, Sherif R.

    2017-01-01

    Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections. PMID:27959260

  19. Combination of biochemical and mechanical cues for tendon tissue engineering.

    Science.gov (United States)

    Testa, Stefano; Costantini, Marco; Fornetti, Ersilia; Bernardini, Sergio; Trombetta, Marcella; Seliktar, Dror; Cannata, Stefano; Rainer, Alberto; Gargioli, Cesare

    2017-11-01

    Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Tendon healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering, using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fraying and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus provided by Transforming Growth Factor Beta (TGF-β) and Ascorbic Acid (AA); a three-dimensional environment represented by PEGylated-Fibrinogen (PEG-Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three-dimensional tissue-like structure promoting a remarkable arrangement of the cells and the neo-extracellular matrix, reflecting into enhanced mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with single inducement. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Tissue engineering

    CERN Document Server

    Fisher, John P; Bronzino, Joseph D

    2007-01-01

    Increasingly viewed as the future of medicine, the field of tissue engineering is still in its infancy. As evidenced in both the scientific and popular press, there exists considerable excitement surrounding the strategy of regenerative medicine. To achieve its highest potential, a series of technological advances must be made. Putting the numerous breakthroughs made in this field into a broad context, Tissue Engineering disseminates current thinking on the development of engineered tissues. Divided into three sections, the book covers the fundamentals of tissue engineering, enabling technologies, and tissue engineering applications. It examines the properties of stem cells, primary cells, growth factors, and extracellular matrix as well as their impact on the development of tissue engineered devices. Contributions focus on those strategies typically incorporated into tissue engineered devices or utilized in their development, including scaffolds, nanocomposites, bioreactors, drug delivery systems, and gene t...

  1. Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions

    Directory of Open Access Journals (Sweden)

    Stromberg Arnold J

    2009-09-01

    Full Text Available Abstract Background Full-thickness articular cartilage lesions that reach to the subchondral bone yet are restricted to the chondral compartment usually fill with a fibrocartilage-like repair tissue which is structurally and biomechanically compromised relative to normal articular cartilage. The objective of this study was to evaluate transcriptional differences between chondrocytes of normal articular cartilage and repair tissue cells four months post-microfracture. Methods Bilateral one-cm2 full-thickness defects were made in the articular surface of both distal femurs of four adult horses followed by subchondral microfracture. Four months postoperatively, repair tissue from the lesion site and grossly normal articular cartilage from within the same femorotibial joint were collected. Total RNA was isolated from the tissue samples, linearly amplified, and applied to a 9,413-probe set equine-specific cDNA microarray. Eight paired comparisons matched by limb and horse were made with a dye-swap experimental design with validation by histological analyses and quantitative real-time polymerase chain reaction (RT-qPCR. Results Statistical analyses revealed 3,327 (35.3% differentially expressed probe sets. Expression of biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue corroborate earlier studies. Other changes in gene expression previously unassociated with cartilage repair were also revealed and validated by RT-qPCR. Conclusion The magnitude of divergence in transcriptional profiles between normal chondrocytes and the cells that populate repair tissue reveal substantial functional differences between these two cell populations. At the four-month postoperative time point, the relative deficiency within repair tissue of gene transcripts which typically define articular cartilage indicate that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated differentiation to

  2. Direct Cell-Cell Contact between Mesenchymal Stem Cells and Endothelial Progenitor Cells Induces a Pericyte-Like Phenotype In Vitro

    Directory of Open Access Journals (Sweden)

    Markus Loibl

    2014-01-01

    Full Text Available Tissue engineering techniques for the regeneration of large bone defects require sufficient vascularisation of the applied constructs to ensure a sufficient supply of oxygen and nutrients. In our previous work, prevascularised 3D scaffolds have been successfully established by coculture of bone marrow derived stem cells (MSCs and endothelial progenitor cells (EPCs. We identified stabilising pericytes (PCs as part of newly formed capillary-like structures. In the present study, we report preliminary data on the interactions between MSCs and EPCs, leading to the differentiation of pericyte-like cells. MSCs and EPCs were seeded in transwell cultures, direct cocultures, and single cultures. Cells were cultured for 10 days in IMDM 10% FCS or IMDM 5% FCS 5% platelet lysate medium. Gene expression of PC markers, CD146, NG2, αSMA, and PDGFR-β, was analysed using RT-PCR at days 0, 3, 7, and 10. The upregulation of CD146, NG2, and αSMA in MSCs in direct coculture with EPCs advocates the MSCs’ differentiation towards a pericyte-like phenotype in vitro. These results suggest that pericyte-like cells derive from MSCs and that cell-cell contact with EPCs is an important factor for this differentiation process. These findings emphasise the concept of coculture strategies to promote angiogenesis for cell-based tissue engineered bone grafts.

  3. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  4. Polarimetry based partial least square classification of ex vivo healthy and basal cell carcinoma human skin tissues.

    Science.gov (United States)

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ikram, Masroor

    2016-06-01

    Optical polarimetry was employed for assessment of ex vivo healthy and basal cell carcinoma (BCC) tissue samples from human skin. Polarimetric analyses revealed that depolarization and retardance for healthy tissue group were significantly higher (ppolarimetry together with PLS statistics hold promise for automated pathology classification. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Soft tissue changes in the metacarpal region of the hand in rheumatoid arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.

    1984-11-01

    Rheumatoid arthritis causes changes in the soft tissues in the metacarpal portion of the hand which can be demonstrated by low Kv exposures. Indirect signs of inflammation consist of oedema extending from the synovial compartments to the skin, the subcutaneous tissues, the intermuscular fat septa and the peritendinous tissue. Increased blood flow leads to dilatation of veins. Direct signs of inflammation consists of tenosynovitis and synovitis of the joints, with enlargement of the corresponding compartments. Limited mobility of the hand over a long period, or improvement in motility are paralleled by changes in muscle mass.

  6. Expression cartography of human tissues using self organizing maps

    Directory of Open Access Journals (Sweden)

    Löffler Markus

    2011-07-01

    Full Text Available Abstract Background Parallel high-throughput microarray and sequencing experiments produce vast quantities of multidimensional data which must be arranged and analyzed in a concerted way. One approach to addressing this challenge is the machine learning technique known as self organizing maps (SOMs. SOMs enable a parallel sample- and gene-centered view of genomic data combined with strong visualization and second-level analysis capabilities. The paper aims at bridging the gap between the potency of SOM-machine learning to reduce dimension of high-dimensional data on one hand and practical applications with special emphasis on gene expression analysis on the other hand. Results The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues. SOM mapping reduces the dimension of expression data from ten of thousands of genes to a few thousand metagenes, each representing a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of genes related to specific molecular processes in the respective tissue. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering are better represented and provide better signal-to-noise ratios if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues broadly into three clusters containing nervous, immune system and the remaining tissues

  7. Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues.

    Science.gov (United States)

    Drexler, Dieter M; Garrett, Timothy J; Cantone, Joseph L; Diters, Richard W; Mitroka, James G; Prieto Conaway, Maria C; Adams, Stephen P; Yost, Richard A; Sanders, Mark

    2007-01-01

    The properties and potential liabilities of drug candidate are investigated in detailed ADME assays and in toxicity studies, where findings are placed in context of exposure to dosed drug and metabolites. The complex nature of biological samples may necessitate work-up procedures prior to high performance liquid chromatography-mass spectrometric (HPLC-MS) analysis of endogenous or xenobiotic compounds. This concept can readily be applied to biological fluids such as blood or urine, but in localized samples such as organs and tissues potentially important spatial, thus anatomical, information is lost during sample preparation as the result of homogenization and extraction procedures. However, the localization of test article or spatial identification of metabolites may be critical to the understanding of the mechanism of target-organ toxicity and its relevance to clinical safety. Tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) and ion trap mass spectrometry (MS) with higher order mass spectrometric scanning functions was utilized for localization of dosed drug or metabolite in tissue. Laser capture microscopy (LCM) was used to obtain related samples from tissue for analyses by standard MALDI-MS and HPLC-MS. In a toxicology study, rats were administered with a high dosage of a prodrug for 2 weeks. Birefringent microcrystalline material (10-25 microm) was observed in histopathologic formalin-fixed tissue samples. Direct analysis by IMS provided the identity of material in the microcrystals as circulating active drug while maintaining spatial orientation. Complementary data from visual cross-polarized light microscopy as well as standard MALDI-MS and HPLC-MS experiments on LCM samples validated the qualitative results obtained by IMS. Furthermore, the HPLC-MS analysis on the LCM samples afforded a semi-quantitative assessment of the crystalline material in the tissue samples. IMS by MALDI ion trap MS proved sensitive

  8. Trend Analysis of Organ and Tissue Donation for Transplantation.

    Science.gov (United States)

    Dos Santos, M J; Leal de Moraes, E; Santini Martins, M; Carlos de Almeida, E; Borges de Barros E Silva, L; Urias, V; Silvano Corrêa Pacheco Furtado, M C; Brito Nunes, Á; El Hage, S

    2018-03-01

    The goal of this study was to identify the tendency toward donations of tissue and organs from donors with brain death between 2001 and 2016 as registered by an organ procurement organization in São Paulo City. This quantitative, retrospective, exploratory study encompassed all Tissue and Organ Donation Terms signed between 2001 and 2016. A logistic regression model was applied to verify whether there was an upward or downward trend in donation. After statistical analysis, a significant change trend was identified in skin, bones, valve, vessel, heart, lung, and pancreas donations, indicating an increase in the donation rate through the years. The donation rate did not show changes over the years for donations of liver, kidneys, and corneas. The decision-making process regarding organ and tissue donation is restricted not only to the dilemma of whether to donate but another question then arises as well: which organs and tissues are to be donated? The discrepancy between the authorization for organ donation and the authorization for tissue donation, as well as the option for one or another organ and/or tissue, must be thoroughly examined because these factors directly affect the number of transplants and acquirements effectively accomplished. These factors may be related to explaining to one's relatives aspects of the surgery, body reassembling, and usage of such organs and/or tissues. They may also be related to the lack of knowledge concerning organ donation and the symbolism represented by the organ and/or tissue, among other factors. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Electron probe microanalysis for clinical investigations: Microdrop and soft tissue analysis

    International Nuclear Information System (INIS)

    Ingram, M.J.; Ingram, F.D.

    1984-01-01

    The most important advantage offered by electron probe microanalysis (EPA) for clinical investigations is the ability to analyze smaller volumes of tissue than is possible with conventional techniques. The sample can be a biological soft tissue specimen, which involves subcellular localization, or a picoliter fluid droplet. In either case, the analysis can be nondestructive and permit multiple analyses for a number of elements in a given sample. The most highly developed electron microprobe analytical technique is fluid drop analysis, popularly referred to as microdrop analysis. This method provides the investigator with an analytic capability that has an accuracy of measurement often 1% or better on 20 to 30 picoliter fluid droplets. Electron microprobe techniques have been used for studies of animal hard tissue and for studies that involve insoluble inclusions. However, the development of techniques for studies of labile constituents in animal soft tissue has been much slower. It has been necessary not only to develop appropriate methods of tissue preparation, but also to establish sound techniques for tissue collection. Although there are adequate methods for collection of most types of tissue from laboratory animals, many of these methods are not suitable for human subjects. In order to provide the reader with a better understanding of the capabilities and potential for the application of electron microprobe methodology to problems in clinical medicine, the authors discuss some of their experiences with liquid droplet analysis and quantitative electrolyte distribution measurements in animal soft tissue

  10. Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization.

    Science.gov (United States)

    Dzamba, Bette J; Jakab, Karoly R; Marsden, Mungo; Schwartz, Martin A; DeSimone, Douglas W

    2009-03-01

    In this study we demonstrate that planar cell polarity signaling regulates morphogenesis in Xenopus embryos in part through the assembly of the fibronectin (FN) matrix. We outline a regulatory pathway that includes cadherin adhesion and signaling through Rac and Pak, culminating in actin reorganization, myosin contractility, and tissue tension, which, in turn, directs the correct spatiotemporal localization of FN into a fibrillar matrix. Increased mechanical tension promotes FN fibril assembly in the blastocoel roof (BCR), while reduced BCR tension inhibits matrix assembly. These data support a model for matrix assembly in tissues where cell-cell adhesions play an analogous role to the focal adhesions of cultured cells by transferring to integrins the tension required to direct FN fibril formation at cell surfaces.

  11. Current Advancements and Strategies in Tissue Engineering for Wound Healing: A Comprehensive Review.

    Science.gov (United States)

    Ho, Jasmine; Walsh, Claire; Yue, Dominic; Dardik, Alan; Cheema, Umber

    2017-06-01

    Significance: With an aging population leading to an increase in diabetes and associated cutaneous wounds, there is a pressing clinical need to improve wound-healing therapies. Recent Advances: Tissue engineering approaches for wound healing and skin regeneration have been developed over the past few decades. A review of current literature has identified common themes and strategies that are proving successful within the field: The delivery of cells, mainly mesenchymal stem cells, within scaffolds of the native matrix is one such strategy. We overview these approaches and give insights into mechanisms that aid wound healing in different clinical scenarios. Critical Issues: We discuss the importance of the biomimetic niche, and how recapitulating elements of the native microenvironment of cells can help direct cell behavior and fate. Future Directions: It is crucial that during the continued development of tissue engineering in wound repair, there is close collaboration between tissue engineers and clinicians to maintain the translational efficacy of this approach.

  12. Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Haghighatnama, Maedeh; Haghi, Afsaneh Motevalli

    2015-01-01

    The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention.

  13. Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.

    Science.gov (United States)

    Guertler, Charlotte A; Okamoto, Ruth J; Schmidt, John L; Badachhape, Andrew A; Johnson, Curtis L; Bayly, Philip V

    2018-03-01

    The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Optical imaging of oral pathological tissue using optical coherence tomography and synchrotron radiation computed microtomography

    Science.gov (United States)

    Cânjǎu, Silvana; Todea, Carmen; Sinescu, Cosmin; Negrutiu, Meda L.; Duma, Virgil; Mǎnescu, Adrian; Topalǎ, Florin I.; Podoleanu, Adrian Gh.

    2013-06-01

    The efforts aimed at early diagnosis of oral cancer should be prioritized towards developing a new screening instrument, based on optical coherence tomography (OCT), to be used directly intraorally, able to perform a fast, real time, 3D and non-invasive diagnosis of oral malignancies. The first step in this direction would be to optimize the OCT image interpretation of oral tissues. Therefore we propose plastination as a tissue preparation method that better preserves three-dimensional structure for study by new optical imaging techniques. The OCT and the synchrotron radiation computed microtomography (micro-CT) were employed for tissue sample analyze. For validating the OCT results we used the gold standard diagnostic procedure for any suspicious lesion - histopathology. This is a preliminary study of comparing features provided by OCT and Micro-CT. In the conditions of the present study, OCT proves to be a highly promising imaging modality. The use of x-ray based topographic imaging of small biological samples has been limited by the low intrinsic x-ray absorption of non-mineralized tissue and the lack of established contrast agents. Plastination can be used to enhance optical imagies of oral soft tissue samples.

  15. A New Paradigm for Tissue Diagnostics: Tools and Techniques to Standardize Tissue Collection, Transport, and Fixation.

    Science.gov (United States)

    Bauer, Daniel R; Otter, Michael; Chafin, David R

    2018-01-01

    Studying and developing preanalytical tools and technologies for the purpose of obtaining high-quality samples for histological assays is a growing field. Currently, there does not exist a standard practice for collecting, fixing, and monitoring these precious samples. There has been some advancement in standardizing collection for the highest profile tumor types, such as breast, where HER2 testing drives therapeutic decisions. This review examines the area of tissue collection, transport, and monitoring of formalin diffusion and details a prototype system that could be used to help standardize tissue collection efforts. We have surveyed recent primary literature sources and conducted several site visits to understand the most error-prone processes in histology laboratories. This effort identified errors that resulted from sample collection techniques and subsequent transport delays from the operating room (OR) to the histology laboratories. We have therefore devised a prototype sample collection and transport concept. The system consists of a custom data logger and cold transport box and takes advantage of a novel cold + warm (named 2 + 2) fixation method. This review highlights the beneficial aspects of standardizing tissue collection, fixation, and monitoring. In addition, a prototype system is introduced that could help standardize these processes and is compatible with use directly in the OR and from remote sites.

  16. Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance

    DEFF Research Database (Denmark)

    Ahlqvist, Emma; Osmark, Peter; Kuulasmaa, Tiina

    2013-01-01

    Low-grade inflammation in obesity is associated with accumulation of the macrophage-derived cytokine osteopontin (OPN) in adipose tissue and induction of local as well as systemic insulin resistance. Since glucose-dependent insulinotropic polypeptide (GIP) is a strong stimulator of adipogenesis...... and may play a role in the development of obesity, we explored whether GIP directly would stimulate OPN expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher...... for transmembrane activity. Carriers of the A allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone but also as a trigger of inflammation and insulin resistance in adipose tissue...

  17. arXiv Statistical Analyses of Higgs- and Z-Portal Dark Matter Models

    CERN Document Server

    Ellis, John; Marzola, Luca; Raidal, Martti

    2018-06-12

    We perform frequentist and Bayesian statistical analyses of Higgs- and Z-portal models of dark matter particles with spin 0, 1/2 and 1. Our analyses incorporate data from direct detection and indirect detection experiments, as well as LHC searches for monojet and monophoton events, and we also analyze the potential impacts of future direct detection experiments. We find acceptable regions of the parameter spaces for Higgs-portal models with real scalar, neutral vector, Majorana or Dirac fermion dark matter particles, and Z-portal models with Majorana or Dirac fermion dark matter particles. In many of these cases, there are interesting prospects for discovering dark matter particles in Higgs or Z decays, as well as dark matter particles weighing $\\gtrsim 100$ GeV. Negative results from planned direct detection experiments would still allow acceptable regions for Higgs- and Z-portal models with Majorana or Dirac fermion dark matter particles.

  18. The spatial patterns of directional phenotypic selection.

    Science.gov (United States)

    Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M

    2013-11-01

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  19. The spatial patterns of directional phenotypic selection

    KAUST Repository

    Siepielski, Adam M.

    2013-09-12

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  20. Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue; Hyperfeinstruktur-Analyse in der Magnetresonanzspektroskopie: von astrophysikalischen Messungen zu endogenen Biosensoren in menschlichem Gewebe

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L. [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Medizinische Physik in der Radiologie; California Univ., Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab., Berkeley, CA (United States). Dept. of Chemistry

    2007-07-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)

  1. Individualised calculation of tissue imparted energy in breast tomosynthesis

    International Nuclear Information System (INIS)

    Geeraert, N.; Klausz, R.; Muller, S.; Bosmans, H.; Bloch, I.

    2016-01-01

    The imparted energy to the glandular tissue in the breast (glandular imparted energy, GIE) is proposed for an improved assessment of the individual radiation-induced risk resulting from X-ray breast imaging. GIE is computed from an estimation of the quantity and localisation of glandular tissue in the breast. After a digital breast tomosynthesis (DBT) acquisition, the volumetric glandular content (volumetric breast density, VBD) is computed from the central X-ray projection. The glandular tissue distribution is determined by labelling the DBT voxels to ensure the conservation of the VBD. Finally, the GIE is calculated by Monte Carlo computation on the resulting tissue-labelled DBT volume. For verification, the method was applied to 10 breast-shaped digital phantoms made of different glandular spheres in an adipose background, and to a digital anthropomorphic phantom. Results were compared to direct GIE computations on the phantoms considered as 'ground-truth'. The major limitations in accuracy are those of DBT, in particular the limited z-resolution. However, for most phantoms, the results can be considered as acceptable. (authors)

  2. Differential tissue expression of enhanced green fluorescent protein in ‘Green mice’

    OpenAIRE

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-01-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in ‘green mice’ from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these ‘green mice’ by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On i...

  3. The influence of dose fractionation and dose rate on normal tissue responses

    International Nuclear Information System (INIS)

    Barendsen, G.W.

    1982-01-01

    An analysis of responses of a variety of normal tissues in animals to fractionated irradiations has been made with the aim of developing a formalism for the prediction of tolerance doses as a function of the dose per fraction and the overall treatment time. An important feature of the formalism is that it is directly based on radiological insights and therefore provides a logical concept to account for the diversity of tissue responses. (Auth.)

  4. Computer modeling the boron compound factor in normal brain tissue

    International Nuclear Information System (INIS)

    Gavin, P.R.; Huiskamp, R.; Wheeler, F.J.; Griebenow, M.L.

    1993-01-01

    The macroscopic distribution of borocaptate sodium (Na 2 B 12 H 11 SH or BSH) in normal tissues has been determined and can be accurately predicted from the blood concentration. The compound para-borono-phenylalanine (p-BPA) has also been studied in dogs and normal tissue distribution has been determined. The total physical dose required to reach a biological isoeffect appears to increase directly as the proportion of boron capture dose increases. This effect, together with knowledge of the macrodistribution, led to estimates of the influence of the microdistribution of the BSH compound. This paper reports a computer model that was used to predict the compound factor for BSH and p-BPA and, hence, the equivalent radiation in normal tissues. The compound factor would need to be calculated for other compounds with different distributions. This information is needed to design appropriate normal tissue tolerance studies for different organ systems and/or different boron compounds

  5. Gut-associated lymphoid tissue, gut microbes and susceptibility to experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Stanisavljević, S; Lukić, J; Momčilović, M; Miljković, M; Jevtić, B; Kojić, M; Golić, N; Mostarica Stojković, M; Miljković, D

    2016-06-01

    Gut microbiota and gut-associated lymphoid tissue have been increasingly appreciated as important players in pathogenesis of various autoimmune diseases, including multiple sclerosis. Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis that can be induced with an injection of spinal cord homogenate emulsified in complete Freund's adjuvant in Dark Agouti (DA) rats, but not in Albino Oxford (AO) rats. In this study, mesenteric lymph nodes (MLN), Peyer's patches (PP) and gut microbiota were analysed in these two rat strains. There was higher proportion of CD4(+) T cells and regulatory T cells in non-immunised DA rats in comparison to AO rats. Also, DA rat MLN and PP cells were higher producers of pro-inflammatory cytokines interferon-γ and interleukin-17. Finally, microbial analyses showed that uncultivated species of Turicibacter and Atopostipes genus were exclusively present in AO rats, in faeces and intestinal tissue, respectively. Thus, it is clear that in comparison of an EAE-susceptible with an EAE-resistant strain of rats, various discrepancies at the level of gut associated lymphoid tissue, as well as at the level of gut microbiota can be observed. Future studies should determine if the differences have functional significance for EAE pathogenesis.

  6. PPAR γ is highly expressed in F4/80hi adipose tissue macrophages and dampens adipose-tissue inflammation

    Science.gov (United States)

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J.; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) γ agonist. Hence, we hypothesized that F4/80hi and F4/80lo ATM differentially express PPAR γ. This study phenotypically and functionally characterizes F4/80hi and F4/80lo ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80lo and F4/80hi ATM by quantitative real-time RT-PCR. We show that while F4/80lo macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80lo and F4/80hi ATM. Moreover, accumulation of F4/80hi ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80hi ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-α, MCP-1, and IL-10 than F4/80lo ATM. Gene expression analyses of the sorted populations revealed that only the F4/80lo population produced IL-4, whereas the F4/80hi ATM expressed greater amounts of PPAR γ, δ, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR γ in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR γ is differentially expressed in F4/80hi versus F4/80low ATM subsets and its deficiency favors a predominance of M1 markers in WAT. PMID:19423085

  7. PPAR gamma is highly expressed in F4/80(hi) adipose tissue macrophages and dampens adipose-tissue inflammation.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) gamma agonist. Hence, we hypothesized that F4/80(hi) and F4/80(lo) ATM differentially express PPAR gamma. This study phenotypically and functionally characterizes F4/80(hi) and F4/80(lo) ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80(lo) and F4/80(hi) ATM by quantitative real-time RT-PCR. We show that while F4/80(lo) macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80(lo) and F4/80(hi) ATM. Moreover, accumulation of F4/80(hi) ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80(hi) ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-alpha, MCP-1, and IL-10 than F4/80(lo) ATM. Gene expression analyses of the sorted populations revealed that only the F4/80(lo) population produced IL-4, whereas the F4/80(hi) ATM expressed greater amounts of PPAR gamma, delta, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR gamma in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR gamma is differentially expressed in F4/80(hi) versus F4/80(low) ATM subsets and its deficiency favors a predominance of M1 markers in WAT.

  8. Study on tissue culture for Gelidium seedling

    Science.gov (United States)

    Pei, Lu-Qing; Luo, Qi-Jun; Fei, Zhi-Qing; Ma, Bin

    1996-06-01

    As seedling culture is a crucial factor for successful cultivation of Gelidium, the authors researched tissue culture technology for producing seedlings. The morphogeny and experimental ecology were observed and studied fully in 2 5 mm isolated tissue fragments. Regeneration, appearance of branching creepers and attaching structure and new erect seedlings production and development were studied. Fragments were sown on bamboo slice and vinylon rope. The seedlings were cultured 20 30 days indoor, then cultured in the sea, where the density of erect seedlings was 3 19 seedlings/cm2, growth rate was 3.84% day. The frond arising from seedlings directly was up to 10 cm per year. The ecological conditions for regenerated seedlings are similar to the natural ones. The regenerated seedlings are suitable for raft culture in various sea areas.

  9. Streamlined bioreactor-based production of human cartilage tissues.

    Science.gov (United States)

    Tonnarelli, B; Santoro, R; Adelaide Asnaghi, M; Wendt, D

    2016-05-27

    Engineered tissue grafts have been manufactured using methods based predominantly on traditional labour-intensive manual benchtop techniques. These methods impart significant regulatory and economic challenges, hindering the successful translation of engineered tissue products to the clinic. Alternatively, bioreactor-based production systems have the potential to overcome such limitations. In this work, we present an innovative manufacturing approach to engineer cartilage tissue within a single bioreactor system, starting from freshly isolated human primary chondrocytes, through the generation of cartilaginous tissue grafts. The limited number of primary chondrocytes that can be isolated from a small clinically-sized cartilage biopsy could be seeded and extensively expanded directly within a 3D scaffold in our perfusion bioreactor (5.4 ± 0.9 doublings in 2 weeks), bypassing conventional 2D expansion in flasks. Chondrocytes expanded in 3D scaffolds better maintained a chondrogenic phenotype than chondrocytes expanded on plastic flasks (collagen type II mRNA, 18-fold; Sox-9, 11-fold). After this "3D expansion" phase, bioreactor culture conditions were changed to subsequently support chondrogenic differentiation for two weeks. Engineered tissues based on 3D-expanded chondrocytes were more cartilaginous than tissues generated from chondrocytes previously expanded in flasks. We then demonstrated that this streamlined bioreactor-based process could be adapted to effectively generate up-scaled cartilage grafts in a size with clinical relevance (50 mm diameter). Streamlined and robust tissue engineering processes, as the one described here, may be key for the future manufacturing of grafts for clinical applications, as they facilitate the establishment of compact and closed bioreactor-based production systems, with minimal automation requirements, lower operating costs, and increased compliance to regulatory guidelines.

  10. Carry-over of melamine from feed to eggs and body tissues of laying hens.

    Science.gov (United States)

    Dong, X F; Liu, S Y; Tong, J M; Zhang, Q

    2010-10-01

    The objective of this study was to assess the carry-over of melamine from feed into eggs and body tissues of laying hens. In the first experiment, laying hens were supplied with feed added at 0, 1, 2, 5, 25, 50, and 100 mg kg(-1) of melamine for 21 days followed by a depletion period to observe the residues of melamine in eggs. In a second experiment, laying hens were allocated 0, 50, and 100 mg kg(-1) melamine to determine levels of melamine in body tissues. Melamine and cyanuric acid were simultaneously analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the diet as well as in eggs and body tissue. In the first experiment, melamine appeared in the egg within 24 h after first ingestion of the melamine at 5, 25, 50, and 100 mg kg(-1). Melamine concentration in egg reached a maximum of 2.34 mg kg(-1) within 17 days after exposure of 100 mg kg(-1) melamine, and the carry-over rate for melamine from feed to the eggs was 1.21%. In the second experiment, melamine was detected in tissues within 3 days after exposure; the maximum concentration of melamine residues occurred in the 100 mg kg(-1) group and was as follows: egg (1.83) > kidney (1.21) > breast muscle (0.86) > liver (0.70) > serum (0.42). The melamine level in egg albumen was about twice that of egg yolk. Melamine levels in laying hens decreased rapidly with withdrawal from feed, but melamine only declined to undetectable levels in the egg at day 6 and in tissues at day 4 after last ingestion of 100 mg kg(-1). It can be concluded that a pathway exists for the transmission of melamine from feed to egg and body tissues and the carry-over rate of melamine is low, and that melamine is not metabolized into cyanuric acid in laying hens. A positive relationship exists between exposure levels and eggs or tissues, but no direct relationship between the exposure time and measured levels of melamine in eggs and tissues. The current Chinese limit for melamine in feed and feed material of 2.5 mg kg(-1

  11. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Science.gov (United States)

    Babur, Betul Kul; Kabiri, Mahboubeh; Klein, Travis Jacob; Lott, William B; Doran, Michael Robert

    2015-01-01

    We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.

  12. Neuronal network analyses: premises, promises and uncertainties

    OpenAIRE

    Parker, David

    2010-01-01

    Neuronal networks assemble the cellular components needed for sensory, motor and cognitive functions. Any rational intervention in the nervous system will thus require an understanding of network function. Obtaining this understanding is widely considered to be one of the major tasks facing neuroscience today. Network analyses have been performed for some years in relatively simple systems. In addition to the direct insights these systems have provided, they also illustrate some of the diffic...

  13. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  14. Aluminium in brain tissue in familial Alzheimer's disease.

    Science.gov (United States)

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  15. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    OpenAIRE

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-...

  16. [Progress in application of 3D bioprinting in cartilage regeneration and reconstruction for tissue engineering].

    Science.gov (United States)

    Liao, Junlin; Wang, Shaohua; Chen, Jia; Xie, Hongju; Zhou, Jianda

    2017-02-28

    Three-dimensional (3D) bioprinting provides an advanced technology for tissue engineering and regenerative medicine because of its ability to produce the models or organs with higher precision and more suitable for human body. It has been successfully used to produce a variety of cartilage scaffold materials. In addition, 3D bioprinter can directly to print tissue and organs with live chondrocytes. In conclusion, 3D bioprinting may have broad prospect for cartilage regeneration and reconstruction in tissue engineering.

  17. Sialic acid tissue distribution and influenza virus tropism

    OpenAIRE

    Kumlin, Urban; Olofsson, Sigvard; Dimock, Ken; Arnberg, Niklas

    2008-01-01

    Abstract? Avian influenza A viruses exhibit a strong preference for using ?2,3?linked sialic acid as a receptor. Until recently, the presumed lack of this receptor in human airways was believed to constitute an efficient barrier to avian influenza A virus infection of humans. Recent zoonotic outbreaks of avian influenza A virus have triggered researchers to analyse tissue distribution of sialic acid in further detail. Here, we review and extend the current knowledge about sialic acid distribu...

  18. Tissue Engineering of the Urethra: A Systematic Review and Meta-analysis of Preclinical and Clinical Studies.

    Science.gov (United States)

    Versteegden, Luuk R M; de Jonge, Paul K J D; IntHout, Joanna; van Kuppevelt, Toin H; Oosterwijk, Egbert; Feitz, Wout F J; de Vries, Rob B M; Daamen, Willeke F

    2017-10-01

    Urethra repair by tissue engineering has been extensively studied in laboratory animals and patients, but is not routinely used in clinical practice. To systematically investigate preclinical and clinical evidence of the efficacy of tissue engineering for urethra repair in order to stimulate translation of preclinical studies to the clinic. A systematic search strategy was applied in PubMed and EMBASE. Studies were independently screened for relevance by two reviewers, resulting in 80 preclinical and 23 clinical studies of which 63 and 13 were selected for meta-analysis to assess side effects, functionality, and study completion. Analyses for preclinical and clinical studies were performed separately. Full circumferential and inlay procedures were assessed independently. Evaluated parameters included seeding of cells and type of biomaterial. Meta-analysis revealed that cell seeding significantly reduced the probability of encountering side effects in preclinical studies. Remarkably though, cells were only sparsely used in the clinic (4/23 studies) and showed no significant reduction of side effects. ln 21 out of 23 clinical studies, decellularized templates were used, while in preclinical studies other biomaterials showed promising outcomes as well. No direct comparison to current clinical practice could be made due to the limited number of randomized controlled studies. Due to a lack of controlled (pre)clinical studies, the efficacy of tissue engineering for urethra repair could not be determined. Meta-analysis outcome measures were similar to current treatment options described in literature. Surprisingly, it appeared that favorable preclinical results, that is inclusion of cells, were not translated to the clinic. Improved (pre)clinical study designs may enhance clinical translation. We reviewed all available literature on urethral tissue engineering to assess the efficacy in preclinical and clinical studies. We show that improvements to (pre)clinical study

  19. T Cell Interstitial Migration: Motility Cues from the Inflamed Tissue for Micro- and Macro-Positioning.

    Science.gov (United States)

    Gaylo, Alison; Schrock, Dillon C; Fernandes, Ninoshka R J; Fowell, Deborah J

    2016-01-01

    Effector T cells exit the inflamed vasculature into an environment shaped by tissue-specific structural configurations and inflammation-imposed extrinsic modifications. Once within interstitial spaces of non-lymphoid tissues, T cells migrate in an apparent random, non-directional, fashion. Efficient T cell scanning of the tissue environment is essential for successful location of infected target cells or encounter with antigen-presenting cells that activate the T cell's antimicrobial effector functions. The mechanisms of interstitial T cell motility and the environmental cues that may promote or hinder efficient tissue scanning are poorly understood. The extracellular matrix (ECM) appears to play an important scaffolding role in guidance of T cell migration and likely provides a platform for the display of chemotactic factors that may help to direct the positioning of T cells. Here, we discuss how intravital imaging has provided insight into the motility patterns and cellular machinery that facilitates T cell interstitial migration and the critical environmental factors that may optimize the efficiency of effector T cell scanning of the inflamed tissue. Specifically, we highlight the local micro-positioning cues T cells encounter as they migrate within inflamed tissues, from surrounding ECM and signaling molecules, as well as a requirement for appropriate long-range macro-positioning within distinct tissue compartments or at discrete foci of infection or tissue damage. The central nervous system (CNS) responds to injury and infection by extensively remodeling the ECM and with the de novo generation of a fibroblastic reticular network that likely influences T cell motility. We examine how inflammation-induced changes to the CNS landscape may regulate T cell tissue exploration and modulate function.

  20. Guiding tissue regeneration with ultrasound in vitro and in vivo

    Science.gov (United States)

    Dalecki, Diane; Comeau, Eric S.; Raeman, Carol H.; Child, Sally Z.; Hobbs, Laura; Hocking, Denise C.

    2015-05-01

    Developing new technologies that enable the repair or replacement of injured or diseased tissues is a major focus of regenerative medicine. This paper will discuss three ultrasound technologies under development in our laboratories to guide tissue regeneration both in vitro and in vivo. A critical obstacle in tissue engineering is the need for rapid and effective tissue vascularization strategies. To address this challenge, we are developing acoustic patterning techniques for microvascular tissue engineering. Acoustic radiation forces associated with ultrasound standing wave fields provide a rapid, non-invasive approach to spatially pattern cells in three dimensions without affecting cell viability. Acoustic patterning of endothelial cells leads to the rapid formation of microvascular networks throughout the volumes of three-dimensional hydrogels, and the morphology of the resultant microvessel networks can be controlled by design of the ultrasound field. A second technology under development uses ultrasound to noninvasively control the microstructure of collagen fibers within engineered tissues. The microstructure of extracellular matrix proteins provides signals that direct cell functions critical to tissue regeneration. Thus, controlling collagen microfiber structure with ultrasound provides a noninvasive approach to regulate the mechanical properties of biomaterials and control cellular responses. The third technology employs therapeutic ultrasound to enhance the healing of chronic wounds. Recent studies demonstrate increased granulation tissue thickness and collagen deposition in murine dermal wounds exposed to pulsed ultrasound. In summary, ultrasound technologies offer noninvasive approaches to control cell behaviors and extracellular matrix organization and thus hold great promise to advance tissue regeneration in vitro and in vivo.